diff options
Diffstat (limited to 'src/lib/libcrypto/ec/ecp_methods.c')
| -rw-r--r-- | src/lib/libcrypto/ec/ecp_methods.c | 1327 |
1 files changed, 0 insertions, 1327 deletions
diff --git a/src/lib/libcrypto/ec/ecp_methods.c b/src/lib/libcrypto/ec/ecp_methods.c deleted file mode 100644 index ced85ceb1e..0000000000 --- a/src/lib/libcrypto/ec/ecp_methods.c +++ /dev/null | |||
| @@ -1,1327 +0,0 @@ | |||
| 1 | /* $OpenBSD: ecp_methods.c,v 1.45 2025/03/24 13:07:04 jsing Exp $ */ | ||
| 2 | /* Includes code written by Lenka Fibikova <fibikova@exp-math.uni-essen.de> | ||
| 3 | * for the OpenSSL project. | ||
| 4 | * Includes code written by Bodo Moeller for the OpenSSL project. | ||
| 5 | */ | ||
| 6 | /* ==================================================================== | ||
| 7 | * Copyright (c) 1998-2002 The OpenSSL Project. All rights reserved. | ||
| 8 | * | ||
| 9 | * Redistribution and use in source and binary forms, with or without | ||
| 10 | * modification, are permitted provided that the following conditions | ||
| 11 | * are met: | ||
| 12 | * | ||
| 13 | * 1. Redistributions of source code must retain the above copyright | ||
| 14 | * notice, this list of conditions and the following disclaimer. | ||
| 15 | * | ||
| 16 | * 2. Redistributions in binary form must reproduce the above copyright | ||
| 17 | * notice, this list of conditions and the following disclaimer in | ||
| 18 | * the documentation and/or other materials provided with the | ||
| 19 | * distribution. | ||
| 20 | * | ||
| 21 | * 3. All advertising materials mentioning features or use of this | ||
| 22 | * software must display the following acknowledgment: | ||
| 23 | * "This product includes software developed by the OpenSSL Project | ||
| 24 | * for use in the OpenSSL Toolkit. (http://www.openssl.org/)" | ||
| 25 | * | ||
| 26 | * 4. The names "OpenSSL Toolkit" and "OpenSSL Project" must not be used to | ||
| 27 | * endorse or promote products derived from this software without | ||
| 28 | * prior written permission. For written permission, please contact | ||
| 29 | * openssl-core@openssl.org. | ||
| 30 | * | ||
| 31 | * 5. Products derived from this software may not be called "OpenSSL" | ||
| 32 | * nor may "OpenSSL" appear in their names without prior written | ||
| 33 | * permission of the OpenSSL Project. | ||
| 34 | * | ||
| 35 | * 6. Redistributions of any form whatsoever must retain the following | ||
| 36 | * acknowledgment: | ||
| 37 | * "This product includes software developed by the OpenSSL Project | ||
| 38 | * for use in the OpenSSL Toolkit (http://www.openssl.org/)" | ||
| 39 | * | ||
| 40 | * THIS SOFTWARE IS PROVIDED BY THE OpenSSL PROJECT ``AS IS'' AND ANY | ||
| 41 | * EXPRESSED OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE | ||
| 42 | * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR | ||
| 43 | * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE OpenSSL PROJECT OR | ||
| 44 | * ITS CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, | ||
| 45 | * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT | ||
| 46 | * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; | ||
| 47 | * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) | ||
| 48 | * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, | ||
| 49 | * STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) | ||
| 50 | * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED | ||
| 51 | * OF THE POSSIBILITY OF SUCH DAMAGE. | ||
| 52 | * ==================================================================== | ||
| 53 | * | ||
| 54 | * This product includes cryptographic software written by Eric Young | ||
| 55 | * (eay@cryptsoft.com). This product includes software written by Tim | ||
| 56 | * Hudson (tjh@cryptsoft.com). | ||
| 57 | * | ||
| 58 | */ | ||
| 59 | /* ==================================================================== | ||
| 60 | * Copyright 2002 Sun Microsystems, Inc. ALL RIGHTS RESERVED. | ||
| 61 | * Portions of this software developed by SUN MICROSYSTEMS, INC., | ||
| 62 | * and contributed to the OpenSSL project. | ||
| 63 | */ | ||
| 64 | |||
| 65 | #include <stdlib.h> | ||
| 66 | |||
| 67 | #include <openssl/bn.h> | ||
| 68 | #include <openssl/ec.h> | ||
| 69 | #include <openssl/err.h> | ||
| 70 | #include <openssl/objects.h> | ||
| 71 | |||
| 72 | #include "bn_local.h" | ||
| 73 | #include "ec_local.h" | ||
| 74 | |||
| 75 | /* | ||
| 76 | * Most method functions in this file are designed to work with non-trivial | ||
| 77 | * representations of field elements if necessary: while standard modular | ||
| 78 | * addition and subtraction are used, the field_mul and field_sqr methods will | ||
| 79 | * be used for multiplication, and field_encode and field_decode (if defined) | ||
| 80 | * will be used for converting between representations. | ||
| 81 | * | ||
| 82 | * The functions ec_points_make_affine() and ec_point_get_affine_coordinates() | ||
| 83 | * assume that if a non-trivial representation is used, it is a Montgomery | ||
| 84 | * representation (i.e. 'encoding' means multiplying by some factor R). | ||
| 85 | */ | ||
| 86 | |||
| 87 | static inline int | ||
| 88 | ec_field_mul(const EC_GROUP *group, BIGNUM *r, const BIGNUM *a, const BIGNUM *b, | ||
| 89 | BN_CTX *ctx) | ||
| 90 | { | ||
| 91 | return group->meth->field_mul(group, r, a, b, ctx); | ||
| 92 | } | ||
| 93 | |||
| 94 | static inline int | ||
| 95 | ec_field_sqr(const EC_GROUP *group, BIGNUM *r, const BIGNUM *a, BN_CTX *ctx) | ||
| 96 | { | ||
| 97 | return group->meth->field_sqr(group, r, a, ctx); | ||
| 98 | } | ||
| 99 | |||
| 100 | static int | ||
| 101 | ec_decode_scalar(const EC_GROUP *group, BIGNUM *bn, const BIGNUM *x, BN_CTX *ctx) | ||
| 102 | { | ||
| 103 | if (bn == NULL) | ||
| 104 | return 1; | ||
| 105 | |||
| 106 | if (group->meth->field_decode != NULL) | ||
| 107 | return group->meth->field_decode(group, bn, x, ctx); | ||
| 108 | |||
| 109 | return bn_copy(bn, x); | ||
