diff options
Diffstat (limited to '')
39 files changed, 0 insertions, 23875 deletions
diff --git a/src/lib/libcrypto/ec/ec.h b/src/lib/libcrypto/ec/ec.h deleted file mode 100644 index a1ece2e0d5..0000000000 --- a/src/lib/libcrypto/ec/ec.h +++ /dev/null | |||
@@ -1,1163 +0,0 @@ | |||
1 | /* $OpenBSD: ec.h,v 1.11 2015/10/13 15:25:18 jsing Exp $ */ | ||
2 | /* | ||
3 | * Originally written by Bodo Moeller for the OpenSSL project. | ||
4 | */ | ||
5 | /** | ||
6 | * \file crypto/ec/ec.h Include file for the OpenSSL EC functions | ||
7 | * \author Originally written by Bodo Moeller for the OpenSSL project | ||
8 | */ | ||
9 | /* ==================================================================== | ||
10 | * Copyright (c) 1998-2005 The OpenSSL Project. All rights reserved. | ||
11 | * | ||
12 | * Redistribution and use in source and binary forms, with or without | ||
13 | * modification, are permitted provided that the following conditions | ||
14 | * are met: | ||
15 | * | ||
16 | * 1. Redistributions of source code must retain the above copyright | ||
17 | * notice, this list of conditions and the following disclaimer. | ||
18 | * | ||
19 | * 2. Redistributions in binary form must reproduce the above copyright | ||
20 | * notice, this list of conditions and the following disclaimer in | ||
21 | * the documentation and/or other materials provided with the | ||
22 | * distribution. | ||
23 | * | ||
24 | * 3. All advertising materials mentioning features or use of this | ||
25 | * software must display the following acknowledgment: | ||
26 | * "This product includes software developed by the OpenSSL Project | ||
27 | * for use in the OpenSSL Toolkit. (http://www.openssl.org/)" | ||
28 | * | ||
29 | * 4. The names "OpenSSL Toolkit" and "OpenSSL Project" must not be used to | ||
30 | * endorse or promote products derived from this software without | ||
31 | * prior written permission. For written permission, please contact | ||
32 | * openssl-core@openssl.org. | ||
33 | * | ||
34 | * 5. Products derived from this software may not be called "OpenSSL" | ||
35 | * nor may "OpenSSL" appear in their names without prior written | ||
36 | * permission of the OpenSSL Project. | ||
37 | * | ||
38 | * 6. Redistributions of any form whatsoever must retain the following | ||
39 | * acknowledgment: | ||
40 | * "This product includes software developed by the OpenSSL Project | ||
41 | * for use in the OpenSSL Toolkit (http://www.openssl.org/)" | ||
42 | * | ||
43 | * THIS SOFTWARE IS PROVIDED BY THE OpenSSL PROJECT ``AS IS'' AND ANY | ||
44 | * EXPRESSED OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE | ||
45 | * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR | ||
46 | * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE OpenSSL PROJECT OR | ||
47 | * ITS CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, | ||
48 | * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT | ||
49 | * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; | ||
50 | * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) | ||
51 | * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, | ||
52 | * STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) | ||
53 | * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED | ||
54 | * OF THE POSSIBILITY OF SUCH DAMAGE. | ||
55 | * ==================================================================== | ||
56 | * | ||
57 | * This product includes cryptographic software written by Eric Young | ||
58 | * (eay@cryptsoft.com). This product includes software written by Tim | ||
59 | * Hudson (tjh@cryptsoft.com). | ||
60 | * | ||
61 | */ | ||
62 | /* ==================================================================== | ||
63 | * Copyright 2002 Sun Microsystems, Inc. ALL RIGHTS RESERVED. | ||
64 | * | ||
65 | * Portions of the attached software ("Contribution") are developed by | ||
66 | * SUN MICROSYSTEMS, INC., and are contributed to the OpenSSL project. | ||
67 | * | ||
68 | * The Contribution is licensed pursuant to the OpenSSL open source | ||
69 | * license provided above. | ||
70 | * | ||
71 | * The elliptic curve binary polynomial software is originally written by | ||
72 | * Sheueling Chang Shantz and Douglas Stebila of Sun Microsystems Laboratories. | ||
73 | * | ||
74 | */ | ||
75 | |||
76 | #ifndef HEADER_EC_H | ||
77 | #define HEADER_EC_H | ||
78 | |||
79 | #include <openssl/opensslconf.h> | ||
80 | |||
81 | #ifdef OPENSSL_NO_EC | ||
82 | #error EC is disabled. | ||
83 | #endif | ||
84 | |||
85 | #include <openssl/asn1.h> | ||
86 | #ifndef OPENSSL_NO_DEPRECATED | ||
87 | #include <openssl/bn.h> | ||
88 | #endif | ||
89 | |||
90 | #ifdef __cplusplus | ||
91 | extern "C" { | ||
92 | #elif defined(__SUNPRO_C) | ||
93 | # if __SUNPRO_C >= 0x520 | ||
94 | # pragma error_messages (off,E_ARRAY_OF_INCOMPLETE_NONAME,E_ARRAY_OF_INCOMPLETE) | ||
95 | # endif | ||
96 | #endif | ||
97 | |||
98 | |||
99 | #ifndef OPENSSL_ECC_MAX_FIELD_BITS | ||
100 | # define OPENSSL_ECC_MAX_FIELD_BITS 661 | ||
101 | #endif | ||
102 | |||
103 | /** Enum for the point conversion form as defined in X9.62 (ECDSA) | ||
104 | * for the encoding of a elliptic curve point (x,y) */ | ||
105 | typedef enum { | ||
106 | /** the point is encoded as z||x, where the octet z specifies | ||
107 | * which solution of the quadratic equation y is */ | ||
108 | POINT_CONVERSION_COMPRESSED = 2, | ||
109 | /** the point is encoded as z||x||y, where z is the octet 0x02 */ | ||
110 | POINT_CONVERSION_UNCOMPRESSED = 4, | ||
111 | /** the point is encoded as z||x||y, where the octet z specifies | ||
112 | * which solution of the quadratic equation y is */ | ||
113 | POINT_CONVERSION_HYBRID = 6 | ||
114 | } point_conversion_form_t; | ||
115 | |||
116 | |||
117 | typedef struct ec_method_st EC_METHOD; | ||
118 | |||
119 | typedef struct ec_group_st | ||
120 | /* | ||
121 | EC_METHOD *meth; | ||
122 | -- field definition | ||
123 | -- curve coefficients | ||
124 | -- optional generator with associated information (order, cofactor) | ||
125 | -- optional extra data (precomputed table for fast computation of multiples of generator) | ||
126 | -- ASN1 stuff | ||
127 | */ | ||
128 | EC_GROUP; | ||
129 | |||
130 | typedef struct ec_point_st EC_POINT; | ||
131 | |||
132 | |||
133 | /********************************************************************/ | ||
134 | /* EC_METHODs for curves over GF(p) */ | ||
135 | /********************************************************************/ | ||
136 | |||
137 | /** Returns the basic GFp ec methods which provides the basis for the | ||
138 | * optimized methods. | ||
139 | * \return EC_METHOD object | ||
140 | */ | ||
141 | const EC_METHOD *EC_GFp_simple_method(void); | ||
142 | |||
143 | /** Returns GFp methods using montgomery multiplication. | ||
144 | * \return EC_METHOD object | ||
145 | */ | ||
146 | const EC_METHOD *EC_GFp_mont_method(void); | ||
147 | |||
148 | /** Returns GFp methods using optimized methods for NIST recommended curves | ||
149 | * \return EC_METHOD object | ||
150 | */ | ||
151 | const EC_METHOD *EC_GFp_nist_method(void); | ||
152 | |||
153 | #ifndef OPENSSL_NO_EC_NISTP_64_GCC_128 | ||
154 | /** Returns 64-bit optimized methods for nistp224 | ||
155 | * \return EC_METHOD object | ||
156 | */ | ||
157 | const EC_METHOD *EC_GFp_nistp224_method(void); | ||
158 | |||
159 | /** Returns 64-bit optimized methods for nistp256 | ||
160 | * \return EC_METHOD object | ||
161 | */ | ||
162 | const EC_METHOD *EC_GFp_nistp256_method(void); | ||
163 | |||
164 | /** Returns 64-bit optimized methods for nistp521 | ||
165 | * \return EC_METHOD object | ||
166 | */ | ||
167 | const EC_METHOD *EC_GFp_nistp521_method(void); | ||
168 | #endif | ||
169 | |||
170 | #ifndef OPENSSL_NO_EC2M | ||
171 | /********************************************************************/ | ||
172 | /* EC_METHOD for curves over GF(2^m) */ | ||
173 | /********************************************************************/ | ||
174 | |||
175 | /** Returns the basic GF2m ec method | ||
176 | * \return EC_METHOD object | ||
177 | */ | ||
178 | const EC_METHOD *EC_GF2m_simple_method(void); | ||
179 | |||
180 | #endif | ||
181 | |||
182 | |||
183 | /********************************************************************/ | ||
184 | /* EC_GROUP functions */ | ||
185 | /********************************************************************/ | ||
186 | |||
187 | /** Creates a new EC_GROUP object | ||
188 | * \param meth EC_METHOD to use | ||
189 | * \return newly created EC_GROUP object or NULL in case of an error. | ||
190 | */ | ||
191 | EC_GROUP *EC_GROUP_new(const EC_METHOD *meth); | ||
192 | |||
193 | /** Frees a EC_GROUP object | ||
194 | * \param group EC_GROUP object to be freed. | ||
195 | */ | ||
196 | void EC_GROUP_free(EC_GROUP *group); | ||
197 | |||
198 | /** Clears and frees a EC_GROUP object | ||
199 | * \param group EC_GROUP object to be cleared and freed. | ||
200 | */ | ||
201 | void EC_GROUP_clear_free(EC_GROUP *group); | ||
202 | |||
203 | /** Copies EC_GROUP objects. Note: both EC_GROUPs must use the same EC_METHOD. | ||
204 | * \param dst destination EC_GROUP object | ||
205 | * \param src source EC_GROUP object | ||
206 | * \return 1 on success and 0 if an error occurred. | ||
207 | */ | ||
208 | int EC_GROUP_copy(EC_GROUP *dst, const EC_GROUP *src); | ||
209 | |||
210 | /** Creates a new EC_GROUP object and copies the copies the content | ||
211 | * form src to the newly created EC_KEY object | ||
212 | * \param src source EC_GROUP object | ||
213 | * \return newly created EC_GROUP object or NULL in case of an error. | ||
214 | */ | ||
215 | EC_GROUP *EC_GROUP_dup(const EC_GROUP *src); | ||
216 | |||
217 | /** Returns the EC_METHOD of the EC_GROUP object. | ||
218 | * \param group EC_GROUP object | ||
219 | * \return EC_METHOD used in this EC_GROUP object. | ||
220 | */ | ||
221 | const EC_METHOD *EC_GROUP_method_of(const EC_GROUP *group); | ||
222 | |||
223 | /** Returns the field type of the EC_METHOD. | ||
224 | * \param meth EC_METHOD object | ||
225 | * \return NID of the underlying field type OID. | ||
226 | */ | ||
227 | int EC_METHOD_get_field_type(const EC_METHOD *meth); | ||
228 | |||
229 | /** Sets the generator and it's order/cofactor of a EC_GROUP object. | ||
230 | * \param group EC_GROUP object | ||
231 | * \param generator EC_POINT object with the generator. | ||
232 | * \param order the order of the group generated by the generator. | ||
233 | * \param cofactor the index of the sub-group generated by the generator | ||
234 | * in the group of all points on the elliptic curve. | ||
235 | * \return 1 on success and 0 if an error occured | ||
236 | */ | ||
237 | int EC_GROUP_set_generator(EC_GROUP *group, const EC_POINT *generator, const BIGNUM *order, const BIGNUM *cofactor); | ||
238 | |||
239 | /** Returns the generator of a EC_GROUP object. | ||
240 | * \param group EC_GROUP object | ||
241 | * \return the currently used generator (possibly NULL). | ||
242 | */ | ||
243 | const EC_POINT *EC_GROUP_get0_generator(const EC_GROUP *group); | ||
244 | |||
245 | /** Gets the order of a EC_GROUP | ||
246 | * \param group EC_GROUP object | ||
247 | * \param order BIGNUM to which the order is copied | ||
248 | * \param ctx BN_CTX object (optional) | ||
249 | * \return 1 on success and 0 if an error occured | ||
250 | */ | ||
251 | int EC_GROUP_get_order(const EC_GROUP *group, BIGNUM *order, BN_CTX *ctx); | ||
252 | |||
253 | /** Gets the cofactor of a EC_GROUP | ||
254 | * \param group EC_GROUP object | ||
255 | * \param cofactor BIGNUM to which the cofactor is copied | ||
256 | * \param ctx BN_CTX object (optional) | ||
257 | * \return 1 on success and 0 if an error occured | ||
258 | */ | ||
259 | int EC_GROUP_get_cofactor(const EC_GROUP *group, BIGNUM *cofactor, BN_CTX *ctx); | ||
260 | |||
261 | /** Sets the name of a EC_GROUP object | ||
262 | * \param group EC_GROUP object | ||
263 | * \param nid NID of the curve name OID | ||
264 | */ | ||
265 | void EC_GROUP_set_curve_name(EC_GROUP *group, int nid); | ||
266 | |||
267 | /** Returns the curve name of a EC_GROUP object | ||
268 | * \param group EC_GROUP object | ||
269 | * \return NID of the curve name OID or 0 if not set. | ||
270 | */ | ||
271 | int EC_GROUP_get_curve_name(const EC_GROUP *group); | ||
272 | |||
273 | void EC_GROUP_set_asn1_flag(EC_GROUP *group, int flag); | ||
274 | int EC_GROUP_get_asn1_flag(const EC_GROUP *group); | ||
275 | |||
276 | void EC_GROUP_set_point_conversion_form(EC_GROUP *group, point_conversion_form_t form); | ||
277 | point_conversion_form_t EC_GROUP_get_point_conversion_form(const EC_GROUP *); | ||
278 | |||
279 | unsigned char *EC_GROUP_get0_seed(const EC_GROUP *x); | ||
280 | size_t EC_GROUP_get_seed_len(const EC_GROUP *); | ||
281 | size_t EC_GROUP_set_seed(EC_GROUP *, const unsigned char *, size_t len); | ||
282 | |||
283 | /** Sets the parameter of a ec over GFp defined by y^2 = x^3 + a*x + b | ||
284 | * \param group EC_GROUP object | ||
285 | * \param p BIGNUM with the prime number | ||
286 | * \param a BIGNUM with parameter a of the equation | ||
287 | * \param b BIGNUM with parameter b of the equation | ||
288 | * \param ctx BN_CTX object (optional) | ||
289 | * \return 1 on success and 0 if an error occured | ||
290 | */ | ||
291 | int EC_GROUP_set_curve_GFp(EC_GROUP *group, const BIGNUM *p, const BIGNUM *a, const BIGNUM *b, BN_CTX *ctx); | ||
292 | |||
293 | /** Gets the parameter of the ec over GFp defined by y^2 = x^3 + a*x + b | ||
294 | * \param group EC_GROUP object | ||
295 | * \param p BIGNUM for the prime number | ||
296 | * \param a BIGNUM for parameter a of the equation | ||
297 | * \param b BIGNUM for parameter b of the equation | ||
298 | * \param ctx BN_CTX object (optional) | ||
299 | * \return 1 on success and 0 if an error occured | ||
300 | */ | ||
301 | int EC_GROUP_get_curve_GFp(const EC_GROUP *group, BIGNUM *p, BIGNUM *a, BIGNUM *b, BN_CTX *ctx); | ||
302 | |||
303 | #ifndef OPENSSL_NO_EC2M | ||
304 | /** Sets the parameter of a ec over GF2m defined by y^2 + x*y = x^3 + a*x^2 + b | ||
305 | * \param group EC_GROUP object | ||
306 | * \param p BIGNUM with the polynomial defining the underlying field | ||
307 | * \param a BIGNUM with parameter a of the equation | ||
308 | * \param b BIGNUM with parameter b of the equation | ||
309 | * \param ctx BN_CTX object (optional) | ||
310 | * \return 1 on success and 0 if an error occured | ||
311 | */ | ||
312 | int EC_GROUP_set_curve_GF2m(EC_GROUP *group, const BIGNUM *p, const BIGNUM *a, const BIGNUM *b, BN_CTX *ctx); | ||
313 | |||
314 | /** Gets the parameter of the ec over GF2m defined by y^2 + x*y = x^3 + a*x^2 + b | ||
315 | * \param group EC_GROUP object | ||
316 | * \param p BIGNUM for the polynomial defining the underlying field | ||
317 | * \param a BIGNUM for parameter a of the equation | ||
318 | * \param b BIGNUM for parameter b of the equation | ||
319 | * \param ctx BN_CTX object (optional) | ||
320 | * \return 1 on success and 0 if an error occured | ||
321 | */ | ||
322 | int EC_GROUP_get_curve_GF2m(const EC_GROUP *group, BIGNUM *p, BIGNUM *a, BIGNUM *b, BN_CTX *ctx); | ||
323 | #endif | ||
324 | /** Returns the number of bits needed to represent a field element | ||
325 | * \param group EC_GROUP object | ||
326 | * \return number of bits needed to represent a field element | ||
327 | */ | ||
328 | int EC_GROUP_get_degree(const EC_GROUP *group); | ||
329 | |||
330 | /** Checks whether the parameter in the EC_GROUP define a valid ec group | ||
331 | * \param group EC_GROUP object | ||
332 | * \param ctx BN_CTX object (optional) | ||
333 | * \return 1 if group is a valid ec group and 0 otherwise | ||
334 | */ | ||
335 | int EC_GROUP_check(const EC_GROUP *group, BN_CTX *ctx); | ||
336 | |||
337 | /** Checks whether the discriminant of the elliptic curve is zero or not | ||
338 | * \param group EC_GROUP object | ||
339 | * \param ctx BN_CTX object (optional) | ||
340 | * \return 1 if the discriminant is not zero and 0 otherwise | ||
341 | */ | ||
342 | int EC_GROUP_check_discriminant(const EC_GROUP *group, BN_CTX *ctx); | ||
343 | |||
344 | /** Compares two EC_GROUP objects | ||
345 | * \param a first EC_GROUP object | ||
346 | * \param b second EC_GROUP object | ||
347 | * \param ctx BN_CTX object (optional) | ||
348 | * \return 0 if both groups are equal and 1 otherwise | ||
349 | */ | ||
350 | int EC_GROUP_cmp(const EC_GROUP *a, const EC_GROUP *b, BN_CTX *ctx); | ||
351 | |||
352 | /* EC_GROUP_new_GF*() calls EC_GROUP_new() and EC_GROUP_set_GF*() | ||
353 | * after choosing an appropriate EC_METHOD */ | ||
354 | |||
355 | /** Creates a new EC_GROUP object with the specified parameters defined | ||
356 | * over GFp (defined by the equation y^2 = x^3 + a*x + b) | ||
357 | * \param p BIGNUM with the prime number | ||
358 | * \param a BIGNUM with the parameter a of the equation | ||
359 | * \param b BIGNUM with the parameter b of the equation | ||
360 | * \param ctx BN_CTX object (optional) | ||
361 | * \return newly created EC_GROUP object with the specified parameters | ||
362 | */ | ||
363 | EC_GROUP *EC_GROUP_new_curve_GFp(const BIGNUM *p, const BIGNUM *a, const BIGNUM *b, BN_CTX *ctx); | ||
364 | #ifndef OPENSSL_NO_EC2M | ||
365 | /** Creates a new EC_GROUP object with the specified parameters defined | ||
366 | * over GF2m (defined by the equation y^2 + x*y = x^3 + a*x^2 + b) | ||
367 | * \param p BIGNUM with the polynomial defining the underlying field | ||
368 | * \param a BIGNUM with the parameter a of the equation | ||
369 | * \param b BIGNUM with the parameter b of the equation | ||
370 | * \param ctx BN_CTX object (optional) | ||
371 | * \return newly created EC_GROUP object with the specified parameters | ||
372 | */ | ||
373 | EC_GROUP *EC_GROUP_new_curve_GF2m(const BIGNUM *p, const BIGNUM *a, const BIGNUM *b, BN_CTX *ctx); | ||
374 | #endif | ||
375 | /** Creates a EC_GROUP object with a curve specified by a NID | ||
376 | * \param nid NID of the OID of the curve name | ||
377 | * \return newly created EC_GROUP object with specified curve or NULL | ||
378 | * if an error occurred | ||
379 | */ | ||
380 | EC_GROUP *EC_GROUP_new_by_curve_name(int nid); | ||
381 | |||
382 | |||
383 | /********************************************************************/ | ||
384 | /* handling of internal curves */ | ||
385 | /********************************************************************/ | ||
386 | |||
387 | typedef struct { | ||
388 | int nid; | ||
389 | const char *comment; | ||
390 | } EC_builtin_curve; | ||
391 | |||
392 | /* EC_builtin_curves(EC_builtin_curve *r, size_t size) returns number | ||
393 | * of all available curves or zero if a error occurred. | ||
394 | * In case r ist not zero nitems EC_builtin_curve structures | ||
395 | * are filled with the data of the first nitems internal groups */ | ||
396 | size_t EC_get_builtin_curves(EC_builtin_curve *r, size_t nitems); | ||
397 | |||
398 | const char *EC_curve_nid2nist(int nid); | ||
399 | int EC_curve_nist2nid(const char *name); | ||
400 | |||
401 | /********************************************************************/ | ||
402 | /* EC_POINT functions */ | ||
403 | /********************************************************************/ | ||
404 | |||
405 | /** Creates a new EC_POINT object for the specified EC_GROUP | ||
406 | * \param group EC_GROUP the underlying EC_GROUP object | ||
407 | * \return newly created EC_POINT object or NULL if an error occurred | ||
408 | */ | ||
409 | EC_POINT *EC_POINT_new(const EC_GROUP *group); | ||
410 | |||
411 | /** Frees a EC_POINT object | ||
412 | * \param point EC_POINT object to be freed | ||
413 | */ | ||
414 | void EC_POINT_free(EC_POINT *point); | ||
415 | |||
416 | /** Clears and frees a EC_POINT object | ||
417 | * \param point EC_POINT object to be cleared and freed | ||
418 | */ | ||
419 | void EC_POINT_clear_free(EC_POINT *point); | ||
420 | |||
421 | /** Copies EC_POINT object | ||
422 | * \param dst destination EC_POINT object | ||
423 | * \param src source EC_POINT object | ||
424 | * \return 1 on success and 0 if an error occured | ||
425 | */ | ||
426 | int EC_POINT_copy(EC_POINT *dst, const EC_POINT *src); | ||
427 | |||
428 | /** Creates a new EC_POINT object and copies the content of the supplied | ||
429 | * EC_POINT | ||
430 | * \param src source EC_POINT object | ||
431 | * \param group underlying the EC_GROUP object | ||
432 | * \return newly created EC_POINT object or NULL if an error occurred | ||
433 | */ | ||
434 | EC_POINT *EC_POINT_dup(const EC_POINT *src, const EC_GROUP *group); | ||
435 | |||
436 | /** Returns the EC_METHOD used in EC_POINT object | ||
437 | * \param point EC_POINT object | ||
438 | * \return the EC_METHOD used | ||
439 | */ | ||
440 | const EC_METHOD *EC_POINT_method_of(const EC_POINT *point); | ||
441 | |||
442 | /** Sets a point to infinity (neutral element) | ||
443 | * \param group underlying EC_GROUP object | ||
444 | * \param point EC_POINT to set to infinity | ||
445 | * \return 1 on success and 0 if an error occured | ||
446 | */ | ||
447 | int EC_POINT_set_to_infinity(const EC_GROUP *group, EC_POINT *point); | ||
448 | |||
449 | /** Sets the jacobian projective coordinates of a EC_POINT over GFp | ||
450 | * \param group underlying EC_GROUP object | ||
451 | * \param p EC_POINT object | ||
452 | * \param x BIGNUM with the x-coordinate | ||
453 | * \param y BIGNUM with the y-coordinate | ||
454 | * \param z BIGNUM with the z-coordinate | ||
455 | * \param ctx BN_CTX object (optional) | ||
456 | * \return 1 on success and 0 if an error occured | ||
457 | */ | ||
458 | int EC_POINT_set_Jprojective_coordinates_GFp(const EC_GROUP *group, EC_POINT *p, | ||
459 | const BIGNUM *x, const BIGNUM *y, const BIGNUM *z, BN_CTX *ctx); | ||
460 | |||
461 | /** Gets the jacobian projective coordinates of a EC_POINT over GFp | ||
462 | * \param group underlying EC_GROUP object | ||
463 | * \param p EC_POINT object | ||
464 | * \param x BIGNUM for the x-coordinate | ||
465 | * \param y BIGNUM for the y-coordinate | ||
466 | * \param z BIGNUM for the z-coordinate | ||
467 | * \param ctx BN_CTX object (optional) | ||
468 | * \return 1 on success and 0 if an error occured | ||
469 | */ | ||
470 | int EC_POINT_get_Jprojective_coordinates_GFp(const EC_GROUP *group, | ||
471 | const EC_POINT *p, BIGNUM *x, BIGNUM *y, BIGNUM *z, BN_CTX *ctx); | ||
472 | |||
473 | /** Sets the affine coordinates of a EC_POINT over GFp | ||
474 | * \param group underlying EC_GROUP object | ||
475 | * \param p EC_POINT object | ||
476 | * \param x BIGNUM with the x-coordinate | ||
477 | * \param y BIGNUM with the y-coordinate | ||
478 | * \param ctx BN_CTX object (optional) | ||
479 | * \return 1 on success and 0 if an error occured | ||
480 | */ | ||
481 | int EC_POINT_set_affine_coordinates_GFp(const EC_GROUP *group, EC_POINT *p, | ||
482 | const BIGNUM *x, const BIGNUM *y, BN_CTX *ctx); | ||
483 | |||
484 | /** Gets the affine coordinates of a EC_POINT over GFp | ||
485 | * \param group underlying EC_GROUP object | ||
486 | * \param p EC_POINT object | ||
487 | * \param x BIGNUM for the x-coordinate | ||
488 | * \param y BIGNUM for the y-coordinate | ||
489 | * \param ctx BN_CTX object (optional) | ||
490 | * \return 1 on success and 0 if an error occured | ||
491 | */ | ||
492 | int EC_POINT_get_affine_coordinates_GFp(const EC_GROUP *group, | ||
493 | const EC_POINT *p, BIGNUM *x, BIGNUM *y, BN_CTX *ctx); | ||
494 | |||
495 | /** Sets the x9.62 compressed coordinates of a EC_POINT over GFp | ||
496 | * \param group underlying EC_GROUP object | ||
497 | * \param p EC_POINT object | ||
498 | * \param x BIGNUM with x-coordinate | ||
499 | * \param y_bit integer with the y-Bit (either 0 or 1) | ||
500 | * \param ctx BN_CTX object (optional) | ||
501 | * \return 1 on success and 0 if an error occured | ||
502 | */ | ||
503 | int EC_POINT_set_compressed_coordinates_GFp(const EC_GROUP *group, EC_POINT *p, | ||
504 | const BIGNUM *x, int y_bit, BN_CTX *ctx); | ||
505 | #ifndef OPENSSL_NO_EC2M | ||
506 | /** Sets the affine coordinates of a EC_POINT over GF2m | ||
507 | * \param group underlying EC_GROUP object | ||
508 | * \param p EC_POINT object | ||
509 | * \param x BIGNUM with the x-coordinate | ||
510 | * \param y BIGNUM with the y-coordinate | ||
511 | * \param ctx BN_CTX object (optional) | ||
512 | * \return 1 on success and 0 if an error occured | ||
513 | */ | ||
514 | int EC_POINT_set_affine_coordinates_GF2m(const EC_GROUP *group, EC_POINT *p, | ||
515 | const BIGNUM *x, const BIGNUM *y, BN_CTX *ctx); | ||
516 | |||
517 | /** Gets the affine coordinates of a EC_POINT over GF2m | ||
518 | * \param group underlying EC_GROUP object | ||
519 | * \param p EC_POINT object | ||
520 | * \param x BIGNUM for the x-coordinate | ||
521 | * \param y BIGNUM for the y-coordinate | ||
522 | * \param ctx BN_CTX object (optional) | ||
523 | * \return 1 on success and 0 if an error occured | ||
524 | */ | ||
525 | int EC_POINT_get_affine_coordinates_GF2m(const EC_GROUP *group, | ||
526 | const EC_POINT *p, BIGNUM *x, BIGNUM *y, BN_CTX *ctx); | ||
527 | |||
528 | /** Sets the x9.62 compressed coordinates of a EC_POINT over GF2m | ||
529 | * \param group underlying EC_GROUP object | ||
530 | * \param p EC_POINT object | ||
531 | * \param x BIGNUM with x-coordinate | ||
532 | * \param y_bit integer with the y-Bit (either 0 or 1) | ||
533 | * \param ctx BN_CTX object (optional) | ||
534 | * \return 1 on success and 0 if an error occured | ||
535 | */ | ||
536 | int EC_POINT_set_compressed_coordinates_GF2m(const EC_GROUP *group, EC_POINT *p, | ||
537 | const BIGNUM *x, int y_bit, BN_CTX *ctx); | ||
538 | #endif | ||
539 | /** Encodes a EC_POINT object to a octet string | ||
540 | * \param group underlying EC_GROUP object | ||
541 | * \param p EC_POINT object | ||
542 | * \param form point conversion form | ||
543 | * \param buf memory buffer for the result. If NULL the function returns | ||
544 | * required buffer size. | ||
545 | * \param len length of the memory buffer | ||
546 | * \param ctx BN_CTX object (optional) | ||
547 | * \return the length of the encoded octet string or 0 if an error occurred | ||
548 | */ | ||
549 | size_t EC_POINT_point2oct(const EC_GROUP *group, const EC_POINT *p, | ||
550 | point_conversion_form_t form, | ||
551 | unsigned char *buf, size_t len, BN_CTX *ctx); | ||
552 | |||
553 | /** Decodes a EC_POINT from a octet string | ||
