diff options
Diffstat (limited to 'src/lib/libcrypto/ec/ec2_smpl.c')
| -rw-r--r-- | src/lib/libcrypto/ec/ec2_smpl.c | 971 |
1 files changed, 971 insertions, 0 deletions
diff --git a/src/lib/libcrypto/ec/ec2_smpl.c b/src/lib/libcrypto/ec/ec2_smpl.c new file mode 100644 index 0000000000..5cd1eac41f --- /dev/null +++ b/src/lib/libcrypto/ec/ec2_smpl.c | |||
| @@ -0,0 +1,971 @@ | |||
| 1 | /* crypto/ec/ec2_smpl.c */ | ||
| 2 | /* ==================================================================== | ||
| 3 | * Copyright 2002 Sun Microsystems, Inc. ALL RIGHTS RESERVED. | ||
| 4 | * | ||
| 5 | * The Elliptic Curve Public-Key Crypto Library (ECC Code) included | ||
| 6 | * herein is developed by SUN MICROSYSTEMS, INC., and is contributed | ||
| 7 | * to the OpenSSL project. | ||
| 8 | * | ||
| 9 | * The ECC Code is licensed pursuant to the OpenSSL open source | ||
| 10 | * license provided below. | ||
| 11 | * | ||
| 12 | * The software is originally written by Sheueling Chang Shantz and | ||
| 13 | * Douglas Stebila of Sun Microsystems Laboratories. | ||
| 14 | * | ||
| 15 | */ | ||
| 16 | /* ==================================================================== | ||
| 17 | * Copyright (c) 1998-2003 The OpenSSL Project. All rights reserved. | ||
| 18 | * | ||
| 19 | * Redistribution and use in source and binary forms, with or without | ||
| 20 | * modification, are permitted provided that the following conditions | ||
| 21 | * are met: | ||
| 22 | * | ||
| 23 | * 1. Redistributions of source code must retain the above copyright | ||
| 24 | * notice, this list of conditions and the following disclaimer. | ||
| 25 | * | ||
| 26 | * 2. Redistributions in binary form must reproduce the above copyright | ||
| 27 | * notice, this list of conditions and the following disclaimer in | ||
| 28 | * the documentation and/or other materials provided with the | ||
| 29 | * distribution. | ||
| 30 | * | ||
| 31 | * 3. All advertising materials mentioning features or use of this | ||
| 32 | * software must display the following acknowledgment: | ||
| 33 | * "This product includes software developed by the OpenSSL Project | ||
| 34 | * for use in the OpenSSL Toolkit. (http://www.openssl.org/)" | ||
| 35 | * | ||
| 36 | * 4. The names "OpenSSL Toolkit" and "OpenSSL Project" must not be used to | ||
| 37 | * endorse or promote products derived from this software without | ||
| 38 | * prior written permission. For written permission, please contact | ||
| 39 | * openssl-core@openssl.org. | ||
| 40 | * | ||
| 41 | * 5. Products derived from this software may not be called "OpenSSL" | ||
| 42 | * nor may "OpenSSL" appear in their names without prior written | ||
| 43 | * permission of the OpenSSL Project. | ||
| 44 | * | ||
| 45 | * 6. Redistributions of any form whatsoever must retain the following | ||
| 46 | * acknowledgment: | ||
| 47 | * "This product includes software developed by the OpenSSL Project | ||
| 48 | * for use in the OpenSSL Toolkit (http://www.openssl.org/)" | ||
| 49 | * | ||
| 50 | * THIS SOFTWARE IS PROVIDED BY THE OpenSSL PROJECT ``AS IS'' AND ANY | ||
| 51 | * EXPRESSED OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE | ||
| 52 | * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR | ||
| 53 | * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE OpenSSL PROJECT OR | ||
| 54 | * ITS CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, | ||
| 55 | * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT | ||
| 56 | * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; | ||
| 57 | * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) | ||
| 58 | * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, | ||
| 59 | * STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) | ||
| 60 | * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED | ||
| 61 | * OF THE POSSIBILITY OF SUCH DAMAGE. | ||
| 62 | * ==================================================================== | ||
| 63 | * | ||
| 64 | * This product includes cryptographic software written by Eric Young | ||
| 65 | * (eay@cryptsoft.com). This product includes software written by Tim | ||
| 66 | * Hudson (tjh@cryptsoft.com). | ||
| 67 | * | ||
| 68 | */ | ||
| 69 | |||
| 70 | #include <openssl/err.h> | ||
| 71 | |||
| 72 | #include "ec_lcl.h" | ||
| 73 | |||
| 74 | |||
| 75 | const EC_METHOD *EC_GF2m_simple_method(void) | ||
| 76 | { | ||
| 77 | static const EC_METHOD ret = { | ||
| 78 | NID_X9_62_characteristic_two_field, | ||
| 79 | ec_GF2m_simple_group_init, | ||
