diff options
Diffstat (limited to 'src/lib/libcrypto/ec/ec_mult.c')
| -rw-r--r-- | src/lib/libcrypto/ec/ec_mult.c | 938 |
1 files changed, 938 insertions, 0 deletions
diff --git a/src/lib/libcrypto/ec/ec_mult.c b/src/lib/libcrypto/ec/ec_mult.c new file mode 100644 index 0000000000..2ba173ef36 --- /dev/null +++ b/src/lib/libcrypto/ec/ec_mult.c | |||
| @@ -0,0 +1,938 @@ | |||
| 1 | /* crypto/ec/ec_mult.c */ | ||
| 2 | /* | ||
| 3 | * Originally written by Bodo Moeller and Nils Larsch for the OpenSSL project. | ||
| 4 | */ | ||
| 5 | /* ==================================================================== | ||
| 6 | * Copyright (c) 1998-2007 The OpenSSL Project. All rights reserved. | ||
| 7 | * | ||
| 8 | * Redistribution and use in source and binary forms, with or without | ||
| 9 | * modification, are permitted provided that the following conditions | ||
| 10 | * are met: | ||
| 11 | * | ||
| 12 | * 1. Redistributions of source code must retain the above copyright | ||
| 13 | * notice, this list of conditions and the following disclaimer. | ||
| 14 | * | ||
| 15 | * 2. Redistributions in binary form must reproduce the above copyright | ||
| 16 | * notice, this list of conditions and the following disclaimer in | ||
| 17 | * the documentation and/or other materials provided with the | ||
| 18 | * distribution. | ||
| 19 | * | ||
| 20 | * 3. All advertising materials mentioning features or use of this | ||
| 21 | * software must display the following acknowledgment: | ||
| 22 | * "This product includes software developed by the OpenSSL Project | ||
| 23 | * for use in the OpenSSL Toolkit. (http://www.openssl.org/)" | ||
| 24 | * | ||
| 25 | * 4. The names "OpenSSL Toolkit" and "OpenSSL Project" must not be used to | ||
| 26 | * endorse or promote products derived from this software without | ||
| 27 | * prior written permission. For written permission, please contact | ||
| 28 | * openssl-core@openssl.org. | ||
| 29 | * | ||
| 30 | * 5. Products derived from this software may not be called "OpenSSL" | ||
| 31 | * nor may "OpenSSL" appear in their names without prior written | ||
| 32 | * permission of the OpenSSL Project. | ||
| 33 | * | ||
| 34 | * 6. Redistributions of any form whatsoever must retain the following | ||
| 35 | * acknowledgment: | ||
| 36 | * "This product includes software developed by the OpenSSL Project | ||
| 37 | * for use in the OpenSSL Toolkit (http://www.openssl.org/)" | ||
| 38 | * | ||
| 39 | * THIS SOFTWARE IS PROVIDED BY THE OpenSSL PROJECT ``AS IS'' AND ANY | ||
| 40 | * EXPRESSED OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE | ||
| 41 | * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR | ||
| 42 | * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE OpenSSL PROJECT OR | ||
| 43 | * ITS CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, | ||
| 44 | * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT | ||
| 45 | * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; | ||
| 46 | * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) | ||
| 47 | * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, | ||
| 48 | * STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) | ||
| 49 | * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED | ||
| 50 | * OF THE POSSIBILITY OF SUCH DAMAGE. | ||
| 51 | * ==================================================================== | ||
| 52 | * | ||
| 53 | * This product includes cryptographic software written by Eric Young | ||
| 54 | * (eay@cryptsoft.com). This product includes software written by Tim | ||
| 55 | * Hudson (tjh@cryptsoft.com). | ||
| 56 | * | ||
| 57 | */ | ||
| 58 | /* ==================================================================== | ||
| 59 | * Copyright 2002 Sun Microsystems, Inc. ALL RIGHTS RESERVED. | ||
| 60 | * Portions of this software developed by SUN MICROSYSTEMS, INC., | ||
| 61 | * and contributed to the OpenSSL project. | ||
| 62 | */ | ||
| 63 | |||
| 64 | #include <string.h> | ||
| 65 | |||
| 66 | #include <openssl/err.h> | ||
| 67 | |||
| 68 | #include "ec_lcl.h" | ||
| 69 | |||
| 70 | |||
| 71 | /* | ||
| 72 | * This file implements the wNAF-based interleaving multi-exponentation method | ||