554 | * \param group underlying EC_GROUP object | ||
555 | * \param p EC_POINT object | ||
556 | * \param buf memory buffer with the encoded ec point | ||
557 | * \param len length of the encoded ec point | ||
558 | * \param ctx BN_CTX object (optional) | ||
559 | * \return 1 on success and 0 if an error occured | ||
560 | */ | ||
561 | int EC_POINT_oct2point(const EC_GROUP *group, EC_POINT *p, | ||
562 | const unsigned char *buf, size_t len, BN_CTX *ctx); | ||
563 | |||
564 | /* other interfaces to point2oct/oct2point: */ | ||
565 | BIGNUM *EC_POINT_point2bn(const EC_GROUP *, const EC_POINT *, | ||
566 | point_conversion_form_t form, BIGNUM *, BN_CTX *); | ||
567 | EC_POINT *EC_POINT_bn2point(const EC_GROUP *, const BIGNUM *, | ||
568 | EC_POINT *, BN_CTX *); | ||
569 | char *EC_POINT_point2hex(const EC_GROUP *, const EC_POINT *, | ||
570 | point_conversion_form_t form, BN_CTX *); | ||
571 | EC_POINT *EC_POINT_hex2point(const EC_GROUP *, const char *, | ||
572 | EC_POINT *, BN_CTX *); | ||
573 | |||
574 | |||
575 | /********************************************************************/ | ||
576 | /* functions for doing EC_POINT arithmetic */ | ||
577 | /********************************************************************/ | ||
578 | |||
579 | /** Computes the sum of two EC_POINT | ||
580 | * \param group underlying EC_GROUP object | ||
581 | * \param r EC_POINT object for the result (r = a + b) | ||
582 | * \param a EC_POINT object with the first summand | ||
583 | * \param b EC_POINT object with the second summand | ||
584 | * \param ctx BN_CTX object (optional) | ||
585 | * \return 1 on success and 0 if an error occured | ||
586 | */ | ||
587 | int EC_POINT_add(const EC_GROUP *group, EC_POINT *r, const EC_POINT *a, const EC_POINT *b, BN_CTX *ctx); | ||
588 | |||
589 | /** Computes the double of a EC_POINT | ||
590 | * \param group underlying EC_GROUP object | ||
591 | * \param r EC_POINT object for the result (r = 2 * a) | ||
592 | * \param a EC_POINT object | ||
593 | * \param ctx BN_CTX object (optional) | ||
594 | * \return 1 on success and 0 if an error occured | ||
595 | */ | ||
596 | int EC_POINT_dbl(const EC_GROUP *group, EC_POINT *r, const EC_POINT *a, BN_CTX *ctx); | ||
597 | |||
598 | /** Computes the inverse of a EC_POINT | ||
599 | * \param group underlying EC_GROUP object | ||
600 | * \param a EC_POINT object to be inverted (it's used for the result as well) | ||
601 | * \param ctx BN_CTX object (optional) | ||
602 | * \return 1 on success and 0 if an error occured | ||
603 | */ | ||
604 | int EC_POINT_invert(const EC_GROUP *group, EC_POINT *a, BN_CTX *ctx); | ||
605 | |||
606 | /** Checks whether the point is the neutral element of the group | ||
607 | * \param group the underlying EC_GROUP object | ||
608 | * \param p EC_POINT object | ||
609 | * \return 1 if the point is the neutral element and 0 otherwise | ||
610 | */ | ||
611 | int EC_POINT_is_at_infinity(const EC_GROUP *group, const EC_POINT *p); | ||
612 | |||
613 | /** Checks whether the point is on the curve | ||
614 | * \param group underlying EC_GROUP object | ||
615 | * \param point EC_POINT object to check | ||
616 | * \param ctx BN_CTX object (optional) | ||
617 | * \return 1 if point if on the curve and 0 otherwise | ||
618 | */ | ||
619 | int EC_POINT_is_on_curve(const EC_GROUP *group, const EC_POINT *point, BN_CTX *ctx); | ||
620 | |||
621 | /** Compares two EC_POINTs | ||
622 | * \param group underlying EC_GROUP object | ||
623 | * \param a first EC_POINT object | ||
624 | * \param b second EC_POINT object | ||
625 | * \param ctx BN_CTX object (optional) | ||
626 | * \return 0 if both points are equal and a value != 0 otherwise | ||
627 | */ | ||
628 | int EC_POINT_cmp(const EC_GROUP *group, const EC_POINT *a, const EC_POINT *b, BN_CTX *ctx); | ||
629 | |||
630 | int EC_POINT_make_affine(const EC_GROUP *group, EC_POINT *point, BN_CTX *ctx); | ||
631 | int EC_POINTs_make_affine(const EC_GROUP *group, size_t num, EC_POINT *points[], BN_CTX *ctx); | ||
632 | |||
633 | /** Computes r = generator * n sum_{i=0}^num p[i] * m[i] | ||
634 | * \param group underlying EC_GROUP object | ||
635 | * \param r EC_POINT object for the result | ||
636 | * \param n BIGNUM with the multiplier for the group generator (optional) | ||
637 | * \param num number futher summands | ||
638 | * \param p array of size num of EC_POINT objects | ||
639 | * \param m array of size num of BIGNUM objects | ||
640 | * \param ctx BN_CTX object (optional) | ||
641 | * \return 1 on success and 0 if an error occured | ||
642 | */ | ||
643 | int EC_POINTs_mul(const EC_GROUP *group, EC_POINT *r, const BIGNUM *n, size_t num, const EC_POINT *p[], const BIGNUM *m[], BN_CTX *ctx); | ||
644 | |||
645 | /** Computes r = generator * n + q * m | ||
646 | * \param group underlying EC_GROUP object | ||
647 | * \param r EC_POINT object for the result | ||
648 | * \param n BIGNUM with the multiplier for the group generator (optional) | ||
649 | * \param q EC_POINT object with the first factor of the second summand | ||
650 | * \param m BIGNUM with the second factor of the second summand | ||
651 | * \param ctx BN_CTX object (optional) | ||
652 | * \return 1 on success and 0 if an error occured | ||
653 | */ | ||
654 | int EC_POINT_mul(const EC_GROUP *group, EC_POINT *r, const BIGNUM *n, const EC_POINT *q, const BIGNUM *m, BN_CTX *ctx); | ||
655 | |||
656 | /** Stores multiples of generator for faster point multiplication | ||
657 | * \param group EC_GROUP object | ||
658 | * \param ctx BN_CTX object (optional) | ||
659 | * \return 1 on success and 0 if an error occured | ||
660 | */ | ||
661 | int EC_GROUP_precompute_mult(EC_GROUP *group, BN_CTX *ctx); | ||
662 | |||
663 | /** Reports whether a precomputation has been done | ||
664 | * \param group EC_GROUP object | ||
665 | * \return 1 if a pre-computation has been done and 0 otherwise | ||
666 | */ | ||
667 | int EC_GROUP_have_precompute_mult(const EC_GROUP *group); | ||
668 | |||
669 | |||
670 | /********************************************************************/ | ||
671 | /* ASN1 stuff */ | ||
672 | /********************************************************************/ | ||
673 | |||
674 | /* EC_GROUP_get_basis_type() returns the NID of the basis type | ||
675 | * used to represent the field elements */ | ||
676 | int EC_GROUP_get_basis_type(const EC_GROUP *); | ||
677 | #ifndef OPENSSL_NO_EC2M | ||
678 | int EC_GROUP_get_trinomial_basis(const EC_GROUP *, unsigned int *k); | ||
679 | int EC_GROUP_get_pentanomial_basis(const EC_GROUP *, unsigned int *k1, | ||
680 | unsigned int *k2, unsigned int *k3); | ||
681 | #endif | ||
682 | |||
683 | #define OPENSSL_EC_NAMED_CURVE 0x001 | ||
684 | |||
685 | typedef struct ecpk_parameters_st ECPKPARAMETERS; | ||
686 | |||
687 | EC_GROUP *d2i_ECPKParameters(EC_GROUP **, const unsigned char **in, long len); | ||
688 | int i2d_ECPKParameters(const EC_GROUP *, unsigned char **out); | ||
689 | |||
690 | #define d2i_ECPKParameters_bio(bp,x) ASN1_d2i_bio_of(EC_GROUP,NULL,d2i_ECPKParameters,bp,x) | ||
691 | #define i2d_ECPKParameters_bio(bp,x) ASN1_i2d_bio_of_const(EC_GROUP,i2d_ECPKParameters,bp,x) | ||
692 | #define d2i_ECPKParameters_fp(fp,x) (EC_GROUP *)ASN1_d2i_fp(NULL, \ | ||
693 | (char *(*)())d2i_ECPKParameters,(fp),(unsigned char **)(x)) | ||
694 | #define i2d_ECPKParameters_fp(fp,x) ASN1_i2d_fp(i2d_ECPKParameters,(fp), \ | ||
695 | (unsigned char *)(x)) | ||
696 | |||
697 | #ifndef OPENSSL_NO_BIO | ||
698 | int ECPKParameters_print(BIO *bp, const EC_GROUP *x, int off); | ||
699 | #endif | ||
700 | int ECPKParameters_print_fp(FILE *fp, const EC_GROUP *x, int off); | ||
701 | |||
702 | |||
703 | /********************************************************************/ | ||
704 | /* EC_KEY functions */ | ||
705 | /********************************************************************/ | ||
706 | |||
707 | typedef struct ec_key_st EC_KEY; | ||
708 | |||
709 | /* some values for the encoding_flag */ | ||
710 | #define EC_PKEY_NO_PARAMETERS 0x001 | ||
711 | #define EC_PKEY_NO_PUBKEY 0x002 | ||
712 | |||
713 | /* some values for the flags field */ | ||
714 | #define EC_FLAG_NON_FIPS_ALLOW 0x1 | ||
715 | #define EC_FLAG_FIPS_CHECKED 0x2 | ||
716 | |||
717 | /** Creates a new EC_KEY object. | ||
718 | * \return EC_KEY object or NULL if an error occurred. | ||
719 | */ | ||
720 | EC_KEY *EC_KEY_new(void); | ||
721 | |||
722 | int EC_KEY_get_flags(const EC_KEY *key); | ||
723 | |||
724 | void EC_KEY_set_flags(EC_KEY *key, int flags); | ||
725 | |||
726 | void EC_KEY_clear_flags(EC_KEY *key, int flags); | ||
727 | |||
728 | /** Creates a new EC_KEY object using a named curve as underlying | ||
729 | * EC_GROUP object. | ||
730 | * \param nid NID of the named curve. | ||
731 | * \return EC_KEY object or NULL if an error occurred. | ||
732 | */ | ||
733 | EC_KEY *EC_KEY_new_by_curve_name(int nid); | ||
734 | |||
735 | /** Frees a EC_KEY object. | ||
736 | * \param key EC_KEY object to be freed. | ||
737 | */ | ||
738 | void EC_KEY_free(EC_KEY *key); | ||
739 | |||
740 | /** Copies a EC_KEY object. | ||
741 | * \param dst destination EC_KEY object | ||
742 | * \param src src EC_KEY object | ||
743 | * \return dst or NULL if an error occurred. | ||
744 | */ | ||
745 | EC_KEY *EC_KEY_copy(EC_KEY *dst, const EC_KEY *src); | ||
746 | |||
747 | /** Creates a new EC_KEY object and copies the content from src to it. | ||
748 | * \param src the source EC_KEY object | ||
749 | * \return newly created EC_KEY object or NULL if an error occurred. | ||
750 | */ | ||
751 | EC_KEY *EC_KEY_dup(const EC_KEY *src); | ||
752 | |||
753 | /** Increases the internal reference count of a EC_KEY object. | ||
754 | * \param key EC_KEY object | ||
755 | * \return 1 on success and 0 if an error occurred. | ||
756 | */ | ||
757 | int EC_KEY_up_ref(EC_KEY *key); | ||
758 | |||
759 | /** Returns the EC_GROUP object of a EC_KEY object | ||
760 | * \param key EC_KEY object | ||
761 | * \return the EC_GROUP object (possibly NULL). | ||
762 | */ | ||
763 | const EC_GROUP *EC_KEY_get0_group(const EC_KEY *key); | ||
764 | |||
765 | /** Sets the EC_GROUP of a EC_KEY object. | ||
766 | * \param key EC_KEY object | ||
767 | * \param group EC_GROUP to use in the EC_KEY object (note: the EC_KEY | ||
768 | * object will use an own copy of the EC_GROUP). | ||
769 | * \return 1 on success and 0 if an error occurred. | ||
770 | */ | ||
771 | int EC_KEY_set_group(EC_KEY *key, const EC_GROUP *group); | ||
772 | |||
773 | /** Returns the private key of a EC_KEY object. | ||
774 | * \param key EC_KEY object | ||
775 | * \return a BIGNUM with the private key (possibly NULL). | ||
776 | */ | ||
777 | const BIGNUM *EC_KEY_get0_private_key(const EC_KEY *key); | ||
778 | |||
779 | /** Sets the private key of a EC_KEY object. | ||
780 | * \param key EC_KEY object | ||
781 | * \param prv BIGNUM with the private key (note: the EC_KEY object | ||
782 | * will use an own copy of the BIGNUM). | ||
783 | * \return 1 on success and 0 if an error occurred. | ||
784 | */ | ||
785 | int EC_KEY_set_private_key(EC_KEY *key, const BIGNUM *prv); | ||
786 | |||
787 | /** Returns the public key of a EC_KEY object. | ||
788 | * \param key the EC_KEY object | ||
789 | * \return a EC_POINT object with the public key (possibly NULL) | ||
790 | */ | ||
791 | const EC_POINT *EC_KEY_get0_public_key(const EC_KEY *key); | ||
792 | |||
793 | /** Sets the public key of a EC_KEY object. | ||
794 | * \param key EC_KEY object | ||
795 | * \param pub EC_POINT object with the public key (note: the EC_KEY object | ||
796 | * will use an own copy of the EC_POINT object). | ||
797 | * \return 1 on success and 0 if an error occurred. | ||
798 | */ | ||
799 | int EC_KEY_set_public_key(EC_KEY *key, const EC_POINT *pub); | ||
800 | |||
801 | unsigned EC_KEY_get_enc_flags(const EC_KEY *key); | ||
802 | void EC_KEY_set_enc_flags(EC_KEY *eckey, unsigned int flags); | ||
803 | point_conversion_form_t EC_KEY_get_conv_form(const EC_KEY *key); | ||
804 | void EC_KEY_set_conv_form(EC_KEY *eckey, point_conversion_form_t cform); | ||
805 | /* functions to set/get method specific data */ | ||
806 | void *EC_KEY_get_key_method_data(EC_KEY *key, | ||
807 | void *(*dup_func)(void *), void (*free_func)(void *), void (*clear_free_func)(void *)); | ||
808 | /** Sets the key method data of an EC_KEY object, if none has yet been set. | ||
809 | * \param key EC_KEY object | ||
810 | * \param data opaque data to install. | ||
811 | * \param dup_func a function that duplicates |data|. | ||
812 | * \param free_func a function that frees |data|. | ||
813 | * \param clear_free_func a function that wipes and frees |data|. | ||
814 | * \return the previously set data pointer, or NULL if |data| was inserted. | ||
815 | */ | ||
816 | void *EC_KEY_insert_key_method_data(EC_KEY *key, void *data, | ||
817 | void *(*dup_func)(void *), void (*free_func)(void *), void (*clear_free_func)(void *)); | ||
818 | /* wrapper functions for the underlying EC_GROUP object */ | ||
819 | void EC_KEY_set_asn1_flag(EC_KEY *eckey, int asn1_flag); | ||
820 | |||
821 | /** Creates a table of pre-computed multiples of the generator to | ||
822 | * accelerate further EC_KEY operations. | ||
823 | * \param key EC_KEY object | ||
824 | * \param ctx BN_CTX object (optional) | ||
825 | * \return 1 on success and 0 if an error occurred. | ||
826 | */ | ||
827 | int EC_KEY_precompute_mult(EC_KEY *key, BN_CTX *ctx); | ||
828 | |||
829 | /** Creates a new ec private (and optional a new public) key. | ||
830 | * \param key EC_KEY object | ||
831 | * \return 1 on success and 0 if an error occurred. | ||
832 | */ | ||
833 | int EC_KEY_generate_key(EC_KEY *key); | ||
834 | |||
835 | /** Verifies that a private and/or public key is valid. | ||
836 | * \param key the EC_KEY object | ||
837 | * \return 1 on success and 0 otherwise. | ||
838 | */ | ||
839 | int EC_KEY_check_key(const EC_KEY *key); | ||
840 | |||
841 | /** Sets a public key from affine coordindates performing | ||
842 | * neccessary NIST PKV tests. | ||
843 | * \param key the EC_KEY object | ||
844 | * \param x public key x coordinate | ||
845 | * \param y public key y coordinate | ||
846 | * \return 1 on success and 0 otherwise. | ||
847 | */ | ||
848 | int EC_KEY_set_public_key_affine_coordinates(EC_KEY *key, BIGNUM *x, BIGNUM *y); | ||
849 | |||
850 | |||
851 | /********************************************************************/ | ||
852 | /* de- and encoding functions for SEC1 ECPrivateKey */ | ||
853 | /********************************************************************/ | ||
854 | |||
855 | /** Decodes a private key from a memory buffer. | ||
856 | * \param key a pointer to a EC_KEY object which should be used (or NULL) | ||
857 | * \param in pointer to memory with the DER encoded private key | ||
858 | * \param len length of the DER encoded private key | ||
859 | * \return the decoded private key or NULL if an error occurred. | ||
860 | */ | ||
861 | EC_KEY *d2i_ECPrivateKey(EC_KEY **key, const unsigned char **in, long len); | ||
862 | |||
863 | /** Encodes a private key object and stores the result in a buffer. | ||
864 | * \param key the EC_KEY object to encode | ||
865 | * \param out the buffer for the result (if NULL the function returns number | ||
866 | * of bytes needed). | ||
867 | * \return 1 on success and 0 if an error occurred. | ||
868 | */ | ||
869 | int i2d_ECPrivateKey(EC_KEY *key, unsigned char **out); | ||
870 | |||
871 | |||
872 | /********************************************************************/ | ||
873 | /* de- and encoding functions for EC parameters */ | ||
874 | /********************************************************************/ | ||
875 | |||
876 | /** Decodes ec parameter from a memory buffer. | ||
877 | * \param key a pointer to a EC_KEY object which should be used (or NULL) | ||
878 | * \param in pointer to memory with the DER encoded ec parameters | ||
879 | * \param len length of the DER encoded ec parameters | ||
880 | * \return a EC_KEY object with the decoded parameters or NULL if an error | ||
881 | * occurred. | ||
882 | */ | ||
883 | EC_KEY *d2i_ECParameters(EC_KEY **key, const unsigned char **in, long len); | ||
884 | |||
885 | /** Encodes ec parameter and stores the result in a buffer. | ||
886 | * \param key the EC_KEY object with ec paramters to encode | ||
887 | * \param out the buffer for the result (if NULL the function returns number | ||
888 | * of bytes needed). | ||
889 | * \return 1 on success and 0 if an error occurred. | ||
890 | */ | ||
891 | int i2d_ECParameters(EC_KEY *key, unsigned char **out); | ||
892 | |||
893 | |||
894 | /********************************************************************/ | ||
895 | /* de- and encoding functions for EC public key */ | ||
896 | /* (octet string, not DER -- hence 'o2i' and 'i2o') */ | ||
897 | /********************************************************************/ | ||
898 | |||
899 | /** Decodes a ec public key from a octet string. | ||
900 | * \param key a pointer to a EC_KEY object which should be used | ||
901 | * \param in memory buffer with the encoded public key | ||
902 | * \param len length of the encoded public key | ||
903 | * \return EC_KEY object with decoded public key or NULL if an error | ||
904 | * occurred. | ||
905 | */ | ||
906 | EC_KEY *o2i_ECPublicKey(EC_KEY **key, const unsigned char **in, long len); | ||
907 | |||
908 | /** Encodes a ec public key in an octet string. | ||
909 | * \param key the EC_KEY object with the public key | ||
910 | * \param out the buffer for the result (if NULL the function returns number | ||
911 | * of bytes needed). | ||
912 | * \return 1 on success and 0 if an error occurred | ||
913 | */ | ||
914 | int i2o_ECPublicKey(EC_KEY *key, unsigned char **out); | ||
915 | |||
916 | #ifndef OPENSSL_NO_BIO | ||
917 | /** Prints out the ec parameters on human readable form. | ||
918 | * \param bp BIO object to which the information is printed | ||
919 | * \param key EC_KEY object | ||
920 | * \return 1 on success and 0 if an error occurred | ||
921 | */ | ||
922 | int ECParameters_print(BIO *bp, const EC_KEY *key); | ||
923 | |||
924 | /** Prints out the contents of a EC_KEY object | ||
925 | * \param bp BIO object to which the information is printed | ||
926 | * \param key EC_KEY object | ||
927 | * \param off line offset | ||
928 | * \return 1 on success and 0 if an error occurred | ||
929 | */ | ||
930 | int EC_KEY_print(BIO *bp, const EC_KEY *key, int off); | ||
931 | |||
932 | #endif | ||
933 | /** Prints out the ec parameters on human readable form. | ||
934 | * \param fp file descriptor to which the information is printed | ||
935 | * \param key EC_KEY object | ||
936 | * \return 1 on success and 0 if an error occurred | ||
937 | */ | ||
938 | int ECParameters_print_fp(FILE *fp, const EC_KEY *key); | ||
939 | |||
940 | /** Prints out the contents of a EC_KEY object | ||
941 | * \param fp file descriptor to which the information is printed | ||
942 | * \param key EC_KEY object | ||
943 | * \param off line offset | ||
944 | * \return 1 on success and 0 if an error occurred | ||
945 | */ | ||
946 | int EC_KEY_print_fp(FILE *fp, const EC_KEY *key, int off); | ||
947 | |||
948 | EC_KEY *ECParameters_dup(EC_KEY *key); | ||
949 | |||
950 | #ifndef __cplusplus | ||
951 | #if defined(__SUNPRO_C) | ||
952 | # if __SUNPRO_C >= 0x520 | ||
953 | # pragma error_messages (default,E_ARRAY_OF_INCOMPLETE_NONAME,E_ARRAY_OF_INCOMPLETE) | ||
954 | # endif | ||
955 | # endif | ||
956 | #endif | ||
957 | |||
958 | #define EVP_PKEY_CTX_set_ec_paramgen_curve_nid(ctx, nid) \ | ||
959 | EVP_PKEY_CTX_ctrl(ctx, EVP_PKEY_EC, EVP_PKEY_OP_PARAMGEN, \ | ||
960 | EVP_PKEY_CTRL_EC_PARAMGEN_CURVE_NID, nid, NULL) | ||
961 | |||
962 | |||
963 | #define EVP_PKEY_CTRL_EC_PARAMGEN_CURVE_NID (EVP_PKEY_ALG_CTRL + 1) | ||
964 | |||
965 | /* BEGIN ERROR CODES */ | ||
966 | /* The following lines are auto generated by the script mkerr.pl. Any changes | ||
967 | * made after this point may be overwritten when the script is next run. | ||
968 | */ | ||
969 | void ERR_load_EC_strings(void); | ||
970 | |||
971 | /* Error codes for the EC functions. */ | ||
972 | |||
973 | /* Function codes. */ | ||
974 | #define EC_F_BN_TO_FELEM 224 | ||
975 | #define EC_F_COMPUTE_WNAF 143 | ||
976 | #define EC_F_D2I_ECPARAMETERS 144 | ||
977 | #define EC_F_D2I_ECPKPARAMETERS 145 | ||
978 | #define EC_F_D2I_ECPRIVATEKEY 146 | ||
979 | #define EC_F_DO_EC_KEY_PRINT 221 | ||
980 | #define EC_F_ECKEY_PARAM2TYPE 223 | ||
981 | #define EC_F_ECKEY_PARAM_DECODE 212 | ||
982 | #define EC_F_ECKEY_PRIV_DECODE 213 | ||
983 | #define EC_F_ECKEY_PRIV_ENCODE 214 | ||
984 | #define EC_F_ECKEY_PUB_DECODE 215 | ||
985 | #define EC_F_ECKEY_PUB_ENCODE 216 | ||
986 | #define EC_F_ECKEY_TYPE2PARAM 220 | ||
987 | #define EC_F_ECPARAMETERS_PRINT 147 | ||
988 | #define EC_F_ECPARAMETERS_PRINT_FP 148 | ||
989 | #define EC_F_ECPKPARAMETERS_PRINT 149 | ||
990 | #define EC_F_ECPKPARAMETERS_PRINT_FP 150 | ||
991 | #define EC_F_ECP_NIST_MOD_192 203 | ||
992 | #define EC_F_ECP_NIST_MOD_224 204 | ||
993 | #define EC_F_ECP_NIST_MOD_256 205 | ||
994 | #define EC_F_ECP_NIST_MOD_521 206 | ||
995 | #define EC_F_EC_ASN1_GROUP2CURVE 153 | ||
996 | #define EC_F_EC_ASN1_GROUP2FIELDID 154 | ||
997 | #define EC_F_EC_ASN1_GROUP2PARAMETERS 155 | ||
998 | #define EC_F_EC_ASN1_GROUP2PKPARAMETERS 156 | ||
999 | #define EC_F_EC_ASN1_PARAMETERS2GROUP 157 | ||
1000 | #define EC_F_EC_ASN1_PKPARAMETERS2GROUP 158 | ||
1001 | #define EC_F_EC_EX_DATA_SET_DATA 211 | ||
1002 | #define EC_F_EC_GF2M_MONTGOMERY_POINT_MULTIPLY 208 | ||
1003 | #define EC_F_EC_GF2M_SIMPLE_GROUP_CHECK_DISCRIMINANT 159 | ||
1004 | #define EC_F_EC_GF2M_SIMPLE_GROUP_SET_CURVE 195 | ||
1005 | #define EC_F_EC_GF2M_SIMPLE_OCT2POINT 160 | ||
1006 | #define EC_F_EC_GF2M_SIMPLE_POINT2OCT 161 | ||
1007 | #define EC_F_EC_GF2M_SIMPLE_POINT_GET_AFFINE_COORDINATES 162 | ||
1008 | #define EC_F_EC_GF2M_SIMPLE_POINT_SET_AFFINE_COORDINATES 163 | ||
1009 | #define EC_F_EC_GF2M_SIMPLE_SET_COMPRESSED_COORDINATES 164 | ||
1010 | #define EC_F_EC_GFP_MONT_FIELD_DECODE 133 | ||
1011 | #define EC_F_EC_GFP_MONT_FIELD_ENCODE 134 | ||
1012 | #define EC_F_EC_GFP_MONT_FIELD_MUL 131 | ||
1013 | #define EC_F_EC_GFP_MONT_FIELD_SET_TO_ONE 209 | ||
1014 | #define EC_F_EC_GFP_MONT_FIELD_SQR 132 | ||
1015 | #define EC_F_EC_GFP_MONT_GROUP_SET_CURVE 189 | ||
1016 | #define EC_F_EC_GFP_MONT_GROUP_SET_CURVE_GFP 135 | ||
1017 | #define EC_F_EC_GFP_NISTP224_GROUP_SET_CURVE 225 | ||
1018 | #define EC_F_EC_GFP_NISTP224_POINTS_MUL 228 | ||
1019 | #define EC_F_EC_GFP_NISTP224_POINT_GET_AFFINE_COORDINATES 226 | ||
1020 | #define EC_F_EC_GFP_NISTP256_GROUP_SET_CURVE 230 | ||
1021 | #define EC_F_EC_GFP_NISTP256_POINTS_MUL 231 | ||
1022 | #define EC_F_EC_GFP_NISTP256_POINT_GET_AFFINE_COORDINATES 232 | ||
1023 | #define EC_F_EC_GFP_NISTP521_GROUP_SET_CURVE 233 | ||
1024 | #define EC_F_EC_GFP_NISTP521_POINTS_MUL 234 | ||
1025 | #define EC_F_EC_GFP_NISTP521_POINT_GET_AFFINE_COORDINATES 235 | ||
1026 | #define EC_F_EC_GFP_NIST_FIELD_MUL 200 | ||
1027 | #define EC_F_EC_GFP_NIST_FIELD_SQR 201 | ||
1028 | #define EC_F_EC_GFP_NIST_GROUP_SET_CURVE 202 | ||
1029 | #define EC_F_EC_GFP_SIMPLE_GROUP_CHECK_DISCRIMINANT 165 | ||
1030 | #define EC_F_EC_GFP_SIMPLE_GROUP_SET_CURVE 166 | ||
1031 | #define EC_F_EC_GFP_SIMPLE_GROUP_SET_CURVE_GFP 100 | ||
1032 | #define EC_F_EC_GFP_SIMPLE_GROUP_SET_GENERATOR 101 | ||
1033 | #define EC_F_EC_GFP_SIMPLE_MAKE_AFFINE 102 | ||
1034 | #define EC_F_EC_GFP_SIMPLE_OCT2POINT 103 | ||
1035 | #define EC_F_EC_GFP_SIMPLE_POINT2OCT 104 | ||
1036 | #define EC_F_EC_GFP_SIMPLE_POINTS_MAKE_AFFINE 137 | ||
1037 | #define EC_F_EC_GFP_SIMPLE_POINT_GET_AFFINE_COORDINATES 167 | ||
1038 | #define EC_F_EC_GFP_SIMPLE_POINT_GET_AFFINE_COORDINATES_GFP 105 | ||
1039 | #define EC_F_EC_GFP_SIMPLE_POINT_SET_AFFINE_COORDINATES 168 | ||
1040 | #define EC_F_EC_GFP_SIMPLE_POINT_SET_AFFINE_COORDINATES_GFP 128 | ||
1041 | #define EC_F_EC_GFP_SIMPLE_SET_COMPRESSED_COORDINATES 169 | ||
1042 | #define EC_F_EC_GFP_SIMPLE_SET_COMPRESSED_COORDINATES_GFP 129 | ||
1043 | #define EC_F_EC_GROUP_CHECK 170 | ||
1044 | #define EC_F_EC_GROUP_CHECK_DISCRIMINANT 171 | ||
1045 | #define EC_F_EC_GROUP_COPY 106 | ||
1046 | #define EC_F_EC_GROUP_GET0_GENERATOR 139 | ||
1047 | #define EC_F_EC_GROUP_GET_COFACTOR 140 | ||
1048 | #define EC_F_EC_GROUP_GET_CURVE_GF2M 172 | ||
1049 | #define EC_F_EC_GROUP_GET_CURVE_GFP 130 | ||
1050 | #define EC_F_EC_GROUP_GET_DEGREE 173 | ||
1051 | #define EC_F_EC_GROUP_GET_ORDER 141 | ||
1052 | #define EC_F_EC_GROUP_GET_PENTANOMIAL_BASIS 193 | ||
1053 | #define EC_F_EC_GROUP_GET_TRINOMIAL_BASIS 194 | ||
1054 | #define EC_F_EC_GROUP_NEW 108 | ||
1055 | #define EC_F_EC_GROUP_NEW_BY_CURVE_NAME 174 | ||
1056 | #define EC_F_EC_GROUP_NEW_FROM_DATA 175 | ||
1057 | #define EC_F_EC_GROUP_PRECOMPUTE_MULT 142 | ||
1058 | #define EC_F_EC_GROUP_SET_CURVE_GF2M 176 | ||
1059 | #define EC_F_EC_GROUP_SET_CURVE_GFP 109 | ||
1060 | #define EC_F_EC_GROUP_SET_EXTRA_DATA 110 | ||
1061 | #define EC_F_EC_GROUP_SET_GENERATOR 111 | ||
1062 | #define EC_F_EC_KEY_CHECK_KEY 177 | ||
1063 | #define EC_F_EC_KEY_COPY 178 | ||
1064 | #define EC_F_EC_KEY_GENERATE_KEY 179 | ||
1065 | #define EC_F_EC_KEY_NEW 182 | ||
1066 | #define EC_F_EC_KEY_PRINT 180 | ||
1067 | #define EC_F_EC_KEY_PRINT_FP 181 | ||
1068 | #define EC_F_EC_KEY_SET_PUBLIC_KEY_AFFINE_COORDINATES 229 | ||
1069 | #define EC_F_EC_POINTS_MAKE_AFFINE 136 | ||
1070 | #define EC_F_EC_POINT_ADD 112 | ||
1071 | #define EC_F_EC_POINT_CMP 113 | ||
1072 | #define EC_F_EC_POINT_COPY 114 | ||
1073 | #define EC_F_EC_POINT_DBL 115 | ||
1074 | #define EC_F_EC_POINT_GET_AFFINE_COORDINATES_GF2M 183 | ||
1075 | #define EC_F_EC_POINT_GET_AFFINE_COORDINATES_GFP 116 | ||
1076 | #define EC_F_EC_POINT_GET_JPROJECTIVE_COORDINATES_GFP 117 | ||
1077 | #define EC_F_EC_POINT_INVERT 210 | ||
1078 | #define EC_F_EC_POINT_IS_AT_INFINITY 118 | ||
1079 | #define EC_F_EC_POINT_IS_ON_CURVE 119 | ||
1080 | #define EC_F_EC_POINT_MAKE_AFFINE 120 | ||
1081 | #define EC_F_EC_POINT_MUL 184 | ||
1082 | #define EC_F_EC_POINT_NEW 121 | ||
1083 | #define EC_F_EC_POINT_OCT2POINT 122 | ||
1084 | #define EC_F_EC_POINT_POINT2OCT 123 | ||
1085 | #define EC_F_EC_POINT_SET_AFFINE_COORDINATES_GF2M 185 | ||
1086 | #define EC_F_EC_POINT_SET_AFFINE_COORDINATES_GFP 124 | ||
1087 | #define EC_F_EC_POINT_SET_COMPRESSED_COORDINATES_GF2M 186 | ||
1088 | #define EC_F_EC_POINT_SET_COMPRESSED_COORDINATES_GFP 125 | ||
