diff options
Diffstat (limited to 'src/lib/libcrypto/ec/ec_mult.c')
-rw-r--r-- | src/lib/libcrypto/ec/ec_mult.c | 673 |
1 files changed, 110 insertions, 563 deletions
diff --git a/src/lib/libcrypto/ec/ec_mult.c b/src/lib/libcrypto/ec/ec_mult.c index 2ba173ef36..16822a73cf 100644 --- a/src/lib/libcrypto/ec/ec_mult.c +++ b/src/lib/libcrypto/ec/ec_mult.c | |||
@@ -1,9 +1,6 @@ | |||
1 | /* crypto/ec/ec_mult.c */ | 1 | /* crypto/ec/ec_mult.c */ |
2 | /* | ||
3 | * Originally written by Bodo Moeller and Nils Larsch for the OpenSSL project. | ||
4 | */ | ||
5 | /* ==================================================================== | 2 | /* ==================================================================== |
6 | * Copyright (c) 1998-2007 The OpenSSL Project. All rights reserved. | 3 | * Copyright (c) 1998-2001 The OpenSSL Project. All rights reserved. |
7 | * | 4 | * |
8 | * Redistribution and use in source and binary forms, with or without | 5 | * Redistribution and use in source and binary forms, with or without |
9 | * modification, are permitted provided that the following conditions | 6 | * modification, are permitted provided that the following conditions |
@@ -55,161 +52,41 @@ | |||
55 | * Hudson (tjh@cryptsoft.com). | 52 | * Hudson (tjh@cryptsoft.com). |
56 | * | 53 | * |
57 | */ | 54 | */ |
58 | /* ==================================================================== | ||
59 | * Copyright 2002 Sun Microsystems, Inc. ALL RIGHTS RESERVED. | ||
60 | * Portions of this software developed by SUN MICROSYSTEMS, INC., | ||
61 | * and contributed to the OpenSSL project. | ||
62 | */ | ||
63 | |||
64 | #include <string.h> | ||
65 | 55 | ||
66 | #include <openssl/err.h> | 56 | #include <openssl/err.h> |
67 | 57 | ||
68 | #include "ec_lcl.h" | 58 | #include "ec_lcl.h" |
69 | 59 | ||
70 | 60 | ||
71 | /* | 61 | /* TODO: optional precomputation of multiples of the generator */ |
72 | * This file implements the wNAF-based interleaving multi-exponentation method | ||
73 | * (<URL:http://www.informatik.tu-darmstadt.de/TI/Mitarbeiter/moeller.html#multiexp>); | ||
74 | * for multiplication with precomputation, we use wNAF splitting | ||
75 | * (<URL:http://www.informatik.tu-darmstadt.de/TI/Mitarbeiter/moeller.html#fastexp>). | ||
76 | */ | ||
77 | |||
78 | |||
79 | |||
80 | |||
81 | /* structure for precomputed multiples of the generator */ | ||
82 | typedef struct ec_pre_comp_st { | ||
83 | const EC_GROUP *group; /* parent EC_GROUP object */ | ||
84 | size_t blocksize; /* block size for wNAF splitting */ | ||
85 | size_t numblocks; /* max. number of blocks for which we have precomputation */ | ||
86 | size_t w; /* window size */ | ||
87 | EC_POINT **points; /* array with pre-calculated multiples of generator: | ||
88 | * 'num' pointers to EC_POINT objects followed by a NULL */ | ||
89 | size_t num; /* numblocks * 2^(w-1) */ | ||
90 | int references; | ||
91 | } EC_PRE_COMP; | ||
92 | |||
93 | /* functions to manage EC_PRE_COMP within the EC_GROUP extra_data framework */ | ||
94 | static void *ec_pre_comp_dup(void *); | ||
95 | static void ec_pre_comp_free(void *); | ||
96 | static void ec_pre_comp_clear_free(void *); | ||
97 | |||
98 | static EC_PRE_COMP *ec_pre_comp_new(const EC_GROUP *group) | ||
99 | { | ||
100 | EC_PRE_COMP *ret = NULL; | ||
101 | |||
102 | if (!group) | ||
103 | return NULL; | ||
104 | |||
105 | ret = (EC_PRE_COMP *)OPENSSL_malloc(sizeof(EC_PRE_COMP)); | ||
106 | if (!ret) | ||
107 | { | ||
108 | ECerr(EC_F_EC_PRE_COMP_NEW, ERR_R_MALLOC_FAILURE); | ||
109 | return ret; | ||
110 | } | ||
111 | ret->group = group; | ||
112 | ret->blocksize = 8; /* default */ | ||
113 | ret->numblocks = 0; | ||
114 | ret->w = 4; /* default */ | ||
115 | ret->points = NULL; | ||
116 | ret->num = 0; | ||
117 | ret->references = 1; | ||
118 | return ret; | ||
119 | } | ||
120 | |||
121 | static void *ec_pre_comp_dup(void *src_) | ||
122 | { | ||
123 | EC_PRE_COMP *src = src_; | ||
124 | |||
125 | /* no need to actually copy, these objects never change! */ | ||
126 | |||
127 | CRYPTO_add(&src->references, 1, CRYPTO_LOCK_EC_PRE_COMP); | ||
128 | |||
129 | return src_; | ||
130 | } | ||
131 | |||
132 | static void ec_pre_comp_free(void *pre_) | ||
133 | { | ||
134 | int i; | ||
135 | EC_PRE_COMP *pre = pre_; | ||
136 | |||
137 | if (!pre) | ||