| 80 | ec_GF2m_simple_group_finish, | ||
| 81 | ec_GF2m_simple_group_clear_finish, | ||
| 82 | ec_GF2m_simple_group_copy, | ||
| 83 | ec_GF2m_simple_group_set_curve, | ||
| 84 | ec_GF2m_simple_group_get_curve, | ||
| 85 | ec_GF2m_simple_group_get_degree, | ||
| 86 | ec_GF2m_simple_group_check_discriminant, | ||
| 87 | ec_GF2m_simple_point_init, | ||
| 88 | ec_GF2m_simple_point_finish, | ||
| 89 | ec_GF2m_simple_point_clear_finish, | ||
| 90 | ec_GF2m_simple_point_copy, | ||
| 91 | ec_GF2m_simple_point_set_to_infinity, | ||
| 92 | 0 /* set_Jprojective_coordinates_GFp */, | ||
| 93 | 0 /* get_Jprojective_coordinates_GFp */, | ||
| 94 | ec_GF2m_simple_point_set_affine_coordinates, | ||
| 95 | ec_GF2m_simple_point_get_affine_coordinates, | ||
| 96 | ec_GF2m_simple_set_compressed_coordinates, | ||
| 97 | ec_GF2m_simple_point2oct, | ||
| 98 | ec_GF2m_simple_oct2point, | ||
| 99 | ec_GF2m_simple_add, | ||
| 100 | ec_GF2m_simple_dbl, | ||
| 101 | ec_GF2m_simple_invert, | ||
| 102 | ec_GF2m_simple_is_at_infinity, | ||
| 103 | ec_GF2m_simple_is_on_curve, | ||
| 104 | ec_GF2m_simple_cmp, | ||
| 105 | ec_GF2m_simple_make_affine, | ||
| 106 | ec_GF2m_simple_points_make_affine, | ||
| 107 | |||
| 108 | /* the following three method functions are defined in ec2_mult.c */ | ||
| 109 | ec_GF2m_simple_mul, | ||
| 110 | ec_GF2m_precompute_mult, | ||
| 111 | ec_GF2m_have_precompute_mult, | ||
| 112 | |||
| 113 | ec_GF2m_simple_field_mul, | ||
| 114 | ec_GF2m_simple_field_sqr, | ||
| 115 | ec_GF2m_simple_field_div, | ||
| 116 | 0 /* field_encode */, | ||
| 117 | 0 /* field_decode */, | ||
| 118 | 0 /* field_set_to_one */ }; | ||
| 119 | |||
| 120 | return &ret; | ||
| 121 | } | ||
| 122 | |||
| 123 | |||
| 124 | /* Initialize a GF(2^m)-based EC_GROUP structure. | ||
| 125 | * Note that all other members are handled by EC_GROUP_new. | ||
| 126 | */ | ||
| 127 | int ec_GF2m_simple_group_init(EC_GROUP *group) | ||
| 128 | { | ||
| 129 | BN_init(&group->field); | ||
| 130 | BN_init(&group->a); | ||
| 131 | BN_init(&group->b); | ||
| 132 | return 1; | ||
| 133 | } | ||
| 134 | |||
| 135 | |||
| 136 | /* Free a GF(2^m)-based EC_GROUP structure. | ||
| 137 | * Note that all other members are handled by EC_GROUP_free. | ||
| 138 | */ | ||
| 139 | void ec_GF2m_simple_group_finish(EC_GROUP *group) | ||
| 140 | { | ||
| 141 | BN_free(&group->field); | ||
| 142 | BN_free(&group->a); | ||
| 143 | BN_free(&group->b); | ||
| 144 | } | ||
| 145 | |||
| 146 | |||
| 147 | /* Clear and free a GF(2^m)-based EC_GROUP structure. | ||
| 148 | * Note that all other members are handled by EC_GROUP_clear_free. | ||
| 149 | */ | ||
| 150 | void ec_GF2m_simple_group_clear_finish(EC_GROUP *group) | ||
| 151 | { | ||
| 152 | BN_clear_free(&group->field); | ||
| 153 | BN_clear_free(&group->a); | ||
| 154 | BN_clear_free(&group->b); | ||
| 155 | group->poly[0] = 0; | ||
| 156 | group->poly[1] = 0; | ||
| 157 | group->poly[2] = 0; | ||
| 158 | group->poly[3] = 0; | ||
| 159 | group->poly[4] = 0; | ||
| 160 | } | ||
| 161 | |||
| 162 | |||
| 163 | /* Copy a GF(2^m)-based EC_GROUP structure. | ||
| 164 | * Note that all other members are handled by EC_GROUP_copy. | ||
| 165 | */ | ||
| 166 | int ec_GF2m_simple_group_copy(EC_GROUP *dest, const EC_GROUP *src) | ||
| 167 | { | ||
| 168 | int i; | ||
| 169 | if (!BN_copy(&dest->field, &src->field)) return 0; | ||
| 170 | if (!BN_copy(&dest->a, &src->a)) return 0; | ||
| 171 | if (!BN_copy(&dest->b, &src->b)) return 0; | ||
| 172 | dest->poly[0] = src->poly[0]; | ||
| 173 | dest->poly[1] = src->poly[1]; | ||
| 174 | dest->poly[2] = src->poly[2]; | ||
| 175 | dest->poly[3] = src->poly[3]; | ||
| 176 | dest->poly[4] = src->poly[4]; | ||
| 177 | bn_wexpand(&dest->a, (int)(dest->poly[0] + BN_BITS2 - 1) / BN_BITS2); | ||
| 178 | bn_wexpand(&dest->b, (int)(dest->poly[0] + BN_BITS2 - 1) / BN_BITS2); | ||
| 179 | for (i = dest->a.top; i < dest->a.dmax; i++) dest->a.d[i] = 0; | ||
| 180 | for (i = dest->b.top; i < dest->b.dmax; i++) dest->b.d[i] = 0; | ||
| 181 | return 1; | ||
| 182 | } | ||
| 183 | |||
| 184 | |||
| 185 | /* Set the curve parameters of an EC_GROUP structure. */ | ||
| 186 | int ec_GF2m_simple_group_set_curve(EC_GROUP *group, | ||
| 187 | const BIGNUM *p, const BIGNUM *a, const BIGNUM *b, BN_CTX *ctx) | ||
| 188 | { | ||
| 189 | int ret = 0, i; | ||
| 190 | |||
| 191 | /* group->field */ | ||
| 192 | if (!BN_copy(&group->field, p)) goto err; | ||
| 193 | i = BN_GF2m_poly2arr(&group->field, group->poly, 5); | ||