| 73 | * (<URL:http://www.informatik.tu-darmstadt.de/TI/Mitarbeiter/moeller.html#multiexp>); | ||
| 74 | * for multiplication with precomputation, we use wNAF splitting | ||
| 75 | * (<URL:http://www.informatik.tu-darmstadt.de/TI/Mitarbeiter/moeller.html#fastexp>). | ||
| 76 | */ | ||
| 77 | |||
| 78 | |||
| 79 | |||
| 80 | |||
| 81 | /* structure for precomputed multiples of the generator */ | ||
| 82 | typedef struct ec_pre_comp_st { | ||
| 83 | const EC_GROUP *group; /* parent EC_GROUP object */ | ||
| 84 | size_t blocksize; /* block size for wNAF splitting */ | ||
| 85 | size_t numblocks; /* max. number of blocks for which we have precomputation */ | ||
| 86 | size_t w; /* window size */ | ||
| 87 | EC_POINT **points; /* array with pre-calculated multiples of generator: | ||
| 88 | * 'num' pointers to EC_POINT objects followed by a NULL */ | ||
| 89 | size_t num; /* numblocks * 2^(w-1) */ | ||
| 90 | int references; | ||
| 91 | } EC_PRE_COMP; | ||
| 92 | |||
| 93 | /* functions to manage EC_PRE_COMP within the EC_GROUP extra_data framework */ | ||
| 94 | static void *ec_pre_comp_dup(void *); | ||
| 95 | static void ec_pre_comp_free(void *); | ||
| 96 | static void ec_pre_comp_clear_free(void *); | ||
| 97 | |||
| 98 | static EC_PRE_COMP *ec_pre_comp_new(const EC_GROUP *group) | ||
| 99 | { | ||
| 100 | EC_PRE_COMP *ret = NULL; | ||
| 101 | |||
| 102 | if (!group) | ||
| 103 | return NULL; | ||
| 104 | |||
| 105 | ret = (EC_PRE_COMP *)OPENSSL_malloc(sizeof(EC_PRE_COMP)); | ||
| 106 | if (!ret) | ||
| 107 | { | ||
| 108 | ECerr(EC_F_EC_PRE_COMP_NEW, ERR_R_MALLOC_FAILURE); | ||
| 109 | return ret; | ||
| 110 | } | ||
| 111 | ret->group = group; | ||
| 112 | ret->blocksize = 8; /* default */ | ||
| 113 | ret->numblocks = 0; | ||
| 114 | ret->w = 4; /* default */ | ||
| 115 | ret->points = NULL; | ||
| 116 | ret->num = 0; | ||
| 117 | ret->references = 1; | ||
| 118 | return ret; | ||
| 119 | } | ||
| 120 | |||
| 121 | static void *ec_pre_comp_dup(void *src_) | ||
| 122 | { | ||
| 123 | EC_PRE_COMP *src = src_; | ||
| 124 | |||
| 125 | /* no need to actually copy, these objects never change! */ | ||
| 126 | |||
| 127 | CRYPTO_add(&src->references, 1, CRYPTO_LOCK_EC_PRE_COMP); | ||
| 128 | |||
| 129 | return src_; | ||
| 130 | } | ||
| 131 | |||
| 132 | static void ec_pre_comp_free(void *pre_) | ||
| 133 | { | ||
| 134 | int i; | ||
| 135 | EC_PRE_COMP *pre = pre_; | ||
| 136 | |||
| 137 | if (!pre) | ||
| 138 | return; | ||
| 139 | |||
| 140 | i = CRYPTO_add(&pre->references, -1, CRYPTO_LOCK_EC_PRE_COMP); | ||
| 141 | if (i > 0) | ||
| 142 | return; | ||
| 143 | |||
| 144 | if (pre->points) | ||
| 145 | { | ||
| 146 | EC_POINT **p; | ||
| 147 | |||
| 148 | for (p = pre->points; *p != NULL; p++) | ||
| 149 | EC_POINT_free(*p); | ||
| 150 | OPENSSL_free(pre->points); | ||
| 151 | } | ||
| 152 | OPENSSL_free(pre); | ||
| 153 | } | ||
| 154 | |||
| 155 | static void ec_pre_comp_clear_free(void *pre_) | ||
| 156 | { | ||
| 157 | int i; | ||
| 158 | EC_PRE_COMP *pre = pre_; | ||
| 159 | |||
| 160 | if (!pre) | ||
| 161 | return; | ||
| 162 | |||
| 163 | i = CRYPTO_add(&pre->references, -1, CRYPTO_LOCK_EC_PRE_COMP); | ||
| 164 | if (i > 0) | ||
| 165 | return; | ||
| 166 | |||
| 167 | if (pre->points) | ||
| 168 | { | ||
| 169 | EC_POINT **p; | ||
| 170 | |||
| 171 | for (p = pre->points; *p != NULL; p++) | ||
| 172 | EC_POINT_clear_free(*p); | ||
| 173 | OPENSSL_cleanse(pre->points, sizeof pre->points); | ||
| 174 | OPENSSL_free(pre->points); | ||
| 175 | } | ||
| 176 | OPENSSL_cleanse(pre, sizeof pre); | ||
| 177 | OPENSSL_free(pre); | ||
| 178 | } | ||
| 179 | |||
| 180 | |||
| 181 | |||
| 182 | |||
| 183 | /* Determine the modified width-(w+1) Non-Adjacent Form (wNAF) of 'scalar'. | ||
| 184 | * This is an array r[] of values that are either zero or odd with an | ||
| 185 | * absolute value less than 2^w satisfying | ||
| 186 | * scalar = \sum_j r[j]*2^j | ||
| 187 | * where at most one of any w+1 consecutive digits is non-zero | ||
| 188 | * with the exception that the most significant digit may be only | ||
| 189 | * w-1 zeros away from that next non-zero digit. | ||
| 190 | */ | ||
| 191 | static signed char *compute_wNAF(const BIGNUM *scalar, int w, size_t *ret_len) | ||
