diff options
Diffstat (limited to 'src/lib/libcrypto/ec/ecp_smpl.c')
| -rw-r--r-- | src/lib/libcrypto/ec/ecp_smpl.c | 274 |
1 files changed, 13 insertions, 261 deletions
diff --git a/src/lib/libcrypto/ec/ecp_smpl.c b/src/lib/libcrypto/ec/ecp_smpl.c index 57e8345364..1fe55307b4 100644 --- a/src/lib/libcrypto/ec/ecp_smpl.c +++ b/src/lib/libcrypto/ec/ecp_smpl.c | |||
| @@ -1,4 +1,4 @@ | |||
| 1 | /* $OpenBSD: ecp_smpl.c,v 1.19 2018/07/10 22:06:14 tb Exp $ */ | 1 | /* $OpenBSD: ecp_smpl.c,v 1.20 2018/07/15 05:38:48 jsg Exp $ */ |
| 2 | /* Includes code written by Lenka Fibikova <fibikova@exp-math.uni-essen.de> | 2 | /* Includes code written by Lenka Fibikova <fibikova@exp-math.uni-essen.de> |
| 3 | * for the OpenSSL project. | 3 | * for the OpenSSL project. |
| 4 | * Includes code written by Bodo Moeller for the OpenSSL project. | 4 | * Includes code written by Bodo Moeller for the OpenSSL project. |
| @@ -103,9 +103,6 @@ EC_GFp_simple_method(void) | |||
| 103 | .point_cmp = ec_GFp_simple_cmp, | 103 | .point_cmp = ec_GFp_simple_cmp, |
| 104 | .make_affine = ec_GFp_simple_make_affine, | 104 | .make_affine = ec_GFp_simple_make_affine, |
| 105 | .points_make_affine = ec_GFp_simple_points_make_affine, | 105 | .points_make_affine = ec_GFp_simple_points_make_affine, |
| 106 | .mul_generator_ct = ec_GFp_simple_mul_generator_ct, | ||
| 107 | .mul_single_ct = ec_GFp_simple_mul_single_ct, | ||
| 108 | .mul_double_nonct = ec_GFp_simple_mul_double_nonct, | ||
| 109 | .field_mul = ec_GFp_simple_field_mul, | 106 | .field_mul = ec_GFp_simple_field_mul, |
| 110 | .field_sqr = ec_GFp_simple_field_sqr | 107 | .field_sqr = ec_GFp_simple_field_sqr |
| 111 | }; | 108 | }; |
| @@ -223,7 +220,7 @@ ec_GFp_simple_group_set_curve(EC_GROUP * group, | |||
| 223 | 220 | ||
| 224 | ret = 1; | 221 | ret = 1; |
| 225 | 222 | ||
| 226 | err: | 223 | err: |
| 227 | BN_CTX_end(ctx); | 224 | BN_CTX_end(ctx); |
| 228 | BN_CTX_free(new_ctx); | 225 | BN_CTX_free(new_ctx); |
| 229 | return ret; | 226 | return ret; |
| @@ -268,7 +265,7 @@ ec_GFp_simple_group_get_curve(const EC_GROUP * group, BIGNUM * p, BIGNUM * a, BI | |||
| 268 | } | 265 | } |
| 269 | ret = 1; | 266 | ret = 1; |
| 270 | 267 | ||
| 271 | err: | 268 | err: |
| 272 | BN_CTX_free(new_ctx); | 269 | BN_CTX_free(new_ctx); |
| 273 | return ret; | 270 | return ret; |
| 274 | } | 271 | } |
| @@ -349,7 +346,7 @@ ec_GFp_simple_group_check_discriminant(const EC_GROUP * group, BN_CTX * ctx) | |||
| 349 | } | 346 | } |
| 350 | ret = 1; | 347 | ret = 1; |
| 351 | 348 | ||
| 352 | err: | 349 | err: |
| 353 | if (ctx != NULL) | 350 | if (ctx != NULL) |