1089 | #define EC_F_EC_POINT_SET_JPROJECTIVE_COORDINATES_GFP 126 | ||
1090 | #define EC_F_EC_POINT_SET_TO_INFINITY 127 | ||
1091 | #define EC_F_EC_PRE_COMP_DUP 207 | ||
1092 | #define EC_F_EC_PRE_COMP_NEW 196 | ||
1093 | #define EC_F_EC_WNAF_MUL 187 | ||
1094 | #define EC_F_EC_WNAF_PRECOMPUTE_MULT 188 | ||
1095 | #define EC_F_I2D_ECPARAMETERS 190 | ||
1096 | #define EC_F_I2D_ECPKPARAMETERS 191 | ||
1097 | #define EC_F_I2D_ECPRIVATEKEY 192 | ||
1098 | #define EC_F_I2O_ECPUBLICKEY 151 | ||
1099 | #define EC_F_NISTP224_PRE_COMP_NEW 227 | ||
1100 | #define EC_F_NISTP256_PRE_COMP_NEW 236 | ||
1101 | #define EC_F_NISTP521_PRE_COMP_NEW 237 | ||
1102 | #define EC_F_O2I_ECPUBLICKEY 152 | ||
1103 | #define EC_F_OLD_EC_PRIV_DECODE 222 | ||
1104 | #define EC_F_PKEY_EC_CTRL 197 | ||
1105 | #define EC_F_PKEY_EC_CTRL_STR 198 | ||
1106 | #define EC_F_PKEY_EC_DERIVE 217 | ||
1107 | #define EC_F_PKEY_EC_KEYGEN 199 | ||
1108 | #define EC_F_PKEY_EC_PARAMGEN 219 | ||
1109 | #define EC_F_PKEY_EC_SIGN 218 | ||
1110 | |||
1111 | /* Reason codes. */ | ||
1112 | #define EC_R_ASN1_ERROR 115 | ||
1113 | #define EC_R_ASN1_UNKNOWN_FIELD 116 | ||
1114 | #define EC_R_BIGNUM_OUT_OF_RANGE 144 | ||
1115 | #define EC_R_BUFFER_TOO_SMALL 100 | ||
1116 | #define EC_R_COORDINATES_OUT_OF_RANGE 146 | ||
1117 | #define EC_R_D2I_ECPKPARAMETERS_FAILURE 117 | ||
1118 | #define EC_R_DECODE_ERROR 142 | ||
1119 | #define EC_R_DISCRIMINANT_IS_ZERO 118 | ||
1120 | #define EC_R_EC_GROUP_NEW_BY_NAME_FAILURE 119 | ||
1121 | #define EC_R_FIELD_TOO_LARGE 143 | ||
1122 | #define EC_R_GF2M_NOT_SUPPORTED 147 | ||
1123 | #define EC_R_GROUP2PKPARAMETERS_FAILURE 120 | ||
1124 | #define EC_R_I2D_ECPKPARAMETERS_FAILURE 121 | ||
1125 | #define EC_R_INCOMPATIBLE_OBJECTS 101 | ||
1126 | #define EC_R_INVALID_ARGUMENT 112 | ||
1127 | #define EC_R_INVALID_COMPRESSED_POINT 110 | ||
1128 | #define EC_R_INVALID_COMPRESSION_BIT 109 | ||
1129 | #define EC_R_INVALID_CURVE 141 | ||
1130 | #define EC_R_INVALID_DIGEST_TYPE 138 | ||
1131 | #define EC_R_INVALID_ENCODING 102 | ||
1132 | #define EC_R_INVALID_FIELD 103 | ||
1133 | #define EC_R_INVALID_FORM 104 | ||
1134 | #define EC_R_INVALID_GROUP_ORDER 122 | ||
1135 | #define EC_R_INVALID_PENTANOMIAL_BASIS 132 | ||
1136 | #define EC_R_INVALID_PRIVATE_KEY 123 | ||
1137 | #define EC_R_INVALID_TRINOMIAL_BASIS 137 | ||
1138 | #define EC_R_KEYS_NOT_SET 140 | ||
1139 | #define EC_R_MISSING_PARAMETERS 124 | ||
1140 | #define EC_R_MISSING_PRIVATE_KEY 125 | ||
1141 | #define EC_R_NOT_A_NIST_PRIME 135 | ||
1142 | #define EC_R_NOT_A_SUPPORTED_NIST_PRIME 136 | ||
1143 | #define EC_R_NOT_IMPLEMENTED 126 | ||
1144 | #define EC_R_NOT_INITIALIZED 111 | ||
1145 | #define EC_R_NO_FIELD_MOD 133 | ||
1146 | #define EC_R_NO_PARAMETERS_SET 139 | ||
1147 | #define EC_R_PASSED_NULL_PARAMETER 134 | ||
1148 | #define EC_R_PKPARAMETERS2GROUP_FAILURE 127 | ||
1149 | #define EC_R_POINT_AT_INFINITY 106 | ||
1150 | #define EC_R_POINT_IS_NOT_ON_CURVE 107 | ||
1151 | #define EC_R_SLOT_FULL 108 | ||
1152 | #define EC_R_UNDEFINED_GENERATOR 113 | ||
1153 | #define EC_R_UNDEFINED_ORDER 128 | ||
1154 | #define EC_R_UNKNOWN_GROUP 129 | ||
1155 | #define EC_R_UNKNOWN_ORDER 114 | ||
1156 | #define EC_R_UNSUPPORTED_FIELD 131 | ||
1157 | #define EC_R_WRONG_CURVE_PARAMETERS 145 | ||
1158 | #define EC_R_WRONG_ORDER 130 | ||
1159 | |||
1160 | #ifdef __cplusplus | ||
1161 | } | ||
1162 | #endif | ||
1163 | #endif | ||
diff --git a/src/lib/libcrypto/ec/ec2_mult.c b/src/lib/libcrypto/ec/ec2_mult.c deleted file mode 100644 index 3812611702..0000000000 --- a/src/lib/libcrypto/ec/ec2_mult.c +++ /dev/null | |||
@@ -1,450 +0,0 @@ | |||
1 | /* $OpenBSD: ec2_mult.c,v 1.8 2016/03/12 21:44:11 bcook Exp $ */ | ||
2 | /* ==================================================================== | ||
3 | * Copyright 2002 Sun Microsystems, Inc. ALL RIGHTS RESERVED. | ||
4 | * | ||
5 | * The Elliptic Curve Public-Key Crypto Library (ECC Code) included | ||
6 | * herein is developed by SUN MICROSYSTEMS, INC., and is contributed | ||
7 | * to the OpenSSL project. | ||
8 | * | ||
9 | * The ECC Code is licensed pursuant to the OpenSSL open source | ||
10 | * license provided below. | ||
11 | * | ||
12 | * The software is originally written by Sheueling Chang Shantz and | ||
13 | * Douglas Stebila of Sun Microsystems Laboratories. | ||
14 | * | ||
15 | */ | ||
16 | /* ==================================================================== | ||
17 | * Copyright (c) 1998-2003 The OpenSSL Project. All rights reserved. | ||
18 | * | ||
19 | * Redistribution and use in source and binary forms, with or without | ||
20 | * modification, are permitted provided that the following conditions | ||
21 | * are met: | ||
22 | * | ||
23 | * 1. Redistributions of source code must retain the above copyright | ||
24 | * notice, this list of conditions and the following disclaimer. | ||
25 | * | ||
26 | * 2. Redistributions in binary form must reproduce the above copyright | ||
27 | * notice, this list of conditions and the following disclaimer in | ||
28 | * the documentation and/or other materials provided with the | ||
29 | * distribution. | ||
30 | * | ||
31 | * 3. All advertising materials mentioning features or use of this | ||
32 | * software must display the following acknowledgment: | ||
33 | * "This product includes software developed by the OpenSSL Project | ||
34 | * for use in the OpenSSL Toolkit. (http://www.openssl.org/)" | ||
35 | * | ||
36 | * 4. The names "OpenSSL Toolkit" and "OpenSSL Project" must not be used to | ||
37 | * endorse or promote products derived from this software without | ||
38 | * prior written permission. For written permission, please contact | ||
39 | * openssl-core@openssl.org. | ||
40 | * | ||
41 | * 5. Products derived from this software may not be called "OpenSSL" | ||
42 | * nor may "OpenSSL" appear in their names without prior written | ||
43 | * permission of the OpenSSL Project. | ||
44 | * | ||
45 | * 6. Redistributions of any form whatsoever must retain the following | ||
46 | * acknowledgment: | ||
47 | * "This product includes software developed by the OpenSSL Project | ||
48 | * for use in the OpenSSL Toolkit (http://www.openssl.org/)" | ||
49 | * | ||
50 | * THIS SOFTWARE IS PROVIDED BY THE OpenSSL PROJECT ``AS IS'' AND ANY | ||
51 | * EXPRESSED OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE | ||
52 | * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR | ||
53 | * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE OpenSSL PROJECT OR | ||
54 | * ITS CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, | ||
55 | * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT | ||
56 | * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; | ||
57 | * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) | ||
58 | * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, | ||
59 | * STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) | ||
60 | * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED | ||
61 | * OF THE POSSIBILITY OF SUCH DAMAGE. | ||
62 | * ==================================================================== | ||
63 | * | ||
64 | * This product includes cryptographic software written by Eric Young | ||
65 | * (eay@cryptsoft.com). This product includes software written by Tim | ||
66 | * Hudson (tjh@cryptsoft.com). | ||
67 | * | ||
68 | */ | ||
69 | |||
70 | #include <openssl/opensslconf.h> | ||
71 | |||
72 | #include <openssl/err.h> | ||
73 | |||
74 | #include "ec_lcl.h" | ||
75 | |||
76 | #ifndef OPENSSL_NO_EC2M | ||
77 | |||
78 | |||
79 | /* Compute the x-coordinate x/z for the point 2*(x/z) in Montgomery projective | ||
80 | * coordinates. | ||
81 | * Uses algorithm Mdouble in appendix of | ||
82 | * Lopez, J. and Dahab, R. "Fast multiplication on elliptic curves over | ||
83 | * GF(2^m) without precomputation" (CHES '99, LNCS 1717). | ||
84 | * modified to not require precomputation of c=b^{2^{m-1}}. | ||
85 | */ | ||
86 | static int | ||
87 | gf2m_Mdouble(const EC_GROUP *group, BIGNUM *x, BIGNUM *z, BN_CTX *ctx) | ||
88 | { | ||
89 | BIGNUM *t1; | ||
90 | int ret = 0; | ||
91 | |||
92 | /* Since Mdouble is static we can guarantee that ctx != NULL. */ | ||
93 | BN_CTX_start(ctx); | ||
94 | if ((t1 = BN_CTX_get(ctx)) == NULL) | ||
95 | goto err; | ||
96 | |||
97 | if (!group->meth->field_sqr(group, x, x, ctx)) | ||
98 | goto err; | ||
99 | if (!group->meth->field_sqr(group, t1, z, ctx)) | ||
100 | goto err; | ||
101 | if (!group->meth->field_mul(group, z, x, t1, ctx)) | ||
102 | goto err; | ||
103 | if (!group->meth->field_sqr(group, x, x, ctx)) | ||
104 | goto err; | ||
105 | if (!group->meth->field_sqr(group, t1, t1, ctx)) | ||
106 | goto err; | ||
107 | if (!group->meth->field_mul(group, t1, &group->b, t1, ctx)) | ||
108 | goto err; | ||
109 | if (!BN_GF2m_add(x, x, t1)) | ||
110 | goto err; | ||
111 | |||
112 | ret = 1; | ||
113 | |||
114 | err: | ||
115 | BN_CTX_end(ctx); | ||
116 | return ret; | ||
117 | } | ||
118 | |||
119 | /* Compute the x-coordinate x1/z1 for the point (x1/z1)+(x2/x2) in Montgomery | ||
120 | * projective coordinates. | ||
121 | * Uses algorithm Madd in appendix of | ||
122 | * Lopez, J. and Dahab, R. "Fast multiplication on elliptic curves over | ||
123 | * GF(2^m) without precomputation" (CHES '99, LNCS 1717). | ||
124 | */ | ||
125 | static int | ||
126 | gf2m_Madd(const EC_GROUP *group, const BIGNUM *x, BIGNUM *x1, BIGNUM *z1, | ||
127 | const BIGNUM *x2, const BIGNUM *z2, BN_CTX *ctx) | ||
128 | { | ||
129 | BIGNUM *t1, *t2; | ||
130 | int ret = 0; | ||
131 | |||
132 | /* Since Madd is static we can guarantee that ctx != NULL. */ | ||
133 | BN_CTX_start(ctx); | ||
134 | if ((t1 = BN_CTX_get(ctx)) == NULL) | ||
135 | goto err; | ||
136 | if ((t2 = BN_CTX_get(ctx)) == NULL) | ||
137 | goto err; | ||
138 | |||
139 | if (!BN_copy(t1, x)) | ||
140 | goto err; | ||
141 | if (!group->meth->field_mul(group, x1, x1, z2, ctx)) | ||
142 | goto err; | ||
143 | if (!group->meth->field_mul(group, z1, z1, x2, ctx)) | ||
144 | goto err; | ||
145 | if (!group->meth->field_mul(group, t2, x1, z1, ctx)) | ||
146 | goto err; | ||
147 | if (!BN_GF2m_add(z1, z1, x1)) | ||
148 | goto err; | ||
149 | if (!group->meth->field_sqr(group, z1, z1, ctx)) | ||
150 | goto err; | ||
151 | if (!group->meth->field_mul(group, x1, z1, t1, ctx)) | ||
152 | goto err; | ||
153 | if (!BN_GF2m_add(x1, x1, t2)) | ||
154 | goto err; | ||
155 | |||
156 | ret = 1; | ||
157 | |||
158 | err: | ||
159 | BN_CTX_end(ctx); | ||
160 | return ret; | ||
161 | } | ||
162 | |||
163 | /* Compute the x, y affine coordinates from the point (x1, z1) (x2, z2) | ||
164 | * using Montgomery point multiplication algorithm Mxy() in appendix of | ||
165 | * Lopez, J. and Dahab, R. "Fast multiplication on elliptic curves over | ||
166 | * GF(2^m) without precomputation" (CHES '99, LNCS 1717). | ||
167 | * Returns: | ||
168 | * 0 on error | ||
169 | * 1 if return value should be the point at infinity | ||
170 | * 2 otherwise | ||
171 | */ | ||
172 | static int | ||
173 | gf2m_Mxy(const EC_GROUP *group, const BIGNUM *x, const BIGNUM *y, BIGNUM *x1, | ||
174 | BIGNUM *z1, BIGNUM *x2, BIGNUM *z2, BN_CTX *ctx) | ||
175 | { | ||
176 | BIGNUM *t3, *t4, *t5; | ||
177 | int ret = 0; | ||
178 | |||
179 | if (BN_is_zero(z1)) { | ||
180 | BN_zero(x2); | ||
181 | BN_zero(z2); | ||
182 | return 1; | ||
183 | } | ||
184 | if (BN_is_zero(z2)) { | ||
185 | if (!BN_copy(x2, x)) | ||
186 | return 0; | ||
187 | if (!BN_GF2m_add(z2, x, y)) | ||
188 | return 0; | ||
189 | return 2; | ||
190 | } | ||
191 | /* Since Mxy is static we can guarantee that ctx != NULL. */ | ||
192 | BN_CTX_start(ctx); | ||
193 | if ((t3 = BN_CTX_get(ctx)) == NULL) | ||
194 | goto err; | ||
195 | if ((t4 = BN_CTX_get(ctx)) == NULL) | ||
196 | goto err; | ||
197 | if ((t5 = BN_CTX_get(ctx)) == NULL) | ||
198 | goto err; | ||
199 | |||
200 | if (!BN_one(t5)) | ||
201 | goto err; | ||
202 | |||
203 | if (!group->meth->field_mul(group, t3, z1, z2, ctx)) | ||
204 | goto err; | ||
205 | |||
206 | if (!group->meth->field_mul(group, z1, z1, x, ctx)) | ||
207 | goto err; | ||
208 | if (!BN_GF2m_add(z1, z1, x1)) | ||
209 | goto err; | ||
210 | if (!group->meth->field_mul(group, z2, z2, x, ctx)) | ||
211 | goto err; | ||
212 | if (!group->meth->field_mul(group, x1, z2, x1, ctx)) | ||
213 | goto err; | ||
214 | if (!BN_GF2m_add(z2, z2, x2)) | ||
215 | goto err; | ||
216 | |||
217 | if (!group->meth->field_mul(group, z2, z2, z1, ctx)) | ||
218 | goto err; | ||
219 | if (!group->meth->field_sqr(group, t4, x, ctx)) | ||
220 | goto err; | ||
221 | if (!BN_GF2m_add(t4, t4, y)) | ||
222 | goto err; | ||
223 | if (!group->meth->field_mul(group, t4, t4, t3, ctx)) | ||
224 | goto err; | ||
225 | if (!BN_GF2m_add(t4, t4, z2)) | ||
226 | goto err; | ||
227 | |||
228 | if (!group->meth->field_mul(group, t3, t3, x, ctx)) | ||
229 | goto err; | ||
230 | if (!group->meth->field_div(group, t3, t5, t3, ctx)) | ||
231 | goto err; | ||
232 | if (!group->meth->field_mul(group, t4, t3, t4, ctx)) | ||
233 | goto err; | ||
234 | if (!group->meth->field_mul(group, x2, x1, t3, ctx)) | ||
235 | goto err; | ||
236 | if (!BN_GF2m_add(z2, x2, x)) | ||
237 | goto err; | ||
238 | |||
239 | if (!group->meth->field_mul(group, z2, z2, t4, ctx)) | ||
240 | goto err; | ||
241 | if (!BN_GF2m_add(z2, z2, y)) | ||
242 | goto err; | ||
243 | |||
244 | ret = 2; | ||
245 | |||
246 | err: | ||
247 | BN_CTX_end(ctx); | ||
248 | return ret; | ||
249 | } | ||
250 | |||
251 | |||
252 | /* Computes scalar*point and stores the result in r. | ||
253 | * point can not equal r. | ||
254 | * Uses a modified algorithm 2P of | ||
255 | * Lopez, J. and Dahab, R. "Fast multiplication on elliptic curves over | ||
256 | * GF(2^m) without precomputation" (CHES '99, LNCS 1717). | ||
257 | * | ||
258 | * To protect against side-channel attack the function uses constant time swap, | ||
259 | * avoiding conditional branches. | ||
260 | */ | ||
261 | static int | ||
262 | ec_GF2m_montgomery_point_multiply(const EC_GROUP *group, EC_POINT *r, | ||
263 | const BIGNUM *scalar, const EC_POINT *point, BN_CTX *ctx) | ||
264 | { | ||
265 | BIGNUM *x1, *x2, *z1, *z2; | ||
266 | int ret = 0, i; | ||
267 | BN_ULONG mask, word; | ||
268 | |||
269 | if (r == point) { | ||
270 | ECerr(EC_F_EC_GF2M_MONTGOMERY_POINT_MULTIPLY, EC_R_INVALID_ARGUMENT); | ||
271 | return 0; | ||
272 | } | ||
273 | /* if result should be point at infinity */ | ||
274 | if ((scalar == NULL) || BN_is_zero(scalar) || (point == NULL) || | ||
275 | EC_POINT_is_at_infinity(group, point) > 0) { | ||
276 | return EC_POINT_set_to_infinity(group, r); | ||
277 | } | ||
278 | /* only support affine coordinates */ | ||
279 | if (!point->Z_is_one) | ||
280 | return 0; | ||
281 | |||
282 | /* Since point_multiply is static we can guarantee that ctx != NULL. */ | ||
283 | BN_CTX_start(ctx); | ||
284 | if ((x1 = BN_CTX_get(ctx)) == NULL) | ||
285 | goto err; | ||
286 | if ((z1 = BN_CTX_get(ctx)) == NULL) | ||
287 | goto err; | ||
288 | |||
289 | x2 = &r->X; | ||
290 | z2 = &r->Y; | ||
291 | |||
292 | if (!bn_wexpand(x1, group->field.top)) | ||
293 | goto err; | ||
294 | if (!bn_wexpand(z1, group->field.top)) | ||
295 | goto err; | ||
296 | if (!bn_wexpand(x2, group->field.top)) | ||
297 | goto err; | ||
298 | if (!bn_wexpand(z2, group->field.top)) | ||
299 | goto err; | ||
300 | |||
301 | if (!BN_GF2m_mod_arr(x1, &point->X, group->poly)) | ||
302 | goto err; /* x1 = x */ | ||
303 | if (!BN_one(z1)) | ||
304 | goto err; /* z1 = 1 */ | ||
305 | if (!group->meth->field_sqr(group, z2, x1, ctx)) | ||
306 | goto err; /* z2 = x1^2 = x^2 */ | ||
307 | if (!group->meth->field_sqr(group, x2, z2, ctx)) | ||
308 | goto err; | ||
309 | if (!BN_GF2m_add(x2, x2, &group->b)) | ||
310 | goto err; /* x2 = x^4 + b */ | ||
311 | |||
312 | /* find top most bit and go one past it */ | ||
313 | i = scalar->top - 1; | ||
314 | mask = BN_TBIT; | ||
315 | word = scalar->d[i]; | ||
316 | while (!(word & mask)) | ||
317 | mask >>= 1; | ||
318 | mask >>= 1; | ||
319 | /* if top most bit was at word break, go to next word */ | ||
320 | if (!mask) { | ||
321 | i--; | ||
322 | mask = BN_TBIT; | ||
323 | } | ||
324 | for (; i >= 0; i--) { | ||
325 | word = scalar->d[i]; | ||
326 | while (mask) { | ||
327 | BN_consttime_swap(word & mask, x1, x2, group->field.top); | ||
328 | BN_consttime_swap(word & mask, z1, z2, group->field.top); | ||
329 | if (!gf2m_Madd(group, &point->X, x2, z2, x1, z1, ctx)) | ||
330 | goto err; | ||
331 | if (!gf2m_Mdouble(group, x1, z1, ctx)) | ||
332 | goto err; | ||
333 | BN_consttime_swap(word & mask, x1, x2, group->field.top); | ||
334 | BN_consttime_swap(word & mask, z1, z2, group->field.top); | ||
335 | mask >>= 1; | ||
336 | } | ||
337 | mask = BN_TBIT; | ||
338 | } | ||
339 | |||
340 | /* convert out of "projective" coordinates */ | ||
341 | i = gf2m_Mxy(group, &point->X, &point->Y, x1, z1, x2, z2, ctx); | ||
342 | if (i == 0) | ||
343 | goto err; | ||
344 | else if (i == 1) { | ||
345 | if (!EC_POINT_set_to_infinity(group, r)) | ||
346 | goto err; | ||
347 | } else { | ||
348 | if (!BN_one(&r->Z)) | ||
349 | goto err; | ||
350 | r->Z_is_one = 1; | ||
351 | } | ||
352 | |||
353 | /* GF(2^m) field elements should always have BIGNUM::neg = 0 */ | ||
354 | BN_set_negative(&r->X, 0); | ||
355 | BN_set_negative(&r->Y, 0); | ||
356 | |||
357 | ret = 1; | ||
358 | |||
359 | err: | ||
360 | BN_CTX_end(ctx); | ||
361 | return ret; | ||
362 | } | ||
363 | |||
364 | |||
365 | /* Computes the sum | ||
366 | * scalar*group->generator + scalars[0]*points[0] + ... + scalars[num-1]*points[num-1] | ||
367 | * gracefully ignoring NULL scalar values. | ||
368 | */ | ||
369 | int | ||
370 | ec_GF2m_simple_mul(const EC_GROUP *group, EC_POINT *r, const BIGNUM *scalar, | ||
371 | size_t num, const EC_POINT *points[], const BIGNUM *scalars[], BN_CTX *ctx) | ||
372 | { | ||
373 | BN_CTX *new_ctx = NULL; | ||
374 | int ret = 0; | ||
375 | size_t i; | ||
376 | EC_POINT *p = NULL; | ||
377 | EC_POINT *acc = NULL; | ||
378 | |||
379 | if (ctx == NULL) { | ||
380 | ctx = new_ctx = BN_CTX_new(); | ||
381 | if (ctx == NULL) | ||
382 | return 0; | ||
383 | } | ||
384 | /* | ||
385 | * This implementation is more efficient than the wNAF implementation | ||
386 | * for 2 or fewer points. Use the ec_wNAF_mul implementation for 3 | ||
387 | * or more points, or if we can perform a fast multiplication based | ||
388 | * on precomputation. | ||
389 | */ | ||
390 | if ((scalar && (num > 1)) || (num > 2) || | ||
391 | (num == 0 && EC_GROUP_have_precompute_mult(group))) { | ||
392 | ret = ec_wNAF_mul(group, r, scalar, num, points, scalars, ctx); | ||
393 | goto err; | ||
394 | } | ||
395 | if ((p = EC_POINT_new(group)) == NULL) | ||
396 | goto err; | ||
397 | if ((acc = EC_POINT_new(group)) == NULL) | ||
398 | goto err; | ||
399 | |||
400 | if (!EC_POINT_set_to_infinity(group, acc)) | ||
401 | goto err; | ||
402 | |||
403 | if (scalar) { | ||
404 | if (!ec_GF2m_montgomery_point_multiply(group, p, scalar, group->generator, ctx)) | ||
405 | goto err; | ||
406 | if (BN_is_negative(scalar)) | ||
407 | if (!group->meth->invert(group, p, ctx)) | ||
408 | goto err; | ||
409 | if (!group->meth->add(group, acc, acc, p, ctx)) | ||
410 | goto err; | ||
411 | } | ||
412 | for (i = 0; i < num; i++) { | ||
413 | if (!ec_GF2m_montgomery_point_multiply(group, p, scalars[i], points[i], ctx)) | ||
414 | goto err; | ||
415 | if (BN_is_negative(scalars[i])) | ||
416 | if (!group->meth->invert(group, p, ctx)) | ||
417 | goto err; | ||
418 | if (!group->meth->add(group, acc, acc, p, ctx)) | ||
419 | goto err; | ||
420 | } | ||
421 | |||
422 | if (!EC_POINT_copy(r, acc)) | ||
423 | goto err; | ||
424 | |||
425 | ret = 1; | ||
426 | |||
427 | err: | ||
428 | EC_POINT_free(p); | ||
429 | EC_POINT_free(acc); | ||
430 | BN_CTX_free(new_ctx); | ||
431 | return ret; | ||
432 | } | ||
433 | |||
434 | |||
435 | /* Precomputation for point multiplication: fall back to wNAF methods | ||
436 | * because ec_GF2m_simple_mul() uses ec_wNAF_mul() if appropriate */ | ||
437 | |||
438 | int | ||
439 | ec_GF2m_precompute_mult(EC_GROUP * group, BN_CTX * ctx) | ||
440 | { | ||
441 | return ec_wNAF_precompute_mult(group, ctx); | ||
442 | } | ||
443 | |||
444 | int | ||
445 | ec_GF2m_have_precompute_mult(const EC_GROUP * group) | ||
446 | { | ||
447 | return ec_wNAF_have_precompute_mult(group); | ||
448 | } | ||
449 | |||
450 | #endif | ||
diff --git a/src/lib/libcrypto/ec/ec2_oct.c b/src/lib/libcrypto/ec/ec2_oct.c deleted file mode 100644 index 72690b1bc7..0000000000 --- a/src/lib/libcrypto/ec/ec2_oct.c +++ /dev/null | |||
@@ -1,382 +0,0 @@ | |||
1 | /* $OpenBSD: ec2_oct.c,v 1.7 2015/02/09 15:49:22 jsing Exp $ */ | ||
2 | /* ==================================================================== | ||
3 | * Copyright 2002 Sun Microsystems, Inc. ALL RIGHTS RESERVED. | ||
4 | * | ||
5 | * The Elliptic Curve Public-Key Crypto Library (ECC Code) included | ||
6 | * herein is developed by SUN MICROSYSTEMS, INC., and is contributed | ||
7 | * to the OpenSSL project. | ||
8 | * | ||
9 | * The ECC Code is licensed pursuant to the OpenSSL open source | ||
10 | * license provided below. | ||
11 | * | ||
12 | * The software is originally written by Sheueling Chang Shantz and | ||
13 | * Douglas Stebila of Sun Microsystems Laboratories. | ||
14 | * | ||
15 | */ | ||
16 | /* ==================================================================== | ||
17 | * Copyright (c) 1998-2005 The OpenSSL Project. All rights reserved. | ||
18 | * | ||
19 | * Redistribution and use in source and binary forms, with or without | ||
20 | * modification, are permitted provided that the following conditions | ||
21 | * are met: | ||
22 | * | ||
23 | * 1. Redistributions of source code must retain the above copyright | ||
24 | * notice, this list of conditions and the following disclaimer. | ||
25 | * | ||
26 | * 2. Redistributions in binary form must reproduce the above copyright | ||
27 | * notice, this list of conditions and the following disclaimer in | ||
28 | * the documentation and/or other materials provided with the | ||
29 | * distribution. | ||
30 | * | ||
31 | * 3. All advertising materials mentioning features or use of this | ||
32 | * software must display the following acknowledgment: | ||
33 | * "This product includes software developed by the OpenSSL Project | ||
34 | * for use in the OpenSSL Toolkit. (http://www.openssl.org/)" | ||
35 | * | ||
36 | * 4. The names "OpenSSL Toolkit" and "OpenSSL Project" must not be used to | ||
37 | * endorse or promote products derived from this software without | ||
38 | * prior written permission. For written permission, please contact | ||
39 | * openssl-core@openssl.org. | ||
40 | * | ||
41 | * 5. Products derived from this software may not be called "OpenSSL" | ||
42 | * nor may "OpenSSL" appear in their names without prior written | ||
43 | * permission of the OpenSSL Project. | ||
44 | * | ||
45 | * 6. Redistributions of any form whatsoever must retain the following | ||
46 | * acknowledgment: | ||
47 | * "This product includes software developed by the OpenSSL Project | ||
48 | * for use in the OpenSSL Toolkit (http://www.openssl.org/)" | ||
49 | * | ||
50 | * THIS SOFTWARE IS PROVIDED BY THE OpenSSL PROJECT ``AS IS'' AND ANY | ||
51 | * EXPRESSED OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE | ||
52 | * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR | ||
53 | * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE OpenSSL PROJECT OR | ||
54 | * ITS CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, | ||
55 | * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT | ||
56 | * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; | ||
57 | * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) | ||
58 | * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, | ||
59 | * STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) | ||
60 | * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED | ||
61 | * OF THE POSSIBILITY OF SUCH DAMAGE. | ||
62 | * ==================================================================== | ||
63 | * | ||
64 | * This product includes cryptographic software written by Eric Young | ||
65 | * (eay@cryptsoft.com). This product includes software written by Tim | ||
66 | * Hudson (tjh@cryptsoft.com). | ||
67 | * | ||
68 | */ | ||
69 | |||
70 | #include <openssl/opensslconf.h> | ||
71 | |||
72 | #include <openssl/err.h> | ||
73 | |||
74 | #include "ec_lcl.h" | ||
75 | |||
76 | #ifndef OPENSSL_NO_EC2M | ||
77 | |||
78 | /* Calculates and sets the affine coordinates of an EC_POINT from the given | ||
79 | * compressed coordinates. Uses algorithm 2.3.4 of SEC 1. | ||
80 | * Note that the simple implementation only uses affine coordinates. | ||
81 | * | ||
82 | * The method is from the following publication: | ||
83 | * | ||
84 | * Harper, Menezes, Vanstone: | ||
85 | * "Public-Key Cryptosystems with Very Small Key Lengths", | ||
86 | * EUROCRYPT '92, Springer-Verlag LNCS 658, | ||
87 | * published February 1993 | ||
88 | * | ||
89 | * US Patents 6,141,420 and 6,618,483 (Vanstone, Mullin, Agnew) describe | ||
90 | * the same method, but claim no priority date earlier than July 29, 1994 | ||
91 | * (and additionally fail to cite the EUROCRYPT '92 publication as prior art). | ||
92 | */ | ||
93 | int | ||
94 | ec_GF2m_simple_set_compressed_coordinates(const EC_GROUP *group, EC_POINT *point, | ||
95 | const BIGNUM *x_, int y_bit, BN_CTX *ctx) | ||
96 | { | ||
97 | BN_CTX *new_ctx = NULL; | ||
98 | BIGNUM *tmp, *x, *y, *z; | ||
99 | int ret = 0, z0; | ||
100 | |||
101 | /* clear error queue */ | ||
102 | ERR_clear_error(); | ||
103 | |||
104 | if (ctx == NULL) { | ||
105 | ctx = new_ctx = BN_CTX_new(); | ||
106 | if (ctx == NULL) | ||
107 | return 0; | ||
108 | } | ||
109 | y_bit = (y_bit != 0) ? 1 : 0; | ||
110 | |||
111 | BN_CTX_start(ctx); | ||
112 | if ((tmp = BN_CTX_get(ctx)) == NULL) | ||
113 | goto err; | ||
114 | if ((x = BN_CTX_get(ctx)) == NULL) | ||
115 | goto err; | ||
116 | if ((y = BN_CTX_get(ctx)) == NULL) | ||
117 | goto err; | ||
118 | if ((z = BN_CTX_get(ctx)) == NULL) | ||
119 | goto err; | ||
120 | |||
121 | if (!BN_GF2m_mod_arr(x, x_, group->poly)) | ||
122 | goto err; | ||
123 | if (BN_is_zero(x)) { | ||
124 | if (!BN_GF2m_mod_sqrt_arr(y, &group->b, group->poly, ctx)) | ||
125 | goto err; | ||
126 | } else { | ||
127 | if (!group->meth->field_sqr(group, tmp, x, ctx)) | ||
128 | goto err; | ||
129 | if (!group->meth->field_div(group, tmp, &group->b, tmp, ctx)) | ||
