diff options
Diffstat (limited to 'src/lib/libcrypto/ec/ecp_methods.c')
| -rw-r--r-- | src/lib/libcrypto/ec/ecp_methods.c | 1656 |
1 files changed, 1656 insertions, 0 deletions
diff --git a/src/lib/libcrypto/ec/ecp_methods.c b/src/lib/libcrypto/ec/ecp_methods.c new file mode 100644 index 0000000000..3dc7091850 --- /dev/null +++ b/src/lib/libcrypto/ec/ecp_methods.c | |||
| @@ -0,0 +1,1656 @@ | |||
| 1 | /* $OpenBSD: ecp_methods.c,v 1.1 2024/11/12 10:25:16 tb Exp $ */ | ||
| 2 | /* Includes code written by Lenka Fibikova <fibikova@exp-math.uni-essen.de> | ||
| 3 | * for the OpenSSL project. | ||
| 4 | * Includes code written by Bodo Moeller for the OpenSSL project. | ||
| 5 | */ | ||
| 6 | /* ==================================================================== | ||
| 7 | * Copyright (c) 1998-2002 The OpenSSL Project. All rights reserved. | ||
| 8 | * | ||
| 9 | * Redistribution and use in source and binary forms, with or without | ||
| 10 | * modification, are permitted provided that the following conditions | ||
| 11 | * are met: | ||
| 12 | * | ||
| 13 | * 1. Redistributions of source code must retain the above copyright | ||
| 14 | * notice, this list of conditions and the following disclaimer. | ||
| 15 | * | ||
| 16 | * 2. Redistributions in binary form must reproduce the above copyright | ||
| 17 | * notice, this list of conditions and the following disclaimer in | ||
| 18 | * the documentation and/or other materials provided with the | ||
| 19 | * distribution. | ||
| 20 | * | ||
| 21 | * 3. All advertising materials mentioning features or use of this | ||
| 22 | * software must display the following acknowledgment: | ||
| 23 | * "This product includes software developed by the OpenSSL Project | ||
| 24 | * for use in the OpenSSL Toolkit. (http://www.openssl.org/)" | ||
| 25 | * | ||
| 26 | * 4. The names "OpenSSL Toolkit" and "OpenSSL Project" must not be used to | ||
| 27 | * endorse or promote products derived from this software without | ||
| 28 | * prior written permission. For written permission, please contact | ||
| 29 | * openssl-core@openssl.org. | ||
| 30 | * | ||
| 31 | * 5. Products derived from this software may not be called "OpenSSL" | ||
| 32 | * nor may "OpenSSL" appear in their names without prior written | ||
| 33 | * permission of the OpenSSL Project. | ||
| 34 | * | ||
| 35 | * 6. Redistributions of any form whatsoever must retain the following | ||
| 36 | * acknowledgment: | ||
| 37 | * "This product includes software developed by the OpenSSL Project | ||
| 38 | * for use in the OpenSSL Toolkit (http://www.openssl.org/)" | ||
| 39 | * | ||
| 40 | * THIS SOFTWARE IS PROVIDED BY THE OpenSSL PROJECT ``AS IS'' AND ANY | ||
| 41 | * EXPRESSED OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE | ||
| 42 | * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR | ||
| 43 | * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE OpenSSL PROJECT OR | ||
| 44 | * ITS CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, | ||
| 45 | * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT | ||
| 46 | * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; | ||
| 47 | * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) | ||
| 48 | * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, | ||
| 49 | * STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) | ||
| 50 | * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED | ||
| 51 | * OF THE POSSIBILITY OF SUCH DAMAGE. | ||
| 52 | * ==================================================================== | ||
| 53 | * | ||
| 54 | * This product includes cryptographic software written by Eric Young | ||
| 55 | * (eay@cryptsoft.com). This product includes software written by Tim | ||
| 56 | * Hudson (tjh@cryptsoft.com). | ||
| 57 | * | ||
| 58 | */ | ||
| 59 | /* ==================================================================== | ||
| 60 | * Copyright 2002 Sun Microsystems, Inc. ALL RIGHTS RESERVED. | ||
| 61 | * Portions of this software developed by SUN MICROSYSTEMS, INC., | ||
| 62 | * and contributed to the OpenSSL project. | ||
| 63 | */ | ||
| 64 | |||
| 65 | #include <stdlib.h> | ||
| 66 | |||
| 67 | #include <openssl/bn.h> | ||
| 68 | #include <openssl/ec.h> | ||
| 69 | #include <openssl/err.h> | ||
| 70 | #include <openssl/objects.h> | ||
| 71 | |||
| 72 | #include "bn_local.h" | ||
| 73 | #include "ec_local.h" | ||
| 74 | |||
| 75 | /* | ||
| 76 | * Most method functions in this file are designed to work with | ||
| 77 | * non-trivial representations of field elements if necessary | ||
| 78 | * (see ecp_mont.c): while standard modular addition and subtraction | ||
| 79 | * are used, the field_mul and field_sqr methods will be used for | ||
| 80 | * multiplication, and field_encode and field_decode (if defined) | ||
| 81 | * will be used for converting between representations. | ||
| 82 | * | ||
| 83 | * Functions ec_GFp_simple_points_make_affine() and | ||
| 84 | * ec_GFp_simple_point_get_affine_coordinates() specifically assume | ||
| 85 | * that if a non-trivial representation is used, it is a Montgomery | ||
| 86 | * representation (i.e. 'encoding' means multiplying by some factor R). | ||
| 87 | */ | ||
| 88 | |||
| 89 | int | ||
| 90 | ec_GFp_simple_group_init(EC_GROUP *group) | ||
| 91 | { | ||
| 92 | BN_init(&group->field); | ||
| 93 | BN_init(&group->a); | ||
| 94 | BN_init(&group->b); | ||
| 95 | group->a_is_minus3 = 0; | ||
| 96 | return 1; | ||
| 97 | } | ||
| 98 | |||
| 99 | void | ||
| 100 | ec_GFp_simple_group_finish(EC_GROUP *group) | ||
| 101 | { | ||
| 102 | BN_free(&group->field); | ||
| 103 | BN_free(&group->a); | ||
| 104 | BN_free(&group->b); | ||
| 105 | } | ||
| 106 | |||
| 107 | int | ||
| 108 | ec_GFp_simple_group_copy(EC_GROUP *dest, const EC_GROUP *src) | ||
| 109 | { | ||
| 110 | if (!bn_copy(&dest->field, &src->field)) | ||
| 111 | return 0; | ||
| 112 | if (!bn_copy(&dest->a, &src->a)) | ||
| 113 | return 0; | ||
| 114 | if (!bn_copy(&dest->b, &src->b)) | ||
| 115 | return 0; | ||
| 116 | |||
| 117 | dest->a_is_minus3 = src->a_is_minus3; | ||
| 118 | |||
| 119 | return 1; | ||
| 120 | } | ||
| 121 | |||
| 122 | static int | ||
| 123 | ec_decode_scalar(const EC_GROUP *group, BIGNUM *bn, const BIGNUM *x, BN_CTX *ctx) | ||
| 124 | { | ||
| 125 | if (bn == NULL) | ||
| 126 | return 1; | ||
| 127 | |||
| 128 | if (group->meth->field_decode != NULL) | ||
| 129 | return group->meth->field_decode(group, bn, x, ctx); | ||
| 130 | |||
| 131 | return bn_copy(bn, x); | ||
| 132 | } | ||
| 133 | |||
| 134 | static int | ||
| 135 | ec_encode_scalar(const EC_GROUP *group, BIGNUM *bn, const BIGNUM *x, BN_CTX *ctx) | ||
| 136 | { | ||
| 137 | if (!BN_nnmod(bn, x, &group->field, ctx)) | ||
| 138 | return 0; | ||
| 139 | |||
| 140 | if (group->meth->field_encode != NULL) | ||
| 141 | return group->meth->field_encode(group, bn, bn, ctx); | ||
| 142 | |||
| 143 | return 1; | ||
| 144 | } | ||
| 145 | |||
| 146 | static int | ||
| 147 | ec_encode_z_coordinate(const EC_GROUP *group, BIGNUM *bn, int *is_one, | ||
| 148 | const BIGNUM *z, BN_CTX *ctx) | ||
| 149 | { | ||
| 150 | if (!BN_nnmod(bn, z, &group->field, ctx)) | ||
| 151 | return 0; | ||
| 152 | |||
| 153 | *is_one = BN_is_one(bn); | ||
| 154 | if (*is_one && group->meth->field_set_to_one != NULL) | ||
| 155 | return group->meth->field_set_to_one(group, bn, ctx); | ||
| 156 | |||
| 157 | if (group->meth->field_encode != NULL) | ||
