diff options
Diffstat (limited to '')
-rw-r--r-- | src/lib/libcrypto/ec/ecp_nistp521.c | 2112 |
1 files changed, 0 insertions, 2112 deletions
diff --git a/src/lib/libcrypto/ec/ecp_nistp521.c b/src/lib/libcrypto/ec/ecp_nistp521.c deleted file mode 100644 index caeea14911..0000000000 --- a/src/lib/libcrypto/ec/ecp_nistp521.c +++ /dev/null | |||
@@ -1,2112 +0,0 @@ | |||
1 | /* $OpenBSD: ecp_nistp521.c,v 1.30 2022/12/26 07:18:51 jmc Exp $ */ | ||
2 | /* | ||
3 | * Written by Adam Langley (Google) for the OpenSSL project | ||
4 | */ | ||
5 | /* | ||
6 | * Copyright (c) 2011 Google Inc. | ||
7 | * | ||
8 | * Permission to use, copy, modify, and distribute this software for any | ||
9 | * purpose with or without fee is hereby granted, provided that the above | ||
10 | * copyright notice and this permission notice appear in all copies. | ||
11 | * | ||
12 | * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES | ||
13 | * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF | ||
14 | * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR | ||
15 | * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES | ||
16 | * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN | ||
17 | * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF | ||
18 | * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE. | ||
19 | */ | ||
20 | |||
21 | /* | ||
22 | * A 64-bit implementation of the NIST P-521 elliptic curve point multiplication | ||
23 | * | ||
24 | * OpenSSL integration was taken from Emilia Kasper's work in ecp_nistp224.c. | ||
25 | * Otherwise based on Emilia's P224 work, which was inspired by my curve25519 | ||
26 | * work which got its smarts from Daniel J. Bernstein's work on the same. | ||
27 | */ | ||
28 | |||
29 | #include <stdint.h> | ||
30 | #include <string.h> | ||
31 | |||
32 | #include <openssl/opensslconf.h> | ||
33 | |||
34 | #ifndef OPENSSL_NO_EC_NISTP_64_GCC_128 | ||
35 | |||
36 | #include <openssl/err.h> | ||
37 | #include "ec_local.h" | ||
38 | |||
39 | #if defined(__GNUC__) && (__GNUC__ > 3 || (__GNUC__ == 3 && __GNUC_MINOR__ >= 1)) | ||
40 | /* even with gcc, the typedef won't work for 32-bit platforms */ | ||
41 | typedef __uint128_t uint128_t; /* nonstandard; implemented by gcc on 64-bit platforms */ | ||
42 | #else | ||
43 | #error "Need GCC 3.1 or later to define type uint128_t" | ||
44 | #endif | ||
45 | |||
46 | typedef uint8_t u8; | ||
47 | typedef uint64_t u64; | ||
48 | typedef int64_t s64; | ||
49 | |||
50 | /* The underlying field. | ||
51 | * | ||
52 | * P521 operates over GF(2^521-1). We can serialise an element of this field | ||
53 | * into 66 bytes where the most significant byte contains only a single bit. We | ||
54 | * call this an felem_bytearray. */ | ||
55 | |||
56 | typedef u8 felem_bytearray[66]; | ||
57 | |||
58 | /* These are the parameters of P521, taken from FIPS 186-3, section D.1.2.5. | ||
59 | * These values are big-endian. */ | ||
60 | static const felem_bytearray nistp521_curve_params[5] = | ||
61 | { | ||
62 | {0x01, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, /* p */ | ||
63 | 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, | ||
64 | 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, | ||
65 | 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, | ||
66 | 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, | ||
67 | 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, | ||
68 | 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, | ||
69 | 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, | ||
70 | 0xff, 0xff}, | ||
71 | {0x01, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, /* a = -3 */ | ||
72 | 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, | ||
73 | 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, | ||
74 | 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, | ||
75 | 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, | ||
76 | 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, | ||
77 | 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, | ||
78 | 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, | ||
79 | 0xff, 0xfc}, | ||
80 | {0x00, 0x51, 0x95, 0x3e, 0xb9, 0x61, 0x8e, 0x1c, /* b */ | ||
81 | 0x9a, 0x1f, 0x92, 0x9a, 0x21, 0xa0, 0xb6, 0x85, | ||
82 | 0x40, 0xee, 0xa2, 0xda, 0x72, 0x5b, 0x99, 0xb3, | ||
83 | 0x15, 0xf3, 0xb8, 0xb4, 0x89, 0x91, 0x8e, 0xf1, | ||
84 | 0x09, 0xe1, 0x56, 0x19, 0x39, 0x51, 0xec, 0x7e, | ||
85 | 0x93, 0x7b, 0x16, 0x52, 0xc0, 0xbd, 0x3b, 0xb1, | ||
86 | 0xbf, 0x07, 0x35, 0x73, 0xdf, 0x88, 0x3d, 0x2c, | ||
87 | 0x34, 0xf1, 0xef, 0x45, 0x1f, 0xd4, 0x6b, 0x50, | ||
88 | 0x3f, 0x00}, | ||
89 | {0x00, 0xc6, 0x85, 0x8e, 0x06, 0xb7, 0x04, 0x04, /* x */ | ||
90 | 0xe9, 0xcd, 0x9e, 0x3e, 0xcb, 0x66, 0x23, 0x95, | ||
91 | 0xb4, 0x42, 0x9c, 0x64, 0x81, 0x39, 0x05, 0x3f, | ||
92 | 0xb5, 0x21, 0xf8, 0x28, 0xaf, 0x60, 0x6b, 0x4d, | ||
93 | 0x3d, 0xba, 0xa1, 0x4b, 0x5e, 0x77, 0xef, 0xe7, | ||
94 | 0x59, 0x28, 0xfe, 0x1d, 0xc1, 0x27, 0xa2, 0xff, | ||
95 | 0xa8, 0xde, 0x33, 0x48, 0xb3, 0xc1, 0x85, 0x6a, | ||
96 | 0x42, 0x9b, 0xf9, 0x7e, 0x7e, 0x31, 0xc2, 0xe5, | ||
97 | 0xbd, 0x66}, | ||
98 | {0x01, 0x18, 0x39, 0x29, 0x6a, 0x78, 0x9a, 0x3b, /* y */ | ||
99 | 0xc0, 0x04, 0x5c, 0x8a, 0x5f, 0xb4, 0x2c, 0x7d, | ||
100 | 0x1b, 0xd9, 0x98, 0xf5, 0x44, 0x49, 0x57, 0x9b, | ||
101 | 0x44, 0x68, 0x17, 0xaf, 0xbd, 0x17, 0x27, 0x3e, | ||
102 | 0x66, 0x2c, 0x97, 0xee, 0x72, 0x99, 0x5e, 0xf4, | ||
103 | 0x26, 0x40, 0xc5, 0x50, 0xb9, 0x01, 0x3f, 0xad, | ||
104 | 0x07, 0x61, 0x35, 0x3c, 0x70, 0x86, 0xa2, 0x72, | ||
105 | 0xc2, 0x40, 0x88, 0xbe, 0x94, 0x76, 0x9f, 0xd1, | ||
106 | 0x66, 0x50} | ||
107 | }; | ||
108 | |||
109 | /* The representation of field elements. | ||
110 | * ------------------------------------ | ||
111 | * | ||
112 | * We represent field elements with nine values. These values are either 64 or | ||
113 | * 128 bits and the field element represented is: | ||
114 | * v[0]*2^0 + v[1]*2^58 + v[2]*2^116 + ... + v[8]*2^464 (mod p) | ||
115 | * Each of the nine values is called a 'limb'. Since the limbs are spaced only | ||
116 | * 58 bits apart, but are greater than 58 bits in length, the most significant | ||
117 | * bits of each limb overlap with the least significant bits of the next. | ||
118 | * | ||
119 | * A field element with 64-bit limbs is an 'felem'. One with 128-bit limbs is a | ||
120 | * 'largefelem' */ | ||
121 | |||
122 | #define NLIMBS 9 | ||
123 | |||
124 | typedef uint64_t limb; | ||
125 | typedef limb felem[NLIMBS]; | ||
126 | typedef uint128_t largefelem[NLIMBS]; | ||
127 | |||
128 | static const limb bottom57bits = 0x1ffffffffffffff; | ||
129 | static const limb bottom58bits = 0x3ffffffffffffff; | ||
130 | |||
131 | /* bin66_to_felem takes a little-endian byte array and converts it into felem | ||
132 | * form. This assumes that the CPU is little-endian. */ | ||
133 | static void | ||
134 | bin66_to_felem(felem out, const u8 in[66]) | ||
135 | { | ||
136 | out[0] = (*((limb *) & in[0])) & bottom58bits; | ||
137 | out[1] = (*((limb *) & in[7]) >> 2) & bottom58bits; | ||
138 | out[2] = (*((limb *) & in[14]) >> 4) & bottom58bits; | ||
139 | out[3] = (*((limb *) & in[21]) >> 6) & bottom58bits; | ||
140 | out[4] = (*((limb *) & in[29])) & bottom58bits; | ||
141 | out[5] = (*((limb *) & in[36]) >> 2) & bottom58bits; | ||
142 | out[6] = (*((limb *) & in[43]) >> 4) & bottom58bits; | ||
143 | out[7] = (*((limb *) & in[50]) >> 6) & bottom58bits; | ||
144 | out[8] = (*((limb *) & in[58])) & bottom57bits; | ||
145 | } | ||
146 | |||
147 | /* felem_to_bin66 takes an felem and serialises into a little endian, 66 byte | ||
148 | * array. This assumes that the CPU is little-endian. */ | ||
149 | static void | ||
150 | felem_to_bin66(u8 out[66], const felem in) | ||
151 | { | ||
152 | memset(out, 0, 66); | ||
153 | (*((limb *) & out[0])) = in[0]; | ||
154 | (*((limb *) & out[7])) |= in[1] << 2; | ||
155 | (*((limb *) & out[14])) |= in[2] << 4; | ||
156 | (*((limb *) & out[21])) |= in[3] << 6; | ||
157 | (*((limb *) & out[29])) = in[4]; | ||
158 | (*((limb *) & out[36])) |= in[5] << 2; | ||
159 | (*((limb *) & out[43])) |= in[6] << 4; | ||
160 | (*((limb *) & out[50])) |= in[7] << 6; | ||
161 | (*((limb *) & out[58])) = in[8]; | ||
162 | } | ||
163 | |||
164 | /* To preserve endianness when using BN_bn2bin and BN_bin2bn */ | ||
165 | static void | ||
166 | flip_endian(u8 *out, const u8 *in, unsigned len) | ||
167 | { | ||
168 | unsigned i; | ||
169 | for (i = 0; i < len; ++i) | ||
170 | out[i] = in[len - 1 - i]; | ||
171 | } | ||
172 | |||
173 | /* BN_to_felem converts an OpenSSL BIGNUM into an felem */ | ||
174 | static int | ||
175 | BN_to_felem(felem out, const BIGNUM *bn) | ||
176 | { | ||
177 | felem_bytearray b_in; | ||
178 | felem_bytearray b_out; | ||
179 | unsigned num_bytes; | ||
180 | |||
181 | /* BN_bn2bin eats leading zeroes */ | ||
182 | memset(b_out, 0, sizeof b_out); | ||
183 | num_bytes = BN_num_bytes(bn); | ||
184 | if (num_bytes > sizeof b_out) { | ||
185 | ECerror(EC_R_BIGNUM_OUT_OF_RANGE); | ||
186 | return 0; | ||
187 | } | ||
188 | if (BN_is_negative(bn)) { | ||
189 | ECerror(EC_R_BIGNUM_OUT_OF_RANGE); | ||
190 | return 0; | ||
191 | } | ||
192 | num_bytes = BN_bn2bin(bn, b_in); | ||
193 | flip_endian(b_out, b_in, num_bytes); | ||
194 | bin66_to_felem(out, b_out); | ||
195 | return 1; | ||
196 | } | ||
197 | |||
198 | /* felem_to_BN converts an felem into an OpenSSL BIGNUM */ | ||
199 | static BIGNUM * | ||
200 | felem_to_BN(BIGNUM *out, const felem in) | ||
201 | { | ||
202 | felem_bytearray b_in, b_out; | ||
203 | felem_to_bin66(b_in, in); | ||
204 | flip_endian(b_out, b_in, sizeof b_out); | ||
205 | return BN_bin2bn(b_out, sizeof b_out, out); | ||
206 | } | ||
207 | |||
208 | |||
209 | /* Field operations | ||
210 | * ---------------- */ | ||
211 | |||
212 | static void | ||
213 | felem_one(felem out) | ||
214 | { | ||
215 | out[0] = 1; | ||
216 | out[1] = 0; | ||
217 | out[2] = 0; | ||
218 | out[3] = 0; | ||
219 | out[4] = 0; | ||
220 | out[5] = 0; | ||
221 | out[6] = 0; | ||
222 | out[7] = 0; | ||
223 | out[8] = 0; | ||
224 | } | ||
225 | |||
226 | static void | ||
227 | felem_assign(felem out, const felem in) | ||
228 | { | ||
229 | out[0] = in[0]; | ||
230 | out[1] = in[1]; | ||
231 | out[2] = in[2]; | ||
232 | out[3] = in[3]; | ||
233 | out[4] = in[4]; | ||
234 | out[5] = in[5]; | ||
235 | out[6] = in[6]; | ||
236 | out[7] = in[7]; | ||
237 | out[8] = in[8]; | ||
238 | } | ||
239 | |||
240 | /* felem_sum64 sets out = out + in. */ | ||
