diff options
Diffstat (limited to 'src/lib/libcrypto/ec/ec_lib.c')
-rw-r--r-- | src/lib/libcrypto/ec/ec_lib.c | 1369 |
1 files changed, 0 insertions, 1369 deletions
diff --git a/src/lib/libcrypto/ec/ec_lib.c b/src/lib/libcrypto/ec/ec_lib.c deleted file mode 100644 index 7982d23f06..0000000000 --- a/src/lib/libcrypto/ec/ec_lib.c +++ /dev/null | |||
@@ -1,1369 +0,0 @@ | |||
1 | /* $OpenBSD: ec_lib.c,v 1.123 2025/03/24 13:07:04 jsing Exp $ */ | ||
2 | /* | ||
3 | * Originally written by Bodo Moeller for the OpenSSL project. | ||
4 | */ | ||
5 | /* ==================================================================== | ||
6 | * Copyright (c) 1998-2003 The OpenSSL Project. All rights reserved. | ||
7 | * | ||
8 | * Redistribution and use in source and binary forms, with or without | ||
9 | * modification, are permitted provided that the following conditions | ||
10 | * are met: | ||
11 | * | ||
12 | * 1. Redistributions of source code must retain the above copyright | ||
13 | * notice, this list of conditions and the following disclaimer. | ||
14 | * | ||
15 | * 2. Redistributions in binary form must reproduce the above copyright | ||
16 | * notice, this list of conditions and the following disclaimer in | ||
17 | * the documentation and/or other materials provided with the | ||
18 | * distribution. | ||
19 | * | ||
20 | * 3. All advertising materials mentioning features or use of this | ||
21 | * software must display the following acknowledgment: | ||
22 | * "This product includes software developed by the OpenSSL Project | ||
23 | * for use in the OpenSSL Toolkit. (http://www.openssl.org/)" | ||
24 | * | ||
25 | * 4. The names "OpenSSL Toolkit" and "OpenSSL Project" must not be used to | ||
26 | * endorse or promote products derived from this software without | ||
27 | * prior written permission. For written permission, please contact | ||
28 | * openssl-core@openssl.org. | ||
29 | * | ||
30 | * 5. Products derived from this software may not be called "OpenSSL" | ||
31 | * nor may "OpenSSL" appear in their names without prior written | ||
32 | * permission of the OpenSSL Project. | ||
33 | * | ||
34 | * 6. Redistributions of any form whatsoever must retain the following | ||
35 | * acknowledgment: | ||
36 | * "This product includes software developed by the OpenSSL Project | ||
37 | * for use in the OpenSSL Toolkit (http://www.openssl.org/)" | ||
38 | * | ||
39 | * THIS SOFTWARE IS PROVIDED BY THE OpenSSL PROJECT ``AS IS'' AND ANY | ||
40 | * EXPRESSED OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE | ||
41 | * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR | ||
42 | * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE OpenSSL PROJECT OR | ||
43 | * ITS CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, | ||
44 | * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT | ||
45 | * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; | ||
46 | * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) | ||
47 | * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, | ||
48 | * STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) | ||
49 | * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED | ||
50 | * OF THE POSSIBILITY OF SUCH DAMAGE. | ||
51 | * ==================================================================== | ||
52 | * | ||
53 | * This product includes cryptographic software written by Eric Young | ||
54 | * (eay@cryptsoft.com). This product includes software written by Tim | ||
55 | * Hudson (tjh@cryptsoft.com). | ||
56 | * | ||
57 | */ | ||
58 | /* ==================================================================== | ||
59 | * Copyright 2002 Sun Microsystems, Inc. ALL RIGHTS RESERVED. | ||
60 | * Binary polynomial ECC support in OpenSSL originally developed by | ||
61 | * SUN MICROSYSTEMS, INC., and contributed to the OpenSSL project. | ||
62 | */ | ||
63 | |||
64 | #include <stdlib.h> | ||
65 | #include <string.h> | ||
66 | |||
67 | #include <openssl/opensslconf.h> | ||
68 | |||
69 | #include <openssl/bn.h> | ||
70 | #include <openssl/ec.h> | ||
71 | #include <openssl/err.h> | ||
72 | #include <openssl/objects.h> | ||
73 | #include <openssl/opensslv.h> | ||
74 | |||
75 | #include "bn_local.h" | ||
76 | #include "ec_local.h" | ||
77 | |||
78 | EC_GROUP * | ||
79 | EC_GROUP_new(const EC_METHOD *meth) | ||
80 | { | ||
81 | EC_GROUP *group = NULL; | ||
82 | |||
83 | if (meth == NULL) { | ||
84 | ECerror(EC_R_SLOT_FULL); | ||
85 | goto err; | ||
86 | } | ||
87 | if ((group = calloc(1, sizeof(*group))) == NULL) { | ||
88 | ECerror(ERR_R_MALLOC_FAILURE); | ||
89 | goto err; | ||
90 | } | ||
91 | |||
92 | group->meth = meth; | ||
93 | |||
94 | group->asn1_flag = OPENSSL_EC_NAMED_CURVE; | ||
95 | group->asn1_form = POINT_CONVERSION_UNCOMPRESSED; | ||
96 | |||
97 | if ((group->p = BN_new()) == NULL) | ||
98 | goto err; | ||
99 | if ((group->a = BN_new()) == NULL) | ||
100 | goto err; | ||
101 | if ((group->b = BN_new()) == NULL) | ||
102 | goto err; | ||
103 | |||
104 | if ((group->order = BN_new()) == NULL) | ||
105 | goto err; | ||
106 | if ((group->cofactor = BN_new()) == NULL) | ||
107 | goto err; | ||
108 | |||
109 | /* | ||
110 | * generator, seed and mont_ctx are optional. | ||
111 | */ | ||
112 | |||
113 | return group; | ||
114 | |||
115 | err: | ||
116 | EC_GROUP_free(group); | ||
117 | |||
118 | return NULL; | ||
119 | } | ||
120 | |||
121 | void | ||
122 | EC_GROUP_free(EC_GROUP *group) | ||