| 354 | BN_CTX_end(ctx); | 351 | BN_CTX_end(ctx); |
| 355 | BN_CTX_free(new_ctx); | 352 | BN_CTX_free(new_ctx); |
| @@ -459,7 +456,7 @@ ec_GFp_simple_set_Jprojective_coordinates_GFp(const EC_GROUP * group, EC_POINT * | |||
| 459 | } | 456 | } |
| 460 | ret = 1; | 457 | ret = 1; |
| 461 | 458 | ||
| 462 | err: | 459 | err: |
| 463 | BN_CTX_free(new_ctx); | 460 | BN_CTX_free(new_ctx); |
| 464 | return ret; | 461 | return ret; |
| 465 | } | 462 | } |
| @@ -507,7 +504,7 @@ ec_GFp_simple_get_Jprojective_coordinates_GFp(const EC_GROUP * group, const EC_P | |||
| 507 | 504 | ||
| 508 | ret = 1; | 505 | ret = 1; |
| 509 | 506 | ||
| 510 | err: | 507 | err: |
| 511 | BN_CTX_free(new_ctx); | 508 | BN_CTX_free(new_ctx); |
| 512 | return ret; | 509 | return ret; |
| 513 | } | 510 | } |
| @@ -627,7 +624,7 @@ ec_GFp_simple_point_get_affine_coordinates(const EC_GROUP * group, const EC_POIN | |||
| 627 | 624 | ||
| 628 | ret = 1; | 625 | ret = 1; |
| 629 | 626 | ||
| 630 | err: | 627 | err: |
| 631 | BN_CTX_end(ctx); | 628 | BN_CTX_end(ctx); |
| 632 | BN_CTX_free(new_ctx); | 629 | BN_CTX_free(new_ctx); |
| 633 | return ret; | 630 | return ret; |
| @@ -814,7 +811,7 @@ ec_GFp_simple_add(const EC_GROUP * group, EC_POINT * r, const EC_POINT * a, cons | |||
| 814 | 811 | ||
| 815 | ret = 1; | 812 | ret = 1; |
| 816 | 813 | ||
| 817 | end: | 814 | end: |
| 818 | if (ctx) /* otherwise we already called BN_CTX_end */ | 815 | if (ctx) /* otherwise we already called BN_CTX_end */ |
| 819 | BN_CTX_end(ctx); | 816 | BN_CTX_end(ctx); |
| 820 | BN_CTX_free(new_ctx); | 817 | BN_CTX_free(new_ctx); |
| @@ -957,7 +954,7 @@ ec_GFp_simple_dbl(const EC_GROUP * group, EC_POINT * r, const EC_POINT * a, BN_C | |||
| 957 | 954 | ||
| 958 | ret = 1; | 955 | ret = 1; |
| 959 | 956 | ||
| 960 | err: | 957 | err: |
| 961 | BN_CTX_end(ctx); | 958 | BN_CTX_end(ctx); |
| 962 | BN_CTX_free(new_ctx); | 959 | BN_CTX_free(new_ctx); |
| 963 | return ret; | 960 | return ret; |
| @@ -1078,7 +1075,7 @@ ec_GFp_simple_is_on_curve(const EC_GROUP * group, const EC_POINT * point, BN_CTX | |||
| 1078 | 1075 | ||
| 1079 | ret = (0 == BN_ucmp(tmp, rh)); | 1076 | ret = (0 == BN_ucmp(tmp, rh)); |
| 1080 | 1077 | ||
| 1081 | err: | 1078 | err: |
| 1082 | BN_CTX_end(ctx); | 1079 | BN_CTX_end(ctx); |
| 1083 | BN_CTX_free(new_ctx); | 1080 | BN_CTX_free(new_ctx); |
| 1084 | return ret; | 1081 | return ret; |
| @@ -1180,7 +1177,7 @@ ec_GFp_simple_cmp(const EC_GROUP * group, const EC_POINT * a, const EC_POINT * b | |||
| 1180 | /* points are equal */ | 1177 | /* points are equal */ |