241 | static void | ||
242 | felem_sum64(felem out, const felem in) | ||
243 | { | ||
244 | out[0] += in[0]; | ||
245 | out[1] += in[1]; | ||
246 | out[2] += in[2]; | ||
247 | out[3] += in[3]; | ||
248 | out[4] += in[4]; | ||
249 | out[5] += in[5]; | ||
250 | out[6] += in[6]; | ||
251 | out[7] += in[7]; | ||
252 | out[8] += in[8]; | ||
253 | } | ||
254 | |||
255 | /* felem_scalar sets out = in * scalar */ | ||
256 | static void | ||
257 | felem_scalar(felem out, const felem in, limb scalar) | ||
258 | { | ||
259 | out[0] = in[0] * scalar; | ||
260 | out[1] = in[1] * scalar; | ||
261 | out[2] = in[2] * scalar; | ||
262 | out[3] = in[3] * scalar; | ||
263 | out[4] = in[4] * scalar; | ||
264 | out[5] = in[5] * scalar; | ||
265 | out[6] = in[6] * scalar; | ||
266 | out[7] = in[7] * scalar; | ||
267 | out[8] = in[8] * scalar; | ||
268 | } | ||
269 | |||
270 | /* felem_scalar64 sets out = out * scalar */ | ||
271 | static void | ||
272 | felem_scalar64(felem out, limb scalar) | ||
273 | { | ||
274 | out[0] *= scalar; | ||
275 | out[1] *= scalar; | ||
276 | out[2] *= scalar; | ||
277 | out[3] *= scalar; | ||
278 | out[4] *= scalar; | ||
279 | out[5] *= scalar; | ||
280 | out[6] *= scalar; | ||
281 | out[7] *= scalar; | ||
282 | out[8] *= scalar; | ||
283 | } | ||
284 | |||
285 | /* felem_scalar128 sets out = out * scalar */ | ||
286 | static void | ||
287 | felem_scalar128(largefelem out, limb scalar) | ||
288 | { | ||
289 | out[0] *= scalar; | ||
290 | out[1] *= scalar; | ||
291 | out[2] *= scalar; | ||
292 | out[3] *= scalar; | ||
293 | out[4] *= scalar; | ||
294 | out[5] *= scalar; | ||
295 | out[6] *= scalar; | ||
296 | out[7] *= scalar; | ||
297 | out[8] *= scalar; | ||
298 | } | ||
299 | |||
300 | /* felem_neg sets |out| to |-in| | ||
301 | * On entry: | ||
302 | * in[i] < 2^59 + 2^14 | ||
303 | * On exit: | ||
304 | * out[i] < 2^62 | ||
305 | */ | ||
306 | static void | ||
307 | felem_neg(felem out, const felem in) | ||
308 | { | ||
309 | /* In order to prevent underflow, we subtract from 0 mod p. */ | ||
310 | static const limb two62m3 = (((limb) 1) << 62) - (((limb) 1) << 5); | ||
311 | static const limb two62m2 = (((limb) 1) << 62) - (((limb) 1) << 4); | ||
312 | |||
313 | out[0] = two62m3 - in[0]; | ||
314 | out[1] = two62m2 - in[1]; | ||
315 | out[2] = two62m2 - in[2]; | ||
316 | out[3] = two62m2 - in[3]; | ||
317 | out[4] = two62m2 - in[4]; | ||
318 | out[5] = two62m2 - in[5]; | ||
319 | out[6] = two62m2 - in[6]; | ||
320 | out[7] = two62m2 - in[7]; | ||
321 | out[8] = two62m2 - in[8]; | ||
322 | } | ||
323 | |||
324 | /* felem_diff64 subtracts |in| from |out| | ||
325 | * On entry: | ||
326 | * in[i] < 2^59 + 2^14 | ||
327 | * On exit: | ||
328 | * out[i] < out[i] + 2^62 | ||
329 | */ | ||
330 | static void | ||
331 | felem_diff64(felem out, const felem in) | ||
332 | { | ||
333 | /* In order to prevent underflow, we add 0 mod p before subtracting. */ | ||
334 | static const limb two62m3 = (((limb) 1) << 62) - (((limb) 1) << 5); | ||
335 | static const limb two62m2 = (((limb) 1) << 62) - (((limb) 1) << 4); | ||
336 | |||
337 | out[0] += two62m3 - in[0]; | ||
338 | out[1] += two62m2 - in[1]; | ||
339 | out[2] += two62m2 - in[2]; | ||
340 | out[3] += two62m2 - in[3]; | ||
341 | out[4] += two62m2 - in[4]; | ||
342 | out[5] += two62m2 - in[5]; | ||
343 | out[6] += two62m2 - in[6]; | ||
344 | out[7] += two62m2 - in[7]; | ||
345 | out[8] += two62m2 - in[8]; | ||
346 | } | ||
347 | |||
348 | /* felem_diff_128_64 subtracts |in| from |out| | ||
349 | * On entry: | ||
350 | * in[i] < 2^62 + 2^17 | ||
351 | * On exit: | ||
352 | * out[i] < out[i] + 2^63 | ||
353 | */ | ||
354 | static void | ||
355 | felem_diff_128_64(largefelem out, const felem in) | ||
356 | { | ||
357 | /* In order to prevent underflow, we add 0 mod p before subtracting. */ | ||
358 | static const limb two63m6 = (((limb) 1) << 62) - (((limb) 1) << 5); | ||
359 | static const limb two63m5 = (((limb) 1) << 62) - (((limb) 1) << 4); | ||
360 | |||
361 | out[0] += two63m6 - in[0]; | ||
362 | out[1] += two63m5 - in[1]; | ||
363 | out[2] += two63m5 - in[2]; | ||
364 | out[3] += two63m5 - in[3]; | ||
365 | out[4] += two63m5 - in[4]; | ||
366 | out[5] += two63m5 - in[5]; | ||
367 | out[6] += two63m5 - in[6]; | ||
368 | out[7] += two63m5 - in[7]; | ||
369 | out[8] += two63m5 - in[8]; | ||
370 | } | ||
371 | |||
372 | /* felem_diff_128_64 subtracts |in| from |out| | ||
373 | * On entry: | ||
374 | * in[i] < 2^126 | ||
375 | * On exit: | ||
376 | * out[i] < out[i] + 2^127 - 2^69 | ||
377 | */ | ||
378 | static void | ||
379 | felem_diff128(largefelem out, const largefelem in) | ||
380 | { | ||
381 | /* In order to prevent underflow, we add 0 mod p before subtracting. */ | ||
382 | static const uint128_t two127m70 = (((uint128_t) 1) << 127) - (((uint128_t) 1) << 70); | ||
383 | static const uint128_t two127m69 = (((uint128_t) 1) << 127) - (((uint128_t) 1) << 69); | ||
384 | |||
385 | out[0] += (two127m70 - in[0]); | ||
386 | out[1] += (two127m69 - in[1]); | ||
387 | out[2] += (two127m69 - in[2]); | ||
388 | out[3] += (two127m69 - in[3]); | ||
389 | out[4] += (two127m69 - in[4]); | ||
390 | out[5] += (two127m69 - in[5]); | ||
391 | out[6] += (two127m69 - in[6]); | ||
392 | out[7] += (two127m69 - in[7]); | ||
393 | out[8] += (two127m69 - in[8]); | ||
394 | } | ||
395 | |||
396 | /* felem_square sets |out| = |in|^2 | ||
397 | * On entry: | ||
398 | * in[i] < 2^62 | ||
399 | * On exit: | ||
400 | * out[i] < 17 * max(in[i]) * max(in[i]) | ||
401 | */ | ||
402 | static void | ||
403 | felem_square(largefelem out, const felem in) | ||
404 | { | ||
405 | felem inx2, inx4; | ||
406 | felem_scalar(inx2, in, 2); | ||
407 | felem_scalar(inx4, in, 4); | ||
408 | |||
409 | /* | ||
410 | * We have many cases were we want to do in[x] * in[y] + in[y] * | ||
411 | * in[x] This is obviously just 2 * in[x] * in[y] However, rather | ||
412 | * than do the doubling on the 128 bit result, we double one of the | ||
413 | * inputs to the multiplication by reading from |inx2| | ||
414 | */ | ||
415 | |||
416 | out[0] = ((uint128_t) in[0]) * in[0]; | ||
417 | out[1] = ((uint128_t) in[0]) * inx2[1]; | ||
418 | out[2] = ((uint128_t) in[0]) * inx2[2] + | ||
419 | ((uint128_t) in[1]) * in[1]; | ||
420 | out[3] = ((uint128_t) in[0]) * inx2[3] + | ||
421 | ((uint128_t) in[1]) * inx2[2]; | ||
422 | out[4] = ((uint128_t) in[0]) * inx2[4] + | ||
423 | ((uint128_t) in[1]) * inx2[3] + | ||
424 | ((uint128_t) in[2]) * in[2]; | ||
425 | out[5] = ((uint128_t) in[0]) * inx2[5] + | ||
426 | ((uint128_t) in[1]) * inx2[4] + | ||
427 | ((uint128_t) in[2]) * inx2[3]; | ||
428 | out[6] = ((uint128_t) in[0]) * inx2[6] + | ||
429 | ((uint128_t) in[1]) * inx2[5] + | ||
430 | ((uint128_t) in[2]) * inx2[4] + | ||
431 | ((uint128_t) in[3]) * in[3]; | ||
432 | out[7] = ((uint128_t) in[0]) * inx2[7] + | ||
433 | ((uint128_t) in[1]) * inx2[6] + | ||
434 | ((uint128_t) in[2]) * inx2[5] + | ||
435 | ((uint128_t) in[3]) * inx2[4]; | ||
436 | out[8] = ((uint128_t) in[0]) * inx2[8] + | ||
437 | ((uint128_t) in[1]) * inx2[7] + | ||
438 | ((uint128_t) in[2]) * inx2[6] + | ||
439 | ((uint128_t) in[3]) * inx2[5] + | ||
440 | ((uint128_t) in[4]) * in[4]; | ||
441 | |||
442 | /* | ||
443 | * The remaining limbs fall above 2^521, with the first falling at | ||
444 | * 2^522. They correspond to locations one bit up from the limbs | ||
445 | * produced above so we would have to multiply by two to align them. | ||
446 | * Again, rather than operate on the 128-bit result, we double one of | ||
447 | * the inputs to the multiplication. If we want to double for both | ||
448 | * this reason, and the reason above, then we end up multiplying by | ||
449 | * four. | ||
450 | */ | ||
451 | |||
452 | /* 9 */ | ||
453 | out[0] += ((uint128_t) in[1]) * inx4[8] + | ||
454 | ((uint128_t) in[2]) * inx4[7] + | ||
455 | ((uint128_t) in[3]) * inx4[6] + | ||
456 | ((uint128_t) in[4]) * inx4[5]; | ||
457 | |||
458 | /* 10 */ | ||
459 | out[1] += ((uint128_t) in[2]) * inx4[8] + | ||
460 | ((uint128_t) in[3]) * inx4[7] + | ||
461 | ((uint128_t) in[4]) * inx4[6] + | ||
462 | ((uint128_t) in[5]) * inx2[5]; | ||
463 | |||
464 | /* 11 */ | ||
465 | out[2] += ((uint128_t) in[3]) * inx4[8] + | ||
466 | ((uint128_t) in[4]) * inx4[7] + | ||
467 | ((uint128_t) in[5]) * inx4[6]; | ||
468 | |||
469 | /* 12 */ | ||
470 | out[3] += ((uint128_t) in[4]) * inx4[8] + | ||
471 | ((uint128_t) in[5]) * inx4[7] + | ||
472 | ((uint128_t) in[6]) * inx2[6]; | ||
473 | |||
474 | /* 13 */ | ||
475 | out[4] += ((uint128_t) in[5]) * inx4[8] + | ||
476 | ((uint128_t) in[6]) * inx4[7]; | ||
477 | |||
478 | /* 14 */ | ||
479 | out[5] += ((uint128_t) in[6]) * inx4[8] + | ||
480 | ((uint128_t) in[7]) * inx2[7]; | ||
481 | |||
482 | /* 15 */ | ||
483 | out[6] += ((uint128_t) in[7]) * inx4[8]; | ||
484 | |||
485 | /* 16 */ | ||
486 | out[7] += ((uint128_t) in[8]) * inx2[8]; | ||
487 | } | ||
488 | |||
489 | /* felem_mul sets |out| = |in1| * |in2| | ||
490 | * On entry: | ||
491 | * in1[i] < 2^64 | ||
492 | * in2[i] < 2^63 | ||
493 | * On exit: | ||
494 | * out[i] < 17 * max(in1[i]) * max(in2[i]) | ||
495 | */ | ||
496 | static void | ||
497 | felem_mul(largefelem out, const felem in1, const felem in2) | ||
498 | { | ||
499 | felem in2x2; | ||
500 | felem_scalar(in2x2, in2, 2); | ||
501 | |||
502 | out[0] = ((uint128_t) in1[0]) * in2[0]; | ||
503 | |||
504 | out[1] = ((uint128_t) in1[0]) * in2[1] + | ||
505 | ((uint128_t) in1[1]) * in2[0]; | ||
506 | |||
507 | out[2] = ((uint128_t) in1[0]) * in2[2] + | ||
508 | ((uint128_t) in1[1]) * in2[1] + | ||
509 | ((uint128_t) in1[2]) * in2[0]; | ||
510 | |||
511 | out[3] = ((uint128_t) in1[0]) * in2[3] + | ||
512 | ((uint128_t) in1[1]) * in2[2] + | ||
513 | ((uint128_t) in1[2]) * in2[1] + | ||
514 | ((uint128_t) in1[3]) * in2[0]; | ||
515 | |||
516 | out[4] = ((uint128_t) in1[0]) * in2[4] + | ||
517 | ((uint128_t) in1[1]) * in2[3] + | ||
518 | ((uint128_t) in1[2]) * in2[2] + | ||
519 | ((uint128_t) in1[3]) * in2[1] + | ||
520 | ((uint128_t) in1[4]) * in2[0]; | ||
521 | |||
522 | out[5] = ((uint128_t) in1[0]) * in2[5] + | ||
523 | ((uint128_t) in1[1]) * in2[4] + | ||
524 | ((uint128_t) in1[2]) * in2[3] + | ||
525 | ((uint128_t) in1[3]) * in2[2] + | ||
526 | ((uint128_t) in1[4]) * in2[1] + | ||
527 | ((uint128_t) in1[5]) * in2[0]; | ||
528 | |||
529 | out[6] = ((uint128_t) in1[0]) * in2[6] + | ||
530 | ((uint128_t) in1[1]) * in2[5] + | ||
531 | ((uint128_t) in1[2]) * in2[4] + | ||
532 | ((uint128_t) in1[3]) * in2[3] + | ||
533 | ((uint128_t) in1[4]) * in2[2] + | ||