138 | return; | ||
139 | |||
140 | i = CRYPTO_add(&pre->references, -1, CRYPTO_LOCK_EC_PRE_COMP); | ||
141 | if (i > 0) | ||
142 | return; | ||
143 | |||
144 | if (pre->points) | ||
145 | { | ||
146 | EC_POINT **p; | ||
147 | |||
148 | for (p = pre->points; *p != NULL; p++) | ||
149 | EC_POINT_free(*p); | ||
150 | OPENSSL_free(pre->points); | ||
151 | } | ||
152 | OPENSSL_free(pre); | ||
153 | } | ||
154 | |||
155 | static void ec_pre_comp_clear_free(void *pre_) | ||
156 | { | ||
157 | int i; | ||
158 | EC_PRE_COMP *pre = pre_; | ||
159 | |||
160 | if (!pre) | ||
161 | return; | ||
162 | |||
163 | i = CRYPTO_add(&pre->references, -1, CRYPTO_LOCK_EC_PRE_COMP); | ||
164 | if (i > 0) | ||
165 | return; | ||
166 | |||
167 | if (pre->points) | ||
168 | { | ||
169 | EC_POINT **p; | ||
170 | 62 | ||
171 | for (p = pre->points; *p != NULL; p++) | ||
172 | EC_POINT_clear_free(*p); | ||
173 | OPENSSL_cleanse(pre->points, sizeof pre->points); | ||
174 | OPENSSL_free(pre->points); | ||
175 | } | ||
176 | OPENSSL_cleanse(pre, sizeof pre); | ||
177 | OPENSSL_free(pre); | ||
178 | } | ||
179 | 63 | ||
180 | 64 | ||
65 | /* | ||
66 | * wNAF-based interleaving multi-exponentation method | ||
67 | * (<URL:http://www.informatik.tu-darmstadt.de/TI/Mitarbeiter/moeller.html#multiexp>) | ||
68 | */ | ||
181 | 69 | ||
182 | 70 | ||
183 | /* Determine the modified width-(w+1) Non-Adjacent Form (wNAF) of 'scalar'. | 71 | /* Determine the width-(w+1) Non-Adjacent Form (wNAF) of 'scalar'. |
184 | * This is an array r[] of values that are either zero or odd with an | 72 | * This is an array r[] of values that are either zero or odd with an |
185 | * absolute value less than 2^w satisfying | 73 | * absolute value less than 2^w satisfying |
186 | * scalar = \sum_j r[j]*2^j | 74 | * scalar = \sum_j r[j]*2^j |
187 | * where at most one of any w+1 consecutive digits is non-zero | 75 | * where at most one of any w+1 consecutive digits is non-zero. |
188 | * with the exception that the most significant digit may be only | ||
189 | * w-1 zeros away from that next non-zero digit. | ||
190 | */ | 76 | */ |
191 | static signed char *compute_wNAF(const BIGNUM *scalar, int w, size_t *ret_len) | 77 | static signed char *compute_wNAF(const BIGNUM *scalar, int w, size_t *ret_len, BN_CTX *ctx) |
192 | { | 78 | { |
193 | int window_val; | 79 | BIGNUM *c; |
194 | int ok = 0; | 80 | int ok = 0; |
195 | signed char *r = NULL; | 81 | signed char *r = NULL; |
196 | int sign = 1; | 82 | int sign = 1; |
197 | int bit, next_bit, mask; | 83 | int bit, next_bit, mask; |
198 | size_t len = 0, j; | 84 | size_t len = 0, j; |
199 | 85 | ||
200 | if (BN_is_zero(scalar)) | 86 | BN_CTX_start(ctx); |
201 | { | 87 | c = BN_CTX_get(ctx); |
202 | r = OPENSSL_malloc(1); | 88 | if (c == NULL) goto err; |
203 | if (!r) | 89 | |
204 | { | ||
205 | ECerr(EC_F_COMPUTE_WNAF, ERR_R_MALLOC_FAILURE); | ||
206 | goto err; | ||
207 | } | ||
208 | r[0] = 0; | ||
209 | *ret_len = 1; | ||
210 | return r; | ||
211 | } | ||
212 | |||
213 | if (w <= 0 || w > 7) /* 'signed char' can represent integers with absolute values less than 2^7 */ | 90 | if (w <= 0 || w > 7) /* 'signed char' can represent integers with absolute values less than 2^7 */ |
214 | { | 91 | { |
215 | ECerr(EC_F_COMPUTE_WNAF, ERR_R_INTERNAL_ERROR); | 92 | ECerr(EC_F_COMPUTE_WNAF, ERR_R_INTERNAL_ERROR); |
@@ -219,90 +96,60 @@ static signed char *compute_wNAF(const BIGNUM *scalar, int w, size_t *ret_len) | |||
219 | next_bit = bit << 1; /* at most 256 */ | 96 | next_bit = bit << 1; /* at most 256 */ |
220 | mask = next_bit - 1; /* at most 255 */ | 97 | mask = next_bit - 1; /* at most 255 */ |
221 | 98 | ||
222 | if (BN_is_negative(scalar)) | 99 | if (!BN_copy(c, scalar)) goto err; |
100 | if (c->neg) | ||
223 | { | 101 | { |
224 | sign = -1; | 102 | sign = -1; |
103 | c->neg = 0; | ||
225 | } | 104 | } |
226 | 105 | ||
227 | len = BN_num_bits(scalar); | 106 | len = BN_num_bits(c) + 1; /* wNAF may be one digit longer than binary representation */ |
228 | r = OPENSSL_malloc(len + 1); /* modified wNAF may be one digit longer than binary representation | 107 | r = OPENSSL_malloc(len); |
229 | * (*ret_len will be set to the actual length, i.e. at most | 108 | if (r == NULL) goto err; |
230 | * BN_num_bits(scalar) + 1) */ | ||
231 | if (r == NULL) | ||
