diff options
Diffstat (limited to 'src/lib/libcrypto/ec/ecp_nistp224.c')
-rw-r--r-- | src/lib/libcrypto/ec/ecp_nistp224.c | 1658 |
1 files changed, 1658 insertions, 0 deletions
diff --git a/src/lib/libcrypto/ec/ecp_nistp224.c b/src/lib/libcrypto/ec/ecp_nistp224.c new file mode 100644 index 0000000000..b5ff56c252 --- /dev/null +++ b/src/lib/libcrypto/ec/ecp_nistp224.c | |||
@@ -0,0 +1,1658 @@ | |||
1 | /* crypto/ec/ecp_nistp224.c */ | ||
2 | /* | ||
3 | * Written by Emilia Kasper (Google) for the OpenSSL project. | ||
4 | */ | ||
5 | /* Copyright 2011 Google Inc. | ||
6 | * | ||
7 | * Licensed under the Apache License, Version 2.0 (the "License"); | ||
8 | * | ||
9 | * you may not use this file except in compliance with the License. | ||
10 | * You may obtain a copy of the License at | ||
11 | * | ||
12 | * http://www.apache.org/licenses/LICENSE-2.0 | ||
13 | * | ||
14 | * Unless required by applicable law or agreed to in writing, software | ||
15 | * distributed under the License is distributed on an "AS IS" BASIS, | ||
16 | * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | ||
17 | * See the License for the specific language governing permissions and | ||
18 | * limitations under the License. | ||
19 | */ | ||
20 | |||
21 | /* | ||
22 | * A 64-bit implementation of the NIST P-224 elliptic curve point multiplication | ||
23 | * | ||
24 | * Inspired by Daniel J. Bernstein's public domain nistp224 implementation | ||
25 | * and Adam Langley's public domain 64-bit C implementation of curve25519 | ||
26 | */ | ||
27 | |||
28 | #include <openssl/opensslconf.h> | ||
29 | #ifndef OPENSSL_NO_EC_NISTP_64_GCC_128 | ||
30 | |||
31 | #ifndef OPENSSL_SYS_VMS | ||
32 | #include <stdint.h> | ||
33 | #else | ||
34 | #include <inttypes.h> | ||
35 | #endif | ||
36 | |||
37 | #include <string.h> | ||
38 | #include <openssl/err.h> | ||
39 | #include "ec_lcl.h" | ||
40 | |||
41 | #if defined(__GNUC__) && (__GNUC__ > 3 || (__GNUC__ == 3 && __GNUC_MINOR__ >= 1)) | ||
42 | /* even with gcc, the typedef won't work for 32-bit platforms */ | ||
43 | typedef __uint128_t uint128_t; /* nonstandard; implemented by gcc on 64-bit platforms */ | ||
44 | #else | ||
45 | #error "Need GCC 3.1 or later to define type uint128_t" | ||
46 | #endif | ||
47 | |||
48 | typedef uint8_t u8; | ||
49 | typedef uint64_t u64; | ||
50 | typedef int64_t s64; | ||
51 | |||
52 | |||
53 | /******************************************************************************/ | ||
54 | /* INTERNAL REPRESENTATION OF FIELD ELEMENTS | ||
55 | * | ||
56 | * Field elements are represented as a_0 + 2^56*a_1 + 2^112*a_2 + 2^168*a_3 | ||
57 | * using 64-bit coefficients called 'limbs', | ||
58 | * and sometimes (for multiplication results) as | ||
59 | * b_0 + 2^56*b_1 + 2^112*b_2 + 2^168*b_3 + 2^224*b_4 + 2^280*b_5 + 2^336*b_6 | ||
60 | * using 128-bit coefficients called 'widelimbs'. | ||
61 | * A 4-limb representation is an 'felem'; | ||
62 | * a 7-widelimb representation is a 'widefelem'. | ||
63 | * Even within felems, bits of adjacent limbs overlap, and we don't always | ||
64 | * reduce the representations: we ensure that inputs to each felem | ||
65 | * multiplication satisfy a_i < 2^60, so outputs satisfy b_i < 4*2^60*2^60, | ||
66 | * and fit into a 128-bit word without overflow. The coefficients are then | ||
67 | * again partially reduced to obtain an felem satisfying a_i < 2^57. | ||
68 | * We only reduce to the unique minimal representation at the end of the | ||
69 | * computation. | ||
70 | */ | ||
71 | |||
72 | typedef uint64_t limb; | ||
73 | typedef uint128_t widelimb; | ||
74 | |||
75 | typedef limb felem[4]; | ||
76 | typedef widelimb widefelem[7]; | ||
77 | |||
78 | /* Field element represented as a byte arrary. | ||
79 | * 28*8 = 224 bits is also the group order size for the elliptic curve, | ||
80 | * and we also use this type for scalars for point multiplication. | ||
81 | */ | ||
82 | typedef u8 felem_bytearray[28]; | ||
83 | |||
84 | static const felem_bytearray nistp224_curve_params[5] = { | ||
85 | {0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF, /* p */ | ||
86 | 0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0x00,0x00,0x00,0x00, | ||
87 | 0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x01}, | ||
88 | {0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF, /* a */ | ||
89 | 0xFF,0xFF,0xFF,0xFF,0xFF,0xFE,0xFF,0xFF,0xFF,0xFF, | ||
90 | 0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFE}, | ||
91 | {0xB4,0x05,0x0A,0x85,0x0C,0x04,0xB3,0xAB,0xF5,0x41, /* b */ | ||
92 | 0x32,0x56,0x50,0x44,0xB0,0xB7,0xD7,0xBF,0xD8,0xBA, | ||
93 | 0x27,0x0B,0x39,0x43,0x23,0x55,0xFF,0xB4}, | ||
94 | {0xB7,0x0E,0x0C,0xBD,0x6B,0xB4,0xBF,0x7F,0x32,0x13, /* x */ | ||
95 | 0x90,0xB9,0x4A,0x03,0xC1,0xD3,0x56,0xC2,0x11,0x22, | ||
96 | 0x34,0x32,0x80,0xD6,0x11,0x5C,0x1D,0x21}, | ||
97 | {0xbd,0x37,0x63,0x88,0xb5,0xf7,0x23,0xfb,0x4c,0x22, /* y */ | ||
98 | 0xdf,0xe6,0xcd,0x43,0x75,0xa0,0x5a,0x07,0x47,0x64, | ||
99 | 0x44,0xd5,0x81,0x99,0x85,0x00,0x7e,0x34} | ||
100 | }; | ||
101 | |||
102 | /* Precomputed multiples of the standard generator | ||
103 | * Points are given in coordinates (X, Y, Z) where Z normally is 1 | ||
104 | * (0 for the point at infinity). | ||
105 | * For each field element, slice a_0 is word 0, etc. | ||
106 | * | ||
107 | * The table has 2 * 16 elements, starting with the following: | ||
108 | * index | bits | point | ||
109 | * ------+---------+------------------------------ | ||
110 | * 0 | 0 0 0 0 | 0G | ||
111 | * 1 | 0 0 0 1 | 1G | ||
112 | * 2 | 0 0 1 0 | 2^56G | ||
113 | * 3 | 0 0 1 1 | (2^56 + 1)G | ||
114 | * 4 | 0 1 0 0 | 2^112G | ||
115 | * 5 | 0 1 0 1 | (2^112 + 1)G | ||
116 | * 6 | 0 1 1 0 | (2^112 + 2^56)G | ||
117 | * 7 | 0 1 1 1 | (2^112 + 2^56 + 1)G | ||
118 | * 8 | 1 0 0 0 | 2^168G | ||
119 | * 9 | 1 0 0 1 | (2^168 + 1)G | ||
120 | * 10 | 1 0 1 0 | (2^168 + 2^56)G | ||
121 | * 11 | 1 0 1 1 | (2^168 + 2^56 + 1)G | ||
122 | * 12 | 1 1 0 0 | (2^168 + 2^112)G | ||
123 | * 13 | 1 1 0 1 | (2^168 + 2^112 + 1)G | ||
124 | * 14 | 1 1 1 0 | (2^168 + 2^112 + 2^56)G | ||
125 | * 15 | 1 1 1 1 | (2^168 + 2^112 + 2^56 + 1)G | ||
126 | * followed by a copy of this with each element multiplied by 2^28. | ||
127 | * | ||
128 | * The reason for this is so that we can clock bits into four different | ||
129 | * locations when doing simple scalar multiplies against the base point, | ||
130 | * and then another four locations using the second 16 elements. | ||
131 | */ | ||
132 | static const felem gmul[2][16][3] = | ||
133 | {{{{0, 0, 0, 0}, | ||
134 | {0, 0, 0, 0}, | ||
135 | {0, 0, 0, 0}}, | ||
136 | {{0x3280d6115c1d21, 0xc1d356c2112234, 0x7f321390b94a03, 0xb70e0cbd6bb4bf}, | ||
137 | {0xd5819985007e34, 0x75a05a07476444, 0xfb4c22dfe6cd43, 0xbd376388b5f723}, | ||
138 | {1, 0, 0, 0}}, | ||
139 | {{0xfd9675666ebbe9, 0xbca7664d40ce5e, 0x2242df8d8a2a43, 0x1f49bbb0f99bc5}, | ||
140 | {0x29e0b892dc9c43, 0xece8608436e662, 0xdc858f185310d0, 0x9812dd4eb8d321}, | ||
141 | {1, 0, 0, 0}}, | ||
142 | {{0x6d3e678d5d8eb8, 0x559eed1cb362f1, 0x16e9a3bbce8a3f, 0xeedcccd8c2a748}, | ||
143 | {0xf19f90ed50266d, 0xabf2b4bf65f9df, 0x313865468fafec, 0x5cb379ba910a17}, | ||
144 | {1, 0, 0, 0}}, | ||
145 | {{0x0641966cab26e3, 0x91fb2991fab0a0, 0xefec27a4e13a0b, 0x0499aa8a5f8ebe}, | ||
146 | {0x7510407766af5d, 0x84d929610d5450, 0x81d77aae82f706, 0x6916f6d4338c5b}, | ||
147 | {1, 0, 0, 0}}, | ||
148 | {{0xea95ac3b1f15c6, 0x086000905e82d4, 0xdd323ae4d1c8b1, 0x932b56be7685a3}, | ||
149 | {0x9ef93dea25dbbf, 0x41665960f390f0, 0xfdec76dbe2a8a7, 0x523e80f019062a}, | ||
150 | {1, 0, 0, 0}}, | ||
151 | {{0x822fdd26732c73, 0xa01c83531b5d0f, 0x363f37347c1ba4, 0xc391b45c84725c}, | ||
152 | {0xbbd5e1b2d6ad24, 0xddfbcde19dfaec, 0xc393da7e222a7f, 0x1efb7890ede244}, | ||
153 | {1, 0, 0, 0}}, | ||
154 | {{0x4c9e90ca217da1, 0xd11beca79159bb, 0xff8d33c2c98b7c, 0x2610b39409f849}, | ||
155 | {0x44d1352ac64da0, 0xcdbb7b2c46b4fb, 0x966c079b753c89, 0xfe67e4e820b112}, | ||
156 | {1, 0, 0, 0}}, | ||
157 | {{0xe28cae2df5312d, 0xc71b61d16f5c6e, 0x79b7619a3e7c4c, 0x05c73240899b47}, | ||
158 | {0x9f7f6382c73e3a, 0x18615165c56bda, 0x641fab2116fd56, 0x72855882b08394}, | ||
159 | {1, 0, 0, 0}}, | ||
160 | {{0x0469182f161c09, 0x74a98ca8d00fb5, 0xb89da93489a3e0, 0x41c98768fb0c1d}, | ||
161 | {0xe5ea05fb32da81, 0x3dce9ffbca6855, 0x1cfe2d3fbf59e6, 0x0e5e03408738a7}, | ||
162 | {1, 0, 0, 0}}, | ||
163 | {{0xdab22b2333e87f, 0x4430137a5dd2f6, 0xe03ab9f738beb8, 0xcb0c5d0dc34f24}, | ||
164 | {0x764a7df0c8fda5, 0x185ba5c3fa2044, 0x9281d688bcbe50, 0xc40331df893881}, | ||
165 | {1, 0, 0, 0}}, | ||
166 | {{0xb89530796f0f60, 0xade92bd26909a3, 0x1a0c83fb4884da, 0x1765bf22a5a984}, | ||