| 192 | { | ||
| 193 | int window_val; | ||
| 194 | int ok = 0; | ||
| 195 | signed char *r = NULL; | ||
| 196 | int sign = 1; | ||
| 197 | int bit, next_bit, mask; | ||
| 198 | size_t len = 0, j; | ||
| 199 | |||
| 200 | if (BN_is_zero(scalar)) | ||
| 201 | { | ||
| 202 | r = OPENSSL_malloc(1); | ||
| 203 | if (!r) | ||
| 204 | { | ||
| 205 | ECerr(EC_F_COMPUTE_WNAF, ERR_R_MALLOC_FAILURE); | ||
| 206 | goto err; | ||
| 207 | } | ||
| 208 | r[0] = 0; | ||
| 209 | *ret_len = 1; | ||
| 210 | return r; | ||
| 211 | } | ||
| 212 | |||
| 213 | if (w <= 0 || w > 7) /* 'signed char' can represent integers with absolute values less than 2^7 */ | ||
| 214 | { | ||
| 215 | ECerr(EC_F_COMPUTE_WNAF, ERR_R_INTERNAL_ERROR); | ||
| 216 | goto err; | ||
| 217 | } | ||
| 218 | bit = 1 << w; /* at most 128 */ | ||
| 219 | next_bit = bit << 1; /* at most 256 */ | ||
| 220 | mask = next_bit - 1; /* at most 255 */ | ||
| 221 | |||
| 222 | if (BN_is_negative(scalar)) | ||
| 223 | { | ||
| 224 | sign = -1; | ||
| 225 | } | ||
| 226 | |||
| 227 | len = BN_num_bits(scalar); | ||
| 228 | r = OPENSSL_malloc(len + 1); /* modified wNAF may be one digit longer than binary representation | ||
| 229 | * (*ret_len will be set to the actual length, i.e. at most | ||
| 230 | * BN_num_bits(scalar) + 1) */ | ||
| 231 | if (r == NULL) | ||
| 232 | { | ||
| 233 | ECerr(EC_F_COMPUTE_WNAF, ERR_R_MALLOC_FAILURE); | ||
| 234 | goto err; | ||
| 235 | } | ||
| 236 | |||
| 237 | if (scalar->d == NULL || scalar->top == 0) | ||
| 238 | { | ||
| 239 | ECerr(EC_F_COMPUTE_WNAF, ERR_R_INTERNAL_ERROR); | ||
| 240 | goto err; | ||
| 241 | } | ||
| 242 | window_val = scalar->d[0] & mask; | ||
| 243 | j = 0; | ||
| 244 | while ((window_val != 0) || (j + w + 1 < len)) /* if j+w+1 >= len, window_val will not increase */ | ||
| 245 | { | ||
| 246 | int digit = 0; | ||
| 247 | |||
| 248 | /* 0 <= window_val <= 2^(w+1) */ | ||
| 249 | |||
| 250 | if (window_val & 1) | ||
| 251 | { | ||
| 252 | /* 0 < window_val < 2^(w+1) */ | ||
| 253 | |||
| 254 | if (window_val & bit) | ||
| 255 | { | ||
| 256 | digit = window_val - next_bit; /* -2^w < digit < 0 */ | ||
| 257 | |||
| 258 | #if 1 /* modified wNAF */ | ||
| 259 | if (j + w + 1 >= len) | ||
| 260 | { | ||
| 261 | /* special case for generating modified wNAFs: | ||
| 262 | * no new bits will be added into window_val, | ||
| 263 | * so using a positive digit here will decrease | ||
| 264 | * the total length of the representation */ | ||
| 265 | |||
| 266 | digit = window_val & (mask >> 1); /* 0 < digit < 2^w */ | ||
| 267 | } | ||
| 268 | #endif | ||
| 269 | } | ||
| 270 | else | ||
| 271 | { | ||
| 272 | digit = window_val; /* 0 < digit < 2^w */ | ||
| 273 | } | ||
| 274 | |||
| 275 | if (digit <= -bit || digit >= bit || !(digit & 1)) | ||
| 276 | { | ||
| 277 | ECerr(EC_F_COMPUTE_WNAF, ERR_R_INTERNAL_ERROR); | ||
| 278 | goto err; | ||
| 279 | } | ||
| 280 | |||
| 281 | window_val -= digit; | ||
| 282 | |||
| 283 | /* now window_val is 0 or 2^(w+1) in standard wNAF generation; | ||
| 284 | * for modified window NAFs, it may also be 2^w | ||
| 285 | */ | ||
| 286 | if (window_val != 0 && window_val != next_bit && window_val != bit) | ||
| 287 | { | ||
| 288 | ECerr(EC_F_COMPUTE_WNAF, ERR_R_INTERNAL_ERROR); | ||
| 289 | goto err; | ||
| 290 | } | ||
| 291 | } | ||
| 292 | |||
| 293 | r[j++] = sign * digit; | ||
| 294 | |||
| 295 | window_val >>= 1; | ||
| 296 | window_val += bit * BN_is_bit_set(scalar, j + w); | ||
| 297 | |||
| 298 | if (window_val > next_bit) | ||
| 299 | { | ||
| 300 | ECerr(EC_F_COMPUTE_WNAF, ERR_R_INTERNAL_ERROR); | ||
| 301 | goto err; | ||
| 302 | } | ||
| 303 | } | ||
| 304 | |||
| 305 | if (j > len + 1) | ||
| 306 | { | ||
| 307 | ECerr(EC_F_COMPUTE_WNAF, ERR_R_INTERNAL_ERROR); | ||
| 308 | goto err; | ||
| 309 | } | ||
| 310 | len = j; | ||
| 311 | ok = 1; | ||
| 312 | |||
| 313 | err: | ||
| 314 | if (!ok) | ||
| 315 | { | ||
| 316 | OPENSSL_free(r); | ||
| 317 | r = NULL; | ||
| 318 | } | ||
| 319 | if (ok) | ||
| 320 | *ret_len = len; | ||
| 321 | return r; | ||
| 322 | } | ||
| 323 | |||
| 324 | |||
| 325 | /* TODO: table should be optimised for the wNAF-based implementation, | ||