| 158 | return group->meth->field_encode(group, bn, bn, ctx); | ||
| 159 | |||
| 160 | return 1; | ||
| 161 | } | ||
| 162 | |||
| 163 | int | ||
| 164 | ec_GFp_simple_group_set_curve(EC_GROUP *group, | ||
| 165 | const BIGNUM *p, const BIGNUM *a, const BIGNUM *b, BN_CTX *ctx) | ||
| 166 | { | ||
| 167 | BIGNUM *a_plus_3; | ||
| 168 | int ret = 0; | ||
| 169 | |||
| 170 | /* p must be a prime > 3 */ | ||
| 171 | if (BN_num_bits(p) <= 2 || !BN_is_odd(p)) { | ||
| 172 | ECerror(EC_R_INVALID_FIELD); | ||
| 173 | return 0; | ||
| 174 | } | ||
| 175 | |||
| 176 | BN_CTX_start(ctx); | ||
| 177 | |||
| 178 | if ((a_plus_3 = BN_CTX_get(ctx)) == NULL) | ||
| 179 | goto err; | ||
| 180 | |||
| 181 | if (!bn_copy(&group->field, p)) | ||
| 182 | goto err; | ||
| 183 | BN_set_negative(&group->field, 0); | ||
| 184 | |||
| 185 | if (!ec_encode_scalar(group, &group->a, a, ctx)) | ||
| 186 | goto err; | ||
| 187 | if (!ec_encode_scalar(group, &group->b, b, ctx)) | ||
| 188 | goto err; | ||
| 189 | |||
| 190 | if (!BN_set_word(a_plus_3, 3)) | ||
| 191 | goto err; | ||
| 192 | if (!BN_mod_add(a_plus_3, a_plus_3, a, &group->field, ctx)) | ||
| 193 | goto err; | ||
| 194 | |||
| 195 | group->a_is_minus3 = BN_is_zero(a_plus_3); | ||
| 196 | |||
| 197 | ret = 1; | ||
| 198 | |||
| 199 | err: | ||
| 200 | BN_CTX_end(ctx); | ||
| 201 | |||
| 202 | return ret; | ||
| 203 | } | ||
| 204 | |||
| 205 | int | ||
| 206 | ec_GFp_simple_group_get_curve(const EC_GROUP *group, BIGNUM *p, BIGNUM *a, | ||
| 207 | BIGNUM *b, BN_CTX *ctx) | ||
| 208 | { | ||
| 209 | if (p != NULL) { | ||
| 210 | if (!bn_copy(p, &group->field)) | ||
| 211 | return 0; | ||
| 212 | } | ||
| 213 | if (!ec_decode_scalar(group, a, &group->a, ctx)) | ||
| 214 | return 0; | ||
| 215 | if (!ec_decode_scalar(group, b, &group->b, ctx)) | ||
| 216 | return 0; | ||
| 217 | |||
| 218 | return 1; | ||
| 219 | } | ||
| 220 | |||
| 221 | int | ||
| 222 | ec_GFp_simple_group_get_degree(const EC_GROUP *group) | ||
| 223 | { | ||
| 224 | return BN_num_bits(&group->field); | ||
| 225 | } | ||
| 226 | |||
| 227 | int | ||
| 228 | ec_GFp_simple_group_check_discriminant(const EC_GROUP *group, BN_CTX *ctx) | ||
| 229 | { | ||
| 230 | BIGNUM *p, *a, *b, *discriminant; | ||
| 231 | int ret = 0; | ||
| 232 | |||
| 233 | BN_CTX_start(ctx); | ||
| 234 | |||
| 235 | if ((p = BN_CTX_get(ctx)) == NULL) | ||
| 236 | goto err; | ||
| 237 | if ((a = BN_CTX_get(ctx)) == NULL) | ||
| 238 | goto err; | ||
| 239 | if ((b = BN_CTX_get(ctx)) == NULL) | ||
| 240 | goto err; | ||
| 241 | if ((discriminant = BN_CTX_get(ctx)) == NULL) | ||
| 242 | goto err; | ||
| 243 | |||
| 244 | if (!EC_GROUP_get_curve(group, p, a, b, ctx)) | ||
| 245 | goto err; | ||
| 246 | |||
| 247 | /* | ||
| 248 | * Check that the discriminant 4a^3 + 27b^2 is non-zero modulo p. | ||
| 249 | */ | ||
| 250 | |||
| 251 | if (BN_is_zero(a) && BN_is_zero(b)) | ||
| 252 | goto err; | ||
| 253 | if (BN_is_zero(a) || BN_is_zero(b)) | ||
| 254 | goto done; | ||
| 255 | |||
| 256 | /* Compute the discriminant: first 4a^3, then 27b^2, then their sum. */ | ||
| 257 | if (!BN_mod_sqr(discriminant, a, p, ctx)) | ||
| 258 | goto err; | ||
| 259 | if (!BN_mod_mul(discriminant, discriminant, a, p, ctx)) | ||
| 260 | goto err; | ||
| 261 | if (!BN_lshift(discriminant, discriminant, 2)) | ||
| 262 | goto err; | ||
| 263 | |||
| 264 | if (!BN_mod_sqr(b, b, p, ctx)) | ||
| 265 | goto err; | ||
| 266 | if (!BN_mul_word(b, 27)) | ||
| 267 | goto err; | ||
| 268 | |||
| 269 | if (!BN_mod_add(discriminant, discriminant, b, p, ctx)) | ||
| 270 | goto err; | ||
| 271 | |||
| 272 | if (BN_is_zero(discriminant)) | ||
| 273 | goto err; | ||
| 274 | |||
| 275 | done: | ||
| 276 | ret = 1; | ||
| 277 | |||
| 278 | err: | ||
| 279 | BN_CTX_end(ctx); | ||
| 280 | |||
| 281 | return ret; | ||
| 282 | } | ||
| 283 | |||
| 284 | int | ||
| 285 | ec_GFp_simple_point_init(EC_POINT * point) | ||
| 286 | { | ||
| 287 | BN_init(&point->X); | ||
| 288 | BN_init(&point->Y); | ||
| 289 | BN_init(&point->Z); | ||
| 290 | point->Z_is_one = 0; | ||
| 291 | |||
| 292 | return 1; | ||
| 293 | } | ||
| 294 | |||
| 295 | void | ||
| 296 | ec_GFp_simple_point_finish(EC_POINT *point) | ||
| 297 | { | ||
| 298 | BN_free(&point->X); | ||
| 299 | BN_free(&point->Y); | ||
| 300 | BN_free(&point->Z); | ||
| 301 | point->Z_is_one = 0; | ||
| 302 | } | ||
| 303 | |||
| 304 | int | ||
| 305 | ec_GFp_simple_point_copy(EC_POINT *dest, const EC_POINT *src) | ||
| 306 | { | ||
| 307 | if (!bn_copy(&dest->X, &src->X)) | ||
| 308 | return 0; | ||
| 309 | if (!bn_copy(&dest->Y, &src->Y)) | ||
| 310 | return 0; | ||
| 311 | if (!bn_copy(&dest->Z, &src->Z)) | ||
| 312 | return 0; | ||
| 313 | dest->Z_is_one = src->Z_is_one; | ||
| 314 | |||
| 315 | return 1; | ||
| 316 | } | ||
| 317 | |||
| 318 | int | ||
| 319 | ec_GFp_simple_point_set_to_infinity(const EC_GROUP *group, EC_POINT *point) | ||
| 320 | { | ||
| 321 | point->Z_is_one = 0; | ||
| 322 | BN_zero(&point->Z); | ||
| 323 | return 1; | ||
| 324 | } | ||
| 325 | |||
| 326 | int | ||
| 327 | ec_GFp_simple_set_Jprojective_coordinates(const EC_GROUP *group, | ||
| 328 | EC_POINT *point, const BIGNUM *x, const BIGNUM *y, const BIGNUM *z, | ||
| 329 | BN_CTX *ctx) | ||
| 330 | { | ||
| 331 | int ret = 0; | ||
| 332 | |||
| 333 | /* | ||
| 334 | * Setting individual coordinates allows the creation of bad points. | ||
| 335 | * EC_POINT_set_Jprojective_coordinates() checks at the API boundary. | ||
| 336 | */ | ||
| 337 | |||
| 338 | if (x != NULL) { | ||
| 339 | if (!ec_encode_scalar(group, &point->X, x, ctx)) | ||
| 340 | goto err; | ||
| 341 | } | ||
| 342 | if (y != NULL) { | ||
| 343 | if (!ec_encode_scalar(group, &point->Y, y, ctx)) | ||
| 344 | goto err; | ||
| 345 | } | ||
| 346 | if (z != NULL) { | ||
| 347 | if (!ec_encode_z_coordinate(group, &point->Z, &point->Z_is_one, | ||
| 348 | z, ctx)) | ||
| 349 | goto err; | ||
| 350 | } | ||
| 351 | |||
| 352 | ret = 1; | ||
| 353 | |||
| 354 | err: | ||
| 355 | return ret; | ||
| 356 | } | ||
| 357 | |||
| 358 | int | ||
| 359 | ec_GFp_simple_get_Jprojective_coordinates(const EC_GROUP *group, | ||
| 360 | const EC_POINT *point, BIGNUM *x, BIGNUM *y, BIGNUM *z, BN_CTX *ctx) | ||
| 361 | { | ||
| 362 | int ret = 0; | ||
| 363 | |||
| 364 | if (!ec_decode_scalar(group, x, &point->X, ctx)) | ||
| 365 | goto err; | ||
| 366 | if (!ec_decode_scalar(group, y, &point->Y, ctx)) | ||
| 367 | goto err; | ||
| 368 | if (!ec_decode_scalar(group, z, &point->Z, ctx)) | ||
| 369 | goto err; | ||
| 370 | |||
| 371 | ret = 1; | ||
| 372 | |||
| 373 | err: | ||
| 374 | return ret; | ||
| 375 | } | ||
| 376 | |||
| 377 | int | ||
| 378 | ec_GFp_simple_point_set_affine_coordinates(const EC_GROUP *group, EC_POINT *point, | ||
| 379 | const BIGNUM *x, const BIGNUM *y, BN_CTX *ctx) | ||
| 380 | { | ||
| 381 | if (x == NULL || y == NULL) { | ||
| 382 | /* unlike for projective coordinates, we do not tolerate this */ | ||
| 383 | ECerror(ERR_R_PASSED_NULL_PARAMETER); | ||
| 384 | return 0; | ||
| 385 | } | ||
| 386 | return EC_POINT_set_Jprojective_coordinates(group, point, x, y, | ||
| 387 | BN_value_one(), ctx); | ||
| 388 | } | ||
| 389 | |||
| 390 | int | ||
| 391 | ec_GFp_simple_point_get_affine_coordinates(const EC_GROUP *group, | ||
| 392 | const EC_POINT *point, BIGNUM *x, BIGNUM *y, BN_CTX *ctx) | ||
| 393 | { | ||
| 394 | BIGNUM *z, *Z, *Z_1, *Z_2, *Z_3; | ||
| 395 | int ret = 0; | ||
| 396 | |||
| 397 | BN_CTX_start(ctx); | ||