130 | goto err; | ||
131 | if (!BN_GF2m_add(tmp, &group->a, tmp)) | ||
132 | goto err; | ||
133 | if (!BN_GF2m_add(tmp, x, tmp)) | ||
134 | goto err; | ||
135 | if (!BN_GF2m_mod_solve_quad_arr(z, tmp, group->poly, ctx)) { | ||
136 | unsigned long err = ERR_peek_last_error(); | ||
137 | |||
138 | if (ERR_GET_LIB(err) == ERR_LIB_BN && | ||
139 | ERR_GET_REASON(err) == BN_R_NO_SOLUTION) { | ||
140 | ERR_clear_error(); | ||
141 | ECerr(EC_F_EC_GF2M_SIMPLE_SET_COMPRESSED_COORDINATES, EC_R_INVALID_COMPRESSED_POINT); | ||
142 | } else | ||
143 | ECerr(EC_F_EC_GF2M_SIMPLE_SET_COMPRESSED_COORDINATES, ERR_R_BN_LIB); | ||
144 | goto err; | ||
145 | } | ||
146 | z0 = (BN_is_odd(z)) ? 1 : 0; | ||
147 | if (!group->meth->field_mul(group, y, x, z, ctx)) | ||
148 | goto err; | ||
149 | if (z0 != y_bit) { | ||
150 | if (!BN_GF2m_add(y, y, x)) | ||
151 | goto err; | ||
152 | } | ||
153 | } | ||
154 | |||
155 | if (!EC_POINT_set_affine_coordinates_GF2m(group, point, x, y, ctx)) | ||
156 | goto err; | ||
157 | |||
158 | ret = 1; | ||
159 | |||
160 | err: | ||
161 | BN_CTX_end(ctx); | ||
162 | BN_CTX_free(new_ctx); | ||
163 | return ret; | ||
164 | } | ||
165 | |||
166 | |||
167 | /* Converts an EC_POINT to an octet string. | ||
168 | * If buf is NULL, the encoded length will be returned. | ||
169 | * If the length len of buf is smaller than required an error will be returned. | ||
170 | */ | ||
171 | size_t | ||
172 | ec_GF2m_simple_point2oct(const EC_GROUP *group, const EC_POINT *point, | ||
173 | point_conversion_form_t form, | ||
174 | unsigned char *buf, size_t len, BN_CTX * ctx) | ||
175 | { | ||
176 | size_t ret; | ||
177 | BN_CTX *new_ctx = NULL; | ||
178 | int used_ctx = 0; | ||
179 | BIGNUM *x, *y, *yxi; | ||
180 | size_t field_len, i, skip; | ||
181 | |||
182 | if ((form != POINT_CONVERSION_COMPRESSED) | ||
183 | && (form != POINT_CONVERSION_UNCOMPRESSED) | ||
184 | && (form != POINT_CONVERSION_HYBRID)) { | ||
185 | ECerr(EC_F_EC_GF2M_SIMPLE_POINT2OCT, EC_R_INVALID_FORM); | ||
186 | goto err; | ||
187 | } | ||
188 | if (EC_POINT_is_at_infinity(group, point) > 0) { | ||
189 | /* encodes to a single 0 octet */ | ||
190 | if (buf != NULL) { | ||
191 | if (len < 1) { | ||
192 | ECerr(EC_F_EC_GF2M_SIMPLE_POINT2OCT, EC_R_BUFFER_TOO_SMALL); | ||
193 | return 0; | ||
194 | } | ||
195 | buf[0] = 0; | ||
196 | } | ||
197 | return 1; | ||
198 | } | ||
199 | /* ret := required output buffer length */ | ||
200 | field_len = (EC_GROUP_get_degree(group) + 7) / 8; | ||
201 | ret = (form == POINT_CONVERSION_COMPRESSED) ? 1 + field_len : | ||
202 | 1 + 2 * field_len; | ||
203 | |||
204 | /* if 'buf' is NULL, just return required length */ | ||
205 | if (buf != NULL) { | ||
206 | if (len < ret) { | ||
207 | ECerr(EC_F_EC_GF2M_SIMPLE_POINT2OCT, EC_R_BUFFER_TOO_SMALL); | ||
208 | goto err; | ||
209 | } | ||
210 | if (ctx == NULL) { | ||
211 | ctx = new_ctx = BN_CTX_new(); | ||
212 | if (ctx == NULL) | ||
213 | return 0; | ||
214 | } | ||
215 | BN_CTX_start(ctx); | ||
216 | used_ctx = 1; | ||
217 | if ((x = BN_CTX_get(ctx)) == NULL) | ||
218 | goto err; | ||
219 | if ((y = BN_CTX_get(ctx)) == NULL) | ||
220 | goto err; | ||
221 | if ((yxi = BN_CTX_get(ctx)) == NULL) | ||
222 | goto err; | ||
223 | |||
224 | if (!EC_POINT_get_affine_coordinates_GF2m(group, point, x, y, ctx)) | ||
225 | goto err; | ||
226 | |||
227 | buf[0] = form; | ||
228 | if ((form != POINT_CONVERSION_UNCOMPRESSED) && !BN_is_zero(x)) { | ||
229 | if (!group->meth->field_div(group, yxi, y, x, ctx)) | ||
230 | goto err; | ||
231 | if (BN_is_odd(yxi)) | ||
232 | buf[0]++; | ||
233 | } | ||
234 | i = 1; | ||
235 | |||
236 | skip = field_len - BN_num_bytes(x); | ||
237 | if (skip > field_len) { | ||
238 | ECerr(EC_F_EC_GF2M_SIMPLE_POINT2OCT, ERR_R_INTERNAL_ERROR); | ||
239 | goto err; | ||
240 | } | ||
241 | while (skip > 0) { | ||
242 | buf[i++] = 0; | ||
243 | skip--; | ||
244 | } | ||
245 | skip = BN_bn2bin(x, buf + i); | ||
246 | i += skip; | ||
247 | if (i != 1 + field_len) { | ||
248 | ECerr(EC_F_EC_GF2M_SIMPLE_POINT2OCT, ERR_R_INTERNAL_ERROR); | ||
249 | goto err; | ||
250 | } | ||
251 | if (form == POINT_CONVERSION_UNCOMPRESSED || | ||
252 | form == POINT_CONVERSION_HYBRID) { | ||
253 | skip = field_len - BN_num_bytes(y); | ||
254 | if (skip > field_len) { | ||
255 | ECerr(EC_F_EC_GF2M_SIMPLE_POINT2OCT, ERR_R_INTERNAL_ERROR); | ||
256 | goto err; | ||
257 | } | ||
258 | while (skip > 0) { | ||
259 | buf[i++] = 0; | ||
260 | skip--; | ||
261 | } | ||
262 | skip = BN_bn2bin(y, buf + i); | ||
263 | i += skip; | ||
264 | } | ||
265 | if (i != ret) { | ||
266 | ECerr(EC_F_EC_GF2M_SIMPLE_POINT2OCT, ERR_R_INTERNAL_ERROR); | ||
267 | goto err; | ||
268 | } | ||
269 | } | ||
270 | if (used_ctx) | ||
271 | BN_CTX_end(ctx); | ||
272 | BN_CTX_free(new_ctx); | ||
273 | return ret; | ||
274 | |||
275 | err: | ||
276 | if (used_ctx) | ||
277 | BN_CTX_end(ctx); | ||
278 | BN_CTX_free(new_ctx); | ||
279 | return 0; | ||
280 | } | ||
281 | |||
282 | |||
283 | /* Converts an octet string representation to an EC_POINT. | ||
284 | * Note that the simple implementation only uses affine coordinates. | ||
285 | */ | ||
286 | int | ||
287 | ec_GF2m_simple_oct2point(const EC_GROUP *group, EC_POINT *point, | ||
288 | const unsigned char *buf, size_t len, BN_CTX *ctx) | ||
289 | { | ||
290 | point_conversion_form_t form; | ||
291 | int y_bit; | ||
292 | BN_CTX *new_ctx = NULL; | ||
293 | BIGNUM *x, *y, *yxi; | ||
294 | size_t field_len, enc_len; | ||
295 | int ret = 0; | ||
296 | |||
297 | if (len == 0) { | ||
298 | ECerr(EC_F_EC_GF2M_SIMPLE_OCT2POINT, EC_R_BUFFER_TOO_SMALL); | ||
299 | return 0; | ||
300 | } | ||
301 | form = buf[0]; | ||
302 | y_bit = form & 1; | ||
303 | form = form & ~1U; | ||
304 | if ((form != 0) && (form != POINT_CONVERSION_COMPRESSED) && | ||
305 | (form != POINT_CONVERSION_UNCOMPRESSED) && | ||
306 | (form != POINT_CONVERSION_HYBRID)) { | ||
307 | ECerr(EC_F_EC_GF2M_SIMPLE_OCT2POINT, EC_R_INVALID_ENCODING); | ||
308 | return 0; | ||
309 | } | ||
310 | if ((form == 0 || form == POINT_CONVERSION_UNCOMPRESSED) && y_bit) { | ||
311 | ECerr(EC_F_EC_GF2M_SIMPLE_OCT2POINT, EC_R_INVALID_ENCODING); | ||
312 | return 0; | ||
313 | } | ||
314 | if (form == 0) { | ||
315 | if (len != 1) { | ||
316 | ECerr(EC_F_EC_GF2M_SIMPLE_OCT2POINT, EC_R_INVALID_ENCODING); | ||
317 | return 0; | ||
318 | } | ||
319 | return EC_POINT_set_to_infinity(group, point); | ||
320 | } | ||
321 | field_len = (EC_GROUP_get_degree(group) + 7) / 8; | ||
322 | enc_len = (form == POINT_CONVERSION_COMPRESSED) ? 1 + field_len : | ||
323 | 1 + 2 * field_len; | ||
324 | |||
325 | if (len != enc_len) { | ||
326 | ECerr(EC_F_EC_GF2M_SIMPLE_OCT2POINT, EC_R_INVALID_ENCODING); | ||
327 | return 0; | ||
328 | } | ||
329 | if (ctx == NULL) { | ||
330 | ctx = new_ctx = BN_CTX_new(); | ||
331 | if (ctx == NULL) | ||
332 | return 0; | ||
333 | } | ||
334 | BN_CTX_start(ctx); | ||
335 | if ((x = BN_CTX_get(ctx)) == NULL) | ||
336 | goto err; | ||
337 | if ((y = BN_CTX_get(ctx)) == NULL) | ||
338 | goto err; | ||
339 | if ((yxi = BN_CTX_get(ctx)) == NULL) | ||
340 | goto err; | ||
341 | |||
342 | if (!BN_bin2bn(buf + 1, field_len, x)) | ||
343 | goto err; | ||
344 | if (BN_ucmp(x, &group->field) >= 0) { | ||
345 | ECerr(EC_F_EC_GF2M_SIMPLE_OCT2POINT, EC_R_INVALID_ENCODING); | ||
346 | goto err; | ||
347 | } | ||
348 | if (form == POINT_CONVERSION_COMPRESSED) { | ||
349 | if (!EC_POINT_set_compressed_coordinates_GF2m(group, point, x, y_bit, ctx)) | ||
350 | goto err; | ||
351 | } else { | ||
352 | if (!BN_bin2bn(buf + 1 + field_len, field_len, y)) | ||
353 | goto err; | ||
354 | if (BN_ucmp(y, &group->field) >= 0) { | ||
355 | ECerr(EC_F_EC_GF2M_SIMPLE_OCT2POINT, EC_R_INVALID_ENCODING); | ||
356 | goto err; | ||
357 | } | ||
358 | if (form == POINT_CONVERSION_HYBRID) { | ||
359 | if (!group->meth->field_div(group, yxi, y, x, ctx)) | ||
360 | goto err; | ||
361 | if (y_bit != BN_is_odd(yxi)) { | ||
362 | ECerr(EC_F_EC_GF2M_SIMPLE_OCT2POINT, EC_R_INVALID_ENCODING); | ||
363 | goto err; | ||
364 | } | ||
365 | } | ||
366 | if (!EC_POINT_set_affine_coordinates_GF2m(group, point, x, y, ctx)) | ||
367 | goto err; | ||
368 | } | ||
369 | |||
370 | /* test required by X9.62 */ | ||
371 | if (EC_POINT_is_on_curve(group, point, ctx) <= 0) { | ||
372 | ECerr(EC_F_EC_GF2M_SIMPLE_OCT2POINT, EC_R_POINT_IS_NOT_ON_CURVE); | ||
373 | goto err; | ||
374 | } | ||
375 | ret = 1; | ||
376 | |||
377 | err: | ||
378 | BN_CTX_end(ctx); | ||
379 | BN_CTX_free(new_ctx); | ||
380 | return ret; | ||
381 | } | ||
382 | #endif | ||
diff --git a/src/lib/libcrypto/ec/ec2_smpl.c b/src/lib/libcrypto/ec/ec2_smpl.c deleted file mode 100644 index 43f0afd5ae..0000000000 --- a/src/lib/libcrypto/ec/ec2_smpl.c +++ /dev/null | |||
@@ -1,787 +0,0 @@ | |||
1 | /* $OpenBSD: ec2_smpl.c,v 1.14 2015/02/09 15:49:22 jsing Exp $ */ | ||
2 | /* ==================================================================== | ||
3 | * Copyright 2002 Sun Microsystems, Inc. ALL RIGHTS RESERVED. | ||
4 | * | ||
5 | * The Elliptic Curve Public-Key Crypto Library (ECC Code) included | ||
6 | * herein is developed by SUN MICROSYSTEMS, INC., and is contributed | ||
7 | * to the OpenSSL project. | ||
8 | * | ||
9 | * The ECC Code is licensed pursuant to the OpenSSL open source | ||
10 | * license provided below. | ||
11 | * | ||
12 | * The software is originally written by Sheueling Chang Shantz and | ||
13 | * Douglas Stebila of Sun Microsystems Laboratories. | ||
14 | * | ||
15 | */ | ||
16 | /* ==================================================================== | ||
17 | * Copyright (c) 1998-2005 The OpenSSL Project. All rights reserved. | ||
18 | * | ||
19 | * Redistribution and use in source and binary forms, with or without | ||
20 | * modification, are permitted provided that the following conditions | ||
21 | * are met: | ||
22 | * | ||
23 | * 1. Redistributions of source code must retain the above copyright | ||
24 | * notice, this list of conditions and the following disclaimer. | ||
25 | * | ||
26 | * 2. Redistributions in binary form must reproduce the above copyright | ||
27 | * notice, this list of conditions and the following disclaimer in | ||
28 | * the documentation and/or other materials provided with the | ||
29 | * distribution. | ||
30 | * | ||
31 | * 3. All advertising materials mentioning features or use of this | ||
32 | * software must display the following acknowledgment: | ||
33 | * "This product includes software developed by the OpenSSL Project | ||
34 | * for use in the OpenSSL Toolkit. (http://www.openssl.org/)" | ||
35 | * | ||
36 | * 4. The names "OpenSSL Toolkit" and "OpenSSL Project" must not be used to | ||
37 | * endorse or promote products derived from this software without | ||
38 | * prior written permission. For written permission, please contact | ||
39 | * openssl-core@openssl.org. | ||
40 | * | ||
41 | * 5. Products derived from this software may not be called "OpenSSL" | ||
42 | * nor may "OpenSSL" appear in their names without prior written | ||
43 | * permission of the OpenSSL Project. | ||
44 | * | ||
45 | * 6. Redistributions of any form whatsoever must retain the following | ||
46 | * acknowledgment: | ||
47 | * "This product includes software developed by the OpenSSL Project | ||
48 | * for use in the OpenSSL Toolkit (http://www.openssl.org/)" | ||
49 | * | ||
50 | * THIS SOFTWARE IS PROVIDED BY THE OpenSSL PROJECT ``AS IS'' AND ANY | ||
51 | * EXPRESSED OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE | ||
52 | * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR | ||
53 | * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE OpenSSL PROJECT OR | ||
54 | * ITS CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, | ||
55 | * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT | ||
56 | * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; | ||
57 | * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) | ||
58 | * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, | ||
59 | * STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) | ||
60 | * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED | ||
61 | * OF THE POSSIBILITY OF SUCH DAMAGE. | ||
62 | * ==================================================================== | ||
63 | * | ||
64 | * This product includes cryptographic software written by Eric Young | ||
65 | * (eay@cryptsoft.com). This product includes software written by Tim | ||
66 | * Hudson (tjh@cryptsoft.com). | ||
67 | * | ||
68 | */ | ||
69 | |||
70 | #include <openssl/opensslconf.h> | ||
71 | |||
72 | #include <openssl/err.h> | ||
73 | |||
74 | #include "ec_lcl.h" | ||
75 | |||
76 | #ifndef OPENSSL_NO_EC2M | ||
77 | |||
78 | const EC_METHOD * | ||
79 | EC_GF2m_simple_method(void) | ||
80 | { | ||
81 | static const EC_METHOD ret = { | ||
82 | .flags = EC_FLAGS_DEFAULT_OCT, | ||
83 | .field_type = NID_X9_62_characteristic_two_field, | ||
84 | .group_init = ec_GF2m_simple_group_init, | ||
85 | .group_finish = ec_GF2m_simple_group_finish, | ||
86 | .group_clear_finish = ec_GF2m_simple_group_clear_finish, | ||
87 | .group_copy = ec_GF2m_simple_group_copy, | ||
88 | .group_set_curve = ec_GF2m_simple_group_set_curve, | ||
89 | .group_get_curve = ec_GF2m_simple_group_get_curve, | ||
90 | .group_get_degree = ec_GF2m_simple_group_get_degree, | ||
91 | .group_check_discriminant = | ||
92 | ec_GF2m_simple_group_check_discriminant, | ||
93 | .point_init = ec_GF2m_simple_point_init, | ||
94 | .point_finish = ec_GF2m_simple_point_finish, | ||
95 | .point_clear_finish = ec_GF2m_simple_point_clear_finish, | ||
96 | .point_copy = ec_GF2m_simple_point_copy, | ||
97 | .point_set_to_infinity = ec_GF2m_simple_point_set_to_infinity, | ||
98 | .point_set_affine_coordinates = | ||
99 | ec_GF2m_simple_point_set_affine_coordinates, | ||
100 | .point_get_affine_coordinates = | ||
101 | ec_GF2m_simple_point_get_affine_coordinates, | ||
102 | .add = ec_GF2m_simple_add, | ||
103 | .dbl = ec_GF2m_simple_dbl, | ||
104 | .invert = ec_GF2m_simple_invert, | ||
105 | .is_at_infinity = ec_GF2m_simple_is_at_infinity, | ||
106 | .is_on_curve = ec_GF2m_simple_is_on_curve, | ||
107 | .point_cmp = ec_GF2m_simple_cmp, | ||
108 | .make_affine = ec_GF2m_simple_make_affine, | ||
109 | .points_make_affine = ec_GF2m_simple_points_make_affine, | ||
110 | |||
111 | /* | ||
112 | * the following three method functions are defined in | ||
113 | * ec2_mult.c | ||
114 | */ | ||
115 | .mul = ec_GF2m_simple_mul, | ||
116 | .precompute_mult = ec_GF2m_precompute_mult, | ||
117 | .have_precompute_mult = ec_GF2m_have_precompute_mult, | ||
118 | |||
119 | .field_mul = ec_GF2m_simple_field_mul, | ||
120 | .field_sqr = ec_GF2m_simple_field_sqr, | ||
121 | .field_div = ec_GF2m_simple_field_div, | ||
122 | }; | ||
123 | |||
124 | return &ret; | ||
125 | } | ||
126 | |||
127 | |||
128 | /* Initialize a GF(2^m)-based EC_GROUP structure. | ||
129 | * Note that all other members are handled by EC_GROUP_new. | ||
130 | */ | ||
131 | int | ||
132 | ec_GF2m_simple_group_init(EC_GROUP * group) | ||
133 | { | ||
134 | BN_init(&group->field); | ||
135 | BN_init(&group->a); | ||
136 | BN_init(&group->b); | ||
137 | return 1; | ||
138 | } | ||
139 | |||
140 | |||
141 | /* Free a GF(2^m)-based EC_GROUP structure. | ||
142 | * Note that all other members are handled by EC_GROUP_free. | ||
143 | */ | ||
144 | void | ||
145 | ec_GF2m_simple_group_finish(EC_GROUP * group) | ||
146 | { | ||
147 | BN_free(&group->field); | ||
148 | BN_free(&group->a); | ||
149 | BN_free(&group->b); | ||
150 | } | ||
151 | |||
152 | |||
153 | /* Clear and free a GF(2^m)-based EC_GROUP structure. | ||
154 | * Note that all other members are handled by EC_GROUP_clear_free. | ||
155 | */ | ||
156 | void | ||
157 | ec_GF2m_simple_group_clear_finish(EC_GROUP * group) | ||
158 | { | ||
159 | BN_clear_free(&group->field); | ||
160 | BN_clear_free(&group->a); | ||
161 | BN_clear_free(&group->b); | ||
162 | group->poly[0] = 0; | ||
163 | group->poly[1] = 0; | ||
164 | group->poly[2] = 0; | ||
165 | group->poly[3] = 0; | ||
166 | group->poly[4] = 0; | ||
167 | group->poly[5] = -1; | ||
168 | } | ||
169 | |||
170 | |||
171 | /* Copy a GF(2^m)-based EC_GROUP structure. | ||
172 | * Note that all other members are handled by EC_GROUP_copy. | ||
173 | */ | ||
174 | int | ||
175 | ec_GF2m_simple_group_copy(EC_GROUP * dest, const EC_GROUP * src) | ||
176 | { | ||
177 | int i; | ||
178 | |||
179 | if (!BN_copy(&dest->field, &src->field)) | ||
180 | return 0; | ||
181 | if (!BN_copy(&dest->a, &src->a)) | ||
182 | return 0; | ||
183 | if (!BN_copy(&dest->b, &src->b)) | ||
184 | return 0; | ||
185 | dest->poly[0] = src->poly[0]; | ||
186 | dest->poly[1] = src->poly[1]; | ||
187 | dest->poly[2] = src->poly[2]; | ||
188 | dest->poly[3] = src->poly[3]; | ||
189 | dest->poly[4] = src->poly[4]; | ||
190 | dest->poly[5] = src->poly[5]; | ||
191 | if (bn_wexpand(&dest->a, (int) (dest->poly[0] + BN_BITS2 - 1) / BN_BITS2) == NULL) | ||
192 | return 0; | ||
193 | if (bn_wexpand(&dest->b, (int) (dest->poly[0] + BN_BITS2 - 1) / BN_BITS2) == NULL) | ||
194 | return 0; | ||
195 | for (i = dest->a.top; i < dest->a.dmax; i++) | ||
196 | dest->a.d[i] = 0; | ||
197 | for (i = dest->b.top; i < dest->b.dmax; i++) | ||
198 | dest->b.d[i] = 0; | ||
199 | return 1; | ||
200 | } | ||
201 | |||
202 | |||
203 | /* Set the curve parameters of an EC_GROUP structure. */ | ||
204 | int | ||
205 | ec_GF2m_simple_group_set_curve(EC_GROUP * group, | ||
206 | const BIGNUM * p, const BIGNUM * a, const BIGNUM * b, BN_CTX * ctx) | ||
207 | { | ||
208 | int ret = 0, i; | ||
209 | |||
210 | /* group->field */ | ||
211 | if (!BN_copy(&group->field, p)) | ||
212 | goto err; | ||
213 | i = BN_GF2m_poly2arr(&group->field, group->poly, 6) - 1; | ||
214 | if ((i != 5) && (i != 3)) { | ||
215 | ECerr(EC_F_EC_GF2M_SIMPLE_GROUP_SET_CURVE, EC_R_UNSUPPORTED_FIELD); | ||
216 | goto err; | ||
217 | } | ||
218 | /* group->a */ | ||
219 | if (!BN_GF2m_mod_arr(&group->a, a, group->poly)) | ||
220 | goto err; | ||
221 | if (bn_wexpand(&group->a, (int) (group->poly[0] + BN_BITS2 - 1) / BN_BITS2) == NULL) | ||
222 | goto err; | ||
223 | for (i = group->a.top; i < group->a.dmax; i++) | ||
224 | group->a.d[i] = 0; | ||
225 | |||
226 | /* group->b */ | ||
227 | if (!BN_GF2m_mod_arr(&group->b, b, group->poly)) | ||
228 | goto err; | ||
229 | if (bn_wexpand(&group->b, (int) (group->poly[0] + BN_BITS2 - 1) / BN_BITS2) == NULL) | ||
230 | goto err; | ||
231 | for (i = group->b.top; i < group->b.dmax; i++) | ||
232 | group->b.d[i] = 0; | ||
233 | |||
234 | ret = 1; | ||
235 | err: | ||
236 | return ret; | ||
237 | } | ||
238 | |||
239 | |||
240 | /* Get the curve parameters of an EC_GROUP structure. | ||
241 | * If p, a, or b are NULL then there values will not be set but the method will return with success. | ||
242 | */ | ||
243 | int | ||
244 | ec_GF2m_simple_group_get_curve(const EC_GROUP *group, | ||
245 | BIGNUM *p, BIGNUM *a, BIGNUM *b, BN_CTX *ctx) | ||
246 | { | ||
247 | int ret = 0; | ||
248 | |||
249 | if (p != NULL) { | ||
250 | if (!BN_copy(p, &group->field)) | ||
251 | return 0; | ||
252 | } | ||
253 | if (a != NULL) { | ||
254 | if (!BN_copy(a, &group->a)) | ||
255 | goto err; | ||
256 | } | ||
257 | if (b != NULL) { | ||
258 | if (!BN_copy(b, &group->b)) | ||
259 | goto err; | ||
260 | } | ||
261 | ret = 1; | ||
262 | |||
263 | err: | ||
264 | return ret; | ||
265 | } | ||
266 | |||
267 | |||
268 | /* Gets the degree of the field. For a curve over GF(2^m) this is the value m. */ | ||
269 | int | ||
270 | ec_GF2m_simple_group_get_degree(const EC_GROUP * group) | ||
271 | { | ||
272 | return BN_num_bits(&group->field) - 1; | ||
273 | } | ||
274 | |||
275 | |||
276 | /* Checks the discriminant of the curve. | ||
277 | * y^2 + x*y = x^3 + a*x^2 + b is an elliptic curve <=> b != 0 (mod p) | ||
278 | */ | ||
279 | int | ||
280 | ec_GF2m_simple_group_check_discriminant(const EC_GROUP * group, BN_CTX * ctx) | ||
281 | { | ||
282 | int ret = 0; | ||
283 | BIGNUM *b; | ||
284 | BN_CTX *new_ctx = NULL; | ||
285 | |||
286 | if (ctx == NULL) { | ||
287 | ctx = new_ctx = BN_CTX_new(); | ||
288 | if (ctx == NULL) { | ||
289 | ECerr(EC_F_EC_GF2M_SIMPLE_GROUP_CHECK_DISCRIMINANT, ERR_R_MALLOC_FAILURE); | ||
290 | goto err; | ||
291 | } | ||
292 | } | ||
293 | BN_CTX_start(ctx); | ||
294 | if ((b = BN_CTX_get(ctx)) == NULL) | ||
295 | goto err; | ||
296 | |||
297 | if (!BN_GF2m_mod_arr(b, &group->b, group->poly)) | ||
298 | goto err; | ||
299 | |||
300 | /* | ||
301 | * check the discriminant: y^2 + x*y = x^3 + a*x^2 + b is an elliptic | ||
302 | * curve <=> b != 0 (mod p) | ||
303 | */ | ||
304 | if (BN_is_zero(b)) | ||
305 | goto err; | ||
306 | |||
307 | ret = 1; | ||
308 | |||
309 | err: | ||
310 | if (ctx != NULL) | ||
311 | BN_CTX_end(ctx); | ||
312 | BN_CTX_free(new_ctx); | ||
313 | return ret; | ||
314 | } | ||
315 | |||
316 | |||
317 | /* Initializes an EC_POINT. */ | ||
318 | int | ||
319 | ec_GF2m_simple_point_init(EC_POINT * point) | ||
320 | { | ||
321 | BN_init(&point->X); | ||
322 | BN_init(&point->Y); | ||
323 | BN_init(&point->Z); | ||
324 | return 1; | ||
325 | } | ||
326 | |||
327 | |||
328 | /* Frees an EC_POINT. */ | ||
329 | void | ||
330 | ec_GF2m_simple_point_finish(EC_POINT * point) | ||
331 | { | ||
332 | BN_free(&point->X); | ||
333 | BN_free(&point->Y); | ||
334 | BN_free(&point->Z); | ||
335 | } | ||
336 | |||
337 | |||
338 | /* Clears and frees an EC_POINT. */ | ||
339 | void | ||
340 | ec_GF2m_simple_point_clear_finish(EC_POINT * point) | ||
341 | { | ||
342 | BN_clear_free(&point->X); | ||
343 | BN_clear_free(&point->Y); | ||
344 | BN_clear_free(&point->Z); | ||
345 | point->Z_is_one = 0; | ||
346 | } | ||
347 | |||
348 | |||
349 | /* Copy the contents of one EC_POINT into another. Assumes dest is initialized. */ | ||
350 | int | ||
351 | ec_GF2m_simple_point_copy(EC_POINT * dest, const EC_POINT * src) | ||
352 | { | ||
353 | if (!BN_copy(&dest->X, &src->X)) | ||
354 | return 0; | ||
355 | if (!BN_copy(&dest->Y, &src->Y)) | ||
356 | return 0; | ||
357 | if (!BN_copy(&dest->Z, &src->Z)) | ||
358 | return 0; | ||
359 | dest->Z_is_one = src->Z_is_one; | ||
360 | |||
361 | return 1; | ||
362 | } | ||
363 | |||
364 | |||
365 | /* Set an EC_POINT to the point at infinity. | ||
366 | * A point at infinity is represented by having Z=0. | ||
367 | */ | ||
368 | int | ||
369 | ec_GF2m_simple_point_set_to_infinity(const EC_GROUP * group, EC_POINT * point) | ||
370 | { | ||
371 | point->Z_is_one = 0; | ||
372 | BN_zero(&point->Z); | ||
373 | return 1; | ||
374 | } | ||
375 | |||
376 | |||
377 | /* Set the coordinates of an EC_POINT using affine coordinates. | ||
378 | * Note that the simple implementation only uses affine coordinates. | ||
379 | */ | ||
380 | int | ||
381 | ec_GF2m_simple_point_set_affine_coordinates(const EC_GROUP * group, EC_POINT * point, | ||
382 | const BIGNUM * x, const BIGNUM * y, BN_CTX * ctx) | ||
383 | { | ||
384 | int ret = 0; | ||
385 | if (x == NULL || y == NULL) { | ||
386 | ECerr(EC_F_EC_GF2M_SIMPLE_POINT_SET_AFFINE_COORDINATES, ERR_R_PASSED_NULL_PARAMETER); | ||
387 | return 0; | ||
388 | } | ||
389 | if (!BN_copy(&point->X, x)) | ||
390 | goto err; | ||
391 | BN_set_negative(&point->X, 0); | ||
392 | if (!BN_copy(&point->Y, y)) | ||
393 | goto err; | ||
394 | BN_set_negative(&point->Y, 0); | ||
395 | if (!BN_copy(&point->Z, BN_value_one())) | ||
396 | goto err; | ||
397 | BN_set_negative(&point->Z, 0); | ||
398 | point->Z_is_one = 1; | ||
399 | ret = 1; | ||
400 | |||
401 | err: | ||
402 | return ret; | ||
403 | } | ||
404 | |||
405 | |||
406 | /* Gets the affine coordinates of an EC_POINT. | ||
407 | * Note that the simple implementation only uses affine coordinates. | ||
408 | */ | ||
409 | int | ||
410 | ec_GF2m_simple_point_get_affine_coordinates(const EC_GROUP *group, | ||
411 | const EC_POINT *point, BIGNUM *x, BIGNUM *y, BN_CTX *ctx) | ||
412 | { | ||
413 | int ret = 0; | ||
414 | |||
415 | if (EC_POINT_is_at_infinity(group, point) > 0) { | ||
416 | ECerr(EC_F_EC_GF2M_SIMPLE_POINT_GET_AFFINE_COORDINATES, EC_R_POINT_AT_INFINITY); | ||
417 | return 0; | ||
418 | } | ||
419 | if (BN_cmp(&point->Z, BN_value_one())) { | ||
420 | ECerr(EC_F_EC_GF2M_SIMPLE_POINT_GET_AFFINE_COORDINATES, ERR_R_SHOULD_NOT_HAVE_BEEN_CALLED); | ||
421 | return 0; | ||
422 | } | ||
423 | if (x != NULL) { | ||
424 | if (!BN_copy(x, &point->X)) | ||
425 | goto err; | ||
426 | BN_set_negative(x, 0); | ||
427 | } | ||
428 | if (y != NULL) { | ||
429 | if (!BN_copy(y, &point->Y)) | ||
430 | goto err; | ||
431 | BN_set_negative(y, 0); | ||
432 | } | ||
433 | ret = 1; | ||
434 | |||
435 | err: | ||
436 | return ret; | ||
437 | } | ||
438 | |||
439 | /* Computes a + b and stores the result in r. r could be a or b, a could be b. | ||
440 | * Uses algorithm A.10.2 of IEEE P1363. | ||
441 | */ | ||
442 | int | ||
443 | ec_GF2m_simple_add(const EC_GROUP *group, EC_POINT *r, const EC_POINT *a, | ||
444 | const EC_POINT *b, BN_CTX *ctx) | ||
445 | { | ||
446 | BN_CTX *new_ctx = NULL; | ||
447 | BIGNUM *x0, *y0, *x1, *y1, *x2, *y2, *s, *t; | ||
448 | int ret = 0; | ||
449 | |||
450 | if (EC_POINT_is_at_infinity(group, a) > 0) { | ||
451 | if (!EC_POINT_copy(r, b)) | ||
452 | return 0; | ||
453 | return 1; | ||
454 | } | ||
455 | if (EC_POINT_is_at_infinity(group, b) > 0) { | ||
456 | if (!EC_POINT_copy(r, a)) | ||
457 | return 0; | ||
458 | return 1; | ||
459 | } | ||
460 | if (ctx == NULL) { | ||
461 | ctx = new_ctx = BN_CTX_new(); | ||
462 | if (ctx == NULL) | ||
463 | return 0; | ||
464 | } | ||
465 | BN_CTX_start(ctx); | ||
466 | if ((x0 = BN_CTX_get(ctx)) == NULL) | ||
467 | goto err; | ||
468 | if ((y0 = BN_CTX_get(ctx)) == NULL) | ||
469 | goto err; | ||
470 | if ((x1 = BN_CTX_get(ctx)) == NULL) | ||
471 | goto err; | ||
472 | if ((y1 = BN_CTX_get(ctx)) == NULL) | ||
473 | goto err; | ||
474 | if ((x2 = BN_CTX_get(ctx)) == NULL) | ||
475 | goto err; | ||
476 | if ((y2 = BN_CTX_get(ctx)) == NULL) | ||
477 | goto err; | ||
478 | if ((s = BN_CTX_get(ctx)) == NULL) | ||
479 | goto err; | ||
480 | if ((t = BN_CTX_get(ctx)) == NULL) | ||
481 | goto err; | ||
482 | |||
483 | if (a->Z_is_one) { | ||
484 | if (!BN_copy(x0, &a->X)) | ||
485 | goto err; | ||
486 | if (!BN_copy(y0, &a->Y)) | ||
487 | goto err; | ||
488 | } else { | ||
489 | if (!EC_POINT_get_affine_coordinates_GF2m(group, a, x0, y0, ctx)) | ||
490 | goto err; | ||
491 | } | ||
492 | if (b->Z_is_one) { | ||
493 | if (!BN_copy(x1, &b->X)) | ||
