diff options
Diffstat (limited to 'src/lib/libcrypto/ec/ecp_smpl.c')
| -rw-r--r-- | src/lib/libcrypto/ec/ecp_smpl.c | 1717 |
1 files changed, 1717 insertions, 0 deletions
diff --git a/src/lib/libcrypto/ec/ecp_smpl.c b/src/lib/libcrypto/ec/ecp_smpl.c new file mode 100644 index 0000000000..e9a51fb87a --- /dev/null +++ b/src/lib/libcrypto/ec/ecp_smpl.c | |||
| @@ -0,0 +1,1717 @@ | |||
| 1 | /* crypto/ec/ecp_smpl.c */ | ||
| 2 | /* Includes code written by Lenka Fibikova <fibikova@exp-math.uni-essen.de> | ||
| 3 | * for the OpenSSL project. */ | ||
| 4 | /* ==================================================================== | ||
| 5 | * Copyright (c) 1998-2001 The OpenSSL Project. All rights reserved. | ||
| 6 | * | ||
| 7 | * Redistribution and use in source and binary forms, with or without | ||
| 8 | * modification, are permitted provided that the following conditions | ||
| 9 | * are met: | ||
| 10 | * | ||
| 11 | * 1. Redistributions of source code must retain the above copyright | ||
| 12 | * notice, this list of conditions and the following disclaimer. | ||
| 13 | * | ||
| 14 | * 2. Redistributions in binary form must reproduce the above copyright | ||
| 15 | * notice, this list of conditions and the following disclaimer in | ||
| 16 | * the documentation and/or other materials provided with the | ||
| 17 | * distribution. | ||
| 18 | * | ||
| 19 | * 3. All advertising materials mentioning features or use of this | ||
| 20 | * software must display the following acknowledgment: | ||
| 21 | * "This product includes software developed by the OpenSSL Project | ||
| 22 | * for use in the OpenSSL Toolkit. (http://www.openssl.org/)" | ||
| 23 | * | ||
| 24 | * 4. The names "OpenSSL Toolkit" and "OpenSSL Project" must not be used to | ||
| 25 | * endorse or promote products derived from this software without | ||
| 26 | * prior written permission. For written permission, please contact | ||
| 27 | * openssl-core@openssl.org. | ||
| 28 | * | ||
| 29 | * 5. Products derived from this software may not be called "OpenSSL" | ||
| 30 | * nor may "OpenSSL" appear in their names without prior written | ||
| 31 | * permission of the OpenSSL Project. | ||
| 32 | * | ||
| 33 | * 6. Redistributions of any form whatsoever must retain the following | ||
| 34 | * acknowledgment: | ||
| 35 | * "This product includes software developed by the OpenSSL Project | ||
| 36 | * for use in the OpenSSL Toolkit (http://www.openssl.org/)" | ||
| 37 | * | ||
| 38 | * THIS SOFTWARE IS PROVIDED BY THE OpenSSL PROJECT ``AS IS'' AND ANY | ||
| 39 | * EXPRESSED OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE | ||
| 40 | * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR | ||
| 41 | * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE OpenSSL PROJECT OR | ||
| 42 | * ITS CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, | ||
| 43 | * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT | ||
| 44 | * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; | ||
| 45 | * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) | ||
| 46 | * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, | ||
| 47 | * STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) | ||
| 48 | * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED | ||
| 49 | * OF THE POSSIBILITY OF SUCH DAMAGE. | ||
| 50 | * ==================================================================== | ||
| 51 | * | ||
| 52 | * This product includes cryptographic software written by Eric Young | ||
| 53 | * (eay@cryptsoft.com). This product includes software written by Tim | ||
| 54 | * Hudson (tjh@cryptsoft.com). | ||
| 55 | * | ||
| 56 | */ | ||
| 57 | |||
| 58 | #include <openssl/err.h> | ||
| 59 | |||
| 60 | #include "ec_lcl.h" | ||
| 61 | |||
| 62 | |||
| 63 | const EC_METHOD *EC_GFp_simple_method(void) | ||
| 64 | { | ||
| 65 | static const EC_METHOD ret = { | ||
| 66 | ec_GFp_simple_group_init, | ||
| 67 | ec_GFp_simple_group_finish, | ||
| 68 | ec_GFp_simple_group_clear_finish, | ||
| 69 | ec_GFp_simple_group_copy, | ||
| 70 | ec_GFp_simple_group_set_curve_GFp, | ||
| 71 | ec_GFp_simple_group_get_curve_GFp, | ||
| 72 | ec_GFp_simple_group_set_generator, | ||
| 73 | ec_GFp_simple_group_get0_generator, | ||
| 74 | ec_GFp_simple_group_get_order, | ||
| 75 | ec_GFp_simple_group_get_cofactor, | ||
| 76 | ec_GFp_simple_point_init, | ||
| 77 | ec_GFp_simple_point_finish, | ||
| 78 | ec_GFp_simple_point_clear_finish, | ||
| 79 | ec_GFp_simple_point_copy, | ||
| 80 | ec_GFp_simple_point_set_to_infinity, | ||
| 81 | ec_GFp_simple_set_Jprojective_coordinates_GFp, | ||
| 82 | ec_GFp_simple_get_Jprojective_coordinates_GFp, | ||
| 83 | ec_GFp_simple_point_set_affine_coordinates_GFp, | ||
| 84 | ec_GFp_simple_point_get_affine_coordinates_GFp, | ||
| 85 | ec_GFp_simple_set_compressed_coordinates_GFp, | ||
| 86 | ec_GFp_simple_point2oct, | ||
| 87 | ec_GFp_simple_oct2point, | ||
| 88 | ec_GFp_simple_add, | ||
| 89 | ec_GFp_simple_dbl, | ||
| 90 | ec_GFp_simple_invert, | ||
| 91 | ec_GFp_simple_is_at_infinity, | ||
| 92 | ec_GFp_simple_is_on_curve, | ||
| 93 | ec_GFp_simple_cmp, | ||
| 94 | ec_GFp_simple_make_affine, | ||
| 95 | ec_GFp_simple_points_make_affine, | ||
| 96 | ec_GFp_simple_field_mul, | ||
| 97 | ec_GFp_simple_field_sqr, | ||
| 98 | 0 /* field_encode */, | ||
| 99 | 0 /* field_decode */, | ||
| 100 | 0 /* field_set_to_one */ }; | ||
| 101 | |||
| 102 | return &ret; | ||
| 103 | } | ||
| 104 | |||
| 105 | |||
| 106 | int ec_GFp_simple_group_init(EC_GROUP *group) | ||
| 107 | { | ||
| 108 | BN_init(&group->field); | ||
| 109 | BN_init(&group->a); | ||
| 110 | BN_init(&group->b); | ||
| 111 | group->a_is_minus3 = 0; | ||
| 112 | group->generator = NULL; | ||
| 113 | BN_init(&group->order); | ||
| 114 | BN_init(&group->cofactor); | ||
| 115 | return 1; | ||
| 116 | } | ||
| 117 | |||
| 118 | |||
| 119 | void ec_GFp_simple_group_finish(EC_GROUP *group) | ||
| 120 | { | ||
| 121 | BN_free(&group->field); | ||
| 122 | BN_free(&group->a); | ||
| 123 | BN_free(&group->b); | ||
| 124 | if (group->generator != NULL) | ||
| 125 | EC_POINT_free(group->generator); | ||
| 126 | BN_free(&group->order); | ||
| 127 | BN_free(&group->cofactor); | ||
| 128 | } | ||
| 129 | |||
| 130 | |||
| 131 | void ec_GFp_simple_group_clear_finish(EC_GROUP *group) | ||
| 132 | { | ||
| 133 | BN_clear_free(&group->field); | ||
| 134 | BN_clear_free(&group->a); | ||
| 135 | BN_clear_free(&group->b); | ||
| 136 | if (group->generator != NULL) | ||
| 137 | { | ||
| 138 | EC_POINT_clear_free(group->generator); | ||
| 139 | group->generator = NULL; | ||
| 140 | } | ||
| 141 | BN_clear_free(&group->order); | ||
| 142 | BN_clear_free(&group->cofactor); | ||
| 143 | } | ||
| 144 | |||
| 145 | |||
| 146 | int ec_GFp_simple_group_copy(EC_GROUP *dest, const EC_GROUP *src) | ||
| 147 | { | ||
| 148 | if (!BN_copy(&dest->field, &src->field)) return 0; | ||
| 149 | if (!BN_copy(&dest->a, &src->a)) return 0; | ||
| 150 | if (!BN_copy(&dest->b, &src->b)) return 0; | ||
| 151 | |||
| 152 | dest->a_is_minus3 = src->a_is_minus3; | ||
| 153 | |||
| 154 | if (src->generator != NULL) | ||
| 155 | { | ||
| 156 | if (dest->generator == NULL) | ||
| 157 | { | ||
| 158 | dest->generator = EC_POINT_new(dest); | ||
| 159 | if (dest->generator == NULL) return 0; | ||
| 160 | } | ||
| 161 | if (!EC_POINT_copy(dest->generator, src->generator)) return 0; | ||
| 162 | } | ||
| 163 | else | ||
| 164 | { | ||
| 165 | /* src->generator == NULL */ | ||
| 166 | if (dest->generator != NULL) | ||
| 167 | { | ||
| 168 | EC_POINT_clear_free(dest->generator); | ||
| 169 | dest->generator = NULL; | ||