| 398 | |||
| 399 | if ((z = BN_CTX_get(ctx)) == NULL) | ||
| 400 | goto err; | ||
| 401 | if ((Z = BN_CTX_get(ctx)) == NULL) | ||
| 402 | goto err; | ||
| 403 | if ((Z_1 = BN_CTX_get(ctx)) == NULL) | ||
| 404 | goto err; | ||
| 405 | if ((Z_2 = BN_CTX_get(ctx)) == NULL) | ||
| 406 | goto err; | ||
| 407 | if ((Z_3 = BN_CTX_get(ctx)) == NULL) | ||
| 408 | goto err; | ||
| 409 | |||
| 410 | /* Convert from projective coordinates (X, Y, Z) into (X/Z^2, Y/Z^3). */ | ||
| 411 | |||
| 412 | if (!ec_decode_scalar(group, z, &point->Z, ctx)) | ||
| 413 | goto err; | ||
| 414 | |||
| 415 | if (BN_is_one(z)) { | ||
| 416 | if (!ec_decode_scalar(group, x, &point->X, ctx)) | ||
| 417 | goto err; | ||
| 418 | if (!ec_decode_scalar(group, y, &point->Y, ctx)) | ||
| 419 | goto err; | ||
| 420 | goto done; | ||
| 421 | } | ||
| 422 | |||
| 423 | if (BN_mod_inverse_ct(Z_1, z, &group->field, ctx) == NULL) { | ||
| 424 | ECerror(ERR_R_BN_LIB); | ||
| 425 | goto err; | ||
| 426 | } | ||
| 427 | if (group->meth->field_encode == NULL) { | ||
| 428 | /* field_sqr works on standard representation */ | ||
| 429 | if (!group->meth->field_sqr(group, Z_2, Z_1, ctx)) | ||
| 430 | goto err; | ||
| 431 | } else { | ||
| 432 | if (!BN_mod_sqr(Z_2, Z_1, &group->field, ctx)) | ||
| 433 | goto err; | ||
| 434 | } | ||
| 435 | |||
| 436 | if (x != NULL) { | ||
| 437 | /* | ||
| 438 | * in the Montgomery case, field_mul will cancel out | ||
| 439 | * Montgomery factor in X: | ||
| 440 | */ | ||
| 441 | if (!group->meth->field_mul(group, x, &point->X, Z_2, ctx)) | ||
| 442 | goto err; | ||
| 443 | } | ||
| 444 | if (y != NULL) { | ||
| 445 | if (group->meth->field_encode == NULL) { | ||
| 446 | /* field_mul works on standard representation */ | ||
| 447 | if (!group->meth->field_mul(group, Z_3, Z_2, Z_1, ctx)) | ||
| 448 | goto err; | ||
| 449 | } else { | ||
| 450 | if (!BN_mod_mul(Z_3, Z_2, Z_1, &group->field, ctx)) | ||
| 451 | goto err; | ||
| 452 | } | ||
| 453 | |||
| 454 | /* | ||
| 455 | * in the Montgomery case, field_mul will cancel out | ||
| 456 | * Montgomery factor in Y: | ||
| 457 | */ | ||
| 458 | if (!group->meth->field_mul(group, y, &point->Y, Z_3, ctx)) | ||
| 459 | goto err; | ||
| 460 | } | ||
| 461 | |||
| 462 | done: | ||
| 463 | ret = 1; | ||
| 464 | |||
| 465 | err: | ||
| 466 | BN_CTX_end(ctx); | ||
| 467 | |||
| 468 | return ret; | ||
| 469 | } | ||
| 470 | |||
| 471 | int | ||
| 472 | ec_GFp_simple_set_compressed_coordinates(const EC_GROUP *group, | ||
| 473 | EC_POINT *point, const BIGNUM *in_x, int y_bit, BN_CTX *ctx) | ||
| 474 | { | ||
| 475 | const BIGNUM *p = &group->field, *a = &group->a, *b = &group->b; | ||
| 476 | BIGNUM *w, *x, *y; | ||
| 477 | int ret = 0; | ||
| 478 | |||
| 479 | y_bit = (y_bit != 0); | ||
| 480 | |||
| 481 | BN_CTX_start(ctx); | ||
| 482 | |||
| 483 | if ((w = BN_CTX_get(ctx)) == NULL) | ||
| 484 | goto err; | ||
| 485 | if ((x = BN_CTX_get(ctx)) == NULL) | ||
| 486 | goto err; | ||
| 487 | if ((y = BN_CTX_get(ctx)) == NULL) | ||
| 488 | goto err; | ||
| 489 | |||
| 490 | /* | ||
| 491 | * Weierstrass equation: y^2 = x^3 + ax + b, so y is one of the | ||
| 492 | * square roots of x^3 + ax + b. The y-bit indicates which one. | ||
| 493 | */ | ||
| 494 | |||
| 495 | /* XXX - should we not insist on 0 <= x < p instead? */ | ||
| 496 | if (!BN_nnmod(x, in_x, p, ctx)) | ||
| 497 | goto err; | ||
| 498 | |||
| 499 | if (group->meth->field_encode != NULL) { | ||
| 500 | if (!group->meth->field_encode(group, x, x, ctx)) | ||
| 501 | goto err; | ||
| 502 | } | ||
| 503 | |||
| 504 | /* y = x^3 */ | ||
| 505 | if (!group->meth->field_sqr(group, y, x, ctx)) | ||
| 506 | goto err; | ||
| 507 | if (!group->meth->field_mul(group, y, y, x, ctx)) | ||
| 508 | goto err; | ||
| 509 | |||
| 510 | /* y += ax */ | ||
| 511 | if (group->a_is_minus3) { | ||
| 512 | if (!BN_mod_lshift1_quick(w, x, p)) | ||
| 513 | goto err; | ||
| 514 | if (!BN_mod_add_quick(w, w, x, p)) | ||
| 515 | goto err; | ||
| 516 | if (!BN_mod_sub_quick(y, y, w, p)) | ||
| 517 | goto err; | ||
| 518 | } else { | ||
| 519 | if (!group->meth->field_mul(group, w, a, x, ctx)) | ||
| 520 | goto err; | ||
| 521 | if (!BN_mod_add_quick(y, y, w, p)) | ||
| 522 | goto err; | ||
| 523 | } | ||
| 524 | |||
| 525 | /* y += b */ | ||
| 526 | if (!BN_mod_add_quick(y, y, b, p)) | ||
| 527 | goto err; | ||
| 528 | |||
| 529 | if (group->meth->field_decode != NULL) { | ||
| 530 | if (!group->meth->field_decode(group, x, x, ctx)) | ||
| 531 | goto err; | ||
| 532 | if (!group->meth->field_decode(group, y, y, ctx)) | ||
| 533 | goto err; | ||
| 534 | } | ||
| 535 | |||
| 536 | if (!BN_mod_sqrt(y, y, p, ctx)) { | ||
| 537 | ECerror(EC_R_INVALID_COMPRESSED_POINT); | ||
| 538 | goto err; | ||
| 539 | } | ||
| 540 | |||
| 541 | if (y_bit == BN_is_odd(y)) | ||
| 542 | goto done; | ||
| 543 | |||
| 544 | if (BN_is_zero(y)) { | ||
| 545 | ECerror(EC_R_INVALID_COMPRESSION_BIT); | ||
| 546 | goto err; | ||
| 547 | } | ||
| 548 | if (!BN_usub(y, &group->field, y)) | ||
| 549 | goto err; | ||
| 550 | |||
| 551 | if (y_bit != BN_is_odd(y)) { | ||
| 552 | /* Can only happen if p is even and should not be reachable. */ | ||
| 553 | ECerror(ERR_R_INTERNAL_ERROR); | ||
| 554 | goto err; | ||
| 555 | } | ||
| 556 | |||
| 557 | done: | ||
| 558 | if (!EC_POINT_set_affine_coordinates(group, point, x, y, ctx)) | ||
| 559 | goto err; | ||
| 560 | |||
| 561 | ret = 1; | ||
| 562 | |||
| 563 | err: | ||
| 564 | BN_CTX_end(ctx); | ||
| 565 | |||
| 566 | return ret; | ||
| 567 | } | ||
| 568 | |||
| 569 | int | ||
| 570 | ec_GFp_simple_add(const EC_GROUP *group, EC_POINT *r, const EC_POINT *a, const EC_POINT *b, BN_CTX *ctx) | ||
| 571 | { | ||
| 572 | int (*field_mul) (const EC_GROUP *, BIGNUM *, const BIGNUM *, const BIGNUM *, BN_CTX *); | ||
| 573 | int (*field_sqr) (const EC_GROUP *, BIGNUM *, const BIGNUM *, BN_CTX *); | ||
| 574 | BIGNUM *n0, *n1, *n2, *n3, *n4, *n5, *n6; | ||
| 575 | const BIGNUM *p; | ||
| 576 | int ret = 0; | ||
| 577 | |||
| 578 | if (a == b) | ||
| 579 | return EC_POINT_dbl(group, r, a, ctx); | ||
| 580 | if (EC_POINT_is_at_infinity(group, a)) | ||
| 581 | return EC_POINT_copy(r, b); | ||
| 582 | if (EC_POINT_is_at_infinity(group, b)) | ||
| 583 | return EC_POINT_copy(r, a); | ||
| 584 | |||
| 585 | field_mul = group->meth->field_mul; | ||
| 586 | field_sqr = group->meth->field_sqr; | ||
| 587 | p = &group->field; | ||
| 588 | |||
| 589 | BN_CTX_start(ctx); | ||
| 590 | |||
| 591 | if ((n0 = BN_CTX_get(ctx)) == NULL) | ||
| 592 | goto end; | ||
| 593 | if ((n1 = BN_CTX_get(ctx)) == NULL) | ||
| 594 | goto end; | ||
| 595 | if ((n2 = BN_CTX_get(ctx)) == NULL) | ||
| 596 | goto end; | ||
| 597 | if ((n3 = BN_CTX_get(ctx)) == NULL) | ||
| 598 | goto end; | ||
| 599 | if ((n4 = BN_CTX_get(ctx)) == NULL) | ||
| 600 | goto end; | ||
| 601 | if ((n5 = BN_CTX_get(ctx)) == NULL) | ||
| 602 | goto end; | ||
| 603 | if ((n6 = BN_CTX_get(ctx)) == NULL) | ||
| 604 | goto end; | ||
| 605 | |||
| 606 | /* | ||
| 607 | * Note that in this function we must not read components of 'a' or | ||
| 608 | * 'b' once we have written the corresponding components of 'r'. ('r' | ||
| 609 | * might be one of 'a' or 'b'.) | ||
| 610 | */ | ||
| 611 | |||
| 612 | /* n1, n2 */ | ||
| 613 | if (b->Z_is_one) { | ||
| 614 | if (!bn_copy(n1, &a->X)) | ||
| 615 | goto end; | ||
| 616 | if (!bn_copy(n2, &a->Y)) | ||
| 617 | goto end; | ||
| 618 | /* n1 = X_a */ | ||