494 | goto err; | ||
495 | if (!BN_copy(y1, &b->Y)) | ||
496 | goto err; | ||
497 | } else { | ||
498 | if (!EC_POINT_get_affine_coordinates_GF2m(group, b, x1, y1, ctx)) | ||
499 | goto err; | ||
500 | } | ||
501 | |||
502 | |||
503 | if (BN_GF2m_cmp(x0, x1)) { | ||
504 | if (!BN_GF2m_add(t, x0, x1)) | ||
505 | goto err; | ||
506 | if (!BN_GF2m_add(s, y0, y1)) | ||
507 | goto err; | ||
508 | if (!group->meth->field_div(group, s, s, t, ctx)) | ||
509 | goto err; | ||
510 | if (!group->meth->field_sqr(group, x2, s, ctx)) | ||
511 | goto err; | ||
512 | if (!BN_GF2m_add(x2, x2, &group->a)) | ||
513 | goto err; | ||
514 | if (!BN_GF2m_add(x2, x2, s)) | ||
515 | goto err; | ||
516 | if (!BN_GF2m_add(x2, x2, t)) | ||
517 | goto err; | ||
518 | } else { | ||
519 | if (BN_GF2m_cmp(y0, y1) || BN_is_zero(x1)) { | ||
520 | if (!EC_POINT_set_to_infinity(group, r)) | ||
521 | goto err; | ||
522 | ret = 1; | ||
523 | goto err; | ||
524 | } | ||
525 | if (!group->meth->field_div(group, s, y1, x1, ctx)) | ||
526 | goto err; | ||
527 | if (!BN_GF2m_add(s, s, x1)) | ||
528 | goto err; | ||
529 | |||
530 | if (!group->meth->field_sqr(group, x2, s, ctx)) | ||
531 | goto err; | ||
532 | if (!BN_GF2m_add(x2, x2, s)) | ||
533 | goto err; | ||
534 | if (!BN_GF2m_add(x2, x2, &group->a)) | ||
535 | goto err; | ||
536 | } | ||
537 | |||
538 | if (!BN_GF2m_add(y2, x1, x2)) | ||
539 | goto err; | ||
540 | if (!group->meth->field_mul(group, y2, y2, s, ctx)) | ||
541 | goto err; | ||
542 | if (!BN_GF2m_add(y2, y2, x2)) | ||
543 | goto err; | ||
544 | if (!BN_GF2m_add(y2, y2, y1)) | ||
545 | goto err; | ||
546 | |||
547 | if (!EC_POINT_set_affine_coordinates_GF2m(group, r, x2, y2, ctx)) | ||
548 | goto err; | ||
549 | |||
550 | ret = 1; | ||
551 | |||
552 | err: | ||
553 | BN_CTX_end(ctx); | ||
554 | BN_CTX_free(new_ctx); | ||
555 | return ret; | ||
556 | } | ||
557 | |||
558 | |||
559 | /* Computes 2 * a and stores the result in r. r could be a. | ||
560 | * Uses algorithm A.10.2 of IEEE P1363. | ||
561 | */ | ||
562 | int | ||
563 | ec_GF2m_simple_dbl(const EC_GROUP *group, EC_POINT *r, const EC_POINT *a, | ||
564 | BN_CTX *ctx) | ||
565 | { | ||
566 | return ec_GF2m_simple_add(group, r, a, a, ctx); | ||
567 | } | ||
568 | |||
569 | int | ||
570 | ec_GF2m_simple_invert(const EC_GROUP *group, EC_POINT *point, BN_CTX *ctx) | ||
571 | { | ||
572 | if (EC_POINT_is_at_infinity(group, point) > 0 || BN_is_zero(&point->Y)) | ||
573 | /* point is its own inverse */ | ||
574 | return 1; | ||
575 | |||
576 | if (!EC_POINT_make_affine(group, point, ctx)) | ||
577 | return 0; | ||
578 | return BN_GF2m_add(&point->Y, &point->X, &point->Y); | ||
579 | } | ||
580 | |||
581 | |||
582 | /* Indicates whether the given point is the point at infinity. */ | ||
583 | int | ||
584 | ec_GF2m_simple_is_at_infinity(const EC_GROUP *group, const EC_POINT *point) | ||
585 | { | ||
586 | return BN_is_zero(&point->Z); | ||
587 | } | ||
588 | |||
589 | |||
590 | /* Determines whether the given EC_POINT is an actual point on the curve defined | ||
591 | * in the EC_GROUP. A point is valid if it satisfies the Weierstrass equation: | ||
592 | * y^2 + x*y = x^3 + a*x^2 + b. | ||
593 | */ | ||
594 | int | ||
595 | ec_GF2m_simple_is_on_curve(const EC_GROUP *group, const EC_POINT *point, BN_CTX *ctx) | ||
596 | { | ||
597 | int ret = -1; | ||
598 | BN_CTX *new_ctx = NULL; | ||
599 | BIGNUM *lh, *y2; | ||
600 | int (*field_mul) (const EC_GROUP *, BIGNUM *, const BIGNUM *, const BIGNUM *, BN_CTX *); | ||
601 | int (*field_sqr) (const EC_GROUP *, BIGNUM *, const BIGNUM *, BN_CTX *); | ||
602 | |||
603 | if (EC_POINT_is_at_infinity(group, point) > 0) | ||
604 | return 1; | ||
605 | |||
606 | field_mul = group->meth->field_mul; | ||
607 | field_sqr = group->meth->field_sqr; | ||
608 | |||
609 | /* only support affine coordinates */ | ||
610 | if (!point->Z_is_one) | ||
611 | return -1; | ||
612 | |||
613 | if (ctx == NULL) { | ||
614 | ctx = new_ctx = BN_CTX_new(); | ||
615 | if (ctx == NULL) | ||
616 | return -1; | ||
617 | } | ||
618 | BN_CTX_start(ctx); | ||
619 | if ((y2 = BN_CTX_get(ctx)) == NULL) | ||
620 | goto err; | ||
621 | if ((lh = BN_CTX_get(ctx)) == NULL) | ||
622 | goto err; | ||
623 | |||
624 | /* | ||
625 | * We have a curve defined by a Weierstrass equation y^2 + x*y = x^3 | ||
626 | * + a*x^2 + b. <=> x^3 + a*x^2 + x*y + b + y^2 = 0 <=> ((x + a) * x | ||
627 | * + y ) * x + b + y^2 = 0 | ||
628 | */ | ||
629 | if (!BN_GF2m_add(lh, &point->X, &group->a)) | ||
630 | goto err; | ||
631 | if (!field_mul(group, lh, lh, &point->X, ctx)) | ||
632 | goto err; | ||
633 | if (!BN_GF2m_add(lh, lh, &point->Y)) | ||
634 | goto err; | ||
635 | if (!field_mul(group, lh, lh, &point->X, ctx)) | ||
636 | goto err; | ||
637 | if (!BN_GF2m_add(lh, lh, &group->b)) | ||
638 | goto err; | ||
639 | if (!field_sqr(group, y2, &point->Y, ctx)) | ||
640 | goto err; | ||
641 | if (!BN_GF2m_add(lh, lh, y2)) | ||
642 | goto err; | ||
643 | ret = BN_is_zero(lh); | ||
644 | err: | ||
645 | if (ctx) | ||
646 | BN_CTX_end(ctx); | ||
647 | BN_CTX_free(new_ctx); | ||
648 | return ret; | ||
649 | } | ||
650 | |||
651 | |||
652 | /* Indicates whether two points are equal. | ||
653 | * Return values: | ||
654 | * -1 error | ||
655 | * 0 equal (in affine coordinates) | ||
656 | * 1 not equal | ||
657 | */ | ||
658 | int | ||
659 | ec_GF2m_simple_cmp(const EC_GROUP *group, const EC_POINT *a, | ||
660 | const EC_POINT *b, BN_CTX *ctx) | ||
661 | { | ||
662 | BIGNUM *aX, *aY, *bX, *bY; | ||
663 | BN_CTX *new_ctx = NULL; | ||
664 | int ret = -1; | ||
665 | |||
666 | if (EC_POINT_is_at_infinity(group, a) > 0) { | ||
667 | return EC_POINT_is_at_infinity(group, b) > 0 ? 0 : 1; | ||
668 | } | ||
669 | if (EC_POINT_is_at_infinity(group, b) > 0) | ||
670 | return 1; | ||
671 | |||
672 | if (a->Z_is_one && b->Z_is_one) { | ||
673 | return ((BN_cmp(&a->X, &b->X) == 0) && BN_cmp(&a->Y, &b->Y) == 0) ? 0 : 1; | ||
674 | } | ||
675 | if (ctx == NULL) { | ||
676 | ctx = new_ctx = BN_CTX_new(); | ||
677 | if (ctx == NULL) | ||
678 | return -1; | ||
679 | } | ||
680 | BN_CTX_start(ctx); | ||
681 | if ((aX = BN_CTX_get(ctx)) == NULL) | ||
682 | goto err; | ||
683 | if ((aY = BN_CTX_get(ctx)) == NULL) | ||
684 | goto err; | ||
685 | if ((bX = BN_CTX_get(ctx)) == NULL) | ||
686 | goto err; | ||
687 | if ((bY = BN_CTX_get(ctx)) == NULL) | ||
688 | goto err; | ||
689 | |||
690 | if (!EC_POINT_get_affine_coordinates_GF2m(group, a, aX, aY, ctx)) | ||
691 | goto err; | ||
692 | if (!EC_POINT_get_affine_coordinates_GF2m(group, b, bX, bY, ctx)) | ||
693 | goto err; | ||
694 | ret = ((BN_cmp(aX, bX) == 0) && BN_cmp(aY, bY) == 0) ? 0 : 1; | ||
695 | |||
696 | err: | ||
697 | if (ctx) | ||
698 | BN_CTX_end(ctx); | ||
699 | BN_CTX_free(new_ctx); | ||
700 | return ret; | ||
701 | } | ||
702 | |||
703 | |||
704 | /* Forces the given EC_POINT to internally use affine coordinates. */ | ||
705 | int | ||
706 | ec_GF2m_simple_make_affine(const EC_GROUP * group, EC_POINT * point, BN_CTX * ctx) | ||
707 | { | ||
708 | BN_CTX *new_ctx = NULL; | ||
709 | BIGNUM *x, *y; | ||
710 | int ret = 0; | ||
711 | |||
712 | if (point->Z_is_one || EC_POINT_is_at_infinity(group, point) > 0) | ||
713 | return 1; | ||
714 | |||
715 | if (ctx == NULL) { | ||
716 | ctx = new_ctx = BN_CTX_new(); | ||
717 | if (ctx == NULL) | ||
718 | return 0; | ||
719 | } | ||
720 | BN_CTX_start(ctx); | ||
721 | if ((x = BN_CTX_get(ctx)) == NULL) | ||
722 | goto err; | ||
723 | if ((y = BN_CTX_get(ctx)) == NULL) | ||
724 | goto err; | ||
725 | |||
726 | if (!EC_POINT_get_affine_coordinates_GF2m(group, point, x, y, ctx)) | ||
727 | goto err; | ||
728 | if (!BN_copy(&point->X, x)) | ||
729 | goto err; | ||
730 | if (!BN_copy(&point->Y, y)) | ||
731 | goto err; | ||
732 | if (!BN_one(&point->Z)) | ||
733 | goto err; | ||
734 | |||
735 | ret = 1; | ||
736 | |||
737 | err: | ||
738 | if (ctx) | ||
739 | BN_CTX_end(ctx); | ||
740 | BN_CTX_free(new_ctx); | ||
741 | return ret; | ||
742 | } | ||
743 | |||
744 | |||
745 | /* Forces each of the EC_POINTs in the given array to use affine coordinates. */ | ||
746 | int | ||
747 | ec_GF2m_simple_points_make_affine(const EC_GROUP *group, size_t num, | ||
748 | EC_POINT *points[], BN_CTX *ctx) | ||
749 | { | ||
750 | size_t i; | ||
751 | |||
752 | for (i = 0; i < num; i++) { | ||
753 | if (!group->meth->make_affine(group, points[i], ctx)) | ||
754 | return 0; | ||
755 | } | ||
756 | |||
757 | return 1; | ||
758 | } | ||
759 | |||
760 | |||
761 | /* Wrapper to simple binary polynomial field multiplication implementation. */ | ||
762 | int | ||
763 | ec_GF2m_simple_field_mul(const EC_GROUP *group, BIGNUM *r, const BIGNUM *a, | ||
764 | const BIGNUM *b, BN_CTX *ctx) | ||
765 | { | ||
766 | return BN_GF2m_mod_mul_arr(r, a, b, group->poly, ctx); | ||
767 | } | ||
768 | |||
769 | |||
770 | /* Wrapper to simple binary polynomial field squaring implementation. */ | ||
771 | int | ||
772 | ec_GF2m_simple_field_sqr(const EC_GROUP *group, BIGNUM *r, const BIGNUM *a, | ||
773 | BN_CTX *ctx) | ||
774 | { | ||
775 | return BN_GF2m_mod_sqr_arr(r, a, group->poly, ctx); | ||
776 | } | ||
777 | |||
778 | |||
779 | /* Wrapper to simple binary polynomial field division implementation. */ | ||
780 | int | ||
781 | ec_GF2m_simple_field_div(const EC_GROUP *group, BIGNUM *r, const BIGNUM *a, | ||
782 | const BIGNUM *b, BN_CTX *ctx) | ||
783 | { | ||
784 | return BN_GF2m_mod_div(r, a, b, &group->field, ctx); | ||
785 | } | ||
786 | |||
787 | #endif | ||
diff --git a/src/lib/libcrypto/ec/ec_ameth.c b/src/lib/libcrypto/ec/ec_ameth.c deleted file mode 100644 index dd1c31883e..0000000000 --- a/src/lib/libcrypto/ec/ec_ameth.c +++ /dev/null | |||
@@ -1,636 +0,0 @@ | |||
1 | /* $OpenBSD: ec_ameth.c,v 1.16 2015/02/11 04:05:14 beck Exp $ */ | ||
2 | /* Written by Dr Stephen N Henson (steve@openssl.org) for the OpenSSL | ||
3 | * project 2006. | ||
4 | */ | ||
5 | /* ==================================================================== | ||
6 | * Copyright (c) 2006 The OpenSSL Project. All rights reserved. | ||
7 | * | ||
8 | * Redistribution and use in source and binary forms, with or without | ||
9 | * modification, are permitted provided that the following conditions | ||
10 | * are met: | ||
11 | * | ||
12 | * 1. Redistributions of source code must retain the above copyright | ||
13 | * notice, this list of conditions and the following disclaimer. | ||
14 | * | ||
15 | * 2. Redistributions in binary form must reproduce the above copyright | ||
16 | * notice, this list of conditions and the following disclaimer in | ||
17 | * the documentation and/or other materials provided with the | ||
18 | * distribution. | ||
19 | * | ||
20 | * 3. All advertising materials mentioning features or use of this | ||
21 | * software must display the following acknowledgment: | ||
22 | * "This product includes software developed by the OpenSSL Project | ||
23 | * for use in the OpenSSL Toolkit. (http://www.OpenSSL.org/)" | ||
24 | * | ||
25 | * 4. The names "OpenSSL Toolkit" and "OpenSSL Project" must not be used to | ||
26 | * endorse or promote products derived from this software without | ||
27 | * prior written permission. For written permission, please contact | ||
28 | * licensing@OpenSSL.org. | ||
29 | * | ||
30 | * 5. Products derived from this software may not be called "OpenSSL" | ||
31 | * nor may "OpenSSL" appear in their names without prior written | ||
32 | * permission of the OpenSSL Project. | ||
33 | * | ||
34 | * 6. Redistributions of any form whatsoever must retain the following | ||
35 | * acknowledgment: | ||
36 | * "This product includes software developed by the OpenSSL Project | ||
37 | * for use in the OpenSSL Toolkit (http://www.OpenSSL.org/)" | ||
38 | * | ||
39 | * THIS SOFTWARE IS PROVIDED BY THE OpenSSL PROJECT ``AS IS'' AND ANY | ||
40 | * EXPRESSED OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE | ||
41 | * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR | ||
42 | * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE OpenSSL PROJECT OR | ||
43 | * ITS CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, | ||
44 | * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT | ||
45 | * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; | ||
46 | * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) | ||
47 | * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, | ||
48 | * STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) | ||
49 | * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED | ||
50 | * OF THE POSSIBILITY OF SUCH DAMAGE. | ||
51 | * ==================================================================== | ||
52 | * | ||
53 | * This product includes cryptographic software written by Eric Young | ||
54 | * (eay@cryptsoft.com). This product includes software written by Tim | ||
55 | * Hudson (tjh@cryptsoft.com). | ||
56 | * | ||
57 | */ | ||
58 | |||
59 | #include <stdio.h> | ||
60 | |||
61 | #include <openssl/opensslconf.h> | ||
62 | |||
63 | #include <openssl/bn.h> | ||
64 | #include <openssl/ec.h> | ||
65 | #include <openssl/err.h> | ||
66 | #include <openssl/x509.h> | ||
67 | |||
68 | #ifndef OPENSSL_NO_CMS | ||
69 | #include <openssl/cms.h> | ||
70 | #endif | ||
71 | |||
72 | #include "asn1_locl.h" | ||
73 | |||
74 | static int | ||
75 | eckey_param2type(int *pptype, void **ppval, EC_KEY * ec_key) | ||
76 | { | ||
77 | const EC_GROUP *group; | ||
78 | int nid; | ||
79 | if (ec_key == NULL || (group = EC_KEY_get0_group(ec_key)) == NULL) { | ||
80 | ECerr(EC_F_ECKEY_PARAM2TYPE, EC_R_MISSING_PARAMETERS); | ||
81 | return 0; | ||
82 | } | ||
83 | if (EC_GROUP_get_asn1_flag(group) && | ||
84 | (nid = EC_GROUP_get_curve_name(group))) { | ||
85 | /* we have a 'named curve' => just set the OID */ | ||
86 | *ppval = OBJ_nid2obj(nid); | ||
87 | *pptype = V_ASN1_OBJECT; | ||
88 | } else { | ||
89 | /* explicit parameters */ | ||
90 | ASN1_STRING *pstr = NULL; | ||
91 | pstr = ASN1_STRING_new(); | ||
92 | if (!pstr) | ||
93 | return 0; | ||
94 | pstr->length = i2d_ECParameters(ec_key, &pstr->data); | ||
95 | if (pstr->length <= 0) { | ||
96 | ASN1_STRING_free(pstr); | ||
97 | ECerr(EC_F_ECKEY_PARAM2TYPE, ERR_R_EC_LIB); | ||
98 | return 0; | ||
99 | } | ||
100 | *ppval = pstr; | ||
101 | *pptype = V_ASN1_SEQUENCE; | ||
102 | } | ||
103 | return 1; | ||
104 | } | ||
105 | |||
106 | static int | ||
107 | eckey_pub_encode(X509_PUBKEY * pk, const EVP_PKEY * pkey) | ||
108 | { | ||
109 | EC_KEY *ec_key = pkey->pkey.ec; | ||
110 | void *pval = NULL; | ||
111 | int ptype; | ||
112 | unsigned char *penc = NULL, *p; | ||
113 | int penclen; | ||
114 | |||
115 | if (!eckey_param2type(&ptype, &pval, ec_key)) { | ||
116 | ECerr(EC_F_ECKEY_PUB_ENCODE, ERR_R_EC_LIB); | ||
117 | return 0; | ||
118 | } | ||
119 | penclen = i2o_ECPublicKey(ec_key, NULL); | ||
120 | if (penclen <= 0) | ||
121 | goto err; | ||
122 | penc = malloc(penclen); | ||
123 | if (!penc) | ||
124 | goto err; | ||
125 | p = penc; | ||
126 | penclen = i2o_ECPublicKey(ec_key, &p); | ||
127 | if (penclen <= 0) | ||
128 | goto err; | ||
129 | if (X509_PUBKEY_set0_param(pk, OBJ_nid2obj(EVP_PKEY_EC), | ||
130 | ptype, pval, penc, penclen)) | ||
131 | return 1; | ||
132 | err: | ||
133 | if (ptype == V_ASN1_OBJECT) | ||
134 | ASN1_OBJECT_free(pval); | ||
135 | else | ||
136 | ASN1_STRING_free(pval); | ||
137 | free(penc); | ||
138 | return 0; | ||
139 | } | ||
140 | |||
141 | static EC_KEY * | ||
142 | eckey_type2param(int ptype, void *pval) | ||
143 | { | ||
144 | EC_KEY *eckey = NULL; | ||
145 | |||
146 | if (ptype == V_ASN1_SEQUENCE) { | ||
147 | ASN1_STRING *pstr = pval; | ||
148 | const unsigned char *pm = NULL; | ||
149 | int pmlen; | ||
150 | |||
151 | pm = pstr->data; | ||
152 | pmlen = pstr->length; | ||
153 | if (!(eckey = d2i_ECParameters(NULL, &pm, pmlen))) { | ||
154 | ECerr(EC_F_ECKEY_TYPE2PARAM, EC_R_DECODE_ERROR); | ||
155 | goto ecerr; | ||
156 | } | ||
157 | } else if (ptype == V_ASN1_OBJECT) { | ||
158 | ASN1_OBJECT *poid = pval; | ||
159 | EC_GROUP *group; | ||
160 | |||
161 | /* | ||
162 | * type == V_ASN1_OBJECT => the parameters are given by an | ||
163 | * asn1 OID | ||
164 | */ | ||
165 | if ((eckey = EC_KEY_new()) == NULL) { | ||
166 | ECerr(EC_F_ECKEY_TYPE2PARAM, ERR_R_MALLOC_FAILURE); | ||
167 | goto ecerr; | ||
168 | } | ||
169 | group = EC_GROUP_new_by_curve_name(OBJ_obj2nid(poid)); | ||
170 | if (group == NULL) | ||
171 | goto ecerr; | ||
172 | EC_GROUP_set_asn1_flag(group, OPENSSL_EC_NAMED_CURVE); | ||
173 | if (EC_KEY_set_group(eckey, group) == 0) | ||
174 | goto ecerr; | ||
175 | EC_GROUP_free(group); | ||
176 | } else { | ||
177 | ECerr(EC_F_ECKEY_TYPE2PARAM, EC_R_DECODE_ERROR); | ||
178 | goto ecerr; | ||
179 | } | ||
180 | |||
181 | return eckey; | ||
182 | |||
183 | ecerr: | ||
184 | if (eckey) | ||
185 | EC_KEY_free(eckey); | ||
186 | return NULL; | ||
187 | } | ||
188 | |||
189 | static int | ||
190 | eckey_pub_decode(EVP_PKEY * pkey, X509_PUBKEY * pubkey) | ||
191 | { | ||
192 | const unsigned char *p = NULL; | ||
193 | void *pval; | ||
194 | int ptype, pklen; | ||
195 | EC_KEY *eckey = NULL; | ||
196 | X509_ALGOR *palg; | ||
197 | |||
198 | if (!X509_PUBKEY_get0_param(NULL, &p, &pklen, &palg, pubkey)) | ||
199 | return 0; | ||
200 | X509_ALGOR_get0(NULL, &ptype, &pval, palg); | ||
201 | |||
202 | eckey = eckey_type2param(ptype, pval); | ||
203 | |||
204 | if (!eckey) { | ||
205 | ECerr(EC_F_ECKEY_PUB_DECODE, ERR_R_EC_LIB); | ||
206 | return 0; | ||
207 | } | ||
208 | /* We have parameters now set public key */ | ||
209 | if (!o2i_ECPublicKey(&eckey, &p, pklen)) { | ||
210 | ECerr(EC_F_ECKEY_PUB_DECODE, EC_R_DECODE_ERROR); | ||
211 | goto ecerr; | ||
212 | } | ||
213 | EVP_PKEY_assign_EC_KEY(pkey, eckey); | ||
214 | return 1; | ||
215 | |||
216 | ecerr: | ||
217 | if (eckey) | ||
218 | EC_KEY_free(eckey); | ||
219 | return 0; | ||
220 | } | ||
221 | |||
222 | static int | ||
223 | eckey_pub_cmp(const EVP_PKEY * a, const EVP_PKEY * b) | ||
224 | { | ||
225 | int r; | ||
226 | const EC_GROUP *group = EC_KEY_get0_group(b->pkey.ec); | ||
227 | const EC_POINT *pa = EC_KEY_get0_public_key(a->pkey.ec), *pb = EC_KEY_get0_public_key(b->pkey.ec); | ||
228 | |||
229 | r = EC_POINT_cmp(group, pa, pb, NULL); | ||
230 | if (r == 0) | ||
231 | return 1; | ||
232 | if (r == 1) | ||
233 | return 0; | ||
234 | return -2; | ||
235 | } | ||
236 | |||
237 | static int | ||
238 | eckey_priv_decode(EVP_PKEY * pkey, PKCS8_PRIV_KEY_INFO * p8) | ||
239 | { | ||
240 | const unsigned char *p = NULL; | ||
241 | void *pval; | ||
242 | int ptype, pklen; | ||
243 | EC_KEY *eckey = NULL; | ||
244 | X509_ALGOR *palg; | ||
245 | |||
246 | if (!PKCS8_pkey_get0(NULL, &p, &pklen, &palg, p8)) | ||
247 | return 0; | ||
248 | X509_ALGOR_get0(NULL, &ptype, &pval, palg); | ||
249 | |||
250 | eckey = eckey_type2param(ptype, pval); | ||
251 | |||
252 | if (!eckey) | ||
253 | goto ecliberr; | ||
254 | |||
255 | /* We have parameters now set private key */ | ||
256 | if (!d2i_ECPrivateKey(&eckey, &p, pklen)) { | ||
257 | ECerr(EC_F_ECKEY_PRIV_DECODE, EC_R_DECODE_ERROR); | ||
258 | goto ecerr; | ||
259 | } | ||
260 | /* calculate public key (if necessary) */ | ||
261 | if (EC_KEY_get0_public_key(eckey) == NULL) { | ||
262 | const BIGNUM *priv_key; | ||
263 | const EC_GROUP *group; | ||
264 | EC_POINT *pub_key; | ||
265 | /* | ||
266 | * the public key was not included in the SEC1 private key => | ||
267 | * calculate the public key | ||
268 | */ | ||
269 | group = EC_KEY_get0_group(eckey); | ||
270 | pub_key = EC_POINT_new(group); | ||
271 | if (pub_key == NULL) { | ||
272 | ECerr(EC_F_ECKEY_PRIV_DECODE, ERR_R_EC_LIB); | ||
273 | goto ecliberr; | ||
274 | } | ||
275 | if (!EC_POINT_copy(pub_key, EC_GROUP_get0_generator(group))) { | ||
276 | EC_POINT_free(pub_key); | ||
277 | ECerr(EC_F_ECKEY_PRIV_DECODE, ERR_R_EC_LIB); | ||
278 | goto ecliberr; | ||
279 | } | ||
280 | priv_key = EC_KEY_get0_private_key(eckey); | ||
281 | if (!EC_POINT_mul(group, pub_key, priv_key, NULL, NULL, NULL)) { | ||
282 | EC_POINT_free(pub_key); | ||
283 | ECerr(EC_F_ECKEY_PRIV_DECODE, ERR_R_EC_LIB); | ||
284 | goto ecliberr; | ||
285 | } | ||
286 | if (EC_KEY_set_public_key(eckey, pub_key) == 0) { | ||
287 | EC_POINT_free(pub_key); | ||
288 | ECerr(EC_F_ECKEY_PRIV_DECODE, ERR_R_EC_LIB); | ||
289 | goto ecliberr; | ||
290 | } | ||
291 | EC_POINT_free(pub_key); | ||
292 | } | ||
293 | EVP_PKEY_assign_EC_KEY(pkey, eckey); | ||
294 | return 1; | ||
295 | |||
296 | ecliberr: | ||
297 | ECerr(EC_F_ECKEY_PRIV_DECODE, ERR_R_EC_LIB); | ||
298 | ecerr: | ||
299 | if (eckey) | ||
300 | EC_KEY_free(eckey); | ||
301 | return 0; | ||
302 | } | ||
303 | |||
304 | static int | ||
305 | eckey_priv_encode(PKCS8_PRIV_KEY_INFO * p8, const EVP_PKEY * pkey) | ||
306 | { | ||
307 | EC_KEY *ec_key; | ||
308 | unsigned char *ep, *p; | ||
309 | int eplen, ptype; | ||
310 | void *pval; | ||
311 | unsigned int tmp_flags, old_flags; | ||
312 | |||
313 | ec_key = pkey->pkey.ec; | ||
314 | |||
315 | if (!eckey_param2type(&ptype, &pval, ec_key)) { | ||
316 | ECerr(EC_F_ECKEY_PRIV_ENCODE, EC_R_DECODE_ERROR); | ||
317 | return 0; | ||
318 | } | ||
319 | /* set the private key */ | ||
320 | |||
321 | /* | ||
322 | * do not include the parameters in the SEC1 private key see PKCS#11 | ||
323 | * 12.11 | ||
324 | */ | ||
325 | old_flags = EC_KEY_get_enc_flags(ec_key); | ||
326 | tmp_flags = old_flags | EC_PKEY_NO_PARAMETERS; | ||
327 | EC_KEY_set_enc_flags(ec_key, tmp_flags); | ||
328 | eplen = i2d_ECPrivateKey(ec_key, NULL); | ||
329 | if (!eplen) { | ||
330 | EC_KEY_set_enc_flags(ec_key, old_flags); | ||
331 | ECerr(EC_F_ECKEY_PRIV_ENCODE, ERR_R_EC_LIB); | ||
332 | return 0; | ||
333 | } | ||
334 | ep = malloc(eplen); | ||
335 | if (!ep) { | ||
336 | EC_KEY_set_enc_flags(ec_key, old_flags); | ||
337 | ECerr(EC_F_ECKEY_PRIV_ENCODE, ERR_R_MALLOC_FAILURE); | ||
338 | return 0; | ||
339 | } | ||
340 | p = ep; | ||
341 | if (!i2d_ECPrivateKey(ec_key, &p)) { | ||
342 | EC_KEY_set_enc_flags(ec_key, old_flags); | ||
343 | free(ep); | ||
344 | ECerr(EC_F_ECKEY_PRIV_ENCODE, ERR_R_EC_LIB); | ||
345 | return 0; | ||
346 | } | ||
347 | /* restore old encoding flags */ | ||
348 | EC_KEY_set_enc_flags(ec_key, old_flags); | ||
349 | |||
350 | if (!PKCS8_pkey_set0(p8, OBJ_nid2obj(NID_X9_62_id_ecPublicKey), 0, | ||
351 | ptype, pval, ep, eplen)) | ||
352 | return 0; | ||
353 | |||
354 | return 1; | ||
355 | } | ||
356 | |||
357 | static int | ||
358 | int_ec_size(const EVP_PKEY * pkey) | ||
359 | { | ||
360 | return ECDSA_size(pkey->pkey.ec); | ||
361 | } | ||
362 | |||
363 | static int | ||
364 | ec_bits(const EVP_PKEY * pkey) | ||
365 | { | ||
366 | BIGNUM *order = BN_new(); | ||
367 | const EC_GROUP *group; | ||
368 | int ret; | ||
369 | |||
370 | if (!order) { | ||
371 | ERR_clear_error(); | ||
372 | return 0; | ||
373 | } | ||
374 | group = EC_KEY_get0_group(pkey->pkey.ec); | ||
375 | if (!EC_GROUP_get_order(group, order, NULL)) { | ||
376 | BN_free(order); | ||
377 | ERR_clear_error(); | ||
378 | return 0; | ||
379 | } | ||
380 | ret = BN_num_bits(order); | ||
381 | BN_free(order); | ||
382 | return ret; | ||
383 | } | ||
384 | |||
385 | static int | ||
386 | ec_missing_parameters(const EVP_PKEY * pkey) | ||
387 | { | ||
388 | if (EC_KEY_get0_group(pkey->pkey.ec) == NULL) | ||
389 | return 1; | ||
390 | return 0; | ||
391 | } | ||
392 | |||
393 | static int | ||
394 | ec_copy_parameters(EVP_PKEY * to, const EVP_PKEY * from) | ||
395 | { | ||
396 | return EC_KEY_set_group(to->pkey.ec, EC_KEY_get0_group(from->pkey.ec)); | ||
397 | } | ||
398 | |||
399 | static int | ||
400 | ec_cmp_parameters(const EVP_PKEY * a, const EVP_PKEY * b) | ||
401 | { | ||
402 | const EC_GROUP *group_a = EC_KEY_get0_group(a->pkey.ec), *group_b = EC_KEY_get0_group(b->pkey.ec); | ||
403 | if (EC_GROUP_cmp(group_a, group_b, NULL)) | ||
404 | return 0; | ||
405 | else | ||
406 | return 1; | ||
407 | } | ||
408 | |||
409 | static void | ||
410 | int_ec_free(EVP_PKEY * pkey) | ||
411 | { | ||
412 | EC_KEY_free(pkey->pkey.ec); | ||
413 | } | ||
414 | |||
415 | static int | ||
416 | do_EC_KEY_print(BIO * bp, const EC_KEY * x, int off, int ktype) | ||
417 | { | ||
418 | unsigned char *buffer = NULL; | ||
419 | const char *ecstr; | ||
420 | size_t buf_len = 0, i; | ||
421 | int ret = 0, reason = ERR_R_BIO_LIB; | ||
422 | BIGNUM *pub_key = NULL, *order = NULL; | ||
423 | BN_CTX *ctx = NULL; | ||
424 | const EC_GROUP *group; | ||
425 | const EC_POINT *public_key; | ||
426 | const BIGNUM *priv_key; | ||
427 | |||
428 | if (x == NULL || (group = EC_KEY_get0_group(x)) == NULL) { | ||
429 | reason = ERR_R_PASSED_NULL_PARAMETER; | ||
430 | goto err; | ||
431 | } | ||
432 | ctx = BN_CTX_new(); | ||
433 | if (ctx == NULL) { | ||
434 | reason = ERR_R_MALLOC_FAILURE; | ||
435 | goto err; | ||
436 | } | ||
437 | if (ktype > 0) { | ||
438 | public_key = EC_KEY_get0_public_key(x); | ||
439 | if ((pub_key = EC_POINT_point2bn(group, public_key, | ||
440 | EC_KEY_get_conv_form(x), NULL, ctx)) == NULL) { | ||
441 | reason = ERR_R_EC_LIB; | ||
442 | goto err; | ||
443 | } | ||
444 | if (pub_key) | ||
445 | buf_len = (size_t) BN_num_bytes(pub_key); | ||
446 | } | ||
447 | if (ktype == 2) { | ||
448 | priv_key = EC_KEY_get0_private_key(x); | ||
449 | if (priv_key && (i = (size_t) BN_num_bytes(priv_key)) > buf_len) | ||
450 | buf_len = i; | ||
451 | } else | ||
452 | priv_key = NULL; | ||
453 | |||
454 | if (ktype > 0) { | ||
455 | buf_len += 10; | ||
456 | if ((buffer = malloc(buf_len)) == NULL) { | ||
457 | reason = ERR_R_MALLOC_FAILURE; | ||
458 | goto err; | ||
459 | } | ||
460 | } | ||
461 | if (ktype == 2) | ||
462 | ecstr = "Private-Key"; | ||
463 | else if (ktype == 1) | ||
464 | ecstr = "Public-Key"; | ||
465 | else | ||
466 | ecstr = "ECDSA-Parameters"; | ||
467 | |||
468 | if (!BIO_indent(bp, off, 128)) | ||
469 | goto err; | ||
470 | if ((order = BN_new()) == NULL) | ||
471 | goto err; | ||
472 | if (!EC_GROUP_get_order(group, order, NULL)) | ||
473 | goto err; | ||
474 | if (BIO_printf(bp, "%s: (%d bit)\n", ecstr, | ||
475 | BN_num_bits(order)) <= 0) | ||
476 | goto err; | ||
477 | |||
478 | if ((priv_key != NULL) && !ASN1_bn_print(bp, "priv:", priv_key, | ||
479 | buffer, off)) | ||
480 | goto err; | ||
481 | if ((pub_key != NULL) && !ASN1_bn_print(bp, "pub: ", pub_key, | ||
482 | buffer, off)) | ||
483 | goto err; | ||
484 | if (!ECPKParameters_print(bp, group, off)) | ||
485 | goto err; | ||
486 | ret = 1; | ||
487 | err: | ||
488 | if (!ret) | ||