123 | { | ||
124 | if (group == NULL) | ||
125 | return; | ||
126 | |||
127 | BN_free(group->p); | ||
128 | BN_free(group->a); | ||
129 | BN_free(group->b); | ||
130 | |||
131 | BN_MONT_CTX_free(group->mont_ctx); | ||
132 | |||
133 | EC_POINT_free(group->generator); | ||
134 | BN_free(group->order); | ||
135 | BN_free(group->cofactor); | ||
136 | |||
137 | freezero(group->seed, group->seed_len); | ||
138 | freezero(group, sizeof *group); | ||
139 | } | ||
140 | LCRYPTO_ALIAS(EC_GROUP_free); | ||
141 | |||
142 | void | ||
143 | EC_GROUP_clear_free(EC_GROUP *group) | ||
144 | { | ||
145 | EC_GROUP_free(group); | ||
146 | } | ||
147 | LCRYPTO_ALIAS(EC_GROUP_clear_free); | ||
148 | |||
149 | static int | ||
150 | EC_GROUP_copy(EC_GROUP *dst, const EC_GROUP *src) | ||
151 | { | ||
152 | if (dst->meth != src->meth) { | ||
153 | ECerror(EC_R_INCOMPATIBLE_OBJECTS); | ||
154 | return 0; | ||
155 | } | ||
156 | if (dst == src) | ||
157 | return 1; | ||
158 | |||
159 | if (!bn_copy(dst->p, src->p)) | ||
160 | return 0; | ||
161 | if (!bn_copy(dst->a, src->a)) | ||
162 | return 0; | ||
163 | if (!bn_copy(dst->b, src->b)) | ||
164 | return 0; | ||
165 | |||
166 | dst->a_is_minus3 = src->a_is_minus3; | ||
167 | |||
168 | BN_MONT_CTX_free(dst->mont_ctx); | ||
169 | dst->mont_ctx = NULL; | ||
170 | if (src->mont_ctx != NULL) { | ||
171 | if ((dst->mont_ctx = BN_MONT_CTX_new()) == NULL) | ||
172 | return 0; | ||
173 | if (!BN_MONT_CTX_copy(dst->mont_ctx, src->mont_ctx)) | ||
174 | return 0; | ||
175 | } | ||
176 | |||
177 | EC_POINT_free(dst->generator); | ||
178 | dst->generator = NULL; | ||
179 | if (src->generator != NULL) { | ||
180 | if (!EC_GROUP_set_generator(dst, src->generator, src->order, | ||
181 | src->cofactor)) | ||
182 | return 0; | ||
183 | } else { | ||
184 | /* XXX - should do the sanity checks as in set_generator() */ | ||
185 | if (!bn_copy(dst->order, src->order)) | ||
186 | return 0; | ||
187 | if (!bn_copy(dst->cofactor, src->cofactor)) | ||
188 | return 0; | ||
189 | } | ||
190 | |||
191 | dst->nid = src->nid; | ||
192 | dst->asn1_flag = src->asn1_flag; | ||
193 | dst->asn1_form = src->asn1_form; | ||
194 | |||
195 | if (!EC_GROUP_set_seed(dst, src->seed, src->seed_len)) | ||
196 | return 0; | ||
197 | |||
198 | return 1; | ||
199 | } | ||
200 | |||
201 | EC_GROUP * | ||
202 | EC_GROUP_dup(const EC_GROUP *in_group) | ||
203 | { | ||
204 | EC_GROUP *group = NULL; | ||
205 | |||
206 | if (in_group == NULL) | ||
207 | goto err; | ||
208 | |||
209 | if ((group = EC_GROUP_new(in_group->meth)) == NULL) | ||
210 | goto err; | ||
211 | if (!EC_GROUP_copy(group, in_group)) | ||
212 | goto err; | ||
213 | |||
214 | return group; | ||
215 | |||
216 | err: | ||
217 | EC_GROUP_free(group); | ||
218 | |||
219 | return NULL; | ||
220 | } | ||
221 | LCRYPTO_ALIAS(EC_GROUP_dup); | ||
222 | |||
223 | /* | ||
224 | * If there is a user-provided cofactor, sanity check and use it. Otherwise | ||
225 | * try computing the cofactor from generator order n and field cardinality p. | ||
226 | * This works for all curves of cryptographic interest. | ||
227 | * | ||
228 | * Hasse's theorem: | h * n - (p + 1) | <= 2 * sqrt(p) | ||
229 | * | ||
230 | * So: h_min = (p + 1 - 2*sqrt(p)) / n and h_max = (p + 1 + 2*sqrt(p)) / n and | ||
231 | * therefore h_max - h_min = 4*sqrt(p) / n. So if n > 4*sqrt(p) holds, there is | ||
232 | * only one possible value for h: | ||
233 | * | ||
234 | * h = \lfloor (h_min + h_max)/2 \rceil = \lfloor (p + 1)/n \rceil | ||
235 | * | ||
236 | * Otherwise, zero cofactor and return success. | ||
237 | */ | ||
238 | static int | ||
239 | ec_set_cofactor(EC_GROUP *group, const BIGNUM *in_cofactor) | ||
240 | { | ||
241 | BN_CTX *ctx = NULL; | ||
242 | BIGNUM *cofactor; | ||
243 | int ret = 0; | ||
244 | |||
245 | BN_zero(group->cofactor); | ||
246 | |||
247 | if ((ctx = BN_CTX_new()) == NULL) | ||
248 | goto err; | ||
249 | |||
250 | BN_CTX_start(ctx); | ||
251 | if ((cofactor = BN_CTX_get(ctx)) == NULL) | ||
252 | goto err; | ||
253 | |||
254 | /* | ||
255 | * Unfortunately, the cofactor is an optional field in many standards. | ||
256 | * Internally, the library uses a 0 cofactor as a marker for "unknown | ||
257 | * cofactor". So accept in_cofactor == NULL or in_cofactor >= 0. | ||
258 | */ | ||
259 | if (in_cofactor != NULL && !BN_is_zero(in_cofactor)) { | ||
260 | if (BN_is_negative(in_cofactor)) { | ||
261 | ECerror(EC_R_UNKNOWN_COFACTOR); | ||
262 | goto err; | ||
263 | } | ||
264 | if (!bn_copy(cofactor, in_cofactor)) | ||
265 | goto err; | ||
266 | goto done; | ||
267 | } | ||
268 | |||
269 | /* | ||
270 | * If the cofactor is too large, we cannot guess it and default to zero. | ||
271 | * The RHS of below is a strict overestimate of log(4 * sqrt(p)). | ||
272 | */ | ||
273 | if (BN_num_bits(group->order) <= (BN_num_bits(group->p) + 1) / 2 + 3) | ||
274 | goto done; | ||
275 | |||
276 | /* | ||
277 | * Compute | ||
278 | * h = \lfloor (p + 1)/n \rceil = \lfloor (p + 1 + n/2) / n \rfloor. | ||
279 | */ | ||
280 | |||
281 | /* h = n/2 */ | ||
282 | if (!BN_rshift1(cofactor, group->order)) | ||
283 | goto err; | ||
284 | /* h = 1 + n/2 */ | ||
285 | if (!BN_add_word(cofactor, 1)) | ||
286 | goto err; | ||
287 | /* h = p + 1 + n/2 */ | ||
288 | if (!BN_add(cofactor, cofactor, group->p)) | ||
289 | goto err; | ||
290 | /* h = (p + 1 + n/2) / n */ | ||
291 | if (!BN_div_ct(cofactor, NULL, cofactor, group->order, ctx)) | ||
292 | goto err; | ||