| 619 | /* n2 = Y_a */ | ||
| 620 | } else { | ||
| 621 | if (!field_sqr(group, n0, &b->Z, ctx)) | ||
| 622 | goto end; | ||
| 623 | if (!field_mul(group, n1, &a->X, n0, ctx)) | ||
| 624 | goto end; | ||
| 625 | /* n1 = X_a * Z_b^2 */ | ||
| 626 | |||
| 627 | if (!field_mul(group, n0, n0, &b->Z, ctx)) | ||
| 628 | goto end; | ||
| 629 | if (!field_mul(group, n2, &a->Y, n0, ctx)) | ||
| 630 | goto end; | ||
| 631 | /* n2 = Y_a * Z_b^3 */ | ||
| 632 | } | ||
| 633 | |||
| 634 | /* n3, n4 */ | ||
| 635 | if (a->Z_is_one) { | ||
| 636 | if (!bn_copy(n3, &b->X)) | ||
| 637 | goto end; | ||
| 638 | if (!bn_copy(n4, &b->Y)) | ||
| 639 | goto end; | ||
| 640 | /* n3 = X_b */ | ||
| 641 | /* n4 = Y_b */ | ||
| 642 | } else { | ||
| 643 | if (!field_sqr(group, n0, &a->Z, ctx)) | ||
| 644 | goto end; | ||
| 645 | if (!field_mul(group, n3, &b->X, n0, ctx)) | ||
| 646 | goto end; | ||
| 647 | /* n3 = X_b * Z_a^2 */ | ||
| 648 | |||
| 649 | if (!field_mul(group, n0, n0, &a->Z, ctx)) | ||
| 650 | goto end; | ||
| 651 | if (!field_mul(group, n4, &b->Y, n0, ctx)) | ||
| 652 | goto end; | ||
| 653 | /* n4 = Y_b * Z_a^3 */ | ||
| 654 | } | ||
| 655 | |||
| 656 | /* n5, n6 */ | ||
| 657 | if (!BN_mod_sub_quick(n5, n1, n3, p)) | ||
| 658 | goto end; | ||
| 659 | if (!BN_mod_sub_quick(n6, n2, n4, p)) | ||
| 660 | goto end; | ||
| 661 | /* n5 = n1 - n3 */ | ||
| 662 | /* n6 = n2 - n4 */ | ||
| 663 | |||
| 664 | if (BN_is_zero(n5)) { | ||
| 665 | if (BN_is_zero(n6)) { | ||
| 666 | /* a is the same point as b */ | ||
| 667 | BN_CTX_end(ctx); | ||
| 668 | ret = EC_POINT_dbl(group, r, a, ctx); | ||
| 669 | ctx = NULL; | ||
| 670 | goto end; | ||
| 671 | } else { | ||
| 672 | /* a is the inverse of b */ | ||
| 673 | BN_zero(&r->Z); | ||
| 674 | r->Z_is_one = 0; | ||
| 675 | ret = 1; | ||
| 676 | goto end; | ||
| 677 | } | ||
| 678 | } | ||
| 679 | /* 'n7', 'n8' */ | ||
| 680 | if (!BN_mod_add_quick(n1, n1, n3, p)) | ||
| 681 | goto end; | ||
| 682 | if (!BN_mod_add_quick(n2, n2, n4, p)) | ||
| 683 | goto end; | ||
| 684 | /* 'n7' = n1 + n3 */ | ||
| 685 | /* 'n8' = n2 + n4 */ | ||
| 686 | |||
| 687 | /* Z_r */ | ||
| 688 | if (a->Z_is_one && b->Z_is_one) { | ||
| 689 | if (!bn_copy(&r->Z, n5)) | ||
| 690 | goto end; | ||
| 691 | } else { | ||
| 692 | if (a->Z_is_one) { | ||
| 693 | if (!bn_copy(n0, &b->Z)) | ||
| 694 | goto end; | ||
| 695 | } else if (b->Z_is_one) { | ||
| 696 | if (!bn_copy(n0, &a->Z)) | ||
| 697 | goto end; | ||
| 698 | } else { | ||
| 699 | if (!field_mul(group, n0, &a->Z, &b->Z, ctx)) | ||
| 700 | goto end; | ||
| 701 | } | ||
| 702 | if (!field_mul(group, &r->Z, n0, n5, ctx)) | ||
| 703 | goto end; | ||
| 704 | } | ||
| 705 | r->Z_is_one = 0; | ||
| 706 | /* Z_r = Z_a * Z_b * n5 */ | ||
| 707 | |||
| 708 | /* X_r */ | ||
| 709 | if (!field_sqr(group, n0, n6, ctx)) | ||
| 710 | goto end; | ||
| 711 | if (!field_sqr(group, n4, n5, ctx)) | ||
| 712 | goto end; | ||
| 713 | if (!field_mul(group, n3, n1, n4, ctx)) | ||
| 714 | goto end; | ||
| 715 | if (!BN_mod_sub_quick(&r->X, n0, n3, p)) | ||
| 716 | goto end; | ||
| 717 | /* X_r = n6^2 - n5^2 * 'n7' */ | ||
| 718 | |||
| 719 | /* 'n9' */ | ||
| 720 | if (!BN_mod_lshift1_quick(n0, &r->X, p)) | ||
| 721 | goto end; | ||
| 722 | if (!BN_mod_sub_quick(n0, n3, n0, p)) | ||
| 723 | goto end; | ||
| 724 | /* n9 = n5^2 * 'n7' - 2 * X_r */ | ||
| 725 | |||
| 726 | /* Y_r */ | ||
| 727 | if (!field_mul(group, n0, n0, n6, ctx)) | ||
| 728 | goto end; | ||
| 729 | if (!field_mul(group, n5, n4, n5, ctx)) | ||
| 730 | goto end; /* now n5 is n5^3 */ | ||
| 731 | if (!field_mul(group, n1, n2, n5, ctx)) | ||
| 732 | goto end; | ||
| 733 | if (!BN_mod_sub_quick(n0, n0, n1, p)) | ||
| 734 | goto end; | ||
| 735 | if (BN_is_odd(n0)) | ||
| 736 | if (!BN_add(n0, n0, p)) | ||
| 737 | goto end; | ||
| 738 | /* now 0 <= n0 < 2*p, and n0 is even */ | ||
| 739 | if (!BN_rshift1(&r->Y, n0)) | ||
| 740 | goto end; | ||
| 741 | /* Y_r = (n6 * 'n9' - 'n8' * 'n5^3') / 2 */ | ||
| 742 | |||
| 743 | ret = 1; | ||
| 744 | |||
| 745 | end: | ||
| 746 | BN_CTX_end(ctx); | ||
| 747 | |||
| 748 | return ret; | ||
| 749 | } | ||
| 750 | |||
| 751 | int | ||
| 752 | ec_GFp_simple_dbl(const EC_GROUP *group, EC_POINT *r, const EC_POINT *a, BN_CTX *ctx) | ||
| 753 | { | ||
| 754 | int (*field_mul) (const EC_GROUP *, BIGNUM *, const BIGNUM *, const BIGNUM *, BN_CTX *); | ||
| 755 | int (*field_sqr) (const EC_GROUP *, BIGNUM *, const BIGNUM *, BN_CTX *); | ||
| 756 | const BIGNUM *p; | ||
| 757 | BIGNUM *n0, *n1, *n2, *n3; | ||
| 758 | int ret = 0; | ||
| 759 | |||
| 760 | if (EC_POINT_is_at_infinity(group, a)) | ||
| 761 | return EC_POINT_set_to_infinity(group, r); | ||
| 762 | |||
| 763 | field_mul = group->meth->field_mul; | ||
| 764 | field_sqr = group->meth->field_sqr; | ||
| 765 | p = &group->field; | ||
| 766 | |||
| 767 | BN_CTX_start(ctx); | ||
| 768 | |||
| 769 | if ((n0 = BN_CTX_get(ctx)) == NULL) | ||
| 770 | goto err; | ||
| 771 | if ((n1 = BN_CTX_get(ctx)) == NULL) | ||
| 772 | goto err; | ||
| 773 | if ((n2 = BN_CTX_get(ctx)) == NULL) | ||
| 774 | goto err; | ||
| 775 | if ((n3 = BN_CTX_get(ctx)) == NULL) | ||
| 776 | goto err; | ||
| 777 | |||
| 778 | /* | ||
| 779 | * Note that in this function we must not read components of 'a' once | ||
| 780 | * we have written the corresponding components of 'r'. ('r' might | ||
| 781 | * the same as 'a'.) | ||
| 782 | */ | ||
| 783 | |||
| 784 | /* n1 */ | ||
| 785 | if (a->Z_is_one) { | ||
| 786 | if (!field_sqr(group, n0, &a->X, ctx)) | ||
| 787 | goto err; | ||
| 788 | if (!BN_mod_lshift1_quick(n1, n0, p)) | ||
| 789 | goto err; | ||
| 790 | if (!BN_mod_add_quick(n0, n0, n1, p)) | ||
| 791 | goto err; | ||
| 792 | if (!BN_mod_add_quick(n1, n0, &group->a, p)) | ||
| 793 | goto err; | ||
| 794 | /* n1 = 3 * X_a^2 + a_curve */ | ||
| 795 | } else if (group->a_is_minus3) { | ||
| 796 | if (!field_sqr(group, n1, &a->Z, ctx)) | ||
| 797 | goto err; | ||
| 798 | if (!BN_mod_add_quick(n0, &a->X, n1, p)) | ||
| 799 | goto err; | ||
| 800 | if (!BN_mod_sub_quick(n2, &a->X, n1, p)) | ||
| 801 | goto err; | ||
| 802 | if (!field_mul(group, n1, n0, n2, ctx)) | ||
| 803 | goto err; | ||
| 804 | if (!BN_mod_lshift1_quick(n0, n1, p)) | ||
| 805 | goto err; | ||
| 806 | if (!BN_mod_add_quick(n1, n0, n1, p)) | ||
| 807 | goto err; | ||
| 808 | /* | ||
| 809 | * n1 = 3 * (X_a + Z_a^2) * (X_a - Z_a^2) = 3 * X_a^2 - 3 * | ||
| 810 | * Z_a^4 | ||
| 811 | */ | ||
| 812 | } else { | ||
| 813 | if (!field_sqr(group, n0, &a->X, ctx)) | ||
| 814 | goto err; | ||
| 815 | if (!BN_mod_lshift1_quick(n1, n0, p)) | ||
| 816 | goto err; | ||
| 817 | if (!BN_mod_add_quick(n0, n0, n1, p)) | ||
| 818 | goto err; | ||
| 819 | if (!field_sqr(group, n1, &a->Z, ctx)) | ||
| 820 | goto err; | ||
| 821 | if (!field_sqr(group, n1, n1, ctx)) | ||
| 822 | goto err; | ||
| 823 | if (!field_mul(group, n1, n1, &group->a, ctx)) | ||
| 824 | goto err; | ||
| 825 | if (!BN_mod_add_quick(n1, n1, n0, p)) | ||
| 826 | goto err; | ||
| 827 | /* n1 = 3 * X_a^2 + a_curve * Z_a^4 */ | ||
| 828 | } | ||
| 829 | |||
| 830 | /* Z_r */ | ||
| 831 | if (a->Z_is_one) { | ||
| 832 | if (!bn_copy(n0, &a->Y)) | ||
| 833 | goto err; | ||
| 834 | } else { | ||
| 835 | if (!field_mul(group, n0, &a->Y, &a->Z, ctx)) | ||
| 836 | goto err; | ||
| 837 | } | ||
| 838 | if (!BN_mod_lshift1_quick(&r->Z, n0, p)) | ||
| 839 | goto err; | ||
| 840 | r->Z_is_one = 0; | ||
| 841 | /* Z_r = 2 * Y_a * Z_a */ | ||
| 842 | |||