167 | {0x772a9ee75db09e, 0x23bc6c67cec16f, 0x4c1edba8b14e2f, 0xe2a215d9611369}, | ||
168 | {1, 0, 0, 0}}, | ||
169 | {{0x571e509fb5efb3, 0xade88696410552, 0xc8ae85fada74fe, 0x6c7e4be83bbde3}, | ||
170 | {0xff9f51160f4652, 0xb47ce2495a6539, 0xa2946c53b582f4, 0x286d2db3ee9a60}, | ||
171 | {1, 0, 0, 0}}, | ||
172 | {{0x40bbd5081a44af, 0x0995183b13926c, 0xbcefba6f47f6d0, 0x215619e9cc0057}, | ||
173 | {0x8bc94d3b0df45e, 0xf11c54a3694f6f, 0x8631b93cdfe8b5, 0xe7e3f4b0982db9}, | ||
174 | {1, 0, 0, 0}}, | ||
175 | {{0xb17048ab3e1c7b, 0xac38f36ff8a1d8, 0x1c29819435d2c6, 0xc813132f4c07e9}, | ||
176 | {0x2891425503b11f, 0x08781030579fea, 0xf5426ba5cc9674, 0x1e28ebf18562bc}, | ||
177 | {1, 0, 0, 0}}, | ||
178 | {{0x9f31997cc864eb, 0x06cd91d28b5e4c, 0xff17036691a973, 0xf1aef351497c58}, | ||
179 | {0xdd1f2d600564ff, 0xdead073b1402db, 0x74a684435bd693, 0xeea7471f962558}, | ||
180 | {1, 0, 0, 0}}}, | ||
181 | {{{0, 0, 0, 0}, | ||
182 | {0, 0, 0, 0}, | ||
183 | {0, 0, 0, 0}}, | ||
184 | {{0x9665266dddf554, 0x9613d78b60ef2d, 0xce27a34cdba417, 0xd35ab74d6afc31}, | ||
185 | {0x85ccdd22deb15e, 0x2137e5783a6aab, 0xa141cffd8c93c6, 0x355a1830e90f2d}, | ||
186 | {1, 0, 0, 0}}, | ||
187 | {{0x1a494eadaade65, 0xd6da4da77fe53c, 0xe7992996abec86, 0x65c3553c6090e3}, | ||
188 | {0xfa610b1fb09346, 0xf1c6540b8a4aaf, 0xc51a13ccd3cbab, 0x02995b1b18c28a}, | ||
189 | {1, 0, 0, 0}}, | ||
190 | {{0x7874568e7295ef, 0x86b419fbe38d04, 0xdc0690a7550d9a, 0xd3966a44beac33}, | ||
191 | {0x2b7280ec29132f, 0xbeaa3b6a032df3, 0xdc7dd88ae41200, 0xd25e2513e3a100}, | ||
192 | {1, 0, 0, 0}}, | ||
193 | {{0x924857eb2efafd, 0xac2bce41223190, 0x8edaa1445553fc, 0x825800fd3562d5}, | ||
194 | {0x8d79148ea96621, 0x23a01c3dd9ed8d, 0xaf8b219f9416b5, 0xd8db0cc277daea}, | ||
195 | {1, 0, 0, 0}}, | ||
196 | {{0x76a9c3b1a700f0, 0xe9acd29bc7e691, 0x69212d1a6b0327, 0x6322e97fe154be}, | ||
197 | {0x469fc5465d62aa, 0x8d41ed18883b05, 0x1f8eae66c52b88, 0xe4fcbe9325be51}, | ||
198 | {1, 0, 0, 0}}, | ||
199 | {{0x825fdf583cac16, 0x020b857c7b023a, 0x683c17744b0165, 0x14ffd0a2daf2f1}, | ||
200 | {0x323b36184218f9, 0x4944ec4e3b47d4, 0xc15b3080841acf, 0x0bced4b01a28bb}, | ||
201 | {1, 0, 0, 0}}, | ||
202 | {{0x92ac22230df5c4, 0x52f33b4063eda8, 0xcb3f19870c0c93, 0x40064f2ba65233}, | ||
203 | {0xfe16f0924f8992, 0x012da25af5b517, 0x1a57bb24f723a6, 0x06f8bc76760def}, | ||
204 | {1, 0, 0, 0}}, | ||
205 | {{0x4a7084f7817cb9, 0xbcab0738ee9a78, 0x3ec11e11d9c326, 0xdc0fe90e0f1aae}, | ||
206 | {0xcf639ea5f98390, 0x5c350aa22ffb74, 0x9afae98a4047b7, 0x956ec2d617fc45}, | ||
207 | {1, 0, 0, 0}}, | ||
208 | {{0x4306d648c1be6a, 0x9247cd8bc9a462, 0xf5595e377d2f2e, 0xbd1c3caff1a52e}, | ||
209 | {0x045e14472409d0, 0x29f3e17078f773, 0x745a602b2d4f7d, 0x191837685cdfbb}, | ||
210 | {1, 0, 0, 0}}, | ||
211 | {{0x5b6ee254a8cb79, 0x4953433f5e7026, 0xe21faeb1d1def4, 0xc4c225785c09de}, | ||
212 | {0x307ce7bba1e518, 0x31b125b1036db8, 0x47e91868839e8f, 0xc765866e33b9f3}, | ||
213 | {1, 0, 0, 0}}, | ||
214 | {{0x3bfece24f96906, 0x4794da641e5093, 0xde5df64f95db26, 0x297ecd89714b05}, | ||
215 | {0x701bd3ebb2c3aa, 0x7073b4f53cb1d5, 0x13c5665658af16, 0x9895089d66fe58}, | ||
216 | {1, 0, 0, 0}}, | ||
217 | {{0x0fef05f78c4790, 0x2d773633b05d2e, 0x94229c3a951c94, 0xbbbd70df4911bb}, | ||
218 | {0xb2c6963d2c1168, 0x105f47a72b0d73, 0x9fdf6111614080, 0x7b7e94b39e67b0}, | ||
219 | {1, 0, 0, 0}}, | ||
220 | {{0xad1a7d6efbe2b3, 0xf012482c0da69d, 0x6b3bdf12438345, 0x40d7558d7aa4d9}, | ||
221 | {0x8a09fffb5c6d3d, 0x9a356e5d9ffd38, 0x5973f15f4f9b1c, 0xdcd5f59f63c3ea}, | ||
222 | {1, 0, 0, 0}}, | ||
223 | {{0xacf39f4c5ca7ab, 0x4c8071cc5fd737, 0xc64e3602cd1184, 0x0acd4644c9abba}, | ||
224 | {0x6c011a36d8bf6e, 0xfecd87ba24e32a, 0x19f6f56574fad8, 0x050b204ced9405}, | ||
225 | {1, 0, 0, 0}}, | ||
226 | {{0xed4f1cae7d9a96, 0x5ceef7ad94c40a, 0x778e4a3bf3ef9b, 0x7405783dc3b55e}, | ||
227 | {0x32477c61b6e8c6, 0xb46a97570f018b, 0x91176d0a7e95d1, 0x3df90fbc4c7d0e}, | ||
228 | {1, 0, 0, 0}}}}; | ||
229 | |||
230 | /* Precomputation for the group generator. */ | ||
231 | typedef struct { | ||
232 | felem g_pre_comp[2][16][3]; | ||
233 | int references; | ||
234 | } NISTP224_PRE_COMP; | ||
235 | |||
236 | const EC_METHOD *EC_GFp_nistp224_method(void) | ||
237 | { | ||
238 | static const EC_METHOD ret = { | ||
239 | EC_FLAGS_DEFAULT_OCT, | ||
240 | NID_X9_62_prime_field, | ||
241 | ec_GFp_nistp224_group_init, | ||
242 | ec_GFp_simple_group_finish, | ||
243 | ec_GFp_simple_group_clear_finish, | ||
244 | ec_GFp_nist_group_copy, | ||
245 | ec_GFp_nistp224_group_set_curve, | ||
246 | ec_GFp_simple_group_get_curve, | ||
247 | ec_GFp_simple_group_get_degree, | ||
248 | ec_GFp_simple_group_check_discriminant, | ||
249 | ec_GFp_simple_point_init, | ||
250 | ec_GFp_simple_point_finish, | ||
251 | ec_GFp_simple_point_clear_finish, | ||
252 | ec_GFp_simple_point_copy, | ||
253 | ec_GFp_simple_point_set_to_infinity, | ||
254 | ec_GFp_simple_set_Jprojective_coordinates_GFp, | ||
255 | ec_GFp_simple_get_Jprojective_coordinates_GFp, | ||
256 | ec_GFp_simple_point_set_affine_coordinates, | ||
257 | ec_GFp_nistp224_point_get_affine_coordinates, | ||
258 | 0 /* point_set_compressed_coordinates */, | ||
259 | 0 /* point2oct */, | ||
260 | 0 /* oct2point */, | ||
261 | ec_GFp_simple_add, | ||
262 | ec_GFp_simple_dbl, | ||
263 | ec_GFp_simple_invert, | ||
264 | ec_GFp_simple_is_at_infinity, | ||
265 | ec_GFp_simple_is_on_curve, | ||
266 | ec_GFp_simple_cmp, | ||
267 | ec_GFp_simple_make_affine, | ||
268 | ec_GFp_simple_points_make_affine, | ||
269 | ec_GFp_nistp224_points_mul, | ||
270 | ec_GFp_nistp224_precompute_mult, | ||
271 | ec_GFp_nistp224_have_precompute_mult, | ||
272 | ec_GFp_nist_field_mul, | ||
273 | ec_GFp_nist_field_sqr, | ||
274 | 0 /* field_div */, | ||
275 | 0 /* field_encode */, | ||
276 | 0 /* field_decode */, | ||
277 | 0 /* field_set_to_one */ }; | ||
278 | |||
279 | return &ret; | ||
280 | } | ||
281 | |||
282 | /* Helper functions to convert field elements to/from internal representation */ | ||
283 | static void bin28_to_felem(felem out, const u8 in[28]) | ||
284 | { | ||
285 | out[0] = *((const uint64_t *)(in)) & 0x00ffffffffffffff; | ||
286 | out[1] = (*((const uint64_t *)(in+7))) & 0x00ffffffffffffff; | ||
287 | out[2] = (*((const uint64_t *)(in+14))) & 0x00ffffffffffffff; | ||
288 | out[3] = (*((const uint64_t *)(in+21))) & 0x00ffffffffffffff; | ||
289 | } | ||
290 | |||
291 | static void felem_to_bin28(u8 out[28], const felem in) | ||
292 | { | ||
293 | unsigned i; | ||
294 | for (i = 0; i < 7; ++i) | ||
295 | { | ||
296 | out[i] = in[0]>>(8*i); | ||
297 | out[i+7] = in[1]>>(8*i); | ||
298 | out[i+14] = in[2]>>(8*i); | ||
299 | out[i+21] = in[3]>>(8*i); | ||
300 | } | ||
301 | } | ||
302 | |||
303 | /* To preserve endianness when using BN_bn2bin and BN_bin2bn */ | ||
304 | static void flip_endian(u8 *out, const u8 *in, unsigned len) | ||
305 | { | ||
306 | unsigned i; | ||
307 | for (i = 0; i < len; ++i) | ||
308 | out[i] = in[len-1-i]; | ||
309 | } | ||
310 | |||
311 | /* From OpenSSL BIGNUM to internal representation */ | ||
312 | static int BN_to_felem(felem out, const BIGNUM *bn) | ||
313 | { | ||
314 | felem_bytearray b_in; | ||
315 | felem_bytearray b_out; | ||
316 | unsigned num_bytes; | ||
317 | |||
318 | /* BN_bn2bin eats leading zeroes */ | ||
319 | memset(b_out, 0, sizeof b_out); | ||
320 | num_bytes = BN_num_bytes(bn); | ||
321 | if (num_bytes > sizeof b_out) | ||
322 | { | ||
323 | ECerr(EC_F_BN_TO_FELEM, EC_R_BIGNUM_OUT_OF_RANGE); | ||
324 | return 0; | ||
325 | } | ||
326 | if (BN_is_negative(bn)) | ||
327 | { | ||
328 | ECerr(EC_F_BN_TO_FELEM, EC_R_BIGNUM_OUT_OF_RANGE); | ||
329 | return 0; | ||
330 | } | ||
331 | num_bytes = BN_bn2bin(bn, b_in); | ||
332 | flip_endian(b_out, b_in, num_bytes); | ||
333 | bin28_to_felem(out, b_out); | ||
334 | return 1; | ||
335 | } | ||
336 | |||
337 | /* From internal representation to OpenSSL BIGNUM */ | ||
338 | static BIGNUM *felem_to_BN(BIGNUM *out, const felem in) | ||
339 | { | ||
340 | felem_bytearray b_in, b_out; | ||
341 | felem_to_bin28(b_in, in); | ||
342 | flip_endian(b_out, b_in, sizeof b_out); | ||
343 | return BN_bin2bn(b_out, sizeof b_out, out); | ||
344 | } | ||
345 | |||
346 | /******************************************************************************/ | ||
347 | /* FIELD OPERATIONS | ||
348 | * | ||
349 | * Field operations, using the internal representation of field elements. | ||
350 | * NB! These operations are specific to our point multiplication and cannot be | ||
351 | * expected to be correct in general - e.g., multiplication with a large scalar | ||
352 | * will cause an overflow. | ||
353 | * | ||
354 | */ | ||