293 | |||
294 | done: | ||
295 | /* Use Hasse's theorem to bound the cofactor. */ | ||
296 | if (BN_num_bits(cofactor) > BN_num_bits(group->p) + 1) { | ||
297 | ECerror(EC_R_INVALID_GROUP_ORDER); | ||
298 | goto err; | ||
299 | } | ||
300 | |||
301 | if (!bn_copy(group->cofactor, cofactor)) | ||
302 | goto err; | ||
303 | |||
304 | ret = 1; | ||
305 | |||
306 | err: | ||
307 | BN_CTX_end(ctx); | ||
308 | BN_CTX_free(ctx); | ||
309 | |||
310 | return ret; | ||
311 | } | ||
312 | |||
313 | int | ||
314 | EC_GROUP_set_generator(EC_GROUP *group, const EC_POINT *generator, | ||
315 | const BIGNUM *order, const BIGNUM *cofactor) | ||
316 | { | ||
317 | if (generator == NULL) { | ||
318 | ECerror(ERR_R_PASSED_NULL_PARAMETER); | ||
319 | return 0; | ||
320 | } | ||
321 | |||
322 | /* Require p >= 1. */ | ||
323 | if (BN_is_zero(group->p) || BN_is_negative(group->p)) { | ||
324 | ECerror(EC_R_INVALID_FIELD); | ||
325 | return 0; | ||
326 | } | ||
327 | |||
328 | /* | ||
329 | * Require order > 1 and enforce an upper bound of at most one bit more | ||
330 | * than the field cardinality due to Hasse's theorem. | ||
331 | */ | ||
332 | if (order == NULL || BN_cmp(order, BN_value_one()) <= 0 || | ||
333 | BN_num_bits(order) > BN_num_bits(group->p) + 1) { | ||
334 | ECerror(EC_R_INVALID_GROUP_ORDER); | ||
335 | return 0; | ||
336 | } | ||
337 | |||
338 | if (group->generator == NULL) | ||
339 | group->generator = EC_POINT_new(group); | ||
340 | if (group->generator == NULL) | ||
341 | return 0; | ||
342 | |||
343 | if (!EC_POINT_copy(group->generator, generator)) | ||
344 | return 0; | ||
345 | |||
346 | if (!bn_copy(group->order, order)) | ||
347 | return 0; | ||
348 | |||
349 | if (!ec_set_cofactor(group, cofactor)) | ||
350 | return 0; | ||
351 | |||
352 | return 1; | ||
353 | } | ||
354 | LCRYPTO_ALIAS(EC_GROUP_set_generator); | ||
355 | |||
356 | const EC_POINT * | ||
357 | EC_GROUP_get0_generator(const EC_GROUP *group) | ||
358 | { | ||
359 | return group->generator; | ||
360 | } | ||
361 | LCRYPTO_ALIAS(EC_GROUP_get0_generator); | ||
362 | |||
363 | int | ||
364 | EC_GROUP_get_order(const EC_GROUP *group, BIGNUM *order, BN_CTX *ctx) | ||
365 | { | ||
366 | if (!bn_copy(order, group->order)) | ||
367 | return 0; | ||
368 | |||
369 | return !BN_is_zero(order); | ||
370 | } | ||
371 | LCRYPTO_ALIAS(EC_GROUP_get_order); | ||
372 | |||
373 | const BIGNUM * | ||
374 | EC_GROUP_get0_order(const EC_GROUP *group) | ||
375 | { | ||
376 | return group->order; | ||
377 | } | ||
378 | |||
379 | int | ||
380 | EC_GROUP_order_bits(const EC_GROUP *group) | ||
381 | { | ||
382 | return BN_num_bits(group->order); | ||
383 | } | ||
384 | LCRYPTO_ALIAS(EC_GROUP_order_bits); | ||
385 | |||
386 | int | ||
387 | EC_GROUP_get_cofactor(const EC_GROUP *group, BIGNUM *cofactor, BN_CTX *ctx) | ||
388 | { | ||
389 | if (!bn_copy(cofactor, group->cofactor)) | ||
390 | return 0; | ||
391 | |||
392 | return !BN_is_zero(group->cofactor); | ||
393 | } | ||
394 | LCRYPTO_ALIAS(EC_GROUP_get_cofactor); | ||
395 | |||
396 | const BIGNUM * | ||
397 | EC_GROUP_get0_cofactor(const EC_GROUP *group) | ||
398 | { | ||
399 | return group->cofactor; | ||
400 | } | ||
401 | |||
402 | void | ||
403 | EC_GROUP_set_curve_name(EC_GROUP *group, int nid) | ||
404 | { | ||
405 | group->nid = nid; | ||
406 | } | ||
407 | LCRYPTO_ALIAS(EC_GROUP_set_curve_name); | ||
408 | |||
409 | int | ||
410 | EC_GROUP_get_curve_name(const EC_GROUP *group) | ||
411 | { | ||
412 | return group->nid; | ||
413 | } | ||
414 | LCRYPTO_ALIAS(EC_GROUP_get_curve_name); | ||
415 | |||
416 | void | ||
417 | EC_GROUP_set_asn1_flag(EC_GROUP *group, int flag) | ||
418 | { | ||
419 | group->asn1_flag = flag; | ||
420 | } | ||
421 | LCRYPTO_ALIAS(EC_GROUP_set_asn1_flag); | ||
422 | |||
423 | int | ||
424 | EC_GROUP_get_asn1_flag(const EC_GROUP *group) | ||
425 | { | ||
426 | return group->asn1_flag; | ||
427 | } | ||
428 | LCRYPTO_ALIAS(EC_GROUP_get_asn1_flag); | ||
429 | |||
430 | void | ||
431 | EC_GROUP_set_point_conversion_form(EC_GROUP *group, | ||
432 | point_conversion_form_t form) | ||
433 | { | ||
434 | group->asn1_form = form; | ||
435 | } | ||
436 | LCRYPTO_ALIAS(EC_GROUP_set_point_conversion_form); | ||
437 | |||
438 | point_conversion_form_t | ||
439 | EC_GROUP_get_point_conversion_form(const EC_GROUP *group) | ||
440 | { | ||
441 | return group->asn1_form; | ||
442 | } | ||
443 | LCRYPTO_ALIAS(EC_GROUP_get_point_conversion_form); | ||
444 | |||
445 | size_t | ||
446 | EC_GROUP_set_seed(EC_GROUP *group, const unsigned char *seed, size_t len) | ||
447 | { | ||
448 | free(group->seed); | ||
449 | group->seed = NULL; | ||
450 | group->seed_len = 0; | ||
451 | |||
452 | if (seed == NULL || len == 0) | ||
453 | return 1; | ||
454 | |||
455 | if ((group->seed = malloc(len)) == NULL) | ||
456 | return 0; | ||
457 | memcpy(group->seed, seed, len); | ||
458 | group->seed_len = len; | ||
459 | |||
460 | return len; | ||
461 | } | ||
462 | LCRYPTO_ALIAS(EC_GROUP_set_seed); | ||
463 | |||
464 | unsigned char * | ||
465 | EC_GROUP_get0_seed(const EC_GROUP *group) | ||
466 | { | ||
467 | return group->seed; | ||
468 | } | ||
469 | LCRYPTO_ALIAS(EC_GROUP_get0_seed); | ||
470 | |||
471 | size_t | ||
472 | EC_GROUP_get_seed_len(const EC_GROUP *group) | ||
473 | { | ||
474 | return group->seed_len; | ||
475 | } | ||
476 | LCRYPTO_ALIAS(EC_GROUP_get_seed_len); | ||
477 | |||
478 | int | ||