| 843 | /* n2 */ | ||
| 844 | if (!field_sqr(group, n3, &a->Y, ctx)) | ||
| 845 | goto err; | ||
| 846 | if (!field_mul(group, n2, &a->X, n3, ctx)) | ||
| 847 | goto err; | ||
| 848 | if (!BN_mod_lshift_quick(n2, n2, 2, p)) | ||
| 849 | goto err; | ||
| 850 | /* n2 = 4 * X_a * Y_a^2 */ | ||
| 851 | |||
| 852 | /* X_r */ | ||
| 853 | if (!BN_mod_lshift1_quick(n0, n2, p)) | ||
| 854 | goto err; | ||
| 855 | if (!field_sqr(group, &r->X, n1, ctx)) | ||
| 856 | goto err; | ||
| 857 | if (!BN_mod_sub_quick(&r->X, &r->X, n0, p)) | ||
| 858 | goto err; | ||
| 859 | /* X_r = n1^2 - 2 * n2 */ | ||
| 860 | |||
| 861 | /* n3 */ | ||
| 862 | if (!field_sqr(group, n0, n3, ctx)) | ||
| 863 | goto err; | ||
| 864 | if (!BN_mod_lshift_quick(n3, n0, 3, p)) | ||
| 865 | goto err; | ||
| 866 | /* n3 = 8 * Y_a^4 */ | ||
| 867 | |||
| 868 | /* Y_r */ | ||
| 869 | if (!BN_mod_sub_quick(n0, n2, &r->X, p)) | ||
| 870 | goto err; | ||
| 871 | if (!field_mul(group, n0, n1, n0, ctx)) | ||
| 872 | goto err; | ||
| 873 | if (!BN_mod_sub_quick(&r->Y, n0, n3, p)) | ||
| 874 | goto err; | ||
| 875 | /* Y_r = n1 * (n2 - X_r) - n3 */ | ||
| 876 | |||
| 877 | ret = 1; | ||
| 878 | |||
| 879 | err: | ||
| 880 | BN_CTX_end(ctx); | ||
| 881 | |||
| 882 | return ret; | ||
| 883 | } | ||
| 884 | |||
| 885 | int | ||
| 886 | ec_GFp_simple_invert(const EC_GROUP *group, EC_POINT *point, BN_CTX *ctx) | ||
| 887 | { | ||
| 888 | if (EC_POINT_is_at_infinity(group, point) || BN_is_zero(&point->Y)) | ||
| 889 | /* point is its own inverse */ | ||
| 890 | return 1; | ||
| 891 | |||
| 892 | return BN_usub(&point->Y, &group->field, &point->Y); | ||
| 893 | } | ||
| 894 | |||
| 895 | int | ||
| 896 | ec_GFp_simple_is_at_infinity(const EC_GROUP *group, const EC_POINT *point) | ||
| 897 | { | ||
| 898 | return BN_is_zero(&point->Z); | ||
| 899 | } | ||
| 900 | |||
| 901 | int | ||
| 902 | ec_GFp_simple_is_on_curve(const EC_GROUP *group, const EC_POINT *point, BN_CTX *ctx) | ||
| 903 | { | ||
| 904 | int (*field_mul) (const EC_GROUP *, BIGNUM *, const BIGNUM *, const BIGNUM *, BN_CTX *); | ||
| 905 | int (*field_sqr) (const EC_GROUP *, BIGNUM *, const BIGNUM *, BN_CTX *); | ||
| 906 | const BIGNUM *p; | ||
| 907 | BIGNUM *rh, *tmp, *Z4, *Z6; | ||
| 908 | int ret = -1; | ||
| 909 | |||
| 910 | if (EC_POINT_is_at_infinity(group, point)) | ||
| 911 | return 1; | ||
| 912 | |||
| 913 | field_mul = group->meth->field_mul; | ||
| 914 | field_sqr = group->meth->field_sqr; | ||
| 915 | p = &group->field; | ||
| 916 | |||
| 917 | BN_CTX_start(ctx); | ||
| 918 | |||
| 919 | if ((rh = BN_CTX_get(ctx)) == NULL) | ||
| 920 | goto err; | ||
| 921 | if ((tmp = BN_CTX_get(ctx)) == NULL) | ||
| 922 | goto err; | ||
| 923 | if ((Z4 = BN_CTX_get(ctx)) == NULL) | ||
| 924 | goto err; | ||
| 925 | if ((Z6 = BN_CTX_get(ctx)) == NULL) | ||
| 926 | goto err; | ||
| 927 | |||
| 928 | /* | ||
| 929 | * We have a curve defined by a Weierstrass equation y^2 = x^3 + a*x | ||
| 930 | * + b. The point to consider is given in Jacobian projective | ||
| 931 | * coordinates where (X, Y, Z) represents (x, y) = (X/Z^2, Y/Z^3). | ||
| 932 | * Substituting this and multiplying by Z^6 transforms the above | ||
| 933 | * equation into Y^2 = X^3 + a*X*Z^4 + b*Z^6. To test this, we add up | ||
| 934 | * the right-hand side in 'rh'. | ||
| 935 | */ | ||
| 936 | |||
| 937 | /* rh := X^2 */ | ||
| 938 | if (!field_sqr(group, rh, &point->X, ctx)) | ||
| 939 | goto err; | ||
| 940 | |||
| 941 | if (!point->Z_is_one) { | ||
| 942 | if (!field_sqr(group, tmp, &point->Z, ctx)) | ||
| 943 | goto err; | ||
| 944 | if (!field_sqr(group, Z4, tmp, ctx)) | ||
| 945 | goto err; | ||
| 946 | if (!field_mul(group, Z6, Z4, tmp, ctx)) | ||
| 947 | goto err; | ||
| 948 | |||
| 949 | /* rh := (rh + a*Z^4)*X */ | ||
| 950 | if (group->a_is_minus3) { | ||
| 951 | if (!BN_mod_lshift1_quick(tmp, Z4, p)) | ||
| 952 | goto err; | ||
| 953 | if (!BN_mod_add_quick(tmp, tmp, Z4, p)) | ||
| 954 | goto err; | ||
| 955 | if (!BN_mod_sub_quick(rh, rh, tmp, p)) | ||
| 956 | goto err; | ||
| 957 | if (!field_mul(group, rh, rh, &point->X, ctx)) | ||
| 958 | goto err; | ||
| 959 | } else { | ||
| 960 | if (!field_mul(group, tmp, Z4, &group->a, ctx)) | ||
| 961 | goto err; | ||
| 962 | if (!BN_mod_add_quick(rh, rh, tmp, p)) | ||
| 963 | goto err; | ||
| 964 | if (!field_mul(group, rh, rh, &point->X, ctx)) | ||
| 965 | goto err; | ||
| 966 | } | ||
| 967 | |||
| 968 | /* rh := rh + b*Z^6 */ | ||
| 969 | if (!field_mul(group, tmp, &group->b, Z6, ctx)) | ||
| 970 | goto err; | ||
| 971 | if (!BN_mod_add_quick(rh, rh, tmp, p)) | ||
| 972 | goto err; | ||
| 973 | } else { | ||
| 974 | /* point->Z_is_one */ | ||
| 975 | |||
| 976 | /* rh := (rh + a)*X */ | ||
| 977 | if (!BN_mod_add_quick(rh, rh, &group->a, p)) | ||
| 978 | goto err; | ||
| 979 | if (!field_mul(group, rh, rh, &point->X, ctx)) | ||
| 980 | goto err; | ||
| 981 | /* rh := rh + b */ | ||
| 982 | if (!BN_mod_add_quick(rh, rh, &group->b, p)) | ||
| 983 | goto err; | ||
| 984 | } | ||
| 985 | |||
| 986 | /* 'lh' := Y^2 */ | ||
| 987 | if (!field_sqr(group, tmp, &point->Y, ctx)) | ||
| 988 | goto err; | ||
| 989 | |||
| 990 | ret = (0 == BN_ucmp(tmp, rh)); | ||
| 991 | |||
| 992 | err: | ||
| 993 | BN_CTX_end(ctx); | ||
| 994 | |||
| 995 | return ret; | ||
| 996 | } | ||
| 997 | |||
| 998 | int | ||
| 999 | ec_GFp_simple_cmp(const EC_GROUP *group, const EC_POINT *a, const EC_POINT *b, BN_CTX *ctx) | ||
| 1000 | { | ||
| 1001 | /* | ||
| 1002 | * return values: -1 error 0 equal (in affine coordinates) 1 | ||
| 1003 | * not equal | ||
| 1004 | */ | ||
| 1005 | |||
| 1006 | int (*field_mul) (const EC_GROUP *, BIGNUM *, const BIGNUM *, const BIGNUM *, BN_CTX *); | ||
| 1007 | int (*field_sqr) (const EC_GROUP *, BIGNUM *, const BIGNUM *, BN_CTX *); | ||
| 1008 | BIGNUM *tmp1, *tmp2, *Za23, *Zb23; | ||
| 1009 | const BIGNUM *tmp1_, *tmp2_; | ||
| 1010 | int ret = -1; | ||
| 1011 | |||
| 1012 | if (EC_POINT_is_at_infinity(group, a)) | ||
| 1013 | return !EC_POINT_is_at_infinity(group, b); | ||
| 1014 | |||
| 1015 | if (EC_POINT_is_at_infinity(group, b)) | ||
| 1016 | return 1; | ||
| 1017 | |||
| 1018 | if (a->Z_is_one && b->Z_is_one) | ||
| 1019 | return ((BN_cmp(&a->X, &b->X) == 0) && BN_cmp(&a->Y, &b->Y) == 0) ? 0 : 1; | ||
| 1020 | |||
| 1021 | field_mul = group->meth->field_mul; | ||
| 1022 | field_sqr = group->meth->field_sqr; | ||
| 1023 | |||
| 1024 | BN_CTX_start(ctx); | ||
| 1025 | |||
| 1026 | if ((tmp1 = BN_CTX_get(ctx)) == NULL) | ||
| 1027 | goto end; | ||
| 1028 | if ((tmp2 = BN_CTX_get(ctx)) == NULL) | ||
| 1029 | goto end; | ||
| 1030 | if ((Za23 = BN_CTX_get(ctx)) == NULL) | ||
| 1031 | goto end; | ||
| 1032 | if ((Zb23 = BN_CTX_get(ctx)) == NULL) | ||
| 1033 | goto end; | ||
| 1034 | |||
| 1035 | /* | ||
| 1036 | * We have to decide whether (X_a/Z_a^2, Y_a/Z_a^3) = (X_b/Z_b^2, | ||
| 1037 | * Y_b/Z_b^3), or equivalently, whether (X_a*Z_b^2, Y_a*Z_b^3) = | ||
| 1038 | * (X_b*Z_a^2, Y_b*Z_a^3). | ||
| 1039 | */ | ||
| 1040 | |||
| 1041 | if (!b->Z_is_one) { | ||
| 1042 | if (!field_sqr(group, Zb23, &b->Z, ctx)) | ||
| 1043 | goto end; | ||
| 1044 | if (!field_mul(group, tmp1, &a->X, Zb23, ctx)) | ||
| 1045 | goto end; | ||
| 1046 | tmp1_ = tmp1; | ||
| 1047 | } else | ||
| 1048 | tmp1_ = &a->X; | ||
| 1049 | if (!a->Z_is_one) { | ||
| 1050 | if (!field_sqr(group, Za23, &a->Z, ctx)) | ||
| 1051 | goto end; | ||
| 1052 | if (!field_mul(group, tmp2, &b->X, Za23, ctx)) | ||