| 170 | } | ||
| 171 | } | ||
| 172 | |||
| 173 | if (!BN_copy(&dest->order, &src->order)) return 0; | ||
| 174 | if (!BN_copy(&dest->cofactor, &src->cofactor)) return 0; | ||
| 175 | |||
| 176 | return 1; | ||
| 177 | } | ||
| 178 | |||
| 179 | |||
| 180 | int ec_GFp_simple_group_set_curve_GFp(EC_GROUP *group, | ||
| 181 | const BIGNUM *p, const BIGNUM *a, const BIGNUM *b, BN_CTX *ctx) | ||
| 182 | { | ||
| 183 | int ret = 0; | ||
| 184 | BN_CTX *new_ctx = NULL; | ||
| 185 | BIGNUM *tmp_a; | ||
| 186 | |||
| 187 | /* p must be a prime > 3 */ | ||
| 188 | if (BN_num_bits(p) <= 2 || !BN_is_odd(p)) | ||
| 189 | { | ||
| 190 | ECerr(EC_F_EC_GFP_SIMPLE_GROUP_SET_CURVE_GFP, EC_R_INVALID_FIELD); | ||
| 191 | return 0; | ||
| 192 | } | ||
| 193 | |||
| 194 | if (ctx == NULL) | ||
| 195 | { | ||
| 196 | ctx = new_ctx = BN_CTX_new(); | ||
| 197 | if (ctx == NULL) | ||
| 198 | return 0; | ||
| 199 | } | ||
| 200 | |||
| 201 | BN_CTX_start(ctx); | ||
| 202 | tmp_a = BN_CTX_get(ctx); | ||
| 203 | if (tmp_a == NULL) goto err; | ||
| 204 | |||
| 205 | /* group->field */ | ||
| 206 | if (!BN_copy(&group->field, p)) goto err; | ||
| 207 | group->field.neg = 0; | ||
| 208 | |||
| 209 | /* group->a */ | ||
| 210 | if (!BN_nnmod(tmp_a, a, p, ctx)) goto err; | ||
| 211 | if (group->meth->field_encode) | ||
| 212 | { if (!group->meth->field_encode(group, &group->a, tmp_a, ctx)) goto err; } | ||
| 213 | else | ||
| 214 | if (!BN_copy(&group->a, tmp_a)) goto err; | ||
| 215 | |||
| 216 | /* group->b */ | ||
| 217 | if (!BN_nnmod(&group->b, b, p, ctx)) goto err; | ||
| 218 | if (group->meth->field_encode) | ||
| 219 | if (!group->meth->field_encode(group, &group->b, &group->b, ctx)) goto err; | ||
| 220 | |||
| 221 | /* group->a_is_minus3 */ | ||
| 222 | if (!BN_add_word(tmp_a, 3)) goto err; | ||
| 223 | group->a_is_minus3 = (0 == BN_cmp(tmp_a, &group->field)); | ||
| 224 | |||
| 225 | ret = 1; | ||
| 226 | |||
| 227 | err: | ||
| 228 | BN_CTX_end(ctx); | ||
| 229 | if (new_ctx != NULL) | ||
| 230 | BN_CTX_free(new_ctx); | ||
| 231 | return ret; | ||
| 232 | } | ||
| 233 | |||
| 234 | |||
| 235 | int ec_GFp_simple_group_get_curve_GFp(const EC_GROUP *group, BIGNUM *p, BIGNUM *a, BIGNUM *b, BN_CTX *ctx) | ||
| 236 | { | ||
| 237 | int ret = 0; | ||
| 238 | BN_CTX *new_ctx = NULL; | ||
| 239 | |||
| 240 | if (p != NULL) | ||
| 241 | { | ||
| 242 | if (!BN_copy(p, &group->field)) return 0; | ||
| 243 | } | ||
| 244 | |||
| 245 | if (a != NULL || b != NULL) | ||
| 246 | { | ||
| 247 | if (group->meth->field_decode) | ||
| 248 | { | ||
| 249 | if (ctx == NULL) | ||
| 250 | { | ||
| 251 | ctx = new_ctx = BN_CTX_new(); | ||
| 252 | if (ctx == NULL) | ||
| 253 | return 0; | ||
| 254 | } | ||
| 255 | if (a != NULL) | ||
| 256 | { | ||
| 257 | if (!group->meth->field_decode(group, a, &group->a, ctx)) goto err; | ||
| 258 | } | ||
| 259 | if (b != NULL) | ||
| 260 | { | ||
| 261 | if (!group->meth->field_decode(group, b, &group->b, ctx)) goto err; | ||
| 262 | } | ||
| 263 | } | ||
| 264 | else | ||
| 265 | { | ||
| 266 | if (a != NULL) | ||
| 267 | { | ||
| 268 | if (!BN_copy(a, &group->a)) goto err; | ||
| 269 | } | ||
| 270 | if (b != NULL) | ||
| 271 | { | ||
| 272 | if (!BN_copy(b, &group->b)) goto err; | ||
| 273 | } | ||
| 274 | } | ||
| 275 | } | ||
| 276 | |||
| 277 | ret = 1; | ||
| 278 | |||
| 279 | err: | ||
| 280 | if (new_ctx) | ||
| 281 | BN_CTX_free(new_ctx); | ||
| 282 | return ret; | ||
| 283 | } | ||
| 284 | |||
| 285 | |||
| 286 | |||
| 287 | int ec_GFp_simple_group_set_generator(EC_GROUP *group, const EC_POINT *generator, | ||
| 288 | const BIGNUM *order, const BIGNUM *cofactor) | ||
| 289 | { | ||
| 290 | if (generator == NULL) | ||
| 291 | { | ||
| 292 | ECerr(EC_F_EC_GFP_SIMPLE_GROUP_SET_GENERATOR, ERR_R_PASSED_NULL_PARAMETER); | ||
| 293 | return 0 ; | ||
| 294 | } | ||
| 295 | |||
| 296 | if (group->generator == NULL) | ||
| 297 | { | ||
| 298 | group->generator = EC_POINT_new(group); | ||
| 299 | if (group->generator == NULL) return 0; | ||
| 300 | } | ||
| 301 | if (!EC_POINT_copy(group->generator, generator)) return 0; | ||
| 302 | |||
| 303 | if (order != NULL) | ||
| 304 | { if (!BN_copy(&group->order, order)) return 0; } | ||
| 305 | else | ||
| 306 | { if (!BN_zero(&group->order)) return 0; } | ||
| 307 | |||
| 308 | if (cofactor != NULL) | ||
| 309 | { if (!BN_copy(&group->cofactor, cofactor)) return 0; } | ||
| 310 | else | ||
| 311 | { if (!BN_zero(&group->cofactor)) return 0; } | ||
| 312 | |||
| 313 | return 1; | ||
| 314 | } | ||
| 315 | |||
| 316 | |||
| 317 | EC_POINT *ec_GFp_simple_group_get0_generator(const EC_GROUP *group) | ||
| 318 | { | ||
| 319 | return group->generator; | ||
| 320 | } | ||
| 321 | |||
| 322 | |||
| 323 | int ec_GFp_simple_group_get_order(const EC_GROUP *group, BIGNUM *order, BN_CTX *ctx) | ||
| 324 | { | ||
| 325 | if (!BN_copy(order, &group->order)) | ||
| 326 | return 0; | ||
| 327 | |||
| 328 | return !BN_is_zero(&group->order); | ||
| 329 | } | ||
| 330 | |||
| 331 | |||
| 332 | int ec_GFp_simple_group_get_cofactor(const EC_GROUP *group, BIGNUM *cofactor, BN_CTX *ctx) | ||
| 333 | { | ||
| 334 | if (!BN_copy(cofactor, &group->cofactor)) | ||
| 335 | return 0; | ||
| 336 | |||
| 337 | return !BN_is_zero(&group->cofactor); | ||
| 338 | } | ||
| 339 | |||
| 340 | |||
| 341 | int ec_GFp_simple_point_init(EC_POINT *point) | ||
| 342 | { | ||
| 343 | BN_init(&point->X); | ||
| 344 | BN_init(&point->Y); | ||
| 345 | BN_init(&point->Z); | ||
| 346 | point->Z_is_one = 0; | ||
| 347 | |||
| 348 | return 1; | ||
| 349 | } | ||
| 350 | |||
| 351 | |||
| 352 | void ec_GFp_simple_point_finish(EC_POINT *point) | ||
| 353 | { | ||
| 354 | BN_free(&point->X); | ||
| 355 | BN_free(&point->Y); | ||
| 356 | BN_free(&point->Z); | ||
| 357 | } | ||
| 358 | |||
| 359 | |||
| 360 | void ec_GFp_simple_point_clear_finish(EC_POINT *point) | ||
| 361 | { | ||
| 362 | BN_clear_free(&point->X); | ||
| 363 | BN_clear_free(&point->Y); | ||
| 364 | BN_clear_free(&point->Z); | ||
| 365 | point->Z_is_one = 0; | ||
| 366 | } | ||
| 367 | |||
| 368 | |||
| 369 | int ec_GFp_simple_point_copy(EC_POINT *dest, const EC_POINT *src) | ||
| 370 | { | ||
| 371 | if (!BN_copy(&dest->X, &src->X)) return 0; | ||
| 372 | if (!BN_copy(&dest->Y, &src->Y)) return 0; | ||
| 373 | if (!BN_copy(&dest->Z, &src->Z)) return 0; | ||
| 374 | dest->Z_is_one = src->Z_is_one; | ||
| 375 | |||
| 376 | return 1; | ||
| 377 | } | ||
| 378 | |||
| 379 | |||
| 380 | int ec_GFp_simple_point_set_to_infinity(const EC_GROUP *group, EC_POINT *point) | ||
| 381 | { | ||
| 382 | point->Z_is_one = 0; | ||
| 383 | return (BN_zero(&point->Z)); | ||
| 384 | } | ||
| 385 | |||
| 386 | |||
| 387 | int ec_GFp_simple_set_Jprojective_coordinates_GFp(const EC_GROUP *group, EC_POINT *point, | ||
| 388 | const BIGNUM *x, const BIGNUM *y, const BIGNUM *z, BN_CTX *ctx) | ||
| 389 | { | ||
| 390 | BN_CTX *new_ctx = NULL; | ||
| 391 | int ret = 0; | ||
| 392 | |||
| 393 | if (ctx == NULL) | ||
| 394 | { | ||
| 395 | ctx = new_ctx = BN_CTX_new(); | ||
| 396 | if (ctx == NULL) | ||
| 397 | return 0; | ||
| 398 | } | ||
| 399 | |||
| 400 | if (x != NULL) | ||
| 401 | { | ||
| 402 | if (!BN_nnmod(&point->X, x, &group->field, ctx)) goto err; | ||
| 403 | if (group->meth->field_encode) | ||
| 404 | { | ||
| 405 | if (!group->meth->field_encode(group, &point->X, &point->X, ctx)) goto err; | ||
| 406 | } | ||
| 407 | } | ||
| 408 | |||
| 409 | if (y != NULL) | ||
| 410 | { | ||
| 411 | if (!BN_nnmod(&point->Y, y, &group->field, ctx)) goto err; | ||
| 412 | if (group->meth->field_encode) | ||
| 413 | { | ||