534 | ((uint128_t) in1[5]) * in2[1] + | ||
535 | ((uint128_t) in1[6]) * in2[0]; | ||
536 | |||
537 | out[7] = ((uint128_t) in1[0]) * in2[7] + | ||
538 | ((uint128_t) in1[1]) * in2[6] + | ||
539 | ((uint128_t) in1[2]) * in2[5] + | ||
540 | ((uint128_t) in1[3]) * in2[4] + | ||
541 | ((uint128_t) in1[4]) * in2[3] + | ||
542 | ((uint128_t) in1[5]) * in2[2] + | ||
543 | ((uint128_t) in1[6]) * in2[1] + | ||
544 | ((uint128_t) in1[7]) * in2[0]; | ||
545 | |||
546 | out[8] = ((uint128_t) in1[0]) * in2[8] + | ||
547 | ((uint128_t) in1[1]) * in2[7] + | ||
548 | ((uint128_t) in1[2]) * in2[6] + | ||
549 | ((uint128_t) in1[3]) * in2[5] + | ||
550 | ((uint128_t) in1[4]) * in2[4] + | ||
551 | ((uint128_t) in1[5]) * in2[3] + | ||
552 | ((uint128_t) in1[6]) * in2[2] + | ||
553 | ((uint128_t) in1[7]) * in2[1] + | ||
554 | ((uint128_t) in1[8]) * in2[0]; | ||
555 | |||
556 | /* See comment in felem_square about the use of in2x2 here */ | ||
557 | |||
558 | out[0] += ((uint128_t) in1[1]) * in2x2[8] + | ||
559 | ((uint128_t) in1[2]) * in2x2[7] + | ||
560 | ((uint128_t) in1[3]) * in2x2[6] + | ||
561 | ((uint128_t) in1[4]) * in2x2[5] + | ||
562 | ((uint128_t) in1[5]) * in2x2[4] + | ||
563 | ((uint128_t) in1[6]) * in2x2[3] + | ||
564 | ((uint128_t) in1[7]) * in2x2[2] + | ||
565 | ((uint128_t) in1[8]) * in2x2[1]; | ||
566 | |||
567 | out[1] += ((uint128_t) in1[2]) * in2x2[8] + | ||
568 | ((uint128_t) in1[3]) * in2x2[7] + | ||
569 | ((uint128_t) in1[4]) * in2x2[6] + | ||
570 | ((uint128_t) in1[5]) * in2x2[5] + | ||
571 | ((uint128_t) in1[6]) * in2x2[4] + | ||
572 | ((uint128_t) in1[7]) * in2x2[3] + | ||
573 | ((uint128_t) in1[8]) * in2x2[2]; | ||
574 | |||
575 | out[2] += ((uint128_t) in1[3]) * in2x2[8] + | ||
576 | ((uint128_t) in1[4]) * in2x2[7] + | ||
577 | ((uint128_t) in1[5]) * in2x2[6] + | ||
578 | ((uint128_t) in1[6]) * in2x2[5] + | ||
579 | ((uint128_t) in1[7]) * in2x2[4] + | ||
580 | ((uint128_t) in1[8]) * in2x2[3]; | ||
581 | |||
582 | out[3] += ((uint128_t) in1[4]) * in2x2[8] + | ||
583 | ((uint128_t) in1[5]) * in2x2[7] + | ||
584 | ((uint128_t) in1[6]) * in2x2[6] + | ||
585 | ((uint128_t) in1[7]) * in2x2[5] + | ||
586 | ((uint128_t) in1[8]) * in2x2[4]; | ||
587 | |||
588 | out[4] += ((uint128_t) in1[5]) * in2x2[8] + | ||
589 | ((uint128_t) in1[6]) * in2x2[7] + | ||
590 | ((uint128_t) in1[7]) * in2x2[6] + | ||
591 | ((uint128_t) in1[8]) * in2x2[5]; | ||
592 | |||
593 | out[5] += ((uint128_t) in1[6]) * in2x2[8] + | ||
594 | ((uint128_t) in1[7]) * in2x2[7] + | ||
595 | ((uint128_t) in1[8]) * in2x2[6]; | ||
596 | |||
597 | out[6] += ((uint128_t) in1[7]) * in2x2[8] + | ||
598 | ((uint128_t) in1[8]) * in2x2[7]; | ||
599 | |||
600 | out[7] += ((uint128_t) in1[8]) * in2x2[8]; | ||
601 | } | ||
602 | |||
603 | static const limb bottom52bits = 0xfffffffffffff; | ||
604 | |||
605 | /* felem_reduce converts a largefelem to an felem. | ||
606 | * On entry: | ||
607 | * in[i] < 2^128 | ||
608 | * On exit: | ||
609 | * out[i] < 2^59 + 2^14 | ||
610 | */ | ||
611 | static void | ||
612 | felem_reduce(felem out, const largefelem in) | ||
613 | { | ||
614 | u64 overflow1, overflow2; | ||
615 | |||
616 | out[0] = ((limb) in[0]) & bottom58bits; | ||
617 | out[1] = ((limb) in[1]) & bottom58bits; | ||
618 | out[2] = ((limb) in[2]) & bottom58bits; | ||
619 | out[3] = ((limb) in[3]) & bottom58bits; | ||
620 | out[4] = ((limb) in[4]) & bottom58bits; | ||
621 | out[5] = ((limb) in[5]) & bottom58bits; | ||
622 | out[6] = ((limb) in[6]) & bottom58bits; | ||
623 | out[7] = ((limb) in[7]) & bottom58bits; | ||
624 | out[8] = ((limb) in[8]) & bottom58bits; | ||
625 | |||
626 | /* out[i] < 2^58 */ | ||
627 | |||
628 | out[1] += ((limb) in[0]) >> 58; | ||
629 | out[1] += (((limb) (in[0] >> 64)) & bottom52bits) << 6; | ||
630 | /* | ||
631 | * out[1] < 2^58 + 2^6 + 2^58 = 2^59 + 2^6 | ||
632 | */ | ||
633 | out[2] += ((limb) (in[0] >> 64)) >> 52; | ||
634 | |||
635 | out[2] += ((limb) in[1]) >> 58; | ||
636 | out[2] += (((limb) (in[1] >> 64)) & bottom52bits) << 6; | ||
637 | out[3] += ((limb) (in[1] >> 64)) >> 52; | ||
638 | |||
639 | out[3] += ((limb) in[2]) >> 58; | ||
640 | out[3] += (((limb) (in[2] >> 64)) & bottom52bits) << 6; | ||
641 | out[4] += ((limb) (in[2] >> 64)) >> 52; | ||
642 | |||
643 | out[4] += ((limb) in[3]) >> 58; | ||
644 | out[4] += (((limb) (in[3] >> 64)) & bottom52bits) << 6; | ||
645 | out[5] += ((limb) (in[3] >> 64)) >> 52; | ||
646 | |||
647 | out[5] += ((limb) in[4]) >> 58; | ||
648 | out[5] += (((limb) (in[4] >> 64)) & bottom52bits) << 6; | ||
649 | out[6] += ((limb) (in[4] >> 64)) >> 52; | ||
650 | |||
651 | out[6] += ((limb) in[5]) >> 58; | ||
652 | out[6] += (((limb) (in[5] >> 64)) & bottom52bits) << 6; | ||
653 | out[7] += ((limb) (in[5] >> 64)) >> 52; | ||
654 | |||
655 | out[7] += ((limb) in[6]) >> 58; | ||
656 | out[7] += (((limb) (in[6] >> 64)) & bottom52bits) << 6; | ||
657 | out[8] += ((limb) (in[6] >> 64)) >> 52; | ||
658 | |||
659 | out[8] += ((limb) in[7]) >> 58; | ||
660 | out[8] += (((limb) (in[7] >> 64)) & bottom52bits) << 6; | ||
661 | /* | ||
662 | * out[x > 1] < 2^58 + 2^6 + 2^58 + 2^12 < 2^59 + 2^13 | ||
663 | */ | ||
664 | overflow1 = ((limb) (in[7] >> 64)) >> 52; | ||
665 | |||
666 | overflow1 += ((limb) in[8]) >> 58; | ||
667 | overflow1 += (((limb) (in[8] >> 64)) & bottom52bits) << 6; | ||
668 | overflow2 = ((limb) (in[8] >> 64)) >> 52; | ||
669 | |||
670 | overflow1 <<= 1; /* overflow1 < 2^13 + 2^7 + 2^59 */ | ||
671 | overflow2 <<= 1; /* overflow2 < 2^13 */ | ||
672 | |||
673 | out[0] += overflow1; /* out[0] < 2^60 */ | ||
674 | out[1] += overflow2; /* out[1] < 2^59 + 2^6 + 2^13 */ | ||
675 | |||
676 | out[1] += out[0] >> 58; | ||
677 | out[0] &= bottom58bits; | ||
678 | /* | ||
679 | * out[0] < 2^58 out[1] < 2^59 + 2^6 + 2^13 + 2^2 < 2^59 + 2^14 | ||
680 | */ | ||
681 | } | ||
682 | |||
683 | static void | ||
684 | felem_square_reduce(felem out, const felem in) | ||
685 | { | ||
686 | largefelem tmp; | ||
687 | felem_square(tmp, in); | ||
688 | felem_reduce(out, tmp); | ||
689 | } | ||
690 | |||
691 | static void | ||
692 | felem_mul_reduce(felem out, const felem in1, const felem in2) | ||
693 | { | ||
694 | largefelem tmp; | ||
695 | felem_mul(tmp, in1, in2); | ||
696 | felem_reduce(out, tmp); | ||
697 | } | ||
698 | |||
699 | /* felem_inv calculates |out| = |in|^{-1} | ||
700 | * | ||
701 | * Based on Fermat's Little Theorem: | ||
702 | * a^p = a (mod p) | ||
703 | * a^{p-1} = 1 (mod p) | ||
704 | * a^{p-2} = a^{-1} (mod p) | ||
705 | */ | ||
706 | static void | ||
707 | felem_inv(felem out, const felem in) | ||
708 | { | ||
709 | felem ftmp, ftmp2, ftmp3, ftmp4; | ||
710 | largefelem tmp; | ||
711 | unsigned i; | ||
712 | |||
713 | felem_square(tmp, in); | ||
714 | felem_reduce(ftmp, tmp);/* 2^1 */ | ||
715 | felem_mul(tmp, in, ftmp); | ||
716 | felem_reduce(ftmp, tmp);/* 2^2 - 2^0 */ | ||
717 | felem_assign(ftmp2, ftmp); | ||
718 | felem_square(tmp, ftmp); | ||
719 | felem_reduce(ftmp, tmp);/* 2^3 - 2^1 */ | ||
720 | felem_mul(tmp, in, ftmp); | ||
721 | felem_reduce(ftmp, tmp);/* 2^3 - 2^0 */ | ||
722 | felem_square(tmp, ftmp); | ||
723 | felem_reduce(ftmp, tmp);/* 2^4 - 2^1 */ | ||
724 | |||
725 | felem_square(tmp, ftmp2); | ||
726 | felem_reduce(ftmp3, tmp); /* 2^3 - 2^1 */ | ||
727 | felem_square(tmp, ftmp3); | ||
728 | felem_reduce(ftmp3, tmp); /* 2^4 - 2^2 */ | ||
729 | felem_mul(tmp, ftmp3, ftmp2); | ||
730 | felem_reduce(ftmp3, tmp); /* 2^4 - 2^0 */ | ||
731 | |||
732 | felem_assign(ftmp2, ftmp3); | ||
733 | felem_square(tmp, ftmp3); | ||
734 | felem_reduce(ftmp3, tmp); /* 2^5 - 2^1 */ | ||
735 | felem_square(tmp, ftmp3); | ||
736 | felem_reduce(ftmp3, tmp); /* 2^6 - 2^2 */ | ||
737 | felem_square(tmp, ftmp3); | ||
738 | felem_reduce(ftmp3, tmp); /* 2^7 - 2^3 */ | ||
739 | felem_square(tmp, ftmp3); | ||
740 | felem_reduce(ftmp3, tmp); /* 2^8 - 2^4 */ | ||
741 | felem_assign(ftmp4, ftmp3); | ||
742 | felem_mul(tmp, ftmp3, ftmp); | ||
743 | felem_reduce(ftmp4, tmp); /* 2^8 - 2^1 */ | ||
744 | felem_square(tmp, ftmp4); | ||
745 | felem_reduce(ftmp4, tmp); /* 2^9 - 2^2 */ | ||
746 | felem_mul(tmp, ftmp3, ftmp2); | ||
747 | felem_reduce(ftmp3, tmp); /* 2^8 - 2^0 */ | ||
748 | felem_assign(ftmp2, ftmp3); | ||
749 | |||
750 | for (i = 0; i < 8; i++) { | ||
751 | felem_square(tmp, ftmp3); | ||
752 | felem_reduce(ftmp3, tmp); /* 2^16 - 2^8 */ | ||
753 | } | ||
754 | felem_mul(tmp, ftmp3, ftmp2); | ||
755 | felem_reduce(ftmp3, tmp); /* 2^16 - 2^0 */ | ||
756 | felem_assign(ftmp2, ftmp3); | ||
757 | |||
758 | for (i = 0; i < 16; i++) { | ||
759 | felem_square(tmp, ftmp3); | ||
760 | felem_reduce(ftmp3, tmp); /* 2^32 - 2^16 */ | ||
761 | } | ||
762 | felem_mul(tmp, ftmp3, ftmp2); | ||
763 | felem_reduce(ftmp3, tmp); /* 2^32 - 2^0 */ | ||
764 | felem_assign(ftmp2, ftmp3); | ||
765 | |||
766 | for (i = 0; i < 32; i++) { | ||
767 | felem_square(tmp, ftmp3); | ||
768 | felem_reduce(ftmp3, tmp); /* 2^64 - 2^32 */ | ||
769 | } | ||
770 | felem_mul(tmp, ftmp3, ftmp2); | ||
771 | felem_reduce(ftmp3, tmp); /* 2^64 - 2^0 */ | ||
772 | felem_assign(ftmp2, ftmp3); | ||
773 | |||
774 | for (i = 0; i < 64; i++) { | ||
775 | felem_square(tmp, ftmp3); | ||
776 | felem_reduce(ftmp3, tmp); /* 2^128 - 2^64 */ | ||
777 | } | ||
778 | felem_mul(tmp, ftmp3, ftmp2); | ||
779 | felem_reduce(ftmp3, tmp); /* 2^128 - 2^0 */ | ||
780 | felem_assign(ftmp2, ftmp3); | ||
781 | |||
782 | for (i = 0; i < 128; i++) { | ||
783 | felem_square(tmp, ftmp3); | ||
784 | felem_reduce(ftmp3, tmp); /* 2^256 - 2^128 */ | ||
785 | } | ||
786 | felem_mul(tmp, ftmp3, ftmp2); | ||
787 | felem_reduce(ftmp3, tmp); /* 2^256 - 2^0 */ | ||
788 | felem_assign(ftmp2, ftmp3); | ||
789 | |||
790 | for (i = 0; i < 256; i++) { | ||
791 | felem_square(tmp, ftmp3); | ||
792 | felem_reduce(ftmp3, tmp); /* 2^512 - 2^256 */ | ||
793 | } | ||
794 | felem_mul(tmp, ftmp3, ftmp2); | ||
795 | felem_reduce(ftmp3, tmp); /* 2^512 - 2^0 */ | ||
796 | |||
797 | for (i = 0; i < 9; i++) { | ||
798 | felem_square(tmp, ftmp3); | ||
799 | felem_reduce(ftmp3, tmp); /* 2^521 - 2^9 */ | ||
800 | } | ||
801 | felem_mul(tmp, ftmp3, ftmp4); | ||
802 | felem_reduce(ftmp3, tmp); /* 2^512 - 2^2 */ | ||
803 | felem_mul(tmp, ftmp3, in); | ||
804 | felem_reduce(out, tmp); /* 2^512 - 3 */ | ||
805 | } | ||
806 | |||
807 | /* This is 2^521-1, expressed as an felem */ | ||
808 | static const felem kPrime = | ||
809 | { | ||
810 | 0x03ffffffffffffff, 0x03ffffffffffffff, 0x03ffffffffffffff, | ||
811 | 0x03ffffffffffffff, 0x03ffffffffffffff, 0x03ffffffffffffff, | ||