| 1053 | goto end; | ||
| 1054 | tmp2_ = tmp2; | ||
| 1055 | } else | ||
| 1056 | tmp2_ = &b->X; | ||
| 1057 | |||
| 1058 | /* compare X_a*Z_b^2 with X_b*Z_a^2 */ | ||
| 1059 | if (BN_cmp(tmp1_, tmp2_) != 0) { | ||
| 1060 | ret = 1; /* points differ */ | ||
| 1061 | goto end; | ||
| 1062 | } | ||
| 1063 | if (!b->Z_is_one) { | ||
| 1064 | if (!field_mul(group, Zb23, Zb23, &b->Z, ctx)) | ||
| 1065 | goto end; | ||
| 1066 | if (!field_mul(group, tmp1, &a->Y, Zb23, ctx)) | ||
| 1067 | goto end; | ||
| 1068 | /* tmp1_ = tmp1 */ | ||
| 1069 | } else | ||
| 1070 | tmp1_ = &a->Y; | ||
| 1071 | if (!a->Z_is_one) { | ||
| 1072 | if (!field_mul(group, Za23, Za23, &a->Z, ctx)) | ||
| 1073 | goto end; | ||
| 1074 | if (!field_mul(group, tmp2, &b->Y, Za23, ctx)) | ||
| 1075 | goto end; | ||
| 1076 | /* tmp2_ = tmp2 */ | ||
| 1077 | } else | ||
| 1078 | tmp2_ = &b->Y; | ||
| 1079 | |||
| 1080 | /* compare Y_a*Z_b^3 with Y_b*Z_a^3 */ | ||
| 1081 | if (BN_cmp(tmp1_, tmp2_) != 0) { | ||
| 1082 | ret = 1; /* points differ */ | ||
| 1083 | goto end; | ||
| 1084 | } | ||
| 1085 | /* points are equal */ | ||
| 1086 | ret = 0; | ||
| 1087 | |||
| 1088 | end: | ||
| 1089 | BN_CTX_end(ctx); | ||
| 1090 | |||
| 1091 | return ret; | ||
| 1092 | } | ||
| 1093 | |||
| 1094 | int | ||
| 1095 | ec_GFp_simple_make_affine(const EC_GROUP *group, EC_POINT *point, BN_CTX *ctx) | ||
| 1096 | { | ||
| 1097 | BIGNUM *x, *y; | ||
| 1098 | int ret = 0; | ||
| 1099 | |||
| 1100 | if (point->Z_is_one || EC_POINT_is_at_infinity(group, point)) | ||
| 1101 | return 1; | ||
| 1102 | |||
| 1103 | BN_CTX_start(ctx); | ||
| 1104 | |||
| 1105 | if ((x = BN_CTX_get(ctx)) == NULL) | ||
| 1106 | goto err; | ||
| 1107 | if ((y = BN_CTX_get(ctx)) == NULL) | ||
| 1108 | goto err; | ||
| 1109 | |||
| 1110 | if (!EC_POINT_get_affine_coordinates(group, point, x, y, ctx)) | ||
| 1111 | goto err; | ||
| 1112 | if (!EC_POINT_set_affine_coordinates(group, point, x, y, ctx)) | ||
| 1113 | goto err; | ||
| 1114 | if (!point->Z_is_one) { | ||
| 1115 | ECerror(ERR_R_INTERNAL_ERROR); | ||
| 1116 | goto err; | ||
| 1117 | } | ||
| 1118 | ret = 1; | ||
| 1119 | |||
| 1120 | err: | ||
| 1121 | BN_CTX_end(ctx); | ||
| 1122 | |||
| 1123 | return ret; | ||
| 1124 | } | ||
| 1125 | |||
| 1126 | int | ||
| 1127 | ec_GFp_simple_points_make_affine(const EC_GROUP *group, size_t num, EC_POINT *points[], BN_CTX *ctx) | ||
| 1128 | { | ||
| 1129 | BIGNUM *tmp0, *tmp1; | ||
| 1130 | size_t pow2 = 0; | ||
| 1131 | BIGNUM **heap = NULL; | ||
| 1132 | size_t i; | ||
| 1133 | int ret = 0; | ||
| 1134 | |||
| 1135 | if (num == 0) | ||
| 1136 | return 1; | ||
| 1137 | |||
| 1138 | BN_CTX_start(ctx); | ||
| 1139 | |||
| 1140 | if ((tmp0 = BN_CTX_get(ctx)) == NULL) | ||
| 1141 | goto err; | ||
| 1142 | if ((tmp1 = BN_CTX_get(ctx)) == NULL) | ||
| 1143 | goto err; | ||
| 1144 | |||
| 1145 | /* | ||
| 1146 | * Before converting the individual points, compute inverses of all Z | ||
| 1147 | * values. Modular inversion is rather slow, but luckily we can do | ||
| 1148 | * with a single explicit inversion, plus about 3 multiplications per | ||
| 1149 | * input value. | ||
| 1150 | */ | ||
| 1151 | |||
| 1152 | pow2 = 1; | ||
| 1153 | while (num > pow2) | ||
| 1154 | pow2 <<= 1; | ||
| 1155 | /* | ||
| 1156 | * Now pow2 is the smallest power of 2 satifsying pow2 >= num. We | ||
| 1157 | * need twice that. | ||
| 1158 | */ | ||
| 1159 | pow2 <<= 1; | ||
| 1160 | |||
| 1161 | heap = reallocarray(NULL, pow2, sizeof heap[0]); | ||
| 1162 | if (heap == NULL) | ||
| 1163 | goto err; | ||
| 1164 | |||
| 1165 | /* | ||
| 1166 | * The array is used as a binary tree, exactly as in heapsort: | ||
| 1167 | * | ||
| 1168 | * heap[1] heap[2] heap[3] heap[4] heap[5] | ||
| 1169 | * heap[6] heap[7] heap[8]heap[9] heap[10]heap[11] | ||
| 1170 | * heap[12]heap[13] heap[14] heap[15] | ||
| 1171 | * | ||
| 1172 | * We put the Z's in the last line; then we set each other node to the | ||
| 1173 | * product of its two child-nodes (where empty or 0 entries are | ||
| 1174 | * treated as ones); then we invert heap[1]; then we invert each | ||
| 1175 | * other node by replacing it by the product of its parent (after | ||
| 1176 | * inversion) and its sibling (before inversion). | ||
| 1177 | */ | ||
| 1178 | heap[0] = NULL; | ||
| 1179 | for (i = pow2 / 2 - 1; i > 0; i--) | ||
| 1180 | heap[i] = NULL; | ||
| 1181 | for (i = 0; i < num; i++) | ||
| 1182 | heap[pow2 / 2 + i] = &points[i]->Z; | ||
| 1183 | for (i = pow2 / 2 + num; i < pow2; i++) | ||
| 1184 | heap[i] = NULL; | ||
| 1185 | |||
| 1186 | /* set each node to the product of its children */ | ||
| 1187 | for (i = pow2 / 2 - 1; i > 0; i--) { | ||
| 1188 | heap[i] = BN_new(); | ||
| 1189 | if (heap[i] == NULL) | ||
| 1190 | goto err; | ||
| 1191 | |||
| 1192 | if (heap[2 * i] != NULL) { | ||
| 1193 | if ((heap[2 * i + 1] == NULL) || BN_is_zero(heap[2 * i + 1])) { | ||
| 1194 | if (!bn_copy(heap[i], heap[2 * i])) | ||
| 1195 | goto err; | ||
| 1196 | } else { | ||
| 1197 | if (BN_is_zero(heap[2 * i])) { | ||
| 1198 | if (!bn_copy(heap[i], heap[2 * i + 1])) | ||
| 1199 | goto err; | ||
| 1200 | } else { | ||
| 1201 | if (!group->meth->field_mul(group, heap[i], | ||
| 1202 | heap[2 * i], heap[2 * i + 1], ctx)) | ||
| 1203 | goto err; | ||
| 1204 | } | ||
| 1205 | } | ||
| 1206 | } | ||
| 1207 | } | ||
| 1208 | |||
| 1209 | /* invert heap[1] */ | ||
| 1210 | if (!BN_is_zero(heap[1])) { | ||
| 1211 | if (BN_mod_inverse_ct(heap[1], heap[1], &group->field, ctx) == NULL) { | ||
| 1212 | ECerror(ERR_R_BN_LIB); | ||
| 1213 | goto err; | ||
| 1214 | } | ||
| 1215 | } | ||
| 1216 | if (group->meth->field_encode != NULL) { | ||
| 1217 | /* | ||
| 1218 | * in the Montgomery case, we just turned R*H (representing | ||
| 1219 | * H) into 1/(R*H), but we need R*(1/H) (representing | ||
| 1220 | * 1/H); i.e. we have need to multiply by the Montgomery | ||
| 1221 | * factor twice | ||
| 1222 | */ | ||
| 1223 | if (!group->meth->field_encode(group, heap[1], heap[1], ctx)) | ||
| 1224 | goto err; | ||
| 1225 | if (!group->meth->field_encode(group, heap[1], heap[1], ctx)) | ||
| 1226 | goto err; | ||
| 1227 | } | ||
| 1228 | /* set other heap[i]'s to their inverses */ | ||
| 1229 | for (i = 2; i < pow2 / 2 + num; i += 2) { | ||
| 1230 | /* i is even */ | ||
| 1231 | if ((heap[i + 1] != NULL) && !BN_is_zero(heap[i + 1])) { | ||
| 1232 | if (!group->meth->field_mul(group, tmp0, heap[i / 2], heap[i + 1], ctx)) | ||
| 1233 | goto err; | ||
| 1234 | if (!group->meth->field_mul(group, tmp1, heap[i / 2], heap[i], ctx)) | ||
| 1235 | goto err; | ||
| 1236 | if (!bn_copy(heap[i], tmp0)) | ||
| 1237 | goto err; | ||
| 1238 | if (!bn_copy(heap[i + 1], tmp1)) | ||
| 1239 | goto err; | ||
| 1240 | } else { | ||
| 1241 | if (!bn_copy(heap[i], heap[i / 2])) | ||
| 1242 | goto err; | ||
| 1243 | } | ||
| 1244 | } | ||
| 1245 | |||
| 1246 | /* | ||
| 1247 | * we have replaced all non-zero Z's by their inverses, now fix up | ||
| 1248 | * all the points | ||
| 1249 | */ | ||
| 1250 | for (i = 0; i < num; i++) { | ||
| 1251 | EC_POINT *p = points[i]; | ||
| 1252 | |||
| 1253 | if (!BN_is_zero(&p->Z)) { | ||
| 1254 | /* turn (X, Y, 1/Z) into (X/Z^2, Y/Z^3, 1) */ | ||
| 1255 | |||
| 1256 | if (!group->meth->field_sqr(group, tmp1, &p->Z, ctx)) | ||
| 1257 | goto err; | ||
| 1258 | if (!group->meth->field_mul(group, &p->X, &p->X, tmp1, ctx)) | ||
| 1259 | goto err; | ||
| 1260 | |||