232 | { | ||
233 | ECerr(EC_F_COMPUTE_WNAF, ERR_R_MALLOC_FAILURE); | ||
234 | goto err; | ||
235 | } | ||
236 | 109 | ||
237 | if (scalar->d == NULL || scalar->top == 0) | ||
238 | { | ||
239 | ECerr(EC_F_COMPUTE_WNAF, ERR_R_INTERNAL_ERROR); | ||
240 | goto err; | ||
241 | } | ||
242 | window_val = scalar->d[0] & mask; | ||
243 | j = 0; | 110 | j = 0; |
244 | while ((window_val != 0) || (j + w + 1 < len)) /* if j+w+1 >= len, window_val will not increase */ | 111 | while (!BN_is_zero(c)) |
245 | { | 112 | { |
246 | int digit = 0; | 113 | int u = 0; |
247 | 114 | ||
248 | /* 0 <= window_val <= 2^(w+1) */ | 115 | if (BN_is_odd(c)) |
249 | |||
250 | if (window_val & 1) | ||
251 | { | 116 | { |
252 | /* 0 < window_val < 2^(w+1) */ | 117 | if (c->d == NULL || c->top == 0) |
253 | |||
254 | if (window_val & bit) | ||
255 | { | 118 | { |
256 | digit = window_val - next_bit; /* -2^w < digit < 0 */ | 119 | ECerr(EC_F_COMPUTE_WNAF, ERR_R_INTERNAL_ERROR); |
257 | 120 | goto err; | |
258 | #if 1 /* modified wNAF */ | ||
259 | if (j + w + 1 >= len) | ||
260 | { | ||
261 | /* special case for generating modified wNAFs: | ||
262 | * no new bits will be added into window_val, | ||
263 | * so using a positive digit here will decrease | ||
264 | * the total length of the representation */ | ||
265 | |||
266 | digit = window_val & (mask >> 1); /* 0 < digit < 2^w */ | ||
267 | } | ||
268 | #endif | ||
269 | } | 121 | } |
270 | else | 122 | u = c->d[0] & mask; |
123 | if (u & bit) | ||
271 | { | 124 | { |
272 | digit = window_val; /* 0 < digit < 2^w */ | 125 | u -= next_bit; |
126 | /* u < 0 */ | ||
127 | if (!BN_add_word(c, -u)) goto err; | ||
273 | } | 128 | } |
274 | 129 | else | |
275 | if (digit <= -bit || digit >= bit || !(digit & 1)) | ||
276 | { | 130 | { |
277 | ECerr(EC_F_COMPUTE_WNAF, ERR_R_INTERNAL_ERROR); | 131 | /* u > 0 */ |
278 | goto err; | 132 | if (!BN_sub_word(c, u)) goto err; |
279 | } | 133 | } |
280 | 134 | ||
281 | window_val -= digit; | 135 | if (u <= -bit || u >= bit || !(u & 1) || c->neg) |
282 | |||
283 | /* now window_val is 0 or 2^(w+1) in standard wNAF generation; | ||
284 | * for modified window NAFs, it may also be 2^w | ||
285 | */ | ||
286 | if (window_val != 0 && window_val != next_bit && window_val != bit) | ||
287 | { | 136 | { |
288 | ECerr(EC_F_COMPUTE_WNAF, ERR_R_INTERNAL_ERROR); | 137 | ECerr(EC_F_COMPUTE_WNAF, ERR_R_INTERNAL_ERROR); |
289 | goto err; | 138 | goto err; |
290 | } | 139 | } |
291 | } | 140 | } |
292 | 141 | ||
293 | r[j++] = sign * digit; | 142 | r[j++] = sign * u; |
294 | 143 | ||
295 | window_val >>= 1; | 144 | if (BN_is_odd(c)) |
296 | window_val += bit * BN_is_bit_set(scalar, j + w); | ||
297 | |||
298 | if (window_val > next_bit) | ||
299 | { | 145 | { |
300 | ECerr(EC_F_COMPUTE_WNAF, ERR_R_INTERNAL_ERROR); | 146 | ECerr(EC_F_COMPUTE_WNAF, ERR_R_INTERNAL_ERROR); |
301 | goto err; | 147 | goto err; |
302 | } | 148 | } |
149 | if (!BN_rshift1(c, c)) goto err; | ||
303 | } | 150 | } |
304 | 151 | ||
305 | if (j > len + 1) | 152 | if (j > len) |
306 | { | 153 | { |
307 | ECerr(EC_F_COMPUTE_WNAF, ERR_R_INTERNAL_ERROR); | 154 | ECerr(EC_F_COMPUTE_WNAF, ERR_R_INTERNAL_ERROR); |
308 | goto err; | 155 | goto err; |
@@ -311,6 +158,7 @@ static signed char *compute_wNAF(const BIGNUM *scalar, int w, size_t *ret_len) | |||
311 | ok = 1; | 158 | ok = 1; |
312 | 159 | ||
313 | err: | 160 | err: |
161 | BN_CTX_end(ctx); | ||
314 | if (!ok) | 162 | if (!ok) |
315 | { | 163 | { |
316 | OPENSSL_free(r); | 164 | OPENSSL_free(r); |
@@ -333,7 +181,7 @@ static signed char *compute_wNAF(const BIGNUM *scalar, int w, size_t *ret_len) | |||
333 | (b) >= 300 ? 4 : \ | 181 | (b) >= 300 ? 4 : \ |
334 | (b) >= 70 ? 3 : \ | 182 | (b) >= 70 ? 3 : \ |
335 | (b) >= 20 ? 2 : \ | 183 | (b) >= 20 ? 2 : \ |
336 | 1)) | 184 | 1)) |
337 | 185 | ||
338 | /* Compute | 186 | /* Compute |
339 | * \sum scalars[i]*points[i], | 187 | * \sum scalars[i]*points[i], |
@@ -341,15 +189,13 @@ static signed char *compute_wNAF(const BIGNUM *scalar, int w, size_t *ret_len) | |||
341 | * scalar*generator | 189 | * scalar*generator |
342 | * in the addition if scalar != NULL | 190 | * in the addition if scalar != NULL |
343 | */ | 191 | */ |
344 | int ec_wNAF_mul(const EC_GROUP *group, EC_POINT *r, const BIGNUM *scalar, | 192 | int EC_POINTs_mul(const EC_GROUP *group, EC_POINT *r, const BIGNUM *scalar, |