| 1181 | ret = 0; | 1178 | ret = 0; |
| 1182 | 1179 | ||
| 1183 | end: | 1180 | end: |
| 1184 | BN_CTX_end(ctx); | 1181 | BN_CTX_end(ctx); |
| 1185 | BN_CTX_free(new_ctx); | 1182 | BN_CTX_free(new_ctx); |
| 1186 | return ret; | 1183 | return ret; |
| @@ -1218,7 +1215,7 @@ ec_GFp_simple_make_affine(const EC_GROUP * group, EC_POINT * point, BN_CTX * ctx | |||
| 1218 | } | 1215 | } |
| 1219 | ret = 1; | 1216 | ret = 1; |
| 1220 | 1217 | ||
| 1221 | err: | 1218 | err: |
| 1222 | BN_CTX_end(ctx); | 1219 | BN_CTX_end(ctx); |
| 1223 | BN_CTX_free(new_ctx); | 1220 | BN_CTX_free(new_ctx); |
| 1224 | return ret; | 1221 | return ret; |
| @@ -1383,7 +1380,7 @@ ec_GFp_simple_points_make_affine(const EC_GROUP * group, size_t num, EC_POINT * | |||
| 1383 | 1380 | ||
| 1384 | ret = 1; | 1381 | ret = 1; |
| 1385 | 1382 | ||
| 1386 | err: | 1383 | err: |
| 1387 | BN_CTX_end(ctx); | 1384 | BN_CTX_end(ctx); |
| 1388 | BN_CTX_free(new_ctx); | 1385 | BN_CTX_free(new_ctx); |
| 1389 | if (heap != NULL) { | 1386 | if (heap != NULL) { |
| @@ -1412,248 +1409,3 @@ ec_GFp_simple_field_sqr(const EC_GROUP * group, BIGNUM * r, const BIGNUM * a, BN | |||
| 1412 | { | 1409 | { |
| 1413 | return BN_mod_sqr(r, a, &group->field, ctx); | 1410 | return BN_mod_sqr(r, a, &group->field, ctx); |
| 1414 | } | 1411 | } |
| 1415 | |||
| 1416 | #define EC_POINT_BN_set_flags(P, flags) do { \ | ||
| 1417 | BN_set_flags(&(P)->X, (flags)); \ | ||
| 1418 | BN_set_flags(&(P)->Y, (flags)); \ | ||
| 1419 | BN_set_flags(&(P)->Z, (flags)); \ | ||
| 1420 | } while(0) | ||
| 1421 | |||
| 1422 | #define EC_POINT_CSWAP(c, a, b, w, t) do { \ | ||
| 1423 | if (!BN_swap_ct(c, &(a)->X, &(b)->X, w) || \ | ||
| 1424 | !BN_swap_ct(c, &(a)->Y, &(b)->Y, w) || \ | ||
| 1425 | !BN_swap_ct(c, &(a)->Z, &(b)->Z, w)) \ | ||
| 1426 | goto err; \ | ||
| 1427 | t = ((a)->Z_is_one ^ (b)->Z_is_one) & (c); \ | ||
| 1428 | (a)->Z_is_one ^= (t); \ | ||
| 1429 | (b)->Z_is_one ^= (t); \ | ||
| 1430 | } while(0) | ||
| 1431 | |||
| 1432 | /* | ||
| 1433 | * This function computes (in constant time) a point multiplication over the | ||
| 1434 | * EC group. | ||
| 1435 | * | ||
| 1436 | * At a high level, it is Montgomery ladder with conditional swaps. | ||
| 1437 | * | ||
| 1438 | * It performs either a fixed point multiplication | ||
| 1439 | * (scalar * generator) | ||
| 1440 | * when point is NULL, or a variable point multiplication | ||
| 1441 | * (scalar * point) | ||
| 1442 | * when point is not NULL. | ||
| 1443 | * | ||
| 1444 | * scalar should be in the range [0,n) otherwise all constant time bets are off. | ||