355 | |||
356 | static void felem_one(felem out) | ||
357 | { | ||
358 | out[0] = 1; | ||
359 | out[1] = 0; | ||
360 | out[2] = 0; | ||
361 | out[3] = 0; | ||
362 | } | ||
363 | |||
364 | static void felem_assign(felem out, const felem in) | ||
365 | { | ||
366 | out[0] = in[0]; | ||
367 | out[1] = in[1]; | ||
368 | out[2] = in[2]; | ||
369 | out[3] = in[3]; | ||
370 | } | ||
371 | |||
372 | /* Sum two field elements: out += in */ | ||
373 | static void felem_sum(felem out, const felem in) | ||
374 | { | ||
375 | out[0] += in[0]; | ||
376 | out[1] += in[1]; | ||
377 | out[2] += in[2]; | ||
378 | out[3] += in[3]; | ||
379 | } | ||
380 | |||
381 | /* Get negative value: out = -in */ | ||
382 | /* Assumes in[i] < 2^57 */ | ||
383 | static void felem_neg(felem out, const felem in) | ||
384 | { | ||
385 | static const limb two58p2 = (((limb) 1) << 58) + (((limb) 1) << 2); | ||
386 | static const limb two58m2 = (((limb) 1) << 58) - (((limb) 1) << 2); | ||
387 | static const limb two58m42m2 = (((limb) 1) << 58) - | ||
388 | (((limb) 1) << 42) - (((limb) 1) << 2); | ||
389 | |||
390 | /* Set to 0 mod 2^224-2^96+1 to ensure out > in */ | ||
391 | out[0] = two58p2 - in[0]; | ||
392 | out[1] = two58m42m2 - in[1]; | ||
393 | out[2] = two58m2 - in[2]; | ||
394 | out[3] = two58m2 - in[3]; | ||
395 | } | ||
396 | |||
397 | /* Subtract field elements: out -= in */ | ||
398 | /* Assumes in[i] < 2^57 */ | ||
399 | static void felem_diff(felem out, const felem in) | ||
400 | { | ||
401 | static const limb two58p2 = (((limb) 1) << 58) + (((limb) 1) << 2); | ||
402 | static const limb two58m2 = (((limb) 1) << 58) - (((limb) 1) << 2); | ||
403 | static const limb two58m42m2 = (((limb) 1) << 58) - | ||
404 | (((limb) 1) << 42) - (((limb) 1) << 2); | ||
405 | |||
406 | /* Add 0 mod 2^224-2^96+1 to ensure out > in */ | ||
407 | out[0] += two58p2; | ||
408 | out[1] += two58m42m2; | ||
409 | out[2] += two58m2; | ||
410 | out[3] += two58m2; | ||
411 | |||
412 | out[0] -= in[0]; | ||
413 | out[1] -= in[1]; | ||
414 | out[2] -= in[2]; | ||
415 | out[3] -= in[3]; | ||
416 | } | ||
417 | |||
418 | /* Subtract in unreduced 128-bit mode: out -= in */ | ||
419 | /* Assumes in[i] < 2^119 */ | ||
420 | static void widefelem_diff(widefelem out, const widefelem in) | ||
421 | { | ||
422 | static const widelimb two120 = ((widelimb) 1) << 120; | ||
423 | static const widelimb two120m64 = (((widelimb) 1) << 120) - | ||
424 | (((widelimb) 1) << 64); | ||
425 | static const widelimb two120m104m64 = (((widelimb) 1) << 120) - | ||
426 | (((widelimb) 1) << 104) - (((widelimb) 1) << 64); | ||
427 | |||
428 | /* Add 0 mod 2^224-2^96+1 to ensure out > in */ | ||
429 | out[0] += two120; | ||
430 | out[1] += two120m64; | ||
431 | out[2] += two120m64; | ||
432 | out[3] += two120; | ||
433 | out[4] += two120m104m64; | ||
434 | out[5] += two120m64; | ||
435 | out[6] += two120m64; | ||
436 | |||
437 | out[0] -= in[0]; | ||
438 | out[1] -= in[1]; | ||
439 | out[2] -= in[2]; | ||
440 | out[3] -= in[3]; | ||
441 | out[4] -= in[4]; | ||
442 | out[5] -= in[5]; | ||
443 | out[6] -= in[6]; | ||
444 | } | ||
445 | |||
446 | /* Subtract in mixed mode: out128 -= in64 */ | ||
447 | /* in[i] < 2^63 */ | ||
448 | static void felem_diff_128_64(widefelem out, const felem in) | ||
449 | { | ||
450 | static const widelimb two64p8 = (((widelimb) 1) << 64) + | ||
451 | (((widelimb) 1) << 8); | ||
452 | static const widelimb two64m8 = (((widelimb) 1) << 64) - | ||
453 | (((widelimb) 1) << 8); | ||
454 | static const widelimb two64m48m8 = (((widelimb) 1) << 64) - | ||
455 | (((widelimb) 1) << 48) - (((widelimb) 1) << 8); | ||
456 | |||
457 | /* Add 0 mod 2^224-2^96+1 to ensure out > in */ | ||
458 | out[0] += two64p8; | ||
459 | out[1] += two64m48m8; | ||
460 | out[2] += two64m8; | ||
461 | out[3] += two64m8; | ||
462 | |||
463 | out[0] -= in[0]; | ||
464 | out[1] -= in[1]; | ||
465 | out[2] -= in[2]; | ||
466 | out[3] -= in[3]; | ||
467 | } | ||
468 | |||
469 | /* Multiply a field element by a scalar: out = out * scalar | ||
470 | * The scalars we actually use are small, so results fit without overflow */ | ||
471 | static void felem_scalar(felem out, const limb scalar) | ||
472 | { | ||
473 | out[0] *= scalar; | ||
474 | out[1] *= scalar; | ||
475 | out[2] *= scalar; | ||
476 | out[3] *= scalar; | ||
477 | } | ||
478 | |||
479 | /* Multiply an unreduced field element by a scalar: out = out * scalar | ||
480 | * The scalars we actually use are small, so results fit without overflow */ | ||
481 | static void widefelem_scalar(widefelem out, const widelimb scalar) | ||
482 | { | ||
483 | out[0] *= scalar; | ||
484 | out[1] *= scalar; | ||
485 | out[2] *= scalar; | ||
486 | out[3] *= scalar; | ||
487 | out[4] *= scalar; | ||
488 | out[5] *= scalar; | ||
489 | out[6] *= scalar; | ||
490 | } | ||
491 | |||
492 | /* Square a field element: out = in^2 */ | ||
493 | static void felem_square(widefelem out, const felem in) | ||
494 | { | ||
495 | limb tmp0, tmp1, tmp2; | ||
496 | tmp0 = 2 * in[0]; tmp1 = 2 * in[1]; tmp2 = 2 * in[2]; | ||
497 | out[0] = ((widelimb) in[0]) * in[0]; | ||
498 | out[1] = ((widelimb) in[0]) * tmp1; | ||
499 | out[2] = ((widelimb) in[0]) * tmp2 + ((widelimb) in[1]) * in[1]; | ||
500 | out[3] = ((widelimb) in[3]) * tmp0 + | ||
501 | ((widelimb) in[1]) * tmp2; | ||
502 | out[4] = ((widelimb) in[3]) * tmp1 + ((widelimb) in[2]) * in[2]; | ||
503 | out[5] = ((widelimb) in[3]) * tmp2; | ||
504 | out[6] = ((widelimb) in[3]) * in[3]; | ||
505 | } | ||
506 | |||
507 | /* Multiply two field elements: out = in1 * in2 */ | ||
508 | static void felem_mul(widefelem out, const felem in1, const felem in2) | ||
509 | { | ||
510 | out[0] = ((widelimb) in1[0]) * in2[0]; | ||
511 | out[1] = ((widelimb) in1[0]) * in2[1] + ((widelimb) in1[1]) * in2[0]; | ||
512 | out[2] = ((widelimb) in1[0]) * in2[2] + ((widelimb) in1[1]) * in2[1] + | ||
513 | ((widelimb) in1[2]) * in2[0]; | ||
514 | out[3] = ((widelimb) in1[0]) * in2[3] + ((widelimb) in1[1]) * in2[2] + | ||
515 | ((widelimb) in1[2]) * in2[1] + ((widelimb) in1[3]) * in2[0]; | ||
516 | out[4] = ((widelimb) in1[1]) * in2[3] + ((widelimb) in1[2]) * in2[2] + | ||
517 | ((widelimb) in1[3]) * in2[1]; | ||
518 | out[5] = ((widelimb) in1[2]) * in2[3] + ((widelimb) in1[3]) * in2[2]; | ||
519 | out[6] = ((widelimb) in1[3]) * in2[3]; | ||
520 | } | ||
521 | |||
522 | /* Reduce seven 128-bit coefficients to four 64-bit coefficients. | ||
523 | * Requires in[i] < 2^126, | ||
524 | * ensures out[0] < 2^56, out[1] < 2^56, out[2] < 2^56, out[3] <= 2^56 + 2^16 */ | ||
525 | static void felem_reduce(felem out, const widefelem in) | ||
526 | { | ||
527 | static const widelimb two127p15 = (((widelimb) 1) << 127) + | ||
528 | (((widelimb) 1) << 15); | ||
529 | static const widelimb two127m71 = (((widelimb) 1) << 127) - | ||
530 | (((widelimb) 1) << 71); | ||
531 | static const widelimb two127m71m55 = (((widelimb) 1) << 127) - | ||
532 | (((widelimb) 1) << 71) - (((widelimb) 1) << 55); | ||
533 | widelimb output[5]; | ||
534 | |||
535 | /* Add 0 mod 2^224-2^96+1 to ensure all differences are positive */ | ||
536 | output[0] = in[0] + two127p15; | ||
537 | output[1] = in[1] + two127m71m55; | ||
538 | output[2] = in[2] + two127m71; | ||
539 | output[3] = in[3]; | ||
540 | output[4] = in[4]; | ||
541 | |||
542 | /* Eliminate in[4], in[5], in[6] */ | ||
543 | output[4] += in[6] >> 16; | ||
544 | output[3] += (in[6] & 0xffff) << 40; | ||
545 | output[2] -= in[6]; | ||
546 | |||
547 | output[3] += in[5] >> 16; | ||
548 | output[2] += (in[5] & 0xffff) << 40; | ||
549 | output[1] -= in[5]; | ||
550 | |||
551 | output[2] += output[4] >> 16; | ||
552 | output[1] += (output[4] & 0xffff) << 40; | ||
553 | output[0] -= output[4]; | ||
554 | |||
555 | /* Carry 2 -> 3 -> 4 */ | ||
556 | output[3] += output[2] >> 56; | ||
557 | output[2] &= 0x00ffffffffffffff; | ||
558 | |||
559 | output[4] = output[3] >> 56; | ||
560 | output[3] &= 0x00ffffffffffffff; | ||
561 | |||
562 | /* Now output[2] < 2^56, output[3] < 2^56, output[4] < 2^72 */ | ||
563 | |||
564 | /* Eliminate output[4] */ | ||
565 | output[2] += output[4] >> 16; | ||
566 | /* output[2] < 2^56 + 2^56 = 2^57 */ | ||
567 | output[1] += (output[4] & 0xffff) << 40; | ||
568 | output[0] -= output[4]; | ||
569 | |||
570 | /* Carry 0 -> 1 -> 2 -> 3 */ | ||
571 | output[1] += output[0] >> 56; | ||
572 | out[0] = output[0] & 0x00ffffffffffffff; | ||
573 | |||
574 | output[2] += output[1] >> 56; | ||
575 | /* output[2] < 2^57 + 2^72 */ | ||
576 | out[1] = output[1] & 0x00ffffffffffffff; | ||
577 | output[3] += output[2] >> 56; | ||
578 | /* output[3] <= 2^56 + 2^16 */ | ||