| 414 | if (!group->meth->field_encode(group, &point->Y, &point->Y, ctx)) goto err; | ||
| 415 | } | ||
| 416 | } | ||
| 417 | |||
| 418 | if (z != NULL) | ||
| 419 | { | ||
| 420 | int Z_is_one; | ||
| 421 | |||
| 422 | if (!BN_nnmod(&point->Z, z, &group->field, ctx)) goto err; | ||
| 423 | Z_is_one = BN_is_one(&point->Z); | ||
| 424 | if (group->meth->field_encode) | ||
| 425 | { | ||
| 426 | if (Z_is_one && (group->meth->field_set_to_one != 0)) | ||
| 427 | { | ||
| 428 | if (!group->meth->field_set_to_one(group, &point->Z, ctx)) goto err; | ||
| 429 | } | ||
| 430 | else | ||
| 431 | { | ||
| 432 | if (!group->meth->field_encode(group, &point->Z, &point->Z, ctx)) goto err; | ||
| 433 | } | ||
| 434 | } | ||
| 435 | point->Z_is_one = Z_is_one; | ||
| 436 | } | ||
| 437 | |||
| 438 | ret = 1; | ||
| 439 | |||
| 440 | err: | ||
| 441 | if (new_ctx != NULL) | ||
| 442 | BN_CTX_free(new_ctx); | ||
| 443 | return ret; | ||
| 444 | } | ||
| 445 | |||
| 446 | |||
| 447 | int ec_GFp_simple_get_Jprojective_coordinates_GFp(const EC_GROUP *group, const EC_POINT *point, | ||
| 448 | BIGNUM *x, BIGNUM *y, BIGNUM *z, BN_CTX *ctx) | ||
| 449 | { | ||
| 450 | BN_CTX *new_ctx = NULL; | ||
| 451 | int ret = 0; | ||
| 452 | |||
| 453 | if (group->meth->field_decode != 0) | ||
| 454 | { | ||
| 455 | if (ctx == NULL) | ||
| 456 | { | ||
| 457 | ctx = new_ctx = BN_CTX_new(); | ||
| 458 | if (ctx == NULL) | ||
| 459 | return 0; | ||
| 460 | } | ||
| 461 | |||
| 462 | if (x != NULL) | ||
| 463 | { | ||
| 464 | if (!group->meth->field_decode(group, x, &point->X, ctx)) goto err; | ||
| 465 | } | ||
| 466 | if (y != NULL) | ||
| 467 | { | ||
| 468 | if (!group->meth->field_decode(group, y, &point->Y, ctx)) goto err; | ||
| 469 | } | ||
| 470 | if (z != NULL) | ||
| 471 | { | ||
| 472 | if (!group->meth->field_decode(group, z, &point->Z, ctx)) goto err; | ||
| 473 | } | ||
| 474 | } | ||
| 475 | else | ||
| 476 | { | ||
| 477 | if (x != NULL) | ||
| 478 | { | ||
| 479 | if (!BN_copy(x, &point->X)) goto err; | ||
| 480 | } | ||
| 481 | if (y != NULL) | ||
| 482 | { | ||
| 483 | if (!BN_copy(y, &point->Y)) goto err; | ||
| 484 | } | ||
| 485 | if (z != NULL) | ||
| 486 | { | ||
| 487 | if (!BN_copy(z, &point->Z)) goto err; | ||
| 488 | } | ||
| 489 | } | ||
| 490 | |||
| 491 | ret = 1; | ||
| 492 | |||
| 493 | err: | ||
| 494 | if (new_ctx != NULL) | ||
| 495 | BN_CTX_free(new_ctx); | ||
| 496 | return ret; | ||
| 497 | } | ||
| 498 | |||
| 499 | |||
| 500 | int ec_GFp_simple_point_set_affine_coordinates_GFp(const EC_GROUP *group, EC_POINT *point, | ||
| 501 | const BIGNUM *x, const BIGNUM *y, BN_CTX *ctx) | ||
| 502 | { | ||
| 503 | if (x == NULL || y == NULL) | ||
| 504 | { | ||
| 505 | /* unlike for projective coordinates, we do not tolerate this */ | ||
| 506 | ECerr(EC_F_EC_GFP_SIMPLE_POINT_SET_AFFINE_COORDINATES_GFP, ERR_R_PASSED_NULL_PARAMETER); | ||
| 507 | return 0; | ||
| 508 | } | ||
| 509 | |||
| 510 | return EC_POINT_set_Jprojective_coordinates_GFp(group, point, x, y, BN_value_one(), ctx); | ||
| 511 | } | ||
| 512 | |||
| 513 | |||
| 514 | int ec_GFp_simple_point_get_affine_coordinates_GFp(const EC_GROUP *group, const EC_POINT *point, | ||
| 515 | BIGNUM *x, BIGNUM *y, BN_CTX *ctx) | ||
| 516 | { | ||
| 517 | BN_CTX *new_ctx = NULL; | ||
| 518 | BIGNUM *X, *Y, *Z, *Z_1, *Z_2, *Z_3; | ||
| 519 | const BIGNUM *X_, *Y_, *Z_; | ||
| 520 | int ret = 0; | ||
| 521 | |||
| 522 | if (EC_POINT_is_at_infinity(group, point)) | ||
| 523 | { | ||
| 524 | ECerr(EC_F_EC_GFP_SIMPLE_POINT_GET_AFFINE_COORDINATES_GFP, EC_R_POINT_AT_INFINITY); | ||
| 525 | return 0; | ||
| 526 | } | ||
| 527 | |||
| 528 | if (ctx == NULL) | ||
| 529 | { | ||
| 530 | ctx = new_ctx = BN_CTX_new(); | ||
| 531 | if (ctx == NULL) | ||
| 532 | return 0; | ||
| 533 | } | ||
| 534 | |||
| 535 | BN_CTX_start(ctx); | ||
| 536 | X = BN_CTX_get(ctx); | ||
| 537 | Y = BN_CTX_get(ctx); | ||
| 538 | Z = BN_CTX_get(ctx); | ||
| 539 | Z_1 = BN_CTX_get(ctx); | ||
| 540 | Z_2 = BN_CTX_get(ctx); | ||
| 541 | Z_3 = BN_CTX_get(ctx); | ||
| 542 | if (Z_3 == NULL) goto err; | ||
| 543 | |||
| 544 | /* transform (X, Y, Z) into (x, y) := (X/Z^2, Y/Z^3) */ | ||
| 545 | |||
| 546 | if (group->meth->field_decode) | ||
| 547 | { | ||
| 548 | if (!group->meth->field_decode(group, X, &point->X, ctx)) goto err; | ||
| 549 | if (!group->meth->field_decode(group, Y, &point->Y, ctx)) goto err; | ||
| 550 | if (!group->meth->field_decode(group, Z, &point->Z, ctx)) goto err; | ||
| 551 | X_ = X; Y_ = Y; Z_ = Z; | ||
| 552 | } | ||
| 553 | else | ||
| 554 | { | ||
| 555 | X_ = &point->X; | ||
| 556 | Y_ = &point->Y; | ||
| 557 | Z_ = &point->Z; | ||
| 558 | } | ||
| 559 | |||
| 560 | if (BN_is_one(Z_)) | ||
| 561 | { | ||
| 562 | if (x != NULL) | ||
| 563 | { | ||
| 564 | if (!BN_copy(x, X_)) goto err; | ||
| 565 | } | ||
| 566 | if (y != NULL) | ||
| 567 | { | ||
| 568 | if (!BN_copy(y, Y_)) goto err; | ||
| 569 | } | ||
| 570 | } | ||
| 571 | else | ||
| 572 | { | ||
| 573 | if (!BN_mod_inverse(Z_1, Z_, &group->field, ctx)) | ||
| 574 | { | ||
| 575 | ECerr(EC_F_EC_GFP_SIMPLE_POINT_GET_AFFINE_COORDINATES_GFP, ERR_R_BN_LIB); | ||
| 576 | goto err; | ||
| 577 | } | ||
| 578 | |||
| 579 | if (group->meth->field_encode == 0) | ||
| 580 | { | ||
| 581 | /* field_sqr works on standard representation */ | ||
| 582 | if (!group->meth->field_sqr(group, Z_2, Z_1, ctx)) goto err; | ||
| 583 | } | ||
| 584 | else | ||
| 585 | { | ||
| 586 | if (!BN_mod_sqr(Z_2, Z_1, &group->field, ctx)) goto err; | ||
| 587 | } | ||
| 588 | |||
| 589 | if (x != NULL) | ||
| 590 | { | ||
| 591 | if (group->meth->field_encode == 0) | ||
| 592 | { | ||
| 593 | /* field_mul works on standard representation */ | ||
| 594 | if (!group->meth->field_mul(group, x, X_, Z_2, ctx)) goto err; | ||
| 595 | } | ||
| 596 | else | ||
| 597 | { | ||
| 598 | if (!BN_mod_mul(x, X_, Z_2, &group->field, ctx)) goto err; | ||
| 599 | } | ||
| 600 | } | ||
| 601 | |||
| 602 | if (y != NULL) | ||
| 603 | { | ||
| 604 | if (group->meth->field_encode == 0) | ||
| 605 | { | ||
| 606 | /* field_mul works on standard representation */ | ||
| 607 | if (!group->meth->field_mul(group, Z_3, Z_2, Z_1, ctx)) goto err; | ||
| 608 | if (!group->meth->field_mul(group, y, Y_, Z_3, ctx)) goto err; | ||
| 609 | |||
| 610 | } | ||
| 611 | else | ||
| 612 | { | ||
| 613 | if (!BN_mod_mul(Z_3, Z_2, Z_1, &group->field, ctx)) goto err; | ||
| 614 | if (!BN_mod_mul(y, Y_, Z_3, &group->field, ctx)) goto err; | ||
| 615 | } | ||
| 616 | } | ||
| 617 | } | ||
| 618 | |||
| 619 | ret = 1; | ||
| 620 | |||
| 621 | err: | ||
| 622 | BN_CTX_end(ctx); | ||
| 623 | if (new_ctx != NULL) | ||
| 624 | BN_CTX_free(new_ctx); | ||
| 625 | return ret; | ||
| 626 | } | ||
| 627 | |||
| 628 | |||
| 629 | int ec_GFp_simple_set_compressed_coordinates_GFp(const EC_GROUP *group, EC_POINT *point, | ||
| 630 | const BIGNUM *x_, int y_bit, BN_CTX *ctx) | ||
| 631 | { | ||
| 632 | BN_CTX *new_ctx = NULL; | ||
| 633 | BIGNUM *tmp1, *tmp2, *x, *y; | ||
| 634 | int ret = 0; | ||
| 635 | |||
| 636 | if (ctx == NULL) | ||
| 637 | { | ||
| 638 | ctx = new_ctx = BN_CTX_new(); | ||
| 639 | if (ctx == NULL) | ||
| 640 | return 0; | ||
| 641 | } | ||
| 642 | |||
| 643 | y_bit = (y_bit != 0); | ||
| 644 | |||
| 645 | BN_CTX_start(ctx); | ||
| 646 | tmp1 = BN_CTX_get(ctx); | ||
| 647 | tmp2 = BN_CTX_get(ctx); | ||
| 648 | x = BN_CTX_get(ctx); | ||
| 649 | y = BN_CTX_get(ctx); | ||
| 650 | if (y == NULL) goto err; | ||
| 651 | |||
| 652 | /* Recover y. We have a Weierstrass equation | ||
| 653 | * y^2 = x^3 + a*x + b, | ||
| 654 | * so y is one of the square roots of x^3 + a*x + b. | ||