345 | size_t num, const EC_POINT *points[], const BIGNUM *scalars[], BN_CTX *ctx) | 193 | size_t num, const EC_POINT *points[], const BIGNUM *scalars[], BN_CTX *ctx) |
346 | { | 194 | { |
347 | BN_CTX *new_ctx = NULL; | 195 | BN_CTX *new_ctx = NULL; |
348 | const EC_POINT *generator = NULL; | 196 | EC_POINT *generator = NULL; |
349 | EC_POINT *tmp = NULL; | 197 | EC_POINT *tmp = NULL; |
350 | size_t totalnum; | 198 | size_t totalnum; |
351 | size_t blocksize = 0, numblocks = 0; /* for wNAF splitting */ | ||
352 | size_t pre_points_per_block = 0; | ||
353 | size_t i, j; | 199 | size_t i, j; |
354 | int k; | 200 | int k; |
355 | int r_is_inverted = 0; | 201 | int r_is_inverted = 0; |
@@ -361,15 +207,12 @@ int ec_wNAF_mul(const EC_GROUP *group, EC_POINT *r, const BIGNUM *scalar, | |||
361 | size_t num_val; | 207 | size_t num_val; |
362 | EC_POINT **val = NULL; /* precomputation */ | 208 | EC_POINT **val = NULL; /* precomputation */ |
363 | EC_POINT **v; | 209 | EC_POINT **v; |
364 | EC_POINT ***val_sub = NULL; /* pointers to sub-arrays of 'val' or 'pre_comp->points' */ | 210 | EC_POINT ***val_sub = NULL; /* pointers to sub-arrays of 'val' */ |
365 | const EC_PRE_COMP *pre_comp = NULL; | ||
366 | int num_scalar = 0; /* flag: will be set to 1 if 'scalar' must be treated like other scalars, | ||
367 | * i.e. precomputation is not available */ | ||
368 | int ret = 0; | 211 | int ret = 0; |
369 | 212 | ||
370 | if (group->meth != r->meth) | 213 | if (group->meth != r->meth) |
371 | { | 214 | { |
372 | ECerr(EC_F_EC_WNAF_MUL, EC_R_INCOMPATIBLE_OBJECTS); | 215 | ECerr(EC_F_EC_POINTS_MUL, EC_R_INCOMPATIBLE_OBJECTS); |
373 | return 0; | 216 | return 0; |
374 | } | 217 | } |
375 | 218 | ||
@@ -378,226 +221,59 @@ int ec_wNAF_mul(const EC_GROUP *group, EC_POINT *r, const BIGNUM *scalar, | |||
378 | return EC_POINT_set_to_infinity(group, r); | 221 | return EC_POINT_set_to_infinity(group, r); |
379 | } | 222 | } |
380 | 223 | ||
381 | for (i = 0; i < num; i++) | ||
382 | { | ||
383 | if (group->meth != points[i]->meth) | ||
384 | { | ||
385 | ECerr(EC_F_EC_WNAF_MUL, EC_R_INCOMPATIBLE_OBJECTS); | ||
386 | return 0; | ||
387 | } | ||
388 | } | ||
389 | |||
390 | if (ctx == NULL) | ||
391 | { | ||
392 | ctx = new_ctx = BN_CTX_new(); | ||
393 | if (ctx == NULL) | ||
394 | goto err; | ||
395 | } | ||
396 | |||
397 | if (scalar != NULL) | 224 | if (scalar != NULL) |
398 | { | 225 | { |
399 | generator = EC_GROUP_get0_generator(group); | 226 | generator = EC_GROUP_get0_generator(group); |
400 | if (generator == NULL) | 227 | if (generator == NULL) |
401 | { | 228 | { |
402 | ECerr(EC_F_EC_WNAF_MUL, EC_R_UNDEFINED_GENERATOR); | 229 | ECerr(EC_F_EC_POINTS_MUL, EC_R_UNDEFINED_GENERATOR); |
403 | goto err; | 230 | return 0; |
404 | } | ||
405 | |||
406 | /* look if we can use precomputed multiples of generator */ | ||
407 | |||
408 | pre_comp = EC_EX_DATA_get_data(group->extra_data, ec_pre_comp_dup, ec_pre_comp_free, ec_pre_comp_clear_free); | ||
409 | |||
410 | if (pre_comp && pre_comp->numblocks && (EC_POINT_cmp(group, generator, pre_comp->points[0], ctx) == 0)) | ||
411 | { | ||
412 | blocksize = pre_comp->blocksize; | ||
413 | |||
414 | /* determine maximum number of blocks that wNAF splitting may yield | ||
415 | * (NB: maximum wNAF length is bit length plus one) */ | ||
416 | numblocks = (BN_num_bits(scalar) / blocksize) + 1; | ||
417 | |||
418 | /* we cannot use more blocks than we have precomputation for */ | ||
419 | if (numblocks > pre_comp->numblocks) | ||
420 | numblocks = pre_comp->numblocks; | ||
421 | |||
422 | pre_points_per_block = 1u << (pre_comp->w - 1); | ||
423 | |||
424 | /* check that pre_comp looks sane */ | ||
425 | if (pre_comp->num != (pre_comp->numblocks * pre_points_per_block)) | ||
426 | { | ||
427 | ECerr(EC_F_EC_WNAF_MUL, ERR_R_INTERNAL_ERROR); | ||
428 | goto err; | ||
429 | } | ||
430 | } | 231 | } |
431 | else | 232 | } |
233 | |||
234 | for (i = 0; i < num; i++) | ||
235 | { | ||
236 | if (group->meth != points[i]->meth) | ||
432 | { | 237 | { |
433 | /* can't use precomputation */ | 238 | ECerr(EC_F_EC_POINTS_MUL, EC_R_INCOMPATIBLE_OBJECTS); |
434 | pre_comp = NULL; | 239 | return 0; |
435 | numblocks = 1; | ||
436 | num_scalar = 1; /* treat 'scalar' like 'num'-th element of 'scalars' */ | ||