579 | out[2] = output[2] & 0x00ffffffffffffff; | ||
580 | |||
581 | /* out[0] < 2^56, out[1] < 2^56, out[2] < 2^56, | ||
582 | * out[3] <= 2^56 + 2^16 (due to final carry), | ||
583 | * so out < 2*p */ | ||
584 | out[3] = output[3]; | ||
585 | } | ||
586 | |||
587 | static void felem_square_reduce(felem out, const felem in) | ||
588 | { | ||
589 | widefelem tmp; | ||
590 | felem_square(tmp, in); | ||
591 | felem_reduce(out, tmp); | ||
592 | } | ||
593 | |||
594 | static void felem_mul_reduce(felem out, const felem in1, const felem in2) | ||
595 | { | ||
596 | widefelem tmp; | ||
597 | felem_mul(tmp, in1, in2); | ||
598 | felem_reduce(out, tmp); | ||
599 | } | ||
600 | |||
601 | /* Reduce to unique minimal representation. | ||
602 | * Requires 0 <= in < 2*p (always call felem_reduce first) */ | ||
603 | static void felem_contract(felem out, const felem in) | ||
604 | { | ||
605 | static const int64_t two56 = ((limb) 1) << 56; | ||
606 | /* 0 <= in < 2*p, p = 2^224 - 2^96 + 1 */ | ||
607 | /* if in > p , reduce in = in - 2^224 + 2^96 - 1 */ | ||
608 | int64_t tmp[4], a; | ||
609 | tmp[0] = in[0]; | ||
610 | tmp[1] = in[1]; | ||
611 | tmp[2] = in[2]; | ||
612 | tmp[3] = in[3]; | ||
613 | /* Case 1: a = 1 iff in >= 2^224 */ | ||
614 | a = (in[3] >> 56); | ||
615 | tmp[0] -= a; | ||
616 | tmp[1] += a << 40; | ||
617 | tmp[3] &= 0x00ffffffffffffff; | ||
618 | /* Case 2: a = 0 iff p <= in < 2^224, i.e., | ||
619 | * the high 128 bits are all 1 and the lower part is non-zero */ | ||
620 | a = ((in[3] & in[2] & (in[1] | 0x000000ffffffffff)) + 1) | | ||
621 | (((int64_t)(in[0] + (in[1] & 0x000000ffffffffff)) - 1) >> 63); | ||
622 | a &= 0x00ffffffffffffff; | ||
623 | /* turn a into an all-one mask (if a = 0) or an all-zero mask */ | ||
624 | a = (a - 1) >> 63; | ||
625 | /* subtract 2^224 - 2^96 + 1 if a is all-one*/ | ||
626 | tmp[3] &= a ^ 0xffffffffffffffff; | ||
627 | tmp[2] &= a ^ 0xffffffffffffffff; | ||
628 | tmp[1] &= (a ^ 0xffffffffffffffff) | 0x000000ffffffffff; | ||
629 | tmp[0] -= 1 & a; | ||
630 | |||
631 | /* eliminate negative coefficients: if tmp[0] is negative, tmp[1] must | ||
632 | * be non-zero, so we only need one step */ | ||
633 | a = tmp[0] >> 63; | ||
634 | tmp[0] += two56 & a; | ||
635 | tmp[1] -= 1 & a; | ||
636 | |||
637 | /* carry 1 -> 2 -> 3 */ | ||
638 | tmp[2] += tmp[1] >> 56; | ||
639 | tmp[1] &= 0x00ffffffffffffff; | ||
640 | |||
641 | tmp[3] += tmp[2] >> 56; | ||
642 | tmp[2] &= 0x00ffffffffffffff; | ||
643 | |||
644 | /* Now 0 <= out < p */ | ||
645 | out[0] = tmp[0]; | ||
646 | out[1] = tmp[1]; | ||
647 | out[2] = tmp[2]; | ||
648 | out[3] = tmp[3]; | ||
649 | } | ||
650 | |||
651 | /* Zero-check: returns 1 if input is 0, and 0 otherwise. | ||
652 | * We know that field elements are reduced to in < 2^225, | ||
653 | * so we only need to check three cases: 0, 2^224 - 2^96 + 1, | ||
654 | * and 2^225 - 2^97 + 2 */ | ||
655 | static limb felem_is_zero(const felem in) | ||
656 | { | ||
657 | limb zero, two224m96p1, two225m97p2; | ||
658 | |||
659 | zero = in[0] | in[1] | in[2] | in[3]; | ||
660 | zero = (((int64_t)(zero) - 1) >> 63) & 1; | ||
661 | two224m96p1 = (in[0] ^ 1) | (in[1] ^ 0x00ffff0000000000) | ||
662 | | (in[2] ^ 0x00ffffffffffffff) | (in[3] ^ 0x00ffffffffffffff); | ||
663 | two224m96p1 = (((int64_t)(two224m96p1) - 1) >> 63) & 1; | ||
664 | two225m97p2 = (in[0] ^ 2) | (in[1] ^ 0x00fffe0000000000) | ||
665 | | (in[2] ^ 0x00ffffffffffffff) | (in[3] ^ 0x01ffffffffffffff); | ||
666 | two225m97p2 = (((int64_t)(two225m97p2) - 1) >> 63) & 1; | ||
667 | return (zero | two224m96p1 | two225m97p2); | ||
668 | } | ||
669 | |||
670 | static limb felem_is_zero_int(const felem in) | ||
671 | { | ||
672 | return (int) (felem_is_zero(in) & ((limb)1)); | ||
673 | } | ||
674 | |||
675 | /* Invert a field element */ | ||
676 | /* Computation chain copied from djb's code */ | ||
677 | static void felem_inv(felem out, const felem in) | ||
678 | { | ||
679 | felem ftmp, ftmp2, ftmp3, ftmp4; | ||
680 | widefelem tmp; | ||
681 | unsigned i; | ||
682 | |||
683 | felem_square(tmp, in); felem_reduce(ftmp, tmp); /* 2 */ | ||
684 | felem_mul(tmp, in, ftmp); felem_reduce(ftmp, tmp); /* 2^2 - 1 */ | ||
685 | felem_square(tmp, ftmp); felem_reduce(ftmp, tmp); /* 2^3 - 2 */ | ||
686 | felem_mul(tmp, in, ftmp); felem_reduce(ftmp, tmp); /* 2^3 - 1 */ | ||
687 | felem_square(tmp, ftmp); felem_reduce(ftmp2, tmp); /* 2^4 - 2 */ | ||
688 | felem_square(tmp, ftmp2); felem_reduce(ftmp2, tmp); /* 2^5 - 4 */ | ||
689 | felem_square(tmp, ftmp2); felem_reduce(ftmp2, tmp); /* 2^6 - 8 */ | ||
690 | felem_mul(tmp, ftmp2, ftmp); felem_reduce(ftmp, tmp); /* 2^6 - 1 */ | ||
691 | felem_square(tmp, ftmp); felem_reduce(ftmp2, tmp); /* 2^7 - 2 */ | ||
692 | for (i = 0; i < 5; ++i) /* 2^12 - 2^6 */ | ||
693 | { | ||
694 | felem_square(tmp, ftmp2); felem_reduce(ftmp2, tmp); | ||
695 | } | ||
696 | felem_mul(tmp, ftmp2, ftmp); felem_reduce(ftmp2, tmp); /* 2^12 - 1 */ | ||
697 | felem_square(tmp, ftmp2); felem_reduce(ftmp3, tmp); /* 2^13 - 2 */ | ||
698 | for (i = 0; i < 11; ++i) /* 2^24 - 2^12 */ | ||
699 | { | ||
700 | felem_square(tmp, ftmp3); felem_reduce(ftmp3, tmp); | ||
701 | } | ||
702 | felem_mul(tmp, ftmp3, ftmp2); felem_reduce(ftmp2, tmp); /* 2^24 - 1 */ | ||
703 | felem_square(tmp, ftmp2); felem_reduce(ftmp3, tmp); /* 2^25 - 2 */ | ||
704 | for (i = 0; i < 23; ++i) /* 2^48 - 2^24 */ | ||
705 | { | ||
706 | felem_square(tmp, ftmp3); felem_reduce(ftmp3, tmp); | ||
707 | } | ||
708 | felem_mul(tmp, ftmp3, ftmp2); felem_reduce(ftmp3, tmp); /* 2^48 - 1 */ | ||
709 | felem_square(tmp, ftmp3); felem_reduce(ftmp4, tmp); /* 2^49 - 2 */ | ||
710 | for (i = 0; i < 47; ++i) /* 2^96 - 2^48 */ | ||
711 | { | ||
712 | felem_square(tmp, ftmp4); felem_reduce(ftmp4, tmp); | ||
713 | } | ||
714 | felem_mul(tmp, ftmp3, ftmp4); felem_reduce(ftmp3, tmp); /* 2^96 - 1 */ | ||
715 | felem_square(tmp, ftmp3); felem_reduce(ftmp4, tmp); /* 2^97 - 2 */ | ||
716 | for (i = 0; i < 23; ++i) /* 2^120 - 2^24 */ | ||
717 | { | ||
718 | felem_square(tmp, ftmp4); felem_reduce(ftmp4, tmp); | ||
719 | } | ||
720 | felem_mul(tmp, ftmp2, ftmp4); felem_reduce(ftmp2, tmp); /* 2^120 - 1 */ | ||
721 | for (i = 0; i < 6; ++i) /* 2^126 - 2^6 */ | ||
722 | { | ||
723 | felem_square(tmp, ftmp2); felem_reduce(ftmp2, tmp); | ||
724 | } | ||
725 | felem_mul(tmp, ftmp2, ftmp); felem_reduce(ftmp, tmp); /* 2^126 - 1 */ | ||
726 | felem_square(tmp, ftmp); felem_reduce(ftmp, tmp); /* 2^127 - 2 */ | ||
727 | felem_mul(tmp, ftmp, in); felem_reduce(ftmp, tmp); /* 2^127 - 1 */ | ||
728 | for (i = 0; i < 97; ++i) /* 2^224 - 2^97 */ | ||
729 | { | ||
730 | felem_square(tmp, ftmp); felem_reduce(ftmp, tmp); | ||
731 | } | ||
732 | felem_mul(tmp, ftmp, ftmp3); felem_reduce(out, tmp); /* 2^224 - 2^96 - 1 */ | ||
733 | } | ||
734 | |||
735 | /* Copy in constant time: | ||
736 | * if icopy == 1, copy in to out, | ||
737 | * if icopy == 0, copy out to itself. */ | ||
738 | static void | ||
739 | copy_conditional(felem out, const felem in, limb icopy) | ||
740 | { | ||
741 | unsigned i; | ||
742 | /* icopy is a (64-bit) 0 or 1, so copy is either all-zero or all-one */ | ||
743 | const limb copy = -icopy; | ||
744 | for (i = 0; i < 4; ++i) | ||
745 | { | ||
746 | const limb tmp = copy & (in[i] ^ out[i]); | ||
747 | out[i] ^= tmp; | ||
748 | } | ||
749 | } | ||
750 | |||
751 | /******************************************************************************/ | ||
752 | /* ELLIPTIC CURVE POINT OPERATIONS | ||
753 | * | ||
754 | * Points are represented in Jacobian projective coordinates: | ||
755 | * (X, Y, Z) corresponds to the affine point (X/Z^2, Y/Z^3), | ||
756 | * or to the point at infinity if Z == 0. | ||
757 | * | ||
758 | */ | ||
759 | |||
760 | /* Double an elliptic curve point: | ||
761 | * (X', Y', Z') = 2 * (X, Y, Z), where | ||
762 | * X' = (3 * (X - Z^2) * (X + Z^2))^2 - 8 * X * Y^2 | ||
763 | * Y' = 3 * (X - Z^2) * (X + Z^2) * (4 * X * Y^2 - X') - 8 * Y^2 | ||
764 | * Z' = (Y + Z)^2 - Y^2 - Z^2 = 2 * Y * Z | ||
765 | * Outputs can equal corresponding inputs, i.e., x_out == x_in is allowed, | ||
766 | * while x_out == y_in is not (maybe this works, but it's not tested). */ | ||
767 | static void | ||
768 | point_double(felem x_out, felem y_out, felem z_out, | ||
769 | const felem x_in, const felem y_in, const felem z_in) | ||
770 | { | ||
771 | widefelem tmp, tmp2; | ||
772 | felem delta, gamma, beta, alpha, ftmp, ftmp2; | ||
773 | |||
774 | felem_assign(ftmp, x_in); | ||
775 | felem_assign(ftmp2, x_in); | ||
776 | |||
777 | /* delta = z^2 */ | ||
778 | felem_square(tmp, z_in); | ||
779 | felem_reduce(delta, tmp); | ||
780 | |||
781 | /* gamma = y^2 */ | ||