| 326 | * sometimes smaller windows will give better performance | ||
| 327 | * (thus the boundaries should be increased) | ||
| 328 | */ | ||
| 329 | #define EC_window_bits_for_scalar_size(b) \ | ||
| 330 | ((size_t) \ | ||
| 331 | ((b) >= 2000 ? 6 : \ | ||
| 332 | (b) >= 800 ? 5 : \ | ||
| 333 | (b) >= 300 ? 4 : \ | ||
| 334 | (b) >= 70 ? 3 : \ | ||
| 335 | (b) >= 20 ? 2 : \ | ||
| 336 | 1)) | ||
| 337 | |||
| 338 | /* Compute | ||
| 339 | * \sum scalars[i]*points[i], | ||
| 340 | * also including | ||
| 341 | * scalar*generator | ||
| 342 | * in the addition if scalar != NULL | ||
| 343 | */ | ||
| 344 | int ec_wNAF_mul(const EC_GROUP *group, EC_POINT *r, const BIGNUM *scalar, | ||
| 345 | size_t num, const EC_POINT *points[], const BIGNUM *scalars[], BN_CTX *ctx) | ||
| 346 | { | ||
| 347 | BN_CTX *new_ctx = NULL; | ||
| 348 | const EC_POINT *generator = NULL; | ||
| 349 | EC_POINT *tmp = NULL; | ||
| 350 | size_t totalnum; | ||
| 351 | size_t blocksize = 0, numblocks = 0; /* for wNAF splitting */ | ||
| 352 | size_t pre_points_per_block = 0; | ||
| 353 | size_t i, j; | ||
| 354 | int k; | ||
| 355 | int r_is_inverted = 0; | ||
| 356 | int r_is_at_infinity = 1; | ||
| 357 | size_t *wsize = NULL; /* individual window sizes */ | ||
| 358 | signed char **wNAF = NULL; /* individual wNAFs */ | ||
| 359 | size_t *wNAF_len = NULL; | ||
| 360 | size_t max_len = 0; | ||
| 361 | size_t num_val; | ||
| 362 | EC_POINT **val = NULL; /* precomputation */ | ||
| 363 | EC_POINT **v; | ||
| 364 | EC_POINT ***val_sub = NULL; /* pointers to sub-arrays of 'val' or 'pre_comp->points' */ | ||
| 365 | const EC_PRE_COMP *pre_comp = NULL; | ||
| 366 | int num_scalar = 0; /* flag: will be set to 1 if 'scalar' must be treated like other scalars, | ||
| 367 | * i.e. precomputation is not available */ | ||
| 368 | int ret = 0; | ||
| 369 | |||
| 370 | if (group->meth != r->meth) | ||
| 371 | { | ||
| 372 | ECerr(EC_F_EC_WNAF_MUL, EC_R_INCOMPATIBLE_OBJECTS); | ||
| 373 | return 0; | ||
| 374 | } | ||
| 375 | |||
| 376 | if ((scalar == NULL) && (num == 0)) | ||
| 377 | { | ||
| 378 | return EC_POINT_set_to_infinity(group, r); | ||
| 379 | } | ||
| 380 | |||
| 381 | for (i = 0; i < num; i++) | ||
| 382 | { | ||
| 383 | if (group->meth != points[i]->meth) | ||
| 384 | { | ||
| 385 | ECerr(EC_F_EC_WNAF_MUL, EC_R_INCOMPATIBLE_OBJECTS); | ||
| 386 | return 0; | ||
| 387 | } | ||
| 388 | } | ||
| 389 | |||
| 390 | if (ctx == NULL) | ||
| 391 | { | ||
| 392 | ctx = new_ctx = BN_CTX_new(); | ||
| 393 | if (ctx == NULL) | ||
| 394 | goto err; | ||
| 395 | } | ||
| 396 | |||
| 397 | if (scalar != NULL) | ||
| 398 | { | ||
| 399 | generator = EC_GROUP_get0_generator(group); | ||
| 400 | if (generator == NULL) | ||
| 401 | { | ||
| 402 | ECerr(EC_F_EC_WNAF_MUL, EC_R_UNDEFINED_GENERATOR); | ||
| 403 | goto err; | ||
| 404 | } | ||
| 405 | |||
| 406 | /* look if we can use precomputed multiples of generator */ | ||
| 407 | |||
| 408 | pre_comp = EC_EX_DATA_get_data(group->extra_data, ec_pre_comp_dup, ec_pre_comp_free, ec_pre_comp_clear_free); | ||
| 409 | |||
| 410 | if (pre_comp && pre_comp->numblocks && (EC_POINT_cmp(group, generator, pre_comp->points[0], ctx) == 0)) | ||
| 411 | { | ||
| 412 | blocksize = pre_comp->blocksize; | ||
| 413 | |||
| 414 | /* determine maximum number of blocks that wNAF splitting may yield | ||
| 415 | * (NB: maximum wNAF length is bit length plus one) */ | ||
| 416 | numblocks = (BN_num_bits(scalar) / blocksize) + 1; | ||
| 417 | |||
| 418 | /* we cannot use more blocks than we have precomputation for */ | ||
| 419 | if (numblocks > pre_comp->numblocks) | ||
| 420 | numblocks = pre_comp->numblocks; | ||
| 421 | |||
| 422 | pre_points_per_block = 1u << (pre_comp->w - 1); | ||
| 423 | |||
| 424 | /* check that pre_comp looks sane */ | ||
| 425 | if (pre_comp->num != (pre_comp->numblocks * pre_points_per_block)) | ||
| 426 | { | ||
| 427 | ECerr(EC_F_EC_WNAF_MUL, ERR_R_INTERNAL_ERROR); | ||
| 428 | goto err; | ||
| 429 | } | ||
| 430 | } | ||
| 431 | else | ||
| 432 | { | ||
| 433 | /* can't use precomputation */ | ||
| 434 | pre_comp = NULL; | ||
| 435 | numblocks = 1; | ||