489 | ECerr(EC_F_DO_EC_KEY_PRINT, reason); | ||
490 | BN_free(pub_key); | ||
491 | BN_free(order); | ||
492 | BN_CTX_free(ctx); | ||
493 | free(buffer); | ||
494 | return (ret); | ||
495 | } | ||
496 | |||
497 | static int | ||
498 | eckey_param_decode(EVP_PKEY * pkey, | ||
499 | const unsigned char **pder, int derlen) | ||
500 | { | ||
501 | EC_KEY *eckey; | ||
502 | if (!(eckey = d2i_ECParameters(NULL, pder, derlen))) { | ||
503 | ECerr(EC_F_ECKEY_PARAM_DECODE, ERR_R_EC_LIB); | ||
504 | return 0; | ||
505 | } | ||
506 | EVP_PKEY_assign_EC_KEY(pkey, eckey); | ||
507 | return 1; | ||
508 | } | ||
509 | |||
510 | static int | ||
511 | eckey_param_encode(const EVP_PKEY * pkey, unsigned char **pder) | ||
512 | { | ||
513 | return i2d_ECParameters(pkey->pkey.ec, pder); | ||
514 | } | ||
515 | |||
516 | static int | ||
517 | eckey_param_print(BIO * bp, const EVP_PKEY * pkey, int indent, | ||
518 | ASN1_PCTX * ctx) | ||
519 | { | ||
520 | return do_EC_KEY_print(bp, pkey->pkey.ec, indent, 0); | ||
521 | } | ||
522 | |||
523 | static int | ||
524 | eckey_pub_print(BIO * bp, const EVP_PKEY * pkey, int indent, | ||
525 | ASN1_PCTX * ctx) | ||
526 | { | ||
527 | return do_EC_KEY_print(bp, pkey->pkey.ec, indent, 1); | ||
528 | } | ||
529 | |||
530 | |||
531 | static int | ||
532 | eckey_priv_print(BIO * bp, const EVP_PKEY * pkey, int indent, | ||
533 | ASN1_PCTX * ctx) | ||
534 | { | ||
535 | return do_EC_KEY_print(bp, pkey->pkey.ec, indent, 2); | ||
536 | } | ||
537 | |||
538 | static int | ||
539 | old_ec_priv_decode(EVP_PKEY * pkey, | ||
540 | const unsigned char **pder, int derlen) | ||
541 | { | ||
542 | EC_KEY *ec; | ||
543 | if (!(ec = d2i_ECPrivateKey(NULL, pder, derlen))) { | ||
544 | ECerr(EC_F_OLD_EC_PRIV_DECODE, EC_R_DECODE_ERROR); | ||
545 | return 0; | ||
546 | } | ||
547 | EVP_PKEY_assign_EC_KEY(pkey, ec); | ||
548 | return 1; | ||
549 | } | ||
550 | |||
551 | static int | ||
552 | old_ec_priv_encode(const EVP_PKEY * pkey, unsigned char **pder) | ||
553 | { | ||
554 | return i2d_ECPrivateKey(pkey->pkey.ec, pder); | ||
555 | } | ||
556 | |||
557 | static int | ||
558 | ec_pkey_ctrl(EVP_PKEY * pkey, int op, long arg1, void *arg2) | ||
559 | { | ||
560 | switch (op) { | ||
561 | case ASN1_PKEY_CTRL_PKCS7_SIGN: | ||
562 | if (arg1 == 0) { | ||
563 | int snid, hnid; | ||
564 | X509_ALGOR *alg1, *alg2; | ||
565 | PKCS7_SIGNER_INFO_get0_algs(arg2, NULL, &alg1, &alg2); | ||
566 | if (alg1 == NULL || alg1->algorithm == NULL) | ||
567 | return -1; | ||
568 | hnid = OBJ_obj2nid(alg1->algorithm); | ||
569 | if (hnid == NID_undef) | ||
570 | return -1; | ||
571 | if (!OBJ_find_sigid_by_algs(&snid, hnid, EVP_PKEY_id(pkey))) | ||
572 | return -1; | ||
573 | X509_ALGOR_set0(alg2, OBJ_nid2obj(snid), V_ASN1_UNDEF, 0); | ||
574 | } | ||
575 | return 1; | ||
576 | #ifndef OPENSSL_NO_CMS | ||
577 | case ASN1_PKEY_CTRL_CMS_SIGN: | ||
578 | if (arg1 == 0) { | ||
579 | int snid, hnid; | ||
580 | X509_ALGOR *alg1, *alg2; | ||
581 | CMS_SignerInfo_get0_algs(arg2, NULL, NULL, | ||
582 | &alg1, &alg2); | ||
583 | if (alg1 == NULL || alg1->algorithm == NULL) | ||
584 | return -1; | ||
585 | hnid = OBJ_obj2nid(alg1->algorithm); | ||
586 | if (hnid == NID_undef) | ||
587 | return -1; | ||
588 | if (!OBJ_find_sigid_by_algs(&snid, hnid, EVP_PKEY_id(pkey))) | ||
589 | return -1; | ||
590 | X509_ALGOR_set0(alg2, OBJ_nid2obj(snid), V_ASN1_UNDEF, 0); | ||
591 | } | ||
592 | return 1; | ||
593 | #endif | ||
594 | |||
595 | case ASN1_PKEY_CTRL_DEFAULT_MD_NID: | ||
596 | *(int *) arg2 = NID_sha1; | ||
597 | return 2; | ||
598 | |||
599 | default: | ||
600 | return -2; | ||
601 | |||
602 | } | ||
603 | |||
604 | } | ||
605 | |||
606 | const EVP_PKEY_ASN1_METHOD eckey_asn1_meth = { | ||
607 | .pkey_id = EVP_PKEY_EC, | ||
608 | .pkey_base_id = EVP_PKEY_EC, | ||
609 | |||
610 | .pem_str = "EC", | ||
611 | .info = "OpenSSL EC algorithm", | ||
612 | |||
613 | .pub_decode = eckey_pub_decode, | ||
614 | .pub_encode = eckey_pub_encode, | ||
615 | .pub_cmp = eckey_pub_cmp, | ||
616 | .pub_print = eckey_pub_print, | ||
617 | |||
618 | .priv_decode = eckey_priv_decode, | ||
619 | .priv_encode = eckey_priv_encode, | ||
620 | .priv_print = eckey_priv_print, | ||
621 | |||
622 | .pkey_size = int_ec_size, | ||
623 | .pkey_bits = ec_bits, | ||
624 | |||
625 | .param_decode = eckey_param_decode, | ||
626 | .param_encode = eckey_param_encode, | ||
627 | .param_missing = ec_missing_parameters, | ||
628 | .param_copy = ec_copy_parameters, | ||
629 | .param_cmp = ec_cmp_parameters, | ||
630 | .param_print = eckey_param_print, | ||
631 | |||
632 | .pkey_free = int_ec_free, | ||
633 | .pkey_ctrl = ec_pkey_ctrl, | ||
634 | .old_priv_decode = old_ec_priv_decode, | ||
635 | .old_priv_encode = old_ec_priv_encode | ||
636 | }; | ||
diff --git a/src/lib/libcrypto/ec/ec_asn1.c b/src/lib/libcrypto/ec/ec_asn1.c deleted file mode 100644 index 3234e7a6f2..0000000000 --- a/src/lib/libcrypto/ec/ec_asn1.c +++ /dev/null | |||
@@ -1,1618 +0,0 @@ | |||
1 | /* $OpenBSD: ec_asn1.c,v 1.22 2016/03/20 16:50:29 krw Exp $ */ | ||
2 | /* | ||
3 | * Written by Nils Larsch for the OpenSSL project. | ||
4 | */ | ||
5 | /* ==================================================================== | ||
6 | * Copyright (c) 2000-2003 The OpenSSL Project. All rights reserved. | ||
7 | * | ||
8 | * Redistribution and use in source and binary forms, with or without | ||
9 | * modification, are permitted provided that the following conditions | ||
10 | * are met: | ||
11 | * | ||
12 | * 1. Redistributions of source code must retain the above copyright | ||
13 | * notice, this list of conditions and the following disclaimer. | ||
14 | * | ||
15 | * 2. Redistributions in binary form must reproduce the above copyright | ||
16 | * notice, this list of conditions and the following disclaimer in | ||
17 | * the documentation and/or other materials provided with the | ||
18 | * distribution. | ||
19 | * | ||
20 | * 3. All advertising materials mentioning features or use of this | ||
21 | * software must display the following acknowledgment: | ||
22 | * "This product includes software developed by the OpenSSL Project | ||
23 | * for use in the OpenSSL Toolkit. (http://www.OpenSSL.org/)" | ||
24 | * | ||
25 | * 4. The names "OpenSSL Toolkit" and "OpenSSL Project" must not be used to | ||
26 | * endorse or promote products derived from this software without | ||
27 | * prior written permission. For written permission, please contact | ||
28 | * licensing@OpenSSL.org. | ||
29 | * | ||
30 | * 5. Products derived from this software may not be called "OpenSSL" | ||
31 | * nor may "OpenSSL" appear in their names without prior written | ||
32 | * permission of the OpenSSL Project. | ||
33 | * | ||
34 | * 6. Redistributions of any form whatsoever must retain the following | ||
35 | * acknowledgment: | ||
36 | * "This product includes software developed by the OpenSSL Project | ||
37 | * for use in the OpenSSL Toolkit (http://www.OpenSSL.org/)" | ||
38 | * | ||
39 | * THIS SOFTWARE IS PROVIDED BY THE OpenSSL PROJECT ``AS IS'' AND ANY | ||
40 | * EXPRESSED OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE | ||
41 | * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR | ||
42 | * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE OpenSSL PROJECT OR | ||
43 | * ITS CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, | ||
44 | * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT | ||
45 | * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; | ||
46 | * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) | ||
47 | * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, | ||
48 | * STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) | ||
49 | * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED | ||
50 | * OF THE POSSIBILITY OF SUCH DAMAGE. | ||
51 | * ==================================================================== | ||
52 | * | ||
53 | * This product includes cryptographic software written by Eric Young | ||
54 | * (eay@cryptsoft.com). This product includes software written by Tim | ||
55 | * Hudson (tjh@cryptsoft.com). | ||
56 | * | ||
57 | */ | ||
58 | |||
59 | #include <string.h> | ||
60 | |||
61 | #include <openssl/opensslconf.h> | ||
62 | |||
63 | #include "ec_lcl.h" | ||
64 | #include <openssl/err.h> | ||
65 | #include <openssl/asn1t.h> | ||
66 | #include <openssl/objects.h> | ||
67 | |||
68 | int | ||
69 | EC_GROUP_get_basis_type(const EC_GROUP * group) | ||
70 | { | ||
71 | int i = 0; | ||
72 | |||
73 | if (EC_METHOD_get_field_type(EC_GROUP_method_of(group)) != | ||
74 | NID_X9_62_characteristic_two_field) | ||
75 | /* everything else is currently not supported */ | ||
76 | return 0; | ||
77 | |||
78 | while (group->poly[i] != 0) | ||
79 | i++; | ||
80 | |||
81 | if (i == 4) | ||
82 | return NID_X9_62_ppBasis; | ||
83 | else if (i == 2) | ||
84 | return NID_X9_62_tpBasis; | ||
85 | else | ||
86 | /* everything else is currently not supported */ | ||
87 | return 0; | ||
88 | } | ||
89 | #ifndef OPENSSL_NO_EC2M | ||
90 | int | ||
91 | EC_GROUP_get_trinomial_basis(const EC_GROUP * group, unsigned int *k) | ||
92 | { | ||
93 | if (group == NULL) | ||
94 | return 0; | ||
95 | |||
96 | if (EC_METHOD_get_field_type(EC_GROUP_method_of(group)) != | ||
97 | NID_X9_62_characteristic_two_field | ||
98 | || !((group->poly[0] != 0) && (group->poly[1] != 0) && (group->poly[2] == 0))) { | ||
99 | ECerr(EC_F_EC_GROUP_GET_TRINOMIAL_BASIS, ERR_R_SHOULD_NOT_HAVE_BEEN_CALLED); | ||
100 | return 0; | ||
101 | } | ||
102 | if (k) | ||
103 | *k = group->poly[1]; | ||
104 | |||
105 | return 1; | ||
106 | } | ||
107 | int | ||
108 | EC_GROUP_get_pentanomial_basis(const EC_GROUP * group, unsigned int *k1, | ||
109 | unsigned int *k2, unsigned int *k3) | ||
110 | { | ||
111 | if (group == NULL) | ||
112 | return 0; | ||
113 | |||
114 | if (EC_METHOD_get_field_type(EC_GROUP_method_of(group)) != | ||
115 | NID_X9_62_characteristic_two_field | ||
116 | || !((group->poly[0] != 0) && (group->poly[1] != 0) && (group->poly[2] != 0) && (group->poly[3] != 0) && (group->poly[4] == 0))) { | ||
117 | ECerr(EC_F_EC_GROUP_GET_PENTANOMIAL_BASIS, ERR_R_SHOULD_NOT_HAVE_BEEN_CALLED); | ||
118 | return 0; | ||
119 | } | ||
120 | if (k1) | ||
121 | *k1 = group->poly[3]; | ||
122 | if (k2) | ||
123 | *k2 = group->poly[2]; | ||
124 | if (k3) | ||
125 | *k3 = group->poly[1]; | ||
126 | |||
127 | return 1; | ||
128 | } | ||
129 | #endif | ||
130 | |||
131 | |||
132 | /* some structures needed for the asn1 encoding */ | ||
133 | typedef struct x9_62_pentanomial_st { | ||
134 | long k1; | ||
135 | long k2; | ||
136 | long k3; | ||
137 | } X9_62_PENTANOMIAL; | ||
138 | |||
139 | typedef struct x9_62_characteristic_two_st { | ||
140 | long m; | ||
141 | ASN1_OBJECT *type; | ||
142 | union { | ||
143 | char *ptr; | ||
144 | /* NID_X9_62_onBasis */ | ||
145 | ASN1_NULL *onBasis; | ||
146 | /* NID_X9_62_tpBasis */ | ||
147 | ASN1_INTEGER *tpBasis; | ||
148 | /* NID_X9_62_ppBasis */ | ||
149 | X9_62_PENTANOMIAL *ppBasis; | ||
150 | /* anything else */ | ||
151 | ASN1_TYPE *other; | ||
152 | } p; | ||
153 | } X9_62_CHARACTERISTIC_TWO; | ||
154 | |||
155 | typedef struct x9_62_fieldid_st { | ||
156 | ASN1_OBJECT *fieldType; | ||
157 | union { | ||
158 | char *ptr; | ||
159 | /* NID_X9_62_prime_field */ | ||
160 | ASN1_INTEGER *prime; | ||
161 | /* NID_X9_62_characteristic_two_field */ | ||
162 | X9_62_CHARACTERISTIC_TWO *char_two; | ||
163 | /* anything else */ | ||
164 | ASN1_TYPE *other; | ||
165 | } p; | ||
166 | } X9_62_FIELDID; | ||
167 | |||
168 | typedef struct x9_62_curve_st { | ||
169 | ASN1_OCTET_STRING *a; | ||
170 | ASN1_OCTET_STRING *b; | ||
171 | ASN1_BIT_STRING *seed; | ||
172 | } X9_62_CURVE; | ||
173 | |||
174 | typedef struct ec_parameters_st { | ||
175 | long version; | ||
176 | X9_62_FIELDID *fieldID; | ||
177 | X9_62_CURVE *curve; | ||
178 | ASN1_OCTET_STRING *base; | ||
179 | ASN1_INTEGER *order; | ||
180 | ASN1_INTEGER *cofactor; | ||
181 | } ECPARAMETERS; | ||
182 | |||
183 | struct ecpk_parameters_st { | ||
184 | int type; | ||
185 | union { | ||
186 | ASN1_OBJECT *named_curve; | ||
187 | ECPARAMETERS *parameters; | ||
188 | ASN1_NULL *implicitlyCA; | ||
189 | } value; | ||
190 | } /* ECPKPARAMETERS */ ; | ||
191 | |||
192 | /* SEC1 ECPrivateKey */ | ||
193 | typedef struct ec_privatekey_st { | ||
194 | long version; | ||
195 | ASN1_OCTET_STRING *privateKey; | ||
196 | ECPKPARAMETERS *parameters; | ||
197 | ASN1_BIT_STRING *publicKey; | ||
198 | } EC_PRIVATEKEY; | ||
199 | |||
200 | /* the OpenSSL ASN.1 definitions */ | ||
201 | static const ASN1_TEMPLATE X9_62_PENTANOMIAL_seq_tt[] = { | ||
202 | { | ||
203 | .flags = 0, | ||
204 | .tag = 0, | ||
205 | .offset = offsetof(X9_62_PENTANOMIAL, k1), | ||
206 | .field_name = "k1", | ||
207 | .item = &LONG_it, | ||
208 | }, | ||
209 | { | ||
210 | .flags = 0, | ||
211 | .tag = 0, | ||
212 | .offset = offsetof(X9_62_PENTANOMIAL, k2), | ||
213 | .field_name = "k2", | ||
214 | .item = &LONG_it, | ||
215 | }, | ||
216 | { | ||
217 | .flags = 0, | ||
218 | .tag = 0, | ||
219 | .offset = offsetof(X9_62_PENTANOMIAL, k3), | ||
220 | .field_name = "k3", | ||
221 | .item = &LONG_it, | ||
222 | }, | ||
223 | }; | ||
224 | |||
225 | const ASN1_ITEM X9_62_PENTANOMIAL_it = { | ||
226 | .itype = ASN1_ITYPE_SEQUENCE, | ||
227 | .utype = V_ASN1_SEQUENCE, | ||
228 | .templates = X9_62_PENTANOMIAL_seq_tt, | ||
229 | .tcount = sizeof(X9_62_PENTANOMIAL_seq_tt) / sizeof(ASN1_TEMPLATE), | ||
230 | .funcs = NULL, | ||
231 | .size = sizeof(X9_62_PENTANOMIAL), | ||
232 | .sname = "X9_62_PENTANOMIAL", | ||
233 | }; | ||
234 | |||
235 | X9_62_PENTANOMIAL *X9_62_PENTANOMIAL_new(void); | ||
236 | void X9_62_PENTANOMIAL_free(X9_62_PENTANOMIAL *a); | ||
237 | |||
238 | X9_62_PENTANOMIAL * | ||
239 | X9_62_PENTANOMIAL_new(void) | ||
240 | { | ||
241 | return (X9_62_PENTANOMIAL*)ASN1_item_new(&X9_62_PENTANOMIAL_it); | ||
242 | } | ||
243 | |||
244 | void | ||
245 | X9_62_PENTANOMIAL_free(X9_62_PENTANOMIAL *a) | ||
246 | { | ||
247 | ASN1_item_free((ASN1_VALUE *)a, &X9_62_PENTANOMIAL_it); | ||
248 | } | ||
249 | |||
250 | static const ASN1_TEMPLATE char_two_def_tt = { | ||
251 | .flags = 0, | ||
252 | .tag = 0, | ||
253 | .offset = offsetof(X9_62_CHARACTERISTIC_TWO, p.other), | ||
254 | .field_name = "p.other", | ||
255 | .item = &ASN1_ANY_it, | ||
256 | }; | ||
257 | |||
258 | static const ASN1_ADB_TABLE X9_62_CHARACTERISTIC_TWO_adbtbl[] = { | ||
259 | { | ||
260 | .value = NID_X9_62_onBasis, | ||
261 | .tt = { | ||
262 | .flags = 0, | ||
263 | .tag = 0, | ||
264 | .offset = offsetof(X9_62_CHARACTERISTIC_TWO, p.onBasis), | ||
265 | .field_name = "p.onBasis", | ||
266 | .item = &ASN1_NULL_it, | ||
267 | }, | ||
268 | |||
269 | }, | ||
270 | { | ||
271 | .value = NID_X9_62_tpBasis, | ||
272 | .tt = { | ||
273 | .flags = 0, | ||
274 | .tag = 0, | ||
275 | .offset = offsetof(X9_62_CHARACTERISTIC_TWO, p.tpBasis), | ||
276 | .field_name = "p.tpBasis", | ||
277 | .item = &ASN1_INTEGER_it, | ||
278 | }, | ||
279 | |||
280 | }, | ||
281 | { | ||
282 | .value = NID_X9_62_ppBasis, | ||
283 | .tt = { | ||
284 | .flags = 0, | ||
285 | .tag = 0, | ||
286 | .offset = offsetof(X9_62_CHARACTERISTIC_TWO, p.ppBasis), | ||
287 | .field_name = "p.ppBasis", | ||
288 | .item = &X9_62_PENTANOMIAL_it, | ||
289 | }, | ||
290 | |||
291 | }, | ||
292 | }; | ||
293 | |||
294 | static const ASN1_ADB X9_62_CHARACTERISTIC_TWO_adb = { | ||
295 | .flags = 0, | ||
296 | .offset = offsetof(X9_62_CHARACTERISTIC_TWO, type), | ||
297 | .app_items = 0, | ||
298 | .tbl = X9_62_CHARACTERISTIC_TWO_adbtbl, | ||
299 | .tblcount = sizeof(X9_62_CHARACTERISTIC_TWO_adbtbl) / sizeof(ASN1_ADB_TABLE), | ||
300 | .default_tt = &char_two_def_tt, | ||
301 | .null_tt = NULL, | ||
302 | }; | ||
303 | |||
304 | static const ASN1_TEMPLATE X9_62_CHARACTERISTIC_TWO_seq_tt[] = { | ||
305 | { | ||
306 | .flags = 0, | ||
307 | .tag = 0, | ||
308 | .offset = offsetof(X9_62_CHARACTERISTIC_TWO, m), | ||
309 | .field_name = "m", | ||
310 | .item = &LONG_it, | ||
311 | }, | ||
312 | { | ||
313 | .flags = 0, | ||
314 | .tag = 0, | ||
315 | .offset = offsetof(X9_62_CHARACTERISTIC_TWO, type), | ||
316 | .field_name = "type", | ||
317 | .item = &ASN1_OBJECT_it, | ||
318 | }, | ||
319 | { | ||
320 | .flags = ASN1_TFLG_ADB_OID, | ||
321 | .tag = -1, | ||
322 | .offset = 0, | ||
323 | .field_name = "X9_62_CHARACTERISTIC_TWO", | ||
324 | .item = (const ASN1_ITEM *)&X9_62_CHARACTERISTIC_TWO_adb, | ||
325 | }, | ||
326 | }; | ||
327 | |||
328 | const ASN1_ITEM X9_62_CHARACTERISTIC_TWO_it = { | ||
329 | .itype = ASN1_ITYPE_SEQUENCE, | ||
330 | .utype = V_ASN1_SEQUENCE, | ||
331 | .templates = X9_62_CHARACTERISTIC_TWO_seq_tt, | ||
332 | .tcount = sizeof(X9_62_CHARACTERISTIC_TWO_seq_tt) / sizeof(ASN1_TEMPLATE), | ||
333 | .funcs = NULL, | ||
334 | .size = sizeof(X9_62_CHARACTERISTIC_TWO), | ||
335 | .sname = "X9_62_CHARACTERISTIC_TWO", | ||
336 | }; | ||
337 | X9_62_CHARACTERISTIC_TWO *X9_62_CHARACTERISTIC_TWO_new(void); | ||
338 | void X9_62_CHARACTERISTIC_TWO_free(X9_62_CHARACTERISTIC_TWO *a); | ||
339 | |||
340 | X9_62_CHARACTERISTIC_TWO * | ||
341 | X9_62_CHARACTERISTIC_TWO_new(void) | ||
342 | { | ||
343 | return (X9_62_CHARACTERISTIC_TWO*)ASN1_item_new(&X9_62_CHARACTERISTIC_TWO_it); | ||
344 | } | ||
345 | |||
346 | void | ||
347 | X9_62_CHARACTERISTIC_TWO_free(X9_62_CHARACTERISTIC_TWO *a) | ||
348 | { | ||
349 | ASN1_item_free((ASN1_VALUE *)a, &X9_62_CHARACTERISTIC_TWO_it); | ||
350 | } | ||
351 | static const ASN1_TEMPLATE fieldID_def_tt = { | ||
352 | .flags = 0, | ||
353 | .tag = 0, | ||
354 | .offset = offsetof(X9_62_FIELDID, p.other), | ||
355 | .field_name = "p.other", | ||
356 | .item = &ASN1_ANY_it, | ||
357 | }; | ||
358 | |||
359 | static const ASN1_ADB_TABLE X9_62_FIELDID_adbtbl[] = { | ||
360 | { | ||
361 | .value = NID_X9_62_prime_field, | ||
362 | .tt = { | ||
363 | .flags = 0, | ||
364 | .tag = 0, | ||
365 | .offset = offsetof(X9_62_FIELDID, p.prime), | ||
366 | .field_name = "p.prime", | ||
367 | .item = &ASN1_INTEGER_it, | ||
368 | }, | ||
369 | |||
370 | }, | ||
371 | { | ||
372 | .value = NID_X9_62_characteristic_two_field, | ||
373 | .tt = { | ||
374 | .flags = 0, | ||
375 | .tag = 0, | ||
376 | .offset = offsetof(X9_62_FIELDID, p.char_two), | ||
377 | .field_name = "p.char_two", | ||
378 | .item = &X9_62_CHARACTERISTIC_TWO_it, | ||
379 | }, | ||
380 | |||
381 | }, | ||
382 | }; | ||
383 | |||
384 | static const ASN1_ADB X9_62_FIELDID_adb = { | ||
385 | .flags = 0, | ||
386 | .offset = offsetof(X9_62_FIELDID, fieldType), | ||
387 | .app_items = 0, | ||
388 | .tbl = X9_62_FIELDID_adbtbl, | ||
389 | .tblcount = sizeof(X9_62_FIELDID_adbtbl) / sizeof(ASN1_ADB_TABLE), | ||
390 | .default_tt = &fieldID_def_tt, | ||
391 | .null_tt = NULL, | ||
392 | }; | ||
393 | |||
394 | static const ASN1_TEMPLATE X9_62_FIELDID_seq_tt[] = { | ||
395 | { | ||
396 | .flags = 0, | ||
397 | .tag = 0, | ||
398 | .offset = offsetof(X9_62_FIELDID, fieldType), | ||
399 | .field_name = "fieldType", | ||
400 | .item = &ASN1_OBJECT_it, | ||
401 | }, | ||
402 | { | ||
403 | .flags = ASN1_TFLG_ADB_OID, | ||
404 | .tag = -1, | ||
405 | .offset = 0, | ||
406 | .field_name = "X9_62_FIELDID", | ||
407 | .item = (const ASN1_ITEM *)&X9_62_FIELDID_adb, | ||
408 | }, | ||
409 | }; | ||
410 | |||
411 | const ASN1_ITEM X9_62_FIELDID_it = { | ||
412 | .itype = ASN1_ITYPE_SEQUENCE, | ||
413 | .utype = V_ASN1_SEQUENCE, | ||
414 | .templates = X9_62_FIELDID_seq_tt, | ||
415 | .tcount = sizeof(X9_62_FIELDID_seq_tt) / sizeof(ASN1_TEMPLATE), | ||
416 | .funcs = NULL, | ||
417 | .size = sizeof(X9_62_FIELDID), | ||
418 | .sname = "X9_62_FIELDID", | ||
419 | }; | ||
420 | |||
421 | static const ASN1_TEMPLATE X9_62_CURVE_seq_tt[] = { | ||
422 | { | ||
423 | .flags = 0, | ||
424 | .tag = 0, | ||
425 | .offset = offsetof(X9_62_CURVE, a), | ||
426 | .field_name = "a", | ||
427 | .item = &ASN1_OCTET_STRING_it, | ||
428 | }, | ||
429 | { | ||
430 | .flags = 0, | ||
431 | .tag = 0, | ||
432 | .offset = offsetof(X9_62_CURVE, b), | ||
433 | .field_name = "b", | ||
434 | .item = &ASN1_OCTET_STRING_it, | ||
435 | }, | ||
436 | { | ||
437 | .flags = ASN1_TFLG_OPTIONAL, | ||
438 | .tag = 0, | ||
439 | .offset = offsetof(X9_62_CURVE, seed), | ||
440 | .field_name = "seed", | ||
441 | .item = &ASN1_BIT_STRING_it, | ||
442 | }, | ||
443 | }; | ||
444 | |||
445 | const ASN1_ITEM X9_62_CURVE_it = { | ||
446 | .itype = ASN1_ITYPE_SEQUENCE, | ||
447 | .utype = V_ASN1_SEQUENCE, | ||
448 | .templates = X9_62_CURVE_seq_tt, | ||
449 | .tcount = sizeof(X9_62_CURVE_seq_tt) / sizeof(ASN1_TEMPLATE), | ||
450 | .funcs = NULL, | ||
451 | .size = sizeof(X9_62_CURVE), | ||
452 | .sname = "X9_62_CURVE", | ||
453 | }; | ||
454 | |||
455 | static const ASN1_TEMPLATE ECPARAMETERS_seq_tt[] = { | ||
456 | { | ||
457 | .flags = 0, | ||
458 | .tag = 0, | ||
459 | .offset = offsetof(ECPARAMETERS, version), | ||
460 | .field_name = "version", | ||
461 | .item = &LONG_it, | ||
462 | }, | ||
463 | { | ||
464 | .flags = 0, | ||
465 | .tag = 0, | ||
466 | .offset = offsetof(ECPARAMETERS, fieldID), | ||
467 | .field_name = "fieldID", | ||
468 | .item = &X9_62_FIELDID_it, | ||
469 | }, | ||
470 | { | ||
471 | .flags = 0, | ||
472 | .tag = 0, | ||
473 | .offset = offsetof(ECPARAMETERS, curve), | ||
474 | .field_name = "curve", | ||
475 | .item = &X9_62_CURVE_it, | ||
476 | }, | ||
477 | { | ||
478 | .flags = 0, | ||
479 | .tag = 0, | ||
480 | .offset = offsetof(ECPARAMETERS, base), | ||
481 | .field_name = "base", | ||
482 | .item = &ASN1_OCTET_STRING_it, | ||
483 | }, | ||
484 | { | ||
485 | .flags = 0, | ||
486 | .tag = 0, | ||
487 | .offset = offsetof(ECPARAMETERS, order), | ||
488 | .field_name = "order", | ||
489 | .item = &ASN1_INTEGER_it, | ||
490 | }, | ||
491 | { | ||
492 | .flags = ASN1_TFLG_OPTIONAL, | ||
493 | .tag = 0, | ||
494 | .offset = offsetof(ECPARAMETERS, cofactor), | ||
495 | .field_name = "cofactor", | ||
496 | .item = &ASN1_INTEGER_it, | ||
497 | }, | ||
498 | }; | ||
499 | |||
500 | const ASN1_ITEM ECPARAMETERS_it = { | ||
501 | .itype = ASN1_ITYPE_SEQUENCE, | ||
502 | .utype = V_ASN1_SEQUENCE, | ||
503 | .templates = ECPARAMETERS_seq_tt, | ||
504 | .tcount = sizeof(ECPARAMETERS_seq_tt) / sizeof(ASN1_TEMPLATE), | ||
505 | .funcs = NULL, | ||
506 | .size = sizeof(ECPARAMETERS), | ||
507 | .sname = "ECPARAMETERS", | ||
508 | }; | ||
509 | ECPARAMETERS *ECPARAMETERS_new(void); | ||
510 | void ECPARAMETERS_free(ECPARAMETERS *a); | ||
511 | |||
512 | ECPARAMETERS * | ||
513 | ECPARAMETERS_new(void) | ||
514 | { | ||
515 | return (ECPARAMETERS*)ASN1_item_new(&ECPARAMETERS_it); | ||
516 | } | ||
517 | |||
518 | void | ||
519 | ECPARAMETERS_free(ECPARAMETERS *a) | ||
520 | { | ||
521 | ASN1_item_free((ASN1_VALUE *)a, &ECPARAMETERS_it); | ||
522 | } | ||
523 | |||
524 | static const ASN1_TEMPLATE ECPKPARAMETERS_ch_tt[] = { | ||
525 | { | ||
526 | .flags = 0, | ||
527 | .tag = 0, | ||
528 | .offset = offsetof(ECPKPARAMETERS, value.named_curve), | ||
529 | .field_name = "value.named_curve", | ||
530 | .item = &ASN1_OBJECT_it, | ||
531 | }, | ||
532 | { | ||
533 | .flags = 0, | ||
534 | .tag = 0, | ||
535 | .offset = offsetof(ECPKPARAMETERS, value.parameters), | ||
536 | .field_name = "value.parameters", | ||
537 | .item = &ECPARAMETERS_it, | ||
538 | }, | ||
539 | { | ||
540 | .flags = 0, | ||
541 | .tag = 0, | ||
542 | .offset = offsetof(ECPKPARAMETERS, value.implicitlyCA), | ||
543 | .field_name = "value.implicitlyCA", | ||
544 | .item = &ASN1_NULL_it, | ||
545 | }, | ||
546 | }; | ||
547 | |||
548 | const ASN1_ITEM ECPKPARAMETERS_it = { | ||
549 | .itype = ASN1_ITYPE_CHOICE, | ||
550 | .utype = offsetof(ECPKPARAMETERS, type), | ||
551 | .templates = ECPKPARAMETERS_ch_tt, | ||
552 | .tcount = sizeof(ECPKPARAMETERS_ch_tt) / sizeof(ASN1_TEMPLATE), | ||
553 | .funcs = NULL, | ||
554 | .size = sizeof(ECPKPARAMETERS), | ||
555 | .sname = "ECPKPARAMETERS", | ||
556 | }; | ||
557 | |||
558 | ECPKPARAMETERS *ECPKPARAMETERS_new(void); | ||
559 | void ECPKPARAMETERS_free(ECPKPARAMETERS *a); | ||
560 | ECPKPARAMETERS *d2i_ECPKPARAMETERS(ECPKPARAMETERS **a, const unsigned char **in, long len); | ||
561 | int i2d_ECPKPARAMETERS(const ECPKPARAMETERS *a, unsigned char **out); | ||
562 | |||
563 | ECPKPARAMETERS * | ||
564 | d2i_ECPKPARAMETERS(ECPKPARAMETERS **a, const unsigned char **in, long len) | ||
565 | { | ||
566 | return (ECPKPARAMETERS *)ASN1_item_d2i((ASN1_VALUE **)a, in, len, | ||
567 | &ECPKPARAMETERS_it); | ||
568 | } | ||
569 | |||
570 | int | ||
571 | i2d_ECPKPARAMETERS(const ECPKPARAMETERS *a, unsigned char **out) | ||
572 | { | ||
573 | return ASN1_item_i2d((ASN1_VALUE *)a, out, &ECPKPARAMETERS_it); | ||
574 | } | ||
575 | |||
576 | ECPKPARAMETERS * | ||
577 | ECPKPARAMETERS_new(void) | ||
578 | { | ||
579 | return (ECPKPARAMETERS *)ASN1_item_new(&ECPKPARAMETERS_it); | ||
580 | } | ||
581 | |||
582 | void | ||
583 | ECPKPARAMETERS_free(ECPKPARAMETERS *a) | ||
584 | { | ||
585 | ASN1_item_free((ASN1_VALUE *)a, &ECPKPARAMETERS_it); | ||
586 | } | ||
587 | |||
588 | static const ASN1_TEMPLATE EC_PRIVATEKEY_seq_tt[] = { | ||
589 | { | ||
590 | .flags = 0, | ||
591 | .tag = 0, | ||
592 | .offset = offsetof(EC_PRIVATEKEY, version), | ||
593 | .field_name = "version", | ||
594 | .item = &LONG_it, | ||
595 | }, | ||
596 | { | ||
597 | .flags = 0, | ||
598 | .tag = 0, | ||
599 | .offset = offsetof(EC_PRIVATEKEY, privateKey), | ||
600 | .field_name = "privateKey", | ||
601 | .item = &ASN1_OCTET_STRING_it, | ||
602 | }, | ||
603 | { | ||
604 | .flags = ASN1_TFLG_EXPLICIT | ASN1_TFLG_OPTIONAL, | ||
605 | .tag = 0, | ||
606 | .offset = offsetof(EC_PRIVATEKEY, parameters), | ||
607 | .field_name = "parameters", | ||
608 | .item = &ECPKPARAMETERS_it, | ||
609 | }, | ||
610 | { | ||
611 | .flags = ASN1_TFLG_EXPLICIT | ASN1_TFLG_OPTIONAL, | ||
612 | .tag = 1, | ||
613 | .offset = offsetof(EC_PRIVATEKEY, publicKey), | ||
614 | .field_name = "publicKey", | ||
615 | .item = &ASN1_BIT_STRING_it, | ||
616 | }, | ||
617 | }; | ||
618 | |||
619 | const ASN1_ITEM EC_PRIVATEKEY_it = { | ||
620 | .itype = ASN1_ITYPE_SEQUENCE, | ||
621 | .utype = V_ASN1_SEQUENCE, | ||
622 | .templates = EC_PRIVATEKEY_seq_tt, | ||
623 | .tcount = sizeof(EC_PRIVATEKEY_seq_tt) / sizeof(ASN1_TEMPLATE), | ||
624 | .funcs = NULL, | ||
625 | .size = sizeof(EC_PRIVATEKEY), | ||
626 | .sname = "EC_PRIVATEKEY", | ||
627 | }; | ||
628 | |||
629 | EC_PRIVATEKEY *EC_PRIVATEKEY_new(void); | ||
630 | void EC_PRIVATEKEY_free(EC_PRIVATEKEY *a); | ||