| 194 | if ((i != 5) && (i != 3)) | ||
| 195 | { | ||
| 196 | ECerr(EC_F_EC_GF2M_SIMPLE_GROUP_SET_CURVE, EC_R_UNSUPPORTED_FIELD); | ||
| 197 | goto err; | ||
| 198 | } | ||
| 199 | |||
| 200 | /* group->a */ | ||
| 201 | if (!BN_GF2m_mod_arr(&group->a, a, group->poly)) goto err; | ||
| 202 | bn_wexpand(&group->a, (int)(group->poly[0] + BN_BITS2 - 1) / BN_BITS2); | ||
| 203 | for (i = group->a.top; i < group->a.dmax; i++) group->a.d[i] = 0; | ||
| 204 | |||
| 205 | /* group->b */ | ||
| 206 | if (!BN_GF2m_mod_arr(&group->b, b, group->poly)) goto err; | ||
| 207 | bn_wexpand(&group->b, (int)(group->poly[0] + BN_BITS2 - 1) / BN_BITS2); | ||
| 208 | for (i = group->b.top; i < group->b.dmax; i++) group->b.d[i] = 0; | ||
| 209 | |||
| 210 | ret = 1; | ||
| 211 | err: | ||
| 212 | return ret; | ||
| 213 | } | ||
| 214 | |||
| 215 | |||
| 216 | /* Get the curve parameters of an EC_GROUP structure. | ||
| 217 | * If p, a, or b are NULL then there values will not be set but the method will return with success. | ||
| 218 | */ | ||
| 219 | int ec_GF2m_simple_group_get_curve(const EC_GROUP *group, BIGNUM *p, BIGNUM *a, BIGNUM *b, BN_CTX *ctx) | ||
| 220 | { | ||
| 221 | int ret = 0; | ||
| 222 | |||
| 223 | if (p != NULL) | ||
| 224 | { | ||
| 225 | if (!BN_copy(p, &group->field)) return 0; | ||
| 226 | } | ||
| 227 | |||
| 228 | if (a != NULL) | ||
| 229 | { | ||
| 230 | if (!BN_copy(a, &group->a)) goto err; | ||
| 231 | } | ||
| 232 | |||
| 233 | if (b != NULL) | ||
| 234 | { | ||
| 235 | if (!BN_copy(b, &group->b)) goto err; | ||
| 236 | } | ||
| 237 | |||
| 238 | ret = 1; | ||
| 239 | |||
| 240 | err: | ||
| 241 | return ret; | ||
| 242 | } | ||
| 243 | |||
| 244 | |||
| 245 | /* Gets the degree of the field. For a curve over GF(2^m) this is the value m. */ | ||
| 246 | int ec_GF2m_simple_group_get_degree(const EC_GROUP *group) | ||
| 247 | { | ||
| 248 | return BN_num_bits(&group->field)-1; | ||
| 249 | } | ||
| 250 | |||
| 251 | |||
| 252 | /* Checks the discriminant of the curve. | ||
| 253 | * y^2 + x*y = x^3 + a*x^2 + b is an elliptic curve <=> b != 0 (mod p) | ||
| 254 | */ | ||
| 255 | int ec_GF2m_simple_group_check_discriminant(const EC_GROUP *group, BN_CTX *ctx) | ||
| 256 | { | ||
| 257 | int ret = 0; | ||
| 258 | BIGNUM *b; | ||
| 259 | BN_CTX *new_ctx = NULL; | ||
| 260 | |||
| 261 | if (ctx == NULL) | ||
| 262 | { | ||
| 263 | ctx = new_ctx = BN_CTX_new(); | ||
| 264 | if (ctx == NULL) | ||
| 265 | { | ||
| 266 | ECerr(EC_F_EC_GF2M_SIMPLE_GROUP_CHECK_DISCRIMINANT, ERR_R_MALLOC_FAILURE); | ||
| 267 | goto err; | ||
| 268 | } | ||
| 269 | } | ||
| 270 | BN_CTX_start(ctx); | ||
| 271 | b = BN_CTX_get(ctx); | ||
| 272 | if (b == NULL) goto err; | ||
| 273 | |||
| 274 | if (!BN_GF2m_mod_arr(b, &group->b, group->poly)) goto err; | ||
| 275 | |||
| 276 | /* check the discriminant: | ||
| 277 | * y^2 + x*y = x^3 + a*x^2 + b is an elliptic curve <=> b != 0 (mod p) | ||
| 278 | */ | ||
| 279 | if (BN_is_zero(b)) goto err; | ||
| 280 | |||
| 281 | ret = 1; | ||
| 282 | |||
| 283 | err: | ||
| 284 | if (ctx != NULL) | ||
| 285 | BN_CTX_end(ctx); | ||
| 286 | if (new_ctx != NULL) | ||
| 287 | BN_CTX_free(new_ctx); | ||
| 288 | return ret; | ||
| 289 | } | ||
| 290 | |||
| 291 | |||
| 292 | /* Initializes an EC_POINT. */ | ||
| 293 | int ec_GF2m_simple_point_init(EC_POINT *point) | ||
| 294 | { | ||
| 295 | BN_init(&point->X); | ||
| 296 | BN_init(&point->Y); | ||
| 297 | BN_init(&point->Z); | ||
| 298 | return 1; | ||
| 299 | } | ||
| 300 | |||
| 301 | |||
| 302 | /* Frees an EC_POINT. */ | ||
| 303 | void ec_GF2m_simple_point_finish(EC_POINT *point) | ||
| 304 | { | ||
| 305 | BN_free(&point->X); | ||
| 306 | BN_free(&point->Y); | ||
| 307 | BN_free(&point->Z); | ||
| 308 | } | ||
| 309 | |||
| 310 | |||
| 311 | /* Clears and frees an EC_POINT. */ | ||
| 312 | void ec_GF2m_simple_point_clear_finish(EC_POINT *point) | ||
| 313 | { | ||
| 314 | BN_clear_free(&point->X); | ||
| 315 | BN_clear_free(&point->Y); | ||
| 316 | BN_clear_free(&point->Z); | ||
| 317 | point->Z_is_one = 0; | ||
| 318 | } | ||
| 319 | |||
| 320 | |||
| 321 | /* Copy the contents of one EC_POINT into another. Assumes dest is initialized. */ | ||
| 322 | int ec_GF2m_simple_point_copy(EC_POINT *dest, const EC_POINT *src) | ||
| 323 | { | ||
| 324 | if (!BN_copy(&dest->X, &src->X)) return 0; | ||
| 325 | if (!BN_copy(&dest->Y, &src->Y)) return 0; | ||
| 326 | if (!BN_copy(&dest->Z, &src->Z)) return 0; | ||
| 327 | dest->Z_is_one = src->Z_is_one; | ||
| 328 | |||
| 329 | return 1; | ||