| 110 | } | ||
| 111 | |||
| 112 | static int | ||
| 113 | ec_encode_scalar(const EC_GROUP *group, BIGNUM *bn, const BIGNUM *x, BN_CTX *ctx) | ||
| 114 | { | ||
| 115 | if (!BN_nnmod(bn, x, group->p, ctx)) | ||
| 116 | return 0; | ||
| 117 | |||
| 118 | if (group->meth->field_encode != NULL) | ||
| 119 | return group->meth->field_encode(group, bn, bn, ctx); | ||
| 120 | |||
| 121 | return 1; | ||
| 122 | } | ||
| 123 | |||
| 124 | static int | ||
| 125 | ec_group_set_curve(EC_GROUP *group, | ||
| 126 | const BIGNUM *p, const BIGNUM *a, const BIGNUM *b, BN_CTX *ctx) | ||
| 127 | { | ||
| 128 | BIGNUM *a_plus_3; | ||
| 129 | int ret = 0; | ||
| 130 | |||
| 131 | /* p must be a prime > 3 */ | ||
| 132 | if (BN_num_bits(p) <= 2 || !BN_is_odd(p)) { | ||
| 133 | ECerror(EC_R_INVALID_FIELD); | ||
| 134 | return 0; | ||
| 135 | } | ||
| 136 | |||
| 137 | BN_CTX_start(ctx); | ||
| 138 | |||
| 139 | if ((a_plus_3 = BN_CTX_get(ctx)) == NULL) | ||
| 140 | goto err; | ||
| 141 | |||
| 142 | if (!bn_copy(group->p, p)) | ||
| 143 | goto err; | ||
| 144 | BN_set_negative(group->p, 0); | ||
| 145 | |||
| 146 | if (!ec_encode_scalar(group, group->a, a, ctx)) | ||
| 147 | goto err; | ||
| 148 | if (!ec_encode_scalar(group, group->b, b, ctx)) | ||
| 149 | goto err; | ||
| 150 | |||
| 151 | if (!BN_set_word(a_plus_3, 3)) | ||
| 152 | goto err; | ||
| 153 | if (!BN_mod_add(a_plus_3, a_plus_3, a, group->p, ctx)) | ||
| 154 | goto err; | ||
| 155 | |||
| 156 | group->a_is_minus3 = BN_is_zero(a_plus_3); | ||
| 157 | |||
| 158 | ret = 1; | ||
| 159 | |||
| 160 | err: | ||
| 161 | BN_CTX_end(ctx); | ||
| 162 | |||
| 163 | return ret; | ||
| 164 | } | ||
| 165 | |||
| 166 | static int | ||
| 167 | ec_group_get_curve(const EC_GROUP *group, BIGNUM *p, BIGNUM *a, BIGNUM *b, | ||
| 168 | BN_CTX *ctx) | ||
| 169 | { | ||
| 170 | if (p != NULL) { | ||
| 171 | if (!bn_copy(p, group->p)) | ||
| 172 | return 0; | ||
| 173 | } | ||
| 174 | if (!ec_decode_scalar(group, a, group->a, ctx)) | ||
| 175 | return 0; | ||
| 176 | if (!ec_decode_scalar(group, b, group->b, ctx)) | ||
| 177 | return 0; | ||
| 178 | |||
| 179 | return 1; | ||
| 180 | } | ||
| 181 | |||
| 182 | static int | ||
| 183 | ec_point_is_on_curve(const EC_GROUP *group, const EC_POINT *point, BN_CTX *ctx) | ||
| 184 | { | ||
| 185 | BIGNUM *rh, *tmp, *Z4, *Z6; | ||
| 186 | int ret = -1; | ||
| 187 | |||
| 188 | if (EC_POINT_is_at_infinity(group, point)) | ||
| 189 | return 1; | ||
| 190 | |||
| 191 | BN_CTX_start(ctx); | ||
| 192 | |||
| 193 | if ((rh = BN_CTX_get(ctx)) == NULL) | ||
| 194 | goto err; | ||
| 195 | if ((tmp = BN_CTX_get(ctx)) == NULL) | ||
| 196 | goto err; | ||
| 197 | if ((Z4 = BN_CTX_get(ctx)) == NULL) | ||
| 198 | goto err; | ||
| 199 | if ((Z6 = BN_CTX_get(ctx)) == NULL) | ||
| 200 | goto err; | ||
| 201 | |||
| 202 | /* | ||
| 203 | * The curve is defined by a Weierstrass equation y^2 = x^3 + a*x + b. | ||
| 204 | * The point is given in Jacobian projective coordinates where (X, Y, Z) | ||
| 205 | * represents (x, y) = (X/Z^2, Y/Z^3). Substituting this and multiplying | ||
| 206 | * by Z^6 transforms the above into Y^2 = X^3 + a*X*Z^4 + b*Z^6. | ||
| 207 | */ | ||
| 208 | |||
| 209 | /* rh := X^2 */ | ||
| 210 | if (!ec_field_sqr(group, rh, point->X, ctx)) | ||
| 211 | goto err; | ||
| 212 | |||
| 213 | if (!point->Z_is_one) { | ||
| 214 | if (!ec_field_sqr(group, tmp, point->Z, ctx)) | ||
| 215 | goto err; | ||
| 216 | if (!ec_field_sqr(group, Z4, tmp, ctx)) | ||
| 217 | goto err; | ||
| 218 | if (!ec_field_mul(group, Z6, Z4, tmp, ctx)) | ||
| 219 | goto err; | ||
| 220 | |||
| 221 | /* rh := (rh + a*Z^4)*X */ | ||
| 222 | if (group->a_is_minus3) { | ||
| 223 | if (!BN_mod_lshift1_quick(tmp, Z4, group->p)) | ||
| 224 | goto err; | ||
| 225 | if (!BN_mod_add_quick(tmp, tmp, Z4, group->p)) | ||
| 226 | goto err; | ||
| 227 | if (!BN_mod_sub_quick(rh, rh, tmp, group->p)) | ||
| 228 | goto err; | ||
| 229 | if (!ec_field_mul(group, rh, rh, point->X, ctx)) | ||
| 230 | goto err; | ||
| 231 | } else { | ||
| 232 | if (!ec_field_mul(group, tmp, Z4, group->a, ctx)) | ||
| 233 | goto err; | ||
| 234 | if (!BN_mod_add_quick(rh, rh, tmp, group->p)) | ||
| 235 | goto err; | ||
| 236 | if (!ec_field_mul(group, rh, rh, point->X, ctx)) | ||
| 237 | goto err; | ||
| 238 | } | ||
| 239 | |||
| 240 | /* rh := rh + b*Z^6 */ | ||
| 241 | if (!ec_field_mul(group, tmp, group->b, Z6, ctx)) | ||
| 242 | goto err; | ||
| 243 | if (!BN_mod_add_quick(rh, rh, tmp, group->p)) | ||
| 244 | goto err; | ||
| 245 | } else { | ||
| 246 | /* point->Z_is_one */ | ||
| 247 | |||
| 248 | /* rh := (rh + a)*X */ | ||
| 249 | if (!BN_mod_add_quick(rh, rh, group->a, group->p)) | ||
| 250 | goto err; | ||
| 251 | if (!ec_field_mul(group, rh, rh, point->X, ctx)) | ||
| 252 | goto err; | ||
| 253 | /* rh := rh + b */ | ||
| 254 | if (!BN_mod_add_quick(rh, rh, group->b, group->p)) | ||
| 255 | goto err; | ||
| 256 | } | ||
| 257 | |||
| 258 | /* 'lh' := Y^2 */ | ||
| 259 | if (!ec_field_sqr(group, tmp, point->Y, ctx)) | ||
| 260 | goto err; | ||
| 261 | |||
| 262 | ret = (0 == BN_ucmp(tmp, rh)); | ||
| 263 | |||
| 264 | err: | ||
| 265 | BN_CTX_end(ctx); | ||
| 266 | |||
| 267 | return ret; | ||
| 268 | } | ||
| 269 | |||
| 270 | /* | ||
| 271 | * Returns -1 on error, 0 if the points are equal, 1 if the points are distinct. | ||
| 272 | */ | ||
| 273 | |||
| 274 | static int | ||
| 275 | ec_point_cmp(const EC_GROUP *group, const EC_POINT *a, const EC_POINT *b, | ||
| 276 | BN_CTX *ctx) | ||
| 277 | { | ||
| 278 | BIGNUM *tmp1, *tmp2, *Za23, *Zb23; | ||
| 279 | const BIGNUM *tmp1_, *tmp2_; | ||
| 280 | int ret = -1; | ||
| 281 | |||
| 282 | if (EC_POINT_is_at_infinity(group, a) && EC_POINT_is_at_infinity(group, b)) | ||
| 283 | return 0; | ||
| 284 | if (EC_POINT_is_at_infinity(group, a) || EC_POINT_is_at_infinity(group, b)) | ||
| 285 | return 1; | ||
| 286 | |||
| 287 | if (a->Z_is_one && b->Z_is_one) | ||