| 1445 | * | ||
| 1446 | * NB: This says nothing about EC_POINT_add and EC_POINT_dbl, | ||
| 1447 | * which of course are not constant time themselves. | ||
| 1448 | * | ||
| 1449 | * The product is stored in r. | ||
| 1450 | * | ||
| 1451 | * Returns 1 on success, 0 otherwise. | ||
| 1452 | */ | ||
| 1453 | static int | ||
| 1454 | ec_GFp_simple_mul_ct(const EC_GROUP *group, EC_POINT *r, const BIGNUM *scalar, | ||
| 1455 | const EC_POINT *point, BN_CTX *ctx) | ||
| 1456 | { | ||
| 1457 | int i, cardinality_bits, group_top, kbit, pbit, Z_is_one; | ||
| 1458 | EC_POINT *s = NULL; | ||
| 1459 | BIGNUM *k = NULL; | ||
| 1460 | BIGNUM *lambda = NULL; | ||
| 1461 | BIGNUM *cardinality = NULL; | ||
| 1462 | BN_CTX *new_ctx = NULL; | ||
| 1463 | int ret = 0; | ||
| 1464 | |||
| 1465 | if (ctx == NULL && (ctx = new_ctx = BN_CTX_new()) == NULL) | ||
| 1466 | return 0; | ||
| 1467 | |||
| 1468 | BN_CTX_start(ctx); | ||
| 1469 | |||
| 1470 | if ((s = EC_POINT_new(group)) == NULL) | ||
| 1471 | goto err; | ||
| 1472 | |||
| 1473 | if (point == NULL) { | ||
| 1474 | if (!EC_POINT_copy(s, group->generator)) | ||
| 1475 | goto err; | ||
| 1476 | } else { | ||
| 1477 | if (!EC_POINT_copy(s, point)) | ||
| 1478 | goto err; | ||
| 1479 | } | ||
| 1480 | |||
| 1481 | EC_POINT_BN_set_flags(s, BN_FLG_CONSTTIME); | ||
| 1482 | |||
| 1483 | if ((cardinality = BN_CTX_get(ctx)) == NULL) | ||
| 1484 | goto err; | ||
| 1485 | if ((lambda = BN_CTX_get(ctx)) == NULL) | ||
| 1486 | goto err; | ||
| 1487 | if ((k = BN_CTX_get(ctx)) == NULL) | ||
| 1488 | goto err; | ||
| 1489 | if (!BN_mul(cardinality, &group->order, &group->cofactor, ctx)) | ||
| 1490 | goto err; | ||
| 1491 | |||
| 1492 | /* | ||
| 1493 | * Group cardinalities are often on a word boundary. | ||
| 1494 | * So when we pad the scalar, some timing diff might | ||
| 1495 | * pop if it needs to be expanded due to carries. | ||
| 1496 | * So expand ahead of time. | ||
| 1497 | */ | ||
| 1498 | cardinality_bits = BN_num_bits(cardinality); | ||
| 1499 | group_top = cardinality->top; | ||
| 1500 | if ((bn_wexpand(k, group_top + 1) == NULL) || | ||
| 1501 | (bn_wexpand(lambda, group_top + 1) == NULL)) | ||
| 1502 | goto err; | ||
| 1503 | |||
| 1504 | if (!BN_copy(k, scalar)) | ||
| 1505 | goto err; | ||
| 1506 | |||
| 1507 | BN_set_flags(k, BN_FLG_CONSTTIME); | ||
| 1508 | |||
| 1509 | if (BN_num_bits(k) > cardinality_bits || BN_is_negative(k)) { | ||
| 1510 | /* | ||
| 1511 | * This is an unusual input, and we don't guarantee | ||
| 1512 | * constant-timeness | ||
| 1513 | */ | ||
| 1514 | if (!BN_nnmod(k, k, cardinality, ctx)) | ||