782 | felem_square(tmp, y_in); | ||
783 | felem_reduce(gamma, tmp); | ||
784 | |||
785 | /* beta = x*gamma */ | ||
786 | felem_mul(tmp, x_in, gamma); | ||
787 | felem_reduce(beta, tmp); | ||
788 | |||
789 | /* alpha = 3*(x-delta)*(x+delta) */ | ||
790 | felem_diff(ftmp, delta); | ||
791 | /* ftmp[i] < 2^57 + 2^58 + 2 < 2^59 */ | ||
792 | felem_sum(ftmp2, delta); | ||
793 | /* ftmp2[i] < 2^57 + 2^57 = 2^58 */ | ||
794 | felem_scalar(ftmp2, 3); | ||
795 | /* ftmp2[i] < 3 * 2^58 < 2^60 */ | ||
796 | felem_mul(tmp, ftmp, ftmp2); | ||
797 | /* tmp[i] < 2^60 * 2^59 * 4 = 2^121 */ | ||
798 | felem_reduce(alpha, tmp); | ||
799 | |||
800 | /* x' = alpha^2 - 8*beta */ | ||
801 | felem_square(tmp, alpha); | ||
802 | /* tmp[i] < 4 * 2^57 * 2^57 = 2^116 */ | ||
803 | felem_assign(ftmp, beta); | ||
804 | felem_scalar(ftmp, 8); | ||
805 | /* ftmp[i] < 8 * 2^57 = 2^60 */ | ||
806 | felem_diff_128_64(tmp, ftmp); | ||
807 | /* tmp[i] < 2^116 + 2^64 + 8 < 2^117 */ | ||
808 | felem_reduce(x_out, tmp); | ||
809 | |||
810 | /* z' = (y + z)^2 - gamma - delta */ | ||
811 | felem_sum(delta, gamma); | ||
812 | /* delta[i] < 2^57 + 2^57 = 2^58 */ | ||
813 | felem_assign(ftmp, y_in); | ||
814 | felem_sum(ftmp, z_in); | ||
815 | /* ftmp[i] < 2^57 + 2^57 = 2^58 */ | ||
816 | felem_square(tmp, ftmp); | ||
817 | /* tmp[i] < 4 * 2^58 * 2^58 = 2^118 */ | ||
818 | felem_diff_128_64(tmp, delta); | ||
819 | /* tmp[i] < 2^118 + 2^64 + 8 < 2^119 */ | ||
820 | felem_reduce(z_out, tmp); | ||
821 | |||
822 | /* y' = alpha*(4*beta - x') - 8*gamma^2 */ | ||
823 | felem_scalar(beta, 4); | ||
824 | /* beta[i] < 4 * 2^57 = 2^59 */ | ||
825 | felem_diff(beta, x_out); | ||
826 | /* beta[i] < 2^59 + 2^58 + 2 < 2^60 */ | ||
827 | felem_mul(tmp, alpha, beta); | ||
828 | /* tmp[i] < 4 * 2^57 * 2^60 = 2^119 */ | ||
829 | felem_square(tmp2, gamma); | ||
830 | /* tmp2[i] < 4 * 2^57 * 2^57 = 2^116 */ | ||
831 | widefelem_scalar(tmp2, 8); | ||
832 | /* tmp2[i] < 8 * 2^116 = 2^119 */ | ||
833 | widefelem_diff(tmp, tmp2); | ||
834 | /* tmp[i] < 2^119 + 2^120 < 2^121 */ | ||
835 | felem_reduce(y_out, tmp); | ||
836 | } | ||
837 | |||
838 | /* Add two elliptic curve points: | ||
839 | * (X_1, Y_1, Z_1) + (X_2, Y_2, Z_2) = (X_3, Y_3, Z_3), where | ||
840 | * X_3 = (Z_1^3 * Y_2 - Z_2^3 * Y_1)^2 - (Z_1^2 * X_2 - Z_2^2 * X_1)^3 - | ||
841 | * 2 * Z_2^2 * X_1 * (Z_1^2 * X_2 - Z_2^2 * X_1)^2 | ||
842 | * Y_3 = (Z_1^3 * Y_2 - Z_2^3 * Y_1) * (Z_2^2 * X_1 * (Z_1^2 * X_2 - Z_2^2 * X_1)^2 - X_3) - | ||
843 | * Z_2^3 * Y_1 * (Z_1^2 * X_2 - Z_2^2 * X_1)^3 | ||
844 | * Z_3 = (Z_1^2 * X_2 - Z_2^2 * X_1) * (Z_1 * Z_2) | ||
845 | * | ||
846 | * This runs faster if 'mixed' is set, which requires Z_2 = 1 or Z_2 = 0. | ||
847 | */ | ||
848 | |||
849 | /* This function is not entirely constant-time: | ||
850 | * it includes a branch for checking whether the two input points are equal, | ||
851 | * (while not equal to the point at infinity). | ||
852 | * This case never happens during single point multiplication, | ||
853 | * so there is no timing leak for ECDH or ECDSA signing. */ | ||
854 | static void point_add(felem x3, felem y3, felem z3, | ||
855 | const felem x1, const felem y1, const felem z1, | ||
856 | const int mixed, const felem x2, const felem y2, const felem z2) | ||
857 | { | ||
858 | felem ftmp, ftmp2, ftmp3, ftmp4, ftmp5, x_out, y_out, z_out; | ||
859 | widefelem tmp, tmp2; | ||
860 | limb z1_is_zero, z2_is_zero, x_equal, y_equal; | ||
861 | |||
862 | if (!mixed) | ||
863 | { | ||
864 | /* ftmp2 = z2^2 */ | ||
865 | felem_square(tmp, z2); | ||
866 | felem_reduce(ftmp2, tmp); | ||
867 | |||
868 | /* ftmp4 = z2^3 */ | ||
869 | felem_mul(tmp, ftmp2, z2); | ||
870 | felem_reduce(ftmp4, tmp); | ||
871 | |||
872 | /* ftmp4 = z2^3*y1 */ | ||
873 | felem_mul(tmp2, ftmp4, y1); | ||
874 | felem_reduce(ftmp4, tmp2); | ||
875 | |||
876 | /* ftmp2 = z2^2*x1 */ | ||
877 | felem_mul(tmp2, ftmp2, x1); | ||
878 | felem_reduce(ftmp2, tmp2); | ||
879 | } | ||
880 | else | ||
881 | { | ||
882 | /* We'll assume z2 = 1 (special case z2 = 0 is handled later) */ | ||
883 | |||
884 | /* ftmp4 = z2^3*y1 */ | ||
885 | felem_assign(ftmp4, y1); | ||
886 | |||
887 | /* ftmp2 = z2^2*x1 */ | ||
888 | felem_assign(ftmp2, x1); | ||
889 | } | ||
890 | |||
891 | /* ftmp = z1^2 */ | ||
892 | felem_square(tmp, z1); | ||
893 | felem_reduce(ftmp, tmp); | ||
894 | |||
895 | /* ftmp3 = z1^3 */ | ||
896 | felem_mul(tmp, ftmp, z1); | ||
897 | felem_reduce(ftmp3, tmp); | ||
898 | |||
899 | /* tmp = z1^3*y2 */ | ||
900 | felem_mul(tmp, ftmp3, y2); | ||
901 | /* tmp[i] < 4 * 2^57 * 2^57 = 2^116 */ | ||
902 | |||
903 | /* ftmp3 = z1^3*y2 - z2^3*y1 */ | ||
904 | felem_diff_128_64(tmp, ftmp4); | ||
905 | /* tmp[i] < 2^116 + 2^64 + 8 < 2^117 */ | ||
906 | felem_reduce(ftmp3, tmp); | ||
907 | |||
908 | /* tmp = z1^2*x2 */ | ||
909 | felem_mul(tmp, ftmp, x2); | ||
910 | /* tmp[i] < 4 * 2^57 * 2^57 = 2^116 */ | ||
911 | |||
912 | /* ftmp = z1^2*x2 - z2^2*x1 */ | ||
913 | felem_diff_128_64(tmp, ftmp2); | ||
914 | /* tmp[i] < 2^116 + 2^64 + 8 < 2^117 */ | ||
915 | felem_reduce(ftmp, tmp); | ||
916 | |||
917 | /* the formulae are incorrect if the points are equal | ||
918 | * so we check for this and do doubling if this happens */ | ||
919 | x_equal = felem_is_zero(ftmp); | ||
920 | y_equal = felem_is_zero(ftmp3); | ||
921 | z1_is_zero = felem_is_zero(z1); | ||
922 | z2_is_zero = felem_is_zero(z2); | ||
923 | /* In affine coordinates, (X_1, Y_1) == (X_2, Y_2) */ | ||
924 | if (x_equal && y_equal && !z1_is_zero && !z2_is_zero) | ||
925 | { | ||
926 | point_double(x3, y3, z3, x1, y1, z1); | ||
927 | return; | ||
928 | } | ||
929 | |||
930 | /* ftmp5 = z1*z2 */ | ||
931 | if (!mixed) | ||
932 | { | ||
933 | felem_mul(tmp, z1, z2); | ||
934 | felem_reduce(ftmp5, tmp); | ||
935 | } | ||
936 | else | ||
937 | { | ||
938 | /* special case z2 = 0 is handled later */ | ||
939 | felem_assign(ftmp5, z1); | ||
940 | } | ||
941 | |||
942 | /* z_out = (z1^2*x2 - z2^2*x1)*(z1*z2) */ | ||
943 | felem_mul(tmp, ftmp, ftmp5); | ||
944 | felem_reduce(z_out, tmp); | ||
945 | |||
946 | /* ftmp = (z1^2*x2 - z2^2*x1)^2 */ | ||
947 | felem_assign(ftmp5, ftmp); | ||
948 | felem_square(tmp, ftmp); | ||
949 | felem_reduce(ftmp, tmp); | ||
950 | |||
951 | /* ftmp5 = (z1^2*x2 - z2^2*x1)^3 */ | ||
952 | felem_mul(tmp, ftmp, ftmp5); | ||
953 | felem_reduce(ftmp5, tmp); | ||
954 | |||
955 | /* ftmp2 = z2^2*x1*(z1^2*x2 - z2^2*x1)^2 */ | ||
956 | felem_mul(tmp, ftmp2, ftmp); | ||
957 | felem_reduce(ftmp2, tmp); | ||
958 | |||
959 | /* tmp = z2^3*y1*(z1^2*x2 - z2^2*x1)^3 */ | ||
960 | felem_mul(tmp, ftmp4, ftmp5); | ||
961 | /* tmp[i] < 4 * 2^57 * 2^57 = 2^116 */ | ||
962 | |||
963 | /* tmp2 = (z1^3*y2 - z2^3*y1)^2 */ | ||
964 | felem_square(tmp2, ftmp3); | ||
965 | /* tmp2[i] < 4 * 2^57 * 2^57 < 2^116 */ | ||
966 | |||
967 | /* tmp2 = (z1^3*y2 - z2^3*y1)^2 - (z1^2*x2 - z2^2*x1)^3 */ | ||
968 | felem_diff_128_64(tmp2, ftmp5); | ||
969 | /* tmp2[i] < 2^116 + 2^64 + 8 < 2^117 */ | ||
970 | |||
971 | /* ftmp5 = 2*z2^2*x1*(z1^2*x2 - z2^2*x1)^2 */ | ||
972 | felem_assign(ftmp5, ftmp2); | ||
973 | felem_scalar(ftmp5, 2); | ||
974 | /* ftmp5[i] < 2 * 2^57 = 2^58 */ | ||
975 | |||
976 | /* x_out = (z1^3*y2 - z2^3*y1)^2 - (z1^2*x2 - z2^2*x1)^3 - | ||
977 | 2*z2^2*x1*(z1^2*x2 - z2^2*x1)^2 */ | ||
978 | felem_diff_128_64(tmp2, ftmp5); | ||
979 | /* tmp2[i] < 2^117 + 2^64 + 8 < 2^118 */ | ||
980 | felem_reduce(x_out, tmp2); | ||
981 | |||
982 | /* ftmp2 = z2^2*x1*(z1^2*x2 - z2^2*x1)^2 - x_out */ | ||
983 | felem_diff(ftmp2, x_out); | ||
984 | /* ftmp2[i] < 2^57 + 2^58 + 2 < 2^59 */ | ||
985 | |||
986 | /* tmp2 = (z1^3*y2 - z2^3*y1)*(z2^2*x1*(z1^2*x2 - z2^2*x1)^2 - x_out) */ | ||
987 | felem_mul(tmp2, ftmp3, ftmp2); | ||
988 | /* tmp2[i] < 4 * 2^57 * 2^59 = 2^118 */ | ||
989 | |||
990 | /* y_out = (z1^3*y2 - z2^3*y1)*(z2^2*x1*(z1^2*x2 - z2^2*x1)^2 - x_out) - | ||
991 | z2^3*y1*(z1^2*x2 - z2^2*x1)^3 */ | ||
992 | widefelem_diff(tmp2, tmp); | ||
993 | /* tmp2[i] < 2^118 + 2^120 < 2^121 */ | ||
994 | felem_reduce(y_out, tmp2); | ||
995 | |||
996 | /* the result (x_out, y_out, z_out) is incorrect if one of the inputs is | ||
997 | * the point at infinity, so we need to check for this separately */ | ||
998 | |||
999 | /* if point 1 is at infinity, copy point 2 to output, and vice versa */ | ||
1000 | copy_conditional(x_out, x2, z1_is_zero); | ||
1001 | copy_conditional(x_out, x1, z2_is_zero); | ||
1002 | copy_conditional(y_out, y2, z1_is_zero); | ||
1003 | copy_conditional(y_out, y1, z2_is_zero); | ||
1004 | copy_conditional(z_out, z2, z1_is_zero); | ||
1005 | copy_conditional(z_out, z1, z2_is_zero); | ||
1006 | felem_assign(x3, x_out); | ||