812 | 0x03ffffffffffffff, 0x03ffffffffffffff, 0x01ffffffffffffff | ||
813 | }; | ||
814 | |||
815 | /* felem_is_zero returns a limb with all bits set if |in| == 0 (mod p) and 0 | ||
816 | * otherwise. | ||
817 | * On entry: | ||
818 | * in[i] < 2^59 + 2^14 | ||
819 | */ | ||
820 | static limb | ||
821 | felem_is_zero(const felem in) | ||
822 | { | ||
823 | felem ftmp; | ||
824 | limb is_zero, is_p; | ||
825 | felem_assign(ftmp, in); | ||
826 | |||
827 | ftmp[0] += ftmp[8] >> 57; | ||
828 | ftmp[8] &= bottom57bits; | ||
829 | /* ftmp[8] < 2^57 */ | ||
830 | ftmp[1] += ftmp[0] >> 58; | ||
831 | ftmp[0] &= bottom58bits; | ||
832 | ftmp[2] += ftmp[1] >> 58; | ||
833 | ftmp[1] &= bottom58bits; | ||
834 | ftmp[3] += ftmp[2] >> 58; | ||
835 | ftmp[2] &= bottom58bits; | ||
836 | ftmp[4] += ftmp[3] >> 58; | ||
837 | ftmp[3] &= bottom58bits; | ||
838 | ftmp[5] += ftmp[4] >> 58; | ||
839 | ftmp[4] &= bottom58bits; | ||
840 | ftmp[6] += ftmp[5] >> 58; | ||
841 | ftmp[5] &= bottom58bits; | ||
842 | ftmp[7] += ftmp[6] >> 58; | ||
843 | ftmp[6] &= bottom58bits; | ||
844 | ftmp[8] += ftmp[7] >> 58; | ||
845 | ftmp[7] &= bottom58bits; | ||
846 | /* ftmp[8] < 2^57 + 4 */ | ||
847 | |||
848 | /* | ||
849 | * The ninth limb of 2*(2^521-1) is 0x03ffffffffffffff, which is | ||
850 | * greater than our bound for ftmp[8]. Therefore we only have to | ||
851 | * check if the zero is zero or 2^521-1. | ||
852 | */ | ||
853 | |||
854 | is_zero = 0; | ||
855 | is_zero |= ftmp[0]; | ||
856 | is_zero |= ftmp[1]; | ||
857 | is_zero |= ftmp[2]; | ||
858 | is_zero |= ftmp[3]; | ||
859 | is_zero |= ftmp[4]; | ||
860 | is_zero |= ftmp[5]; | ||
861 | is_zero |= ftmp[6]; | ||
862 | is_zero |= ftmp[7]; | ||
863 | is_zero |= ftmp[8]; | ||
864 | |||
865 | is_zero--; | ||
866 | /* | ||
867 | * We know that ftmp[i] < 2^63, therefore the only way that the top | ||
868 | * bit can be set is if is_zero was 0 before the decrement. | ||
869 | */ | ||
870 | is_zero = ((s64) is_zero) >> 63; | ||
871 | |||
872 | is_p = ftmp[0] ^ kPrime[0]; | ||
873 | is_p |= ftmp[1] ^ kPrime[1]; | ||
874 | is_p |= ftmp[2] ^ kPrime[2]; | ||
875 | is_p |= ftmp[3] ^ kPrime[3]; | ||
876 | is_p |= ftmp[4] ^ kPrime[4]; | ||
877 | is_p |= ftmp[5] ^ kPrime[5]; | ||
878 | is_p |= ftmp[6] ^ kPrime[6]; | ||
879 | is_p |= ftmp[7] ^ kPrime[7]; | ||
880 | is_p |= ftmp[8] ^ kPrime[8]; | ||
881 | |||
882 | is_p--; | ||
883 | is_p = ((s64) is_p) >> 63; | ||
884 | |||
885 | is_zero |= is_p; | ||
886 | return is_zero; | ||
887 | } | ||
888 | |||
889 | static int | ||
890 | felem_is_zero_int(const felem in) | ||
891 | { | ||
892 | return (int) (felem_is_zero(in) & ((limb) 1)); | ||
893 | } | ||
894 | |||
895 | /* felem_contract converts |in| to its unique, minimal representation. | ||
896 | * On entry: | ||
897 | * in[i] < 2^59 + 2^14 | ||
898 | */ | ||
899 | static void | ||
900 | felem_contract(felem out, const felem in) | ||
901 | { | ||
902 | limb is_p, is_greater, sign; | ||
903 | static const limb two58 = ((limb) 1) << 58; | ||
904 | |||
905 | felem_assign(out, in); | ||
906 | |||
907 | out[0] += out[8] >> 57; | ||
908 | out[8] &= bottom57bits; | ||
909 | /* out[8] < 2^57 */ | ||
910 | out[1] += out[0] >> 58; | ||
911 | out[0] &= bottom58bits; | ||
912 | out[2] += out[1] >> 58; | ||
913 | out[1] &= bottom58bits; | ||
914 | out[3] += out[2] >> 58; | ||
915 | out[2] &= bottom58bits; | ||
916 | out[4] += out[3] >> 58; | ||
917 | out[3] &= bottom58bits; | ||
918 | out[5] += out[4] >> 58; | ||
919 | out[4] &= bottom58bits; | ||
920 | out[6] += out[5] >> 58; | ||
921 | out[5] &= bottom58bits; | ||
922 | out[7] += out[6] >> 58; | ||
923 | out[6] &= bottom58bits; | ||
924 | out[8] += out[7] >> 58; | ||
925 | out[7] &= bottom58bits; | ||
926 | /* out[8] < 2^57 + 4 */ | ||
927 | |||
928 | /* | ||
929 | * If the value is greater than 2^521-1 then we have to subtract | ||
930 | * 2^521-1 out. See the comments in felem_is_zero regarding why we | ||
931 | * don't test for other multiples of the prime. | ||
932 | */ | ||
933 | |||
934 | /* | ||
935 | * First, if |out| is equal to 2^521-1, we subtract it out to get | ||
936 | * zero. | ||
937 | */ | ||
938 | |||
939 | is_p = out[0] ^ kPrime[0]; | ||
940 | is_p |= out[1] ^ kPrime[1]; | ||
941 | is_p |= out[2] ^ kPrime[2]; | ||
942 | is_p |= out[3] ^ kPrime[3]; | ||
943 | is_p |= out[4] ^ kPrime[4]; | ||
944 | is_p |= out[5] ^ kPrime[5]; | ||
945 | is_p |= out[6] ^ kPrime[6]; | ||
946 | is_p |= out[7] ^ kPrime[7]; | ||
947 | is_p |= out[8] ^ kPrime[8]; | ||
948 | |||
949 | is_p--; | ||
950 | is_p &= is_p << 32; | ||
951 | is_p &= is_p << 16; | ||
952 | is_p &= is_p << 8; | ||
953 | is_p &= is_p << 4; | ||
954 | is_p &= is_p << 2; | ||
955 | is_p &= is_p << 1; | ||
956 | is_p = ((s64) is_p) >> 63; | ||
957 | is_p = ~is_p; | ||
958 | |||
959 | /* is_p is 0 iff |out| == 2^521-1 and all ones otherwise */ | ||
960 | |||
961 | out[0] &= is_p; | ||
962 | out[1] &= is_p; | ||
963 | out[2] &= is_p; | ||
964 | out[3] &= is_p; | ||
965 | out[4] &= is_p; | ||
966 | out[5] &= is_p; | ||
967 | out[6] &= is_p; | ||
968 | out[7] &= is_p; | ||
969 | out[8] &= is_p; | ||
970 | |||
971 | /* | ||
972 | * In order to test that |out| >= 2^521-1 we need only test if out[8] | ||
973 | * >> 57 is greater than zero as (2^521-1) + x >= 2^522 | ||
974 | */ | ||
975 | is_greater = out[8] >> 57; | ||
976 | is_greater |= is_greater << 32; | ||
977 | is_greater |= is_greater << 16; | ||
978 | is_greater |= is_greater << 8; | ||
979 | is_greater |= is_greater << 4; | ||
980 | is_greater |= is_greater << 2; | ||
981 | is_greater |= is_greater << 1; | ||
982 | is_greater = ((s64) is_greater) >> 63; | ||
983 | |||
984 | out[0] -= kPrime[0] & is_greater; | ||
985 | out[1] -= kPrime[1] & is_greater; | ||
986 | out[2] -= kPrime[2] & is_greater; | ||
987 | out[3] -= kPrime[3] & is_greater; | ||
988 | out[4] -= kPrime[4] & is_greater; | ||
989 | out[5] -= kPrime[5] & is_greater; | ||
990 | out[6] -= kPrime[6] & is_greater; | ||
991 | out[7] -= kPrime[7] & is_greater; | ||
992 | out[8] -= kPrime[8] & is_greater; | ||
993 | |||
994 | /* Eliminate negative coefficients */ | ||
995 | sign = -(out[0] >> 63); | ||
996 | out[0] += (two58 & sign); | ||
997 | out[1] -= (1 & sign); | ||
998 | sign = -(out[1] >> 63); | ||
999 | out[1] += (two58 & sign); | ||
1000 | out[2] -= (1 & sign); | ||
1001 | sign = -(out[2] >> 63); | ||
1002 | out[2] += (two58 & sign); | ||
1003 | out[3] -= (1 & sign); | ||
1004 | sign = -(out[3] >> 63); | ||
1005 | out[3] += (two58 & sign); | ||
1006 | out[4] -= (1 & sign); | ||
1007 | sign = -(out[4] >> 63); | ||
1008 | out[4] += (two58 & sign); | ||
1009 | out[5] -= (1 & sign); | ||
1010 | sign = -(out[0] >> 63); | ||
1011 | out[5] += (two58 & sign); | ||
1012 | out[6] -= (1 & sign); | ||
1013 | sign = -(out[6] >> 63); | ||
1014 | out[6] += (two58 & sign); | ||
1015 | out[7] -= (1 & sign); | ||
1016 | sign = -(out[7] >> 63); | ||
1017 | out[7] += (two58 & sign); | ||
1018 | out[8] -= (1 & sign); | ||
1019 | sign = -(out[5] >> 63); | ||
1020 | out[5] += (two58 & sign); | ||
1021 | out[6] -= (1 & sign); | ||
1022 | sign = -(out[6] >> 63); | ||
1023 | out[6] += (two58 & sign); | ||
1024 | out[7] -= (1 & sign); | ||
1025 | sign = -(out[7] >> 63); | ||
1026 | out[7] += (two58 & sign); | ||
1027 | out[8] -= (1 & sign); | ||
1028 | } | ||
1029 | |||
1030 | /* Group operations | ||
1031 | * ---------------- | ||
1032 | * | ||
1033 | * Building on top of the field operations we have the operations on the | ||
1034 | * elliptic curve group itself. Points on the curve are represented in Jacobian | ||
1035 | * coordinates */ | ||
1036 | |||
1037 | /* point_double calculates 2*(x_in, y_in, z_in) | ||
1038 | * | ||
1039 | * The method is taken from: | ||
1040 | * http://hyperelliptic.org/EFD/g1p/auto-shortw-jacobian-3.html#doubling-dbl-2001-b | ||
1041 | * | ||
1042 | * Outputs can equal corresponding inputs, i.e., x_out == x_in is allowed. | ||
1043 | * while x_out == y_in is not (maybe this works, but it's not tested). */ | ||
1044 | static void | ||
1045 | point_double(felem x_out, felem y_out, felem z_out, | ||
1046 | const felem x_in, const felem y_in, const felem z_in) | ||
1047 | { | ||
1048 | largefelem tmp, tmp2; | ||
1049 | felem delta, gamma, beta, alpha, ftmp, ftmp2; | ||
1050 | |||
1051 | felem_assign(ftmp, x_in); | ||
1052 | felem_assign(ftmp2, x_in); | ||
1053 | |||
1054 | /* delta = z^2 */ | ||
1055 | felem_square(tmp, z_in); | ||
1056 | felem_reduce(delta, tmp); /* delta[i] < 2^59 + 2^14 */ | ||
1057 | |||
1058 | /* gamma = y^2 */ | ||
1059 | felem_square(tmp, y_in); | ||
1060 | felem_reduce(gamma, tmp); /* gamma[i] < 2^59 + 2^14 */ | ||
1061 | |||
1062 | /* beta = x*gamma */ | ||
1063 | felem_mul(tmp, x_in, gamma); | ||
1064 | felem_reduce(beta, tmp);/* beta[i] < 2^59 + 2^14 */ | ||
1065 | |||
1066 | /* alpha = 3*(x-delta)*(x+delta) */ | ||
1067 | felem_diff64(ftmp, delta); | ||
1068 | /* ftmp[i] < 2^61 */ | ||
1069 | felem_sum64(ftmp2, delta); | ||
1070 | /* ftmp2[i] < 2^60 + 2^15 */ | ||
1071 | felem_scalar64(ftmp2, 3); | ||
1072 | /* ftmp2[i] < 3*2^60 + 3*2^15 */ | ||
1073 | felem_mul(tmp, ftmp, ftmp2); | ||
1074 | /* | ||
1075 | * tmp[i] < 17(3*2^121 + 3*2^76) = 61*2^121 + 61*2^76 < 64*2^121 + | ||
1076 | * 64*2^76 = 2^127 + 2^82 < 2^128 | ||
1077 | */ | ||
1078 | felem_reduce(alpha, tmp); | ||
1079 | |||
1080 | /* x' = alpha^2 - 8*beta */ | ||
1081 | felem_square(tmp, alpha); | ||
1082 | /* | ||
1083 | * tmp[i] < 17*2^120 < 2^125 | ||
1084 | */ | ||
1085 | felem_assign(ftmp, beta); | ||
1086 | felem_scalar64(ftmp, 8); | ||
1087 | /* ftmp[i] < 2^62 + 2^17 */ | ||
1088 | felem_diff_128_64(tmp, ftmp); | ||
1089 | /* tmp[i] < 2^125 + 2^63 + 2^62 + 2^17 */ | ||
1090 | felem_reduce(x_out, tmp); | ||
1091 | |||
1092 | /* z' = (y + z)^2 - gamma - delta */ | ||
1093 | felem_sum64(delta, gamma); | ||
1094 | /* delta[i] < 2^60 + 2^15 */ | ||
1095 | felem_assign(ftmp, y_in); | ||
1096 | felem_sum64(ftmp, z_in); | ||
1097 | /* ftmp[i] < 2^60 + 2^15 */ | ||
1098 | felem_square(tmp, ftmp); | ||
1099 | /* | ||
1100 | * tmp[i] < 17(2^122) < 2^127 | ||
1101 | */ | ||
1102 | felem_diff_128_64(tmp, delta); | ||
1103 | /* tmp[i] < 2^127 + 2^63 */ | ||
1104 | felem_reduce(z_out, tmp); | ||
1105 | |||
1106 | /* y' = alpha*(4*beta - x') - 8*gamma^2 */ | ||
1107 | felem_scalar64(beta, 4); | ||
1108 | /* beta[i] < 2^61 + 2^16 */ | ||
1109 | felem_diff64(beta, x_out); | ||
1110 | /* beta[i] < 2^61 + 2^60 + 2^16 */ | ||
1111 | felem_mul(tmp, alpha, beta); | ||
1112 | /* | ||