| 330 | } | ||
| 331 | |||
| 332 | |||
| 333 | /* Set an EC_POINT to the point at infinity. | ||
| 334 | * A point at infinity is represented by having Z=0. | ||
| 335 | */ | ||
| 336 | int ec_GF2m_simple_point_set_to_infinity(const EC_GROUP *group, EC_POINT *point) | ||
| 337 | { | ||
| 338 | point->Z_is_one = 0; | ||
| 339 | BN_zero(&point->Z); | ||
| 340 | return 1; | ||
| 341 | } | ||
| 342 | |||
| 343 | |||
| 344 | /* Set the coordinates of an EC_POINT using affine coordinates. | ||
| 345 | * Note that the simple implementation only uses affine coordinates. | ||
| 346 | */ | ||
| 347 | int ec_GF2m_simple_point_set_affine_coordinates(const EC_GROUP *group, EC_POINT *point, | ||
| 348 | const BIGNUM *x, const BIGNUM *y, BN_CTX *ctx) | ||
| 349 | { | ||
| 350 | int ret = 0; | ||
| 351 | if (x == NULL || y == NULL) | ||
| 352 | { | ||
| 353 | ECerr(EC_F_EC_GF2M_SIMPLE_POINT_SET_AFFINE_COORDINATES, ERR_R_PASSED_NULL_PARAMETER); | ||
| 354 | return 0; | ||
| 355 | } | ||
| 356 | |||
| 357 | if (!BN_copy(&point->X, x)) goto err; | ||
| 358 | BN_set_negative(&point->X, 0); | ||
| 359 | if (!BN_copy(&point->Y, y)) goto err; | ||
| 360 | BN_set_negative(&point->Y, 0); | ||
| 361 | if (!BN_copy(&point->Z, BN_value_one())) goto err; | ||
| 362 | BN_set_negative(&point->Z, 0); | ||
| 363 | point->Z_is_one = 1; | ||
| 364 | ret = 1; | ||
| 365 | |||
| 366 | err: | ||
| 367 | return ret; | ||
| 368 | } | ||
| 369 | |||
| 370 | |||
| 371 | /* Gets the affine coordinates of an EC_POINT. | ||
| 372 | * Note that the simple implementation only uses affine coordinates. | ||
| 373 | */ | ||
| 374 | int ec_GF2m_simple_point_get_affine_coordinates(const EC_GROUP *group, const EC_POINT *point, | ||
| 375 | BIGNUM *x, BIGNUM *y, BN_CTX *ctx) | ||
| 376 | { | ||
| 377 | int ret = 0; | ||
| 378 | |||
| 379 | if (EC_POINT_is_at_infinity(group, point)) | ||
| 380 | { | ||
| 381 | ECerr(EC_F_EC_GF2M_SIMPLE_POINT_GET_AFFINE_COORDINATES, EC_R_POINT_AT_INFINITY); | ||
| 382 | return 0; | ||
| 383 | } | ||
| 384 | |||
| 385 | if (BN_cmp(&point->Z, BN_value_one())) | ||
| 386 | { | ||
| 387 | ECerr(EC_F_EC_GF2M_SIMPLE_POINT_GET_AFFINE_COORDINATES, ERR_R_SHOULD_NOT_HAVE_BEEN_CALLED); | ||
| 388 | return 0; | ||
| 389 | } | ||
| 390 | if (x != NULL) | ||
| 391 | { | ||
| 392 | if (!BN_copy(x, &point->X)) goto err; | ||
| 393 | BN_set_negative(x, 0); | ||
| 394 | } | ||
| 395 | if (y != NULL) | ||
| 396 | { | ||
| 397 | if (!BN_copy(y, &point->Y)) goto err; | ||
| 398 | BN_set_negative(y, 0); | ||
| 399 | } | ||
| 400 | ret = 1; | ||
| 401 | |||
| 402 | err: | ||
| 403 | return ret; | ||
| 404 | } | ||
| 405 | |||
| 406 | |||
| 407 | /* Include patented algorithms. */ | ||
| 408 | #include "ec2_smpt.c" | ||
| 409 | |||
| 410 | |||
| 411 | /* Converts an EC_POINT to an octet string. | ||
| 412 | * If buf is NULL, the encoded length will be returned. | ||
| 413 | * If the length len of buf is smaller than required an error will be returned. | ||
| 414 | * | ||
| 415 | * The point compression section of this function is patented by Certicom Corp. | ||
| 416 | * under US Patent 6,141,420. Point compression is disabled by default and can | ||
| 417 | * be enabled by defining the preprocessor macro OPENSSL_EC_BIN_PT_COMP at | ||
| 418 | * Configure-time. | ||
| 419 | */ | ||
| 420 | size_t ec_GF2m_simple_point2oct(const EC_GROUP *group, const EC_POINT *point, point_conversion_form_t form, | ||
| 421 | unsigned char *buf, size_t len, BN_CTX *ctx) | ||
| 422 | { | ||
| 423 | size_t ret; | ||
| 424 | BN_CTX *new_ctx = NULL; | ||
| 425 | int used_ctx = 0; | ||
| 426 | BIGNUM *x, *y, *yxi; | ||
| 427 | size_t field_len, i, skip; | ||
| 428 | |||
| 429 | #ifndef OPENSSL_EC_BIN_PT_COMP | ||
| 430 | if ((form == POINT_CONVERSION_COMPRESSED) || (form == POINT_CONVERSION_HYBRID)) | ||
| 431 | { | ||
| 432 | ECerr(EC_F_EC_GF2M_SIMPLE_POINT2OCT, ERR_R_DISABLED); | ||
| 433 | goto err; | ||
| 434 | } | ||
| 435 | #endif | ||
| 436 | |||
| 437 | if ((form != POINT_CONVERSION_COMPRESSED) | ||
| 438 | && (form != POINT_CONVERSION_UNCOMPRESSED) | ||
| 439 | && (form != POINT_CONVERSION_HYBRID)) | ||
| 440 | { | ||
| 441 | ECerr(EC_F_EC_GF2M_SIMPLE_POINT2OCT, EC_R_INVALID_FORM); | ||
| 442 | goto err; | ||
| 443 | } | ||
| 444 | |||
| 445 | if (EC_POINT_is_at_infinity(group, point)) | ||
| 446 | { | ||
| 447 | /* encodes to a single 0 octet */ | ||
| 448 | if (buf != NULL) | ||
| 449 | { | ||
| 450 | if (len < 1) | ||
| 451 | { | ||
| 452 | ECerr(EC_F_EC_GF2M_SIMPLE_POINT2OCT, EC_R_BUFFER_TOO_SMALL); | ||