437 | } | 240 | } |
438 | } | 241 | } |
439 | |||
440 | totalnum = num + numblocks; | ||
441 | 242 | ||
442 | wsize = OPENSSL_malloc(totalnum * sizeof wsize[0]); | 243 | totalnum = num + (scalar != NULL); |
244 | |||
245 | wsize = OPENSSL_malloc(totalnum * sizeof wsize[0]); | ||
443 | wNAF_len = OPENSSL_malloc(totalnum * sizeof wNAF_len[0]); | 246 | wNAF_len = OPENSSL_malloc(totalnum * sizeof wNAF_len[0]); |
444 | wNAF = OPENSSL_malloc((totalnum + 1) * sizeof wNAF[0]); /* includes space for pivot */ | 247 | wNAF = OPENSSL_malloc((totalnum + 1) * sizeof wNAF[0]); |
445 | val_sub = OPENSSL_malloc(totalnum * sizeof val_sub[0]); | 248 | if (wNAF != NULL) |
446 | |||
447 | if (!wsize || !wNAF_len || !wNAF || !val_sub) | ||
448 | { | 249 | { |
449 | ECerr(EC_F_EC_WNAF_MUL, ERR_R_MALLOC_FAILURE); | 250 | wNAF[0] = NULL; /* preliminary pivot */ |
450 | goto err; | ||
451 | } | 251 | } |
252 | if (wsize == NULL || wNAF_len == NULL || wNAF == NULL) goto err; | ||
452 | 253 | ||
453 | wNAF[0] = NULL; /* preliminary pivot */ | 254 | /* num_val := total number of points to precompute */ |
454 | |||
455 | /* num_val will be the total number of temporarily precomputed points */ | ||
456 | num_val = 0; | 255 | num_val = 0; |
457 | 256 | for (i = 0; i < totalnum; i++) | |
458 | for (i = 0; i < num + num_scalar; i++) | ||
459 | { | 257 | { |
460 | size_t bits; | 258 | size_t bits; |
461 | 259 | ||
462 | bits = i < num ? BN_num_bits(scalars[i]) : BN_num_bits(scalar); | 260 | bits = i < num ? BN_num_bits(scalars[i]) : BN_num_bits(scalar); |
463 | wsize[i] = EC_window_bits_for_scalar_size(bits); | 261 | wsize[i] = EC_window_bits_for_scalar_size(bits); |
464 | num_val += 1u << (wsize[i] - 1); | 262 | num_val += 1u << (wsize[i] - 1); |
465 | wNAF[i + 1] = NULL; /* make sure we always have a pivot */ | ||
466 | wNAF[i] = compute_wNAF((i < num ? scalars[i] : scalar), wsize[i], &wNAF_len[i]); | ||
467 | if (wNAF[i] == NULL) | ||
468 | goto err; | ||
469 | if (wNAF_len[i] > max_len) | ||
470 | max_len = wNAF_len[i]; | ||
471 | } | ||
472 | |||
473 | if (numblocks) | ||
474 | { | ||
475 | /* we go here iff scalar != NULL */ | ||
476 | |||
477 | if (pre_comp == NULL) | ||
478 | { | ||
479 | if (num_scalar != 1) | ||
480 | { | ||
481 | ECerr(EC_F_EC_WNAF_MUL, ERR_R_INTERNAL_ERROR); | ||
482 | goto err; | ||
483 | } | ||
484 | /* we have already generated a wNAF for 'scalar' */ | ||
485 | } | ||
486 | else | ||
487 | { | ||
488 | signed char *tmp_wNAF = NULL; | ||
489 | size_t tmp_len = 0; | ||
490 | |||
491 | if (num_scalar != 0) | ||
492 | { | ||
493 | ECerr(EC_F_EC_WNAF_MUL, ERR_R_INTERNAL_ERROR); | ||
494 | goto err; | ||
495 | } | ||
496 | |||
497 | /* use the window size for which we have precomputation */ | ||
498 | wsize[num] = pre_comp->w; | ||
499 | tmp_wNAF = compute_wNAF(scalar, wsize[num], &tmp_len); | ||
500 | if (!tmp_wNAF) | ||
501 | goto err; | ||
502 | |||
503 | if (tmp_len <= max_len) | ||
504 | { | ||
505 | /* One of the other wNAFs is at least as long | ||
506 | * as the wNAF belonging to the generator, | ||
507 | * so wNAF splitting will not buy us anything. */ | ||
508 | |||
509 | numblocks = 1; | ||
510 | totalnum = num + 1; /* don't use wNAF splitting */ | ||
511 | wNAF[num] = tmp_wNAF; | ||
512 | wNAF[num + 1] = NULL; | ||
513 | wNAF_len[num] = tmp_len; | ||
514 | if (tmp_len > max_len) | ||
515 | max_len = tmp_len; | ||
516 | /* pre_comp->points starts with the points that we need here: */ | ||
517 | val_sub[num] = pre_comp->points; | ||
518 | } | ||
519 | else | ||
520 | { | ||
521 | /* don't include tmp_wNAF directly into wNAF array | ||
522 | * - use wNAF splitting and include the blocks */ | ||
523 | |||
524 | signed char *pp; | ||
525 | EC_POINT **tmp_points; | ||
526 | |||
527 | if (tmp_len < numblocks * blocksize) | ||
528 | { | ||
529 | /* possibly we can do with fewer blocks than estimated */ | ||
530 | numblocks = (tmp_len + blocksize - 1) / blocksize; | ||
531 | if (numblocks > pre_comp->numblocks) | ||
532 | { | ||
533 | ECerr(EC_F_EC_WNAF_MUL, ERR_R_INTERNAL_ERROR); | ||
534 | goto err; | ||
535 | } | ||
536 | totalnum = num + numblocks; | ||
537 | } | ||
538 | |||
539 | /* split wNAF in 'numblocks' parts */ | ||
540 | pp = tmp_wNAF; | ||
541 | tmp_points = pre_comp->points; | ||
542 | |||