| 288 | return BN_cmp(a->X, b->X) != 0 || BN_cmp(a->Y, b->Y) != 0; | ||
| 289 | |||
| 290 | BN_CTX_start(ctx); | ||
| 291 | |||
| 292 | if ((tmp1 = BN_CTX_get(ctx)) == NULL) | ||
| 293 | goto end; | ||
| 294 | if ((tmp2 = BN_CTX_get(ctx)) == NULL) | ||
| 295 | goto end; | ||
| 296 | if ((Za23 = BN_CTX_get(ctx)) == NULL) | ||
| 297 | goto end; | ||
| 298 | if ((Zb23 = BN_CTX_get(ctx)) == NULL) | ||
| 299 | goto end; | ||
| 300 | |||
| 301 | /* | ||
| 302 | * Decide whether (X_a/Z_a^2, Y_a/Z_a^3) = (X_b/Z_b^2, Y_b/Z_b^3), or | ||
| 303 | * equivalently, (X_a*Z_b^2, Y_a*Z_b^3) = (X_b*Z_a^2, Y_b*Z_a^3). | ||
| 304 | */ | ||
| 305 | |||
| 306 | if (!b->Z_is_one) { | ||
| 307 | if (!ec_field_sqr(group, Zb23, b->Z, ctx)) | ||
| 308 | goto end; | ||
| 309 | if (!ec_field_mul(group, tmp1, a->X, Zb23, ctx)) | ||
| 310 | goto end; | ||
| 311 | tmp1_ = tmp1; | ||
| 312 | } else | ||
| 313 | tmp1_ = a->X; | ||
| 314 | if (!a->Z_is_one) { | ||
| 315 | if (!ec_field_sqr(group, Za23, a->Z, ctx)) | ||
| 316 | goto end; | ||
| 317 | if (!ec_field_mul(group, tmp2, b->X, Za23, ctx)) | ||
| 318 | goto end; | ||
| 319 | tmp2_ = tmp2; | ||
| 320 | } else | ||
| 321 | tmp2_ = b->X; | ||
| 322 | |||
| 323 | /* compare X_a*Z_b^2 with X_b*Z_a^2 */ | ||
| 324 | if (BN_cmp(tmp1_, tmp2_) != 0) { | ||
| 325 | ret = 1; /* points differ */ | ||
| 326 | goto end; | ||
| 327 | } | ||
| 328 | if (!b->Z_is_one) { | ||
| 329 | if (!ec_field_mul(group, Zb23, Zb23, b->Z, ctx)) | ||
| 330 | goto end; | ||
| 331 | if (!ec_field_mul(group, tmp1, a->Y, Zb23, ctx)) | ||
| 332 | goto end; | ||
| 333 | /* tmp1_ = tmp1 */ | ||
| 334 | } else | ||
| 335 | tmp1_ = a->Y; | ||
| 336 | if (!a->Z_is_one) { | ||
| 337 | if (!ec_field_mul(group, Za23, Za23, a->Z, ctx)) | ||
| 338 | goto end; | ||
| 339 | if (!ec_field_mul(group, tmp2, b->Y, Za23, ctx)) | ||
| 340 | goto end; | ||
| 341 | /* tmp2_ = tmp2 */ | ||
| 342 | } else | ||
| 343 | tmp2_ = b->Y; | ||
| 344 | |||
| 345 | /* compare Y_a*Z_b^3 with Y_b*Z_a^3 */ | ||
| 346 | if (BN_cmp(tmp1_, tmp2_) != 0) { | ||
| 347 | ret = 1; /* points differ */ | ||
| 348 | goto end; | ||
| 349 | } | ||
| 350 | /* points are equal */ | ||
| 351 | ret = 0; | ||
| 352 | |||
| 353 | end: | ||
| 354 | BN_CTX_end(ctx); | ||
| 355 | |||
| 356 | return ret; | ||
| 357 | } | ||
| 358 | |||
| 359 | static int | ||
| 360 | ec_point_set_affine_coordinates(const EC_GROUP *group, EC_POINT *point, | ||
| 361 | const BIGNUM *x, const BIGNUM *y, BN_CTX *ctx) | ||
| 362 | { | ||
| 363 | int ret = 0; | ||
| 364 | |||
| 365 | if (x == NULL || y == NULL) { | ||
| 366 | ECerror(ERR_R_PASSED_NULL_PARAMETER); | ||
| 367 | goto err; | ||
| 368 | } | ||
| 369 | |||
| 370 | if (!ec_encode_scalar(group, point->X, x, ctx)) | ||
| 371 | goto err; | ||
| 372 | if (!ec_encode_scalar(group, point->Y, y, ctx)) | ||
| 373 | goto err; | ||
| 374 | if (!ec_encode_scalar(group, point->Z, BN_value_one(), ctx)) | ||
| 375 | goto err; | ||
| 376 | point->Z_is_one = 1; | ||
| 377 | |||
| 378 | ret = 1; | ||
| 379 | |||
| 380 | err: | ||
| 381 | return ret; | ||
| 382 | } | ||
| 383 | |||
| 384 | static int | ||
| 385 | ec_point_get_affine_coordinates(const EC_GROUP *group, const EC_POINT *point, | ||
| 386 | BIGNUM *x, BIGNUM *y, BN_CTX *ctx) | ||
| 387 | { | ||
| 388 | BIGNUM *z, *Z, *Z_1, *Z_2, *Z_3; | ||
| 389 | int ret = 0; | ||
| 390 | |||
| 391 | BN_CTX_start(ctx); | ||
| 392 | |||
| 393 | if ((z = BN_CTX_get(ctx)) == NULL) | ||
| 394 | goto err; | ||
| 395 | if ((Z = BN_CTX_get(ctx)) == NULL) | ||
| 396 | goto err; | ||
| 397 | if ((Z_1 = BN_CTX_get(ctx)) == NULL) | ||
| 398 | goto err; | ||
| 399 | if ((Z_2 = BN_CTX_get(ctx)) == NULL) | ||
| 400 | goto err; | ||
| 401 | if ((Z_3 = BN_CTX_get(ctx)) == NULL) | ||
| 402 | goto err; | ||
| 403 | |||
| 404 | /* | ||
| 405 | * Convert from Jacobian projective coordinates (X, Y, Z) into | ||
| 406 | * (X/Z^2, Y/Z^3). | ||
| 407 | */ | ||
| 408 | |||
| 409 | if (!ec_decode_scalar(group, z, point->Z, ctx)) | ||
| 410 | goto err; | ||
| 411 | |||
| 412 | if (BN_is_one(z)) { | ||
| 413 | if (!ec_decode_scalar(group, x, point->X, ctx)) | ||
| 414 | goto err; | ||
| 415 | if (!ec_decode_scalar(group, y, point->Y, ctx)) | ||
| 416 | goto err; | ||
| 417 | goto done; | ||
| 418 | } | ||
| 419 | |||
| 420 | if (BN_mod_inverse_ct(Z_1, z, group->p, ctx) == NULL) { | ||
| 421 | ECerror(ERR_R_BN_LIB); | ||
| 422 | goto err; | ||
| 423 | } | ||
| 424 | if (group->meth->field_encode == NULL) { | ||
| 425 | /* field_sqr works on standard representation */ | ||
| 426 | if (!ec_field_sqr(group, Z_2, Z_1, ctx)) | ||
| 427 | goto err; | ||
| 428 | } else { | ||
| 429 | if (!BN_mod_sqr(Z_2, Z_1, group->p, ctx)) | ||
| 430 | goto err; | ||
| 431 | } | ||
| 432 | |||
| 433 | if (x != NULL) { | ||
| 434 | /* | ||
| 435 | * in the Montgomery case, field_mul will cancel out | ||
| 436 | * Montgomery factor in X: | ||
| 437 | */ | ||
| 438 | if (!ec_field_mul(group, x, point->X, Z_2, ctx)) | ||
| 439 | goto err; | ||
| 440 | } | ||
| 441 | if (y != NULL) { | ||
| 442 | if (group->meth->field_encode == NULL) { | ||
| 443 | /* field_mul works on standard representation */ | ||
| 444 | if (!ec_field_mul(group, Z_3, Z_2, Z_1, ctx)) | ||
| 445 | goto err; | ||
| 446 | } else { | ||
| 447 | if (!BN_mod_mul(Z_3, Z_2, Z_1, group->p, ctx)) | ||
| 448 | goto err; | ||
| 449 | } | ||
| 450 | |||
| 451 | /* | ||
| 452 | * in the Montgomery case, field_mul will cancel out | ||
| 453 | * Montgomery factor in Y: | ||
| 454 | */ | ||
| 455 | if (!ec_field_mul(group, y, point->Y, Z_3, ctx)) | ||
| 456 | goto err; | ||
| 457 | } | ||
| 458 | |||
| 459 | done: | ||
| 460 | ret = 1; | ||
| 461 | |||
| 462 | err: | ||
| 463 | BN_CTX_end(ctx); | ||
| 464 | |||
| 465 | return ret; | ||
| 466 | } | ||
| 467 | |||
| 468 | static int | ||
| 469 | ec_points_make_affine(const EC_GROUP *group, size_t num, EC_POINT **points, | ||
| 470 | BN_CTX *ctx) | ||
| 471 | { | ||
| 472 | BIGNUM **prod_Z = NULL; | ||
| 473 | BIGNUM *one, *tmp, *tmp_Z; | ||