479 | EC_GROUP_set_curve(EC_GROUP *group, const BIGNUM *p, const BIGNUM *a, | ||
480 | const BIGNUM *b, BN_CTX *ctx_in) | ||
481 | { | ||
482 | BN_CTX *ctx; | ||
483 | int ret = 0; | ||
484 | |||
485 | if ((ctx = ctx_in) == NULL) | ||
486 | ctx = BN_CTX_new(); | ||
487 | if (ctx == NULL) | ||
488 | goto err; | ||
489 | |||
490 | if (group->meth->group_set_curve == NULL) { | ||
491 | ECerror(ERR_R_SHOULD_NOT_HAVE_BEEN_CALLED); | ||
492 | goto err; | ||
493 | } | ||
494 | ret = group->meth->group_set_curve(group, p, a, b, ctx); | ||
495 | |||
496 | err: | ||
497 | if (ctx != ctx_in) | ||
498 | BN_CTX_free(ctx); | ||
499 | |||
500 | return ret; | ||
501 | } | ||
502 | LCRYPTO_ALIAS(EC_GROUP_set_curve); | ||
503 | |||
504 | int | ||
505 | EC_GROUP_get_curve(const EC_GROUP *group, BIGNUM *p, BIGNUM *a, BIGNUM *b, | ||
506 | BN_CTX *ctx_in) | ||
507 | { | ||
508 | BN_CTX *ctx; | ||
509 | int ret = 0; | ||
510 | |||
511 | if ((ctx = ctx_in) == NULL) | ||
512 | ctx = BN_CTX_new(); | ||
513 | if (ctx == NULL) | ||
514 | goto err; | ||
515 | |||
516 | if (group->meth->group_get_curve == NULL) { | ||
517 | ECerror(ERR_R_SHOULD_NOT_HAVE_BEEN_CALLED); | ||
518 | goto err; | ||
519 | } | ||
520 | ret = group->meth->group_get_curve(group, p, a, b, ctx); | ||
521 | |||
522 | err: | ||
523 | if (ctx != ctx_in) | ||
524 | BN_CTX_free(ctx); | ||
525 | |||
526 | return ret; | ||
527 | } | ||
528 | LCRYPTO_ALIAS(EC_GROUP_get_curve); | ||
529 | |||
530 | int | ||
531 | EC_GROUP_set_curve_GFp(EC_GROUP *group, const BIGNUM *p, const BIGNUM *a, | ||
532 | const BIGNUM *b, BN_CTX *ctx) | ||
533 | { | ||
534 | return EC_GROUP_set_curve(group, p, a, b, ctx); | ||
535 | } | ||
536 | LCRYPTO_ALIAS(EC_GROUP_set_curve_GFp); | ||
537 | |||
538 | int | ||
539 | EC_GROUP_get_curve_GFp(const EC_GROUP *group, BIGNUM *p, BIGNUM *a, BIGNUM *b, | ||
540 | BN_CTX *ctx) | ||
541 | { | ||
542 | return EC_GROUP_get_curve(group, p, a, b, ctx); | ||
543 | } | ||
544 | LCRYPTO_ALIAS(EC_GROUP_get_curve_GFp); | ||
545 | |||
546 | EC_GROUP * | ||
547 | EC_GROUP_new_curve_GFp(const BIGNUM *p, const BIGNUM *a, const BIGNUM *b, | ||
548 | BN_CTX *ctx) | ||
549 | { | ||
550 | EC_GROUP *group; | ||
551 | |||
552 | if ((group = EC_GROUP_new(EC_GFp_mont_method())) == NULL) | ||
553 | goto err; | ||
554 | |||
555 | if (!EC_GROUP_set_curve(group, p, a, b, ctx)) | ||
556 | goto err; | ||
557 | |||
558 | return group; | ||
559 | |||
560 | err: | ||
561 | EC_GROUP_free(group); | ||
562 | |||
563 | return NULL; | ||
564 | } | ||
565 | LCRYPTO_ALIAS(EC_GROUP_new_curve_GFp); | ||
566 | |||
567 | int | ||
568 | EC_GROUP_get_degree(const EC_GROUP *group) | ||
569 | { | ||
570 | return BN_num_bits(group->p); | ||
571 | } | ||
572 | LCRYPTO_ALIAS(EC_GROUP_get_degree); | ||
573 | |||
574 | int | ||
575 | EC_GROUP_check_discriminant(const EC_GROUP *group, BN_CTX *ctx_in) | ||
576 | { | ||
577 | BN_CTX *ctx; | ||
578 | BIGNUM *p, *a, *b, *discriminant; | ||
579 | int ret = 0; | ||
580 | |||
581 | if ((ctx = ctx_in) == NULL) | ||
582 | ctx = BN_CTX_new(); | ||
583 | if (ctx == NULL) | ||
584 | goto err; | ||
585 | |||
586 | BN_CTX_start(ctx); | ||
587 | |||
588 | if ((p = BN_CTX_get(ctx)) == NULL) | ||
589 | goto err; | ||
590 | if ((a = BN_CTX_get(ctx)) == NULL) | ||
591 | goto err; | ||
592 | if ((b = BN_CTX_get(ctx)) == NULL) | ||
593 | goto err; | ||
594 | if ((discriminant = BN_CTX_get(ctx)) == NULL) | ||
595 | goto err; | ||
596 | |||
597 | if (!EC_GROUP_get_curve(group, p, a, b, ctx)) | ||
598 | goto err; | ||
599 | |||
600 | /* | ||
601 | * Check that the discriminant 4a^3 + 27b^2 is non-zero modulo p | ||
602 | * assuming that p > 3 is prime and that a and b are in [0, p). | ||
603 | */ | ||
604 | |||
605 | if (BN_is_zero(a) && BN_is_zero(b)) | ||
606 | goto err; | ||
607 | if (BN_is_zero(a) || BN_is_zero(b)) | ||
608 | goto done; | ||
609 | |||
610 | /* Compute the discriminant: first 4a^3, then 27b^2, then their sum. */ | ||
611 | if (!BN_mod_sqr(discriminant, a, p, ctx)) | ||
612 | goto err; | ||
613 | if (!BN_mod_mul(discriminant, discriminant, a, p, ctx)) | ||
614 | goto err; | ||
615 | if (!BN_lshift(discriminant, discriminant, 2)) | ||
616 | goto err; | ||
617 | |||
618 | if (!BN_mod_sqr(b, b, p, ctx)) | ||
619 | goto err; | ||
620 | if (!BN_mul_word(b, 27)) | ||
621 | goto err; | ||
622 | |||
623 | if (!BN_mod_add(discriminant, discriminant, b, p, ctx)) | ||
624 | goto err; | ||
625 | |||
626 | if (BN_is_zero(discriminant)) | ||
627 | goto err; | ||
628 | |||
629 | done: | ||
630 | ret = 1; | ||
631 | |||
632 | err: | ||
633 | if (ctx != ctx_in) | ||
634 | BN_CTX_free(ctx); | ||
635 | |||
636 | return ret; | ||
637 | } | ||
638 | LCRYPTO_ALIAS(EC_GROUP_check_discriminant); | ||
639 | |||
640 | int | ||
641 | EC_GROUP_check(const EC_GROUP *group, BN_CTX *ctx_in) | ||
642 | { | ||
643 | BN_CTX *ctx; | ||
644 | EC_POINT *point = NULL; | ||
645 | const EC_POINT *generator; | ||
646 | const BIGNUM *order; | ||
647 | int ret = 0; | ||
648 | |||
649 | if ((ctx = ctx_in) == NULL) | ||
650 | ctx = BN_CTX_new(); | ||
651 | if (ctx == NULL) | ||
652 | goto err; | ||
653 | |||
654 | if (!EC_GROUP_check_discriminant(group, ctx)) { | ||
655 | ECerror(EC_R_DISCRIMINANT_IS_ZERO); | ||
656 | goto err; | ||
657 | } | ||
658 | |||
659 | if ((generator = EC_GROUP_get0_generator(group)) == NULL) { | ||
660 | ECerror(EC_R_UNDEFINED_GENERATOR); | ||
661 | goto err; | ||
662 | } | ||
663 | if (EC_POINT_is_on_curve(group, generator, ctx) <= 0) { | ||