| 655 | */ | ||
| 656 | |||
| 657 | /* tmp1 := x^3 */ | ||
| 658 | if (!BN_nnmod(x, x_, &group->field,ctx)) goto err; | ||
| 659 | if (group->meth->field_decode == 0) | ||
| 660 | { | ||
| 661 | /* field_{sqr,mul} work on standard representation */ | ||
| 662 | if (!group->meth->field_sqr(group, tmp2, x_, ctx)) goto err; | ||
| 663 | if (!group->meth->field_mul(group, tmp1, tmp2, x_, ctx)) goto err; | ||
| 664 | } | ||
| 665 | else | ||
| 666 | { | ||
| 667 | if (!BN_mod_sqr(tmp2, x_, &group->field, ctx)) goto err; | ||
| 668 | if (!BN_mod_mul(tmp1, tmp2, x_, &group->field, ctx)) goto err; | ||
| 669 | } | ||
| 670 | |||
| 671 | /* tmp1 := tmp1 + a*x */ | ||
| 672 | if (group->a_is_minus3) | ||
| 673 | { | ||
| 674 | if (!BN_mod_lshift1_quick(tmp2, x, &group->field)) goto err; | ||
| 675 | if (!BN_mod_add_quick(tmp2, tmp2, x, &group->field)) goto err; | ||
| 676 | if (!BN_mod_sub_quick(tmp1, tmp1, tmp2, &group->field)) goto err; | ||
| 677 | } | ||
| 678 | else | ||
| 679 | { | ||
| 680 | if (group->meth->field_decode) | ||
| 681 | { | ||
| 682 | if (!group->meth->field_decode(group, tmp2, &group->a, ctx)) goto err; | ||
| 683 | if (!BN_mod_mul(tmp2, tmp2, x, &group->field, ctx)) goto err; | ||
| 684 | } | ||
| 685 | else | ||
| 686 | { | ||
| 687 | /* field_mul works on standard representation */ | ||
| 688 | if (!group->meth->field_mul(group, tmp2, &group->a, x, ctx)) goto err; | ||
| 689 | } | ||
| 690 | |||
| 691 | if (!BN_mod_add_quick(tmp1, tmp1, tmp2, &group->field)) goto err; | ||
| 692 | } | ||
| 693 | |||
| 694 | /* tmp1 := tmp1 + b */ | ||
| 695 | if (group->meth->field_decode) | ||
| 696 | { | ||
| 697 | if (!group->meth->field_decode(group, tmp2, &group->b, ctx)) goto err; | ||
| 698 | if (!BN_mod_add_quick(tmp1, tmp1, tmp2, &group->field)) goto err; | ||
| 699 | } | ||
| 700 | else | ||
| 701 | { | ||
| 702 | if (!BN_mod_add_quick(tmp1, tmp1, &group->b, &group->field)) goto err; | ||
| 703 | } | ||
| 704 | |||
| 705 | if (!BN_mod_sqrt(y, tmp1, &group->field, ctx)) | ||
| 706 | { | ||
| 707 | unsigned long err = ERR_peek_error(); | ||
| 708 | |||
| 709 | if (ERR_GET_LIB(err) == ERR_LIB_BN && ERR_GET_REASON(err) == BN_R_NOT_A_SQUARE) | ||
| 710 | { | ||
| 711 | (void)ERR_get_error(); | ||
| 712 | ECerr(EC_F_EC_GFP_SIMPLE_SET_COMPRESSED_COORDINATES_GFP, EC_R_INVALID_COMPRESSED_POINT); | ||
| 713 | } | ||
| 714 | else | ||
| 715 | ECerr(EC_F_EC_GFP_SIMPLE_SET_COMPRESSED_COORDINATES_GFP, ERR_R_BN_LIB); | ||
| 716 | goto err; | ||
| 717 | } | ||
| 718 | /* If tmp1 is not a square (i.e. there is no point on the curve with | ||
| 719 | * our x), then y now is a nonsense value too */ | ||
| 720 | |||
| 721 | if (y_bit != BN_is_odd(y)) | ||
| 722 | { | ||
| 723 | if (BN_is_zero(y)) | ||
| 724 | { | ||
| 725 | int kron; | ||
| 726 | |||
| 727 | kron = BN_kronecker(x, &group->field, ctx); | ||
| 728 | if (kron == -2) goto err; | ||
| 729 | |||
| 730 | if (kron == 1) | ||
| 731 | ECerr(EC_F_EC_GFP_SIMPLE_SET_COMPRESSED_COORDINATES_GFP, EC_R_INVALID_COMPRESSION_BIT); | ||
| 732 | else | ||
| 733 | ECerr(EC_F_EC_GFP_SIMPLE_SET_COMPRESSED_COORDINATES_GFP, EC_R_INVALID_COMPRESSED_POINT); | ||
| 734 | goto err; | ||
| 735 | } | ||
| 736 | if (!BN_usub(y, &group->field, y)) goto err; | ||
| 737 | } | ||
| 738 | if (y_bit != BN_is_odd(y)) | ||
| 739 | { | ||
| 740 | ECerr(EC_F_EC_GFP_SIMPLE_SET_COMPRESSED_COORDINATES_GFP, ERR_R_INTERNAL_ERROR); | ||
| 741 | goto err; | ||
| 742 | } | ||
| 743 | |||
| 744 | if (!EC_POINT_set_affine_coordinates_GFp(group, point, x, y, ctx)) goto err; | ||
| 745 | |||
| 746 | ret = 1; | ||
| 747 | |||
| 748 | err: | ||
| 749 | BN_CTX_end(ctx); | ||
| 750 | if (new_ctx != NULL) | ||
| 751 | BN_CTX_free(new_ctx); | ||
| 752 | return ret; | ||
| 753 | } | ||
| 754 | |||
| 755 | |||
| 756 | size_t ec_GFp_simple_point2oct(const EC_GROUP *group, const EC_POINT *point, point_conversion_form_t form, | ||
| 757 | unsigned char *buf, size_t len, BN_CTX *ctx) | ||
| 758 | { | ||
| 759 | size_t ret; | ||
| 760 | BN_CTX *new_ctx = NULL; | ||
| 761 | int used_ctx = 0; | ||
| 762 | BIGNUM *x, *y; | ||
| 763 | size_t field_len, i, skip; | ||
| 764 | |||
| 765 | if ((form != POINT_CONVERSION_COMPRESSED) | ||
| 766 | && (form != POINT_CONVERSION_UNCOMPRESSED) | ||
| 767 | && (form != POINT_CONVERSION_HYBRID)) | ||
| 768 | { | ||
| 769 | ECerr(EC_F_EC_GFP_SIMPLE_POINT2OCT, EC_R_INVALID_FORM); | ||
| 770 | goto err; | ||
| 771 | } | ||
| 772 | |||
| 773 | if (EC_POINT_is_at_infinity(group, point)) | ||
| 774 | { | ||
| 775 | /* encodes to a single 0 octet */ | ||
| 776 | if (buf != NULL) | ||
| 777 | { | ||
| 778 | if (len < 1) | ||
| 779 | { | ||
| 780 | ECerr(EC_F_EC_GFP_SIMPLE_POINT2OCT, EC_R_BUFFER_TOO_SMALL); | ||
| 781 | return 0; | ||
| 782 | } | ||
| 783 | buf[0] = 0; | ||
| 784 | } | ||
| 785 | return 1; | ||
| 786 | } | ||
| 787 | |||
| 788 | |||
| 789 | /* ret := required output buffer length */ | ||
| 790 | field_len = BN_num_bytes(&group->field); | ||
| 791 | ret = (form == POINT_CONVERSION_COMPRESSED) ? 1 + field_len : 1 + 2*field_len; | ||
| 792 | |||
| 793 | /* if 'buf' is NULL, just return required length */ | ||
| 794 | if (buf != NULL) | ||
| 795 | { | ||
| 796 | if (len < ret) | ||
| 797 | { | ||
| 798 | ECerr(EC_F_EC_GFP_SIMPLE_POINT2OCT, EC_R_BUFFER_TOO_SMALL); | ||
| 799 | goto err; | ||
| 800 | } | ||
| 801 | |||
| 802 | if (ctx == NULL) | ||
| 803 | { | ||
| 804 | ctx = new_ctx = BN_CTX_new(); | ||
| 805 | if (ctx == NULL) | ||
| 806 | return 0; | ||
| 807 | } | ||
| 808 | |||
| 809 | BN_CTX_start(ctx); | ||
| 810 | used_ctx = 1; | ||
| 811 | x = BN_CTX_get(ctx); | ||
| 812 | y = BN_CTX_get(ctx); | ||
| 813 | if (y == NULL) goto err; | ||
| 814 | |||
| 815 | if (!EC_POINT_get_affine_coordinates_GFp(group, point, x, y, ctx)) goto err; | ||
| 816 | |||
| 817 | if ((form == POINT_CONVERSION_COMPRESSED || form == POINT_CONVERSION_HYBRID) && BN_is_odd(y)) | ||
| 818 | buf[0] = form + 1; | ||
| 819 | else | ||
| 820 | buf[0] = form; | ||
| 821 | |||
| 822 | i = 1; | ||
| 823 | |||
| 824 | skip = field_len - BN_num_bytes(x); | ||
| 825 | if (skip > field_len) | ||
| 826 | { | ||
| 827 | ECerr(EC_F_EC_GFP_SIMPLE_POINT2OCT, ERR_R_INTERNAL_ERROR); | ||
| 828 | goto err; | ||
| 829 | } | ||
| 830 | while (skip > 0) | ||
| 831 | { | ||
| 832 | buf[i++] = 0; | ||
| 833 | skip--; | ||
| 834 | } | ||
| 835 | skip = BN_bn2bin(x, buf + i); | ||
| 836 | i += skip; | ||
| 837 | if (i != 1 + field_len) | ||
| 838 | { | ||
| 839 | ECerr(EC_F_EC_GFP_SIMPLE_POINT2OCT, ERR_R_INTERNAL_ERROR); | ||
| 840 | goto err; | ||
| 841 | } | ||
| 842 | |||
| 843 | if (form == POINT_CONVERSION_UNCOMPRESSED || form == POINT_CONVERSION_HYBRID) | ||
| 844 | { | ||
| 845 | skip = field_len - BN_num_bytes(y); | ||
| 846 | if (skip > field_len) | ||
| 847 | { | ||
| 848 | ECerr(EC_F_EC_GFP_SIMPLE_POINT2OCT, ERR_R_INTERNAL_ERROR); | ||
| 849 | goto err; | ||
| 850 | } | ||
| 851 | while (skip > 0) | ||
| 852 | { | ||
| 853 | buf[i++] = 0; | ||
| 854 | skip--; | ||
| 855 | } | ||
| 856 | skip = BN_bn2bin(y, buf + i); | ||
| 857 | i += skip; | ||
| 858 | } | ||
| 859 | |||
| 860 | if (i != ret) | ||
| 861 | { | ||
| 862 | ECerr(EC_F_EC_GFP_SIMPLE_POINT2OCT, ERR_R_INTERNAL_ERROR); | ||
| 863 | goto err; | ||
| 864 | } | ||
| 865 | } | ||
| 866 | |||
| 867 | if (used_ctx) | ||
| 868 | BN_CTX_end(ctx); | ||
| 869 | if (new_ctx != NULL) | ||
| 870 | BN_CTX_free(new_ctx); | ||
| 871 | return ret; | ||
| 872 | |||
| 873 | err: | ||
| 874 | if (used_ctx) | ||
| 875 | BN_CTX_end(ctx); | ||
| 876 | if (new_ctx != NULL) | ||
| 877 | BN_CTX_free(new_ctx); | ||