| 474 | size_t i; | ||
| 475 | int ret = 0; | ||
| 476 | |||
| 477 | if (num == 0) | ||
| 478 | return 1; | ||
| 479 | |||
| 480 | BN_CTX_start(ctx); | ||
| 481 | |||
| 482 | if ((one = BN_CTX_get(ctx)) == NULL) | ||
| 483 | goto err; | ||
| 484 | if ((tmp = BN_CTX_get(ctx)) == NULL) | ||
| 485 | goto err; | ||
| 486 | if ((tmp_Z = BN_CTX_get(ctx)) == NULL) | ||
| 487 | goto err; | ||
| 488 | |||
| 489 | if (!ec_encode_scalar(group, one, BN_value_one(), ctx)) | ||
| 490 | goto err; | ||
| 491 | |||
| 492 | if ((prod_Z = calloc(num, sizeof *prod_Z)) == NULL) | ||
| 493 | goto err; | ||
| 494 | for (i = 0; i < num; i++) { | ||
| 495 | if ((prod_Z[i] = BN_CTX_get(ctx)) == NULL) | ||
| 496 | goto err; | ||
| 497 | } | ||
| 498 | |||
| 499 | /* | ||
| 500 | * Set prod_Z[i] to the product of points[0]->Z, ..., points[i]->Z, | ||
| 501 | * skipping any zero-valued inputs (pretend that they're 1). | ||
| 502 | */ | ||
| 503 | |||
| 504 | if (!BN_is_zero(points[0]->Z)) { | ||
| 505 | if (!bn_copy(prod_Z[0], points[0]->Z)) | ||
| 506 | goto err; | ||
| 507 | } else { | ||
| 508 | if (!bn_copy(prod_Z[0], one)) | ||
| 509 | goto err; | ||
| 510 | } | ||
| 511 | |||
| 512 | for (i = 1; i < num; i++) { | ||
| 513 | if (!BN_is_zero(points[i]->Z)) { | ||
| 514 | if (!ec_field_mul(group, prod_Z[i], | ||
| 515 | prod_Z[i - 1], points[i]->Z, ctx)) | ||
| 516 | goto err; | ||
| 517 | } else { | ||
| 518 | if (!bn_copy(prod_Z[i], prod_Z[i - 1])) | ||
| 519 | goto err; | ||
| 520 | } | ||
| 521 | } | ||
| 522 | |||
| 523 | /* | ||
| 524 | * Now use a single explicit inversion to replace every non-zero | ||
| 525 | * points[i]->Z by its inverse. | ||
| 526 | */ | ||
| 527 | if (!BN_mod_inverse_nonct(tmp, prod_Z[num - 1], group->p, ctx)) { | ||
| 528 | ECerror(ERR_R_BN_LIB); | ||
| 529 | goto err; | ||
| 530 | } | ||
| 531 | |||
| 532 | if (group->meth->field_encode != NULL) { | ||
| 533 | /* | ||
| 534 | * In the Montgomery case we just turned R*H (representing H) | ||
| 535 | * into 1/(R*H), but we need R*(1/H) (representing 1/H); i.e., | ||
| 536 | * we need to multiply by the Montgomery factor twice. | ||
| 537 | */ | ||
| 538 | if (!group->meth->field_encode(group, tmp, tmp, ctx)) | ||
| 539 | goto err; | ||
| 540 | if (!group->meth->field_encode(group, tmp, tmp, ctx)) | ||
| 541 | goto err; | ||
| 542 | } | ||
| 543 | |||
| 544 | for (i = num - 1; i > 0; i--) { | ||
| 545 | /* | ||
| 546 | * Loop invariant: tmp is the product of the inverses of | ||
| 547 | * points[0]->Z, ..., points[i]->Z (zero-valued inputs skipped). | ||
| 548 | */ | ||
| 549 | if (BN_is_zero(points[i]->Z)) | ||
| 550 | continue; | ||
| 551 | |||
| 552 | /* Set tmp_Z to the inverse of points[i]->Z. */ | ||
| 553 | if (!ec_field_mul(group, tmp_Z, prod_Z[i - 1], tmp, ctx)) | ||
| 554 | goto err; | ||
| 555 | /* Adjust tmp to satisfy loop invariant. */ | ||
| 556 | if (!ec_field_mul(group, tmp, tmp, points[i]->Z, ctx)) | ||
| 557 | goto err; | ||
| 558 | /* Replace points[i]->Z by its inverse. */ | ||
| 559 | if (!bn_copy(points[i]->Z, tmp_Z)) | ||
| 560 | goto err; | ||
| 561 | } | ||
| 562 | |||
| 563 | if (!BN_is_zero(points[0]->Z)) { | ||
| 564 | /* Replace points[0]->Z by its inverse. */ | ||
| 565 | if (!bn_copy(points[0]->Z, tmp)) | ||
| 566 | goto err; | ||
| 567 | } | ||
| 568 | |||
| 569 | /* Finally, fix up the X and Y coordinates for all points. */ | ||
| 570 | for (i = 0; i < num; i++) { | ||
| 571 | EC_POINT *p = points[i]; | ||
| 572 | |||
| 573 | if (BN_is_zero(p->Z)) | ||
| 574 | continue; | ||
| 575 | |||
| 576 | /* turn (X, Y, 1/Z) into (X/Z^2, Y/Z^3, 1) */ | ||
| 577 | |||
| 578 | if (!ec_field_sqr(group, tmp, p->Z, ctx)) | ||
| 579 | goto err; | ||
| 580 | if (!ec_field_mul(group, p->X, p->X, tmp, ctx)) | ||
| 581 | goto err; | ||
| 582 | |||
| 583 | if (!ec_field_mul(group, tmp, tmp, p->Z, ctx)) | ||
| 584 | goto err; | ||
| 585 | if (!ec_field_mul(group, p->Y, p->Y, tmp, ctx)) | ||
| 586 | goto err; | ||
| 587 | |||
| 588 | if (!bn_copy(p->Z, one)) | ||
| 589 | goto err; | ||
| 590 | p->Z_is_one = 1; | ||
| 591 | } | ||
| 592 | |||
| 593 | ret = 1; | ||
| 594 | |||
| 595 | err: | ||
| 596 | BN_CTX_end(ctx); | ||
| 597 | free(prod_Z); | ||
| 598 | |||
| 599 | return ret; | ||
| 600 | } | ||
| 601 | |||
| 602 | static int | ||
| 603 | ec_add(const EC_GROUP *group, EC_POINT *r, const EC_POINT *a, const EC_POINT *b, | ||
| 604 | BN_CTX *ctx) | ||
| 605 | { | ||
| 606 | BIGNUM *n0, *n1, *n2, *n3, *n4, *n5, *n6; | ||
| 607 | int ret = 0; | ||
| 608 | |||
| 609 | if (a == b) | ||
| 610 | return EC_POINT_dbl(group, r, a, ctx); | ||
| 611 | if (EC_POINT_is_at_infinity(group, a)) | ||
| 612 | return EC_POINT_copy(r, b); | ||
| 613 | if (EC_POINT_is_at_infinity(group, b)) | ||
| 614 | return EC_POINT_copy(r, a); | ||
| 615 | |||
| 616 | BN_CTX_start(ctx); | ||
| 617 | |||
| 618 | if ((n0 = BN_CTX_get(ctx)) == NULL) | ||
| 619 | goto end; | ||
| 620 | if ((n1 = BN_CTX_get(ctx)) == NULL) | ||
| 621 | goto end; | ||
| 622 | if ((n2 = BN_CTX_get(ctx)) == NULL) | ||
| 623 | goto end; | ||
| 624 | if ((n3 = BN_CTX_get(ctx)) == NULL) | ||
| 625 | goto end; | ||
| 626 | if ((n4 = BN_CTX_get(ctx)) == NULL) | ||
| 627 | goto end; | ||
| 628 | if ((n5 = BN_CTX_get(ctx)) == NULL) | ||
| 629 | goto end; | ||
| 630 | if ((n6 = BN_CTX_get(ctx)) == NULL) | ||
| 631 | goto end; | ||
| 632 | |||
| 633 | /* | ||
| 634 | * Note that in this function we must not read components of 'a' or | ||
| 635 | * 'b' once we have written the corresponding components of 'r'. ('r' | ||
| 636 | * might be one of 'a' or 'b'.) | ||
| 637 | */ | ||
| 638 | |||
| 639 | /* n1, n2 */ | ||
| 640 | if (b->Z_is_one) { | ||
| 641 | if (!bn_copy(n1, a->X)) | ||
| 642 | goto end; | ||
| 643 | if (!bn_copy(n2, a->Y)) | ||
| 644 | goto end; | ||
| 645 | /* n1 = X_a */ | ||
| 646 | /* n2 = Y_a */ | ||
| 647 | } else { | ||
| 648 | if (!ec_field_sqr(group, n0, b->Z, ctx)) | ||
| 649 | goto end; | ||