543 | for (i = num; i < totalnum; i++) | ||
544 | { | ||
545 | if (i < totalnum - 1) | ||
546 | { | ||
547 | wNAF_len[i] = blocksize; | ||
548 | if (tmp_len < blocksize) | ||
549 | { | ||
550 | ECerr(EC_F_EC_WNAF_MUL, ERR_R_INTERNAL_ERROR); | ||
551 | goto err; | ||
552 | } | ||
553 | tmp_len -= blocksize; | ||
554 | } | ||
555 | else | ||
556 | /* last block gets whatever is left | ||
557 | * (this could be more or less than 'blocksize'!) */ | ||
558 | wNAF_len[i] = tmp_len; | ||
559 | |||
560 | wNAF[i + 1] = NULL; | ||
561 | wNAF[i] = OPENSSL_malloc(wNAF_len[i]); | ||
562 | if (wNAF[i] == NULL) | ||
563 | { | ||
564 | ECerr(EC_F_EC_WNAF_MUL, ERR_R_MALLOC_FAILURE); | ||
565 | OPENSSL_free(tmp_wNAF); | ||
566 | goto err; | ||
567 | } | ||
568 | memcpy(wNAF[i], pp, wNAF_len[i]); | ||
569 | if (wNAF_len[i] > max_len) | ||
570 | max_len = wNAF_len[i]; | ||
571 | |||
572 | if (*tmp_points == NULL) | ||
573 | { | ||
574 | ECerr(EC_F_EC_WNAF_MUL, ERR_R_INTERNAL_ERROR); | ||
575 | OPENSSL_free(tmp_wNAF); | ||
576 | goto err; | ||
577 | } | ||
578 | val_sub[i] = tmp_points; | ||
579 | tmp_points += pre_points_per_block; | ||
580 | pp += blocksize; | ||
581 | } | ||
582 | OPENSSL_free(tmp_wNAF); | ||
583 | } | ||
584 | } | ||
585 | } | 263 | } |
586 | 264 | ||
587 | /* All points we precompute now go into a single array 'val'. | 265 | /* all precomputed points go into a single array 'val', |
588 | * 'val_sub[i]' is a pointer to the subarray for the i-th point, | 266 | * 'val_sub[i]' is a pointer to the subarray for the i-th point */ |
589 | * or to a subarray of 'pre_comp->points' if we already have precomputation. */ | ||
590 | val = OPENSSL_malloc((num_val + 1) * sizeof val[0]); | 267 | val = OPENSSL_malloc((num_val + 1) * sizeof val[0]); |
591 | if (val == NULL) | 268 | if (val == NULL) goto err; |
592 | { | ||
593 | ECerr(EC_F_EC_WNAF_MUL, ERR_R_MALLOC_FAILURE); | ||
594 | goto err; | ||
595 | } | ||
596 | val[num_val] = NULL; /* pivot element */ | 269 | val[num_val] = NULL; /* pivot element */ |
597 | 270 | ||
271 | val_sub = OPENSSL_malloc(totalnum * sizeof val_sub[0]); | ||
272 | if (val_sub == NULL) goto err; | ||
273 | |||
598 | /* allocate points for precomputation */ | 274 | /* allocate points for precomputation */ |
599 | v = val; | 275 | v = val; |
600 | for (i = 0; i < num + num_scalar; i++) | 276 | for (i = 0; i < totalnum; i++) |
601 | { | 277 | { |
602 | val_sub[i] = v; | 278 | val_sub[i] = v; |
603 | for (j = 0; j < (1u << (wsize[i] - 1)); j++) | 279 | for (j = 0; j < (1u << (wsize[i] - 1)); j++) |
@@ -609,12 +285,19 @@ int ec_wNAF_mul(const EC_GROUP *group, EC_POINT *r, const BIGNUM *scalar, | |||
609 | } | 285 | } |
610 | if (!(v == val + num_val)) | 286 | if (!(v == val + num_val)) |
611 | { | 287 | { |
612 | ECerr(EC_F_EC_WNAF_MUL, ERR_R_INTERNAL_ERROR); | 288 | ECerr(EC_F_EC_POINTS_MUL, ERR_R_INTERNAL_ERROR); |
613 | goto err; | 289 | goto err; |
614 | } | 290 | } |
615 | 291 | ||
616 | if (!(tmp = EC_POINT_new(group))) | 292 | if (ctx == NULL) |
617 | goto err; | 293 | { |
294 | ctx = new_ctx = BN_CTX_new(); | ||
295 | if (ctx == NULL) | ||
296 | goto err; | ||
297 | } | ||
298 | |||
299 | tmp = EC_POINT_new(group); | ||
300 | if (tmp == NULL) goto err; | ||
618 | 301 | ||
619 | /* prepare precomputed values: | 302 | /* prepare precomputed values: |
620 | * val_sub[i][0] := points[i] | 303 | * val_sub[i][0] := points[i] |
@@ -622,7 +305,7 @@ int ec_wNAF_mul(const EC_GROUP *group, EC_POINT *r, const BIGNUM *scalar, | |||
622 | * val_sub[i][2] := 5 * points[i] | 305 | * val_sub[i][2] := 5 * points[i] |
623 | * ... | 306 | * ... |
624 | */ | 307 | */ |
625 | for (i = 0; i < num + num_scalar; i++) | 308 | for (i = 0; i < totalnum; i++) |
626 | { | 309 | { |
627 | if (i < num) | 310 | if (i < num) |
628 | { | 311 | { |
@@ -641,11 +324,16 @@ int ec_wNAF_mul(const EC_GROUP *group, EC_POINT *r, const BIGNUM *scalar, | |||
641 | if (!EC_POINT_add(group, val_sub[i][j], val_sub[i][j - 1], tmp, ctx)) goto err; | 324 | if (!EC_POINT_add(group, val_sub[i][j], val_sub[i][j - 1], tmp, ctx)) goto err; |
642 | } | 325 | } |
643 | } | 326 | } |
327 | |||
328 | wNAF[i + 1] = NULL; /* make sure we always have a pivot */ | ||
329 | wNAF[i] = compute_wNAF((i < num ? scalars[i] : scalar), wsize[i], &wNAF_len[i], ctx); | ||