| 878 | return 0; | ||
| 879 | } | ||
| 880 | |||
| 881 | |||
| 882 | int ec_GFp_simple_oct2point(const EC_GROUP *group, EC_POINT *point, | ||
| 883 | const unsigned char *buf, size_t len, BN_CTX *ctx) | ||
| 884 | { | ||
| 885 | point_conversion_form_t form; | ||
| 886 | int y_bit; | ||
| 887 | BN_CTX *new_ctx = NULL; | ||
| 888 | BIGNUM *x, *y; | ||
| 889 | size_t field_len, enc_len; | ||
| 890 | int ret = 0; | ||
| 891 | |||
| 892 | if (len == 0) | ||
| 893 | { | ||
| 894 | ECerr(EC_F_EC_GFP_SIMPLE_OCT2POINT, EC_R_BUFFER_TOO_SMALL); | ||
| 895 | return 0; | ||
| 896 | } | ||
| 897 | form = buf[0]; | ||
| 898 | y_bit = form & 1; | ||
| 899 | form = form & ~1U; | ||
| 900 | if ((form != 0) && (form != POINT_CONVERSION_COMPRESSED) | ||
| 901 | && (form != POINT_CONVERSION_UNCOMPRESSED) | ||
| 902 | && (form != POINT_CONVERSION_HYBRID)) | ||
| 903 | { | ||
| 904 | ECerr(EC_F_EC_GFP_SIMPLE_OCT2POINT, EC_R_INVALID_ENCODING); | ||
| 905 | return 0; | ||
| 906 | } | ||
| 907 | if ((form == 0 || form == POINT_CONVERSION_UNCOMPRESSED) && y_bit) | ||
| 908 | { | ||
| 909 | ECerr(EC_F_EC_GFP_SIMPLE_OCT2POINT, EC_R_INVALID_ENCODING); | ||
| 910 | return 0; | ||
| 911 | } | ||
| 912 | |||
| 913 | if (form == 0) | ||
| 914 | { | ||
| 915 | if (len != 1) | ||
| 916 | { | ||
| 917 | ECerr(EC_F_EC_GFP_SIMPLE_OCT2POINT, EC_R_INVALID_ENCODING); | ||
| 918 | return 0; | ||
| 919 | } | ||
| 920 | |||
| 921 | return EC_POINT_set_to_infinity(group, point); | ||
| 922 | } | ||
| 923 | |||
| 924 | field_len = BN_num_bytes(&group->field); | ||
| 925 | enc_len = (form == POINT_CONVERSION_COMPRESSED) ? 1 + field_len : 1 + 2*field_len; | ||
| 926 | |||
| 927 | if (len != enc_len) | ||
| 928 | { | ||
| 929 | ECerr(EC_F_EC_GFP_SIMPLE_OCT2POINT, EC_R_INVALID_ENCODING); | ||
| 930 | return 0; | ||
| 931 | } | ||
| 932 | |||
| 933 | if (ctx == NULL) | ||
| 934 | { | ||
| 935 | ctx = new_ctx = BN_CTX_new(); | ||
| 936 | if (ctx == NULL) | ||
| 937 | return 0; | ||
| 938 | } | ||
| 939 | |||
| 940 | BN_CTX_start(ctx); | ||
| 941 | x = BN_CTX_get(ctx); | ||
| 942 | y = BN_CTX_get(ctx); | ||
| 943 | if (y == NULL) goto err; | ||
| 944 | |||
| 945 | if (!BN_bin2bn(buf + 1, field_len, x)) goto err; | ||
| 946 | if (BN_ucmp(x, &group->field) >= 0) | ||
| 947 | { | ||
| 948 | ECerr(EC_F_EC_GFP_SIMPLE_OCT2POINT, EC_R_INVALID_ENCODING); | ||
| 949 | goto err; | ||
| 950 | } | ||
| 951 | |||
| 952 | if (form == POINT_CONVERSION_COMPRESSED) | ||
| 953 | { | ||
| 954 | if (!EC_POINT_set_compressed_coordinates_GFp(group, point, x, y_bit, ctx)) goto err; | ||
| 955 | } | ||
| 956 | else | ||
| 957 | { | ||
| 958 | if (!BN_bin2bn(buf + 1 + field_len, field_len, y)) goto err; | ||
| 959 | if (BN_ucmp(y, &group->field) >= 0) | ||
| 960 | { | ||
| 961 | ECerr(EC_F_EC_GFP_SIMPLE_OCT2POINT, EC_R_INVALID_ENCODING); | ||
| 962 | goto err; | ||
| 963 | } | ||
| 964 | if (form == POINT_CONVERSION_HYBRID) | ||
| 965 | { | ||
| 966 | if (y_bit != BN_is_odd(y)) | ||
| 967 | { | ||
| 968 | ECerr(EC_F_EC_GFP_SIMPLE_OCT2POINT, EC_R_INVALID_ENCODING); | ||
| 969 | goto err; | ||
| 970 | } | ||
| 971 | } | ||
| 972 | |||
| 973 | if (!EC_POINT_set_affine_coordinates_GFp(group, point, x, y, ctx)) goto err; | ||
| 974 | } | ||
| 975 | |||
| 976 | if (!EC_POINT_is_on_curve(group, point, ctx)) /* test required by X9.62 */ | ||
| 977 | { | ||
| 978 | ECerr(EC_F_EC_GFP_SIMPLE_OCT2POINT, EC_R_POINT_IS_NOT_ON_CURVE); | ||
| 979 | goto err; | ||
| 980 | } | ||
| 981 | |||
| 982 | ret = 1; | ||
| 983 | |||
| 984 | err: | ||
| 985 | BN_CTX_end(ctx); | ||
| 986 | if (new_ctx != NULL) | ||
| 987 | BN_CTX_free(new_ctx); | ||
| 988 | return ret; | ||
| 989 | } | ||
| 990 | |||
| 991 | |||
| 992 | int ec_GFp_simple_add(const EC_GROUP *group, EC_POINT *r, const EC_POINT *a, const EC_POINT *b, BN_CTX *ctx) | ||
| 993 | { | ||
| 994 | int (*field_mul)(const EC_GROUP *, BIGNUM *, const BIGNUM *, const BIGNUM *, BN_CTX *); | ||
| 995 | int (*field_sqr)(const EC_GROUP *, BIGNUM *, const BIGNUM *, BN_CTX *); | ||
| 996 | const BIGNUM *p; | ||
| 997 | BN_CTX *new_ctx = NULL; | ||
| 998 | BIGNUM *n0, *n1, *n2, *n3, *n4, *n5, *n6; | ||
| 999 | int ret = 0; | ||
| 1000 | |||
| 1001 | if (a == b) | ||
| 1002 | return EC_POINT_dbl(group, r, a, ctx); | ||
| 1003 | if (EC_POINT_is_at_infinity(group, a)) | ||
| 1004 | return EC_POINT_copy(r, b); | ||
| 1005 | if (EC_POINT_is_at_infinity(group, b)) | ||
| 1006 | return EC_POINT_copy(r, a); | ||
| 1007 | |||
| 1008 | field_mul = group->meth->field_mul; | ||
| 1009 | field_sqr = group->meth->field_sqr; | ||
| 1010 | p = &group->field; | ||
| 1011 | |||
| 1012 | if (ctx == NULL) | ||
| 1013 | { | ||
| 1014 | ctx = new_ctx = BN_CTX_new(); | ||
| 1015 | if (ctx == NULL) | ||
| 1016 | return 0; | ||
| 1017 | } | ||
| 1018 | |||
| 1019 | BN_CTX_start(ctx); | ||
| 1020 | n0 = BN_CTX_get(ctx); | ||
| 1021 | n1 = BN_CTX_get(ctx); | ||
| 1022 | n2 = BN_CTX_get(ctx); | ||
| 1023 | n3 = BN_CTX_get(ctx); | ||
| 1024 | n4 = BN_CTX_get(ctx); | ||
| 1025 | n5 = BN_CTX_get(ctx); | ||
| 1026 | n6 = BN_CTX_get(ctx); | ||
| 1027 | if (n6 == NULL) goto end; | ||
| 1028 | |||
| 1029 | /* Note that in this function we must not read components of 'a' or 'b' | ||
| 1030 | * once we have written the corresponding components of 'r'. | ||
| 1031 | * ('r' might be one of 'a' or 'b'.) | ||
| 1032 | */ | ||
| 1033 | |||
| 1034 | /* n1, n2 */ | ||
| 1035 | if (b->Z_is_one) | ||
| 1036 | { | ||
| 1037 | if (!BN_copy(n1, &a->X)) goto end; | ||
| 1038 | if (!BN_copy(n2, &a->Y)) goto end; | ||
| 1039 | /* n1 = X_a */ | ||
| 1040 | /* n2 = Y_a */ | ||
| 1041 | } | ||
| 1042 | else | ||
| 1043 | { | ||
| 1044 | if (!field_sqr(group, n0, &b->Z, ctx)) goto end; | ||
| 1045 | if (!field_mul(group, n1, &a->X, n0, ctx)) goto end; | ||
| 1046 | /* n1 = X_a * Z_b^2 */ | ||
| 1047 | |||
| 1048 | if (!field_mul(group, n0, n0, &b->Z, ctx)) goto end; | ||
| 1049 | if (!field_mul(group, n2, &a->Y, n0, ctx)) goto end; | ||
| 1050 | /* n2 = Y_a * Z_b^3 */ | ||
| 1051 | } | ||
| 1052 | |||
| 1053 | /* n3, n4 */ | ||
| 1054 | if (a->Z_is_one) | ||
| 1055 | { | ||
| 1056 | if (!BN_copy(n3, &b->X)) goto end; | ||
| 1057 | if (!BN_copy(n4, &b->Y)) goto end; | ||
| 1058 | /* n3 = X_b */ | ||
| 1059 | /* n4 = Y_b */ | ||
| 1060 | } | ||
| 1061 | else | ||
| 1062 | { | ||
| 1063 | if (!field_sqr(group, n0, &a->Z, ctx)) goto end; | ||
| 1064 | if (!field_mul(group, n3, &b->X, n0, ctx)) goto end; | ||
| 1065 | /* n3 = X_b * Z_a^2 */ | ||
| 1066 | |||
| 1067 | if (!field_mul(group, n0, n0, &a->Z, ctx)) goto end; | ||
| 1068 | if (!field_mul(group, n4, &b->Y, n0, ctx)) goto end; | ||
| 1069 | /* n4 = Y_b * Z_a^3 */ | ||
| 1070 | } | ||
| 1071 | |||
| 1072 | /* n5, n6 */ | ||
| 1073 | if (!BN_mod_sub_quick(n5, n1, n3, p)) goto end; | ||
| 1074 | if (!BN_mod_sub_quick(n6, n2, n4, p)) goto end; | ||
| 1075 | /* n5 = n1 - n3 */ | ||
| 1076 | /* n6 = n2 - n4 */ | ||
| 1077 | |||
| 1078 | if (BN_is_zero(n5)) | ||
| 1079 | { | ||
| 1080 | if (BN_is_zero(n6)) | ||
| 1081 | { | ||
| 1082 | /* a is the same point as b */ | ||
| 1083 | BN_CTX_end(ctx); | ||
| 1084 | ret = EC_POINT_dbl(group, r, a, ctx); | ||
| 1085 | ctx = NULL; | ||
| 1086 | goto end; | ||
| 1087 | } | ||
| 1088 | else | ||
| 1089 | { | ||
| 1090 | /* a is the inverse of b */ | ||
| 1091 | if (!BN_zero(&r->Z)) goto end; | ||
| 1092 | r->Z_is_one = 0; | ||
| 1093 | ret = 1; | ||
| 1094 | goto end; | ||
| 1095 | } | ||
| 1096 | } | ||
| 1097 | |||
| 1098 | /* 'n7', 'n8' */ | ||
| 1099 | if (!BN_mod_add_quick(n1, n1, n3, p)) goto end; | ||
| 1100 | if (!BN_mod_add_quick(n2, n2, n4, p)) goto end; | ||