| 453 | return 0; | ||
| 454 | } | ||
| 455 | buf[0] = 0; | ||
| 456 | } | ||
| 457 | return 1; | ||
| 458 | } | ||
| 459 | |||
| 460 | |||
| 461 | /* ret := required output buffer length */ | ||
| 462 | field_len = (EC_GROUP_get_degree(group) + 7) / 8; | ||
| 463 | ret = (form == POINT_CONVERSION_COMPRESSED) ? 1 + field_len : 1 + 2*field_len; | ||
| 464 | |||
| 465 | /* if 'buf' is NULL, just return required length */ | ||
| 466 | if (buf != NULL) | ||
| 467 | { | ||
| 468 | if (len < ret) | ||
| 469 | { | ||
| 470 | ECerr(EC_F_EC_GF2M_SIMPLE_POINT2OCT, EC_R_BUFFER_TOO_SMALL); | ||
| 471 | goto err; | ||
| 472 | } | ||
| 473 | |||
| 474 | if (ctx == NULL) | ||
| 475 | { | ||
| 476 | ctx = new_ctx = BN_CTX_new(); | ||
| 477 | if (ctx == NULL) | ||
| 478 | return 0; | ||
| 479 | } | ||
| 480 | |||
| 481 | BN_CTX_start(ctx); | ||
| 482 | used_ctx = 1; | ||
| 483 | x = BN_CTX_get(ctx); | ||
| 484 | y = BN_CTX_get(ctx); | ||
| 485 | yxi = BN_CTX_get(ctx); | ||
| 486 | if (yxi == NULL) goto err; | ||
| 487 | |||
| 488 | if (!EC_POINT_get_affine_coordinates_GF2m(group, point, x, y, ctx)) goto err; | ||
| 489 | |||
| 490 | buf[0] = form; | ||
| 491 | #ifdef OPENSSL_EC_BIN_PT_COMP | ||
| 492 | if ((form != POINT_CONVERSION_UNCOMPRESSED) && !BN_is_zero(x)) | ||
| 493 | { | ||
| 494 | if (!group->meth->field_div(group, yxi, y, x, ctx)) goto err; | ||
| 495 | if (BN_is_odd(yxi)) buf[0]++; | ||
| 496 | } | ||
| 497 | #endif | ||
| 498 | |||
| 499 | i = 1; | ||
| 500 | |||
| 501 | skip = field_len - BN_num_bytes(x); | ||
| 502 | if (skip > field_len) | ||
| 503 | { | ||
| 504 | ECerr(EC_F_EC_GF2M_SIMPLE_POINT2OCT, ERR_R_INTERNAL_ERROR); | ||
| 505 | goto err; | ||
| 506 | } | ||
| 507 | while (skip > 0) | ||
| 508 | { | ||
| 509 | buf[i++] = 0; | ||
| 510 | skip--; | ||
| 511 | } | ||
| 512 | skip = BN_bn2bin(x, buf + i); | ||
| 513 | i += skip; | ||
| 514 | if (i != 1 + field_len) | ||
| 515 | { | ||
| 516 | ECerr(EC_F_EC_GF2M_SIMPLE_POINT2OCT, ERR_R_INTERNAL_ERROR); | ||
| 517 | goto err; | ||
| 518 | } | ||
| 519 | |||
| 520 | if (form == POINT_CONVERSION_UNCOMPRESSED || form == POINT_CONVERSION_HYBRID) | ||
| 521 | { | ||
| 522 | skip = field_len - BN_num_bytes(y); | ||
| 523 | if (skip > field_len) | ||
| 524 | { | ||
| 525 | ECerr(EC_F_EC_GF2M_SIMPLE_POINT2OCT, ERR_R_INTERNAL_ERROR); | ||
| 526 | goto err; | ||
| 527 | } | ||
| 528 | while (skip > 0) | ||
| 529 | { | ||
| 530 | buf[i++] = 0; | ||
| 531 | skip--; | ||
| 532 | } | ||
| 533 | skip = BN_bn2bin(y, buf + i); | ||
| 534 | i += skip; | ||
| 535 | } | ||
| 536 | |||
| 537 | if (i != ret) | ||
| 538 | { | ||
| 539 | ECerr(EC_F_EC_GF2M_SIMPLE_POINT2OCT, ERR_R_INTERNAL_ERROR); | ||
| 540 | goto err; | ||
| 541 | } | ||
| 542 | } | ||
| 543 | |||
| 544 | if (used_ctx) | ||
| 545 | BN_CTX_end(ctx); | ||
| 546 | if (new_ctx != NULL) | ||
| 547 | BN_CTX_free(new_ctx); | ||
| 548 | return ret; | ||
| 549 | |||
| 550 | err: | ||
| 551 | if (used_ctx) | ||
| 552 | BN_CTX_end(ctx); | ||
| 553 | if (new_ctx != NULL) | ||
| 554 | BN_CTX_free(new_ctx); | ||
| 555 | return 0; | ||
| 556 | } | ||
| 557 | |||
| 558 | |||
| 559 | /* Converts an octet string representation to an EC_POINT. | ||
| 560 | * Note that the simple implementation only uses affine coordinates. | ||
| 561 | */ | ||
| 562 | int ec_GF2m_simple_oct2point(const EC_GROUP *group, EC_POINT *point, | ||
| 563 | const unsigned char *buf, size_t len, BN_CTX *ctx) | ||
| 564 | { | ||
| 565 | point_conversion_form_t form; | ||
| 566 | int y_bit; | ||
| 567 | BN_CTX *new_ctx = NULL; | ||
| 568 | BIGNUM *x, *y, *yxi; | ||
| 569 | size_t field_len, enc_len; | ||
| 570 | int ret = 0; | ||
| 571 | |||
| 572 | if (len == 0) | ||
| 573 | { | ||
| 574 | ECerr(EC_F_EC_GF2M_SIMPLE_OCT2POINT, EC_R_BUFFER_TOO_SMALL); | ||
| 575 | return 0; | ||
| 576 | } | ||
| 577 | form = buf[0]; | ||
| 578 | y_bit = form & 1; | ||
| 579 | form = form & ~1U; | ||
| 580 | if ((form != 0) && (form != POINT_CONVERSION_COMPRESSED) | ||
| 581 | && (form != POINT_CONVERSION_UNCOMPRESSED) | ||
| 582 | && (form != POINT_CONVERSION_HYBRID)) | ||
| 583 | { | ||
| 584 | ECerr(EC_F_EC_GF2M_SIMPLE_OCT2POINT, EC_R_INVALID_ENCODING); | ||
| 585 | return 0; | ||
| 586 | } | ||
| 587 | if ((form == 0 || form == POINT_CONVERSION_UNCOMPRESSED) && y_bit) | ||
| 588 | { | ||
| 589 | ECerr(EC_F_EC_GF2M_SIMPLE_OCT2POINT, EC_R_INVALID_ENCODING); | ||
| 590 | return 0; | ||
| 591 | } | ||
| 592 | |||
| 593 | if (form == 0) | ||
| 594 | { | ||