| 436 | num_scalar = 1; /* treat 'scalar' like 'num'-th element of 'scalars' */ | ||
| 437 | } | ||
| 438 | } | ||
| 439 | |||
| 440 | totalnum = num + numblocks; | ||
| 441 | |||
| 442 | wsize = OPENSSL_malloc(totalnum * sizeof wsize[0]); | ||
| 443 | wNAF_len = OPENSSL_malloc(totalnum * sizeof wNAF_len[0]); | ||
| 444 | wNAF = OPENSSL_malloc((totalnum + 1) * sizeof wNAF[0]); /* includes space for pivot */ | ||
| 445 | val_sub = OPENSSL_malloc(totalnum * sizeof val_sub[0]); | ||
| 446 | |||
| 447 | if (!wsize || !wNAF_len || !wNAF || !val_sub) | ||
| 448 | { | ||
| 449 | ECerr(EC_F_EC_WNAF_MUL, ERR_R_MALLOC_FAILURE); | ||
| 450 | goto err; | ||
| 451 | } | ||
| 452 | |||
| 453 | wNAF[0] = NULL; /* preliminary pivot */ | ||
| 454 | |||
| 455 | /* num_val will be the total number of temporarily precomputed points */ | ||
| 456 | num_val = 0; | ||
| 457 | |||
| 458 | for (i = 0; i < num + num_scalar; i++) | ||
| 459 | { | ||
| 460 | size_t bits; | ||
| 461 | |||
| 462 | bits = i < num ? BN_num_bits(scalars[i]) : BN_num_bits(scalar); | ||
| 463 | wsize[i] = EC_window_bits_for_scalar_size(bits); | ||
| 464 | num_val += 1u << (wsize[i] - 1); | ||
| 465 | wNAF[i + 1] = NULL; /* make sure we always have a pivot */ | ||
| 466 | wNAF[i] = compute_wNAF((i < num ? scalars[i] : scalar), wsize[i], &wNAF_len[i]); | ||
| 467 | if (wNAF[i] == NULL) | ||
| 468 | goto err; | ||
| 469 | if (wNAF_len[i] > max_len) | ||
| 470 | max_len = wNAF_len[i]; | ||
| 471 | } | ||
| 472 | |||
| 473 | if (numblocks) | ||
| 474 | { | ||
| 475 | /* we go here iff scalar != NULL */ | ||
| 476 | |||
| 477 | if (pre_comp == NULL) | ||
| 478 | { | ||
| 479 | if (num_scalar != 1) | ||
| 480 | { | ||
| 481 | ECerr(EC_F_EC_WNAF_MUL, ERR_R_INTERNAL_ERROR); | ||
| 482 | goto err; | ||
| 483 | } | ||
| 484 | /* we have already generated a wNAF for 'scalar' */ | ||
| 485 | } | ||
| 486 | else | ||
| 487 | { | ||
| 488 | signed char *tmp_wNAF = NULL; | ||
| 489 | size_t tmp_len = 0; | ||
| 490 | |||
| 491 | if (num_scalar != 0) | ||
| 492 | { | ||
| 493 | ECerr(EC_F_EC_WNAF_MUL, ERR_R_INTERNAL_ERROR); | ||
| 494 | goto err; | ||
| 495 | } | ||
| 496 | |||
| 497 | /* use the window size for which we have precomputation */ | ||
| 498 | wsize[num] = pre_comp->w; | ||
| 499 | tmp_wNAF = compute_wNAF(scalar, wsize[num], &tmp_len); | ||
| 500 | if (!tmp_wNAF) | ||
| 501 | goto err; | ||
| 502 | |||
| 503 | if (tmp_len <= max_len) | ||
| 504 | { | ||
| 505 | /* One of the other wNAFs is at least as long | ||
| 506 | * as the wNAF belonging to the generator, | ||
| 507 | * so wNAF splitting will not buy us anything. */ | ||
| 508 | |||
| 509 | numblocks = 1; | ||
| 510 | totalnum = num + 1; /* don't use wNAF splitting */ | ||
| 511 | wNAF[num] = tmp_wNAF; | ||
| 512 | wNAF[num + 1] = NULL; | ||
| 513 | wNAF_len[num] = tmp_len; | ||
| 514 | if (tmp_len > max_len) | ||
| 515 | max_len = tmp_len; | ||
| 516 | /* pre_comp->points starts with the points that we need here: */ | ||
| 517 | val_sub[num] = pre_comp->points; | ||
| 518 | } | ||
| 519 | else | ||
| 520 | { | ||
| 521 | /* don't include tmp_wNAF directly into wNAF array | ||
| 522 | * - use wNAF splitting and include the blocks */ | ||
| 523 | |||
| 524 | signed char *pp; | ||
| 525 | EC_POINT **tmp_points; | ||
| 526 | |||
| 527 | if (tmp_len < numblocks * blocksize) | ||
| 528 | { | ||
| 529 | /* possibly we can do with fewer blocks than estimated */ | ||
| 530 | numblocks = (tmp_len + blocksize - 1) / blocksize; | ||
| 531 | if (numblocks > pre_comp->numblocks) | ||
| 532 | { | ||
| 533 | ECerr(EC_F_EC_WNAF_MUL, ERR_R_INTERNAL_ERROR); | ||
| 534 | goto err; | ||
| 535 | } | ||
| 536 | totalnum = num + numblocks; | ||
| 537 | } | ||
| 538 | |||
| 539 | /* split wNAF in 'numblocks' parts */ | ||
| 540 | pp = tmp_wNAF; | ||
| 541 | tmp_points = pre_comp->points; | ||
| 542 | |||
| 543 | for (i = num; i < totalnum; i++) | ||
| 544 | { | ||
| 545 | if (i < totalnum - 1) | ||
| 546 | { | ||
| 547 | wNAF_len[i] = blocksize; | ||
| 548 | if (tmp_len < blocksize) | ||
| 549 | { | ||
| 550 | ECerr(EC_F_EC_WNAF_MUL, ERR_R_INTERNAL_ERROR); | ||
| 551 | goto err; | ||
| 552 | } | ||
| 553 | tmp_len -= blocksize; | ||
| 554 | } | ||
| 555 | else | ||
| 556 | /* last block gets whatever is left | ||