| 1101 | /* 'n7' = n1 + n3 */ | ||
| 1102 | /* 'n8' = n2 + n4 */ | ||
| 1103 | |||
| 1104 | /* Z_r */ | ||
| 1105 | if (a->Z_is_one && b->Z_is_one) | ||
| 1106 | { | ||
| 1107 | if (!BN_copy(&r->Z, n5)) goto end; | ||
| 1108 | } | ||
| 1109 | else | ||
| 1110 | { | ||
| 1111 | if (a->Z_is_one) | ||
| 1112 | { if (!BN_copy(n0, &b->Z)) goto end; } | ||
| 1113 | else if (b->Z_is_one) | ||
| 1114 | { if (!BN_copy(n0, &a->Z)) goto end; } | ||
| 1115 | else | ||
| 1116 | { if (!field_mul(group, n0, &a->Z, &b->Z, ctx)) goto end; } | ||
| 1117 | if (!field_mul(group, &r->Z, n0, n5, ctx)) goto end; | ||
| 1118 | } | ||
| 1119 | r->Z_is_one = 0; | ||
| 1120 | /* Z_r = Z_a * Z_b * n5 */ | ||
| 1121 | |||
| 1122 | /* X_r */ | ||
| 1123 | if (!field_sqr(group, n0, n6, ctx)) goto end; | ||
| 1124 | if (!field_sqr(group, n4, n5, ctx)) goto end; | ||
| 1125 | if (!field_mul(group, n3, n1, n4, ctx)) goto end; | ||
| 1126 | if (!BN_mod_sub_quick(&r->X, n0, n3, p)) goto end; | ||
| 1127 | /* X_r = n6^2 - n5^2 * 'n7' */ | ||
| 1128 | |||
| 1129 | /* 'n9' */ | ||
| 1130 | if (!BN_mod_lshift1_quick(n0, &r->X, p)) goto end; | ||
| 1131 | if (!BN_mod_sub_quick(n0, n3, n0, p)) goto end; | ||
| 1132 | /* n9 = n5^2 * 'n7' - 2 * X_r */ | ||
| 1133 | |||
| 1134 | /* Y_r */ | ||
| 1135 | if (!field_mul(group, n0, n0, n6, ctx)) goto end; | ||
| 1136 | if (!field_mul(group, n5, n4, n5, ctx)) goto end; /* now n5 is n5^3 */ | ||
| 1137 | if (!field_mul(group, n1, n2, n5, ctx)) goto end; | ||
| 1138 | if (!BN_mod_sub_quick(n0, n0, n1, p)) goto end; | ||
| 1139 | if (BN_is_odd(n0)) | ||
| 1140 | if (!BN_add(n0, n0, p)) goto end; | ||
| 1141 | /* now 0 <= n0 < 2*p, and n0 is even */ | ||
| 1142 | if (!BN_rshift1(&r->Y, n0)) goto end; | ||
| 1143 | /* Y_r = (n6 * 'n9' - 'n8' * 'n5^3') / 2 */ | ||
| 1144 | |||
| 1145 | ret = 1; | ||
| 1146 | |||
| 1147 | end: | ||
| 1148 | if (ctx) /* otherwise we already called BN_CTX_end */ | ||
| 1149 | BN_CTX_end(ctx); | ||
| 1150 | if (new_ctx != NULL) | ||
| 1151 | BN_CTX_free(new_ctx); | ||
| 1152 | return ret; | ||
| 1153 | } | ||
| 1154 | |||
| 1155 | |||
| 1156 | int ec_GFp_simple_dbl(const EC_GROUP *group, EC_POINT *r, const EC_POINT *a, BN_CTX *ctx) | ||
| 1157 | { | ||
| 1158 | int (*field_mul)(const EC_GROUP *, BIGNUM *, const BIGNUM *, const BIGNUM *, BN_CTX *); | ||
| 1159 | int (*field_sqr)(const EC_GROUP *, BIGNUM *, const BIGNUM *, BN_CTX *); | ||
| 1160 | const BIGNUM *p; | ||
| 1161 | BN_CTX *new_ctx = NULL; | ||
| 1162 | BIGNUM *n0, *n1, *n2, *n3; | ||
| 1163 | int ret = 0; | ||
| 1164 | |||
| 1165 | if (EC_POINT_is_at_infinity(group, a)) | ||
| 1166 | { | ||
| 1167 | if (!BN_zero(&r->Z)) return 0; | ||
| 1168 | r->Z_is_one = 0; | ||
| 1169 | return 1; | ||
| 1170 | } | ||
| 1171 | |||
| 1172 | field_mul = group->meth->field_mul; | ||
| 1173 | field_sqr = group->meth->field_sqr; | ||
| 1174 | p = &group->field; | ||
| 1175 | |||
| 1176 | if (ctx == NULL) | ||
| 1177 | { | ||
| 1178 | ctx = new_ctx = BN_CTX_new(); | ||
| 1179 | if (ctx == NULL) | ||
| 1180 | return 0; | ||
| 1181 | } | ||
| 1182 | |||
| 1183 | BN_CTX_start(ctx); | ||
| 1184 | n0 = BN_CTX_get(ctx); | ||
| 1185 | n1 = BN_CTX_get(ctx); | ||
| 1186 | n2 = BN_CTX_get(ctx); | ||
| 1187 | n3 = BN_CTX_get(ctx); | ||
| 1188 | if (n3 == NULL) goto err; | ||
| 1189 | |||
| 1190 | /* Note that in this function we must not read components of 'a' | ||
| 1191 | * once we have written the corresponding components of 'r'. | ||
| 1192 | * ('r' might the same as 'a'.) | ||
| 1193 | */ | ||
| 1194 | |||
| 1195 | /* n1 */ | ||
| 1196 | if (a->Z_is_one) | ||
| 1197 | { | ||
| 1198 | if (!field_sqr(group, n0, &a->X, ctx)) goto err; | ||
| 1199 | if (!BN_mod_lshift1_quick(n1, n0, p)) goto err; | ||
| 1200 | if (!BN_mod_add_quick(n0, n0, n1, p)) goto err; | ||
| 1201 | if (!BN_mod_add_quick(n1, n0, &group->a, p)) goto err; | ||
| 1202 | /* n1 = 3 * X_a^2 + a_curve */ | ||
| 1203 | } | ||
| 1204 | else if (group->a_is_minus3) | ||
| 1205 | { | ||
| 1206 | if (!field_sqr(group, n1, &a->Z, ctx)) goto err; | ||
| 1207 | if (!BN_mod_add_quick(n0, &a->X, n1, p)) goto err; | ||
| 1208 | if (!BN_mod_sub_quick(n2, &a->X, n1, p)) goto err; | ||
| 1209 | if (!field_mul(group, n1, n0, n2, ctx)) goto err; | ||
| 1210 | if (!BN_mod_lshift1_quick(n0, n1, p)) goto err; | ||
| 1211 | if (!BN_mod_add_quick(n1, n0, n1, p)) goto err; | ||
| 1212 | /* n1 = 3 * (X_a + Z_a^2) * (X_a - Z_a^2) | ||
| 1213 | * = 3 * X_a^2 - 3 * Z_a^4 */ | ||
| 1214 | } | ||
| 1215 | else | ||
| 1216 | { | ||
| 1217 | if (!field_sqr(group, n0, &a->X, ctx)) goto err; | ||
| 1218 | if (!BN_mod_lshift1_quick(n1, n0, p)) goto err; | ||
| 1219 | if (!BN_mod_add_quick(n0, n0, n1, p)) goto err; | ||
| 1220 | if (!field_sqr(group, n1, &a->Z, ctx)) goto err; | ||
| 1221 | if (!field_sqr(group, n1, n1, ctx)) goto err; | ||
| 1222 | if (!field_mul(group, n1, n1, &group->a, ctx)) goto err; | ||
| 1223 | if (!BN_mod_add_quick(n1, n1, n0, p)) goto err; | ||
| 1224 | /* n1 = 3 * X_a^2 + a_curve * Z_a^4 */ | ||
| 1225 | } | ||
| 1226 | |||
| 1227 | /* Z_r */ | ||
| 1228 | if (a->Z_is_one) | ||
| 1229 | { | ||
| 1230 | if (!BN_copy(n0, &a->Y)) goto err; | ||
| 1231 | } | ||
| 1232 | else | ||
| 1233 | { | ||
| 1234 | if (!field_mul(group, n0, &a->Y, &a->Z, ctx)) goto err; | ||
| 1235 | } | ||
| 1236 | if (!BN_mod_lshift1_quick(&r->Z, n0, p)) goto err; | ||
| 1237 | r->Z_is_one = 0; | ||
| 1238 | /* Z_r = 2 * Y_a * Z_a */ | ||
| 1239 | |||
| 1240 | /* n2 */ | ||
| 1241 | if (!field_sqr(group, n3, &a->Y, ctx)) goto err; | ||
| 1242 | if (!field_mul(group, n2, &a->X, n3, ctx)) goto err; | ||
| 1243 | if (!BN_mod_lshift_quick(n2, n2, 2, p)) goto err; | ||
| 1244 | /* n2 = 4 * X_a * Y_a^2 */ | ||
| 1245 | |||
| 1246 | /* X_r */ | ||
| 1247 | if (!BN_mod_lshift1_quick(n0, n2, p)) goto err; | ||
| 1248 | if (!field_sqr(group, &r->X, n1, ctx)) goto err; | ||
| 1249 | if (!BN_mod_sub_quick(&r->X, &r->X, n0, p)) goto err; | ||
| 1250 | /* X_r = n1^2 - 2 * n2 */ | ||
| 1251 | |||
| 1252 | /* n3 */ | ||
| 1253 | if (!field_sqr(group, n0, n3, ctx)) goto err; | ||
| 1254 | if (!BN_mod_lshift_quick(n3, n0, 3, p)) goto err; | ||
| 1255 | /* n3 = 8 * Y_a^4 */ | ||
| 1256 | |||
| 1257 | /* Y_r */ | ||
| 1258 | if (!BN_mod_sub_quick(n0, n2, &r->X, p)) goto err; | ||
| 1259 | if (!field_mul(group, n0, n1, n0, ctx)) goto err; | ||
| 1260 | if (!BN_mod_sub_quick(&r->Y, n0, n3, p)) goto err; | ||
| 1261 | /* Y_r = n1 * (n2 - X_r) - n3 */ | ||
| 1262 | |||
| 1263 | ret = 1; | ||
| 1264 | |||
| 1265 | err: | ||
| 1266 | BN_CTX_end(ctx); | ||
| 1267 | if (new_ctx != NULL) | ||
| 1268 | BN_CTX_free(new_ctx); | ||
| 1269 | return ret; | ||
| 1270 | } | ||
| 1271 | |||
| 1272 | |||
| 1273 | int ec_GFp_simple_invert(const EC_GROUP *group, EC_POINT *point, BN_CTX *ctx) | ||
| 1274 | { | ||
| 1275 | if (EC_POINT_is_at_infinity(group, point) || BN_is_zero(&point->Y)) | ||
| 1276 | /* point is its own inverse */ | ||
| 1277 | return 1; | ||
| 1278 | |||
| 1279 | return BN_usub(&point->Y, &group->field, &point->Y); | ||
| 1280 | } | ||
| 1281 | |||
| 1282 | |||
| 1283 | int ec_GFp_simple_is_at_infinity(const EC_GROUP *group, const EC_POINT *point) | ||
| 1284 | { | ||
| 1285 | return BN_is_zero(&point->Z); | ||
| 1286 | } | ||
| 1287 | |||
| 1288 | |||
| 1289 | int ec_GFp_simple_is_on_curve(const EC_GROUP *group, const EC_POINT *point, BN_CTX *ctx) | ||
| 1290 | { | ||
| 1291 | int (*field_mul)(const EC_GROUP *, BIGNUM *, const BIGNUM *, const BIGNUM *, BN_CTX *); | ||
| 1292 | int (*field_sqr)(const EC_GROUP *, BIGNUM *, const BIGNUM *, BN_CTX *); | ||
| 1293 | const BIGNUM *p; | ||
| 1294 | BN_CTX *new_ctx = NULL; | ||