| 595 | if (len != 1) | ||
| 596 | { | ||
| 597 | ECerr(EC_F_EC_GF2M_SIMPLE_OCT2POINT, EC_R_INVALID_ENCODING); | ||
| 598 | return 0; | ||
| 599 | } | ||
| 600 | |||
| 601 | return EC_POINT_set_to_infinity(group, point); | ||
| 602 | } | ||
| 603 | |||
| 604 | field_len = (EC_GROUP_get_degree(group) + 7) / 8; | ||
| 605 | enc_len = (form == POINT_CONVERSION_COMPRESSED) ? 1 + field_len : 1 + 2*field_len; | ||
| 606 | |||
| 607 | if (len != enc_len) | ||
| 608 | { | ||
| 609 | ECerr(EC_F_EC_GF2M_SIMPLE_OCT2POINT, EC_R_INVALID_ENCODING); | ||
| 610 | return 0; | ||
| 611 | } | ||
| 612 | |||
| 613 | if (ctx == NULL) | ||
| 614 | { | ||
| 615 | ctx = new_ctx = BN_CTX_new(); | ||
| 616 | if (ctx == NULL) | ||
| 617 | return 0; | ||
| 618 | } | ||
| 619 | |||
| 620 | BN_CTX_start(ctx); | ||
| 621 | x = BN_CTX_get(ctx); | ||
| 622 | y = BN_CTX_get(ctx); | ||
| 623 | yxi = BN_CTX_get(ctx); | ||
| 624 | if (yxi == NULL) goto err; | ||
| 625 | |||
| 626 | if (!BN_bin2bn(buf + 1, field_len, x)) goto err; | ||
| 627 | if (BN_ucmp(x, &group->field) >= 0) | ||
| 628 | { | ||
| 629 | ECerr(EC_F_EC_GF2M_SIMPLE_OCT2POINT, EC_R_INVALID_ENCODING); | ||
| 630 | goto err; | ||
| 631 | } | ||
| 632 | |||
| 633 | if (form == POINT_CONVERSION_COMPRESSED) | ||
| 634 | { | ||
| 635 | if (!EC_POINT_set_compressed_coordinates_GF2m(group, point, x, y_bit, ctx)) goto err; | ||
| 636 | } | ||
| 637 | else | ||
| 638 | { | ||
| 639 | if (!BN_bin2bn(buf + 1 + field_len, field_len, y)) goto err; | ||
| 640 | if (BN_ucmp(y, &group->field) >= 0) | ||
| 641 | { | ||
| 642 | ECerr(EC_F_EC_GF2M_SIMPLE_OCT2POINT, EC_R_INVALID_ENCODING); | ||
| 643 | goto err; | ||
| 644 | } | ||
| 645 | if (form == POINT_CONVERSION_HYBRID) | ||
| 646 | { | ||
| 647 | if (!group->meth->field_div(group, yxi, y, x, ctx)) goto err; | ||
| 648 | if (y_bit != BN_is_odd(yxi)) | ||
| 649 | { | ||
| 650 | ECerr(EC_F_EC_GF2M_SIMPLE_OCT2POINT, EC_R_INVALID_ENCODING); | ||
| 651 | goto err; | ||
| 652 | } | ||
| 653 | } | ||
| 654 | |||
| 655 | if (!EC_POINT_set_affine_coordinates_GF2m(group, point, x, y, ctx)) goto err; | ||
| 656 | } | ||
| 657 | |||
| 658 | if (!EC_POINT_is_on_curve(group, point, ctx)) /* test required by X9.62 */ | ||
| 659 | { | ||
| 660 | ECerr(EC_F_EC_GF2M_SIMPLE_OCT2POINT, EC_R_POINT_IS_NOT_ON_CURVE); | ||
| 661 | goto err; | ||
| 662 | } | ||
| 663 | |||
| 664 | ret = 1; | ||
| 665 | |||
| 666 | err: | ||
| 667 | BN_CTX_end(ctx); | ||
| 668 | if (new_ctx != NULL) | ||
| 669 | BN_CTX_free(new_ctx); | ||
| 670 | return ret; | ||
| 671 | } | ||
| 672 | |||
| 673 | |||
| 674 | /* Computes a + b and stores the result in r. r could be a or b, a could be b. | ||
| 675 | * Uses algorithm A.10.2 of IEEE P1363. | ||
| 676 | */ | ||
| 677 | int ec_GF2m_simple_add(const EC_GROUP *group, EC_POINT *r, const EC_POINT *a, const EC_POINT *b, BN_CTX *ctx) | ||
| 678 | { | ||
| 679 | BN_CTX *new_ctx = NULL; | ||
| 680 | BIGNUM *x0, *y0, *x1, *y1, *x2, *y2, *s, *t; | ||
| 681 | int ret = 0; | ||
| 682 | |||
| 683 | if (EC_POINT_is_at_infinity(group, a)) | ||
| 684 | { | ||
| 685 | if (!EC_POINT_copy(r, b)) return 0; | ||
| 686 | return 1; | ||
| 687 | } | ||
| 688 | |||
| 689 | if (EC_POINT_is_at_infinity(group, b)) | ||
| 690 | { | ||
| 691 | if (!EC_POINT_copy(r, a)) return 0; | ||
| 692 | return 1; | ||
| 693 | } | ||
| 694 | |||
| 695 | if (ctx == NULL) | ||
| 696 | { | ||
| 697 | ctx = new_ctx = BN_CTX_new(); | ||
| 698 | if (ctx == NULL) | ||
| 699 | return 0; | ||
| 700 | } | ||
| 701 | |||
| 702 | BN_CTX_start(ctx); | ||
| 703 | x0 = BN_CTX_get(ctx); | ||
| 704 | y0 = BN_CTX_get(ctx); | ||
| 705 | x1 = BN_CTX_get(ctx); | ||
| 706 | y1 = BN_CTX_get(ctx); | ||
| 707 | x2 = BN_CTX_get(ctx); | ||
| 708 | y2 = BN_CTX_get(ctx); | ||
| 709 | s = BN_CTX_get(ctx); | ||
| 710 | t = BN_CTX_get(ctx); | ||
| 711 | if (t == NULL) goto err; | ||
| 712 | |||
| 713 | if (a->Z_is_one) | ||
| 714 | { | ||
| 715 | if (!BN_copy(x0, &a->X)) goto err; | ||
| 716 | if (!BN_copy(y0, &a->Y)) goto err; | ||
| 717 | } | ||
| 718 | else | ||
| 719 | { | ||
| 720 | if (!EC_POINT_get_affine_coordinates_GF2m(group, a, x0, y0, ctx)) goto err; | ||
| 721 | } | ||
| 722 | if (b->Z_is_one) | ||
| 723 | { | ||
| 724 | if (!BN_copy(x1, &b->X)) goto err; | ||
| 725 | if (!BN_copy(y1, &b->Y)) goto err; | ||
| 726 | } | ||
| 727 | else | ||
| 728 | { | ||
| 729 | if (!EC_POINT_get_affine_coordinates_GF2m(group, b, x1, y1, ctx)) goto err; | ||
| 730 | } | ||
| 731 | |||
| 732 | |||
| 733 | if (BN_GF2m_cmp(x0, x1)) | ||
| 734 | { | ||