| 557 | * (this could be more or less than 'blocksize'!) */ | ||
| 558 | wNAF_len[i] = tmp_len; | ||
| 559 | |||
| 560 | wNAF[i + 1] = NULL; | ||
| 561 | wNAF[i] = OPENSSL_malloc(wNAF_len[i]); | ||
| 562 | if (wNAF[i] == NULL) | ||
| 563 | { | ||
| 564 | ECerr(EC_F_EC_WNAF_MUL, ERR_R_MALLOC_FAILURE); | ||
| 565 | OPENSSL_free(tmp_wNAF); | ||
| 566 | goto err; | ||
| 567 | } | ||
| 568 | memcpy(wNAF[i], pp, wNAF_len[i]); | ||
| 569 | if (wNAF_len[i] > max_len) | ||
| 570 | max_len = wNAF_len[i]; | ||
| 571 | |||
| 572 | if (*tmp_points == NULL) | ||
| 573 | { | ||
| 574 | ECerr(EC_F_EC_WNAF_MUL, ERR_R_INTERNAL_ERROR); | ||
| 575 | OPENSSL_free(tmp_wNAF); | ||
| 576 | goto err; | ||
| 577 | } | ||
| 578 | val_sub[i] = tmp_points; | ||
| 579 | tmp_points += pre_points_per_block; | ||
| 580 | pp += blocksize; | ||
| 581 | } | ||
| 582 | OPENSSL_free(tmp_wNAF); | ||
| 583 | } | ||
| 584 | } | ||
| 585 | } | ||
| 586 | |||
| 587 | /* All points we precompute now go into a single array 'val'. | ||
| 588 | * 'val_sub[i]' is a pointer to the subarray for the i-th point, | ||
| 589 | * or to a subarray of 'pre_comp->points' if we already have precomputation. */ | ||
| 590 | val = OPENSSL_malloc((num_val + 1) * sizeof val[0]); | ||
| 591 | if (val == NULL) | ||
| 592 | { | ||
| 593 | ECerr(EC_F_EC_WNAF_MUL, ERR_R_MALLOC_FAILURE); | ||
| 594 | goto err; | ||
| 595 | } | ||
| 596 | val[num_val] = NULL; /* pivot element */ | ||
| 597 | |||
| 598 | /* allocate points for precomputation */ | ||
| 599 | v = val; | ||
| 600 | for (i = 0; i < num + num_scalar; i++) | ||
| 601 | { | ||
| 602 | val_sub[i] = v; | ||
| 603 | for (j = 0; j < (1u << (wsize[i] - 1)); j++) | ||
| 604 | { | ||
| 605 | *v = EC_POINT_new(group); | ||
| 606 | if (*v == NULL) goto err; | ||
| 607 | v++; | ||
| 608 | } | ||
| 609 | } | ||
| 610 | if (!(v == val + num_val)) | ||
| 611 | { | ||
| 612 | ECerr(EC_F_EC_WNAF_MUL, ERR_R_INTERNAL_ERROR); | ||
| 613 | goto err; | ||
| 614 | } | ||
| 615 | |||
| 616 | if (!(tmp = EC_POINT_new(group))) | ||
| 617 | goto err; | ||
| 618 | |||
| 619 | /* prepare precomputed values: | ||
| 620 | * val_sub[i][0] := points[i] | ||
| 621 | * val_sub[i][1] := 3 * points[i] | ||
| 622 | * val_sub[i][2] := 5 * points[i] | ||
| 623 | * ... | ||
| 624 | */ | ||
| 625 | for (i = 0; i < num + num_scalar; i++) | ||
| 626 | { | ||
| 627 | if (i < num) | ||
| 628 | { | ||
| 629 | if (!EC_POINT_copy(val_sub[i][0], points[i])) goto err; | ||
| 630 | } | ||
| 631 | else | ||
| 632 | { | ||
| 633 | if (!EC_POINT_copy(val_sub[i][0], generator)) goto err; | ||
| 634 | } | ||
| 635 | |||
| 636 | if (wsize[i] > 1) | ||
| 637 | { | ||
| 638 | if (!EC_POINT_dbl(group, tmp, val_sub[i][0], ctx)) goto err; | ||
| 639 | for (j = 1; j < (1u << (wsize[i] - 1)); j++) | ||
| 640 | { | ||
| 641 | if (!EC_POINT_add(group, val_sub[i][j], val_sub[i][j - 1], tmp, ctx)) goto err; | ||
| 642 | } | ||
| 643 | } | ||
| 644 | } | ||
| 645 | |||
| 646 | #if 1 /* optional; EC_window_bits_for_scalar_size assumes we do this step */ | ||
| 647 | if (!EC_POINTs_make_affine(group, num_val, val, ctx)) | ||
| 648 | goto err; | ||
| 649 | #endif | ||
| 650 | |||
| 651 | r_is_at_infinity = 1; | ||
| 652 | |||
| 653 | for (k = max_len - 1; k >= 0; k--) | ||
| 654 | { | ||
| 655 | if (!r_is_at_infinity) | ||
| 656 | { | ||
| 657 | if (!EC_POINT_dbl(group, r, r, ctx)) goto err; | ||
| 658 | } | ||
| 659 | |||
| 660 | for (i = 0; i < totalnum; i++) | ||
| 661 | { | ||
| 662 | if (wNAF_len[i] > (size_t)k) | ||
| 663 | { | ||
| 664 | int digit = wNAF[i][k]; | ||
| 665 | int is_neg; | ||
| 666 | |||
| 667 | if (digit) | ||
| 668 | { | ||
| 669 | is_neg = digit < 0; | ||
| 670 | |||
| 671 | if (is_neg) | ||
| 672 | digit = -digit; | ||
| 673 | |||
| 674 | if (is_neg != r_is_inverted) | ||
| 675 | { | ||
| 676 | if (!r_is_at_infinity) | ||
| 677 | { | ||
| 678 | if (!EC_POINT_invert(group, r, ctx)) goto err; | ||
| 679 | } | ||
| 680 | r_is_inverted = !r_is_inverted; | ||
| 681 | } | ||
| 682 | |||
| 683 | /* digit > 0 */ | ||
| 684 | |||
| 685 | if (r_is_at_infinity) | ||
| 686 | { | ||
| 687 | if (!EC_POINT_copy(r, val_sub[i][digit >> 1])) goto err; | ||