631 | EC_PRIVATEKEY *d2i_EC_PRIVATEKEY(EC_PRIVATEKEY **a, const unsigned char **in, long len); | ||
632 | int i2d_EC_PRIVATEKEY(const EC_PRIVATEKEY *a, unsigned char **out); | ||
633 | |||
634 | EC_PRIVATEKEY * | ||
635 | d2i_EC_PRIVATEKEY(EC_PRIVATEKEY **a, const unsigned char **in, long len) | ||
636 | { | ||
637 | return (EC_PRIVATEKEY *)ASN1_item_d2i((ASN1_VALUE **)a, in, len, | ||
638 | &EC_PRIVATEKEY_it); | ||
639 | } | ||
640 | |||
641 | int | ||
642 | i2d_EC_PRIVATEKEY(const EC_PRIVATEKEY *a, unsigned char **out) | ||
643 | { | ||
644 | return ASN1_item_i2d((ASN1_VALUE *)a, out, &EC_PRIVATEKEY_it); | ||
645 | } | ||
646 | |||
647 | EC_PRIVATEKEY * | ||
648 | EC_PRIVATEKEY_new(void) | ||
649 | { | ||
650 | return (EC_PRIVATEKEY *)ASN1_item_new(&EC_PRIVATEKEY_it); | ||
651 | } | ||
652 | |||
653 | void | ||
654 | EC_PRIVATEKEY_free(EC_PRIVATEKEY *a) | ||
655 | { | ||
656 | ASN1_item_free((ASN1_VALUE *)a, &EC_PRIVATEKEY_it); | ||
657 | } | ||
658 | /* some declarations of internal function */ | ||
659 | |||
660 | /* ec_asn1_group2field() sets the values in a X9_62_FIELDID object */ | ||
661 | static int ec_asn1_group2fieldid(const EC_GROUP *, X9_62_FIELDID *); | ||
662 | /* ec_asn1_group2curve() sets the values in a X9_62_CURVE object */ | ||
663 | static int ec_asn1_group2curve(const EC_GROUP *, X9_62_CURVE *); | ||
664 | /* ec_asn1_parameters2group() creates a EC_GROUP object from a | ||
665 | * ECPARAMETERS object */ | ||
666 | static EC_GROUP *ec_asn1_parameters2group(const ECPARAMETERS *); | ||
667 | /* ec_asn1_group2parameters() creates a ECPARAMETERS object from a | ||
668 | * EC_GROUP object */ | ||
669 | static ECPARAMETERS *ec_asn1_group2parameters(const EC_GROUP *, ECPARAMETERS *); | ||
670 | /* ec_asn1_pkparameters2group() creates a EC_GROUP object from a | ||
671 | * ECPKPARAMETERS object */ | ||
672 | static EC_GROUP *ec_asn1_pkparameters2group(const ECPKPARAMETERS *); | ||
673 | /* ec_asn1_group2pkparameters() creates a ECPKPARAMETERS object from a | ||
674 | * EC_GROUP object */ | ||
675 | static ECPKPARAMETERS *ec_asn1_group2pkparameters(const EC_GROUP *, | ||
676 | ECPKPARAMETERS *); | ||
677 | |||
678 | |||
679 | /* the function definitions */ | ||
680 | |||
681 | static int | ||
682 | ec_asn1_group2fieldid(const EC_GROUP * group, X9_62_FIELDID * field) | ||
683 | { | ||
684 | int ok = 0, nid; | ||
685 | BIGNUM *tmp = NULL; | ||
686 | |||
687 | if (group == NULL || field == NULL) | ||
688 | return 0; | ||
689 | |||
690 | /* clear the old values (if necessary) */ | ||
691 | if (field->fieldType != NULL) | ||
692 | ASN1_OBJECT_free(field->fieldType); | ||
693 | if (field->p.other != NULL) | ||
694 | ASN1_TYPE_free(field->p.other); | ||
695 | |||
696 | nid = EC_METHOD_get_field_type(EC_GROUP_method_of(group)); | ||
697 | /* set OID for the field */ | ||
698 | if ((field->fieldType = OBJ_nid2obj(nid)) == NULL) { | ||
699 | ECerr(EC_F_EC_ASN1_GROUP2FIELDID, ERR_R_OBJ_LIB); | ||
700 | goto err; | ||
701 | } | ||
702 | if (nid == NID_X9_62_prime_field) { | ||
703 | if ((tmp = BN_new()) == NULL) { | ||
704 | ECerr(EC_F_EC_ASN1_GROUP2FIELDID, ERR_R_MALLOC_FAILURE); | ||
705 | goto err; | ||
706 | } | ||
707 | /* the parameters are specified by the prime number p */ | ||
708 | if (!EC_GROUP_get_curve_GFp(group, tmp, NULL, NULL, NULL)) { | ||
709 | ECerr(EC_F_EC_ASN1_GROUP2FIELDID, ERR_R_EC_LIB); | ||
710 | goto err; | ||
711 | } | ||
712 | /* set the prime number */ | ||
713 | field->p.prime = BN_to_ASN1_INTEGER(tmp, NULL); | ||
714 | if (field->p.prime == NULL) { | ||
715 | ECerr(EC_F_EC_ASN1_GROUP2FIELDID, ERR_R_ASN1_LIB); | ||
716 | goto err; | ||
717 | } | ||
718 | } else /* nid == NID_X9_62_characteristic_two_field */ | ||
719 | #ifdef OPENSSL_NO_EC2M | ||
720 | { | ||
721 | ECerr(EC_F_EC_ASN1_GROUP2FIELDID, EC_R_GF2M_NOT_SUPPORTED); | ||
722 | goto err; | ||
723 | } | ||
724 | #else | ||
725 | { | ||
726 | int field_type; | ||
727 | X9_62_CHARACTERISTIC_TWO *char_two; | ||
728 | |||
729 | field->p.char_two = X9_62_CHARACTERISTIC_TWO_new(); | ||
730 | char_two = field->p.char_two; | ||
731 | |||
732 | if (char_two == NULL) { | ||
733 | ECerr(EC_F_EC_ASN1_GROUP2FIELDID, ERR_R_MALLOC_FAILURE); | ||
734 | goto err; | ||
735 | } | ||
736 | char_two->m = (long) EC_GROUP_get_degree(group); | ||
737 | |||
738 | field_type = EC_GROUP_get_basis_type(group); | ||
739 | |||
740 | if (field_type == 0) { | ||
741 | ECerr(EC_F_EC_ASN1_GROUP2FIELDID, ERR_R_EC_LIB); | ||
742 | goto err; | ||
743 | } | ||
744 | /* set base type OID */ | ||
745 | if ((char_two->type = OBJ_nid2obj(field_type)) == NULL) { | ||
746 | ECerr(EC_F_EC_ASN1_GROUP2FIELDID, ERR_R_OBJ_LIB); | ||
747 | goto err; | ||
748 | } | ||
749 | if (field_type == NID_X9_62_tpBasis) { | ||
750 | unsigned int k; | ||
751 | |||
752 | if (!EC_GROUP_get_trinomial_basis(group, &k)) | ||
753 | goto err; | ||
754 | |||
755 | char_two->p.tpBasis = ASN1_INTEGER_new(); | ||
756 | if (!char_two->p.tpBasis) { | ||
757 | ECerr(EC_F_EC_ASN1_GROUP2FIELDID, ERR_R_MALLOC_FAILURE); | ||
758 | goto err; | ||
759 | } | ||
760 | if (!ASN1_INTEGER_set(char_two->p.tpBasis, (long) k)) { | ||
761 | ECerr(EC_F_EC_ASN1_GROUP2FIELDID, | ||
762 | ERR_R_ASN1_LIB); | ||
763 | goto err; | ||
764 | } | ||
765 | } else if (field_type == NID_X9_62_ppBasis) { | ||
766 | unsigned int k1, k2, k3; | ||
767 | |||
768 | if (!EC_GROUP_get_pentanomial_basis(group, &k1, &k2, &k3)) | ||
769 | goto err; | ||
770 | |||
771 | char_two->p.ppBasis = X9_62_PENTANOMIAL_new(); | ||
772 | if (!char_two->p.ppBasis) { | ||
773 | ECerr(EC_F_EC_ASN1_GROUP2FIELDID, ERR_R_MALLOC_FAILURE); | ||
774 | goto err; | ||
775 | } | ||
776 | /* set k? values */ | ||
777 | char_two->p.ppBasis->k1 = (long) k1; | ||
778 | char_two->p.ppBasis->k2 = (long) k2; | ||
779 | char_two->p.ppBasis->k3 = (long) k3; | ||
780 | } else { /* field_type == NID_X9_62_onBasis */ | ||
781 | /* for ONB the parameters are (asn1) NULL */ | ||
782 | char_two->p.onBasis = ASN1_NULL_new(); | ||
783 | if (!char_two->p.onBasis) { | ||
784 | ECerr(EC_F_EC_ASN1_GROUP2FIELDID, ERR_R_MALLOC_FAILURE); | ||
785 | goto err; | ||
786 | } | ||
787 | } | ||
788 | } | ||
789 | #endif | ||
790 | |||
791 | ok = 1; | ||
792 | |||
793 | err: | ||
794 | BN_free(tmp); | ||
795 | return (ok); | ||
796 | } | ||
797 | |||
798 | static int | ||
799 | ec_asn1_group2curve(const EC_GROUP * group, X9_62_CURVE * curve) | ||
800 | { | ||
801 | int ok = 0, nid; | ||
802 | BIGNUM *tmp_1 = NULL, *tmp_2 = NULL; | ||
803 | unsigned char *buffer_1 = NULL, *buffer_2 = NULL, *a_buf = NULL, | ||
804 | *b_buf = NULL; | ||
805 | size_t len_1, len_2; | ||
806 | unsigned char char_zero = 0; | ||
807 | |||
808 | if (!group || !curve || !curve->a || !curve->b) | ||
809 | return 0; | ||
810 | |||
811 | if ((tmp_1 = BN_new()) == NULL || (tmp_2 = BN_new()) == NULL) { | ||
812 | ECerr(EC_F_EC_ASN1_GROUP2CURVE, ERR_R_MALLOC_FAILURE); | ||
813 | goto err; | ||
814 | } | ||
815 | nid = EC_METHOD_get_field_type(EC_GROUP_method_of(group)); | ||
816 | |||
817 | /* get a and b */ | ||
818 | if (nid == NID_X9_62_prime_field) { | ||
819 | if (!EC_GROUP_get_curve_GFp(group, NULL, tmp_1, tmp_2, NULL)) { | ||
820 | ECerr(EC_F_EC_ASN1_GROUP2CURVE, ERR_R_EC_LIB); | ||
821 | goto err; | ||
822 | } | ||
823 | } | ||
824 | #ifndef OPENSSL_NO_EC2M | ||
825 | else { /* nid == NID_X9_62_characteristic_two_field */ | ||
826 | if (!EC_GROUP_get_curve_GF2m(group, NULL, tmp_1, tmp_2, NULL)) { | ||
827 | ECerr(EC_F_EC_ASN1_GROUP2CURVE, ERR_R_EC_LIB); | ||
828 | goto err; | ||
829 | } | ||
830 | } | ||
831 | #endif | ||
832 | len_1 = (size_t) BN_num_bytes(tmp_1); | ||
833 | len_2 = (size_t) BN_num_bytes(tmp_2); | ||
834 | |||
835 | if (len_1 == 0) { | ||
836 | /* len_1 == 0 => a == 0 */ | ||
837 | a_buf = &char_zero; | ||
838 | len_1 = 1; | ||
839 | } else { | ||
840 | if ((buffer_1 = malloc(len_1)) == NULL) { | ||
841 | ECerr(EC_F_EC_ASN1_GROUP2CURVE, | ||
842 | ERR_R_MALLOC_FAILURE); | ||
843 | goto err; | ||
844 | } | ||
845 | if ((len_1 = BN_bn2bin(tmp_1, buffer_1)) == 0) { | ||
846 | ECerr(EC_F_EC_ASN1_GROUP2CURVE, ERR_R_BN_LIB); | ||
847 | goto err; | ||
848 | } | ||
849 | a_buf = buffer_1; | ||
850 | } | ||
851 | |||
852 | if (len_2 == 0) { | ||
853 | /* len_2 == 0 => b == 0 */ | ||
854 | b_buf = &char_zero; | ||
855 | len_2 = 1; | ||
856 | } else { | ||
857 | if ((buffer_2 = malloc(len_2)) == NULL) { | ||
858 | ECerr(EC_F_EC_ASN1_GROUP2CURVE, | ||
859 | ERR_R_MALLOC_FAILURE); | ||
860 | goto err; | ||
861 | } | ||
862 | if ((len_2 = BN_bn2bin(tmp_2, buffer_2)) == 0) { | ||
863 | ECerr(EC_F_EC_ASN1_GROUP2CURVE, ERR_R_BN_LIB); | ||
864 | goto err; | ||
865 | } | ||
866 | b_buf = buffer_2; | ||
867 | } | ||
868 | |||
869 | /* set a and b */ | ||
870 | if (!ASN1_STRING_set(curve->a, a_buf, len_1) || | ||
871 | !ASN1_STRING_set(curve->b, b_buf, len_2)) { | ||
872 | ECerr(EC_F_EC_ASN1_GROUP2CURVE, ERR_R_ASN1_LIB); | ||
873 | goto err; | ||
874 | } | ||
875 | /* set the seed (optional) */ | ||
876 | if (group->seed) { | ||
877 | if (!curve->seed) | ||
878 | if ((curve->seed = ASN1_BIT_STRING_new()) == NULL) { | ||
879 | ECerr(EC_F_EC_ASN1_GROUP2CURVE, ERR_R_MALLOC_FAILURE); | ||
880 | goto err; | ||
881 | } | ||
882 | curve->seed->flags &= ~(ASN1_STRING_FLAG_BITS_LEFT | 0x07); | ||
883 | curve->seed->flags |= ASN1_STRING_FLAG_BITS_LEFT; | ||
884 | if (!ASN1_BIT_STRING_set(curve->seed, group->seed, | ||
885 | (int) group->seed_len)) { | ||
886 | ECerr(EC_F_EC_ASN1_GROUP2CURVE, ERR_R_ASN1_LIB); | ||
887 | goto err; | ||
888 | } | ||
889 | } else { | ||
890 | if (curve->seed) { | ||
891 | ASN1_BIT_STRING_free(curve->seed); | ||
892 | curve->seed = NULL; | ||
893 | } | ||
894 | } | ||
895 | |||
896 | ok = 1; | ||
897 | |||
898 | err: | ||
899 | free(buffer_1); | ||
900 | free(buffer_2); | ||
901 | BN_free(tmp_1); | ||
902 | BN_free(tmp_2); | ||
903 | return (ok); | ||
904 | } | ||
905 | |||
906 | static ECPARAMETERS * | ||
907 | ec_asn1_group2parameters(const EC_GROUP * group, ECPARAMETERS * param) | ||
908 | { | ||
909 | int ok = 0; | ||
910 | size_t len = 0; | ||
911 | ECPARAMETERS *ret = NULL; | ||
912 | BIGNUM *tmp = NULL; | ||
913 | unsigned char *buffer = NULL; | ||
914 | const EC_POINT *point = NULL; | ||
915 | point_conversion_form_t form; | ||
916 | |||
917 | if ((tmp = BN_new()) == NULL) { | ||
918 | ECerr(EC_F_EC_ASN1_GROUP2PARAMETERS, ERR_R_MALLOC_FAILURE); | ||
919 | goto err; | ||
920 | } | ||
921 | if (param == NULL) { | ||
922 | if ((ret = ECPARAMETERS_new()) == NULL) { | ||
923 | ECerr(EC_F_EC_ASN1_GROUP2PARAMETERS, | ||
924 | ERR_R_MALLOC_FAILURE); | ||
925 | goto err; | ||
926 | } | ||
927 | } else | ||
928 | ret = param; | ||
929 | |||
930 | /* set the version (always one) */ | ||
931 | ret->version = (long) 0x1; | ||
932 | |||
933 | /* set the fieldID */ | ||
934 | if (!ec_asn1_group2fieldid(group, ret->fieldID)) { | ||
935 | ECerr(EC_F_EC_ASN1_GROUP2PARAMETERS, ERR_R_EC_LIB); | ||
936 | goto err; | ||
937 | } | ||
938 | /* set the curve */ | ||
939 | if (!ec_asn1_group2curve(group, ret->curve)) { | ||
940 | ECerr(EC_F_EC_ASN1_GROUP2PARAMETERS, ERR_R_EC_LIB); | ||
941 | goto err; | ||
942 | } | ||
943 | /* set the base point */ | ||
944 | if ((point = EC_GROUP_get0_generator(group)) == NULL) { | ||
945 | ECerr(EC_F_EC_ASN1_GROUP2PARAMETERS, EC_R_UNDEFINED_GENERATOR); | ||
946 | goto err; | ||
947 | } | ||
948 | form = EC_GROUP_get_point_conversion_form(group); | ||
949 | |||
950 | len = EC_POINT_point2oct(group, point, form, NULL, len, NULL); | ||
951 | if (len == 0) { | ||
952 | ECerr(EC_F_EC_ASN1_GROUP2PARAMETERS, ERR_R_EC_LIB); | ||
953 | goto err; | ||
954 | } | ||
955 | if ((buffer = malloc(len)) == NULL) { | ||
956 | ECerr(EC_F_EC_ASN1_GROUP2PARAMETERS, ERR_R_MALLOC_FAILURE); | ||
957 | goto err; | ||
958 | } | ||
959 | if (!EC_POINT_point2oct(group, point, form, buffer, len, NULL)) { | ||
960 | ECerr(EC_F_EC_ASN1_GROUP2PARAMETERS, ERR_R_EC_LIB); | ||
961 | goto err; | ||
962 | } | ||
963 | if (ret->base == NULL && (ret->base = ASN1_OCTET_STRING_new()) == NULL) { | ||
964 | ECerr(EC_F_EC_ASN1_GROUP2PARAMETERS, ERR_R_MALLOC_FAILURE); | ||
965 | goto err; | ||
966 | } | ||
967 | if (!ASN1_OCTET_STRING_set(ret->base, buffer, len)) { | ||
968 | ECerr(EC_F_EC_ASN1_GROUP2PARAMETERS, ERR_R_ASN1_LIB); | ||
969 | goto err; | ||
970 | } | ||
971 | /* set the order */ | ||
972 | if (!EC_GROUP_get_order(group, tmp, NULL)) { | ||
973 | ECerr(EC_F_EC_ASN1_GROUP2PARAMETERS, ERR_R_EC_LIB); | ||
974 | goto err; | ||
975 | } | ||
976 | ret->order = BN_to_ASN1_INTEGER(tmp, ret->order); | ||
977 | if (ret->order == NULL) { | ||
978 | ECerr(EC_F_EC_ASN1_GROUP2PARAMETERS, ERR_R_ASN1_LIB); | ||
979 | goto err; | ||
980 | } | ||
981 | /* set the cofactor (optional) */ | ||
982 | if (EC_GROUP_get_cofactor(group, tmp, NULL)) { | ||
983 | ret->cofactor = BN_to_ASN1_INTEGER(tmp, ret->cofactor); | ||
984 | if (ret->cofactor == NULL) { | ||
985 | ECerr(EC_F_EC_ASN1_GROUP2PARAMETERS, ERR_R_ASN1_LIB); | ||
986 | goto err; | ||
987 | } | ||
988 | } | ||
989 | ok = 1; | ||
990 | |||
991 | err: if (!ok) { | ||
992 | if (ret && !param) | ||
993 | ECPARAMETERS_free(ret); | ||
994 | ret = NULL; | ||
995 | } | ||
996 | BN_free(tmp); | ||
997 | free(buffer); | ||
998 | return (ret); | ||
999 | } | ||
1000 | |||
1001 | ECPKPARAMETERS * | ||
1002 | ec_asn1_group2pkparameters(const EC_GROUP * group, ECPKPARAMETERS * params) | ||
1003 | { | ||
1004 | int ok = 1, tmp; | ||
1005 | ECPKPARAMETERS *ret = params; | ||
1006 | |||
1007 | if (ret == NULL) { | ||
1008 | if ((ret = ECPKPARAMETERS_new()) == NULL) { | ||
1009 | ECerr(EC_F_EC_ASN1_GROUP2PKPARAMETERS, | ||
1010 | ERR_R_MALLOC_FAILURE); | ||
1011 | return NULL; | ||
1012 | } | ||
1013 | } else { | ||
1014 | if (ret->type == 0 && ret->value.named_curve) | ||
1015 | ASN1_OBJECT_free(ret->value.named_curve); | ||
1016 | else if (ret->type == 1 && ret->value.parameters) | ||
1017 | ECPARAMETERS_free(ret->value.parameters); | ||
1018 | } | ||
1019 | |||
1020 | if (EC_GROUP_get_asn1_flag(group)) { | ||
1021 | /* | ||
1022 | * use the asn1 OID to describe the elliptic curve | ||
1023 | * parameters | ||
1024 | */ | ||
1025 | tmp = EC_GROUP_get_curve_name(group); | ||
1026 | if (tmp) { | ||
1027 | ret->type = 0; | ||
1028 | if ((ret->value.named_curve = OBJ_nid2obj(tmp)) == NULL) | ||
1029 | ok = 0; | ||
1030 | } else | ||
1031 | /* we don't kmow the nid => ERROR */ | ||
1032 | ok = 0; | ||
1033 | } else { | ||
1034 | /* use the ECPARAMETERS structure */ | ||
1035 | ret->type = 1; | ||
1036 | if ((ret->value.parameters = ec_asn1_group2parameters( | ||
1037 | group, NULL)) == NULL) | ||
1038 | ok = 0; | ||
1039 | } | ||
1040 | |||
1041 | if (!ok) { | ||
1042 | ECPKPARAMETERS_free(ret); | ||
1043 | return NULL; | ||
1044 | } | ||
1045 | return ret; | ||
1046 | } | ||
1047 | |||
1048 | static EC_GROUP * | ||
1049 | ec_asn1_parameters2group(const ECPARAMETERS * params) | ||
1050 | { | ||
1051 | int ok = 0, tmp; | ||
1052 | EC_GROUP *ret = NULL; | ||
1053 | BIGNUM *p = NULL, *a = NULL, *b = NULL; | ||
1054 | EC_POINT *point = NULL; | ||
1055 | long field_bits; | ||
1056 | |||
1057 | if (!params->fieldID || !params->fieldID->fieldType || | ||
1058 | !params->fieldID->p.ptr) { | ||
1059 | ECerr(EC_F_EC_ASN1_PARAMETERS2GROUP, EC_R_ASN1_ERROR); | ||
1060 | goto err; | ||
1061 | } | ||
1062 | /* now extract the curve parameters a and b */ | ||
1063 | if (!params->curve || !params->curve->a || | ||
1064 | !params->curve->a->data || !params->curve->b || | ||
1065 | !params->curve->b->data) { | ||
1066 | ECerr(EC_F_EC_ASN1_PARAMETERS2GROUP, EC_R_ASN1_ERROR); | ||
1067 | goto err; | ||
1068 | } | ||
1069 | a = BN_bin2bn(params->curve->a->data, params->curve->a->length, NULL); | ||
1070 | if (a == NULL) { | ||
1071 | ECerr(EC_F_EC_ASN1_PARAMETERS2GROUP, ERR_R_BN_LIB); | ||
1072 | goto err; | ||
1073 | } | ||
1074 | b = BN_bin2bn(params->curve->b->data, params->curve->b->length, NULL); | ||
1075 | if (b == NULL) { | ||
1076 | ECerr(EC_F_EC_ASN1_PARAMETERS2GROUP, ERR_R_BN_LIB); | ||
1077 | goto err; | ||
1078 | } | ||
1079 | /* get the field parameters */ | ||
1080 | tmp = OBJ_obj2nid(params->fieldID->fieldType); | ||
1081 | if (tmp == NID_X9_62_characteristic_two_field) | ||
1082 | #ifdef OPENSSL_NO_EC2M | ||
1083 | { | ||
1084 | ECerr(EC_F_EC_ASN1_PARAMETERS2GROUP, EC_R_GF2M_NOT_SUPPORTED); | ||
1085 | goto err; | ||
1086 | } | ||
1087 | #else | ||
1088 | { | ||
1089 | X9_62_CHARACTERISTIC_TWO *char_two; | ||
1090 | |||
1091 | char_two = params->fieldID->p.char_two; | ||
1092 | |||
1093 | field_bits = char_two->m; | ||
1094 | if (field_bits > OPENSSL_ECC_MAX_FIELD_BITS) { | ||
1095 | ECerr(EC_F_EC_ASN1_PARAMETERS2GROUP, EC_R_FIELD_TOO_LARGE); | ||
1096 | goto err; | ||
1097 | } | ||
1098 | if ((p = BN_new()) == NULL) { | ||
1099 | ECerr(EC_F_EC_ASN1_PARAMETERS2GROUP, ERR_R_MALLOC_FAILURE); | ||
1100 | goto err; | ||
1101 | } | ||
1102 | /* get the base type */ | ||
1103 | tmp = OBJ_obj2nid(char_two->type); | ||
1104 | |||
1105 | if (tmp == NID_X9_62_tpBasis) { | ||
1106 | long tmp_long; | ||
1107 | |||
1108 | if (!char_two->p.tpBasis) { | ||
1109 | ECerr(EC_F_EC_ASN1_PARAMETERS2GROUP, EC_R_ASN1_ERROR); | ||
1110 | goto err; | ||
1111 | } | ||
1112 | tmp_long = ASN1_INTEGER_get(char_two->p.tpBasis); | ||
1113 | |||
1114 | if (!(char_two->m > tmp_long && tmp_long > 0)) { | ||
1115 | ECerr(EC_F_EC_ASN1_PARAMETERS2GROUP, EC_R_INVALID_TRINOMIAL_BASIS); | ||
1116 | goto err; | ||
1117 | } | ||
1118 | /* create the polynomial */ | ||
1119 | if (!BN_set_bit(p, (int) char_two->m)) | ||
1120 | goto err; | ||
1121 | if (!BN_set_bit(p, (int) tmp_long)) | ||
1122 | goto err; | ||
1123 | if (!BN_set_bit(p, 0)) | ||
1124 | goto err; | ||
1125 | } else if (tmp == NID_X9_62_ppBasis) { | ||
1126 | X9_62_PENTANOMIAL *penta; | ||
1127 | |||
1128 | penta = char_two->p.ppBasis; | ||
1129 | if (!penta) { | ||
1130 | ECerr(EC_F_EC_ASN1_PARAMETERS2GROUP, EC_R_ASN1_ERROR); | ||
1131 | goto err; | ||
1132 | } | ||
1133 | if (!(char_two->m > penta->k3 && penta->k3 > penta->k2 && penta->k2 > penta->k1 && penta->k1 > 0)) { | ||
1134 | ECerr(EC_F_EC_ASN1_PARAMETERS2GROUP, EC_R_INVALID_PENTANOMIAL_BASIS); | ||
1135 | goto err; | ||
1136 | } | ||
1137 | /* create the polynomial */ | ||
1138 | if (!BN_set_bit(p, (int) char_two->m)) | ||
1139 | goto err; | ||
1140 | if (!BN_set_bit(p, (int) penta->k1)) | ||
1141 | goto err; | ||
1142 | if (!BN_set_bit(p, (int) penta->k2)) | ||
1143 | goto err; | ||
1144 | if (!BN_set_bit(p, (int) penta->k3)) | ||
1145 | goto err; | ||
1146 | if (!BN_set_bit(p, 0)) | ||
1147 | goto err; | ||
1148 | } else if (tmp == NID_X9_62_onBasis) { | ||
1149 | ECerr(EC_F_EC_ASN1_PARAMETERS2GROUP, EC_R_NOT_IMPLEMENTED); | ||
1150 | goto err; | ||
1151 | } else { /* error */ | ||
1152 | ECerr(EC_F_EC_ASN1_PARAMETERS2GROUP, EC_R_ASN1_ERROR); | ||
1153 | goto err; | ||
1154 | } | ||
1155 | |||
1156 | /* create the EC_GROUP structure */ | ||
1157 | ret = EC_GROUP_new_curve_GF2m(p, a, b, NULL); | ||
1158 | } | ||
1159 | #endif | ||
1160 | else if (tmp == NID_X9_62_prime_field) { | ||
1161 | /* we have a curve over a prime field */ | ||
1162 | /* extract the prime number */ | ||
1163 | if (!params->fieldID->p.prime) { | ||
1164 | ECerr(EC_F_EC_ASN1_PARAMETERS2GROUP, EC_R_ASN1_ERROR); | ||
1165 | goto err; | ||
1166 | } | ||
1167 | p = ASN1_INTEGER_to_BN(params->fieldID->p.prime, NULL); | ||
1168 | if (p == NULL) { | ||
1169 | ECerr(EC_F_EC_ASN1_PARAMETERS2GROUP, ERR_R_ASN1_LIB); | ||
1170 | goto err; | ||
1171 | } | ||
1172 | if (BN_is_negative(p) || BN_is_zero(p)) { | ||
1173 | ECerr(EC_F_EC_ASN1_PARAMETERS2GROUP, EC_R_INVALID_FIELD); | ||
1174 | goto err; | ||
1175 | } | ||
1176 | field_bits = BN_num_bits(p); | ||
1177 | if (field_bits > OPENSSL_ECC_MAX_FIELD_BITS) { | ||
1178 | ECerr(EC_F_EC_ASN1_PARAMETERS2GROUP, EC_R_FIELD_TOO_LARGE); | ||
1179 | goto err; | ||
1180 | } | ||
1181 | /* create the EC_GROUP structure */ | ||
1182 | ret = EC_GROUP_new_curve_GFp(p, a, b, NULL); | ||
1183 | } else { | ||
1184 | ECerr(EC_F_EC_ASN1_PARAMETERS2GROUP, EC_R_INVALID_FIELD); | ||
1185 | goto err; | ||
1186 | } | ||
1187 | |||
1188 | if (ret == NULL) { | ||
1189 | ECerr(EC_F_EC_ASN1_PARAMETERS2GROUP, ERR_R_EC_LIB); | ||
1190 | goto err; | ||
1191 | } | ||
1192 | /* extract seed (optional) */ | ||
1193 | if (params->curve->seed != NULL) { | ||
1194 | free(ret->seed); | ||
1195 | if (!(ret->seed = malloc(params->curve->seed->length))) { | ||
1196 | ECerr(EC_F_EC_ASN1_PARAMETERS2GROUP, | ||
1197 | ERR_R_MALLOC_FAILURE); | ||
1198 | goto err; | ||
1199 | } | ||
1200 | memcpy(ret->seed, params->curve->seed->data, | ||
1201 | params->curve->seed->length); | ||
1202 | ret->seed_len = params->curve->seed->length; | ||
1203 | } | ||
1204 | if (!params->order || !params->base || !params->base->data) { | ||
1205 | ECerr(EC_F_EC_ASN1_PARAMETERS2GROUP, EC_R_ASN1_ERROR); | ||
1206 | goto err; | ||
1207 | } | ||
1208 | if ((point = EC_POINT_new(ret)) == NULL) | ||
1209 | goto err; | ||
1210 | |||
1211 | /* set the point conversion form */ | ||
1212 | EC_GROUP_set_point_conversion_form(ret, (point_conversion_form_t) | ||
1213 | (params->base->data[0] & ~0x01)); | ||
1214 | |||
1215 | /* extract the ec point */ | ||
1216 | if (!EC_POINT_oct2point(ret, point, params->base->data, | ||
1217 | params->base->length, NULL)) { | ||
1218 | ECerr(EC_F_EC_ASN1_PARAMETERS2GROUP, ERR_R_EC_LIB); | ||
1219 | goto err; | ||
1220 | } | ||
1221 | /* extract the order */ | ||
1222 | if ((a = ASN1_INTEGER_to_BN(params->order, a)) == NULL) { | ||
1223 | ECerr(EC_F_EC_ASN1_PARAMETERS2GROUP, ERR_R_ASN1_LIB); | ||
1224 | goto err; | ||
1225 | } | ||
1226 | if (BN_is_negative(a) || BN_is_zero(a)) { | ||
1227 | ECerr(EC_F_EC_ASN1_PARAMETERS2GROUP, EC_R_INVALID_GROUP_ORDER); | ||
1228 | goto err; | ||
1229 | } | ||
1230 | if (BN_num_bits(a) > (int) field_bits + 1) { /* Hasse bound */ | ||
1231 | ECerr(EC_F_EC_ASN1_PARAMETERS2GROUP, EC_R_INVALID_GROUP_ORDER); | ||
1232 | goto err; | ||
1233 | } | ||
1234 | /* extract the cofactor (optional) */ | ||
1235 | if (params->cofactor == NULL) { | ||
1236 | BN_free(b); | ||
1237 | b = NULL; | ||
1238 | } else if ((b = ASN1_INTEGER_to_BN(params->cofactor, b)) == NULL) { | ||
1239 | ECerr(EC_F_EC_ASN1_PARAMETERS2GROUP, ERR_R_ASN1_LIB); | ||
1240 | goto err; | ||
1241 | } | ||
1242 | /* set the generator, order and cofactor (if present) */ | ||
1243 | if (!EC_GROUP_set_generator(ret, point, a, b)) { | ||
1244 | ECerr(EC_F_EC_ASN1_PARAMETERS2GROUP, ERR_R_EC_LIB); | ||
1245 | goto err; | ||
1246 | } | ||
1247 | ok = 1; | ||
1248 | |||
1249 | err: if (!ok) { | ||
1250 | EC_GROUP_clear_free(ret); | ||
1251 | ret = NULL; | ||
1252 | } | ||
1253 | BN_free(p); | ||
1254 | BN_free(a); | ||
1255 | BN_free(b); | ||
1256 | EC_POINT_free(point); | ||
1257 | return (ret); | ||
1258 | } | ||
1259 | |||
1260 | EC_GROUP * | ||
1261 | ec_asn1_pkparameters2group(const ECPKPARAMETERS * params) | ||
1262 | { | ||
1263 | EC_GROUP *ret = NULL; | ||
1264 | int tmp = 0; | ||
1265 | |||
1266 | if (params == NULL) { | ||
1267 | ECerr(EC_F_EC_ASN1_PKPARAMETERS2GROUP, | ||
1268 | EC_R_MISSING_PARAMETERS); | ||
1269 | return NULL; | ||
1270 | } | ||
1271 | if (params->type == 0) {/* the curve is given by an OID */ | ||
1272 | tmp = OBJ_obj2nid(params->value.named_curve); | ||
1273 | if ((ret = EC_GROUP_new_by_curve_name(tmp)) == NULL) { | ||
1274 | ECerr(EC_F_EC_ASN1_PKPARAMETERS2GROUP, | ||
1275 | EC_R_EC_GROUP_NEW_BY_NAME_FAILURE); | ||
1276 | return NULL; | ||
1277 | } | ||
1278 | EC_GROUP_set_asn1_flag(ret, OPENSSL_EC_NAMED_CURVE); | ||
1279 | } else if (params->type == 1) { /* the parameters are given by a | ||
1280 | * ECPARAMETERS structure */ | ||
1281 | ret = ec_asn1_parameters2group(params->value.parameters); | ||
1282 | if (!ret) { | ||
1283 | ECerr(EC_F_EC_ASN1_PKPARAMETERS2GROUP, ERR_R_EC_LIB); | ||
1284 | return NULL; | ||
1285 | } | ||
1286 | EC_GROUP_set_asn1_flag(ret, 0x0); | ||
1287 | } else if (params->type == 2) { /* implicitlyCA */ | ||
1288 | return NULL; | ||
1289 | } else { | ||
1290 | ECerr(EC_F_EC_ASN1_PKPARAMETERS2GROUP, EC_R_ASN1_ERROR); | ||
1291 | return NULL; | ||
1292 | } | ||
1293 | |||
1294 | return ret; | ||
1295 | } | ||
1296 | |||
1297 | /* EC_GROUP <-> DER encoding of ECPKPARAMETERS */ | ||
1298 | |||
1299 | EC_GROUP * | ||
1300 | d2i_ECPKParameters(EC_GROUP ** a, const unsigned char **in, long len) | ||
1301 | { | ||
1302 | EC_GROUP *group = NULL; | ||
1303 | ECPKPARAMETERS *params = NULL; | ||
1304 | |||
1305 | if ((params = d2i_ECPKPARAMETERS(NULL, in, len)) == NULL) { | ||
1306 | ECerr(EC_F_D2I_ECPKPARAMETERS, EC_R_D2I_ECPKPARAMETERS_FAILURE); | ||
1307 | goto err; | ||
1308 | } | ||
1309 | if ((group = ec_asn1_pkparameters2group(params)) == NULL) { | ||
1310 | ECerr(EC_F_D2I_ECPKPARAMETERS, EC_R_PKPARAMETERS2GROUP_FAILURE); | ||
1311 | goto err; | ||
1312 | } | ||
1313 | |||
1314 | if (a != NULL) { | ||
1315 | EC_GROUP_clear_free(*a); | ||
1316 | *a = group; | ||
1317 | } | ||
1318 | |||
1319 | err: | ||
1320 | ECPKPARAMETERS_free(params); | ||
1321 | return (group); | ||
1322 | } | ||
1323 | |||
1324 | int | ||
1325 | i2d_ECPKParameters(const EC_GROUP * a, unsigned char **out) | ||
1326 | { | ||
1327 | int ret = 0; | ||
1328 | ECPKPARAMETERS *tmp = ec_asn1_group2pkparameters(a, NULL); | ||
1329 | if (tmp == NULL) { | ||
1330 | ECerr(EC_F_I2D_ECPKPARAMETERS, EC_R_GROUP2PKPARAMETERS_FAILURE); | ||
1331 | return 0; | ||
1332 | } | ||
1333 | if ((ret = i2d_ECPKPARAMETERS(tmp, out)) == 0) { | ||
1334 | ECerr(EC_F_I2D_ECPKPARAMETERS, EC_R_I2D_ECPKPARAMETERS_FAILURE); | ||
1335 | ECPKPARAMETERS_free(tmp); | ||
1336 | return 0; | ||
1337 | } | ||
1338 | ECPKPARAMETERS_free(tmp); | ||
1339 | return (ret); | ||
1340 | } | ||
1341 | |||
1342 | /* some EC_KEY functions */ | ||
1343 | |||
1344 | EC_KEY * | ||
1345 | d2i_ECPrivateKey(EC_KEY ** a, const unsigned char **in, long len) | ||
1346 | { | ||
1347 | EC_KEY *ret = NULL; | ||
1348 | EC_PRIVATEKEY *priv_key = NULL; | ||
1349 | |||
1350 | if ((priv_key = EC_PRIVATEKEY_new()) == NULL) { | ||
1351 | ECerr(EC_F_D2I_ECPRIVATEKEY, ERR_R_MALLOC_FAILURE); | ||
1352 | return NULL; | ||
1353 | } | ||
1354 | if ((priv_key = d2i_EC_PRIVATEKEY(&priv_key, in, len)) == NULL) { | ||
1355 | ECerr(EC_F_D2I_ECPRIVATEKEY, ERR_R_EC_LIB); | ||
1356 | EC_PRIVATEKEY_free(priv_key); | ||
1357 | return NULL; | ||
1358 | } | ||
1359 | if (a == NULL || *a == NULL) { | ||
1360 | if ((ret = EC_KEY_new()) == NULL) { | ||
1361 | ECerr(EC_F_D2I_ECPRIVATEKEY, ERR_R_MALLOC_FAILURE); | ||