| 650 | if (!ec_field_mul(group, n1, a->X, n0, ctx)) | ||
| 651 | goto end; | ||
| 652 | /* n1 = X_a * Z_b^2 */ | ||
| 653 | |||
| 654 | if (!ec_field_mul(group, n0, n0, b->Z, ctx)) | ||
| 655 | goto end; | ||
| 656 | if (!ec_field_mul(group, n2, a->Y, n0, ctx)) | ||
| 657 | goto end; | ||
| 658 | /* n2 = Y_a * Z_b^3 */ | ||
| 659 | } | ||
| 660 | |||
| 661 | /* n3, n4 */ | ||
| 662 | if (a->Z_is_one) { | ||
| 663 | if (!bn_copy(n3, b->X)) | ||
| 664 | goto end; | ||
| 665 | if (!bn_copy(n4, b->Y)) | ||
| 666 | goto end; | ||
| 667 | /* n3 = X_b */ | ||
| 668 | /* n4 = Y_b */ | ||
| 669 | } else { | ||
| 670 | if (!ec_field_sqr(group, n0, a->Z, ctx)) | ||
| 671 | goto end; | ||
| 672 | if (!ec_field_mul(group, n3, b->X, n0, ctx)) | ||
| 673 | goto end; | ||
| 674 | /* n3 = X_b * Z_a^2 */ | ||
| 675 | |||
| 676 | if (!ec_field_mul(group, n0, n0, a->Z, ctx)) | ||
| 677 | goto end; | ||
| 678 | if (!ec_field_mul(group, n4, b->Y, n0, ctx)) | ||
| 679 | goto end; | ||
| 680 | /* n4 = Y_b * Z_a^3 */ | ||
| 681 | } | ||
| 682 | |||
| 683 | /* n5, n6 */ | ||
| 684 | if (!BN_mod_sub_quick(n5, n1, n3, group->p)) | ||
| 685 | goto end; | ||
| 686 | if (!BN_mod_sub_quick(n6, n2, n4, group->p)) | ||
| 687 | goto end; | ||
| 688 | /* n5 = n1 - n3 */ | ||
| 689 | /* n6 = n2 - n4 */ | ||
| 690 | |||
| 691 | if (BN_is_zero(n5)) { | ||
| 692 | if (BN_is_zero(n6)) { | ||
| 693 | /* a is the same point as b */ | ||
| 694 | BN_CTX_end(ctx); | ||
| 695 | ret = EC_POINT_dbl(group, r, a, ctx); | ||
| 696 | ctx = NULL; | ||
| 697 | goto end; | ||
| 698 | } else { | ||
| 699 | /* a is the inverse of b */ | ||
| 700 | BN_zero(r->Z); | ||
| 701 | r->Z_is_one = 0; | ||
| 702 | ret = 1; | ||
| 703 | goto end; | ||
| 704 | } | ||
| 705 | } | ||
| 706 | /* 'n7', 'n8' */ | ||
| 707 | if (!BN_mod_add_quick(n1, n1, n3, group->p)) | ||
| 708 | goto end; | ||
| 709 | if (!BN_mod_add_quick(n2, n2, n4, group->p)) | ||
| 710 | goto end; | ||
| 711 | /* 'n7' = n1 + n3 */ | ||
| 712 | /* 'n8' = n2 + n4 */ | ||
| 713 | |||
| 714 | /* Z_r */ | ||
| 715 | if (a->Z_is_one && b->Z_is_one) { | ||
| 716 | if (!bn_copy(r->Z, n5)) | ||
| 717 | goto end; | ||
| 718 | } else { | ||
| 719 | if (a->Z_is_one) { | ||
| 720 | if (!bn_copy(n0, b->Z)) | ||
| 721 | goto end; | ||
| 722 | } else if (b->Z_is_one) { | ||
| 723 | if (!bn_copy(n0, a->Z)) | ||
| 724 | goto end; | ||
| 725 | } else { | ||
| 726 | if (!ec_field_mul(group, n0, a->Z, b->Z, ctx)) | ||
| 727 | goto end; | ||
| 728 | } | ||
| 729 | if (!ec_field_mul(group, r->Z, n0, n5, ctx)) | ||
| 730 | goto end; | ||
| 731 | } | ||
| 732 | r->Z_is_one = 0; | ||
| 733 | /* Z_r = Z_a * Z_b * n5 */ | ||
| 734 | |||
| 735 | /* X_r */ | ||
| 736 | if (!ec_field_sqr(group, n0, n6, ctx)) | ||
| 737 | goto end; | ||
| 738 | if (!ec_field_sqr(group, n4, n5, ctx)) | ||
| 739 | goto end; | ||
| 740 | if (!ec_field_mul(group, n3, n1, n4, ctx)) | ||
| 741 | goto end; | ||
| 742 | if (!BN_mod_sub_quick(r->X, n0, n3, group->p)) | ||
| 743 | goto end; | ||
| 744 | /* X_r = n6^2 - n5^2 * 'n7' */ | ||
| 745 | |||
| 746 | /* 'n9' */ | ||
| 747 | if (!BN_mod_lshift1_quick(n0, r->X, group->p)) | ||
| 748 | goto end; | ||
| 749 | if (!BN_mod_sub_quick(n0, n3, n0, group->p)) | ||
| 750 | goto end; | ||
| 751 | /* n9 = n5^2 * 'n7' - 2 * X_r */ | ||
| 752 | |||
| 753 | /* Y_r */ | ||
| 754 | if (!ec_field_mul(group, n0, n0, n6, ctx)) | ||
| 755 | goto end; | ||
| 756 | if (!ec_field_mul(group, n5, n4, n5, ctx)) | ||
| 757 | goto end; /* now n5 is n5^3 */ | ||
| 758 | if (!ec_field_mul(group, n1, n2, n5, ctx)) | ||
| 759 | goto end; | ||
| 760 | if (!BN_mod_sub_quick(n0, n0, n1, group->p)) | ||
| 761 | goto end; | ||
| 762 | if (BN_is_odd(n0)) | ||
| 763 | if (!BN_add(n0, n0, group->p)) | ||
| 764 | goto end; | ||
| 765 | /* now 0 <= n0 < 2*p, and n0 is even */ | ||
| 766 | if (!BN_rshift1(r->Y, n0)) | ||
| 767 | goto end; | ||
| 768 | /* Y_r = (n6 * 'n9' - 'n8' * 'n5^3') / 2 */ | ||
| 769 | |||
| 770 | ret = 1; | ||
| 771 | |||
| 772 | end: | ||
| 773 | BN_CTX_end(ctx); | ||
| 774 | |||
| 775 | return ret; | ||
| 776 | } | ||
| 777 | |||
| 778 | static int | ||
| 779 | ec_dbl(const EC_GROUP *group, EC_POINT *r, const EC_POINT *a, BN_CTX *ctx) | ||
| 780 | { | ||
| 781 | BIGNUM *n0, *n1, *n2, *n3; | ||
| 782 | int ret = 0; | ||
| 783 | |||
| 784 | if (EC_POINT_is_at_infinity(group, a)) | ||
| 785 | return EC_POINT_set_to_infinity(group, r); | ||
| 786 | |||
| 787 | BN_CTX_start(ctx); | ||
| 788 | |||
| 789 | if ((n0 = BN_CTX_get(ctx)) == NULL) | ||
| 790 | goto err; | ||
| 791 | if ((n1 = BN_CTX_get(ctx)) == NULL) | ||
| 792 | goto err; | ||
| 793 | if ((n2 = BN_CTX_get(ctx)) == NULL) | ||
| 794 | goto err; | ||
| 795 | if ((n3 = BN_CTX_get(ctx)) == NULL) | ||
| 796 | goto err; | ||
| 797 | |||
| 798 | /* | ||
| 799 | * Note that in this function we must not read components of 'a' once | ||
| 800 | * we have written the corresponding components of 'r'. ('r' might | ||
| 801 | * the same as 'a'.) | ||
| 802 | */ | ||
| 803 | |||
| 804 | /* n1 */ | ||
| 805 | if (a->Z_is_one) { | ||
| 806 | if (!ec_field_sqr(group, n0, a->X, ctx)) | ||
| 807 | goto err; | ||
| 808 | if (!BN_mod_lshift1_quick(n1, n0, group->p)) | ||
| 809 | goto err; | ||
| 810 | if (!BN_mod_add_quick(n0, n0, n1, group->p)) | ||
| 811 | goto err; | ||
| 812 | if (!BN_mod_add_quick(n1, n0, group->a, group->p)) | ||
| 813 | goto err; | ||
| 814 | /* n1 = 3 * X_a^2 + a_curve */ | ||
| 815 | } else if (group->a_is_minus3) { | ||
| 816 | if (!ec_field_sqr(group, n1, a->Z, ctx)) | ||
| 817 | goto err; | ||
| 818 | if (!BN_mod_add_quick(n0, a->X, n1, group->p)) | ||
| 819 | goto err; | ||
| 820 | if (!BN_mod_sub_quick(n2, a->X, n1, group->p)) | ||
| 821 | goto err; | ||
| 822 | if (!ec_field_mul(group, n1, n0, n2, ctx)) | ||
| 823 | goto err; | ||
| 824 | if (!BN_mod_lshift1_quick(n0, n1, group->p)) | ||
| 825 | goto err; | ||
| 826 | if (!BN_mod_add_quick(n1, n0, n1, group->p)) | ||
| 827 | goto err; | ||
| 828 | /* | ||