| 1515 | goto err; | ||
| 1516 | } | ||
| 1517 | |||
| 1518 | if (!BN_add(lambda, k, cardinality)) | ||
| 1519 | goto err; | ||
| 1520 | BN_set_flags(lambda, BN_FLG_CONSTTIME); | ||
| 1521 | if (!BN_add(k, lambda, cardinality)) | ||
| 1522 | goto err; | ||
| 1523 | /* | ||
| 1524 | * lambda := scalar + cardinality | ||
| 1525 | * k := scalar + 2*cardinality | ||
| 1526 | */ | ||
| 1527 | kbit = BN_is_bit_set(lambda, cardinality_bits); | ||
| 1528 | if (!BN_swap_ct(kbit, k, lambda, group_top + 1)) | ||
| 1529 | goto err; | ||
| 1530 | |||
| 1531 | group_top = group->field.top; | ||
| 1532 | if ((bn_wexpand(&s->X, group_top) == NULL) || | ||
| 1533 | (bn_wexpand(&s->Y, group_top) == NULL) || | ||
| 1534 | (bn_wexpand(&s->Z, group_top) == NULL) || | ||
| 1535 | (bn_wexpand(&r->X, group_top) == NULL) || | ||
| 1536 | (bn_wexpand(&r->Y, group_top) == NULL) || | ||
| 1537 | (bn_wexpand(&r->Z, group_top) == NULL)) | ||
| 1538 | goto err; | ||
| 1539 | |||
| 1540 | /* top bit is a 1, in a fixed pos */ | ||
| 1541 | if (!EC_POINT_copy(r, s)) | ||
| 1542 | goto err; | ||
| 1543 | |||
| 1544 | EC_POINT_BN_set_flags(r, BN_FLG_CONSTTIME); | ||
| 1545 | |||
| 1546 | if (!EC_POINT_dbl(group, s, s, ctx)) | ||
| 1547 | goto err; | ||
| 1548 | |||
| 1549 | pbit = 0; | ||
| 1550 | |||
| 1551 | /* | ||
| 1552 | * The ladder step, with branches, is | ||
| 1553 | * | ||
| 1554 | * k[i] == 0: S = add(R, S), R = dbl(R) | ||
| 1555 | * k[i] == 1: R = add(S, R), S = dbl(S) | ||
| 1556 | * | ||
| 1557 | * Swapping R, S conditionally on k[i] leaves you with state | ||
| 1558 | * | ||
| 1559 | * k[i] == 0: T, U = R, S | ||
| 1560 | * k[i] == 1: T, U = S, R | ||
| 1561 | * | ||
| 1562 | * Then perform the ECC ops. | ||
| 1563 | * | ||
| 1564 | * U = add(T, U) | ||
| 1565 | * T = dbl(T) | ||
| 1566 | * | ||
| 1567 | * Which leaves you with state | ||
| 1568 | * | ||
| 1569 | * k[i] == 0: U = add(R, S), T = dbl(R) | ||
| 1570 | * k[i] == 1: U = add(S, R), T = dbl(S) | ||
| 1571 | * | ||
| 1572 | * Swapping T, U conditionally on k[i] leaves you with state | ||
| 1573 | * | ||
| 1574 | * k[i] == 0: R, S = T, U | ||
| 1575 | * k[i] == 1: R, S = U, T | ||
| 1576 | * | ||
| 1577 | * Which leaves you with state | ||
| 1578 | * | ||
| 1579 | * k[i] == 0: S = add(R, S), R = dbl(R) | ||
| 1580 | * k[i] == 1: R = add(S, R), S = dbl(S) | ||
| 1581 | * | ||
| 1582 | * So we get the same logic, but instead of a branch it's a | ||
| 1583 | * conditional swap, followed by ECC ops, then another conditional swap. | ||
| 1584 | * | ||