| 1295 | BIGNUM *rh, *tmp1, *tmp2, *Z4, *Z6; | ||
| 1296 | int ret = -1; | ||
| 1297 | |||
| 1298 | if (EC_POINT_is_at_infinity(group, point)) | ||
| 1299 | return 1; | ||
| 1300 | |||
| 1301 | field_mul = group->meth->field_mul; | ||
| 1302 | field_sqr = group->meth->field_sqr; | ||
| 1303 | p = &group->field; | ||
| 1304 | |||
| 1305 | if (ctx == NULL) | ||
| 1306 | { | ||
| 1307 | ctx = new_ctx = BN_CTX_new(); | ||
| 1308 | if (ctx == NULL) | ||
| 1309 | return -1; | ||
| 1310 | } | ||
| 1311 | |||
| 1312 | BN_CTX_start(ctx); | ||
| 1313 | rh = BN_CTX_get(ctx); | ||
| 1314 | tmp1 = BN_CTX_get(ctx); | ||
| 1315 | tmp2 = BN_CTX_get(ctx); | ||
| 1316 | Z4 = BN_CTX_get(ctx); | ||
| 1317 | Z6 = BN_CTX_get(ctx); | ||
| 1318 | if (Z6 == NULL) goto err; | ||
| 1319 | |||
| 1320 | /* We have a curve defined by a Weierstrass equation | ||
| 1321 | * y^2 = x^3 + a*x + b. | ||
| 1322 | * The point to consider is given in Jacobian projective coordinates | ||
| 1323 | * where (X, Y, Z) represents (x, y) = (X/Z^2, Y/Z^3). | ||
| 1324 | * Substituting this and multiplying by Z^6 transforms the above equation into | ||
| 1325 | * Y^2 = X^3 + a*X*Z^4 + b*Z^6. | ||
| 1326 | * To test this, we add up the right-hand side in 'rh'. | ||
| 1327 | */ | ||
| 1328 | |||
| 1329 | /* rh := X^3 */ | ||
| 1330 | if (!field_sqr(group, rh, &point->X, ctx)) goto err; | ||
| 1331 | if (!field_mul(group, rh, rh, &point->X, ctx)) goto err; | ||
| 1332 | |||
| 1333 | if (!point->Z_is_one) | ||
| 1334 | { | ||
| 1335 | if (!field_sqr(group, tmp1, &point->Z, ctx)) goto err; | ||
| 1336 | if (!field_sqr(group, Z4, tmp1, ctx)) goto err; | ||
| 1337 | if (!field_mul(group, Z6, Z4, tmp1, ctx)) goto err; | ||
| 1338 | |||
| 1339 | /* rh := rh + a*X*Z^4 */ | ||
| 1340 | if (!field_mul(group, tmp1, &point->X, Z4, ctx)) goto err; | ||
| 1341 | if (group->a_is_minus3) | ||
| 1342 | { | ||
| 1343 | if (!BN_mod_lshift1_quick(tmp2, tmp1, p)) goto err; | ||
| 1344 | if (!BN_mod_add_quick(tmp2, tmp2, tmp1, p)) goto err; | ||
| 1345 | if (!BN_mod_sub_quick(rh, rh, tmp2, p)) goto err; | ||
| 1346 | } | ||
| 1347 | else | ||
| 1348 | { | ||
| 1349 | if (!field_mul(group, tmp2, tmp1, &group->a, ctx)) goto err; | ||
| 1350 | if (!BN_mod_add_quick(rh, rh, tmp2, p)) goto err; | ||
| 1351 | } | ||
| 1352 | |||
| 1353 | /* rh := rh + b*Z^6 */ | ||
| 1354 | if (!field_mul(group, tmp1, &group->b, Z6, ctx)) goto err; | ||
| 1355 | if (!BN_mod_add_quick(rh, rh, tmp1, p)) goto err; | ||
| 1356 | } | ||
| 1357 | else | ||
| 1358 | { | ||
| 1359 | /* point->Z_is_one */ | ||
| 1360 | |||
| 1361 | /* rh := rh + a*X */ | ||
| 1362 | if (group->a_is_minus3) | ||
| 1363 | { | ||
| 1364 | if (!BN_mod_lshift1_quick(tmp2, &point->X, p)) goto err; | ||
| 1365 | if (!BN_mod_add_quick(tmp2, tmp2, &point->X, p)) goto err; | ||
| 1366 | if (!BN_mod_sub_quick(rh, rh, tmp2, p)) goto err; | ||
| 1367 | } | ||
| 1368 | else | ||
| 1369 | { | ||
| 1370 | if (!field_mul(group, tmp2, &point->X, &group->a, ctx)) goto err; | ||
| 1371 | if (!BN_mod_add_quick(rh, rh, tmp2, p)) goto err; | ||
| 1372 | } | ||
| 1373 | |||
| 1374 | /* rh := rh + b */ | ||
| 1375 | if (!BN_mod_add_quick(rh, rh, &group->b, p)) goto err; | ||
| 1376 | } | ||
| 1377 | |||
| 1378 | /* 'lh' := Y^2 */ | ||
| 1379 | if (!field_sqr(group, tmp1, &point->Y, ctx)) goto err; | ||
| 1380 | |||
| 1381 | ret = (0 == BN_cmp(tmp1, rh)); | ||
| 1382 | |||
| 1383 | err: | ||
| 1384 | BN_CTX_end(ctx); | ||
| 1385 | if (new_ctx != NULL) | ||
| 1386 | BN_CTX_free(new_ctx); | ||
| 1387 | return ret; | ||
| 1388 | } | ||
| 1389 | |||
| 1390 | |||
| 1391 | int ec_GFp_simple_cmp(const EC_GROUP *group, const EC_POINT *a, const EC_POINT *b, BN_CTX *ctx) | ||
| 1392 | { | ||
| 1393 | /* return values: | ||
| 1394 | * -1 error | ||
| 1395 | * 0 equal (in affine coordinates) | ||
| 1396 | * 1 not equal | ||
| 1397 | */ | ||
| 1398 | |||
| 1399 | int (*field_mul)(const EC_GROUP *, BIGNUM *, const BIGNUM *, const BIGNUM *, BN_CTX *); | ||
| 1400 | int (*field_sqr)(const EC_GROUP *, BIGNUM *, const BIGNUM *, BN_CTX *); | ||
| 1401 | BN_CTX *new_ctx = NULL; | ||
| 1402 | BIGNUM *tmp1, *tmp2, *Za23, *Zb23; | ||
| 1403 | const BIGNUM *tmp1_, *tmp2_; | ||
| 1404 | int ret = -1; | ||
| 1405 | |||
| 1406 | if (EC_POINT_is_at_infinity(group, a)) | ||
| 1407 | { | ||
| 1408 | return EC_POINT_is_at_infinity(group, b) ? 0 : 1; | ||
| 1409 | } | ||
| 1410 | |||
| 1411 | if (a->Z_is_one && b->Z_is_one) | ||
| 1412 | { | ||
| 1413 | return ((BN_cmp(&a->X, &b->X) == 0) && BN_cmp(&a->Y, &b->Y) == 0) ? 0 : 1; | ||
| 1414 | } | ||
| 1415 | |||
| 1416 | field_mul = group->meth->field_mul; | ||
| 1417 | field_sqr = group->meth->field_sqr; | ||
| 1418 | |||
| 1419 | if (ctx == NULL) | ||
| 1420 | { | ||
| 1421 | ctx = new_ctx = BN_CTX_new(); | ||
| 1422 | if (ctx == NULL) | ||
| 1423 | return -1; | ||
| 1424 | } | ||
| 1425 | |||
| 1426 | BN_CTX_start(ctx); | ||
| 1427 | tmp1 = BN_CTX_get(ctx); | ||
| 1428 | tmp2 = BN_CTX_get(ctx); | ||
| 1429 | Za23 = BN_CTX_get(ctx); | ||
| 1430 | Zb23 = BN_CTX_get(ctx); | ||
| 1431 | if (Zb23 == NULL) goto end; | ||
| 1432 | |||
| 1433 | /* We have to decide whether | ||
| 1434 | * (X_a/Z_a^2, Y_a/Z_a^3) = (X_b/Z_b^2, Y_b/Z_b^3), | ||
| 1435 | * or equivalently, whether | ||
| 1436 | * (X_a*Z_b^2, Y_a*Z_b^3) = (X_b*Z_a^2, Y_b*Z_a^3). | ||
| 1437 | */ | ||
| 1438 | |||
| 1439 | if (!b->Z_is_one) | ||
| 1440 | { | ||
| 1441 | if (!field_sqr(group, Zb23, &b->Z, ctx)) goto end; | ||
| 1442 | if (!field_mul(group, tmp1, &a->X, Zb23, ctx)) goto end; | ||
| 1443 | tmp1_ = tmp1; | ||
| 1444 | } | ||
| 1445 | else | ||
| 1446 | tmp1_ = &a->X; | ||
| 1447 | if (!a->Z_is_one) | ||
| 1448 | { | ||
| 1449 | if (!field_sqr(group, Za23, &a->Z, ctx)) goto end; | ||
| 1450 | if (!field_mul(group, tmp2, &b->X, Za23, ctx)) goto end; | ||
| 1451 | tmp2_ = tmp2; | ||
| 1452 | } | ||
| 1453 | else | ||
| 1454 | tmp2_ = &b->X; | ||
| 1455 | |||
| 1456 | /* compare X_a*Z_b^2 with X_b*Z_a^2 */ | ||
| 1457 | if (BN_cmp(tmp1_, tmp2_) != 0) | ||
| 1458 | { | ||
| 1459 | ret = 1; /* points differ */ | ||
| 1460 | goto end; | ||
| 1461 | } | ||
| 1462 | |||
| 1463 | |||
| 1464 | if (!b->Z_is_one) | ||
| 1465 | { | ||
| 1466 | if (!field_mul(group, Zb23, Zb23, &b->Z, ctx)) goto end; | ||
| 1467 | if (!field_mul(group, tmp1, &a->Y, Zb23, ctx)) goto end; | ||
| 1468 | /* tmp1_ = tmp1 */ | ||
| 1469 | } | ||
| 1470 | else | ||
| 1471 | tmp1_ = &a->Y; | ||
| 1472 | if (!a->Z_is_one) | ||
| 1473 | { | ||
| 1474 | if (!field_mul(group, Za23, Za23, &a->Z, ctx)) goto end; | ||
| 1475 | if (!field_mul(group, tmp2, &b->Y, Za23, ctx)) goto end; | ||
| 1476 | /* tmp2_ = tmp2 */ | ||
| 1477 | } | ||
| 1478 | else | ||
| 1479 | tmp2_ = &b->Y; | ||
| 1480 | |||
| 1481 | /* compare Y_a*Z_b^3 with Y_b*Z_a^3 */ | ||
| 1482 | if (BN_cmp(tmp1_, tmp2_) != 0) | ||
| 1483 | { | ||
| 1484 | ret = 1; /* points differ */ | ||
| 1485 | goto end; | ||
| 1486 | } | ||
| 1487 | |||
| 1488 | /* points are equal */ | ||
| 1489 | ret = 0; | ||
| 1490 | |||
| 1491 | end: | ||
| 1492 | BN_CTX_end(ctx); | ||
| 1493 | if (new_ctx != NULL) | ||
| 1494 | BN_CTX_free(new_ctx); | ||
| 1495 | return ret; | ||
| 1496 | } | ||
| 1497 | |||
| 1498 | |||
| 1499 | int ec_GFp_simple_make_affine(const EC_GROUP *group, EC_POINT *point, BN_CTX *ctx) | ||
| 1500 | { | ||
| 1501 | BN_CTX *new_ctx = NULL; | ||
| 1502 | BIGNUM *x, *y; | ||
| 1503 | int ret = 0; | ||
| 1504 | |||
| 1505 | if (point->Z_is_one || EC_POINT_is_at_infinity(group, point)) | ||
| 1506 | return 1; | ||
| 1507 | |||
| 1508 | if (ctx == NULL) | ||
| 1509 | { | ||