| 829 | * n1 = 3 * (X_a + Z_a^2) * (X_a - Z_a^2) = 3 * X_a^2 - 3 * | ||
| 830 | * Z_a^4 | ||
| 831 | */ | ||
| 832 | } else { | ||
| 833 | if (!ec_field_sqr(group, n0, a->X, ctx)) | ||
| 834 | goto err; | ||
| 835 | if (!BN_mod_lshift1_quick(n1, n0, group->p)) | ||
| 836 | goto err; | ||
| 837 | if (!BN_mod_add_quick(n0, n0, n1, group->p)) | ||
| 838 | goto err; | ||
| 839 | if (!ec_field_sqr(group, n1, a->Z, ctx)) | ||
| 840 | goto err; | ||
| 841 | if (!ec_field_sqr(group, n1, n1, ctx)) | ||
| 842 | goto err; | ||
| 843 | if (!ec_field_mul(group, n1, n1, group->a, ctx)) | ||
| 844 | goto err; | ||
| 845 | if (!BN_mod_add_quick(n1, n1, n0, group->p)) | ||
| 846 | goto err; | ||
| 847 | /* n1 = 3 * X_a^2 + a_curve * Z_a^4 */ | ||
| 848 | } | ||
| 849 | |||
| 850 | /* Z_r */ | ||
| 851 | if (a->Z_is_one) { | ||
| 852 | if (!bn_copy(n0, a->Y)) | ||
| 853 | goto err; | ||
| 854 | } else { | ||
| 855 | if (!ec_field_mul(group, n0, a->Y, a->Z, ctx)) | ||
| 856 | goto err; | ||
| 857 | } | ||
| 858 | if (!BN_mod_lshift1_quick(r->Z, n0, group->p)) | ||
| 859 | goto err; | ||
| 860 | r->Z_is_one = 0; | ||
| 861 | /* Z_r = 2 * Y_a * Z_a */ | ||
| 862 | |||
| 863 | /* n2 */ | ||
| 864 | if (!ec_field_sqr(group, n3, a->Y, ctx)) | ||
| 865 | goto err; | ||
| 866 | if (!ec_field_mul(group, n2, a->X, n3, ctx)) | ||
| 867 | goto err; | ||
| 868 | if (!BN_mod_lshift_quick(n2, n2, 2, group->p)) | ||
| 869 | goto err; | ||
| 870 | /* n2 = 4 * X_a * Y_a^2 */ | ||
| 871 | |||
| 872 | /* X_r */ | ||
| 873 | if (!BN_mod_lshift1_quick(n0, n2, group->p)) | ||
| 874 | goto err; | ||
| 875 | if (!ec_field_sqr(group, r->X, n1, ctx)) | ||
| 876 | goto err; | ||
| 877 | if (!BN_mod_sub_quick(r->X, r->X, n0, group->p)) | ||
| 878 | goto err; | ||
| 879 | /* X_r = n1^2 - 2 * n2 */ | ||
| 880 | |||
| 881 | /* n3 */ | ||
| 882 | if (!ec_field_sqr(group, n0, n3, ctx)) | ||
| 883 | goto err; | ||
| 884 | if (!BN_mod_lshift_quick(n3, n0, 3, group->p)) | ||
| 885 | goto err; | ||
| 886 | /* n3 = 8 * Y_a^4 */ | ||
| 887 | |||
| 888 | /* Y_r */ | ||
| 889 | if (!BN_mod_sub_quick(n0, n2, r->X, group->p)) | ||
| 890 | goto err; | ||
| 891 | if (!ec_field_mul(group, n0, n1, n0, ctx)) | ||
| 892 | goto err; | ||
| 893 | if (!BN_mod_sub_quick(r->Y, n0, n3, group->p)) | ||
| 894 | goto err; | ||
| 895 | /* Y_r = n1 * (n2 - X_r) - n3 */ | ||
| 896 | |||
| 897 | ret = 1; | ||
| 898 | |||
| 899 | err: | ||
| 900 | BN_CTX_end(ctx); | ||
| 901 | |||
| 902 | return ret; | ||
| 903 | } | ||
| 904 | |||
| 905 | static int | ||
| 906 | ec_invert(const EC_GROUP *group, EC_POINT *point, BN_CTX *ctx) | ||
| 907 | { | ||
| 908 | if (EC_POINT_is_at_infinity(group, point) || BN_is_zero(point->Y)) | ||
| 909 | /* point is its own inverse */ | ||
| 910 | return 1; | ||
| 911 | |||
| 912 | return BN_usub(point->Y, group->p, point->Y); | ||
| 913 | } | ||
| 914 | |||
| 915 | /* | ||
| 916 | * Apply randomization of EC point Jacobian projective coordinates: | ||
| 917 | * | ||
| 918 | * (X, Y, Z) = (lambda^2 * X, lambda^3 * Y, lambda * Z) | ||
| 919 | * | ||
| 920 | * where lambda is in the interval [1, p). | ||
| 921 | */ | ||
| 922 | static int | ||
| 923 | ec_blind_coordinates(const EC_GROUP *group, EC_POINT *p, BN_CTX *ctx) | ||
| 924 | { | ||
| 925 | BIGNUM *lambda = NULL; | ||
| 926 | BIGNUM *tmp = NULL; | ||
| 927 | int ret = 0; | ||
| 928 | |||
| 929 | BN_CTX_start(ctx); | ||
| 930 | if ((lambda = BN_CTX_get(ctx)) == NULL) | ||
| 931 | goto err; | ||
| 932 | if ((tmp = BN_CTX_get(ctx)) == NULL) | ||
| 933 | goto err; | ||
| 934 | |||
| 935 | /* Generate lambda in [1, p). */ | ||
| 936 | if (!bn_rand_interval(lambda, 1, group->p)) | ||
| 937 | goto err; | ||
| 938 | |||
| 939 | if (group->meth->field_encode != NULL && | ||
| 940 | !group->meth->field_encode(group, lambda, lambda, ctx)) | ||
| 941 | goto err; | ||
| 942 | |||
| 943 | /* Z = lambda * Z */ | ||
| 944 | if (!ec_field_mul(group, p->Z, lambda, p->Z, ctx)) | ||
| 945 | goto err; | ||
| 946 | |||
| 947 | /* tmp = lambda^2 */ | ||
| 948 | if (!ec_field_sqr(group, tmp, lambda, ctx)) | ||
| 949 | goto err; | ||
| 950 | |||
| 951 | /* X = lambda^2 * X */ | ||
| 952 | if (!ec_field_mul(group, p->X, tmp, p->X, ctx)) | ||
| 953 | goto err; | ||
| 954 | |||
| 955 | /* tmp = lambda^3 */ | ||
| 956 | if (!ec_field_mul(group, tmp, tmp, lambda, ctx)) | ||
| 957 | goto err; | ||
| 958 | |||
| 959 | /* Y = lambda^3 * Y */ | ||
| 960 | if (!ec_field_mul(group, p->Y, tmp, p->Y, ctx)) | ||
| 961 | goto err; | ||
| 962 | |||
| 963 | /* Disable optimized arithmetics after replacing Z by lambda * Z. */ | ||
| 964 | p->Z_is_one = 0; | ||
| 965 | |||
| 966 | ret = 1; | ||
| 967 | |||
| 968 | err: | ||
| 969 | BN_CTX_end(ctx); | ||
| 970 | return ret; | ||
| 971 | } | ||
| 972 | |||
| 973 | #define EC_POINT_BN_set_flags(P, flags) do { \ | ||
| 974 | BN_set_flags((P)->X, (flags)); \ | ||
| 975 | BN_set_flags((P)->Y, (flags)); \ | ||
| 976 | BN_set_flags((P)->Z, (flags)); \ | ||
| 977 | } while(0) | ||
| 978 | |||
| 979 | #define EC_POINT_CSWAP(c, a, b, w, t) do { \ | ||
| 980 | if (!BN_swap_ct(c, (a)->X, (b)->X, w) || \ | ||
| 981 | !BN_swap_ct(c, (a)->Y, (b)->Y, w) || \ | ||
| 982 | !BN_swap_ct(c, (a)->Z, (b)->Z, w)) \ | ||
| 983 | goto err; \ | ||
| 984 | t = ((a)->Z_is_one ^ (b)->Z_is_one) & (c); \ | ||
| 985 | (a)->Z_is_one ^= (t); \ | ||
| 986 | (b)->Z_is_one ^= (t); \ | ||
| 987 | } while(0) | ||
| 988 | |||
| 989 | /* | ||
| 990 | * This function computes (in constant time) a point multiplication over the | ||
| 991 | * EC group. | ||
| 992 | * | ||
| 993 | * At a high level, it is Montgomery ladder with conditional swaps. | ||
| 994 | * | ||
| 995 | * It performs either a fixed point multiplication | ||
| 996 | * (scalar * generator) | ||
| 997 | * when point is NULL, or a variable point multiplication | ||
| 998 | * (scalar * point) | ||
| 999 | * when point is not NULL. | ||
| 1000 | * | ||
| 1001 | * scalar should be in the range [0,n) otherwise all constant time bets are off. | ||