664 | ECerror(EC_R_POINT_IS_NOT_ON_CURVE); | ||
665 | goto err; | ||
666 | } | ||
667 | |||
668 | if ((point = EC_POINT_new(group)) == NULL) | ||
669 | goto err; | ||
670 | if ((order = EC_GROUP_get0_order(group)) == NULL) | ||
671 | goto err; | ||
672 | if (BN_is_zero(order)) { | ||
673 | ECerror(EC_R_UNDEFINED_ORDER); | ||
674 | goto err; | ||
675 | } | ||
676 | if (!EC_POINT_mul(group, point, order, NULL, NULL, ctx)) | ||
677 | goto err; | ||
678 | if (!EC_POINT_is_at_infinity(group, point)) { | ||
679 | ECerror(EC_R_INVALID_GROUP_ORDER); | ||
680 | goto err; | ||
681 | } | ||
682 | |||
683 | ret = 1; | ||
684 | |||
685 | err: | ||
686 | if (ctx != ctx_in) | ||
687 | BN_CTX_free(ctx); | ||
688 | |||
689 | EC_POINT_free(point); | ||
690 | |||
691 | return ret; | ||
692 | } | ||
693 | LCRYPTO_ALIAS(EC_GROUP_check); | ||
694 | |||
695 | /* | ||
696 | * Returns -1 on error, 0 if the groups are equal, 1 if they are distinct. | ||
697 | */ | ||
698 | int | ||
699 | EC_GROUP_cmp(const EC_GROUP *group1, const EC_GROUP *group2, BN_CTX *ctx_in) | ||
700 | { | ||
701 | BN_CTX *ctx = NULL; | ||
702 | BIGNUM *p1, *a1, *b1, *p2, *a2, *b2; | ||
703 | const EC_POINT *generator1, *generator2; | ||
704 | const BIGNUM *order1, *order2, *cofactor1, *cofactor2; | ||
705 | int nid1, nid2; | ||
706 | int cmp = 1; | ||
707 | int ret = -1; | ||
708 | |||
709 | if ((ctx = ctx_in) == NULL) | ||
710 | ctx = BN_CTX_new(); | ||
711 | if (ctx == NULL) | ||
712 | goto err; | ||
713 | |||
714 | BN_CTX_start(ctx); | ||
715 | |||
716 | if ((nid1 = EC_GROUP_get_curve_name(group1)) != NID_undef && | ||
717 | (nid2 = EC_GROUP_get_curve_name(group2)) != NID_undef) { | ||
718 | if (nid1 != nid2) | ||
719 | goto distinct; | ||
720 | } | ||
721 | |||
722 | if ((p1 = BN_CTX_get(ctx)) == NULL) | ||
723 | goto err; | ||
724 | if ((a1 = BN_CTX_get(ctx)) == NULL) | ||
725 | goto err; | ||
726 | if ((b1 = BN_CTX_get(ctx)) == NULL) | ||
727 | goto err; | ||
728 | if ((p2 = BN_CTX_get(ctx)) == NULL) | ||
729 | goto err; | ||
730 | if ((a2 = BN_CTX_get(ctx)) == NULL) | ||
731 | goto err; | ||
732 | if ((b2 = BN_CTX_get(ctx)) == NULL) | ||
733 | goto err; | ||
734 | |||
735 | /* | ||
736 | * If we ever support curves in non-Weierstrass form, this check needs | ||
737 | * to be adjusted. The comparison of the generators will fail anyway. | ||
738 | */ | ||
739 | if (!EC_GROUP_get_curve(group1, p1, a1, b1, ctx)) | ||
740 | goto err; | ||
741 | if (!EC_GROUP_get_curve(group2, p2, a2, b2, ctx)) | ||
742 | goto err; | ||
743 | |||
744 | if (BN_cmp(p1, p2) != 0 || BN_cmp(a1, a2) != 0 || BN_cmp(b1, b2) != 0) | ||
745 | goto distinct; | ||
746 | |||
747 | if ((generator1 = EC_GROUP_get0_generator(group1)) == NULL) | ||
748 | goto err; | ||
749 | if ((generator2 = EC_GROUP_get0_generator(group2)) == NULL) | ||
750 | goto err; | ||
751 | |||
752 | /* | ||
753 | * It does not matter whether group1 or group2 is used: both points must | ||
754 | * have a matching method for this to succeed. | ||
755 | */ | ||
756 | if ((cmp = EC_POINT_cmp(group1, generator1, generator2, ctx)) < 0) | ||
757 | goto err; | ||
758 | if (cmp == 1) | ||
759 | goto distinct; | ||
760 | cmp = 1; | ||
761 | |||
762 | if ((order1 = EC_GROUP_get0_order(group1)) == NULL) | ||
763 | goto err; | ||
764 | if ((order2 = EC_GROUP_get0_order(group2)) == NULL) | ||
765 | goto err; | ||
766 | |||
767 | if ((cofactor1 = EC_GROUP_get0_cofactor(group1)) == NULL) | ||
768 | goto err; | ||
769 | if ((cofactor2 = EC_GROUP_get0_cofactor(group2)) == NULL) | ||
770 | goto err; | ||
771 | |||
772 | if (BN_cmp(order1, order2) != 0 || BN_cmp(cofactor1, cofactor2) != 0) | ||
773 | goto distinct; | ||
774 | |||
775 | /* All parameters match: the groups are equal. */ | ||
776 | cmp = 0; | ||
777 | |||
778 | distinct: | ||
779 | ret = cmp; | ||
780 | |||
781 | err: | ||
782 | BN_CTX_end(ctx); | ||
783 | |||
784 | if (ctx != ctx_in) | ||
785 | BN_CTX_free(ctx); | ||
786 | |||
787 | return ret; | ||
788 | } | ||
789 | LCRYPTO_ALIAS(EC_GROUP_cmp); | ||
790 | |||
791 | EC_POINT * | ||
792 | EC_POINT_new(const EC_GROUP *group) | ||
793 | { | ||
794 | EC_POINT *point = NULL; | ||
795 | |||
796 | if (group == NULL) { | ||
797 | ECerror(ERR_R_PASSED_NULL_PARAMETER); | ||
798 | goto err; | ||
799 | } | ||
800 | |||
801 | if ((point = calloc(1, sizeof(*point))) == NULL) { | ||
802 | ECerror(ERR_R_MALLOC_FAILURE); | ||
803 | goto err; | ||
804 | } | ||
805 | |||
806 | if ((point->X = BN_new()) == NULL) | ||
807 | goto err; | ||
808 | if ((point->Y = BN_new()) == NULL) | ||
809 | goto err; | ||
810 | if ((point->Z = BN_new()) == NULL) | ||
811 | goto err; | ||
812 | |||
813 | point->meth = group->meth; | ||
814 | |||
815 | return point; | ||
816 | |||
817 | err: | ||
818 | EC_POINT_free(point); | ||
819 | |||
820 | return NULL; | ||
821 | } | ||
822 | LCRYPTO_ALIAS(EC_POINT_new); | ||
823 | |||
824 | void | ||
825 | EC_POINT_free(EC_POINT *point) | ||
826 | { | ||
827 | if (point == NULL) | ||
828 | return; | ||
829 | |||
830 | BN_free(point->X); | ||
831 | BN_free(point->Y); | ||
832 | BN_free(point->Z); | ||
833 | |||
834 | freezero(point, sizeof *point); | ||
835 | } | ||
836 | LCRYPTO_ALIAS(EC_POINT_free); | ||
837 | |||
838 | void | ||
839 | EC_POINT_clear_free(EC_POINT *point) | ||
840 | { | ||
841 | EC_POINT_free(point); | ||
842 | } | ||
843 | LCRYPTO_ALIAS(EC_POINT_clear_free); | ||
844 | |||
845 | int | ||
846 | EC_POINT_copy(EC_POINT *dst, const EC_POINT *src) | ||