| 735 | if (!BN_GF2m_add(t, x0, x1)) goto err; | ||
| 736 | if (!BN_GF2m_add(s, y0, y1)) goto err; | ||
| 737 | if (!group->meth->field_div(group, s, s, t, ctx)) goto err; | ||
| 738 | if (!group->meth->field_sqr(group, x2, s, ctx)) goto err; | ||
| 739 | if (!BN_GF2m_add(x2, x2, &group->a)) goto err; | ||
| 740 | if (!BN_GF2m_add(x2, x2, s)) goto err; | ||
| 741 | if (!BN_GF2m_add(x2, x2, t)) goto err; | ||
| 742 | } | ||
| 743 | else | ||
| 744 | { | ||
| 745 | if (BN_GF2m_cmp(y0, y1) || BN_is_zero(x1)) | ||
| 746 | { | ||
| 747 | if (!EC_POINT_set_to_infinity(group, r)) goto err; | ||
| 748 | ret = 1; | ||
| 749 | goto err; | ||
| 750 | } | ||
| 751 | if (!group->meth->field_div(group, s, y1, x1, ctx)) goto err; | ||
| 752 | if (!BN_GF2m_add(s, s, x1)) goto err; | ||
| 753 | |||
| 754 | if (!group->meth->field_sqr(group, x2, s, ctx)) goto err; | ||
| 755 | if (!BN_GF2m_add(x2, x2, s)) goto err; | ||
| 756 | if (!BN_GF2m_add(x2, x2, &group->a)) goto err; | ||
| 757 | } | ||
| 758 | |||
| 759 | if (!BN_GF2m_add(y2, x1, x2)) goto err; | ||
| 760 | if (!group->meth->field_mul(group, y2, y2, s, ctx)) goto err; | ||
| 761 | if (!BN_GF2m_add(y2, y2, x2)) goto err; | ||
| 762 | if (!BN_GF2m_add(y2, y2, y1)) goto err; | ||
| 763 | |||
| 764 | if (!EC_POINT_set_affine_coordinates_GF2m(group, r, x2, y2, ctx)) goto err; | ||
| 765 | |||
| 766 | ret = 1; | ||
| 767 | |||
| 768 | err: | ||
| 769 | BN_CTX_end(ctx); | ||
| 770 | if (new_ctx != NULL) | ||
| 771 | BN_CTX_free(new_ctx); | ||
| 772 | return ret; | ||
| 773 | } | ||
| 774 | |||
| 775 | |||
| 776 | /* Computes 2 * a and stores the result in r. r could be a. | ||
| 777 | * Uses algorithm A.10.2 of IEEE P1363. | ||
| 778 | */ | ||
| 779 | int ec_GF2m_simple_dbl(const EC_GROUP *group, EC_POINT *r, const EC_POINT *a, BN_CTX *ctx) | ||
| 780 | { | ||
| 781 | return ec_GF2m_simple_add(group, r, a, a, ctx); | ||
| 782 | } | ||
| 783 | |||
| 784 | |||
| 785 | int ec_GF2m_simple_invert(const EC_GROUP *group, EC_POINT *point, BN_CTX *ctx) | ||
| 786 | { | ||
| 787 | if (EC_POINT_is_at_infinity(group, point) || BN_is_zero(&point->Y)) | ||
| 788 | /* point is its own inverse */ | ||
| 789 | return 1; | ||
| 790 | |||
| 791 | if (!EC_POINT_make_affine(group, point, ctx)) return 0; | ||
| 792 | return BN_GF2m_add(&point->Y, &point->X, &point->Y); | ||
| 793 | } | ||
| 794 | |||
| 795 | |||
| 796 | /* Indicates whether the given point is the point at infinity. */ | ||
| 797 | int ec_GF2m_simple_is_at_infinity(const EC_GROUP *group, const EC_POINT *point) | ||
| 798 | { | ||
| 799 | return BN_is_zero(&point->Z); | ||
| 800 | } | ||
| 801 | |||
| 802 | |||
| 803 | /* Determines whether the given EC_POINT is an actual point on the curve defined | ||
| 804 | * in the EC_GROUP. A point is valid if it satisfies the Weierstrass equation: | ||
| 805 | * y^2 + x*y = x^3 + a*x^2 + b. | ||
| 806 | */ | ||
| 807 | int ec_GF2m_simple_is_on_curve(const EC_GROUP *group, const EC_POINT *point, BN_CTX *ctx) | ||
| 808 | { | ||
| 809 | int ret = -1; | ||
| 810 | BN_CTX *new_ctx = NULL; | ||
| 811 | BIGNUM *lh, *y2; | ||
| 812 | int (*field_mul)(const EC_GROUP *, BIGNUM *, const BIGNUM *, const BIGNUM *, BN_CTX *); | ||
| 813 | int (*field_sqr)(const EC_GROUP *, BIGNUM *, const BIGNUM *, BN_CTX *); | ||
| 814 | |||
| 815 | if (EC_POINT_is_at_infinity(group, point)) | ||
| 816 | return 1; | ||
| 817 | |||
| 818 | field_mul = group->meth->field_mul; | ||
| 819 | field_sqr = group->meth->field_sqr; | ||
| 820 | |||
| 821 | /* only support affine coordinates */ | ||
| 822 | if (!point->Z_is_one) goto err; | ||
| 823 | |||
| 824 | if (ctx == NULL) | ||
| 825 | { | ||
| 826 | ctx = new_ctx = BN_CTX_new(); | ||
| 827 | if (ctx == NULL) | ||
| 828 | return -1; | ||
| 829 | } | ||
| 830 | |||
| 831 | BN_CTX_start(ctx); | ||
| 832 | y2 = BN_CTX_get(ctx); | ||
| 833 | lh = BN_CTX_get(ctx); | ||
| 834 | if (lh == NULL) goto err; | ||
| 835 | |||
| 836 | /* We have a curve defined by a Weierstrass equation | ||
| 837 | * y^2 + x*y = x^3 + a*x^2 + b. | ||
| 838 | * <=> x^3 + a*x^2 + x*y + b + y^2 = 0 | ||
| 839 | * <=> ((x + a) * x + y ) * x + b + y^2 = 0 | ||
| 840 | */ | ||
| 841 | if (!BN_GF2m_add(lh, &point->X, &group->a)) goto err; | ||
| 842 | if (!field_mul(group, lh, lh, &point->X, ctx)) goto err; | ||
| 843 | if (!BN_GF2m_add(lh, lh, &point->Y)) goto err; | ||
| 844 | if (!field_mul(group, lh, lh, &point->X, ctx)) goto err; | ||
| 845 | if (!BN_GF2m_add(lh, lh, &group->b)) goto err; | ||