| 1002 | * | ||
| 1003 | * NB: This says nothing about EC_POINT_add and EC_POINT_dbl, | ||
| 1004 | * which of course are not constant time themselves. | ||
| 1005 | * | ||
| 1006 | * The product is stored in r. | ||
| 1007 | * | ||
| 1008 | * Returns 1 on success, 0 otherwise. | ||
| 1009 | */ | ||
| 1010 | static int | ||
| 1011 | ec_mul_ct(const EC_GROUP *group, EC_POINT *r, const BIGNUM *scalar, | ||
| 1012 | const EC_POINT *point, BN_CTX *ctx) | ||
| 1013 | { | ||
| 1014 | int i, cardinality_bits, group_top, kbit, pbit, Z_is_one; | ||
| 1015 | EC_POINT *s = NULL; | ||
| 1016 | BIGNUM *k = NULL; | ||
| 1017 | BIGNUM *lambda = NULL; | ||
| 1018 | BIGNUM *cardinality = NULL; | ||
| 1019 | int ret = 0; | ||
| 1020 | |||
| 1021 | BN_CTX_start(ctx); | ||
| 1022 | |||
| 1023 | if ((s = EC_POINT_dup(point, group)) == NULL) | ||
| 1024 | goto err; | ||
| 1025 | |||
| 1026 | EC_POINT_BN_set_flags(s, BN_FLG_CONSTTIME); | ||
| 1027 | |||
| 1028 | if ((cardinality = BN_CTX_get(ctx)) == NULL) | ||
| 1029 | goto err; | ||
| 1030 | if ((lambda = BN_CTX_get(ctx)) == NULL) | ||
| 1031 | goto err; | ||
| 1032 | if ((k = BN_CTX_get(ctx)) == NULL) | ||
| 1033 | goto err; | ||
| 1034 | if (!BN_mul(cardinality, group->order, group->cofactor, ctx)) | ||
| 1035 | goto err; | ||
| 1036 | |||
| 1037 | /* | ||
| 1038 | * Group cardinalities are often on a word boundary. | ||
| 1039 | * So when we pad the scalar, some timing diff might | ||
| 1040 | * pop if it needs to be expanded due to carries. | ||
| 1041 | * So expand ahead of time. | ||
| 1042 | */ | ||
| 1043 | cardinality_bits = BN_num_bits(cardinality); | ||
| 1044 | group_top = cardinality->top; | ||
| 1045 | if (!bn_wexpand(k, group_top + 2) || | ||
| 1046 | !bn_wexpand(lambda, group_top + 2)) | ||
| 1047 | goto err; | ||
| 1048 | |||
| 1049 | if (!bn_copy(k, scalar)) | ||
| 1050 | goto err; | ||
| 1051 | |||
| 1052 | BN_set_flags(k, BN_FLG_CONSTTIME); | ||
| 1053 | |||
| 1054 | if (BN_num_bits(k) > cardinality_bits || BN_is_negative(k)) { | ||
| 1055 | /* | ||
| 1056 | * This is an unusual input, and we don't guarantee | ||
| 1057 | * constant-timeness | ||
| 1058 | */ | ||
| 1059 | if (!BN_nnmod(k, k, cardinality, ctx)) | ||
| 1060 | goto err; | ||
| 1061 | } | ||
| 1062 | |||
| 1063 | if (!BN_add(lambda, k, cardinality)) | ||
| 1064 | goto err; | ||
| 1065 | BN_set_flags(lambda, BN_FLG_CONSTTIME); | ||
| 1066 | if (!BN_add(k, lambda, cardinality)) | ||
| 1067 | goto err; | ||
| 1068 | /* | ||
| 1069 | * lambda := scalar + cardinality | ||
| 1070 | * k := scalar + 2*cardinality | ||
| 1071 | */ | ||
| 1072 | kbit = BN_is_bit_set(lambda, cardinality_bits); | ||
| 1073 | if (!BN_swap_ct(kbit, k, lambda, group_top + 2)) | ||
| 1074 | goto err; | ||
| 1075 | |||
| 1076 | group_top = group->p->top; | ||
| 1077 | if (!bn_wexpand(s->X, group_top) || | ||
| 1078 | !bn_wexpand(s->Y, group_top) || | ||
| 1079 | !bn_wexpand(s->Z, group_top) || | ||
| 1080 | !bn_wexpand(r->X, group_top) || | ||
| 1081 | !bn_wexpand(r->Y, group_top) || | ||
| 1082 | !bn_wexpand(r->Z, group_top)) | ||
| 1083 | goto err; | ||
| 1084 | |||
| 1085 | /* | ||
| 1086 | * Apply coordinate blinding for EC_POINT if the underlying EC_METHOD | ||
| 1087 | * implements it. | ||
| 1088 | */ | ||
| 1089 | if (!ec_blind_coordinates(group, s, ctx)) | ||
| 1090 | goto err; | ||
| 1091 | |||
| 1092 | /* top bit is a 1, in a fixed pos */ | ||
| 1093 | if (!EC_POINT_copy(r, s)) | ||
| 1094 | goto err; | ||
| 1095 | |||
| 1096 | EC_POINT_BN_set_flags(r, BN_FLG_CONSTTIME); | ||
| 1097 | |||
| 1098 | if (!EC_POINT_dbl(group, s, s, ctx)) | ||
| 1099 | goto err; | ||
| 1100 | |||
| 1101 | pbit = 0; | ||
| 1102 | |||
| 1103 | /* | ||
| 1104 | * The ladder step, with branches, is | ||
| 1105 | * | ||
| 1106 | * k[i] == 0: S = add(R, S), R = dbl(R) | ||
| 1107 | * k[i] == 1: R = add(S, R), S = dbl(S) | ||
| 1108 | * | ||
| 1109 | * Swapping R, S conditionally on k[i] leaves you with state | ||
| 1110 | * | ||
| 1111 | * k[i] == 0: T, U = R, S | ||
| 1112 | * k[i] == 1: T, U = S, R | ||
| 1113 | * | ||
| 1114 | * Then perform the ECC ops. | ||
| 1115 | * | ||
| 1116 | * U = add(T, U) | ||
| 1117 | * T = dbl(T) | ||
| 1118 | * | ||
| 1119 | * Which leaves you with state | ||
| 1120 | * | ||
| 1121 | * k[i] == 0: U = add(R, S), T = dbl(R) | ||
| 1122 | * k[i] == 1: U = add(S, R), T = dbl(S) | ||
| 1123 | * | ||
| 1124 | * Swapping T, U conditionally on k[i] leaves you with state | ||
| 1125 | * | ||
| 1126 | * k[i] == 0: R, S = T, U | ||
| 1127 | * k[i] == 1: R, S = U, T | ||
| 1128 | * | ||
| 1129 | * Which leaves you with state | ||
| 1130 | * | ||
| 1131 | * k[i] == 0: S = add(R, S), R = dbl(R) | ||
| 1132 | * k[i] == 1: R = add(S, R), S = dbl(S) | ||
| 1133 | * | ||
| 1134 | * So we get the same logic, but instead of a branch it's a | ||
| 1135 | * conditional swap, followed by ECC ops, then another conditional swap. | ||
| 1136 | * | ||
| 1137 | * Optimization: The end of iteration i and start of i-1 looks like | ||
| 1138 | * | ||
| 1139 | * ... | ||
| 1140 | * CSWAP(k[i], R, S) | ||
| 1141 | * ECC | ||
| 1142 | * CSWAP(k[i], R, S) | ||
| 1143 | * (next iteration) | ||
| 1144 | * CSWAP(k[i-1], R, S) | ||
| 1145 | * ECC | ||
| 1146 | * CSWAP(k[i-1], R, S) | ||
| 1147 | * ... | ||
| 1148 | * | ||
| 1149 | * So instead of two contiguous swaps, you can merge the condition | ||
| 1150 | * bits and do a single swap. | ||
| 1151 | * | ||
| 1152 | * k[i] k[i-1] Outcome | ||
| 1153 | * 0 0 No Swap | ||
| 1154 | * 0 1 Swap | ||
| 1155 | * 1 0 Swap | ||
| 1156 | * 1 1 No Swap | ||
| 1157 | * | ||
| 1158 | * This is XOR. pbit tracks the previous bit of k. | ||
| 1159 | */ | ||
| 1160 | |||
| 1161 | for (i = cardinality_bits - 1; i >= 0; i--) { | ||
| 1162 | kbit = BN_is_bit_set(k, i) ^ pbit; | ||
| 1163 | EC_POINT_CSWAP(kbit, r, s, group_top, Z_is_one); | ||
| 1164 | if (!EC_POINT_add(group, s, r, s, ctx)) | ||
| 1165 | goto err; | ||
| 1166 | if (!EC_POINT_dbl(group, r, r, ctx)) | ||