| 1261 | if (!group->meth->field_mul(group, tmp1, tmp1, &p->Z, ctx)) | ||
| 1262 | goto err; | ||
| 1263 | if (!group->meth->field_mul(group, &p->Y, &p->Y, tmp1, ctx)) | ||
| 1264 | goto err; | ||
| 1265 | |||
| 1266 | if (group->meth->field_set_to_one != NULL) { | ||
| 1267 | if (!group->meth->field_set_to_one(group, &p->Z, ctx)) | ||
| 1268 | goto err; | ||
| 1269 | } else { | ||
| 1270 | if (!BN_one(&p->Z)) | ||
| 1271 | goto err; | ||
| 1272 | } | ||
| 1273 | p->Z_is_one = 1; | ||
| 1274 | } | ||
| 1275 | } | ||
| 1276 | |||
| 1277 | ret = 1; | ||
| 1278 | |||
| 1279 | err: | ||
| 1280 | BN_CTX_end(ctx); | ||
| 1281 | |||
| 1282 | if (heap != NULL) { | ||
| 1283 | /* | ||
| 1284 | * heap[pow2/2] .. heap[pow2-1] have not been allocated | ||
| 1285 | * locally! | ||
| 1286 | */ | ||
| 1287 | for (i = pow2 / 2 - 1; i > 0; i--) { | ||
| 1288 | BN_free(heap[i]); | ||
| 1289 | } | ||
| 1290 | free(heap); | ||
| 1291 | } | ||
| 1292 | return ret; | ||
| 1293 | } | ||
| 1294 | |||
| 1295 | int | ||
| 1296 | ec_GFp_simple_field_mul(const EC_GROUP *group, BIGNUM *r, const BIGNUM *a, const BIGNUM *b, BN_CTX *ctx) | ||
| 1297 | { | ||
| 1298 | return BN_mod_mul(r, a, b, &group->field, ctx); | ||
| 1299 | } | ||
| 1300 | |||
| 1301 | int | ||
| 1302 | ec_GFp_simple_field_sqr(const EC_GROUP *group, BIGNUM *r, const BIGNUM *a, BN_CTX *ctx) | ||
| 1303 | { | ||
| 1304 | return BN_mod_sqr(r, a, &group->field, ctx); | ||
| 1305 | } | ||
| 1306 | |||
| 1307 | /* | ||
| 1308 | * Apply randomization of EC point projective coordinates: | ||
| 1309 | * | ||
| 1310 | * (X, Y, Z) = (lambda^2 * X, lambda^3 * Y, lambda * Z) | ||
| 1311 | * | ||
| 1312 | * where lambda is in the interval [1, group->field). | ||
| 1313 | */ | ||
| 1314 | int | ||
| 1315 | ec_GFp_simple_blind_coordinates(const EC_GROUP *group, EC_POINT *p, BN_CTX *ctx) | ||
| 1316 | { | ||
| 1317 | BIGNUM *lambda = NULL; | ||
| 1318 | BIGNUM *tmp = NULL; | ||
| 1319 | int ret = 0; | ||
| 1320 | |||
| 1321 | BN_CTX_start(ctx); | ||
| 1322 | if ((lambda = BN_CTX_get(ctx)) == NULL) | ||
| 1323 | goto err; | ||
| 1324 | if ((tmp = BN_CTX_get(ctx)) == NULL) | ||
| 1325 | goto err; | ||
| 1326 | |||
| 1327 | /* Generate lambda in [1, group->field). */ | ||
| 1328 | if (!bn_rand_interval(lambda, 1, &group->field)) | ||
| 1329 | goto err; | ||
| 1330 | |||
| 1331 | if (group->meth->field_encode != NULL && | ||
| 1332 | !group->meth->field_encode(group, lambda, lambda, ctx)) | ||
| 1333 | goto err; | ||
| 1334 | |||
| 1335 | /* Z = lambda * Z */ | ||
| 1336 | if (!group->meth->field_mul(group, &p->Z, lambda, &p->Z, ctx)) | ||
| 1337 | goto err; | ||
| 1338 | |||
| 1339 | /* tmp = lambda^2 */ | ||
| 1340 | if (!group->meth->field_sqr(group, tmp, lambda, ctx)) | ||
| 1341 | goto err; | ||
| 1342 | |||
| 1343 | /* X = lambda^2 * X */ | ||
| 1344 | if (!group->meth->field_mul(group, &p->X, tmp, &p->X, ctx)) | ||
| 1345 | goto err; | ||
| 1346 | |||
| 1347 | /* tmp = lambda^3 */ | ||
| 1348 | if (!group->meth->field_mul(group, tmp, tmp, lambda, ctx)) | ||
| 1349 | goto err; | ||
| 1350 | |||
| 1351 | /* Y = lambda^3 * Y */ | ||
| 1352 | if (!group->meth->field_mul(group, &p->Y, tmp, &p->Y, ctx)) | ||
| 1353 | goto err; | ||
| 1354 | |||
| 1355 | /* Disable optimized arithmetics after replacing Z by lambda * Z. */ | ||
| 1356 | p->Z_is_one = 0; | ||
| 1357 | |||
| 1358 | ret = 1; | ||
| 1359 | |||
| 1360 | err: | ||
| 1361 | BN_CTX_end(ctx); | ||
| 1362 | return ret; | ||
| 1363 | } | ||
| 1364 | |||
| 1365 | #define EC_POINT_BN_set_flags(P, flags) do { \ | ||
| 1366 | BN_set_flags(&(P)->X, (flags)); \ | ||
| 1367 | BN_set_flags(&(P)->Y, (flags)); \ | ||
| 1368 | BN_set_flags(&(P)->Z, (flags)); \ | ||
| 1369 | } while(0) | ||
| 1370 | |||
| 1371 | #define EC_POINT_CSWAP(c, a, b, w, t) do { \ | ||
| 1372 | if (!BN_swap_ct(c, &(a)->X, &(b)->X, w) || \ | ||
| 1373 | !BN_swap_ct(c, &(a)->Y, &(b)->Y, w) || \ | ||
| 1374 | !BN_swap_ct(c, &(a)->Z, &(b)->Z, w)) \ | ||
| 1375 | goto err; \ | ||
| 1376 | t = ((a)->Z_is_one ^ (b)->Z_is_one) & (c); \ | ||
| 1377 | (a)->Z_is_one ^= (t); \ | ||
| 1378 | (b)->Z_is_one ^= (t); \ | ||
| 1379 | } while(0) | ||
| 1380 | |||
| 1381 | /* | ||
| 1382 | * This function computes (in constant time) a point multiplication over the | ||
| 1383 | * EC group. | ||
| 1384 | * | ||
| 1385 | * At a high level, it is Montgomery ladder with conditional swaps. | ||
| 1386 | * | ||
| 1387 | * It performs either a fixed point multiplication | ||
| 1388 | * (scalar * generator) | ||
| 1389 | * when point is NULL, or a variable point multiplication | ||
| 1390 | * (scalar * point) | ||
| 1391 | * when point is not NULL. | ||
| 1392 | * | ||
| 1393 | * scalar should be in the range [0,n) otherwise all constant time bets are off. | ||
| 1394 | * | ||
| 1395 | * NB: This says nothing about EC_POINT_add and EC_POINT_dbl, | ||
| 1396 | * which of course are not constant time themselves. | ||
| 1397 | * | ||
| 1398 | * The product is stored in r. | ||
| 1399 | * | ||
| 1400 | * Returns 1 on success, 0 otherwise. | ||
| 1401 | */ | ||
| 1402 | static int | ||
| 1403 | ec_GFp_simple_mul_ct(const EC_GROUP *group, EC_POINT *r, const BIGNUM *scalar, | ||
| 1404 | const EC_POINT *point, BN_CTX *ctx) | ||
| 1405 | { | ||
| 1406 | int i, cardinality_bits, group_top, kbit, pbit, Z_is_one; | ||
| 1407 | EC_POINT *s = NULL; | ||
| 1408 | BIGNUM *k = NULL; | ||
| 1409 | BIGNUM *lambda = NULL; | ||
| 1410 | BIGNUM *cardinality = NULL; | ||
| 1411 | int ret = 0; | ||
| 1412 | |||
| 1413 | BN_CTX_start(ctx); | ||
| 1414 | |||
| 1415 | if ((s = EC_POINT_new(group)) == NULL) | ||
| 1416 | goto err; | ||
| 1417 | |||
| 1418 | if (point == NULL) { | ||
| 1419 | if (!EC_POINT_copy(s, group->generator)) | ||
| 1420 | goto err; | ||
| 1421 | } else { | ||
| 1422 | if (!EC_POINT_copy(s, point)) | ||
| 1423 | goto err; | ||
| 1424 | } | ||
| 1425 | |||
| 1426 | EC_POINT_BN_set_flags(s, BN_FLG_CONSTTIME); | ||
| 1427 | |||
| 1428 | if ((cardinality = BN_CTX_get(ctx)) == NULL) | ||
| 1429 | goto err; | ||
| 1430 | if ((lambda = BN_CTX_get(ctx)) == NULL) | ||
| 1431 | goto err; | ||
| 1432 | if ((k = BN_CTX_get(ctx)) == NULL) | ||
| 1433 | goto err; | ||
| 1434 | if (!BN_mul(cardinality, &group->order, &group->cofactor, ctx)) | ||
| 1435 | goto err; | ||
| 1436 | |||
| 1437 | /* | ||
| 1438 | * Group cardinalities are often on a word boundary. | ||
| 1439 | * So when we pad the scalar, some timing diff might | ||
| 1440 | * pop if it needs to be expanded due to carries. | ||
| 1441 | * So expand ahead of time. | ||
| 1442 | */ | ||
| 1443 | cardinality_bits = BN_num_bits(cardinality); | ||
| 1444 | group_top = cardinality->top; | ||
| 1445 | if (!bn_wexpand(k, group_top + 2) || | ||
| 1446 | !bn_wexpand(lambda, group_top + 2)) | ||
| 1447 | goto err; | ||
| 1448 | |||
| 1449 | if (!bn_copy(k, scalar)) | ||
| 1450 | goto err; | ||
| 1451 | |||
| 1452 | BN_set_flags(k, BN_FLG_CONSTTIME); | ||
| 1453 | |||
| 1454 | if (BN_num_bits(k) > cardinality_bits || BN_is_negative(k)) { | ||
| 1455 | /* | ||
| 1456 | * This is an unusual input, and we don't guarantee | ||
| 1457 | * constant-timeness | ||
| 1458 | */ | ||
| 1459 | if (!BN_nnmod(k, k, cardinality, ctx)) | ||
| 1460 | goto err; | ||
| 1461 | } | ||
| 1462 | |||
| 1463 | if (!BN_add(lambda, k, cardinality)) | ||
| 1464 | goto err; | ||
| 1465 | BN_set_flags(lambda, BN_FLG_CONSTTIME); | ||
| 1466 | if (!BN_add(k, lambda, cardinality)) | ||
| 1467 | goto err; | ||