1007 | felem_assign(y3, y_out); | ||
1008 | felem_assign(z3, z_out); | ||
1009 | } | ||
1010 | |||
1011 | /* select_point selects the |idx|th point from a precomputation table and | ||
1012 | * copies it to out. */ | ||
1013 | static void select_point(const u64 idx, unsigned int size, const felem pre_comp[/*size*/][3], felem out[3]) | ||
1014 | { | ||
1015 | unsigned i, j; | ||
1016 | limb *outlimbs = &out[0][0]; | ||
1017 | memset(outlimbs, 0, 3 * sizeof(felem)); | ||
1018 | |||
1019 | for (i = 0; i < size; i++) | ||
1020 | { | ||
1021 | const limb *inlimbs = &pre_comp[i][0][0]; | ||
1022 | u64 mask = i ^ idx; | ||
1023 | mask |= mask >> 4; | ||
1024 | mask |= mask >> 2; | ||
1025 | mask |= mask >> 1; | ||
1026 | mask &= 1; | ||
1027 | mask--; | ||
1028 | for (j = 0; j < 4 * 3; j++) | ||
1029 | outlimbs[j] |= inlimbs[j] & mask; | ||
1030 | } | ||
1031 | } | ||
1032 | |||
1033 | /* get_bit returns the |i|th bit in |in| */ | ||
1034 | static char get_bit(const felem_bytearray in, unsigned i) | ||
1035 | { | ||
1036 | if (i >= 224) | ||
1037 | return 0; | ||
1038 | return (in[i >> 3] >> (i & 7)) & 1; | ||
1039 | } | ||
1040 | |||
1041 | /* Interleaved point multiplication using precomputed point multiples: | ||
1042 | * The small point multiples 0*P, 1*P, ..., 16*P are in pre_comp[], | ||
1043 | * the scalars in scalars[]. If g_scalar is non-NULL, we also add this multiple | ||
1044 | * of the generator, using certain (large) precomputed multiples in g_pre_comp. | ||
1045 | * Output point (X, Y, Z) is stored in x_out, y_out, z_out */ | ||
1046 | static void batch_mul(felem x_out, felem y_out, felem z_out, | ||
1047 | const felem_bytearray scalars[], const unsigned num_points, const u8 *g_scalar, | ||
1048 | const int mixed, const felem pre_comp[][17][3], const felem g_pre_comp[2][16][3]) | ||
1049 | { | ||
1050 | int i, skip; | ||
1051 | unsigned num; | ||
1052 | unsigned gen_mul = (g_scalar != NULL); | ||
1053 | felem nq[3], tmp[4]; | ||
1054 | u64 bits; | ||
1055 | u8 sign, digit; | ||
1056 | |||
1057 | /* set nq to the point at infinity */ | ||
1058 | memset(nq, 0, 3 * sizeof(felem)); | ||
1059 | |||
1060 | /* Loop over all scalars msb-to-lsb, interleaving additions | ||
1061 | * of multiples of the generator (two in each of the last 28 rounds) | ||
1062 | * and additions of other points multiples (every 5th round). | ||
1063 | */ | ||
1064 | skip = 1; /* save two point operations in the first round */ | ||
1065 | for (i = (num_points ? 220 : 27); i >= 0; --i) | ||
1066 | { | ||
1067 | /* double */ | ||
1068 | if (!skip) | ||
1069 | point_double(nq[0], nq[1], nq[2], nq[0], nq[1], nq[2]); | ||
1070 | |||
1071 | /* add multiples of the generator */ | ||
1072 | if (gen_mul && (i <= 27)) | ||
1073 | { | ||
1074 | /* first, look 28 bits upwards */ | ||
1075 | bits = get_bit(g_scalar, i + 196) << 3; | ||
1076 | bits |= get_bit(g_scalar, i + 140) << 2; | ||
1077 | bits |= get_bit(g_scalar, i + 84) << 1; | ||
1078 | bits |= get_bit(g_scalar, i + 28); | ||
1079 | /* select the point to add, in constant time */ | ||
1080 | select_point(bits, 16, g_pre_comp[1], tmp); | ||
1081 | |||
1082 | if (!skip) | ||
1083 | { | ||
1084 | point_add(nq[0], nq[1], nq[2], | ||
1085 | nq[0], nq[1], nq[2], | ||
1086 | 1 /* mixed */, tmp[0], tmp[1], tmp[2]); | ||
1087 | } | ||
1088 | else | ||
1089 | { | ||
1090 | memcpy(nq, tmp, 3 * sizeof(felem)); | ||
1091 | skip = 0; | ||
1092 | } | ||
1093 | |||
1094 | /* second, look at the current position */ | ||
1095 | bits = get_bit(g_scalar, i + 168) << 3; | ||
1096 | bits |= get_bit(g_scalar, i + 112) << 2; | ||
1097 | bits |= get_bit(g_scalar, i + 56) << 1; | ||
1098 | bits |= get_bit(g_scalar, i); | ||
1099 | /* select the point to add, in constant time */ | ||
1100 | select_point(bits, 16, g_pre_comp[0], tmp); | ||
1101 | point_add(nq[0], nq[1], nq[2], | ||
1102 | nq[0], nq[1], nq[2], | ||
1103 | 1 /* mixed */, tmp[0], tmp[1], tmp[2]); | ||
1104 | } | ||
1105 | |||
1106 | /* do other additions every 5 doublings */ | ||
1107 | if (num_points && (i % 5 == 0)) | ||
1108 | { | ||
1109 | /* loop over all scalars */ | ||
1110 | for (num = 0; num < num_points; ++num) | ||
1111 | { | ||
1112 | bits = get_bit(scalars[num], i + 4) << 5; | ||
1113 | bits |= get_bit(scalars[num], i + 3) << 4; | ||
1114 | bits |= get_bit(scalars[num], i + 2) << 3; | ||
1115 | bits |= get_bit(scalars[num], i + 1) << 2; | ||
1116 | bits |= get_bit(scalars[num], i) << 1; | ||
1117 | bits |= get_bit(scalars[num], i - 1); | ||
1118 | ec_GFp_nistp_recode_scalar_bits(&sign, &digit, bits); | ||
1119 | |||
1120 | /* select the point to add or subtract */ | ||
1121 | select_point(digit, 17, pre_comp[num], tmp); | ||
1122 | felem_neg(tmp[3], tmp[1]); /* (X, -Y, Z) is the negative point */ | ||
1123 | copy_conditional(tmp[1], tmp[3], sign); | ||
1124 | |||
1125 | if (!skip) | ||
1126 | { | ||
1127 | point_add(nq[0], nq[1], nq[2], | ||
1128 | nq[0], nq[1], nq[2], | ||
1129 | mixed, tmp[0], tmp[1], tmp[2]); | ||
1130 | } | ||
1131 | else | ||
1132 | { | ||
1133 | memcpy(nq, tmp, 3 * sizeof(felem)); | ||
1134 | skip = 0; | ||
1135 | } | ||
1136 | } | ||
1137 | } | ||
1138 | } | ||
1139 | felem_assign(x_out, nq[0]); | ||
1140 | felem_assign(y_out, nq[1]); | ||
1141 | felem_assign(z_out, nq[2]); | ||
1142 | } | ||
1143 | |||
1144 | /******************************************************************************/ | ||
1145 | /* FUNCTIONS TO MANAGE PRECOMPUTATION | ||
1146 | */ | ||
1147 | |||
1148 | static NISTP224_PRE_COMP *nistp224_pre_comp_new() | ||
1149 | { | ||
1150 | NISTP224_PRE_COMP *ret = NULL; | ||
1151 | ret = (NISTP224_PRE_COMP *) OPENSSL_malloc(sizeof *ret); | ||
1152 | if (!ret) | ||
1153 | { | ||
1154 | ECerr(EC_F_NISTP224_PRE_COMP_NEW, ERR_R_MALLOC_FAILURE); | ||
1155 | return ret; | ||
1156 | } | ||
1157 | memset(ret->g_pre_comp, 0, sizeof(ret->g_pre_comp)); | ||
1158 | ret->references = 1; | ||
1159 | return ret; | ||
1160 | } | ||
1161 | |||
1162 | static void *nistp224_pre_comp_dup(void *src_) | ||
1163 | { | ||
1164 | NISTP224_PRE_COMP *src = src_; | ||
1165 | |||
1166 | /* no need to actually copy, these objects never change! */ | ||
1167 | CRYPTO_add(&src->references, 1, CRYPTO_LOCK_EC_PRE_COMP); | ||
1168 | |||
1169 | return src_; | ||
1170 | } | ||
1171 | |||
1172 | static void nistp224_pre_comp_free(void *pre_) | ||
1173 | { | ||
1174 | int i; | ||
1175 | NISTP224_PRE_COMP *pre = pre_; | ||
1176 | |||
1177 | if (!pre) | ||
1178 | return; | ||
1179 | |||
1180 | i = CRYPTO_add(&pre->references, -1, CRYPTO_LOCK_EC_PRE_COMP); | ||
1181 | if (i > 0) | ||
1182 | return; | ||
1183 | |||
1184 | OPENSSL_free(pre); | ||
1185 | } | ||
1186 | |||
1187 | static void nistp224_pre_comp_clear_free(void *pre_) | ||
1188 | { | ||
1189 | int i; | ||
1190 | NISTP224_PRE_COMP *pre = pre_; | ||
1191 | |||
1192 | if (!pre) | ||
1193 | return; | ||
1194 | |||
1195 | i = CRYPTO_add(&pre->references, -1, CRYPTO_LOCK_EC_PRE_COMP); | ||
1196 | if (i > 0) | ||
1197 | return; | ||
1198 | |||
1199 | OPENSSL_cleanse(pre, sizeof *pre); | ||
1200 | OPENSSL_free(pre); | ||
1201 | } | ||
1202 | |||
1203 | /******************************************************************************/ | ||
1204 | /* OPENSSL EC_METHOD FUNCTIONS | ||
1205 | */ | ||
1206 | |||
1207 | int ec_GFp_nistp224_group_init(EC_GROUP *group) | ||
1208 | { | ||
1209 | int ret; | ||
1210 | ret = ec_GFp_simple_group_init(group); | ||
1211 | group->a_is_minus3 = 1; | ||
1212 | return ret; | ||
1213 | } | ||
1214 | |||
1215 | int ec_GFp_nistp224_group_set_curve(EC_GROUP *group, const BIGNUM *p, | ||
1216 | const BIGNUM *a, const BIGNUM *b, BN_CTX *ctx) | ||
1217 | { | ||
1218 | int ret = 0; | ||
1219 | BN_CTX *new_ctx = NULL; | ||
1220 | BIGNUM *curve_p, *curve_a, *curve_b; | ||
1221 | |||
1222 | if (ctx == NULL) | ||
1223 | if ((ctx = new_ctx = BN_CTX_new()) == NULL) return 0; | ||
1224 | BN_CTX_start(ctx); | ||
1225 | if (((curve_p = BN_CTX_get(ctx)) == NULL) || | ||
1226 | ((curve_a = BN_CTX_get(ctx)) == NULL) || | ||
1227 | ((curve_b = BN_CTX_get(ctx)) == NULL)) goto err; | ||
1228 | BN_bin2bn(nistp224_curve_params[0], sizeof(felem_bytearray), curve_p); | ||
1229 | BN_bin2bn(nistp224_curve_params[1], sizeof(felem_bytearray), curve_a); | ||
1230 | BN_bin2bn(nistp224_curve_params[2], sizeof(felem_bytearray), curve_b); | ||
1231 | if ((BN_cmp(curve_p, p)) || (BN_cmp(curve_a, a)) || | ||
1232 | (BN_cmp(curve_b, b))) | ||
1233 | { | ||
1234 | ECerr(EC_F_EC_GFP_NISTP224_GROUP_SET_CURVE, | ||
1235 | EC_R_WRONG_CURVE_PARAMETERS); | ||
1236 | goto err; | ||
1237 | } | ||
1238 | group->field_mod_func = BN_nist_mod_224; | ||
1239 | ret = ec_GFp_simple_group_set_curve(group, p, a, b, ctx); | ||