1113 | * tmp[i] < 17*((2^59 + 2^14)(2^61 + 2^60 + 2^16)) = 17*(2^120 + 2^75 | ||
1114 | * + 2^119 + 2^74 + 2^75 + 2^30) = 17*(2^120 + 2^119 + 2^76 + 2^74 + | ||
1115 | * 2^30) < 2^128 | ||
1116 | */ | ||
1117 | felem_square(tmp2, gamma); | ||
1118 | /* | ||
1119 | * tmp2[i] < 17*(2^59 + 2^14)^2 = 17*(2^118 + 2^74 + 2^28) | ||
1120 | */ | ||
1121 | felem_scalar128(tmp2, 8); | ||
1122 | /* | ||
1123 | * tmp2[i] < 8*17*(2^118 + 2^74 + 2^28) = 2^125 + 2^121 + 2^81 + 2^77 | ||
1124 | * + 2^35 + 2^31 < 2^126 | ||
1125 | */ | ||
1126 | felem_diff128(tmp, tmp2); | ||
1127 | /* | ||
1128 | * tmp[i] < 2^127 - 2^69 + 17(2^120 + 2^119 + 2^76 + 2^74 + 2^30) = | ||
1129 | * 2^127 + 2^124 + 2^122 + 2^120 + 2^118 + 2^80 + 2^78 + 2^76 + 2^74 | ||
1130 | * + 2^69 + 2^34 + 2^30 < 2^128 | ||
1131 | */ | ||
1132 | felem_reduce(y_out, tmp); | ||
1133 | } | ||
1134 | |||
1135 | /* copy_conditional copies in to out iff mask is all ones. */ | ||
1136 | static void | ||
1137 | copy_conditional(felem out, const felem in, limb mask) | ||
1138 | { | ||
1139 | unsigned i; | ||
1140 | for (i = 0; i < NLIMBS; ++i) { | ||
1141 | const limb tmp = mask & (in[i] ^ out[i]); | ||
1142 | out[i] ^= tmp; | ||
1143 | } | ||
1144 | } | ||
1145 | |||
1146 | /* point_add calculates (x1, y1, z1) + (x2, y2, z2) | ||
1147 | * | ||
1148 | * The method is taken from | ||
1149 | * http://hyperelliptic.org/EFD/g1p/auto-shortw-jacobian-3.html#addition-add-2007-bl, | ||
1150 | * adapted for mixed addition (z2 = 1, or z2 = 0 for the point at infinity). | ||
1151 | * | ||
1152 | * This function includes a branch for checking whether the two input points | ||
1153 | * are equal (while not equal to the point at infinity). This case never | ||
1154 | * happens during single point multiplication, so there is no timing leak for | ||
1155 | * ECDH or ECDSA signing. */ | ||
1156 | static void | ||
1157 | point_add(felem x3, felem y3, felem z3, | ||
1158 | const felem x1, const felem y1, const felem z1, | ||
1159 | const int mixed, const felem x2, const felem y2, const felem z2) | ||
1160 | { | ||
1161 | felem ftmp, ftmp2, ftmp3, ftmp4, ftmp5, ftmp6, x_out, y_out, z_out; | ||
1162 | largefelem tmp, tmp2; | ||
1163 | limb x_equal, y_equal, z1_is_zero, z2_is_zero; | ||
1164 | |||
1165 | z1_is_zero = felem_is_zero(z1); | ||
1166 | z2_is_zero = felem_is_zero(z2); | ||
1167 | |||
1168 | /* ftmp = z1z1 = z1**2 */ | ||
1169 | felem_square(tmp, z1); | ||
1170 | felem_reduce(ftmp, tmp); | ||
1171 | |||
1172 | if (!mixed) { | ||
1173 | /* ftmp2 = z2z2 = z2**2 */ | ||
1174 | felem_square(tmp, z2); | ||
1175 | felem_reduce(ftmp2, tmp); | ||
1176 | |||
1177 | /* u1 = ftmp3 = x1*z2z2 */ | ||
1178 | felem_mul(tmp, x1, ftmp2); | ||
1179 | felem_reduce(ftmp3, tmp); | ||
1180 | |||
1181 | /* ftmp5 = z1 + z2 */ | ||
1182 | felem_assign(ftmp5, z1); | ||
1183 | felem_sum64(ftmp5, z2); | ||
1184 | /* ftmp5[i] < 2^61 */ | ||
1185 | |||
1186 | /* ftmp5 = (z1 + z2)**2 - z1z1 - z2z2 = 2*z1z2 */ | ||
1187 | felem_square(tmp, ftmp5); | ||
1188 | /* tmp[i] < 17*2^122 */ | ||
1189 | felem_diff_128_64(tmp, ftmp); | ||
1190 | /* tmp[i] < 17*2^122 + 2^63 */ | ||
1191 | felem_diff_128_64(tmp, ftmp2); | ||
1192 | /* tmp[i] < 17*2^122 + 2^64 */ | ||
1193 | felem_reduce(ftmp5, tmp); | ||
1194 | |||
1195 | /* ftmp2 = z2 * z2z2 */ | ||
1196 | felem_mul(tmp, ftmp2, z2); | ||
1197 | felem_reduce(ftmp2, tmp); | ||
1198 | |||
1199 | /* s1 = ftmp6 = y1 * z2**3 */ | ||
1200 | felem_mul(tmp, y1, ftmp2); | ||
1201 | felem_reduce(ftmp6, tmp); | ||
1202 | } else { | ||
1203 | /* We'll assume z2 = 1 (special case z2 = 0 is handled later) */ | ||
1204 | |||
1205 | /* u1 = ftmp3 = x1*z2z2 */ | ||
1206 | felem_assign(ftmp3, x1); | ||
1207 | |||
1208 | /* ftmp5 = 2*z1z2 */ | ||
1209 | felem_scalar(ftmp5, z1, 2); | ||
1210 | |||
1211 | /* s1 = ftmp6 = y1 * z2**3 */ | ||
1212 | felem_assign(ftmp6, y1); | ||
1213 | } | ||
1214 | |||
1215 | /* u2 = x2*z1z1 */ | ||
1216 | felem_mul(tmp, x2, ftmp); | ||
1217 | /* tmp[i] < 17*2^120 */ | ||
1218 | |||
1219 | /* h = ftmp4 = u2 - u1 */ | ||
1220 | felem_diff_128_64(tmp, ftmp3); | ||
1221 | /* tmp[i] < 17*2^120 + 2^63 */ | ||
1222 | felem_reduce(ftmp4, tmp); | ||
1223 | |||
1224 | x_equal = felem_is_zero(ftmp4); | ||
1225 | |||
1226 | /* z_out = ftmp5 * h */ | ||
1227 | felem_mul(tmp, ftmp5, ftmp4); | ||
1228 | felem_reduce(z_out, tmp); | ||
1229 | |||
1230 | /* ftmp = z1 * z1z1 */ | ||
1231 | felem_mul(tmp, ftmp, z1); | ||
1232 | felem_reduce(ftmp, tmp); | ||
1233 | |||
1234 | /* s2 = tmp = y2 * z1**3 */ | ||
1235 | felem_mul(tmp, y2, ftmp); | ||
1236 | /* tmp[i] < 17*2^120 */ | ||
1237 | |||
1238 | /* r = ftmp5 = (s2 - s1)*2 */ | ||
1239 | felem_diff_128_64(tmp, ftmp6); | ||
1240 | /* tmp[i] < 17*2^120 + 2^63 */ | ||
1241 | felem_reduce(ftmp5, tmp); | ||
1242 | y_equal = felem_is_zero(ftmp5); | ||
1243 | felem_scalar64(ftmp5, 2); | ||
1244 | /* ftmp5[i] < 2^61 */ | ||
1245 | |||
1246 | if (x_equal && y_equal && !z1_is_zero && !z2_is_zero) { | ||
1247 | point_double(x3, y3, z3, x1, y1, z1); | ||
1248 | return; | ||
1249 | } | ||
1250 | /* I = ftmp = (2h)**2 */ | ||
1251 | felem_assign(ftmp, ftmp4); | ||
1252 | felem_scalar64(ftmp, 2); | ||
1253 | /* ftmp[i] < 2^61 */ | ||
1254 | felem_square(tmp, ftmp); | ||
1255 | /* tmp[i] < 17*2^122 */ | ||
1256 | felem_reduce(ftmp, tmp); | ||
1257 | |||
1258 | /* J = ftmp2 = h * I */ | ||
1259 | felem_mul(tmp, ftmp4, ftmp); | ||
1260 | felem_reduce(ftmp2, tmp); | ||
1261 | |||
1262 | /* V = ftmp4 = U1 * I */ | ||
1263 | felem_mul(tmp, ftmp3, ftmp); | ||
1264 | felem_reduce(ftmp4, tmp); | ||
1265 | |||
1266 | /* x_out = r**2 - J - 2V */ | ||
1267 | felem_square(tmp, ftmp5); | ||
1268 | /* tmp[i] < 17*2^122 */ | ||
1269 | felem_diff_128_64(tmp, ftmp2); | ||
1270 | /* tmp[i] < 17*2^122 + 2^63 */ | ||
1271 | felem_assign(ftmp3, ftmp4); | ||
1272 | felem_scalar64(ftmp4, 2); | ||
1273 | /* ftmp4[i] < 2^61 */ | ||
1274 | felem_diff_128_64(tmp, ftmp4); | ||
1275 | /* tmp[i] < 17*2^122 + 2^64 */ | ||
1276 | felem_reduce(x_out, tmp); | ||
1277 | |||
1278 | /* y_out = r(V-x_out) - 2 * s1 * J */ | ||
1279 | felem_diff64(ftmp3, x_out); | ||
1280 | /* | ||
1281 | * ftmp3[i] < 2^60 + 2^60 = 2^61 | ||
1282 | */ | ||
1283 | felem_mul(tmp, ftmp5, ftmp3); | ||
1284 | /* tmp[i] < 17*2^122 */ | ||
1285 | felem_mul(tmp2, ftmp6, ftmp2); | ||
1286 | /* tmp2[i] < 17*2^120 */ | ||
1287 | felem_scalar128(tmp2, 2); | ||
1288 | /* tmp2[i] < 17*2^121 */ | ||
1289 | felem_diff128(tmp, tmp2); | ||
1290 | /* | ||
1291 | * tmp[i] < 2^127 - 2^69 + 17*2^122 = 2^126 - 2^122 - 2^6 - 2^2 - 1 < | ||
1292 | * 2^127 | ||
1293 | */ | ||
1294 | felem_reduce(y_out, tmp); | ||
1295 | |||
1296 | copy_conditional(x_out, x2, z1_is_zero); | ||
1297 | copy_conditional(x_out, x1, z2_is_zero); | ||
1298 | copy_conditional(y_out, y2, z1_is_zero); | ||
1299 | copy_conditional(y_out, y1, z2_is_zero); | ||
1300 | copy_conditional(z_out, z2, z1_is_zero); | ||
1301 | copy_conditional(z_out, z1, z2_is_zero); | ||
1302 | felem_assign(x3, x_out); | ||
1303 | felem_assign(y3, y_out); | ||
1304 | felem_assign(z3, z_out); | ||
1305 | } | ||
1306 | |||
1307 | /* Base point pre computation | ||
1308 | * -------------------------- | ||
1309 | * | ||
1310 | * Two different sorts of precomputed tables are used in the following code. | ||
1311 | * Each contain various points on the curve, where each point is three field | ||
1312 | * elements (x, y, z). | ||
1313 | * | ||
1314 | * For the base point table, z is usually 1 (0 for the point at infinity). | ||
1315 | * This table has 16 elements: | ||
1316 | * index | bits | point | ||
1317 | * ------+---------+------------------------------ | ||
1318 | * 0 | 0 0 0 0 | 0G | ||
1319 | * 1 | 0 0 0 1 | 1G | ||
1320 | * 2 | 0 0 1 0 | 2^130G | ||
1321 | * 3 | 0 0 1 1 | (2^130 + 1)G | ||
1322 | * 4 | 0 1 0 0 | 2^260G | ||
1323 | * 5 | 0 1 0 1 | (2^260 + 1)G | ||
1324 | * 6 | 0 1 1 0 | (2^260 + 2^130)G | ||
1325 | * 7 | 0 1 1 1 | (2^260 + 2^130 + 1)G | ||
1326 | * 8 | 1 0 0 0 | 2^390G | ||
1327 | * 9 | 1 0 0 1 | (2^390 + 1)G | ||
1328 | * 10 | 1 0 1 0 | (2^390 + 2^130)G | ||
1329 | * 11 | 1 0 1 1 | (2^390 + 2^130 + 1)G | ||
1330 | * 12 | 1 1 0 0 | (2^390 + 2^260)G | ||
1331 | * 13 | 1 1 0 1 | (2^390 + 2^260 + 1)G | ||
1332 | * 14 | 1 1 1 0 | (2^390 + 2^260 + 2^130)G | ||
1333 | * 15 | 1 1 1 1 | (2^390 + 2^260 + 2^130 + 1)G | ||
1334 | * | ||
1335 | * The reason for this is so that we can clock bits into four different | ||
1336 | * locations when doing simple scalar multiplies against the base point. | ||
1337 | * | ||
1338 | * Tables for other points have table[i] = iG for i in 0 .. 16. */ | ||
1339 | |||
1340 | /* gmul is the table of precomputed base points */ | ||
1341 | static const felem gmul[16][3] = | ||
1342 | {{{0, 0, 0, 0, 0, 0, 0, 0, 0}, | ||
1343 | {0, 0, 0, 0, 0, 0, 0, 0, 0}, | ||
1344 | {0, 0, 0, 0, 0, 0, 0, 0, 0}}, | ||
1345 | {{0x017e7e31c2e5bd66, 0x022cf0615a90a6fe, 0x00127a2ffa8de334, | ||
1346 | 0x01dfbf9d64a3f877, 0x006b4d3dbaa14b5e, 0x014fed487e0a2bd8, | ||
1347 | 0x015b4429c6481390, 0x03a73678fb2d988e, 0x00c6858e06b70404}, | ||
1348 | {0x00be94769fd16650, 0x031c21a89cb09022, 0x039013fad0761353, | ||
1349 | 0x02657bd099031542, 0x03273e662c97ee72, 0x01e6d11a05ebef45, | ||
1350 | 0x03d1bd998f544495, 0x03001172297ed0b1, 0x011839296a789a3b}, | ||
1351 | {1, 0, 0, 0, 0, 0, 0, 0, 0}}, | ||
1352 | {{0x0373faacbc875bae, 0x00f325023721c671, 0x00f666fd3dbde5ad, | ||
1353 | 0x01a6932363f88ea7, 0x01fc6d9e13f9c47b, 0x03bcbffc2bbf734e, | ||
1354 | 0x013ee3c3647f3a92, 0x029409fefe75d07d, 0x00ef9199963d85e5}, | ||
1355 | {0x011173743ad5b178, 0x02499c7c21bf7d46, 0x035beaeabb8b1a58, | ||
1356 | 0x00f989c4752ea0a3, 0x0101e1de48a9c1a3, 0x01a20076be28ba6c, | ||
1357 | 0x02f8052e5eb2de95, 0x01bfe8f82dea117c, 0x0160074d3c36ddb7}, | ||
1358 | {1, 0, 0, 0, 0, 0, 0, 0, 0}}, | ||
1359 | {{0x012f3fc373393b3b, 0x03d3d6172f1419fa, 0x02adc943c0b86873, | ||
1360 | 0x00d475584177952b, 0x012a4d1673750ee2, 0x00512517a0f13b0c, | ||
1361 | 0x02b184671a7b1734, 0x0315b84236f1a50a, 0x00a4afc472edbdb9}, | ||
1362 | {0x00152a7077f385c4, 0x03044007d8d1c2ee, 0x0065829d61d52b52, | ||
1363 | 0x00494ff6b6631d0d, 0x00a11d94d5f06bcf, 0x02d2f89474d9282e, | ||
1364 | 0x0241c5727c06eeb9, 0x0386928710fbdb9d, 0x01f883f727b0dfbe}, | ||
1365 | {1, 0, 0, 0, 0, 0, 0, 0, 0}}, | ||
1366 | {{0x019b0c3c9185544d, 0x006243a37c9d97db, 0x02ee3cbe030a2ad2, | ||
1367 | 0x00cfdd946bb51e0d, 0x0271c00932606b91, 0x03f817d1ec68c561, | ||
1368 | 0x03f37009806a369c, 0x03c1f30baf184fd5, 0x01091022d6d2f065}, | ||
1369 | {0x0292c583514c45ed, 0x0316fca51f9a286c, 0x00300af507c1489a, | ||