847 | { | ||
848 | if (dst->meth != src->meth) { | ||
849 | ECerror(EC_R_INCOMPATIBLE_OBJECTS); | ||
850 | return 0; | ||
851 | } | ||
852 | if (dst == src) | ||
853 | return 1; | ||
854 | |||
855 | if (!bn_copy(dst->X, src->X)) | ||
856 | return 0; | ||
857 | if (!bn_copy(dst->Y, src->Y)) | ||
858 | return 0; | ||
859 | if (!bn_copy(dst->Z, src->Z)) | ||
860 | return 0; | ||
861 | dst->Z_is_one = src->Z_is_one; | ||
862 | |||
863 | return 1; | ||
864 | } | ||
865 | LCRYPTO_ALIAS(EC_POINT_copy); | ||
866 | |||
867 | EC_POINT * | ||
868 | EC_POINT_dup(const EC_POINT *in_point, const EC_GROUP *group) | ||
869 | { | ||
870 | EC_POINT *point = NULL; | ||
871 | |||
872 | if (in_point == NULL) | ||
873 | goto err; | ||
874 | |||
875 | if ((point = EC_POINT_new(group)) == NULL) | ||
876 | goto err; | ||
877 | |||
878 | if (!EC_POINT_copy(point, in_point)) | ||
879 | goto err; | ||
880 | |||
881 | return point; | ||
882 | |||
883 | err: | ||
884 | EC_POINT_free(point); | ||
885 | |||
886 | return NULL; | ||
887 | } | ||
888 | LCRYPTO_ALIAS(EC_POINT_dup); | ||
889 | |||
890 | int | ||
891 | EC_POINT_set_to_infinity(const EC_GROUP *group, EC_POINT *point) | ||
892 | { | ||
893 | if (group->meth != point->meth) { | ||
894 | ECerror(EC_R_INCOMPATIBLE_OBJECTS); | ||
895 | return 0; | ||
896 | } | ||
897 | |||
898 | BN_zero(point->Z); | ||
899 | point->Z_is_one = 0; | ||
900 | |||
901 | return 1; | ||
902 | } | ||
903 | LCRYPTO_ALIAS(EC_POINT_set_to_infinity); | ||
904 | |||
905 | int | ||
906 | EC_POINT_set_affine_coordinates(const EC_GROUP *group, EC_POINT *point, | ||
907 | const BIGNUM *x, const BIGNUM *y, BN_CTX *ctx_in) | ||
908 | { | ||
909 | BN_CTX *ctx; | ||
910 | int ret = 0; | ||
911 | |||
912 | if ((ctx = ctx_in) == NULL) | ||
913 | ctx = BN_CTX_new(); | ||
914 | if (ctx == NULL) | ||
915 | goto err; | ||
916 | |||
917 | if (group->meth->point_set_affine_coordinates == NULL) { | ||
918 | ECerror(ERR_R_SHOULD_NOT_HAVE_BEEN_CALLED); | ||
919 | goto err; | ||
920 | } | ||
921 | if (group->meth != point->meth) { | ||
922 | ECerror(EC_R_INCOMPATIBLE_OBJECTS); | ||
923 | goto err; | ||
924 | } | ||
925 | if (!group->meth->point_set_affine_coordinates(group, point, x, y, ctx)) | ||
926 | goto err; | ||
927 | |||
928 | if (EC_POINT_is_on_curve(group, point, ctx) <= 0) { | ||
929 | ECerror(EC_R_POINT_IS_NOT_ON_CURVE); | ||
930 | goto err; | ||
931 | } | ||
932 | |||
933 | ret = 1; | ||
934 | |||
935 | err: | ||
936 | if (ctx != ctx_in) | ||
937 | BN_CTX_free(ctx); | ||
938 | |||
939 | return ret; | ||
940 | } | ||
941 | LCRYPTO_ALIAS(EC_POINT_set_affine_coordinates); | ||
942 | |||
943 | int | ||
944 | EC_POINT_set_affine_coordinates_GFp(const EC_GROUP *group, EC_POINT *point, | ||
945 | const BIGNUM *x, const BIGNUM *y, BN_CTX *ctx) | ||
946 | { | ||
947 | return EC_POINT_set_affine_coordinates(group, point, x, y, ctx); | ||
948 | } | ||
949 | LCRYPTO_ALIAS(EC_POINT_set_affine_coordinates_GFp); | ||
950 | |||
951 | int | ||
952 | EC_POINT_get_affine_coordinates(const EC_GROUP *group, const EC_POINT *point, | ||
953 | BIGNUM *x, BIGNUM *y, BN_CTX *ctx_in) | ||
954 | { | ||
955 | BN_CTX *ctx = NULL; | ||
956 | int ret = 0; | ||
957 | |||
958 | if (EC_POINT_is_at_infinity(group, point) > 0) { | ||
959 | ECerror(EC_R_POINT_AT_INFINITY); | ||
960 | goto err; | ||
961 | } | ||
962 | |||
963 | if ((ctx = ctx_in) == NULL) | ||
964 | ctx = BN_CTX_new(); | ||
965 | if (ctx == NULL) | ||
966 | goto err; | ||
967 | |||
968 | if (group->meth->point_get_affine_coordinates == NULL) { | ||
969 | ECerror(ERR_R_SHOULD_NOT_HAVE_BEEN_CALLED); | ||
970 | goto err; | ||
971 | } | ||
972 | if (group->meth != point->meth) { | ||
973 | ECerror(EC_R_INCOMPATIBLE_OBJECTS); | ||
974 | goto err; | ||
975 | } | ||
976 | ret = group->meth->point_get_affine_coordinates(group, point, x, y, ctx); | ||
977 | |||
978 | err: | ||
979 | if (ctx != ctx_in) | ||
980 | BN_CTX_free(ctx); | ||
981 | |||
982 | return ret; | ||
983 | } | ||
984 | LCRYPTO_ALIAS(EC_POINT_get_affine_coordinates); | ||
985 | |||
986 | int | ||
987 | EC_POINT_get_affine_coordinates_GFp(const EC_GROUP *group, const EC_POINT *point, | ||
988 | BIGNUM *x, BIGNUM *y, BN_CTX *ctx) | ||
989 | { | ||
990 | return EC_POINT_get_affine_coordinates(group, point, x, y, ctx); | ||
991 | } | ||
992 | LCRYPTO_ALIAS(EC_POINT_get_affine_coordinates_GFp); | ||
993 | |||
994 | int | ||
995 | EC_POINT_set_compressed_coordinates(const EC_GROUP *group, EC_POINT *point, | ||
996 | const BIGNUM *in_x, int y_bit, BN_CTX *ctx_in) | ||
997 | { | ||
998 | BIGNUM *p, *a, *b, *w, *x, *y; | ||
999 | BN_CTX *ctx; | ||
1000 | int ret = 0; | ||
1001 | |||
1002 | if ((ctx = ctx_in) == NULL) | ||
1003 | ctx = BN_CTX_new(); | ||
1004 | if (ctx == NULL) | ||
1005 | goto err; | ||
1006 | |||
1007 | y_bit = (y_bit != 0); | ||
1008 | |||
1009 | BN_CTX_start(ctx); | ||
1010 | |||
1011 | if ((p = BN_CTX_get(ctx)) == NULL) | ||
1012 | goto err; | ||
1013 | if ((a = BN_CTX_get(ctx)) == NULL) | ||
1014 | goto err; | ||
1015 | if ((b = BN_CTX_get(ctx)) == NULL) | ||
1016 | goto err; | ||
1017 | if ((w = BN_CTX_get(ctx)) == NULL) | ||
1018 | goto err; | ||
1019 | if ((x = BN_CTX_get(ctx)) == NULL) | ||
1020 | goto err; | ||
1021 | if ((y = BN_CTX_get(ctx)) == NULL) | ||
1022 | goto err; | ||
1023 | |||
1024 | /* | ||
1025 | * Weierstrass equation: y^2 = x^3 + ax + b, so y is one of the | ||
1026 | * square roots of x^3 + ax + b. The y-bit indicates which one. | ||