| 846 | if (!field_sqr(group, y2, &point->Y, ctx)) goto err; | ||
| 847 | if (!BN_GF2m_add(lh, lh, y2)) goto err; | ||
| 848 | ret = BN_is_zero(lh); | ||
| 849 | err: | ||
| 850 | if (ctx) BN_CTX_end(ctx); | ||
| 851 | if (new_ctx) BN_CTX_free(new_ctx); | ||
| 852 | return ret; | ||
| 853 | } | ||
| 854 | |||
| 855 | |||
| 856 | /* Indicates whether two points are equal. | ||
| 857 | * Return values: | ||
| 858 | * -1 error | ||
| 859 | * 0 equal (in affine coordinates) | ||
| 860 | * 1 not equal | ||
| 861 | */ | ||
| 862 | int ec_GF2m_simple_cmp(const EC_GROUP *group, const EC_POINT *a, const EC_POINT *b, BN_CTX *ctx) | ||
| 863 | { | ||
| 864 | BIGNUM *aX, *aY, *bX, *bY; | ||
| 865 | BN_CTX *new_ctx = NULL; | ||
| 866 | int ret = -1; | ||
| 867 | |||
| 868 | if (EC_POINT_is_at_infinity(group, a)) | ||
| 869 | { | ||
| 870 | return EC_POINT_is_at_infinity(group, b) ? 0 : 1; | ||
| 871 | } | ||
| 872 | |||
| 873 | if (a->Z_is_one && b->Z_is_one) | ||
| 874 | { | ||
| 875 | return ((BN_cmp(&a->X, &b->X) == 0) && BN_cmp(&a->Y, &b->Y) == 0) ? 0 : 1; | ||
| 876 | } | ||
| 877 | |||
| 878 | if (ctx == NULL) | ||
| 879 | { | ||
| 880 | ctx = new_ctx = BN_CTX_new(); | ||
| 881 | if (ctx == NULL) | ||
| 882 | return -1; | ||
| 883 | } | ||
| 884 | |||
| 885 | BN_CTX_start(ctx); | ||
| 886 | aX = BN_CTX_get(ctx); | ||
| 887 | aY = BN_CTX_get(ctx); | ||
| 888 | bX = BN_CTX_get(ctx); | ||
| 889 | bY = BN_CTX_get(ctx); | ||
| 890 | if (bY == NULL) goto err; | ||
| 891 | |||
| 892 | if (!EC_POINT_get_affine_coordinates_GF2m(group, a, aX, aY, ctx)) goto err; | ||
| 893 | if (!EC_POINT_get_affine_coordinates_GF2m(group, b, bX, bY, ctx)) goto err; | ||
| 894 | ret = ((BN_cmp(aX, bX) == 0) && BN_cmp(aY, bY) == 0) ? 0 : 1; | ||
| 895 | |||
| 896 | err: | ||
| 897 | if (ctx) BN_CTX_end(ctx); | ||
| 898 | if (new_ctx) BN_CTX_free(new_ctx); | ||
| 899 | return ret; | ||
| 900 | } | ||
| 901 | |||
| 902 | |||
| 903 | /* Forces the given EC_POINT to internally use affine coordinates. */ | ||
| 904 | int ec_GF2m_simple_make_affine(const EC_GROUP *group, EC_POINT *point, BN_CTX *ctx) | ||
| 905 | { | ||
| 906 | BN_CTX *new_ctx = NULL; | ||
| 907 | BIGNUM *x, *y; | ||
| 908 | int ret = 0; | ||
| 909 | |||
| 910 | if (point->Z_is_one || EC_POINT_is_at_infinity(group, point)) | ||
| 911 | return 1; | ||
| 912 | |||
| 913 | if (ctx == NULL) | ||
| 914 | { | ||
| 915 | ctx = new_ctx = BN_CTX_new(); | ||
| 916 | if (ctx == NULL) | ||
| 917 | return 0; | ||
| 918 | } | ||
| 919 | |||
| 920 | BN_CTX_start(ctx); | ||
| 921 | x = BN_CTX_get(ctx); | ||
| 922 | y = BN_CTX_get(ctx); | ||
| 923 | if (y == NULL) goto err; | ||
| 924 | |||
| 925 | if (!EC_POINT_get_affine_coordinates_GF2m(group, point, x, y, ctx)) goto err; | ||
| 926 | if (!BN_copy(&point->X, x)) goto err; | ||
| 927 | if (!BN_copy(&point->Y, y)) goto err; | ||
| 928 | if (!BN_one(&point->Z)) goto err; | ||
| 929 | |||
| 930 | ret = 1; | ||
| 931 | |||
| 932 | err: | ||
| 933 | if (ctx) BN_CTX_end(ctx); | ||
| 934 | if (new_ctx) BN_CTX_free(new_ctx); | ||
| 935 | return ret; | ||
| 936 | } | ||
| 937 | |||
| 938 | |||
| 939 | /* Forces each of the EC_POINTs in the given array to use affine coordinates. */ | ||
| 940 | int ec_GF2m_simple_points_make_affine(const EC_GROUP *group, size_t num, EC_POINT *points[], BN_CTX *ctx) | ||
| 941 | { | ||
| 942 | size_t i; | ||
| 943 | |||
| 944 | for (i = 0; i < num; i++) | ||
| 945 | { | ||
| 946 | if (!group->meth->make_affine(group, points[i], ctx)) return 0; | ||
| 947 | } | ||
| 948 | |||
| 949 | return 1; | ||
| 950 | } | ||
| 951 | |||
| 952 | |||
| 953 | /* Wrapper to simple binary polynomial field multiplication implementation. */ | ||
| 954 | int ec_GF2m_simple_field_mul(const EC_GROUP *group, BIGNUM *r, const BIGNUM *a, const BIGNUM *b, BN_CTX *ctx) | ||
| 955 | { | ||
| 956 | return BN_GF2m_mod_mul_arr(r, a, b, group->poly, ctx); | ||
| 957 | } | ||
| 958 | |||
| 959 | |||
| 960 | /* Wrapper to simple binary polynomial field squaring implementation. */ | ||
| 961 | int ec_GF2m_simple_field_sqr(const EC_GROUP *group, BIGNUM *r, const BIGNUM *a, BN_CTX *ctx) | ||
| 962 | { | ||
| 963 | return BN_GF2m_mod_sqr_arr(r, a, group->poly, ctx); | ||
| 964 | } | ||
| 965 | |||
| 966 | |||
| 967 | /* Wrapper to simple binary polynomial field division implementation. */ | ||
| 968 | int ec_GF2m_simple_field_div(const EC_GROUP *group, BIGNUM *r, const BIGNUM *a, const BIGNUM *b, BN_CTX *ctx) | ||
| 969 | { | ||
| 970 | return BN_GF2m_mod_div(r, a, b, &group->field, ctx); | ||
| 971 | } | ||