330 | if (wNAF[i] == NULL) goto err; | ||
331 | if (wNAF_len[i] > max_len) | ||
332 | max_len = wNAF_len[i]; | ||
644 | } | 333 | } |
645 | 334 | ||
646 | #if 1 /* optional; EC_window_bits_for_scalar_size assumes we do this step */ | 335 | #if 1 /* optional; EC_window_bits_for_scalar_size assumes we do this step */ |
647 | if (!EC_POINTs_make_affine(group, num_val, val, ctx)) | 336 | if (!EC_POINTs_make_affine(group, num_val, val, ctx)) goto err; |
648 | goto err; | ||
649 | #endif | 337 | #endif |
650 | 338 | ||
651 | r_is_at_infinity = 1; | 339 | r_is_at_infinity = 1; |
@@ -741,198 +429,57 @@ int ec_wNAF_mul(const EC_GROUP *group, EC_POINT *r, const BIGNUM *scalar, | |||
741 | } | 429 | } |
742 | 430 | ||
743 | 431 | ||
744 | /* ec_wNAF_precompute_mult() | 432 | int EC_POINT_mul(const EC_GROUP *group, EC_POINT *r, const BIGNUM *g_scalar, const EC_POINT *point, const BIGNUM *p_scalar, BN_CTX *ctx) |
745 | * creates an EC_PRE_COMP object with preprecomputed multiples of the generator | 433 | { |
746 | * for use with wNAF splitting as implemented in ec_wNAF_mul(). | 434 | const EC_POINT *points[1]; |
747 | * | 435 | const BIGNUM *scalars[1]; |
748 | * 'pre_comp->points' is an array of multiples of the generator | 436 | |
749 | * of the following form: | 437 | points[0] = point; |
750 | * points[0] = generator; | 438 | scalars[0] = p_scalar; |
751 | * points[1] = 3 * generator; | 439 | |
752 | * ... | 440 | return EC_POINTs_mul(group, r, g_scalar, (point != NULL && p_scalar != NULL), points, scalars, ctx); |
753 | * points[2^(w-1)-1] = (2^(w-1)-1) * generator; | 441 | } |
754 | * points[2^(w-1)] = 2^blocksize * generator; | 442 | |
755 | * points[2^(w-1)+1] = 3 * 2^blocksize * generator; | 443 | |
756 | * ... | 444 | int EC_GROUP_precompute_mult(EC_GROUP *group, BN_CTX *ctx) |
757 | * points[2^(w-1)*(numblocks-1)-1] = (2^(w-1)) * 2^(blocksize*(numblocks-2)) * generator | ||
758 | * points[2^(w-1)*(numblocks-1)] = 2^(blocksize*(numblocks-1)) * generator | ||
759 | * ... | ||
760 | * points[2^(w-1)*numblocks-1] = (2^(w-1)) * 2^(blocksize*(numblocks-1)) * generator | ||
761 | * points[2^(w-1)*numblocks] = NULL | ||
762 | */ | ||
763 | int ec_wNAF_precompute_mult(EC_GROUP *group, BN_CTX *ctx) | ||
764 | { | 445 | { |
765 | const EC_POINT *generator; | 446 | const EC_POINT *generator; |
766 | EC_POINT *tmp_point = NULL, *base = NULL, **var; | ||
767 | BN_CTX *new_ctx = NULL; | 447 | BN_CTX *new_ctx = NULL; |
768 | BIGNUM *order; | 448 | BIGNUM *order; |
769 | size_t i, bits, w, pre_points_per_block, blocksize, numblocks, num; | ||
770 | EC_POINT **points = NULL; | ||
771 | EC_PRE_COMP *pre_comp; | ||
772 | int ret = 0; | 449 | int ret = 0; |
773 | 450 | ||
774 | /* if there is an old EC_PRE_COMP object, throw it away */ | ||
775 | EC_EX_DATA_free_data(&group->extra_data, ec_pre_comp_dup, ec_pre_comp_free, ec_pre_comp_clear_free); | ||
776 | |||
777 | if ((pre_comp = ec_pre_comp_new(group)) == NULL) | ||
778 | return 0; | ||
779 | |||
780 | generator = EC_GROUP_get0_generator(group); | 451 | generator = EC_GROUP_get0_generator(group); |
781 | if (generator == NULL) | 452 | if (generator == NULL) |
782 | { | 453 | { |
783 | ECerr(EC_F_EC_WNAF_PRECOMPUTE_MULT, EC_R_UNDEFINED_GENERATOR); | 454 | ECerr(EC_F_EC_GROUP_PRECOMPUTE_MULT, EC_R_UNDEFINED_GENERATOR); |
784 | goto err; | 455 | return 0; |
785 | } | 456 | } |
786 | 457 | ||
787 | if (ctx == NULL) | 458 | if (ctx == NULL) |
788 | { | 459 | { |
789 | ctx = new_ctx = BN_CTX_new(); | 460 | ctx = new_ctx = BN_CTX_new(); |
790 | if (ctx == NULL) | 461 | if (ctx == NULL) |
791 | goto err; | 462 | return 0; |
792 | } | 463 | } |
793 | 464 | ||
794 | BN_CTX_start(ctx); | 465 | BN_CTX_start(ctx); |
795 | order = BN_CTX_get(ctx); | 466 | order = BN_CTX_get(ctx); |
796 | if (order == NULL) goto err; | 467 | if (order == NULL) goto err; |
797 | 468 | ||
798 | if (!EC_GROUP_get_order(group, order, ctx)) goto err; | 469 | if (!EC_GROUP_get_order(group, order, ctx)) return 0; |
799 | if (BN_is_zero(order)) | 470 | if (BN_is_zero(order)) |
800 | { | 471 | { |
801 | ECerr(EC_F_EC_WNAF_PRECOMPUTE_MULT, EC_R_UNKNOWN_ORDER); | 472 | ECerr(EC_F_EC_GROUP_PRECOMPUTE_MULT, EC_R_UNKNOWN_ORDER); |
802 | goto err; | 473 | goto err; |
803 | } | 474 | } |
804 | 475 | ||
805 | bits = BN_num_bits(order); | 476 | /* TODO */ |