| 1585 | * Optimization: The end of iteration i and start of i-1 looks like | ||
| 1586 | * | ||
| 1587 | * ... | ||
| 1588 | * CSWAP(k[i], R, S) | ||
| 1589 | * ECC | ||
| 1590 | * CSWAP(k[i], R, S) | ||
| 1591 | * (next iteration) | ||
| 1592 | * CSWAP(k[i-1], R, S) | ||
| 1593 | * ECC | ||
| 1594 | * CSWAP(k[i-1], R, S) | ||
| 1595 | * ... | ||
| 1596 | * | ||
| 1597 | * So instead of two contiguous swaps, you can merge the condition | ||
| 1598 | * bits and do a single swap. | ||
| 1599 | * | ||
| 1600 | * k[i] k[i-1] Outcome | ||
| 1601 | * 0 0 No Swap | ||
| 1602 | * 0 1 Swap | ||
| 1603 | * 1 0 Swap | ||
| 1604 | * 1 1 No Swap | ||
| 1605 | * | ||
| 1606 | * This is XOR. pbit tracks the previous bit of k. | ||
| 1607 | */ | ||
| 1608 | |||
| 1609 | for (i = cardinality_bits - 1; i >= 0; i--) { | ||
| 1610 | kbit = BN_is_bit_set(k, i) ^ pbit; | ||
| 1611 | EC_POINT_CSWAP(kbit, r, s, group_top, Z_is_one); | ||
| 1612 | if (!EC_POINT_add(group, s, r, s, ctx)) | ||
| 1613 | goto err; | ||
| 1614 | if (!EC_POINT_dbl(group, r, r, ctx)) | ||
| 1615 | goto err; | ||
| 1616 | /* | ||
| 1617 | * pbit logic merges this cswap with that of the | ||
| 1618 | * next iteration | ||
| 1619 | */ | ||
| 1620 | pbit ^= kbit; | ||
| 1621 | } | ||
| 1622 | /* one final cswap to move the right value into r */ | ||
| 1623 | EC_POINT_CSWAP(pbit, r, s, group_top, Z_is_one); | ||
| 1624 | |||
| 1625 | ret = 1; | ||
| 1626 | |||
| 1627 | err: | ||
| 1628 | EC_POINT_free(s); | ||
| 1629 | if (ctx != NULL) | ||
| 1630 | BN_CTX_end(ctx); | ||
| 1631 | BN_CTX_free(new_ctx); | ||
| 1632 | |||
| 1633 | return ret; | ||
| 1634 | } | ||
| 1635 | |||
| 1636 | #undef EC_POINT_BN_set_flags | ||
| 1637 | #undef EC_POINT_CSWAP | ||
| 1638 | |||
| 1639 | int | ||
| 1640 | ec_GFp_simple_mul_generator_ct(const EC_GROUP *group, EC_POINT *r, | ||
| 1641 | const BIGNUM *scalar, BN_CTX *ctx) | ||
| 1642 | { | ||
| 1643 | return ec_GFp_simple_mul_ct(group, r, scalar, NULL, ctx); | ||
| 1644 | } | ||
| 1645 | |||
| 1646 | int | ||
| 1647 | ec_GFp_simple_mul_single_ct(const EC_GROUP *group, EC_POINT *r, | ||
| 1648 | const BIGNUM *scalar, const EC_POINT *point, BN_CTX *ctx) | ||
| 1649 | { | ||
| 1650 | return ec_GFp_simple_mul_ct(group, r, scalar, point, ctx); | ||
| 1651 | } | ||
| 1652 | |||
| 1653 | int | ||
| 1654 | ec_GFp_simple_mul_double_nonct(const EC_GROUP *group, EC_POINT *r, | ||
| 1655 | const BIGNUM *g_scalar, const BIGNUM *p_scalar, const EC_POINT *point, | ||
| 1656 | BN_CTX *ctx) | ||
| 1657 | { | ||
| 1658 | return ec_wNAF_mul(group, r, g_scalar, 1, &point, &p_scalar, ctx); | ||
| 1659 | } | ||