1240 | err: | ||
1241 | BN_CTX_end(ctx); | ||
1242 | if (new_ctx != NULL) | ||
1243 | BN_CTX_free(new_ctx); | ||
1244 | return ret; | ||
1245 | } | ||
1246 | |||
1247 | /* Takes the Jacobian coordinates (X, Y, Z) of a point and returns | ||
1248 | * (X', Y') = (X/Z^2, Y/Z^3) */ | ||
1249 | int ec_GFp_nistp224_point_get_affine_coordinates(const EC_GROUP *group, | ||
1250 | const EC_POINT *point, BIGNUM *x, BIGNUM *y, BN_CTX *ctx) | ||
1251 | { | ||
1252 | felem z1, z2, x_in, y_in, x_out, y_out; | ||
1253 | widefelem tmp; | ||
1254 | |||
1255 | if (EC_POINT_is_at_infinity(group, point)) | ||
1256 | { | ||
1257 | ECerr(EC_F_EC_GFP_NISTP224_POINT_GET_AFFINE_COORDINATES, | ||
1258 | EC_R_POINT_AT_INFINITY); | ||
1259 | return 0; | ||
1260 | } | ||
1261 | if ((!BN_to_felem(x_in, &point->X)) || (!BN_to_felem(y_in, &point->Y)) || | ||
1262 | (!BN_to_felem(z1, &point->Z))) return 0; | ||
1263 | felem_inv(z2, z1); | ||
1264 | felem_square(tmp, z2); felem_reduce(z1, tmp); | ||
1265 | felem_mul(tmp, x_in, z1); felem_reduce(x_in, tmp); | ||
1266 | felem_contract(x_out, x_in); | ||
1267 | if (x != NULL) | ||
1268 | { | ||
1269 | if (!felem_to_BN(x, x_out)) { | ||
1270 | ECerr(EC_F_EC_GFP_NISTP224_POINT_GET_AFFINE_COORDINATES, | ||
1271 | ERR_R_BN_LIB); | ||
1272 | return 0; | ||
1273 | } | ||
1274 | } | ||
1275 | felem_mul(tmp, z1, z2); felem_reduce(z1, tmp); | ||
1276 | felem_mul(tmp, y_in, z1); felem_reduce(y_in, tmp); | ||
1277 | felem_contract(y_out, y_in); | ||
1278 | if (y != NULL) | ||
1279 | { | ||
1280 | if (!felem_to_BN(y, y_out)) { | ||
1281 | ECerr(EC_F_EC_GFP_NISTP224_POINT_GET_AFFINE_COORDINATES, | ||
1282 | ERR_R_BN_LIB); | ||
1283 | return 0; | ||
1284 | } | ||
1285 | } | ||
1286 | return 1; | ||
1287 | } | ||
1288 | |||
1289 | static void make_points_affine(size_t num, felem points[/*num*/][3], felem tmp_felems[/*num+1*/]) | ||
1290 | { | ||
1291 | /* Runs in constant time, unless an input is the point at infinity | ||
1292 | * (which normally shouldn't happen). */ | ||
1293 | ec_GFp_nistp_points_make_affine_internal( | ||
1294 | num, | ||
1295 | points, | ||
1296 | sizeof(felem), | ||
1297 | tmp_felems, | ||
1298 | (void (*)(void *)) felem_one, | ||
1299 | (int (*)(const void *)) felem_is_zero_int, | ||
1300 | (void (*)(void *, const void *)) felem_assign, | ||
1301 | (void (*)(void *, const void *)) felem_square_reduce, | ||
1302 | (void (*)(void *, const void *, const void *)) felem_mul_reduce, | ||
1303 | (void (*)(void *, const void *)) felem_inv, | ||
1304 | (void (*)(void *, const void *)) felem_contract); | ||
1305 | } | ||
1306 | |||
1307 | /* Computes scalar*generator + \sum scalars[i]*points[i], ignoring NULL values | ||
1308 | * Result is stored in r (r can equal one of the inputs). */ | ||
1309 | int ec_GFp_nistp224_points_mul(const EC_GROUP *group, EC_POINT *r, | ||
1310 | const BIGNUM *scalar, size_t num, const EC_POINT *points[], | ||
1311 | const BIGNUM *scalars[], BN_CTX *ctx) | ||
1312 | { | ||
1313 | int ret = 0; | ||
1314 | int j; | ||
1315 | unsigned i; | ||
1316 | int mixed = 0; | ||
1317 | BN_CTX *new_ctx = NULL; | ||
1318 | BIGNUM *x, *y, *z, *tmp_scalar; | ||
1319 | felem_bytearray g_secret; | ||
1320 | felem_bytearray *secrets = NULL; | ||
1321 | felem (*pre_comp)[17][3] = NULL; | ||
1322 | felem *tmp_felems = NULL; | ||
1323 | felem_bytearray tmp; | ||
1324 | unsigned num_bytes; | ||
1325 | int have_pre_comp = 0; | ||
1326 | size_t num_points = num; | ||
1327 | felem x_in, y_in, z_in, x_out, y_out, z_out; | ||
1328 | NISTP224_PRE_COMP *pre = NULL; | ||
1329 | const felem (*g_pre_comp)[16][3] = NULL; | ||
1330 | EC_POINT *generator = NULL; | ||
1331 | const EC_POINT *p = NULL; | ||
1332 | const BIGNUM *p_scalar = NULL; | ||
1333 | |||
1334 | if (ctx == NULL) | ||
1335 | if ((ctx = new_ctx = BN_CTX_new()) == NULL) return 0; | ||
1336 | BN_CTX_start(ctx); | ||
1337 | if (((x = BN_CTX_get(ctx)) == NULL) || | ||
1338 | ((y = BN_CTX_get(ctx)) == NULL) || | ||
1339 | ((z = BN_CTX_get(ctx)) == NULL) || | ||
1340 | ((tmp_scalar = BN_CTX_get(ctx)) == NULL)) | ||
1341 | goto err; | ||
1342 | |||
1343 | if (scalar != NULL) | ||
1344 | { | ||
1345 | pre = EC_EX_DATA_get_data(group->extra_data, | ||
1346 | nistp224_pre_comp_dup, nistp224_pre_comp_free, | ||
1347 | nistp224_pre_comp_clear_free); | ||
1348 | if (pre) | ||
1349 | /* we have precomputation, try to use it */ | ||
1350 | g_pre_comp = (const felem (*)[16][3]) pre->g_pre_comp; | ||
1351 | else | ||
1352 | /* try to use the standard precomputation */ | ||
1353 | g_pre_comp = &gmul[0]; | ||
1354 | generator = EC_POINT_new(group); | ||
1355 | if (generator == NULL) | ||
1356 | goto err; | ||
1357 | /* get the generator from precomputation */ | ||
1358 | if (!felem_to_BN(x, g_pre_comp[0][1][0]) || | ||
1359 | !felem_to_BN(y, g_pre_comp[0][1][1]) || | ||
1360 | !felem_to_BN(z, g_pre_comp[0][1][2])) | ||
1361 | { | ||
1362 | ECerr(EC_F_EC_GFP_NISTP224_POINTS_MUL, ERR_R_BN_LIB); | ||
1363 | goto err; | ||
1364 | } | ||
1365 | if (!EC_POINT_set_Jprojective_coordinates_GFp(group, | ||
1366 | generator, x, y, z, ctx)) | ||
1367 | goto err; | ||
1368 | if (0 == EC_POINT_cmp(group, generator, group->generator, ctx)) | ||
1369 | /* precomputation matches generator */ | ||
1370 | have_pre_comp = 1; | ||
1371 | else | ||
1372 | /* we don't have valid precomputation: | ||
1373 | * treat the generator as a random point */ | ||
1374 | num_points = num_points + 1; | ||
1375 | } | ||
1376 | |||
1377 | if (num_points > 0) | ||
1378 | { | ||
1379 | if (num_points >= 3) | ||
1380 | { | ||
1381 | /* unless we precompute multiples for just one or two points, | ||
1382 | * converting those into affine form is time well spent */ | ||
1383 | mixed = 1; | ||
1384 | } | ||
1385 | secrets = OPENSSL_malloc(num_points * sizeof(felem_bytearray)); | ||
1386 | pre_comp = OPENSSL_malloc(num_points * 17 * 3 * sizeof(felem)); | ||
1387 | if (mixed) | ||
1388 | tmp_felems = OPENSSL_malloc((num_points * 17 + 1) * sizeof(felem)); | ||
1389 | if ((secrets == NULL) || (pre_comp == NULL) || (mixed && (tmp_felems == NULL))) | ||
1390 | { | ||
1391 | ECerr(EC_F_EC_GFP_NISTP224_POINTS_MUL, ERR_R_MALLOC_FAILURE); | ||
1392 | goto err; | ||
1393 | } | ||
1394 | |||
1395 | /* we treat NULL scalars as 0, and NULL points as points at infinity, | ||
1396 | * i.e., they contribute nothing to the linear combination */ | ||
1397 | memset(secrets, 0, num_points * sizeof(felem_bytearray)); | ||
1398 | memset(pre_comp, 0, num_points * 17 * 3 * sizeof(felem)); | ||
1399 | for (i = 0; i < num_points; ++i) | ||
1400 | { | ||
1401 | if (i == num) | ||
1402 | /* the generator */ | ||
1403 | { | ||
1404 | p = EC_GROUP_get0_generator(group); | ||
1405 | p_scalar = scalar; | ||
1406 | } | ||
1407 | else | ||
1408 | /* the i^th point */ | ||
1409 | { | ||
1410 | p = points[i]; | ||
1411 | p_scalar = scalars[i]; | ||
1412 | } | ||
1413 | if ((p_scalar != NULL) && (p != NULL)) | ||
1414 | { | ||
1415 | /* reduce scalar to 0 <= scalar < 2^224 */ | ||
1416 | if ((BN_num_bits(p_scalar) > 224) || (BN_is_negative(p_scalar))) | ||
1417 | { | ||
1418 | /* this is an unusual input, and we don't guarantee | ||
1419 | * constant-timeness */ | ||
1420 | if (!BN_nnmod(tmp_scalar, p_scalar, &group->order, ctx)) | ||
1421 | { | ||
1422 | ECerr(EC_F_EC_GFP_NISTP224_POINTS_MUL, ERR_R_BN_LIB); | ||
1423 | goto err; | ||
1424 | } | ||
1425 | num_bytes = BN_bn2bin(tmp_scalar, tmp); | ||
1426 | } | ||
1427 | else | ||
1428 | num_bytes = BN_bn2bin(p_scalar, tmp); | ||
1429 | flip_endian(secrets[i], tmp, num_bytes); | ||
1430 | /* precompute multiples */ | ||
1431 | if ((!BN_to_felem(x_out, &p->X)) || | ||
1432 | (!BN_to_felem(y_out, &p->Y)) || | ||
1433 | (!BN_to_felem(z_out, &p->Z))) goto err; | ||
1434 | felem_assign(pre_comp[i][1][0], x_out); | ||
1435 | felem_assign(pre_comp[i][1][1], y_out); | ||
1436 | felem_assign(pre_comp[i][1][2], z_out); | ||
1437 | for (j = 2; j <= 16; ++j) | ||
1438 | { | ||
1439 | if (j & 1) | ||
1440 | { | ||
1441 | point_add( | ||
1442 | pre_comp[i][j][0], pre_comp[i][j][1], pre_comp[i][j][2], | ||
1443 | pre_comp[i][1][0], pre_comp[i][1][1], pre_comp[i][1][2], | ||
1444 | 0, pre_comp[i][j-1][0], pre_comp[i][j-1][1], pre_comp[i][j-1][2]); | ||
1445 | } | ||
1446 | else | ||
1447 | { | ||
1448 | point_double( | ||
1449 | pre_comp[i][j][0], pre_comp[i][j][1], pre_comp[i][j][2], | ||
1450 | pre_comp[i][j/2][0], pre_comp[i][j/2][1], pre_comp[i][j/2][2]); | ||
1451 | } | ||
1452 | } | ||
1453 | } | ||
1454 | } | ||
1455 | if (mixed) | ||
1456 | make_points_affine(num_points * 17, pre_comp[0], tmp_felems); | ||
1457 | } | ||
1458 | |||