1027 | */ | ||
1028 | |||
1029 | if (!EC_GROUP_get_curve(group, p, a, b, ctx)) | ||
1030 | goto err; | ||
1031 | |||
1032 | /* XXX - should we not insist on 0 <= x < p instead? */ | ||
1033 | if (!BN_nnmod(x, in_x, p, ctx)) | ||
1034 | goto err; | ||
1035 | |||
1036 | /* y = x^3 */ | ||
1037 | if (!BN_mod_sqr(y, x, p, ctx)) | ||
1038 | goto err; | ||
1039 | if (!BN_mod_mul(y, y, x, p, ctx)) | ||
1040 | goto err; | ||
1041 | |||
1042 | /* y += ax */ | ||
1043 | if (group->a_is_minus3) { | ||
1044 | if (!BN_mod_lshift1_quick(w, x, p)) | ||
1045 | goto err; | ||
1046 | if (!BN_mod_add_quick(w, w, x, p)) | ||
1047 | goto err; | ||
1048 | if (!BN_mod_sub_quick(y, y, w, p)) | ||
1049 | goto err; | ||
1050 | } else { | ||
1051 | if (!BN_mod_mul(w, a, x, p, ctx)) | ||
1052 | goto err; | ||
1053 | if (!BN_mod_add_quick(y, y, w, p)) | ||
1054 | goto err; | ||
1055 | } | ||
1056 | |||
1057 | /* y += b */ | ||
1058 | if (!BN_mod_add_quick(y, y, b, p)) | ||
1059 | goto err; | ||
1060 | |||
1061 | if (!BN_mod_sqrt(y, y, p, ctx)) { | ||
1062 | ECerror(EC_R_INVALID_COMPRESSED_POINT); | ||
1063 | goto err; | ||
1064 | } | ||
1065 | |||
1066 | if (y_bit == BN_is_odd(y)) | ||
1067 | goto done; | ||
1068 | |||
1069 | if (BN_is_zero(y)) { | ||
1070 | ECerror(EC_R_INVALID_COMPRESSION_BIT); | ||
1071 | goto err; | ||
1072 | } | ||
1073 | if (!BN_usub(y, p, y)) | ||
1074 | goto err; | ||
1075 | |||
1076 | if (y_bit != BN_is_odd(y)) { | ||
1077 | /* Can only happen if p is even and should not be reachable. */ | ||
1078 | ECerror(ERR_R_INTERNAL_ERROR); | ||
1079 | goto err; | ||
1080 | } | ||
1081 | |||
1082 | done: | ||
1083 | if (!EC_POINT_set_affine_coordinates(group, point, x, y, ctx)) | ||
1084 | goto err; | ||
1085 | |||
1086 | ret = 1; | ||
1087 | |||
1088 | err: | ||
1089 | BN_CTX_end(ctx); | ||
1090 | |||
1091 | if (ctx != ctx_in) | ||
1092 | BN_CTX_free(ctx); | ||
1093 | |||
1094 | return ret; | ||
1095 | } | ||
1096 | LCRYPTO_ALIAS(EC_POINT_set_compressed_coordinates); | ||
1097 | |||
1098 | int | ||
1099 | EC_POINT_set_compressed_coordinates_GFp(const EC_GROUP *group, EC_POINT *point, | ||
1100 | const BIGNUM *x, int y_bit, BN_CTX *ctx) | ||
1101 | { | ||
1102 | return EC_POINT_set_compressed_coordinates(group, point, x, y_bit, ctx); | ||
1103 | } | ||
1104 | LCRYPTO_ALIAS(EC_POINT_set_compressed_coordinates_GFp); | ||
1105 | |||
1106 | int | ||
1107 | EC_POINT_add(const EC_GROUP *group, EC_POINT *r, const EC_POINT *a, | ||
1108 | const EC_POINT *b, BN_CTX *ctx_in) | ||
1109 | { | ||
1110 | BN_CTX *ctx; | ||
1111 | int ret = 0; | ||
1112 | |||
1113 | if ((ctx = ctx_in) == NULL) | ||
1114 | ctx = BN_CTX_new(); | ||
1115 | if (ctx == NULL) | ||
1116 | goto err; | ||
1117 | |||
1118 | if (group->meth->add == NULL) { | ||
1119 | ECerror(ERR_R_SHOULD_NOT_HAVE_BEEN_CALLED); | ||
1120 | goto err; | ||
1121 | } | ||
1122 | if (group->meth != r->meth || group->meth != a->meth || | ||
1123 | group->meth != b->meth) { | ||
1124 | ECerror(EC_R_INCOMPATIBLE_OBJECTS); | ||
1125 | goto err; | ||
1126 | } | ||
1127 | ret = group->meth->add(group, r, a, b, ctx); | ||
1128 | |||
1129 | err: | ||
1130 | if (ctx != ctx_in) | ||
1131 | BN_CTX_free(ctx); | ||
1132 | |||
1133 | return ret; | ||
1134 | } | ||
1135 | LCRYPTO_ALIAS(EC_POINT_add); | ||
1136 | |||
1137 | int | ||
1138 | EC_POINT_dbl(const EC_GROUP *group, EC_POINT *r, const EC_POINT *a, | ||
1139 | BN_CTX *ctx_in) | ||
1140 | { | ||
1141 | BN_CTX *ctx; | ||
1142 | int ret = 0; | ||
1143 | |||
1144 | if ((ctx = ctx_in) == NULL) | ||
1145 | ctx = BN_CTX_new(); | ||
1146 | if (ctx == NULL) | ||
1147 | goto err; | ||
1148 | |||
1149 | if (group->meth->dbl == NULL) { | ||
1150 | ECerror(ERR_R_SHOULD_NOT_HAVE_BEEN_CALLED); | ||
1151 | goto err; | ||
1152 | } | ||
1153 | if (group->meth != r->meth || r->meth != a->meth) { | ||
1154 | ECerror(EC_R_INCOMPATIBLE_OBJECTS); | ||
1155 | goto err; | ||
1156 | } | ||
1157 | ret = group->meth->dbl(group, r, a, ctx); | ||
1158 | |||
1159 | err: | ||
1160 | if (ctx != ctx_in) | ||
1161 | BN_CTX_free(ctx); | ||
1162 | |||
1163 | return ret; | ||
1164 | } | ||
1165 | LCRYPTO_ALIAS(EC_POINT_dbl); | ||
1166 | |||
1167 | int | ||
1168 | EC_POINT_invert(const EC_GROUP *group, EC_POINT *a, BN_CTX *ctx_in) | ||
1169 | { | ||
1170 | BN_CTX *ctx; | ||
1171 | int ret = 0; | ||
1172 | |||
1173 | if ((ctx = ctx_in) == NULL) | ||
1174 | ctx = BN_CTX_new(); | ||
1175 | if (ctx == NULL) | ||
1176 | goto err; | ||
1177 | |||
1178 | if (group->meth->invert == NULL) { | ||
1179 | ECerror(ERR_R_SHOULD_NOT_HAVE_BEEN_CALLED); | ||
1180 | goto err; | ||
1181 | } | ||
1182 | if (group->meth != a->meth) { | ||
1183 | ECerror(EC_R_INCOMPATIBLE_OBJECTS); | ||
1184 | goto err; | ||
1185 | } | ||
1186 | ret = group->meth->invert(group, a, ctx); | ||
1187 | |||
1188 | err: | ||
1189 | if (ctx != ctx_in) | ||
1190 | BN_CTX_free(ctx); | ||
1191 | |||
1192 | return ret; | ||
1193 | } | ||
1194 | LCRYPTO_ALIAS(EC_POINT_invert); | ||
1195 | |||
1196 | int | ||
1197 | EC_POINT_is_at_infinity(const EC_GROUP *group, const EC_POINT *point) | ||
1198 | { | ||
1199 | if (group->meth != point->meth) { | ||
1200 | ECerror(EC_R_INCOMPATIBLE_OBJECTS); | ||
1201 | return 0; | ||
1202 | } | ||
1203 | |||
1204 | return BN_is_zero(point->Z); | ||
1205 | } | ||
1206 | LCRYPTO_ALIAS(EC_POINT_is_at_infinity); | ||
1207 | |||
1208 | int | ||
1209 | EC_POINT_is_on_curve(const EC_GROUP *group, const EC_POINT *point, | ||