| 688 | r_is_at_infinity = 0; | ||
| 689 | } | ||
| 690 | else | ||
| 691 | { | ||
| 692 | if (!EC_POINT_add(group, r, r, val_sub[i][digit >> 1], ctx)) goto err; | ||
| 693 | } | ||
| 694 | } | ||
| 695 | } | ||
| 696 | } | ||
| 697 | } | ||
| 698 | |||
| 699 | if (r_is_at_infinity) | ||
| 700 | { | ||
| 701 | if (!EC_POINT_set_to_infinity(group, r)) goto err; | ||
| 702 | } | ||
| 703 | else | ||
| 704 | { | ||
| 705 | if (r_is_inverted) | ||
| 706 | if (!EC_POINT_invert(group, r, ctx)) goto err; | ||
| 707 | } | ||
| 708 | |||
| 709 | ret = 1; | ||
| 710 | |||
| 711 | err: | ||
| 712 | if (new_ctx != NULL) | ||
| 713 | BN_CTX_free(new_ctx); | ||
| 714 | if (tmp != NULL) | ||
| 715 | EC_POINT_free(tmp); | ||
| 716 | if (wsize != NULL) | ||
| 717 | OPENSSL_free(wsize); | ||
| 718 | if (wNAF_len != NULL) | ||
| 719 | OPENSSL_free(wNAF_len); | ||
| 720 | if (wNAF != NULL) | ||
| 721 | { | ||
| 722 | signed char **w; | ||
| 723 | |||
| 724 | for (w = wNAF; *w != NULL; w++) | ||
| 725 | OPENSSL_free(*w); | ||
| 726 | |||
| 727 | OPENSSL_free(wNAF); | ||
| 728 | } | ||
| 729 | if (val != NULL) | ||
| 730 | { | ||
| 731 | for (v = val; *v != NULL; v++) | ||
| 732 | EC_POINT_clear_free(*v); | ||
| 733 | |||
| 734 | OPENSSL_free(val); | ||
| 735 | } | ||
| 736 | if (val_sub != NULL) | ||
| 737 | { | ||
| 738 | OPENSSL_free(val_sub); | ||
| 739 | } | ||
| 740 | return ret; | ||
| 741 | } | ||
| 742 | |||
| 743 | |||
| 744 | /* ec_wNAF_precompute_mult() | ||
| 745 | * creates an EC_PRE_COMP object with preprecomputed multiples of the generator | ||
| 746 | * for use with wNAF splitting as implemented in ec_wNAF_mul(). | ||
| 747 | * | ||
| 748 | * 'pre_comp->points' is an array of multiples of the generator | ||
| 749 | * of the following form: | ||
| 750 | * points[0] = generator; | ||
| 751 | * points[1] = 3 * generator; | ||
| 752 | * ... | ||
| 753 | * points[2^(w-1)-1] = (2^(w-1)-1) * generator; | ||
| 754 | * points[2^(w-1)] = 2^blocksize * generator; | ||
| 755 | * points[2^(w-1)+1] = 3 * 2^blocksize * generator; | ||
| 756 | * ... | ||
| 757 | * points[2^(w-1)*(numblocks-1)-1] = (2^(w-1)) * 2^(blocksize*(numblocks-2)) * generator | ||
| 758 | * points[2^(w-1)*(numblocks-1)] = 2^(blocksize*(numblocks-1)) * generator | ||
| 759 | * ... | ||
| 760 | * points[2^(w-1)*numblocks-1] = (2^(w-1)) * 2^(blocksize*(numblocks-1)) * generator | ||
| 761 | * points[2^(w-1)*numblocks] = NULL | ||
| 762 | */ | ||
| 763 | int ec_wNAF_precompute_mult(EC_GROUP *group, BN_CTX *ctx) | ||
| 764 | { | ||
| 765 | const EC_POINT *generator; | ||
| 766 | EC_POINT *tmp_point = NULL, *base = NULL, **var; | ||
| 767 | BN_CTX *new_ctx = NULL; | ||
| 768 | BIGNUM *order; | ||
| 769 | size_t i, bits, w, pre_points_per_block, blocksize, numblocks, num; | ||
| 770 | EC_POINT **points = NULL; | ||
| 771 | EC_PRE_COMP *pre_comp; | ||
| 772 | int ret = 0; | ||
| 773 | |||
| 774 | /* if there is an old EC_PRE_COMP object, throw it away */ | ||
| 775 | EC_EX_DATA_free_data(&group->extra_data, ec_pre_comp_dup, ec_pre_comp_free, ec_pre_comp_clear_free); | ||
| 776 | |||
| 777 | if ((pre_comp = ec_pre_comp_new(group)) == NULL) | ||
| 778 | return 0; | ||
| 779 | |||
| 780 | generator = EC_GROUP_get0_generator(group); | ||
| 781 | if (generator == NULL) | ||
| 782 | { | ||
| 783 | ECerr(EC_F_EC_WNAF_PRECOMPUTE_MULT, EC_R_UNDEFINED_GENERATOR); | ||
| 784 | goto err; | ||
| 785 | } | ||
| 786 | |||
| 787 | if (ctx == NULL) | ||
| 788 | { | ||
| 789 | ctx = new_ctx = BN_CTX_new(); | ||
| 790 | if (ctx == NULL) | ||
| 791 | goto err; | ||
| 792 | } | ||
| 793 | |||
| 794 | BN_CTX_start(ctx); | ||
| 795 | order = BN_CTX_get(ctx); | ||
| 796 | if (order == NULL) goto err; | ||
| 797 | |||
| 798 | if (!EC_GROUP_get_order(group, order, ctx)) goto err; | ||
| 799 | if (BN_is_zero(order)) | ||
| 800 | { | ||
| 801 | ECerr(EC_F_EC_WNAF_PRECOMPUTE_MULT, EC_R_UNKNOWN_ORDER); | ||
| 802 | goto err; | ||
| 803 | } | ||
| 804 | |||
| 805 | bits = BN_num_bits(order); | ||
| 806 | /* The following parameters mean we precompute (approximately) | ||
| 807 | * one point per bit. | ||
| 808 | * | ||
| 809 | * TBD: The combination 8, 4 is perfect for 160 bits; for other | ||