| 1468 | /* | ||
| 1469 | * lambda := scalar + cardinality | ||
| 1470 | * k := scalar + 2*cardinality | ||
| 1471 | */ | ||
| 1472 | kbit = BN_is_bit_set(lambda, cardinality_bits); | ||
| 1473 | if (!BN_swap_ct(kbit, k, lambda, group_top + 2)) | ||
| 1474 | goto err; | ||
| 1475 | |||
| 1476 | group_top = group->field.top; | ||
| 1477 | if (!bn_wexpand(&s->X, group_top) || | ||
| 1478 | !bn_wexpand(&s->Y, group_top) || | ||
| 1479 | !bn_wexpand(&s->Z, group_top) || | ||
| 1480 | !bn_wexpand(&r->X, group_top) || | ||
| 1481 | !bn_wexpand(&r->Y, group_top) || | ||
| 1482 | !bn_wexpand(&r->Z, group_top)) | ||
| 1483 | goto err; | ||
| 1484 | |||
| 1485 | /* | ||
| 1486 | * Apply coordinate blinding for EC_POINT if the underlying EC_METHOD | ||
| 1487 | * implements it. | ||
| 1488 | */ | ||
| 1489 | if (!ec_point_blind_coordinates(group, s, ctx)) | ||
| 1490 | goto err; | ||
| 1491 | |||
| 1492 | /* top bit is a 1, in a fixed pos */ | ||
| 1493 | if (!EC_POINT_copy(r, s)) | ||
| 1494 | goto err; | ||
| 1495 | |||
| 1496 | EC_POINT_BN_set_flags(r, BN_FLG_CONSTTIME); | ||
| 1497 | |||
| 1498 | if (!EC_POINT_dbl(group, s, s, ctx)) | ||
| 1499 | goto err; | ||
| 1500 | |||
| 1501 | pbit = 0; | ||
| 1502 | |||
| 1503 | /* | ||
| 1504 | * The ladder step, with branches, is | ||
| 1505 | * | ||
| 1506 | * k[i] == 0: S = add(R, S), R = dbl(R) | ||
| 1507 | * k[i] == 1: R = add(S, R), S = dbl(S) | ||
| 1508 | * | ||
| 1509 | * Swapping R, S conditionally on k[i] leaves you with state | ||
| 1510 | * | ||
| 1511 | * k[i] == 0: T, U = R, S | ||
| 1512 | * k[i] == 1: T, U = S, R | ||
| 1513 | * | ||
| 1514 | * Then perform the ECC ops. | ||
| 1515 | * | ||
| 1516 | * U = add(T, U) | ||
| 1517 | * T = dbl(T) | ||
| 1518 | * | ||
| 1519 | * Which leaves you with state | ||
| 1520 | * | ||
| 1521 | * k[i] == 0: U = add(R, S), T = dbl(R) | ||
| 1522 | * k[i] == 1: U = add(S, R), T = dbl(S) | ||
| 1523 | * | ||
| 1524 | * Swapping T, U conditionally on k[i] leaves you with state | ||
| 1525 | * | ||
| 1526 | * k[i] == 0: R, S = T, U | ||
| 1527 | * k[i] == 1: R, S = U, T | ||
| 1528 | * | ||
| 1529 | * Which leaves you with state | ||
| 1530 | * | ||
| 1531 | * k[i] == 0: S = add(R, S), R = dbl(R) | ||
| 1532 | * k[i] == 1: R = add(S, R), S = dbl(S) | ||
| 1533 | * | ||
| 1534 | * So we get the same logic, but instead of a branch it's a | ||
| 1535 | * conditional swap, followed by ECC ops, then another conditional swap. | ||
| 1536 | * | ||
| 1537 | * Optimization: The end of iteration i and start of i-1 looks like | ||
| 1538 | * | ||
| 1539 | * ... | ||
| 1540 | * CSWAP(k[i], R, S) | ||
| 1541 | * ECC | ||
| 1542 | * CSWAP(k[i], R, S) | ||
| 1543 | * (next iteration) | ||
| 1544 | * CSWAP(k[i-1], R, S) | ||
| 1545 | * ECC | ||
| 1546 | * CSWAP(k[i-1], R, S) | ||
| 1547 | * ... | ||
| 1548 | * | ||
| 1549 | * So instead of two contiguous swaps, you can merge the condition | ||
| 1550 | * bits and do a single swap. | ||
| 1551 | * | ||
| 1552 | * k[i] k[i-1] Outcome | ||
| 1553 | * 0 0 No Swap | ||
| 1554 | * 0 1 Swap | ||
| 1555 | * 1 0 Swap | ||
| 1556 | * 1 1 No Swap | ||
| 1557 | * | ||
| 1558 | * This is XOR. pbit tracks the previous bit of k. | ||
| 1559 | */ | ||
| 1560 | |||
| 1561 | for (i = cardinality_bits - 1; i >= 0; i--) { | ||
| 1562 | kbit = BN_is_bit_set(k, i) ^ pbit; | ||
| 1563 | EC_POINT_CSWAP(kbit, r, s, group_top, Z_is_one); | ||
| 1564 | if (!EC_POINT_add(group, s, r, s, ctx)) | ||
| 1565 | goto err; | ||
| 1566 | if (!EC_POINT_dbl(group, r, r, ctx)) | ||
| 1567 | goto err; | ||
| 1568 | /* | ||
| 1569 | * pbit logic merges this cswap with that of the | ||
| 1570 | * next iteration | ||
| 1571 | */ | ||
| 1572 | pbit ^= kbit; | ||
| 1573 | } | ||
| 1574 | /* one final cswap to move the right value into r */ | ||
| 1575 | EC_POINT_CSWAP(pbit, r, s, group_top, Z_is_one); | ||
| 1576 | |||
| 1577 | ret = 1; | ||
| 1578 | |||
| 1579 | err: | ||
| 1580 | EC_POINT_free(s); | ||
| 1581 | BN_CTX_end(ctx); | ||
| 1582 | |||
| 1583 | return ret; | ||
| 1584 | } | ||
| 1585 | |||
| 1586 | #undef EC_POINT_BN_set_flags | ||
| 1587 | #undef EC_POINT_CSWAP | ||
| 1588 | |||
| 1589 | int | ||
| 1590 | ec_GFp_simple_mul_generator_ct(const EC_GROUP *group, EC_POINT *r, | ||
| 1591 | const BIGNUM *scalar, BN_CTX *ctx) | ||
| 1592 | { | ||
| 1593 | return ec_GFp_simple_mul_ct(group, r, scalar, NULL, ctx); | ||
| 1594 | } | ||
| 1595 | |||
| 1596 | int | ||
| 1597 | ec_GFp_simple_mul_single_ct(const EC_GROUP *group, EC_POINT *r, | ||
| 1598 | const BIGNUM *scalar, const EC_POINT *point, BN_CTX *ctx) | ||
| 1599 | { | ||
| 1600 | return ec_GFp_simple_mul_ct(group, r, scalar, point, ctx); | ||
| 1601 | } | ||
| 1602 | |||
| 1603 | int | ||
| 1604 | ec_GFp_simple_mul_double_nonct(const EC_GROUP *group, EC_POINT *r, | ||
| 1605 | const BIGNUM *g_scalar, const BIGNUM *p_scalar, const EC_POINT *point, | ||
| 1606 | BN_CTX *ctx) | ||
| 1607 | { | ||
| 1608 | return ec_wNAF_mul(group, r, g_scalar, 1, &point, &p_scalar, ctx); | ||
| 1609 | } | ||
| 1610 | |||
| 1611 | static const EC_METHOD ec_GFp_simple_method = { | ||
| 1612 | .field_type = NID_X9_62_prime_field, | ||
| 1613 | .group_init = ec_GFp_simple_group_init, | ||
| 1614 | .group_finish = ec_GFp_simple_group_finish, | ||
| 1615 | .group_copy = ec_GFp_simple_group_copy, | ||
| 1616 | .group_set_curve = ec_GFp_simple_group_set_curve, | ||
| 1617 | .group_get_curve = ec_GFp_simple_group_get_curve, | ||
| 1618 | .group_get_degree = ec_GFp_simple_group_get_degree, | ||
| 1619 | .group_order_bits = ec_group_simple_order_bits, | ||
| 1620 | .group_check_discriminant = ec_GFp_simple_group_check_discriminant, | ||
| 1621 | .point_init = ec_GFp_simple_point_init, | ||
| 1622 | .point_finish = ec_GFp_simple_point_finish, | ||
| 1623 | .point_copy = ec_GFp_simple_point_copy, | ||
| 1624 | .point_set_to_infinity = ec_GFp_simple_point_set_to_infinity, | ||
| 1625 | .point_set_Jprojective_coordinates = | ||
| 1626 | ec_GFp_simple_set_Jprojective_coordinates, | ||
| 1627 | .point_get_Jprojective_coordinates = | ||
| 1628 | ec_GFp_simple_get_Jprojective_coordinates, | ||
| 1629 | .point_set_affine_coordinates = | ||
| 1630 | ec_GFp_simple_point_set_affine_coordinates, | ||
| 1631 | .point_get_affine_coordinates = | ||
| 1632 | ec_GFp_simple_point_get_affine_coordinates, | ||
| 1633 | .point_set_compressed_coordinates = | ||
| 1634 | ec_GFp_simple_set_compressed_coordinates, | ||
| 1635 | .add = ec_GFp_simple_add, | ||
| 1636 | .dbl = ec_GFp_simple_dbl, | ||
| 1637 | .invert = ec_GFp_simple_invert, | ||
| 1638 | .is_at_infinity = ec_GFp_simple_is_at_infinity, | ||
| 1639 | .is_on_curve = ec_GFp_simple_is_on_curve, | ||
| 1640 | .point_cmp = ec_GFp_simple_cmp, | ||
| 1641 | .make_affine = ec_GFp_simple_make_affine, | ||
| 1642 | .points_make_affine = ec_GFp_simple_points_make_affine, | ||
| 1643 | .mul_generator_ct = ec_GFp_simple_mul_generator_ct, | ||
| 1644 | .mul_single_ct = ec_GFp_simple_mul_single_ct, | ||
| 1645 | .mul_double_nonct = ec_GFp_simple_mul_double_nonct, | ||
| 1646 | .field_mul = ec_GFp_simple_field_mul, | ||
| 1647 | .field_sqr = ec_GFp_simple_field_sqr, | ||
| 1648 | .blind_coordinates = ec_GFp_simple_blind_coordinates, | ||
| 1649 | }; | ||
| 1650 | |||
| 1651 | const EC_METHOD * | ||
| 1652 | EC_GFp_simple_method(void) | ||
| 1653 | { | ||
| 1654 | return &ec_GFp_simple_method; | ||
| 1655 | } | ||
| 1656 | LCRYPTO_ALIAS(EC_GFp_simple_method); | ||