1370 | 0x0295f69008298cf1, 0x02c0ed8274943d7b, 0x016509b9b47a431e, | ||
1371 | 0x02bc9de9634868ce, 0x005b34929bffcb09, 0x000c1a0121681524}, | ||
1372 | {1, 0, 0, 0, 0, 0, 0, 0, 0}}, | ||
1373 | {{0x0286abc0292fb9f2, 0x02665eee9805b3f7, 0x01ed7455f17f26d6, | ||
1374 | 0x0346355b83175d13, 0x006284944cd0a097, 0x0191895bcdec5e51, | ||
1375 | 0x02e288370afda7d9, 0x03b22312bfefa67a, 0x01d104d3fc0613fe}, | ||
1376 | {0x0092421a12f7e47f, 0x0077a83fa373c501, 0x03bd25c5f696bd0d, | ||
1377 | 0x035c41e4d5459761, 0x01ca0d1742b24f53, 0x00aaab27863a509c, | ||
1378 | 0x018b6de47df73917, 0x025c0b771705cd01, 0x01fd51d566d760a7}, | ||
1379 | {1, 0, 0, 0, 0, 0, 0, 0, 0}}, | ||
1380 | {{0x01dd92ff6b0d1dbd, 0x039c5e2e8f8afa69, 0x0261ed13242c3b27, | ||
1381 | 0x0382c6e67026e6a0, 0x01d60b10be2089f9, 0x03c15f3dce86723f, | ||
1382 | 0x03c764a32d2a062d, 0x017307eac0fad056, 0x018207c0b96c5256}, | ||
1383 | {0x0196a16d60e13154, 0x03e6ce74c0267030, 0x00ddbf2b4e52a5aa, | ||
1384 | 0x012738241bbf31c8, 0x00ebe8dc04685a28, 0x024c2ad6d380d4a2, | ||
1385 | 0x035ee062a6e62d0e, 0x0029ed74af7d3a0f, 0x00eef32aec142ebd}, | ||
1386 | {1, 0, 0, 0, 0, 0, 0, 0, 0}}, | ||
1387 | {{0x00c31ec398993b39, 0x03a9f45bcda68253, 0x00ac733c24c70890, | ||
1388 | 0x00872b111401ff01, 0x01d178c23195eafb, 0x03bca2c816b87f74, | ||
1389 | 0x0261a9af46fbad7a, 0x0324b2a8dd3d28f9, 0x00918121d8f24e23}, | ||
1390 | {0x032bc8c1ca983cd7, 0x00d869dfb08fc8c6, 0x01693cb61fce1516, | ||
1391 | 0x012a5ea68f4e88a8, 0x010869cab88d7ae3, 0x009081ad277ceee1, | ||
1392 | 0x033a77166d064cdc, 0x03955235a1fb3a95, 0x01251a4a9b25b65e}, | ||
1393 | {1, 0, 0, 0, 0, 0, 0, 0, 0}}, | ||
1394 | {{0x00148a3a1b27f40b, 0x0123186df1b31fdc, 0x00026e7beaad34ce, | ||
1395 | 0x01db446ac1d3dbba, 0x0299c1a33437eaec, 0x024540610183cbb7, | ||
1396 | 0x0173bb0e9ce92e46, 0x02b937e43921214b, 0x01ab0436a9bf01b5}, | ||
1397 | {0x0383381640d46948, 0x008dacbf0e7f330f, 0x03602122bcc3f318, | ||
1398 | 0x01ee596b200620d6, 0x03bd0585fda430b3, 0x014aed77fd123a83, | ||
1399 | 0x005ace749e52f742, 0x0390fe041da2b842, 0x0189a8ceb3299242}, | ||
1400 | {1, 0, 0, 0, 0, 0, 0, 0, 0}}, | ||
1401 | {{0x012a19d6b3282473, 0x00c0915918b423ce, 0x023a954eb94405ae, | ||
1402 | 0x00529f692be26158, 0x0289fa1b6fa4b2aa, 0x0198ae4ceea346ef, | ||
1403 | 0x0047d8cdfbdedd49, 0x00cc8c8953f0f6b8, 0x001424abbff49203}, | ||
1404 | {0x0256732a1115a03a, 0x0351bc38665c6733, 0x03f7b950fb4a6447, | ||
1405 | 0x000afffa94c22155, 0x025763d0a4dab540, 0x000511e92d4fc283, | ||
1406 | 0x030a7e9eda0ee96c, 0x004c3cd93a28bf0a, 0x017edb3a8719217f}, | ||
1407 | {1, 0, 0, 0, 0, 0, 0, 0, 0}}, | ||
1408 | {{0x011de5675a88e673, 0x031d7d0f5e567fbe, 0x0016b2062c970ae5, | ||
1409 | 0x03f4a2be49d90aa7, 0x03cef0bd13822866, 0x03f0923dcf774a6c, | ||
1410 | 0x0284bebc4f322f72, 0x016ab2645302bb2c, 0x01793f95dace0e2a}, | ||
1411 | {0x010646e13527a28f, 0x01ca1babd59dc5e7, 0x01afedfd9a5595df, | ||
1412 | 0x01f15785212ea6b1, 0x0324e5d64f6ae3f4, 0x02d680f526d00645, | ||
1413 | 0x0127920fadf627a7, 0x03b383f75df4f684, 0x0089e0057e783b0a}, | ||
1414 | {1, 0, 0, 0, 0, 0, 0, 0, 0}}, | ||
1415 | {{0x00f334b9eb3c26c6, 0x0298fdaa98568dce, 0x01c2d24843a82292, | ||
1416 | 0x020bcb24fa1b0711, 0x02cbdb3d2b1875e6, 0x0014907598f89422, | ||
1417 | 0x03abe3aa43b26664, 0x02cbf47f720bc168, 0x0133b5e73014b79b}, | ||
1418 | {0x034aab5dab05779d, 0x00cdc5d71fee9abb, 0x0399f16bd4bd9d30, | ||
1419 | 0x03582fa592d82647, 0x02be1cdfb775b0e9, 0x0034f7cea32e94cb, | ||
1420 | 0x0335a7f08f56f286, 0x03b707e9565d1c8b, 0x0015c946ea5b614f}, | ||
1421 | {1, 0, 0, 0, 0, 0, 0, 0, 0}}, | ||
1422 | {{0x024676f6cff72255, 0x00d14625cac96378, 0x00532b6008bc3767, | ||
1423 | 0x01fc16721b985322, 0x023355ea1b091668, 0x029de7afdc0317c3, | ||
1424 | 0x02fc8a7ca2da037c, 0x02de1217d74a6f30, 0x013f7173175b73bf}, | ||
1425 | {0x0344913f441490b5, 0x0200f9e272b61eca, 0x0258a246b1dd55d2, | ||
1426 | 0x03753db9ea496f36, 0x025e02937a09c5ef, 0x030cbd3d14012692, | ||
1427 | 0x01793a67e70dc72a, 0x03ec1d37048a662e, 0x006550f700c32a8d}, | ||
1428 | {1, 0, 0, 0, 0, 0, 0, 0, 0}}, | ||
1429 | {{0x00d3f48a347eba27, 0x008e636649b61bd8, 0x00d3b93716778fb3, | ||
1430 | 0x004d1915757bd209, 0x019d5311a3da44e0, 0x016d1afcbbe6aade, | ||
1431 | 0x0241bf5f73265616, 0x0384672e5d50d39b, 0x005009fee522b684}, | ||
1432 | {0x029b4fab064435fe, 0x018868ee095bbb07, 0x01ea3d6936cc92b8, | ||
1433 | 0x000608b00f78a2f3, 0x02db911073d1c20f, 0x018205938470100a, | ||
1434 | 0x01f1e4964cbe6ff2, 0x021a19a29eed4663, 0x01414485f42afa81}, | ||
1435 | {1, 0, 0, 0, 0, 0, 0, 0, 0}}, | ||
1436 | {{0x01612b3a17f63e34, 0x03813992885428e6, 0x022b3c215b5a9608, | ||
1437 | 0x029b4057e19f2fcb, 0x0384059a587af7e6, 0x02d6400ace6fe610, | ||
1438 | 0x029354d896e8e331, 0x00c047ee6dfba65e, 0x0037720542e9d49d}, | ||
1439 | {0x02ce9eed7c5e9278, 0x0374ed703e79643b, 0x01316c54c4072006, | ||
1440 | 0x005aaa09054b2ee8, 0x002824000c840d57, 0x03d4eba24771ed86, | ||
1441 | 0x0189c50aabc3bdae, 0x0338c01541e15510, 0x00466d56e38eed42}, | ||
1442 | {1, 0, 0, 0, 0, 0, 0, 0, 0}}, | ||
1443 | {{0x007efd8330ad8bd6, 0x02465ed48047710b, 0x0034c6606b215e0c, | ||
1444 | 0x016ae30c53cbf839, 0x01fa17bd37161216, 0x018ead4e61ce8ab9, | ||
1445 | 0x005482ed5f5dee46, 0x037543755bba1d7f, 0x005e5ac7e70a9d0f}, | ||
1446 | {0x0117e1bb2fdcb2a2, 0x03deea36249f40c4, 0x028d09b4a6246cb7, | ||
1447 | 0x03524b8855bcf756, 0x023d7d109d5ceb58, 0x0178e43e3223ef9c, | ||
1448 | 0x0154536a0c6e966a, 0x037964d1286ee9fe, 0x0199bcd90e125055}, | ||
1449 | {1, 0, 0, 0, 0, 0, 0, 0, 0}}}; | ||
1450 | |||
1451 | /* select_point selects the |idx|th point from a precomputation table and | ||
1452 | * copies it to out. */ | ||
1453 | static void | ||
1454 | select_point(const limb idx, unsigned int size, const felem pre_comp[ /* size */ ][3], | ||
1455 | felem out[3]) | ||
1456 | { | ||
1457 | unsigned i, j; | ||
1458 | limb *outlimbs = &out[0][0]; | ||
1459 | memset(outlimbs, 0, 3 * sizeof(felem)); | ||
1460 | |||
1461 | for (i = 0; i < size; i++) { | ||
1462 | const limb *inlimbs = &pre_comp[i][0][0]; | ||
1463 | limb mask = i ^ idx; | ||
1464 | mask |= mask >> 4; | ||
1465 | mask |= mask >> 2; | ||
1466 | mask |= mask >> 1; | ||
1467 | mask &= 1; | ||
1468 | mask--; | ||
1469 | for (j = 0; j < NLIMBS * 3; j++) | ||
1470 | outlimbs[j] |= inlimbs[j] & mask; | ||
1471 | } | ||
1472 | } | ||
1473 | |||
1474 | /* get_bit returns the |i|th bit in |in| */ | ||
1475 | static char | ||
1476 | get_bit(const felem_bytearray in, int i) | ||
1477 | { | ||
1478 | if (i < 0) | ||
1479 | return 0; | ||
1480 | return (in[i >> 3] >> (i & 7)) & 1; | ||
1481 | } | ||
1482 | |||
1483 | /* Interleaved point multiplication using precomputed point multiples: | ||
1484 | * The small point multiples 0*P, 1*P, ..., 16*P are in pre_comp[], | ||
1485 | * the scalars in scalars[]. If g_scalar is non-NULL, we also add this multiple | ||
1486 | * of the generator, using certain (large) precomputed multiples in g_pre_comp. | ||
1487 | * Output point (X, Y, Z) is stored in x_out, y_out, z_out */ | ||
1488 | static void | ||
1489 | batch_mul(felem x_out, felem y_out, felem z_out, | ||
1490 | const felem_bytearray scalars[], const unsigned num_points, const u8 *g_scalar, | ||
1491 | const int mixed, const felem pre_comp[][17][3], const felem g_pre_comp[16][3]) | ||
1492 | { | ||
1493 | int i, skip; | ||
1494 | unsigned num, gen_mul = (g_scalar != NULL); | ||
1495 | felem nq[3], tmp[4]; | ||
1496 | limb bits; | ||
1497 | u8 sign, digit; | ||
1498 | |||
1499 | /* set nq to the point at infinity */ | ||
1500 | memset(nq, 0, 3 * sizeof(felem)); | ||
1501 | |||
1502 | /* | ||
1503 | * Loop over all scalars msb-to-lsb, interleaving additions of | ||
1504 | * multiples of the generator (last quarter of rounds) and additions | ||
1505 | * of other points multiples (every 5th round). | ||
1506 | */ | ||
1507 | skip = 1; /* save two point operations in the first | ||
1508 | * round */ | ||
1509 | for (i = (num_points ? 520 : 130); i >= 0; --i) { | ||
1510 | /* double */ | ||
1511 | if (!skip) | ||
1512 | point_double(nq[0], nq[1], nq[2], nq[0], nq[1], nq[2]); | ||
1513 | |||
1514 | /* add multiples of the generator */ | ||
1515 | if (gen_mul && (i <= 130)) { | ||
1516 | bits = get_bit(g_scalar, i + 390) << 3; | ||
1517 | if (i < 130) { | ||
1518 | bits |= get_bit(g_scalar, i + 260) << 2; | ||
1519 | bits |= get_bit(g_scalar, i + 130) << 1; | ||
1520 | bits |= get_bit(g_scalar, i); | ||
1521 | } | ||
1522 | /* select the point to add, in constant time */ | ||
1523 | select_point(bits, 16, g_pre_comp, tmp); | ||
1524 | if (!skip) { | ||
1525 | point_add(nq[0], nq[1], nq[2], | ||
1526 | nq[0], nq[1], nq[2], | ||
1527 | 1 /* mixed */ , tmp[0], tmp[1], tmp[2]); | ||
1528 | } else { | ||
1529 | memcpy(nq, tmp, 3 * sizeof(felem)); | ||
1530 | skip = 0; | ||
1531 | } | ||
1532 | } | ||
1533 | /* do other additions every 5 doublings */ | ||
1534 | if (num_points && (i % 5 == 0)) { | ||
1535 | /* loop over all scalars */ | ||
1536 | for (num = 0; num < num_points; ++num) { | ||
1537 | bits = get_bit(scalars[num], i + 4) << 5; | ||
1538 | bits |= get_bit(scalars[num], i + 3) << 4; | ||
1539 | bits |= get_bit(scalars[num], i + 2) << 3; | ||
1540 | bits |= get_bit(scalars[num], i + 1) << 2; | ||
1541 | bits |= get_bit(scalars[num], i) << 1; | ||
1542 | bits |= get_bit(scalars[num], i - 1); | ||
1543 | ec_GFp_nistp_recode_scalar_bits(&sign, &digit, bits); | ||
1544 | |||
1545 | /* | ||
1546 | * select the point to add or subtract, in | ||
1547 | * constant time | ||
1548 | */ | ||
1549 | select_point(digit, 17, pre_comp[num], tmp); | ||
1550 | felem_neg(tmp[3], tmp[1]); /* (X, -Y, Z) is the | ||
1551 | * negative point */ | ||
1552 | copy_conditional(tmp[1], tmp[3], (-(limb) sign)); | ||
1553 | |||
1554 | if (!skip) { | ||
1555 | point_add(nq[0], nq[1], nq[2], | ||
1556 | nq[0], nq[1], nq[2], | ||
1557 | mixed, tmp[0], tmp[1], tmp[2]); | ||
1558 | } else { | ||
1559 | memcpy(nq, tmp, 3 * sizeof(felem)); | ||
1560 | skip = 0; | ||
1561 | } | ||
1562 | } | ||
1563 | } | ||
1564 | } | ||
1565 | felem_assign(x_out, nq[0]); | ||
1566 | felem_assign(y_out, nq[1]); | ||
1567 | felem_assign(z_out, nq[2]); | ||
1568 | } | ||
1569 | |||
1570 | |||
1571 | /* Precomputation for the group generator. */ | ||
1572 | typedef struct { | ||
1573 | felem g_pre_comp[16][3]; | ||
1574 | int references; | ||
1575 | } NISTP521_PRE_COMP; | ||
1576 | |||
1577 | const EC_METHOD * | ||
1578 | EC_GFp_nistp521_method(void) | ||
1579 | { | ||
1580 | static const EC_METHOD ret = { | ||
1581 | .flags = EC_FLAGS_DEFAULT_OCT, | ||