| 810 | * bit lengths, other parameter combinations might provide better | ||
| 811 | * efficiency. | ||
| 812 | */ | ||
| 813 | blocksize = 8; | ||
| 814 | w = 4; | ||
| 815 | if (EC_window_bits_for_scalar_size(bits) > w) | ||
| 816 | { | ||
| 817 | /* let's not make the window too small ... */ | ||
| 818 | w = EC_window_bits_for_scalar_size(bits); | ||
| 819 | } | ||
| 820 | |||
| 821 | numblocks = (bits + blocksize - 1) / blocksize; /* max. number of blocks to use for wNAF splitting */ | ||
| 822 | |||
| 823 | pre_points_per_block = 1u << (w - 1); | ||
| 824 | num = pre_points_per_block * numblocks; /* number of points to compute and store */ | ||
| 825 | |||
| 826 | points = OPENSSL_malloc(sizeof (EC_POINT*)*(num + 1)); | ||
| 827 | if (!points) | ||
| 828 | { | ||
| 829 | ECerr(EC_F_EC_WNAF_PRECOMPUTE_MULT, ERR_R_MALLOC_FAILURE); | ||
| 830 | goto err; | ||
| 831 | } | ||
| 832 | |||
| 833 | var = points; | ||
| 834 | var[num] = NULL; /* pivot */ | ||
| 835 | for (i = 0; i < num; i++) | ||
| 836 | { | ||
| 837 | if ((var[i] = EC_POINT_new(group)) == NULL) | ||
| 838 | { | ||
| 839 | ECerr(EC_F_EC_WNAF_PRECOMPUTE_MULT, ERR_R_MALLOC_FAILURE); | ||
| 840 | goto err; | ||
| 841 | } | ||
| 842 | } | ||
| 843 | |||
| 844 | if (!(tmp_point = EC_POINT_new(group)) || !(base = EC_POINT_new(group))) | ||
| 845 | { | ||
| 846 | ECerr(EC_F_EC_WNAF_PRECOMPUTE_MULT, ERR_R_MALLOC_FAILURE); | ||
| 847 | goto err; | ||
| 848 | } | ||
| 849 | |||
| 850 | if (!EC_POINT_copy(base, generator)) | ||
| 851 | goto err; | ||
| 852 | |||
| 853 | /* do the precomputation */ | ||
| 854 | for (i = 0; i < numblocks; i++) | ||
| 855 | { | ||
| 856 | size_t j; | ||
| 857 | |||
| 858 | if (!EC_POINT_dbl(group, tmp_point, base, ctx)) | ||
| 859 | goto err; | ||
| 860 | |||
| 861 | if (!EC_POINT_copy(*var++, base)) | ||
| 862 | goto err; | ||
| 863 | |||
| 864 | for (j = 1; j < pre_points_per_block; j++, var++) | ||
| 865 | { | ||
| 866 | /* calculate odd multiples of the current base point */ | ||
| 867 | if (!EC_POINT_add(group, *var, tmp_point, *(var - 1), ctx)) | ||
| 868 | goto err; | ||
| 869 | } | ||
| 870 | |||
| 871 | if (i < numblocks - 1) | ||
| 872 | { | ||
| 873 | /* get the next base (multiply current one by 2^blocksize) */ | ||
| 874 | size_t k; | ||
| 875 | |||
| 876 | if (blocksize <= 2) | ||
| 877 | { | ||
| 878 | ECerr(EC_F_EC_WNAF_PRECOMPUTE_MULT, ERR_R_INTERNAL_ERROR); | ||
| 879 | goto err; | ||
| 880 | } | ||
| 881 | |||
| 882 | if (!EC_POINT_dbl(group, base, tmp_point, ctx)) | ||
| 883 | goto err; | ||
| 884 | for (k = 2; k < blocksize; k++) | ||
| 885 | { | ||
| 886 | if (!EC_POINT_dbl(group,base,base,ctx)) | ||
| 887 | goto err; | ||
| 888 | } | ||
| 889 | } | ||
| 890 | } | ||
| 891 | |||
| 892 | if (!EC_POINTs_make_affine(group, num, points, ctx)) | ||
| 893 | goto err; | ||
| 894 | |||
| 895 | pre_comp->group = group; | ||
| 896 | pre_comp->blocksize = blocksize; | ||
| 897 | pre_comp->numblocks = numblocks; | ||
| 898 | pre_comp->w = w; | ||
| 899 | pre_comp->points = points; | ||
| 900 | points = NULL; | ||
| 901 | pre_comp->num = num; | ||
| 902 | |||
| 903 | if (!EC_EX_DATA_set_data(&group->extra_data, pre_comp, | ||
| 904 | ec_pre_comp_dup, ec_pre_comp_free, ec_pre_comp_clear_free)) | ||
| 905 | goto err; | ||
| 906 | pre_comp = NULL; | ||
| 907 | |||
| 908 | ret = 1; | ||
| 909 | err: | ||
| 910 | if (ctx != NULL) | ||
| 911 | BN_CTX_end(ctx); | ||
| 912 | if (new_ctx != NULL) | ||
| 913 | BN_CTX_free(new_ctx); | ||
| 914 | if (pre_comp) | ||
| 915 | ec_pre_comp_free(pre_comp); | ||
| 916 | if (points) | ||
| 917 | { | ||
| 918 | EC_POINT **p; | ||
| 919 | |||
| 920 | for (p = points; *p != NULL; p++) | ||
| 921 | EC_POINT_free(*p); | ||
| 922 | OPENSSL_free(points); | ||
| 923 | } | ||
| 924 | if (tmp_point) | ||
| 925 | EC_POINT_free(tmp_point); | ||
| 926 | if (base) | ||
| 927 | EC_POINT_free(base); | ||
| 928 | return ret; | ||
| 929 | } | ||
| 930 | |||
| 931 | |||
| 932 | int ec_wNAF_have_precompute_mult(const EC_GROUP *group) | ||
| 933 | { | ||
| 934 | if (EC_EX_DATA_get_data(group->extra_data, ec_pre_comp_dup, ec_pre_comp_free, ec_pre_comp_clear_free) != NULL) | ||
| 935 | return 1; | ||
| 936 | else | ||
| 937 | return 0; | ||
| 938 | } | ||