| 1167 | goto err; | ||
| 1168 | /* | ||
| 1169 | * pbit logic merges this cswap with that of the | ||
| 1170 | * next iteration | ||
| 1171 | */ | ||
| 1172 | pbit ^= kbit; | ||
| 1173 | } | ||
| 1174 | /* one final cswap to move the right value into r */ | ||
| 1175 | EC_POINT_CSWAP(pbit, r, s, group_top, Z_is_one); | ||
| 1176 | |||
| 1177 | ret = 1; | ||
| 1178 | |||
| 1179 | err: | ||
| 1180 | EC_POINT_free(s); | ||
| 1181 | BN_CTX_end(ctx); | ||
| 1182 | |||
| 1183 | return ret; | ||
| 1184 | } | ||
| 1185 | |||
| 1186 | #undef EC_POINT_BN_set_flags | ||
| 1187 | #undef EC_POINT_CSWAP | ||
| 1188 | |||
| 1189 | static int | ||
| 1190 | ec_mul_single_ct(const EC_GROUP *group, EC_POINT *r, const BIGNUM *scalar, | ||
| 1191 | const EC_POINT *point, BN_CTX *ctx) | ||
| 1192 | { | ||
| 1193 | return ec_mul_ct(group, r, scalar, point, ctx); | ||
| 1194 | } | ||
| 1195 | |||
| 1196 | static int | ||
| 1197 | ec_mul_double_nonct(const EC_GROUP *group, EC_POINT *r, const BIGNUM *scalar1, | ||
| 1198 | const EC_POINT *point1, const BIGNUM *scalar2, const EC_POINT *point2, | ||
| 1199 | BN_CTX *ctx) | ||
| 1200 | { | ||
| 1201 | return ec_wnaf_mul(group, r, scalar1, point1, scalar2, point2, ctx); | ||
| 1202 | } | ||
| 1203 | |||
| 1204 | static int | ||
| 1205 | ec_simple_field_mul(const EC_GROUP *group, BIGNUM *r, const BIGNUM *a, | ||
| 1206 | const BIGNUM *b, BN_CTX *ctx) | ||
| 1207 | { | ||
| 1208 | return BN_mod_mul(r, a, b, group->p, ctx); | ||
| 1209 | } | ||
| 1210 | |||
| 1211 | static int | ||
| 1212 | ec_simple_field_sqr(const EC_GROUP *group, BIGNUM *r, const BIGNUM *a, BN_CTX *ctx) | ||
| 1213 | { | ||
| 1214 | return BN_mod_sqr(r, a, group->p, ctx); | ||
| 1215 | } | ||
| 1216 | |||
| 1217 | static int | ||
| 1218 | ec_mont_group_set_curve(EC_GROUP *group, const BIGNUM *p, const BIGNUM *a, | ||
| 1219 | const BIGNUM *b, BN_CTX *ctx) | ||
| 1220 | { | ||
| 1221 | BN_MONT_CTX_free(group->mont_ctx); | ||
| 1222 | if ((group->mont_ctx = BN_MONT_CTX_create(p, ctx)) == NULL) | ||
| 1223 | goto err; | ||
| 1224 | |||
| 1225 | if (!ec_group_set_curve(group, p, a, b, ctx)) | ||
| 1226 | goto err; | ||
| 1227 | |||
| 1228 | return 1; | ||
| 1229 | |||
| 1230 | err: | ||
| 1231 | BN_MONT_CTX_free(group->mont_ctx); | ||
| 1232 | group->mont_ctx = NULL; | ||
| 1233 | |||
| 1234 | return 0; | ||
| 1235 | } | ||
| 1236 | |||
| 1237 | static int | ||
| 1238 | ec_mont_field_mul(const EC_GROUP *group, BIGNUM *r, const BIGNUM *a, | ||
| 1239 | const BIGNUM *b, BN_CTX *ctx) | ||
| 1240 | { | ||
| 1241 | if (group->mont_ctx == NULL) { | ||
| 1242 | ECerror(EC_R_NOT_INITIALIZED); | ||
| 1243 | return 0; | ||
| 1244 | } | ||
| 1245 | return BN_mod_mul_montgomery(r, a, b, group->mont_ctx, ctx); | ||
| 1246 | } | ||
| 1247 | |||
| 1248 | static int | ||
| 1249 | ec_mont_field_sqr(const EC_GROUP *group, BIGNUM *r, const BIGNUM *a, | ||
| 1250 | BN_CTX *ctx) | ||
| 1251 | { | ||
| 1252 | if (group->mont_ctx == NULL) { | ||
| 1253 | ECerror(EC_R_NOT_INITIALIZED); | ||
| 1254 | return 0; | ||
| 1255 | } | ||
| 1256 | return BN_mod_mul_montgomery(r, a, a, group->mont_ctx, ctx); | ||
| 1257 | } | ||
| 1258 | |||
| 1259 | static int | ||
| 1260 | ec_mont_field_encode(const EC_GROUP *group, BIGNUM *r, const BIGNUM *a, | ||
| 1261 | BN_CTX *ctx) | ||
| 1262 | { | ||
| 1263 | if (group->mont_ctx == NULL) { | ||
| 1264 | ECerror(EC_R_NOT_INITIALIZED); | ||
| 1265 | return 0; | ||
| 1266 | } | ||
| 1267 | return BN_to_montgomery(r, a, group->mont_ctx, ctx); | ||
| 1268 | } | ||
| 1269 | |||
| 1270 | static int | ||
| 1271 | ec_mont_field_decode(const EC_GROUP *group, BIGNUM *r, const BIGNUM *a, | ||
| 1272 | BN_CTX *ctx) | ||
| 1273 | { | ||
| 1274 | if (group->mont_ctx == NULL) { | ||
| 1275 | ECerror(EC_R_NOT_INITIALIZED); | ||
| 1276 | return 0; | ||
| 1277 | } | ||
| 1278 | return BN_from_montgomery(r, a, group->mont_ctx, ctx); | ||
| 1279 | } | ||
| 1280 | |||
| 1281 | static const EC_METHOD ec_GFp_simple_method = { | ||
| 1282 | .group_set_curve = ec_group_set_curve, | ||
| 1283 | .group_get_curve = ec_group_get_curve, | ||
| 1284 | .point_is_on_curve = ec_point_is_on_curve, | ||
| 1285 | .point_cmp = ec_point_cmp, | ||
| 1286 | .point_set_affine_coordinates = ec_point_set_affine_coordinates, | ||
| 1287 | .point_get_affine_coordinates = ec_point_get_affine_coordinates, | ||
| 1288 | .points_make_affine = ec_points_make_affine, | ||
| 1289 | .add = ec_add, | ||
| 1290 | .dbl = ec_dbl, | ||
| 1291 | .invert = ec_invert, | ||
| 1292 | .mul_single_ct = ec_mul_single_ct, | ||
| 1293 | .mul_double_nonct = ec_mul_double_nonct, | ||
| 1294 | .field_mul = ec_simple_field_mul, | ||
| 1295 | .field_sqr = ec_simple_field_sqr, | ||
| 1296 | }; | ||
| 1297 | |||
| 1298 | const EC_METHOD * | ||
| 1299 | EC_GFp_simple_method(void) | ||
| 1300 | { | ||
| 1301 | return &ec_GFp_simple_method; | ||
| 1302 | } | ||
| 1303 | |||
| 1304 | static const EC_METHOD ec_GFp_mont_method = { | ||
| 1305 | .group_set_curve = ec_mont_group_set_curve, | ||
| 1306 | .group_get_curve = ec_group_get_curve, | ||
| 1307 | .point_is_on_curve = ec_point_is_on_curve, | ||
| 1308 | .point_cmp = ec_point_cmp, | ||
| 1309 | .point_set_affine_coordinates = ec_point_set_affine_coordinates, | ||
| 1310 | .point_get_affine_coordinates = ec_point_get_affine_coordinates, | ||
| 1311 | .points_make_affine = ec_points_make_affine, | ||
| 1312 | .add = ec_add, | ||
| 1313 | .dbl = ec_dbl, | ||
| 1314 | .invert = ec_invert, | ||
| 1315 | .mul_single_ct = ec_mul_single_ct, | ||
| 1316 | .mul_double_nonct = ec_mul_double_nonct, | ||
| 1317 | .field_mul = ec_mont_field_mul, | ||
| 1318 | .field_sqr = ec_mont_field_sqr, | ||
| 1319 | .field_encode = ec_mont_field_encode, | ||
| 1320 | .field_decode = ec_mont_field_decode, | ||
| 1321 | }; | ||
| 1322 | |||
| 1323 | const EC_METHOD * | ||
| 1324 | EC_GFp_mont_method(void) | ||
| 1325 | { | ||
| 1326 | return &ec_GFp_mont_method; | ||
| 1327 | } | ||