1459 | /* the scalar for the generator */ | ||
1460 | if ((scalar != NULL) && (have_pre_comp)) | ||
1461 | { | ||
1462 | memset(g_secret, 0, sizeof g_secret); | ||
1463 | /* reduce scalar to 0 <= scalar < 2^224 */ | ||
1464 | if ((BN_num_bits(scalar) > 224) || (BN_is_negative(scalar))) | ||
1465 | { | ||
1466 | /* this is an unusual input, and we don't guarantee | ||
1467 | * constant-timeness */ | ||
1468 | if (!BN_nnmod(tmp_scalar, scalar, &group->order, ctx)) | ||
1469 | { | ||
1470 | ECerr(EC_F_EC_GFP_NISTP224_POINTS_MUL, ERR_R_BN_LIB); | ||
1471 | goto err; | ||
1472 | } | ||
1473 | num_bytes = BN_bn2bin(tmp_scalar, tmp); | ||
1474 | } | ||
1475 | else | ||
1476 | num_bytes = BN_bn2bin(scalar, tmp); | ||
1477 | flip_endian(g_secret, tmp, num_bytes); | ||
1478 | /* do the multiplication with generator precomputation*/ | ||
1479 | batch_mul(x_out, y_out, z_out, | ||
1480 | (const felem_bytearray (*)) secrets, num_points, | ||
1481 | g_secret, | ||
1482 | mixed, (const felem (*)[17][3]) pre_comp, | ||
1483 | g_pre_comp); | ||
1484 | } | ||
1485 | else | ||
1486 | /* do the multiplication without generator precomputation */ | ||
1487 | batch_mul(x_out, y_out, z_out, | ||
1488 | (const felem_bytearray (*)) secrets, num_points, | ||
1489 | NULL, mixed, (const felem (*)[17][3]) pre_comp, NULL); | ||
1490 | /* reduce the output to its unique minimal representation */ | ||
1491 | felem_contract(x_in, x_out); | ||
1492 | felem_contract(y_in, y_out); | ||
1493 | felem_contract(z_in, z_out); | ||
1494 | if ((!felem_to_BN(x, x_in)) || (!felem_to_BN(y, y_in)) || | ||
1495 | (!felem_to_BN(z, z_in))) | ||
1496 | { | ||
1497 | ECerr(EC_F_EC_GFP_NISTP224_POINTS_MUL, ERR_R_BN_LIB); | ||
1498 | goto err; | ||
1499 | } | ||
1500 | ret = EC_POINT_set_Jprojective_coordinates_GFp(group, r, x, y, z, ctx); | ||
1501 | |||
1502 | err: | ||
1503 | BN_CTX_end(ctx); | ||
1504 | if (generator != NULL) | ||
1505 | EC_POINT_free(generator); | ||
1506 | if (new_ctx != NULL) | ||
1507 | BN_CTX_free(new_ctx); | ||
1508 | if (secrets != NULL) | ||
1509 | OPENSSL_free(secrets); | ||
1510 | if (pre_comp != NULL) | ||
1511 | OPENSSL_free(pre_comp); | ||
1512 | if (tmp_felems != NULL) | ||
1513 | OPENSSL_free(tmp_felems); | ||
1514 | return ret; | ||
1515 | } | ||
1516 | |||
1517 | int ec_GFp_nistp224_precompute_mult(EC_GROUP *group, BN_CTX *ctx) | ||
1518 | { | ||
1519 | int ret = 0; | ||
1520 | NISTP224_PRE_COMP *pre = NULL; | ||
1521 | int i, j; | ||
1522 | BN_CTX *new_ctx = NULL; | ||
1523 | BIGNUM *x, *y; | ||
1524 | EC_POINT *generator = NULL; | ||
1525 | felem tmp_felems[32]; | ||
1526 | |||
1527 | /* throw away old precomputation */ | ||
1528 | EC_EX_DATA_free_data(&group->extra_data, nistp224_pre_comp_dup, | ||
1529 | nistp224_pre_comp_free, nistp224_pre_comp_clear_free); | ||
1530 | if (ctx == NULL) | ||
1531 | if ((ctx = new_ctx = BN_CTX_new()) == NULL) return 0; | ||
1532 | BN_CTX_start(ctx); | ||
1533 | if (((x = BN_CTX_get(ctx)) == NULL) || | ||
1534 | ((y = BN_CTX_get(ctx)) == NULL)) | ||
1535 | goto err; | ||
1536 | /* get the generator */ | ||
1537 | if (group->generator == NULL) goto err; | ||
1538 | generator = EC_POINT_new(group); | ||
1539 | if (generator == NULL) | ||
1540 | goto err; | ||
1541 | BN_bin2bn(nistp224_curve_params[3], sizeof (felem_bytearray), x); | ||
1542 | BN_bin2bn(nistp224_curve_params[4], sizeof (felem_bytearray), y); | ||
1543 | if (!EC_POINT_set_affine_coordinates_GFp(group, generator, x, y, ctx)) | ||
1544 | goto err; | ||
1545 | if ((pre = nistp224_pre_comp_new()) == NULL) | ||
1546 | goto err; | ||
1547 | /* if the generator is the standard one, use built-in precomputation */ | ||
1548 | if (0 == EC_POINT_cmp(group, generator, group->generator, ctx)) | ||
1549 | { | ||
1550 | memcpy(pre->g_pre_comp, gmul, sizeof(pre->g_pre_comp)); | ||
1551 | ret = 1; | ||
1552 | goto err; | ||
1553 | } | ||
1554 | if ((!BN_to_felem(pre->g_pre_comp[0][1][0], &group->generator->X)) || | ||
1555 | (!BN_to_felem(pre->g_pre_comp[0][1][1], &group->generator->Y)) || | ||
1556 | (!BN_to_felem(pre->g_pre_comp[0][1][2], &group->generator->Z))) | ||
1557 | goto err; | ||
1558 | /* compute 2^56*G, 2^112*G, 2^168*G for the first table, | ||
1559 | * 2^28*G, 2^84*G, 2^140*G, 2^196*G for the second one | ||
1560 | */ | ||
1561 | for (i = 1; i <= 8; i <<= 1) | ||
1562 | { | ||
1563 | point_double( | ||
1564 | pre->g_pre_comp[1][i][0], pre->g_pre_comp[1][i][1], pre->g_pre_comp[1][i][2], | ||
1565 | pre->g_pre_comp[0][i][0], pre->g_pre_comp[0][i][1], pre->g_pre_comp[0][i][2]); | ||
1566 | for (j = 0; j < 27; ++j) | ||
1567 | { | ||
1568 | point_double( | ||
1569 | pre->g_pre_comp[1][i][0], pre->g_pre_comp[1][i][1], pre->g_pre_comp[1][i][2], | ||
1570 | pre->g_pre_comp[1][i][0], pre->g_pre_comp[1][i][1], pre->g_pre_comp[1][i][2]); | ||
1571 | } | ||
1572 | if (i == 8) | ||
1573 | break; | ||
1574 | point_double( | ||
1575 | pre->g_pre_comp[0][2*i][0], pre->g_pre_comp[0][2*i][1], pre->g_pre_comp[0][2*i][2], | ||
1576 | pre->g_pre_comp[1][i][0], pre->g_pre_comp[1][i][1], pre->g_pre_comp[1][i][2]); | ||
1577 | for (j = 0; j < 27; ++j) | ||
1578 | { | ||
1579 | point_double( | ||
1580 | pre->g_pre_comp[0][2*i][0], pre->g_pre_comp[0][2*i][1], pre->g_pre_comp[0][2*i][2], | ||
1581 | pre->g_pre_comp[0][2*i][0], pre->g_pre_comp[0][2*i][1], pre->g_pre_comp[0][2*i][2]); | ||
1582 | } | ||
1583 | } | ||
1584 | for (i = 0; i < 2; i++) | ||
1585 | { | ||
1586 | /* g_pre_comp[i][0] is the point at infinity */ | ||
1587 | memset(pre->g_pre_comp[i][0], 0, sizeof(pre->g_pre_comp[i][0])); | ||
1588 | /* the remaining multiples */ | ||
1589 | /* 2^56*G + 2^112*G resp. 2^84*G + 2^140*G */ | ||
1590 | point_add( | ||
1591 | pre->g_pre_comp[i][6][0], pre->g_pre_comp[i][6][1], | ||
1592 | pre->g_pre_comp[i][6][2], pre->g_pre_comp[i][4][0], | ||
1593 | pre->g_pre_comp[i][4][1], pre->g_pre_comp[i][4][2], | ||
1594 | 0, pre->g_pre_comp[i][2][0], pre->g_pre_comp[i][2][1], | ||
1595 | pre->g_pre_comp[i][2][2]); | ||
1596 | /* 2^56*G + 2^168*G resp. 2^84*G + 2^196*G */ | ||
1597 | point_add( | ||
1598 | pre->g_pre_comp[i][10][0], pre->g_pre_comp[i][10][1], | ||
1599 | pre->g_pre_comp[i][10][2], pre->g_pre_comp[i][8][0], | ||
1600 | pre->g_pre_comp[i][8][1], pre->g_pre_comp[i][8][2], | ||
1601 | 0, pre->g_pre_comp[i][2][0], pre->g_pre_comp[i][2][1], | ||
1602 | pre->g_pre_comp[i][2][2]); | ||
1603 | /* 2^112*G + 2^168*G resp. 2^140*G + 2^196*G */ | ||
1604 | point_add( | ||
1605 | pre->g_pre_comp[i][12][0], pre->g_pre_comp[i][12][1], | ||
1606 | pre->g_pre_comp[i][12][2], pre->g_pre_comp[i][8][0], | ||
1607 | pre->g_pre_comp[i][8][1], pre->g_pre_comp[i][8][2], | ||
1608 | 0, pre->g_pre_comp[i][4][0], pre->g_pre_comp[i][4][1], | ||
1609 | pre->g_pre_comp[i][4][2]); | ||
1610 | /* 2^56*G + 2^112*G + 2^168*G resp. 2^84*G + 2^140*G + 2^196*G */ | ||
1611 | point_add( | ||
1612 | pre->g_pre_comp[i][14][0], pre->g_pre_comp[i][14][1], | ||
1613 | pre->g_pre_comp[i][14][2], pre->g_pre_comp[i][12][0], | ||
1614 | pre->g_pre_comp[i][12][1], pre->g_pre_comp[i][12][2], | ||
1615 | 0, pre->g_pre_comp[i][2][0], pre->g_pre_comp[i][2][1], | ||
1616 | pre->g_pre_comp[i][2][2]); | ||
1617 | for (j = 1; j < 8; ++j) | ||
1618 | { | ||
1619 | /* odd multiples: add G resp. 2^28*G */ | ||
1620 | point_add( | ||
1621 | pre->g_pre_comp[i][2*j+1][0], pre->g_pre_comp[i][2*j+1][1], | ||
1622 | pre->g_pre_comp[i][2*j+1][2], pre->g_pre_comp[i][2*j][0], | ||
1623 | pre->g_pre_comp[i][2*j][1], pre->g_pre_comp[i][2*j][2], | ||
1624 | 0, pre->g_pre_comp[i][1][0], pre->g_pre_comp[i][1][1], | ||
1625 | pre->g_pre_comp[i][1][2]); | ||
1626 | } | ||
1627 | } | ||
1628 | make_points_affine(31, &(pre->g_pre_comp[0][1]), tmp_felems); | ||
1629 | |||
1630 | if (!EC_EX_DATA_set_data(&group->extra_data, pre, nistp224_pre_comp_dup, | ||
1631 | nistp224_pre_comp_free, nistp224_pre_comp_clear_free)) | ||
1632 | goto err; | ||
1633 | ret = 1; | ||
1634 | pre = NULL; | ||
1635 | err: | ||
1636 | BN_CTX_end(ctx); | ||
1637 | if (generator != NULL) | ||
1638 | EC_POINT_free(generator); | ||
1639 | if (new_ctx != NULL) | ||
1640 | BN_CTX_free(new_ctx); | ||
1641 | if (pre) | ||
1642 | nistp224_pre_comp_free(pre); | ||
1643 | return ret; | ||
1644 | } | ||
1645 | |||
1646 | int ec_GFp_nistp224_have_precompute_mult(const EC_GROUP *group) | ||
1647 | { | ||
1648 | if (EC_EX_DATA_get_data(group->extra_data, nistp224_pre_comp_dup, | ||
1649 | nistp224_pre_comp_free, nistp224_pre_comp_clear_free) | ||
1650 | != NULL) | ||
1651 | return 1; | ||
1652 | else | ||
1653 | return 0; | ||
1654 | } | ||
1655 | |||
1656 | #else | ||
1657 | static void *dummy=&dummy; | ||
1658 | #endif | ||