1582 | .field_type = NID_X9_62_prime_field, | ||
1583 | .group_init = ec_GFp_nistp521_group_init, | ||
1584 | .group_finish = ec_GFp_simple_group_finish, | ||
1585 | .group_clear_finish = ec_GFp_simple_group_clear_finish, | ||
1586 | .group_copy = ec_GFp_nist_group_copy, | ||
1587 | .group_set_curve = ec_GFp_nistp521_group_set_curve, | ||
1588 | .group_get_curve = ec_GFp_simple_group_get_curve, | ||
1589 | .group_get_degree = ec_GFp_simple_group_get_degree, | ||
1590 | .group_order_bits = ec_group_simple_order_bits, | ||
1591 | .group_check_discriminant = | ||
1592 | ec_GFp_simple_group_check_discriminant, | ||
1593 | .point_init = ec_GFp_simple_point_init, | ||
1594 | .point_finish = ec_GFp_simple_point_finish, | ||
1595 | .point_clear_finish = ec_GFp_simple_point_clear_finish, | ||
1596 | .point_copy = ec_GFp_simple_point_copy, | ||
1597 | .point_set_to_infinity = ec_GFp_simple_point_set_to_infinity, | ||
1598 | .point_set_Jprojective_coordinates = | ||
1599 | ec_GFp_simple_set_Jprojective_coordinates, | ||
1600 | .point_get_Jprojective_coordinates = | ||
1601 | ec_GFp_simple_get_Jprojective_coordinates, | ||
1602 | .point_set_affine_coordinates = | ||
1603 | ec_GFp_simple_point_set_affine_coordinates, | ||
1604 | .point_get_affine_coordinates = | ||
1605 | ec_GFp_nistp521_point_get_affine_coordinates, | ||
1606 | .add = ec_GFp_simple_add, | ||
1607 | .dbl = ec_GFp_simple_dbl, | ||
1608 | .invert = ec_GFp_simple_invert, | ||
1609 | .is_at_infinity = ec_GFp_simple_is_at_infinity, | ||
1610 | .is_on_curve = ec_GFp_simple_is_on_curve, | ||
1611 | .point_cmp = ec_GFp_simple_cmp, | ||
1612 | .make_affine = ec_GFp_simple_make_affine, | ||
1613 | .points_make_affine = ec_GFp_simple_points_make_affine, | ||
1614 | .mul = ec_GFp_nistp521_points_mul, | ||
1615 | .precompute_mult = ec_GFp_nistp521_precompute_mult, | ||
1616 | .have_precompute_mult = ec_GFp_nistp521_have_precompute_mult, | ||
1617 | .field_mul = ec_GFp_nist_field_mul, | ||
1618 | .field_sqr = ec_GFp_nist_field_sqr, | ||
1619 | .blind_coordinates = NULL, | ||
1620 | }; | ||
1621 | |||
1622 | return &ret; | ||
1623 | } | ||
1624 | |||
1625 | |||
1626 | /******************************************************************************/ | ||
1627 | /* FUNCTIONS TO MANAGE PRECOMPUTATION | ||
1628 | */ | ||
1629 | |||
1630 | static NISTP521_PRE_COMP * | ||
1631 | nistp521_pre_comp_new() | ||
1632 | { | ||
1633 | NISTP521_PRE_COMP *ret = NULL; | ||
1634 | ret = malloc(sizeof(NISTP521_PRE_COMP)); | ||
1635 | if (!ret) { | ||
1636 | ECerror(ERR_R_MALLOC_FAILURE); | ||
1637 | return ret; | ||
1638 | } | ||
1639 | memset(ret->g_pre_comp, 0, sizeof(ret->g_pre_comp)); | ||
1640 | ret->references = 1; | ||
1641 | return ret; | ||
1642 | } | ||
1643 | |||
1644 | static void * | ||
1645 | nistp521_pre_comp_dup(void *src_) | ||
1646 | { | ||
1647 | NISTP521_PRE_COMP *src = src_; | ||
1648 | |||
1649 | /* no need to actually copy, these objects never change! */ | ||
1650 | CRYPTO_add(&src->references, 1, CRYPTO_LOCK_EC_PRE_COMP); | ||
1651 | |||
1652 | return src_; | ||
1653 | } | ||
1654 | |||
1655 | static void | ||
1656 | nistp521_pre_comp_free(void *pre_) | ||
1657 | { | ||
1658 | int i; | ||
1659 | NISTP521_PRE_COMP *pre = pre_; | ||
1660 | |||
1661 | if (!pre) | ||
1662 | return; | ||
1663 | |||
1664 | i = CRYPTO_add(&pre->references, -1, CRYPTO_LOCK_EC_PRE_COMP); | ||
1665 | if (i > 0) | ||
1666 | return; | ||
1667 | |||
1668 | free(pre); | ||
1669 | } | ||
1670 | |||
1671 | static void | ||
1672 | nistp521_pre_comp_clear_free(void *pre_) | ||
1673 | { | ||
1674 | int i; | ||
1675 | NISTP521_PRE_COMP *pre = pre_; | ||
1676 | |||
1677 | if (!pre) | ||
1678 | return; | ||
1679 | |||
1680 | i = CRYPTO_add(&pre->references, -1, CRYPTO_LOCK_EC_PRE_COMP); | ||
1681 | if (i > 0) | ||
1682 | return; | ||
1683 | |||
1684 | freezero(pre, sizeof(*pre)); | ||
1685 | } | ||
1686 | |||
1687 | /******************************************************************************/ | ||
1688 | /* OPENSSL EC_METHOD FUNCTIONS | ||
1689 | */ | ||
1690 | |||
1691 | int | ||
1692 | ec_GFp_nistp521_group_init(EC_GROUP *group) | ||
1693 | { | ||
1694 | int ret; | ||
1695 | ret = ec_GFp_simple_group_init(group); | ||
1696 | group->a_is_minus3 = 1; | ||
1697 | return ret; | ||
1698 | } | ||
1699 | |||
1700 | int | ||
1701 | ec_GFp_nistp521_group_set_curve(EC_GROUP *group, const BIGNUM *p, | ||
1702 | const BIGNUM *a, const BIGNUM *b, BN_CTX *ctx) | ||
1703 | { | ||
1704 | int ret = 0; | ||
1705 | BN_CTX *new_ctx = NULL; | ||
1706 | BIGNUM *curve_p, *curve_a, *curve_b; | ||
1707 | |||
1708 | if (ctx == NULL) | ||
1709 | if ((ctx = new_ctx = BN_CTX_new()) == NULL) | ||
1710 | return 0; | ||
1711 | BN_CTX_start(ctx); | ||
1712 | if (((curve_p = BN_CTX_get(ctx)) == NULL) || | ||
1713 | ((curve_a = BN_CTX_get(ctx)) == NULL) || | ||
1714 | ((curve_b = BN_CTX_get(ctx)) == NULL)) | ||
1715 | goto err; | ||
1716 | BN_bin2bn(nistp521_curve_params[0], sizeof(felem_bytearray), curve_p); | ||
1717 | BN_bin2bn(nistp521_curve_params[1], sizeof(felem_bytearray), curve_a); | ||
1718 | BN_bin2bn(nistp521_curve_params[2], sizeof(felem_bytearray), curve_b); | ||
1719 | if ((BN_cmp(curve_p, p)) || (BN_cmp(curve_a, a)) || | ||
1720 | (BN_cmp(curve_b, b))) { | ||
1721 | ECerror(EC_R_WRONG_CURVE_PARAMETERS); | ||
1722 | goto err; | ||
1723 | } | ||
1724 | group->field_mod_func = BN_nist_mod_521; | ||
1725 | ret = ec_GFp_simple_group_set_curve(group, p, a, b, ctx); | ||
1726 | err: | ||
1727 | BN_CTX_end(ctx); | ||
1728 | BN_CTX_free(new_ctx); | ||
1729 | return ret; | ||
1730 | } | ||
1731 | |||
1732 | /* Takes the Jacobian coordinates (X, Y, Z) of a point and returns | ||
1733 | * (X', Y') = (X/Z^2, Y/Z^3) */ | ||
1734 | int | ||
1735 | ec_GFp_nistp521_point_get_affine_coordinates(const EC_GROUP *group, | ||
1736 | const EC_POINT *point, BIGNUM *x, BIGNUM *y, BN_CTX *ctx) | ||
1737 | { | ||
1738 | felem z1, z2, x_in, y_in, x_out, y_out; | ||
1739 | largefelem tmp; | ||
1740 | |||
1741 | if (EC_POINT_is_at_infinity(group, point) > 0) { | ||
1742 | ECerror(EC_R_POINT_AT_INFINITY); | ||
1743 | return 0; | ||
1744 | } | ||
1745 | if ((!BN_to_felem(x_in, &point->X)) || (!BN_to_felem(y_in, &point->Y)) || | ||
1746 | (!BN_to_felem(z1, &point->Z))) | ||
1747 | return 0; | ||
1748 | felem_inv(z2, z1); | ||
1749 | felem_square(tmp, z2); | ||
1750 | felem_reduce(z1, tmp); | ||
1751 | felem_mul(tmp, x_in, z1); | ||
1752 | felem_reduce(x_in, tmp); | ||
1753 | felem_contract(x_out, x_in); | ||
1754 | if (x != NULL) { | ||
1755 | if (!felem_to_BN(x, x_out)) { | ||
1756 | ECerror(ERR_R_BN_LIB); | ||
1757 | return 0; | ||
1758 | } | ||
1759 | } | ||
1760 | felem_mul(tmp, z1, z2); | ||
1761 | felem_reduce(z1, tmp); | ||
1762 | felem_mul(tmp, y_in, z1); | ||
1763 | felem_reduce(y_in, tmp); | ||
1764 | felem_contract(y_out, y_in); | ||
1765 | if (y != NULL) { | ||
1766 | if (!felem_to_BN(y, y_out)) { | ||
1767 | ECerror(ERR_R_BN_LIB); | ||
1768 | return 0; | ||
1769 | } | ||
1770 | } | ||
1771 | return 1; | ||
1772 | } | ||
1773 | |||
1774 | static void | ||
1775 | make_points_affine(size_t num, felem points[ /* num */ ][3], felem tmp_felems[ /* num+1 */ ]) | ||
1776 | { | ||
1777 | /* | ||
1778 | * Runs in constant time, unless an input is the point at infinity | ||
1779 | * (which normally shouldn't happen). | ||
1780 | */ | ||
1781 | ec_GFp_nistp_points_make_affine_internal( | ||
1782 | num, | ||
1783 | points, | ||
1784 | sizeof(felem), | ||
1785 | tmp_felems, | ||
1786 | (void (*) (void *)) felem_one, | ||
1787 | (int (*) (const void *)) felem_is_zero_int, | ||
1788 | (void (*) (void *, const void *)) felem_assign, | ||
1789 | (void (*) (void *, const void *)) felem_square_reduce, | ||
1790 | (void (*) (void *, const void *, const void *)) felem_mul_reduce, | ||
1791 | (void (*) (void *, const void *)) felem_inv, | ||
1792 | (void (*) (void *, const void *)) felem_contract); | ||
1793 | } | ||
1794 | |||
1795 | /* Computes scalar*generator + \sum scalars[i]*points[i], ignoring NULL values | ||
1796 | * Result is stored in r (r can equal one of the inputs). */ | ||
1797 | int | ||
1798 | ec_GFp_nistp521_points_mul(const EC_GROUP *group, EC_POINT *r, | ||
1799 | const BIGNUM *scalar, size_t num, const EC_POINT *points[], | ||
1800 | const BIGNUM *scalars[], BN_CTX *ctx) | ||
1801 | { | ||
1802 | int ret = 0; | ||
1803 | int j; | ||
1804 | int mixed = 0; | ||
1805 | BN_CTX *new_ctx = NULL; | ||
1806 | BIGNUM *x, *y, *z, *tmp_scalar; | ||
1807 | felem_bytearray g_secret; | ||
1808 | felem_bytearray *secrets = NULL; | ||
1809 | felem(*pre_comp)[17][3] = NULL; | ||
1810 | felem *tmp_felems = NULL; | ||
1811 | felem_bytearray tmp; | ||
1812 | unsigned i, num_bytes; | ||
1813 | int have_pre_comp = 0; | ||
1814 | size_t num_points = num; | ||
1815 | felem x_in, y_in, z_in, x_out, y_out, z_out; | ||
1816 | NISTP521_PRE_COMP *pre = NULL; | ||
1817 | felem(*g_pre_comp)[3] = NULL; | ||
1818 | EC_POINT *generator = NULL; | ||
1819 | const EC_POINT *p = NULL; | ||
1820 | const BIGNUM *p_scalar = NULL; | ||
1821 | |||
1822 | if (ctx == NULL) | ||
1823 | if ((ctx = new_ctx = BN_CTX_new()) == NULL) | ||
1824 | return 0; | ||
1825 | BN_CTX_start(ctx); | ||
1826 | if (((x = BN_CTX_get(ctx)) == NULL) || | ||
1827 | ((y = BN_CTX_get(ctx)) == NULL) || | ||
1828 | ((z = BN_CTX_get(ctx)) == NULL) || | ||
1829 | ((tmp_scalar = BN_CTX_get(ctx)) == NULL)) | ||
1830 | goto err; | ||
1831 | |||
1832 | if (scalar != NULL) { | ||
1833 | pre = EC_EX_DATA_get_data(group->extra_data, | ||
1834 | nistp521_pre_comp_dup, nistp521_pre_comp_free, | ||
1835 | nistp521_pre_comp_clear_free); | ||
1836 | if (pre) | ||
1837 | /* we have precomputation, try to use it */ | ||
1838 | g_pre_comp = &pre->g_pre_comp[0]; | ||
1839 | else | ||
1840 | /* try to use the standard precomputation */ | ||
1841 | g_pre_comp = (felem(*)[3]) gmul; | ||
1842 | generator = EC_POINT_new(group); | ||
1843 | if (generator == NULL) | ||
1844 | goto err; | ||
1845 | /* get the generator from precomputation */ | ||
1846 | if (!felem_to_BN(x, g_pre_comp[1][0]) || | ||
1847 | !felem_to_BN(y, g_pre_comp[1][1]) || | ||
1848 | !felem_to_BN(z, g_pre_comp[1][2])) { | ||
1849 | ECerror(ERR_R_BN_LIB); | ||
1850 | goto err; | ||
1851 | } | ||
1852 | if (!EC_POINT_set_Jprojective_coordinates(group, generator, | ||
1853 | x, y, z, ctx)) | ||
1854 | goto err; | ||
1855 | if (0 == EC_POINT_cmp(group, generator, group->generator, ctx)) | ||
1856 | /* precomputation matches generator */ | ||