1210 | BN_CTX *ctx_in) | ||
1211 | { | ||
1212 | BN_CTX *ctx; | ||
1213 | int ret = -1; | ||
1214 | |||
1215 | if ((ctx = ctx_in) == NULL) | ||
1216 | ctx = BN_CTX_new(); | ||
1217 | if (ctx == NULL) | ||
1218 | goto err; | ||
1219 | |||
1220 | if (group->meth->point_is_on_curve == NULL) { | ||
1221 | ECerror(ERR_R_SHOULD_NOT_HAVE_BEEN_CALLED); | ||
1222 | goto err; | ||
1223 | } | ||
1224 | if (group->meth != point->meth) { | ||
1225 | ECerror(EC_R_INCOMPATIBLE_OBJECTS); | ||
1226 | goto err; | ||
1227 | } | ||
1228 | ret = group->meth->point_is_on_curve(group, point, ctx); | ||
1229 | |||
1230 | err: | ||
1231 | if (ctx != ctx_in) | ||
1232 | BN_CTX_free(ctx); | ||
1233 | |||
1234 | return ret; | ||
1235 | } | ||
1236 | LCRYPTO_ALIAS(EC_POINT_is_on_curve); | ||
1237 | |||
1238 | int | ||
1239 | EC_POINT_cmp(const EC_GROUP *group, const EC_POINT *a, const EC_POINT *b, | ||
1240 | BN_CTX *ctx_in) | ||
1241 | { | ||
1242 | BN_CTX *ctx; | ||
1243 | int ret = -1; | ||
1244 | |||
1245 | if ((ctx = ctx_in) == NULL) | ||
1246 | ctx = BN_CTX_new(); | ||
1247 | if (ctx == NULL) | ||
1248 | goto err; | ||
1249 | |||
1250 | if (group->meth->point_cmp == NULL) { | ||
1251 | ECerror(ERR_R_SHOULD_NOT_HAVE_BEEN_CALLED); | ||
1252 | goto err; | ||
1253 | } | ||
1254 | if (group->meth != a->meth || a->meth != b->meth) { | ||
1255 | ECerror(EC_R_INCOMPATIBLE_OBJECTS); | ||
1256 | goto err; | ||
1257 | } | ||
1258 | ret = group->meth->point_cmp(group, a, b, ctx); | ||
1259 | |||
1260 | err: | ||
1261 | if (ctx != ctx_in) | ||
1262 | BN_CTX_free(ctx); | ||
1263 | |||
1264 | return ret; | ||
1265 | } | ||
1266 | LCRYPTO_ALIAS(EC_POINT_cmp); | ||
1267 | |||
1268 | int | ||
1269 | EC_POINT_make_affine(const EC_GROUP *group, EC_POINT *point, BN_CTX *ctx_in) | ||
1270 | { | ||
1271 | BN_CTX *ctx; | ||
1272 | BIGNUM *x, *y; | ||
1273 | int ret = 0; | ||
1274 | |||
1275 | if ((ctx = ctx_in) == NULL) | ||
1276 | ctx = BN_CTX_new(); | ||
1277 | if (ctx == NULL) | ||
1278 | goto err; | ||
1279 | |||
1280 | BN_CTX_start(ctx); | ||
1281 | |||
1282 | if ((x = BN_CTX_get(ctx)) == NULL) | ||
1283 | goto err; | ||
1284 | if ((y = BN_CTX_get(ctx)) == NULL) | ||
1285 | goto err; | ||
1286 | |||
1287 | if (!EC_POINT_get_affine_coordinates(group, point, x, y, ctx)) | ||
1288 | goto err; | ||
1289 | if (!EC_POINT_set_affine_coordinates(group, point, x, y, ctx)) | ||
1290 | goto err; | ||
1291 | |||
1292 | ret = 1; | ||
1293 | |||
1294 | err: | ||
1295 | BN_CTX_end(ctx); | ||
1296 | |||
1297 | if (ctx != ctx_in) | ||
1298 | BN_CTX_free(ctx); | ||
1299 | |||
1300 | return ret; | ||
1301 | } | ||
1302 | LCRYPTO_ALIAS(EC_POINT_make_affine); | ||
1303 | |||
1304 | int | ||
1305 | EC_POINT_mul(const EC_GROUP *group, EC_POINT *r, const BIGNUM *g_scalar, | ||
1306 | const EC_POINT *point, const BIGNUM *p_scalar, BN_CTX *ctx_in) | ||
1307 | { | ||
1308 | BN_CTX *ctx; | ||
1309 | int ret = 0; | ||
1310 | |||
1311 | if ((ctx = ctx_in) == NULL) | ||
1312 | ctx = BN_CTX_new(); | ||
1313 | if (ctx == NULL) | ||
1314 | goto err; | ||
1315 | |||
1316 | if (group->meth->mul_single_ct == NULL || | ||
1317 | group->meth->mul_double_nonct == NULL) { | ||
1318 | ECerror(ERR_R_SHOULD_NOT_HAVE_BEEN_CALLED); | ||
1319 | goto err; | ||
1320 | } | ||
1321 | |||
1322 | if (g_scalar != NULL && group->generator == NULL) { | ||
1323 | ECerror(EC_R_UNDEFINED_GENERATOR); | ||
1324 | goto err; | ||
1325 | } | ||
1326 | |||
1327 | if (g_scalar != NULL && point == NULL && p_scalar == NULL) { | ||
1328 | /* | ||
1329 | * In this case we want to compute g_scalar * GeneratorPoint: | ||
1330 | * this codepath is reached most prominently by (ephemeral) key | ||
1331 | * generation of EC cryptosystems (i.e. ECDSA keygen and sign | ||
1332 | * setup, ECDH keygen/first half), where the scalar is always | ||
1333 | * secret. This is why we ignore if BN_FLG_CONSTTIME is actually | ||
1334 | * set and we always call the constant time version. | ||
1335 | */ | ||
1336 | ret = group->meth->mul_single_ct(group, r, | ||
1337 | g_scalar, group->generator, ctx); | ||
1338 | } else if (g_scalar == NULL && point != NULL && p_scalar != NULL) { | ||
1339 | /* | ||
1340 | * In this case we want to compute p_scalar * GenericPoint: | ||
1341 | * this codepath is reached most prominently by the second half | ||
1342 | * of ECDH, where the secret scalar is multiplied by the peer's | ||
1343 | * public point. To protect the secret scalar, we ignore if | ||
1344 | * BN_FLG_CONSTTIME is actually set and we always call the | ||
1345 | * constant time version. | ||
1346 | */ | ||
1347 | ret = group->meth->mul_single_ct(group, r, p_scalar, point, ctx); | ||
1348 | } else if (g_scalar != NULL && point != NULL && p_scalar != NULL) { | ||
1349 | /* | ||
1350 | * In this case we want to compute | ||
1351 | * g_scalar * GeneratorPoint + p_scalar * GenericPoint: | ||
1352 | * this codepath is reached most prominently by ECDSA signature | ||
1353 | * verification. So we call the non-ct version. | ||
1354 | */ | ||
1355 | ret = group->meth->mul_double_nonct(group, r, | ||
1356 | g_scalar, group->generator, p_scalar, point, ctx); | ||
1357 | } else { | ||
1358 | /* Anything else is an error. */ | ||
1359 | ECerror(ERR_R_EC_LIB); | ||
1360 | goto err; | ||
1361 | } | ||
1362 | |||
1363 | err: | ||
1364 | if (ctx != ctx_in) | ||
1365 | BN_CTX_free(ctx); | ||
1366 | |||
1367 | return ret; | ||
1368 | } | ||
1369 | LCRYPTO_ALIAS(EC_POINT_mul); | ||