| 1510 | ctx = new_ctx = BN_CTX_new(); | ||
| 1511 | if (ctx == NULL) | ||
| 1512 | return 0; | ||
| 1513 | } | ||
| 1514 | |||
| 1515 | BN_CTX_start(ctx); | ||
| 1516 | x = BN_CTX_get(ctx); | ||
| 1517 | y = BN_CTX_get(ctx); | ||
| 1518 | if (y == NULL) goto err; | ||
| 1519 | |||
| 1520 | if (!EC_POINT_get_affine_coordinates_GFp(group, point, x, y, ctx)) goto err; | ||
| 1521 | if (!EC_POINT_set_affine_coordinates_GFp(group, point, x, y, ctx)) goto err; | ||
| 1522 | if (!point->Z_is_one) | ||
| 1523 | { | ||
| 1524 | ECerr(EC_F_EC_GFP_SIMPLE_MAKE_AFFINE, ERR_R_INTERNAL_ERROR); | ||
| 1525 | goto err; | ||
| 1526 | } | ||
| 1527 | |||
| 1528 | ret = 1; | ||
| 1529 | |||
| 1530 | err: | ||
| 1531 | BN_CTX_end(ctx); | ||
| 1532 | if (new_ctx != NULL) | ||
| 1533 | BN_CTX_free(new_ctx); | ||
| 1534 | return ret; | ||
| 1535 | } | ||
| 1536 | |||
| 1537 | |||
| 1538 | int ec_GFp_simple_points_make_affine(const EC_GROUP *group, size_t num, EC_POINT *points[], BN_CTX *ctx) | ||
| 1539 | { | ||
| 1540 | BN_CTX *new_ctx = NULL; | ||
| 1541 | BIGNUM *tmp0, *tmp1; | ||
| 1542 | size_t pow2 = 0; | ||
| 1543 | BIGNUM **heap = NULL; | ||
| 1544 | size_t i; | ||
| 1545 | int ret = 0; | ||
| 1546 | |||
| 1547 | if (num == 0) | ||
| 1548 | return 1; | ||
| 1549 | |||
| 1550 | if (ctx == NULL) | ||
| 1551 | { | ||
| 1552 | ctx = new_ctx = BN_CTX_new(); | ||
| 1553 | if (ctx == NULL) | ||
| 1554 | return 0; | ||
| 1555 | } | ||
| 1556 | |||
| 1557 | BN_CTX_start(ctx); | ||
| 1558 | tmp0 = BN_CTX_get(ctx); | ||
| 1559 | tmp1 = BN_CTX_get(ctx); | ||
| 1560 | if (tmp0 == NULL || tmp1 == NULL) goto err; | ||
| 1561 | |||
| 1562 | /* Before converting the individual points, compute inverses of all Z values. | ||
| 1563 | * Modular inversion is rather slow, but luckily we can do with a single | ||
| 1564 | * explicit inversion, plus about 3 multiplications per input value. | ||
| 1565 | */ | ||
| 1566 | |||
| 1567 | pow2 = 1; | ||
| 1568 | while (num > pow2) | ||
| 1569 | pow2 <<= 1; | ||
| 1570 | /* Now pow2 is the smallest power of 2 satifsying pow2 >= num. | ||
| 1571 | * We need twice that. */ | ||
| 1572 | pow2 <<= 1; | ||
| 1573 | |||
| 1574 | heap = OPENSSL_malloc(pow2 * sizeof heap[0]); | ||
| 1575 | if (heap == NULL) goto err; | ||
| 1576 | |||
| 1577 | /* The array is used as a binary tree, exactly as in heapsort: | ||
| 1578 | * | ||
| 1579 | * heap[1] | ||
| 1580 | * heap[2] heap[3] | ||
| 1581 | * heap[4] heap[5] heap[6] heap[7] | ||
| 1582 | * heap[8]heap[9] heap[10]heap[11] heap[12]heap[13] heap[14] heap[15] | ||
| 1583 | * | ||
| 1584 | * We put the Z's in the last line; | ||
| 1585 | * then we set each other node to the product of its two child-nodes (where | ||
| 1586 | * empty or 0 entries are treated as ones); | ||
| 1587 | * then we invert heap[1]; | ||
| 1588 | * then we invert each other node by replacing it by the product of its | ||
| 1589 | * parent (after inversion) and its sibling (before inversion). | ||
| 1590 | */ | ||
| 1591 | heap[0] = NULL; | ||
| 1592 | for (i = pow2/2 - 1; i > 0; i--) | ||
| 1593 | heap[i] = NULL; | ||
| 1594 | for (i = 0; i < num; i++) | ||
| 1595 | heap[pow2/2 + i] = &points[i]->Z; | ||
| 1596 | for (i = pow2/2 + num; i < pow2; i++) | ||
| 1597 | heap[i] = NULL; | ||
| 1598 | |||
| 1599 | /* set each node to the product of its children */ | ||
| 1600 | for (i = pow2/2 - 1; i > 0; i--) | ||
| 1601 | { | ||
| 1602 | heap[i] = BN_new(); | ||
| 1603 | if (heap[i] == NULL) goto err; | ||
| 1604 | |||
| 1605 | if (heap[2*i] != NULL) | ||
| 1606 | { | ||
| 1607 | if ((heap[2*i + 1] == NULL) || BN_is_zero(heap[2*i + 1])) | ||
| 1608 | { | ||
| 1609 | if (!BN_copy(heap[i], heap[2*i])) goto err; | ||
| 1610 | } | ||
| 1611 | else | ||
| 1612 | { | ||
| 1613 | if (BN_is_zero(heap[2*i])) | ||
| 1614 | { | ||
| 1615 | if (!BN_copy(heap[i], heap[2*i + 1])) goto err; | ||
| 1616 | } | ||
| 1617 | else | ||
| 1618 | { | ||
| 1619 | if (!group->meth->field_mul(group, heap[i], | ||
| 1620 | heap[2*i], heap[2*i + 1], ctx)) goto err; | ||
| 1621 | } | ||
| 1622 | } | ||
| 1623 | } | ||
| 1624 | } | ||
| 1625 | |||
| 1626 | /* invert heap[1] */ | ||
| 1627 | if (!BN_is_zero(heap[1])) | ||
| 1628 | { | ||
| 1629 | if (!BN_mod_inverse(heap[1], heap[1], &group->field, ctx)) | ||
| 1630 | { | ||
| 1631 | ECerr(EC_F_EC_GFP_SIMPLE_POINTS_MAKE_AFFINE, ERR_R_BN_LIB); | ||
| 1632 | goto err; | ||
| 1633 | } | ||
| 1634 | } | ||
| 1635 | if (group->meth->field_encode != 0) | ||
| 1636 | { | ||
| 1637 | /* in the Montgomery case, we just turned R*H (representing H) | ||
| 1638 | * into 1/(R*H), but we need R*(1/H) (representing 1/H); | ||
| 1639 | * i.e. we have need to multiply by the Montgomery factor twice */ | ||
| 1640 | if (!group->meth->field_encode(group, heap[1], heap[1], ctx)) goto err; | ||
| 1641 | if (!group->meth->field_encode(group, heap[1], heap[1], ctx)) goto err; | ||
| 1642 | } | ||
| 1643 | |||
| 1644 | /* set other heap[i]'s to their inverses */ | ||
| 1645 | for (i = 2; i < pow2/2 + num; i += 2) | ||
| 1646 | { | ||
| 1647 | /* i is even */ | ||
| 1648 | if ((heap[i + 1] != NULL) && !BN_is_zero(heap[i + 1])) | ||
| 1649 | { | ||
| 1650 | if (!group->meth->field_mul(group, tmp0, heap[i/2], heap[i + 1], ctx)) goto err; | ||
| 1651 | if (!group->meth->field_mul(group, tmp1, heap[i/2], heap[i], ctx)) goto err; | ||
| 1652 | if (!BN_copy(heap[i], tmp0)) goto err; | ||
| 1653 | if (!BN_copy(heap[i + 1], tmp1)) goto err; | ||
| 1654 | } | ||
| 1655 | else | ||
| 1656 | { | ||
| 1657 | if (!BN_copy(heap[i], heap[i/2])) goto err; | ||
| 1658 | } | ||
| 1659 | } | ||
| 1660 | |||
| 1661 | /* we have replaced all non-zero Z's by their inverses, now fix up all the points */ | ||
| 1662 | for (i = 0; i < num; i++) | ||
| 1663 | { | ||
| 1664 | EC_POINT *p = points[i]; | ||
| 1665 | |||
| 1666 | if (!BN_is_zero(&p->Z)) | ||
| 1667 | { | ||
| 1668 | /* turn (X, Y, 1/Z) into (X/Z^2, Y/Z^3, 1) */ | ||
| 1669 | |||
| 1670 | if (!group->meth->field_sqr(group, tmp1, &p->Z, ctx)) goto err; | ||
| 1671 | if (!group->meth->field_mul(group, &p->X, &p->X, tmp1, ctx)) goto err; | ||
| 1672 | |||
| 1673 | if (!group->meth->field_mul(group, tmp1, tmp1, &p->Z, ctx)) goto err; | ||
| 1674 | if (!group->meth->field_mul(group, &p->Y, &p->Y, tmp1, ctx)) goto err; | ||
| 1675 | |||
| 1676 | if (group->meth->field_set_to_one != 0) | ||
| 1677 | { | ||
| 1678 | if (!group->meth->field_set_to_one(group, &p->Z, ctx)) goto err; | ||
| 1679 | } | ||
| 1680 | else | ||
| 1681 | { | ||
| 1682 | if (!BN_one(&p->Z)) goto err; | ||
| 1683 | } | ||
| 1684 | p->Z_is_one = 1; | ||
| 1685 | } | ||
| 1686 | } | ||
| 1687 | |||
| 1688 | ret = 1; | ||
| 1689 | |||
| 1690 | err: | ||
| 1691 | BN_CTX_end(ctx); | ||
| 1692 | if (new_ctx != NULL) | ||
| 1693 | BN_CTX_free(new_ctx); | ||
| 1694 | if (heap != NULL) | ||
| 1695 | { | ||
| 1696 | /* heap[pow2/2] .. heap[pow2-1] have not been allocated locally! */ | ||
| 1697 | for (i = pow2/2 - 1; i > 0; i--) | ||
| 1698 | { | ||
| 1699 | if (heap[i] != NULL) | ||
| 1700 | BN_clear_free(heap[i]); | ||
| 1701 | } | ||
| 1702 | OPENSSL_free(heap); | ||
| 1703 | } | ||
| 1704 | return ret; | ||
| 1705 | } | ||
| 1706 | |||
| 1707 | |||
| 1708 | int ec_GFp_simple_field_mul(const EC_GROUP *group, BIGNUM *r, const BIGNUM *a, const BIGNUM *b, BN_CTX *ctx) | ||
| 1709 | { | ||
| 1710 | return BN_mod_mul(r, a, b, &group->field, ctx); | ||
| 1711 | } | ||
| 1712 | |||
| 1713 | |||
| 1714 | int ec_GFp_simple_field_sqr(const EC_GROUP *group, BIGNUM *r, const BIGNUM *a, BN_CTX *ctx) | ||
| 1715 | { | ||
| 1716 | return BN_mod_sqr(r, a, &group->field, ctx); | ||
| 1717 | } | ||