1857 | have_pre_comp = 1; | ||
1858 | else | ||
1859 | /* | ||
1860 | * we don't have valid precomputation: treat the | ||
1861 | * generator as a random point | ||
1862 | */ | ||
1863 | num_points++; | ||
1864 | } | ||
1865 | if (num_points > 0) { | ||
1866 | if (num_points >= 2) { | ||
1867 | /* | ||
1868 | * unless we precompute multiples for just one point, | ||
1869 | * converting those into affine form is time well | ||
1870 | * spent | ||
1871 | */ | ||
1872 | mixed = 1; | ||
1873 | } | ||
1874 | secrets = calloc(num_points, sizeof(felem_bytearray)); | ||
1875 | pre_comp = calloc(num_points, 17 * 3 * sizeof(felem)); | ||
1876 | if (mixed) { | ||
1877 | /* XXX should do more int overflow checking */ | ||
1878 | tmp_felems = reallocarray(NULL, | ||
1879 | (num_points * 17 + 1), sizeof(felem)); | ||
1880 | } | ||
1881 | if ((secrets == NULL) || (pre_comp == NULL) || (mixed && (tmp_felems == NULL))) { | ||
1882 | ECerror(ERR_R_MALLOC_FAILURE); | ||
1883 | goto err; | ||
1884 | } | ||
1885 | /* | ||
1886 | * we treat NULL scalars as 0, and NULL points as points at | ||
1887 | * infinity, i.e., they contribute nothing to the linear | ||
1888 | * combination | ||
1889 | */ | ||
1890 | for (i = 0; i < num_points; ++i) { | ||
1891 | if (i == num) | ||
1892 | /* | ||
1893 | * we didn't have a valid precomputation, so | ||
1894 | * we pick the generator | ||
1895 | */ | ||
1896 | { | ||
1897 | p = EC_GROUP_get0_generator(group); | ||
1898 | p_scalar = scalar; | ||
1899 | } else | ||
1900 | /* the i^th point */ | ||
1901 | { | ||
1902 | p = points[i]; | ||
1903 | p_scalar = scalars[i]; | ||
1904 | } | ||
1905 | if ((p_scalar != NULL) && (p != NULL)) { | ||
1906 | /* reduce scalar to 0 <= scalar < 2^521 */ | ||
1907 | if ((BN_num_bits(p_scalar) > 521) || (BN_is_negative(p_scalar))) { | ||
1908 | /* | ||
1909 | * this is an unusual input, and we | ||
1910 | * don't guarantee constant-timeness | ||
1911 | */ | ||
1912 | if (!BN_nnmod(tmp_scalar, p_scalar, &group->order, ctx)) { | ||
1913 | ECerror(ERR_R_BN_LIB); | ||
1914 | goto err; | ||
1915 | } | ||
1916 | num_bytes = BN_bn2bin(tmp_scalar, tmp); | ||
1917 | } else | ||
1918 | num_bytes = BN_bn2bin(p_scalar, tmp); | ||
1919 | flip_endian(secrets[i], tmp, num_bytes); | ||
1920 | /* precompute multiples */ | ||
1921 | if ((!BN_to_felem(x_out, &p->X)) || | ||
1922 | (!BN_to_felem(y_out, &p->Y)) || | ||
1923 | (!BN_to_felem(z_out, &p->Z))) | ||
1924 | goto err; | ||
1925 | memcpy(pre_comp[i][1][0], x_out, sizeof(felem)); | ||
1926 | memcpy(pre_comp[i][1][1], y_out, sizeof(felem)); | ||
1927 | memcpy(pre_comp[i][1][2], z_out, sizeof(felem)); | ||
1928 | for (j = 2; j <= 16; ++j) { | ||
1929 | if (j & 1) { | ||
1930 | point_add( | ||
1931 | pre_comp[i][j][0], pre_comp[i][j][1], pre_comp[i][j][2], | ||
1932 | pre_comp[i][1][0], pre_comp[i][1][1], pre_comp[i][1][2], | ||
1933 | 0, pre_comp[i][j - 1][0], pre_comp[i][j - 1][1], pre_comp[i][j - 1][2]); | ||
1934 | } else { | ||
1935 | point_double( | ||
1936 | pre_comp[i][j][0], pre_comp[i][j][1], pre_comp[i][j][2], | ||
1937 | pre_comp[i][j / 2][0], pre_comp[i][j / 2][1], pre_comp[i][j / 2][2]); | ||
1938 | } | ||
1939 | } | ||
1940 | } | ||
1941 | } | ||
1942 | if (mixed) | ||
1943 | make_points_affine(num_points * 17, pre_comp[0], tmp_felems); | ||
1944 | } | ||
1945 | /* the scalar for the generator */ | ||
1946 | if ((scalar != NULL) && (have_pre_comp)) { | ||
1947 | memset(g_secret, 0, sizeof(g_secret)); | ||
1948 | /* reduce scalar to 0 <= scalar < 2^521 */ | ||
1949 | if ((BN_num_bits(scalar) > 521) || (BN_is_negative(scalar))) { | ||
1950 | /* | ||
1951 | * this is an unusual input, and we don't guarantee | ||
1952 | * constant-timeness | ||
1953 | */ | ||
1954 | if (!BN_nnmod(tmp_scalar, scalar, &group->order, ctx)) { | ||
1955 | ECerror(ERR_R_BN_LIB); | ||
1956 | goto err; | ||
1957 | } | ||
1958 | num_bytes = BN_bn2bin(tmp_scalar, tmp); | ||
1959 | } else | ||
1960 | num_bytes = BN_bn2bin(scalar, tmp); | ||
1961 | flip_endian(g_secret, tmp, num_bytes); | ||
1962 | /* do the multiplication with generator precomputation */ | ||
1963 | batch_mul(x_out, y_out, z_out, | ||
1964 | (const felem_bytearray(*)) secrets, num_points, | ||
1965 | g_secret, | ||
1966 | mixed, (const felem(*)[17][3]) pre_comp, | ||
1967 | (const felem(*)[3]) g_pre_comp); | ||
1968 | } else | ||
1969 | /* do the multiplication without generator precomputation */ | ||
1970 | batch_mul(x_out, y_out, z_out, | ||
1971 | (const felem_bytearray(*)) secrets, num_points, | ||
1972 | NULL, mixed, (const felem(*)[17][3]) pre_comp, NULL); | ||
1973 | /* reduce the output to its unique minimal representation */ | ||
1974 | felem_contract(x_in, x_out); | ||
1975 | felem_contract(y_in, y_out); | ||
1976 | felem_contract(z_in, z_out); | ||
1977 | if ((!felem_to_BN(x, x_in)) || (!felem_to_BN(y, y_in)) || | ||
1978 | (!felem_to_BN(z, z_in))) { | ||
1979 | ECerror(ERR_R_BN_LIB); | ||
1980 | goto err; | ||
1981 | } | ||
1982 | ret = EC_POINT_set_Jprojective_coordinates(group, r, x, y, z, ctx); | ||
1983 | |||
1984 | err: | ||
1985 | BN_CTX_end(ctx); | ||
1986 | EC_POINT_free(generator); | ||
1987 | BN_CTX_free(new_ctx); | ||
1988 | free(secrets); | ||
1989 | free(pre_comp); | ||
1990 | free(tmp_felems); | ||
1991 | return ret; | ||
1992 | } | ||
1993 | |||
1994 | int | ||
1995 | ec_GFp_nistp521_precompute_mult(EC_GROUP *group, BN_CTX *ctx) | ||
1996 | { | ||
1997 | int ret = 0; | ||
1998 | NISTP521_PRE_COMP *pre = NULL; | ||
1999 | int i, j; | ||
2000 | BN_CTX *new_ctx = NULL; | ||
2001 | BIGNUM *x, *y; | ||
2002 | EC_POINT *generator = NULL; | ||
2003 | felem tmp_felems[16]; | ||
2004 | |||
2005 | /* throw away old precomputation */ | ||
2006 | EC_EX_DATA_free_data(&group->extra_data, nistp521_pre_comp_dup, | ||
2007 | nistp521_pre_comp_free, nistp521_pre_comp_clear_free); | ||
2008 | if (ctx == NULL) | ||
2009 | if ((ctx = new_ctx = BN_CTX_new()) == NULL) | ||
2010 | return 0; | ||
2011 | BN_CTX_start(ctx); | ||
2012 | if (((x = BN_CTX_get(ctx)) == NULL) || | ||
2013 | ((y = BN_CTX_get(ctx)) == NULL)) | ||
2014 | goto err; | ||
2015 | /* get the generator */ | ||
2016 | if (group->generator == NULL) | ||
2017 | goto err; | ||
2018 | generator = EC_POINT_new(group); | ||
2019 | if (generator == NULL) | ||
2020 | goto err; | ||
2021 | BN_bin2bn(nistp521_curve_params[3], sizeof(felem_bytearray), x); | ||
2022 | BN_bin2bn(nistp521_curve_params[4], sizeof(felem_bytearray), y); | ||
2023 | if (!EC_POINT_set_affine_coordinates(group, generator, x, y, ctx)) | ||
2024 | goto err; | ||
2025 | if ((pre = nistp521_pre_comp_new()) == NULL) | ||
2026 | goto err; | ||
2027 | /* if the generator is the standard one, use built-in precomputation */ | ||
2028 | if (0 == EC_POINT_cmp(group, generator, group->generator, ctx)) { | ||
2029 | memcpy(pre->g_pre_comp, gmul, sizeof(pre->g_pre_comp)); | ||
2030 | ret = 1; | ||
2031 | goto err; | ||
2032 | } | ||
2033 | if ((!BN_to_felem(pre->g_pre_comp[1][0], &group->generator->X)) || | ||
2034 | (!BN_to_felem(pre->g_pre_comp[1][1], &group->generator->Y)) || | ||
2035 | (!BN_to_felem(pre->g_pre_comp[1][2], &group->generator->Z))) | ||
2036 | goto err; | ||
2037 | /* compute 2^130*G, 2^260*G, 2^390*G */ | ||
2038 | for (i = 1; i <= 4; i <<= 1) { | ||
2039 | point_double(pre->g_pre_comp[2 * i][0], pre->g_pre_comp[2 * i][1], | ||
2040 | pre->g_pre_comp[2 * i][2], pre->g_pre_comp[i][0], | ||
2041 | pre->g_pre_comp[i][1], pre->g_pre_comp[i][2]); | ||
2042 | for (j = 0; j < 129; ++j) { | ||
2043 | point_double(pre->g_pre_comp[2 * i][0], | ||
2044 | pre->g_pre_comp[2 * i][1], | ||
2045 | pre->g_pre_comp[2 * i][2], | ||
2046 | pre->g_pre_comp[2 * i][0], | ||
2047 | pre->g_pre_comp[2 * i][1], | ||
2048 | pre->g_pre_comp[2 * i][2]); | ||
2049 | } | ||
2050 | } | ||
2051 | /* g_pre_comp[0] is the point at infinity */ | ||
2052 | memset(pre->g_pre_comp[0], 0, sizeof(pre->g_pre_comp[0])); | ||
2053 | /* the remaining multiples */ | ||
2054 | /* 2^130*G + 2^260*G */ | ||
2055 | point_add(pre->g_pre_comp[6][0], pre->g_pre_comp[6][1], | ||
2056 | pre->g_pre_comp[6][2], pre->g_pre_comp[4][0], | ||
2057 | pre->g_pre_comp[4][1], pre->g_pre_comp[4][2], | ||
2058 | 0, pre->g_pre_comp[2][0], pre->g_pre_comp[2][1], | ||
2059 | pre->g_pre_comp[2][2]); | ||
2060 | /* 2^130*G + 2^390*G */ | ||
2061 | point_add(pre->g_pre_comp[10][0], pre->g_pre_comp[10][1], | ||
2062 | pre->g_pre_comp[10][2], pre->g_pre_comp[8][0], | ||
2063 | pre->g_pre_comp[8][1], pre->g_pre_comp[8][2], | ||
2064 | 0, pre->g_pre_comp[2][0], pre->g_pre_comp[2][1], | ||
2065 | pre->g_pre_comp[2][2]); | ||
2066 | /* 2^260*G + 2^390*G */ | ||
2067 | point_add(pre->g_pre_comp[12][0], pre->g_pre_comp[12][1], | ||
2068 | pre->g_pre_comp[12][2], pre->g_pre_comp[8][0], | ||
2069 | pre->g_pre_comp[8][1], pre->g_pre_comp[8][2], | ||
2070 | 0, pre->g_pre_comp[4][0], pre->g_pre_comp[4][1], | ||
2071 | pre->g_pre_comp[4][2]); | ||
2072 | /* 2^130*G + 2^260*G + 2^390*G */ | ||
2073 | point_add(pre->g_pre_comp[14][0], pre->g_pre_comp[14][1], | ||
2074 | pre->g_pre_comp[14][2], pre->g_pre_comp[12][0], | ||
2075 | pre->g_pre_comp[12][1], pre->g_pre_comp[12][2], | ||
2076 | 0, pre->g_pre_comp[2][0], pre->g_pre_comp[2][1], | ||
2077 | pre->g_pre_comp[2][2]); | ||
2078 | for (i = 1; i < 8; ++i) { | ||
2079 | /* odd multiples: add G */ | ||
2080 | point_add(pre->g_pre_comp[2 * i + 1][0], pre->g_pre_comp[2 * i + 1][1], | ||
2081 | pre->g_pre_comp[2 * i + 1][2], pre->g_pre_comp[2 * i][0], | ||
2082 | pre->g_pre_comp[2 * i][1], pre->g_pre_comp[2 * i][2], | ||
2083 | 0, pre->g_pre_comp[1][0], pre->g_pre_comp[1][1], | ||
2084 | pre->g_pre_comp[1][2]); | ||
2085 | } | ||
2086 | make_points_affine(15, &(pre->g_pre_comp[1]), tmp_felems); | ||
2087 | |||
2088 | if (!EC_EX_DATA_set_data(&group->extra_data, pre, nistp521_pre_comp_dup, | ||
2089 | nistp521_pre_comp_free, nistp521_pre_comp_clear_free)) | ||
2090 | goto err; | ||
2091 | ret = 1; | ||
2092 | pre = NULL; | ||
2093 | err: | ||
2094 | BN_CTX_end(ctx); | ||
2095 | EC_POINT_free(generator); | ||
2096 | BN_CTX_free(new_ctx); | ||
2097 | nistp521_pre_comp_free(pre); | ||
2098 | return ret; | ||
2099 | } | ||
2100 | |||
2101 | int | ||
2102 | ec_GFp_nistp521_have_precompute_mult(const EC_GROUP *group) | ||
2103 | { | ||
2104 | if (EC_EX_DATA_get_data(group->extra_data, nistp521_pre_comp_dup, | ||
2105 | nistp521_pre_comp_free, nistp521_pre_comp_clear_free) | ||
2106 | != NULL) | ||
2107 | return 1; | ||
2108 | else | ||
2109 | return 0; | ||
2110 | } | ||
2111 | |||
2112 | #endif | ||