806 | /* The following parameters mean we precompute (approximately) | ||
807 | * one point per bit. | ||
808 | * | ||
809 | * TBD: The combination 8, 4 is perfect for 160 bits; for other | ||
810 | * bit lengths, other parameter combinations might provide better | ||
811 | * efficiency. | ||
812 | */ | ||
813 | blocksize = 8; | ||
814 | w = 4; | ||
815 | if (EC_window_bits_for_scalar_size(bits) > w) | ||
816 | { | ||
817 | /* let's not make the window too small ... */ | ||
818 | w = EC_window_bits_for_scalar_size(bits); | ||
819 | } | ||
820 | |||
821 | numblocks = (bits + blocksize - 1) / blocksize; /* max. number of blocks to use for wNAF splitting */ | ||
822 | |||
823 | pre_points_per_block = 1u << (w - 1); | ||
824 | num = pre_points_per_block * numblocks; /* number of points to compute and store */ | ||
825 | |||
826 | points = OPENSSL_malloc(sizeof (EC_POINT*)*(num + 1)); | ||
827 | if (!points) | ||
828 | { | ||
829 | ECerr(EC_F_EC_WNAF_PRECOMPUTE_MULT, ERR_R_MALLOC_FAILURE); | ||
830 | goto err; | ||
831 | } | ||
832 | |||
833 | var = points; | ||
834 | var[num] = NULL; /* pivot */ | ||
835 | for (i = 0; i < num; i++) | ||
836 | { | ||
837 | if ((var[i] = EC_POINT_new(group)) == NULL) | ||
838 | { | ||
839 | ECerr(EC_F_EC_WNAF_PRECOMPUTE_MULT, ERR_R_MALLOC_FAILURE); | ||
840 | goto err; | ||
841 | } | ||
842 | } | ||
843 | |||
844 | if (!(tmp_point = EC_POINT_new(group)) || !(base = EC_POINT_new(group))) | ||
845 | { | ||
846 | ECerr(EC_F_EC_WNAF_PRECOMPUTE_MULT, ERR_R_MALLOC_FAILURE); | ||
847 | goto err; | ||
848 | } | ||
849 | |||
850 | if (!EC_POINT_copy(base, generator)) | ||
851 | goto err; | ||
852 | |||
853 | /* do the precomputation */ | ||
854 | for (i = 0; i < numblocks; i++) | ||
855 | { | ||
856 | size_t j; | ||
857 | |||
858 | if (!EC_POINT_dbl(group, tmp_point, base, ctx)) | ||
859 | goto err; | ||
860 | |||
861 | if (!EC_POINT_copy(*var++, base)) | ||
862 | goto err; | ||
863 | |||
864 | for (j = 1; j < pre_points_per_block; j++, var++) | ||
865 | { | ||
866 | /* calculate odd multiples of the current base point */ | ||
867 | if (!EC_POINT_add(group, *var, tmp_point, *(var - 1), ctx)) | ||
868 | goto err; | ||
869 | } | ||
870 | |||
871 | if (i < numblocks - 1) | ||
872 | { | ||
873 | /* get the next base (multiply current one by 2^blocksize) */ | ||
874 | size_t k; | ||
875 | |||
876 | if (blocksize <= 2) | ||
877 | { | ||
878 | ECerr(EC_F_EC_WNAF_PRECOMPUTE_MULT, ERR_R_INTERNAL_ERROR); | ||
879 | goto err; | ||
880 | } | ||
881 | |||
882 | if (!EC_POINT_dbl(group, base, tmp_point, ctx)) | ||
883 | goto err; | ||
884 | for (k = 2; k < blocksize; k++) | ||
885 | { | ||
886 | if (!EC_POINT_dbl(group,base,base,ctx)) | ||
887 | goto err; | ||
888 | } | ||
889 | } | ||
890 | } | ||
891 | |||
892 | if (!EC_POINTs_make_affine(group, num, points, ctx)) | ||
893 | goto err; | ||
894 | |||
895 | pre_comp->group = group; | ||
896 | pre_comp->blocksize = blocksize; | ||
897 | pre_comp->numblocks = numblocks; | ||
898 | pre_comp->w = w; | ||
899 | pre_comp->points = points; | ||
900 | points = NULL; | ||
901 | pre_comp->num = num; | ||
902 | |||
903 | if (!EC_EX_DATA_set_data(&group->extra_data, pre_comp, | ||
904 | ec_pre_comp_dup, ec_pre_comp_free, ec_pre_comp_clear_free)) | ||
905 | goto err; | ||
906 | pre_comp = NULL; | ||
907 | 477 | ||
908 | ret = 1; | 478 | ret = 1; |
479 | |||
909 | err: | 480 | err: |
910 | if (ctx != NULL) | 481 | BN_CTX_end(ctx); |
911 | BN_CTX_end(ctx); | ||
912 | if (new_ctx != NULL) | 482 | if (new_ctx != NULL) |
913 | BN_CTX_free(new_ctx); | 483 | BN_CTX_free(new_ctx); |
914 | if (pre_comp) | ||
915 | ec_pre_comp_free(pre_comp); | ||
916 | if (points) | ||
917 | { | ||
918 | EC_POINT **p; | ||
919 | |||
920 | for (p = points; *p != NULL; p++) | ||
921 | EC_POINT_free(*p); | ||
922 | OPENSSL_free(points); | ||
923 | } | ||
924 | if (tmp_point) | ||
925 | EC_POINT_free(tmp_point); | ||
926 | if (base) | ||
927 | EC_POINT_free(base); | ||
928 | return ret; | 484 | return ret; |
929 | } | 485 | } |
930 | |||
931 | |||
932 | int ec_wNAF_have_precompute_mult(const EC_GROUP *group) | ||
933 | { | ||
934 | if (EC_EX_DATA_get_data(group->extra_data, ec_pre_comp_dup, ec_pre_comp_free, ec_pre_comp_clear_free) != NULL) | ||
935 | return 1; | ||
936 | else | ||
937 | return 0; | ||
938 | } | ||