1362 | goto err; | ||
1363 | } | ||
1364 | } else | ||
1365 | ret = *a; | ||
1366 | |||
1367 | if (priv_key->parameters) { | ||
1368 | EC_GROUP_clear_free(ret->group); | ||
1369 | ret->group = ec_asn1_pkparameters2group(priv_key->parameters); | ||
1370 | } | ||
1371 | if (ret->group == NULL) { | ||
1372 | ECerr(EC_F_D2I_ECPRIVATEKEY, ERR_R_EC_LIB); | ||
1373 | goto err; | ||
1374 | } | ||
1375 | ret->version = priv_key->version; | ||
1376 | |||
1377 | if (priv_key->privateKey) { | ||
1378 | ret->priv_key = BN_bin2bn( | ||
1379 | ASN1_STRING_data(priv_key->privateKey), | ||
1380 | ASN1_STRING_length(priv_key->privateKey), | ||
1381 | ret->priv_key); | ||
1382 | if (ret->priv_key == NULL) { | ||
1383 | ECerr(EC_F_D2I_ECPRIVATEKEY, | ||
1384 | ERR_R_BN_LIB); | ||
1385 | goto err; | ||
1386 | } | ||
1387 | } else { | ||
1388 | ECerr(EC_F_D2I_ECPRIVATEKEY, | ||
1389 | EC_R_MISSING_PRIVATE_KEY); | ||
1390 | goto err; | ||
1391 | } | ||
1392 | |||
1393 | if (priv_key->publicKey) { | ||
1394 | const unsigned char *pub_oct; | ||
1395 | size_t pub_oct_len; | ||
1396 | |||
1397 | EC_POINT_clear_free(ret->pub_key); | ||
1398 | ret->pub_key = EC_POINT_new(ret->group); | ||
1399 | if (ret->pub_key == NULL) { | ||
1400 | ECerr(EC_F_D2I_ECPRIVATEKEY, ERR_R_EC_LIB); | ||
1401 | goto err; | ||
1402 | } | ||
1403 | pub_oct = ASN1_STRING_data(priv_key->publicKey); | ||
1404 | pub_oct_len = ASN1_STRING_length(priv_key->publicKey); | ||
1405 | /* save the point conversion form */ | ||
1406 | ret->conv_form = (point_conversion_form_t) (pub_oct[0] & ~0x01); | ||
1407 | if (!EC_POINT_oct2point(ret->group, ret->pub_key, | ||
1408 | pub_oct, pub_oct_len, NULL)) { | ||
1409 | ECerr(EC_F_D2I_ECPRIVATEKEY, ERR_R_EC_LIB); | ||
1410 | goto err; | ||
1411 | } | ||
1412 | } | ||
1413 | |||
1414 | EC_PRIVATEKEY_free(priv_key); | ||
1415 | if (a != NULL) | ||
1416 | *a = ret; | ||
1417 | return (ret); | ||
1418 | |||
1419 | err: | ||
1420 | if (a == NULL || *a != ret) | ||
1421 | EC_KEY_free(ret); | ||
1422 | if (priv_key) | ||
1423 | EC_PRIVATEKEY_free(priv_key); | ||
1424 | |||
1425 | return (NULL); | ||
1426 | } | ||
1427 | |||
1428 | int | ||
1429 | i2d_ECPrivateKey(EC_KEY * a, unsigned char **out) | ||
1430 | { | ||
1431 | int ret = 0, ok = 0; | ||
1432 | unsigned char *buffer = NULL; | ||
1433 | size_t buf_len = 0, tmp_len; | ||
1434 | EC_PRIVATEKEY *priv_key = NULL; | ||
1435 | |||
1436 | if (a == NULL || a->group == NULL || a->priv_key == NULL) { | ||
1437 | ECerr(EC_F_I2D_ECPRIVATEKEY, | ||
1438 | ERR_R_PASSED_NULL_PARAMETER); | ||
1439 | goto err; | ||
1440 | } | ||
1441 | if ((priv_key = EC_PRIVATEKEY_new()) == NULL) { | ||
1442 | ECerr(EC_F_I2D_ECPRIVATEKEY, | ||
1443 | ERR_R_MALLOC_FAILURE); | ||
1444 | goto err; | ||
1445 | } | ||
1446 | priv_key->version = a->version; | ||
1447 | |||
1448 | buf_len = (size_t) BN_num_bytes(a->priv_key); | ||
1449 | buffer = malloc(buf_len); | ||
1450 | if (buffer == NULL) { | ||
1451 | ECerr(EC_F_I2D_ECPRIVATEKEY, | ||
1452 | ERR_R_MALLOC_FAILURE); | ||
1453 | goto err; | ||
1454 | } | ||
1455 | if (!BN_bn2bin(a->priv_key, buffer)) { | ||
1456 | ECerr(EC_F_I2D_ECPRIVATEKEY, ERR_R_BN_LIB); | ||
1457 | goto err; | ||
1458 | } | ||
1459 | if (!ASN1_STRING_set(priv_key->privateKey, buffer, buf_len)) { | ||
1460 | ECerr(EC_F_I2D_ECPRIVATEKEY, ERR_R_ASN1_LIB); | ||
1461 | goto err; | ||
1462 | } | ||
1463 | if (!(a->enc_flag & EC_PKEY_NO_PARAMETERS)) { | ||
1464 | if ((priv_key->parameters = ec_asn1_group2pkparameters( | ||
1465 | a->group, priv_key->parameters)) == NULL) { | ||
1466 | ECerr(EC_F_I2D_ECPRIVATEKEY, ERR_R_EC_LIB); | ||
1467 | goto err; | ||
1468 | } | ||
1469 | } | ||
1470 | if (!(a->enc_flag & EC_PKEY_NO_PUBKEY) && a->pub_key != NULL) { | ||
1471 | priv_key->publicKey = ASN1_BIT_STRING_new(); | ||
1472 | if (priv_key->publicKey == NULL) { | ||
1473 | ECerr(EC_F_I2D_ECPRIVATEKEY, | ||
1474 | ERR_R_MALLOC_FAILURE); | ||
1475 | goto err; | ||
1476 | } | ||
1477 | tmp_len = EC_POINT_point2oct(a->group, a->pub_key, | ||
1478 | a->conv_form, NULL, 0, NULL); | ||
1479 | |||
1480 | if (tmp_len > buf_len) { | ||
1481 | unsigned char *tmp_buffer = realloc(buffer, tmp_len); | ||
1482 | if (!tmp_buffer) { | ||
1483 | ECerr(EC_F_I2D_ECPRIVATEKEY, ERR_R_MALLOC_FAILURE); | ||
1484 | goto err; | ||
1485 | } | ||
1486 | buffer = tmp_buffer; | ||
1487 | buf_len = tmp_len; | ||
1488 | } | ||
1489 | if (!EC_POINT_point2oct(a->group, a->pub_key, | ||
1490 | a->conv_form, buffer, buf_len, NULL)) { | ||
1491 | ECerr(EC_F_I2D_ECPRIVATEKEY, ERR_R_EC_LIB); | ||
1492 | goto err; | ||
1493 | } | ||
1494 | priv_key->publicKey->flags &= ~(ASN1_STRING_FLAG_BITS_LEFT | 0x07); | ||
1495 | priv_key->publicKey->flags |= ASN1_STRING_FLAG_BITS_LEFT; | ||
1496 | if (!ASN1_STRING_set(priv_key->publicKey, buffer, | ||
1497 | buf_len)) { | ||
1498 | ECerr(EC_F_I2D_ECPRIVATEKEY, ERR_R_ASN1_LIB); | ||
1499 | goto err; | ||
1500 | } | ||
1501 | } | ||
1502 | if ((ret = i2d_EC_PRIVATEKEY(priv_key, out)) == 0) { | ||
1503 | ECerr(EC_F_I2D_ECPRIVATEKEY, ERR_R_EC_LIB); | ||
1504 | goto err; | ||
1505 | } | ||
1506 | ok = 1; | ||
1507 | err: | ||
1508 | free(buffer); | ||
1509 | if (priv_key) | ||
1510 | EC_PRIVATEKEY_free(priv_key); | ||
1511 | return (ok ? ret : 0); | ||
1512 | } | ||
1513 | |||
1514 | int | ||
1515 | i2d_ECParameters(EC_KEY * a, unsigned char **out) | ||
1516 | { | ||
1517 | if (a == NULL) { | ||
1518 | ECerr(EC_F_I2D_ECPARAMETERS, ERR_R_PASSED_NULL_PARAMETER); | ||
1519 | return 0; | ||
1520 | } | ||
1521 | return i2d_ECPKParameters(a->group, out); | ||
1522 | } | ||
1523 | |||
1524 | EC_KEY * | ||
1525 | d2i_ECParameters(EC_KEY ** a, const unsigned char **in, long len) | ||
1526 | { | ||
1527 | EC_KEY *ret; | ||
1528 | |||
1529 | if (in == NULL || *in == NULL) { | ||
1530 | ECerr(EC_F_D2I_ECPARAMETERS, ERR_R_PASSED_NULL_PARAMETER); | ||
1531 | return NULL; | ||
1532 | } | ||
1533 | if (a == NULL || *a == NULL) { | ||
1534 | if ((ret = EC_KEY_new()) == NULL) { | ||
1535 | ECerr(EC_F_D2I_ECPARAMETERS, ERR_R_MALLOC_FAILURE); | ||
1536 | return NULL; | ||
1537 | } | ||
1538 | } else | ||
1539 | ret = *a; | ||
1540 | |||
1541 | if (!d2i_ECPKParameters(&ret->group, in, len)) { | ||
1542 | ECerr(EC_F_D2I_ECPARAMETERS, ERR_R_EC_LIB); | ||
1543 | if (a == NULL || *a != ret) | ||
1544 | EC_KEY_free(ret); | ||
1545 | return NULL; | ||
1546 | } | ||
1547 | |||
1548 | if (a != NULL) | ||
1549 | *a = ret; | ||
1550 | return ret; | ||
1551 | } | ||
1552 | |||
1553 | EC_KEY * | ||
1554 | o2i_ECPublicKey(EC_KEY ** a, const unsigned char **in, long len) | ||
1555 | { | ||
1556 | EC_KEY *ret = NULL; | ||
1557 | |||
1558 | if (a == NULL || (*a) == NULL || (*a)->group == NULL) { | ||
1559 | /* | ||
1560 | * sorry, but a EC_GROUP-structur is necessary to set the | ||
1561 | * public key | ||
1562 | */ | ||
1563 | ECerr(EC_F_O2I_ECPUBLICKEY, ERR_R_PASSED_NULL_PARAMETER); | ||
1564 | return 0; | ||
1565 | } | ||
1566 | ret = *a; | ||
1567 | if (ret->pub_key == NULL && | ||
1568 | (ret->pub_key = EC_POINT_new(ret->group)) == NULL) { | ||
1569 | ECerr(EC_F_O2I_ECPUBLICKEY, ERR_R_MALLOC_FAILURE); | ||
1570 | return 0; | ||
1571 | } | ||
1572 | if (!EC_POINT_oct2point(ret->group, ret->pub_key, *in, len, NULL)) { | ||
1573 | ECerr(EC_F_O2I_ECPUBLICKEY, ERR_R_EC_LIB); | ||
1574 | return 0; | ||
1575 | } | ||
1576 | /* save the point conversion form */ | ||
1577 | ret->conv_form = (point_conversion_form_t) (*in[0] & ~0x01); | ||
1578 | *in += len; | ||
1579 | return ret; | ||
1580 | } | ||
1581 | |||
1582 | int | ||
1583 | i2o_ECPublicKey(EC_KEY * a, unsigned char **out) | ||
1584 | { | ||
1585 | size_t buf_len = 0; | ||
1586 | int new_buffer = 0; | ||
1587 | |||
1588 | if (a == NULL) { | ||
1589 | ECerr(EC_F_I2O_ECPUBLICKEY, ERR_R_PASSED_NULL_PARAMETER); | ||
1590 | return 0; | ||
1591 | } | ||
1592 | buf_len = EC_POINT_point2oct(a->group, a->pub_key, | ||
1593 | a->conv_form, NULL, 0, NULL); | ||
1594 | |||
1595 | if (out == NULL || buf_len == 0) | ||
1596 | /* out == NULL => just return the length of the octet string */ | ||
1597 | return buf_len; | ||
1598 | |||
1599 | if (*out == NULL) { | ||
1600 | if ((*out = malloc(buf_len)) == NULL) { | ||
1601 | ECerr(EC_F_I2O_ECPUBLICKEY, ERR_R_MALLOC_FAILURE); | ||
1602 | return 0; | ||
1603 | } | ||
1604 | new_buffer = 1; | ||
1605 | } | ||
1606 | if (!EC_POINT_point2oct(a->group, a->pub_key, a->conv_form, | ||
1607 | *out, buf_len, NULL)) { | ||
1608 | ECerr(EC_F_I2O_ECPUBLICKEY, ERR_R_EC_LIB); | ||
1609 | if (new_buffer) { | ||
1610 | free(*out); | ||
1611 | *out = NULL; | ||
1612 | } | ||
1613 | return 0; | ||
1614 | } | ||
1615 | if (!new_buffer) | ||
1616 | *out += buf_len; | ||
1617 | return buf_len; | ||
1618 | } | ||
diff --git a/src/lib/libcrypto/ec/ec_check.c b/src/lib/libcrypto/ec/ec_check.c deleted file mode 100644 index 21072305d5..0000000000 --- a/src/lib/libcrypto/ec/ec_check.c +++ /dev/null | |||
@@ -1,115 +0,0 @@ | |||
1 | /* $OpenBSD: ec_check.c,v 1.5 2015/02/08 22:25:03 miod Exp $ */ | ||
2 | /* ==================================================================== | ||
3 | * Copyright (c) 1998-2002 The OpenSSL Project. All rights reserved. | ||
4 | * | ||
5 | * Redistribution and use in source and binary forms, with or without | ||
6 | * modification, are permitted provided that the following conditions | ||
7 | * are met: | ||
8 | * | ||
9 | * 1. Redistributions of source code must retain the above copyright | ||
10 | * notice, this list of conditions and the following disclaimer. | ||
11 | * | ||
12 | * 2. Redistributions in binary form must reproduce the above copyright | ||
13 | * notice, this list of conditions and the following disclaimer in | ||
14 | * the documentation and/or other materials provided with the | ||
15 | * distribution. | ||
16 | * | ||
17 | * 3. All advertising materials mentioning features or use of this | ||
18 | * software must display the following acknowledgment: | ||
19 | * "This product includes software developed by the OpenSSL Project | ||
20 | * for use in the OpenSSL Toolkit. (http://www.openssl.org/)" | ||
21 | * | ||
22 | * 4. The names "OpenSSL Toolkit" and "OpenSSL Project" must not be used to | ||
23 | * endorse or promote products derived from this software without | ||
24 | * prior written permission. For written permission, please contact | ||
25 | * openssl-core@openssl.org. | ||
26 | * | ||
27 | * 5. Products derived from this software may not be called "OpenSSL" | ||
28 | * nor may "OpenSSL" appear in their names without prior written | ||
29 | * permission of the OpenSSL Project. | ||
30 | * | ||
31 | * 6. Redistributions of any form whatsoever must retain the following | ||
32 | * acknowledgment: | ||
33 | * "This product includes software developed by the OpenSSL Project | ||
34 | * for use in the OpenSSL Toolkit (http://www.openssl.org/)" | ||
35 | * | ||
36 | * THIS SOFTWARE IS PROVIDED BY THE OpenSSL PROJECT ``AS IS'' AND ANY | ||
37 | * EXPRESSED OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE | ||
38 | * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR | ||
39 | * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE OpenSSL PROJECT OR | ||
40 | * ITS CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, | ||
41 | * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT | ||
42 | * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; | ||
43 | * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) | ||
44 | * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, | ||
45 | * STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) | ||
46 | * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED | ||
47 | * OF THE POSSIBILITY OF SUCH DAMAGE. | ||
48 | * ==================================================================== | ||
49 | * | ||
50 | * This product includes cryptographic software written by Eric Young | ||
51 | * (eay@cryptsoft.com). This product includes software written by Tim | ||
52 | * Hudson (tjh@cryptsoft.com). | ||
53 | * | ||
54 | */ | ||
55 | |||
56 | #include "ec_lcl.h" | ||
57 | #include <openssl/err.h> | ||
58 | |||
59 | int | ||
60 | EC_GROUP_check(const EC_GROUP * group, BN_CTX * ctx) | ||
61 | { | ||
62 | int ret = 0; | ||
63 | BIGNUM *order; | ||
64 | BN_CTX *new_ctx = NULL; | ||
65 | EC_POINT *point = NULL; | ||
66 | |||
67 | if (ctx == NULL) { | ||
68 | ctx = new_ctx = BN_CTX_new(); | ||
69 | if (ctx == NULL) { | ||
70 | ECerr(EC_F_EC_GROUP_CHECK, ERR_R_MALLOC_FAILURE); | ||
71 | goto err; | ||
72 | } | ||
73 | } | ||
74 | BN_CTX_start(ctx); | ||
75 | if ((order = BN_CTX_get(ctx)) == NULL) | ||
76 | goto err; | ||
77 | |||
78 | /* check the discriminant */ | ||
79 | if (!EC_GROUP_check_discriminant(group, ctx)) { | ||
80 | ECerr(EC_F_EC_GROUP_CHECK, EC_R_DISCRIMINANT_IS_ZERO); | ||
81 | goto err; | ||
82 | } | ||
83 | /* check the generator */ | ||
84 | if (group->generator == NULL) { | ||
85 | ECerr(EC_F_EC_GROUP_CHECK, EC_R_UNDEFINED_GENERATOR); | ||
86 | goto err; | ||
87 | } | ||
88 | if (EC_POINT_is_on_curve(group, group->generator, ctx) <= 0) { | ||
89 | ECerr(EC_F_EC_GROUP_CHECK, EC_R_POINT_IS_NOT_ON_CURVE); | ||
90 | goto err; | ||
91 | } | ||
92 | /* check the order of the generator */ | ||
93 | if ((point = EC_POINT_new(group)) == NULL) | ||
94 | goto err; | ||
95 | if (!EC_GROUP_get_order(group, order, ctx)) | ||
96 | goto err; | ||
97 | if (BN_is_zero(order)) { | ||
98 | ECerr(EC_F_EC_GROUP_CHECK, EC_R_UNDEFINED_ORDER); | ||
99 | goto err; | ||
100 | } | ||
101 | if (!EC_POINT_mul(group, point, order, NULL, NULL, ctx)) | ||
102 | goto err; | ||
103 | if (EC_POINT_is_at_infinity(group, point) <= 0) { | ||
104 | ECerr(EC_F_EC_GROUP_CHECK, EC_R_INVALID_GROUP_ORDER); | ||
105 | goto err; | ||
106 | } | ||
107 | ret = 1; | ||
108 | |||
109 | err: | ||
110 | if (ctx != NULL) | ||
111 | BN_CTX_end(ctx); | ||
112 | BN_CTX_free(new_ctx); | ||
113 | EC_POINT_free(point); | ||
114 | return ret; | ||
115 | } | ||
diff --git a/src/lib/libcrypto/ec/ec_curve.c b/src/lib/libcrypto/ec/ec_curve.c deleted file mode 100644 index f852ccaee3..0000000000 --- a/src/lib/libcrypto/ec/ec_curve.c +++ /dev/null | |||
@@ -1,3340 +0,0 @@ | |||
1 | /* $OpenBSD: ec_curve.c,v 1.13 2016/03/10 23:21:46 mmcc Exp $ */ | ||
2 | /* | ||
3 | * Written by Nils Larsch for the OpenSSL project. | ||
4 | */ | ||
5 | /* ==================================================================== | ||
6 | * Copyright (c) 1998-2010 The OpenSSL Project. All rights reserved. | ||
7 | * | ||
8 | * Redistribution and use in source and binary forms, with or without | ||
9 | * modification, are permitted provided that the following conditions | ||
10 | * are met: | ||
11 | * | ||
12 | * 1. Redistributions of source code must retain the above copyright | ||
13 | * notice, this list of conditions and the following disclaimer. | ||
14 | * | ||
15 | * 2. Redistributions in binary form must reproduce the above copyright | ||
16 | * notice, this list of conditions and the following disclaimer in | ||
17 | * the documentation and/or other materials provided with the | ||
18 | * distribution. | ||
19 | * | ||
20 | * 3. All advertising materials mentioning features or use of this | ||
21 | * software must display the following acknowledgment: | ||
22 | * "This product includes software developed by the OpenSSL Project | ||
23 | * for use in the OpenSSL Toolkit. (http://www.openssl.org/)" | ||
24 | * | ||
25 | * 4. The names "OpenSSL Toolkit" and "OpenSSL Project" must not be used to | ||
26 | * endorse or promote products derived from this software without | ||
27 | * prior written permission. For written permission, please contact | ||
28 | * openssl-core@openssl.org. | ||
29 | * | ||
30 | * 5. Products derived from this software may not be called "OpenSSL" | ||
31 | * nor may "OpenSSL" appear in their names without prior written | ||
32 | * permission of the OpenSSL Project. | ||
33 | * | ||
34 | * 6. Redistributions of any form whatsoever must retain the following | ||
35 | * acknowledgment: | ||
36 | * "This product includes software developed by the OpenSSL Project | ||
37 | * for use in the OpenSSL Toolkit (http://www.openssl.org/)" | ||
38 | * | ||
39 | * THIS SOFTWARE IS PROVIDED BY THE OpenSSL PROJECT ``AS IS'' AND ANY | ||
40 | * EXPRESSED OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE | ||
41 | * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR | ||
42 | * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE OpenSSL PROJECT OR | ||
43 | * ITS CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, | ||
44 | * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT | ||
45 | * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; | ||
46 | * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) | ||
47 | * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, | ||
48 | * STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) | ||
49 | * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED | ||
50 | * OF THE POSSIBILITY OF SUCH DAMAGE. | ||
51 | * ==================================================================== | ||
52 | * | ||
53 | * This product includes cryptographic software written by Eric Young | ||
54 | * (eay@cryptsoft.com). This product includes software written by Tim | ||
55 | * Hudson (tjh@cryptsoft.com). | ||
56 | * | ||
57 | */ | ||
58 | /* ==================================================================== | ||
59 | * Copyright 2002 Sun Microsystems, Inc. ALL RIGHTS RESERVED. | ||
60 | * | ||
61 | * Portions of the attached software ("Contribution") are developed by | ||
62 | * SUN MICROSYSTEMS, INC., and are contributed to the OpenSSL project. | ||
63 | * | ||
64 | * The Contribution is licensed pursuant to the OpenSSL open source | ||
65 | * license provided above. | ||
66 | * | ||
67 | * The elliptic curve binary polynomial software is originally written by | ||
68 | * Sheueling Chang Shantz and Douglas Stebila of Sun Microsystems Laboratories. | ||
69 | * | ||
70 | */ | ||
71 | |||
72 | #include <string.h> | ||
73 | |||
74 | #include <openssl/opensslconf.h> | ||
75 | |||
76 | #include "ec_lcl.h" | ||
77 | #include <openssl/err.h> | ||
78 | #include <openssl/obj_mac.h> | ||
79 | |||
80 | typedef struct { | ||
81 | int field_type, /* either NID_X9_62_prime_field or | ||
82 | * NID_X9_62_characteristic_two_field */ | ||
83 | seed_len, param_len; | ||
84 | unsigned int cofactor; /* promoted to BN_ULONG */ | ||
85 | } EC_CURVE_DATA; | ||
86 | |||
87 | /* the nist prime curves */ | ||
88 | static const struct { | ||
89 | EC_CURVE_DATA h; | ||
90 | unsigned char data[20 + 24 * 6]; | ||
91 | } | ||
92 | _EC_NIST_PRIME_192 = { | ||
93 | { | ||
94 | NID_X9_62_prime_field, 20, 24, 1 | ||
95 | }, | ||
96 | { | ||
97 | 0x30, 0x45, 0xAE, 0x6F, 0xC8, 0x42, 0x2F, 0x64, 0xED, 0x57, /* seed */ | ||
98 | 0x95, 0x28, 0xD3, 0x81, 0x20, 0xEA, 0xE1, 0x21, 0x96, 0xD5, | ||
99 | |||
100 | 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, /* p */ | ||
101 | 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFE, 0xFF, 0xFF, 0xFF, 0xFF, | ||
102 | 0xFF, 0xFF, 0xFF, 0xFF, | ||
103 | 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, /* a */ | ||
104 | 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFE, 0xFF, 0xFF, 0xFF, 0xFF, | ||
105 | 0xFF, 0xFF, 0xFF, 0xFC, | ||
106 | 0x64, 0x21, 0x05, 0x19, 0xE5, 0x9C, 0x80, 0xE7, 0x0F, 0xA7, /* b */ | ||
107 | 0xE9, 0xAB, 0x72, 0x24, 0x30, 0x49, 0xFE, 0xB8, 0xDE, 0xEC, | ||
108 | 0xC1, 0x46, 0xB9, 0xB1, | ||
109 | 0x18, 0x8D, 0xA8, 0x0E, 0xB0, 0x30, 0x90, 0xF6, 0x7C, 0xBF, /* x */ | ||
110 | 0x20, 0xEB, 0x43, 0xA1, 0x88, 0x00, 0xF4, 0xFF, 0x0A, 0xFD, | ||
111 | 0x82, 0xFF, 0x10, 0x12, | ||
112 | 0x07, 0x19, 0x2b, 0x95, 0xff, 0xc8, 0xda, 0x78, 0x63, 0x10, /* y */ | ||
113 | 0x11, 0xed, 0x6b, 0x24, 0xcd, 0xd5, 0x73, 0xf9, 0x77, 0xa1, | ||
114 | 0x1e, 0x79, 0x48, 0x11, | ||
115 | 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, /* order */ | ||
116 | 0xFF, 0xFF, 0x99, 0xDE, 0xF8, 0x36, 0x14, 0x6B, 0xC9, 0xB1, | ||
117 | 0xB4, 0xD2, 0x28, 0x31 | ||
118 | } | ||
119 | }; | ||
120 | |||
121 | static const struct { | ||
122 | EC_CURVE_DATA h; | ||
123 | unsigned char data[20 + 28 * 6]; | ||
124 | } | ||
125 | _EC_NIST_PRIME_224 = { | ||
126 | { | ||
127 | NID_X9_62_prime_field, 20, 28, 1 | ||
128 | }, | ||
129 | { | ||
130 | 0xBD, 0x71, 0x34, 0x47, 0x99, 0xD5, 0xC7, 0xFC, 0xDC, 0x45, /* seed */ | ||
131 | 0xB5, 0x9F, 0xA3, 0xB9, 0xAB, 0x8F, 0x6A, 0x94, 0x8B, 0xC5, | ||
132 | |||
133 | 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, /* p */ | ||
134 | 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0x00, 0x00, 0x00, 0x00, | ||
135 | 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x01, | ||
136 | 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, /* a */ | ||
137 | 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFE, 0xFF, 0xFF, 0xFF, 0xFF, | ||
138 | 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFE, | ||
139 | 0xB4, 0x05, 0x0A, 0x85, 0x0C, 0x04, 0xB3, 0xAB, 0xF5, 0x41, /* b */ | ||
140 | 0x32, 0x56, 0x50, 0x44, 0xB0, 0xB7, 0xD7, 0xBF, 0xD8, 0xBA, | ||
141 | 0x27, 0x0B, 0x39, 0x43, 0x23, 0x55, 0xFF, 0xB4, | ||
142 | 0xB7, 0x0E, 0x0C, 0xBD, 0x6B, 0xB4, 0xBF, 0x7F, 0x32, 0x13, /* x */ | ||
143 | 0x90, 0xB9, 0x4A, 0x03, 0xC1, 0xD3, 0x56, 0xC2, 0x11, 0x22, | ||
144 | 0x34, 0x32, 0x80, 0xD6, 0x11, 0x5C, 0x1D, 0x21, | ||
145 | 0xbd, 0x37, 0x63, 0x88, 0xb5, 0xf7, 0x23, 0xfb, 0x4c, 0x22, /* y */ | ||
146 | 0xdf, 0xe6, 0xcd, 0x43, 0x75, 0xa0, 0x5a, 0x07, 0x47, 0x64, | ||
147 | 0x44, 0xd5, 0x81, 0x99, 0x85, 0x00, 0x7e, 0x34, | ||
148 | 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, /* order */ | ||
149 | 0xFF, 0xFF, 0xFF, 0xFF, 0x16, 0xA2, 0xE0, 0xB8, 0xF0, 0x3E, | ||
150 | 0x13, 0xDD, 0x29, 0x45, 0x5C, 0x5C, 0x2A, 0x3D | ||
151 | } | ||
152 | }; | ||
153 | |||
154 | static const struct { | ||
155 | EC_CURVE_DATA h; | ||
156 | unsigned char data[20 + 48 * 6]; | ||
157 | } | ||
158 | _EC_NIST_PRIME_384 = { | ||
159 | { | ||
160 | NID_X9_62_prime_field, 20, 48, 1 | ||
161 | }, | ||
162 | { | ||
163 | 0xA3, 0x35, 0x92, 0x6A, 0xA3, 0x19, 0xA2, 0x7A, 0x1D, 0x00, /* seed */ | ||
164 | 0x89, 0x6A, 0x67, 0x73, 0xA4, 0x82, 0x7A, 0xCD, 0xAC, 0x73, | ||
165 | |||
166 | 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, /* p */ | ||
167 | 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, | ||
168 | 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, | ||
169 | 0xFF, 0xFE, 0xFF, 0xFF, 0xFF, 0xFF, 0x00, 0x00, 0x00, 0x00, | ||
170 | 0x00, 0x00, 0x00, 0x00, 0xFF, 0xFF, 0xFF, 0xFF, | ||
171 | 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, /* a */ | ||
172 | 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, | ||
173 | 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, | ||
174 | 0xFF, 0xFE, 0xFF, 0xFF, 0xFF, 0xFF, 0x00, 0x00, 0x00, 0x00, | ||
175 | 0x00, 0x00, 0x00, 0x00, 0xFF, 0xFF, 0xFF, 0xFC, | ||
176 | 0xB3, 0x31, 0x2F, 0xA7, 0xE2, 0x3E, 0xE7, 0xE4, 0x98, 0x8E, /* b */ | ||
177 | 0x05, 0x6B, 0xE3, 0xF8, 0x2D, 0x19, 0x18, 0x1D, 0x9C, 0x6E, | ||
178 | 0xFE, 0x81, 0x41, 0x12, 0x03, 0x14, 0x08, 0x8F, 0x50, 0x13, | ||
179 | 0x87, 0x5A, 0xC6, 0x56, 0x39, 0x8D, 0x8A, 0x2E, 0xD1, 0x9D, | ||
180 | 0x2A, 0x85, 0xC8, 0xED, 0xD3, 0xEC, 0x2A, 0xEF, | ||
181 | 0xAA, 0x87, 0xCA, 0x22, 0xBE, 0x8B, 0x05, 0x37, 0x8E, 0xB1, /* x */ | ||
182 | 0xC7, 0x1E, 0xF3, 0x20, 0xAD, 0x74, 0x6E, 0x1D, 0x3B, 0x62, | ||
183 | 0x8B, 0xA7, 0x9B, 0x98, 0x59, 0xF7, 0x41, 0xE0, 0x82, 0x54, | ||
184 | 0x2A, 0x38, 0x55, 0x02, 0xF2, 0x5D, 0xBF, 0x55, 0x29, 0x6C, | ||
185 | 0x3A, 0x54, 0x5E, 0x38, 0x72, 0x76, 0x0A, 0xB7, | ||
186 | 0x36, 0x17, 0xde, 0x4a, 0x96, 0x26, 0x2c, 0x6f, 0x5d, 0x9e, /* y */ | ||
187 | 0x98, 0xbf, 0x92, 0x92, 0xdc, 0x29, 0xf8, 0xf4, 0x1d, 0xbd, | ||
188 | 0x28, 0x9a, 0x14, 0x7c, 0xe9, 0xda, 0x31, 0x13, 0xb5, 0xf0, | ||
189 | 0xb8, 0xc0, 0x0a, 0x60, 0xb1, 0xce, 0x1d, 0x7e, 0x81, 0x9d, | ||
190 | 0x7a, 0x43, 0x1d, 0x7c, 0x90, 0xea, 0x0e, 0x5f, | ||
191 | 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, /* order */ | ||
192 | 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, | ||
193 | 0xFF, 0xFF, 0xFF, 0xFF, 0xC7, 0x63, 0x4D, 0x81, 0xF4, 0x37, | ||
194 | 0x2D, 0xDF, 0x58, 0x1A, 0x0D, 0xB2, 0x48, 0xB0, 0xA7, 0x7A, | ||
195 | 0xEC, 0xEC, 0x19, 0x6A, 0xCC, 0xC5, 0x29, 0x73 | ||
196 | } | ||
197 | }; | ||
198 | |||
199 | static const struct { | ||
200 | EC_CURVE_DATA h; | ||
201 | unsigned char data[20 + 66 * 6]; | ||
202 | } | ||
203 | _EC_NIST_PRIME_521 = { | ||
204 | { | ||
205 | NID_X9_62_prime_field, 20, 66, 1 | ||
206 | }, | ||
207 | { | ||
208 | 0xD0, 0x9E, 0x88, 0x00, 0x29, 0x1C, 0xB8, 0x53, 0x96, 0xCC, /* seed */ | ||
209 | 0x67, 0x17, 0x39, 0x32, 0x84, 0xAA, 0xA0, 0xDA, 0x64, 0xBA, | ||
210 | |||
211 | 0x01, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, /* p */ | ||
212 | 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, | ||
213 | 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, | ||
214 | 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, | ||
215 | 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, | ||
216 | 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, | ||
217 | 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, | ||
218 | 0x01, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, /* a */ | ||
219 | 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, | ||
220 | 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, | ||
221 | 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, | ||
222 | 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, | ||
223 | 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, | ||
224 | 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFC, | ||
225 | 0x00, 0x51, 0x95, 0x3E, 0xB9, 0x61, 0x8E, 0x1C, 0x9A, 0x1F, /* b */ | ||
226 | 0x92, 0x9A, 0x21, 0xA0, 0xB6, 0x85, 0x40, 0xEE, 0xA2, 0xDA, | ||
227 | 0x72, 0x5B, 0x99, 0xB3, 0x15, 0xF3, 0xB8, 0xB4, 0x89, 0x91, | ||
228 | 0x8E, 0xF1, 0x09, 0xE1, 0x56, 0x19, 0x39, 0x51, 0xEC, 0x7E, | ||
229 | 0x93, 0x7B, 0x16, 0x52, 0xC0, 0xBD, 0x3B, 0xB1, 0xBF, 0x07, | ||
230 | 0x35, 0x73, 0xDF, 0x88, 0x3D, 0x2C, 0x34, 0xF1, 0xEF, 0x45, | ||
231 | 0x1F, 0xD4, 0x6B, 0x50, 0x3F, 0x00, | ||
232 | 0x00, 0xC6, 0x85, 0x8E, 0x06, 0xB7, 0x04, 0x04, 0xE9, 0xCD, /* x */ | ||
233 | 0x9E, 0x3E, 0xCB, 0x66, 0x23, 0x95, 0xB4, 0x42, 0x9C, 0x64, | ||
234 | 0x81, 0x39, 0x05, 0x3F, 0xB5, 0x21, 0xF8, 0x28, 0xAF, 0x60, | ||
235 | 0x6B, 0x4D, 0x3D, 0xBA, 0xA1, 0x4B, 0x5E, 0x77, 0xEF, 0xE7, | ||
236 | 0x59, 0x28, 0xFE, 0x1D, 0xC1, 0x27, 0xA2, 0xFF, 0xA8, 0xDE, | ||
237 | 0x33, 0x48, 0xB3, 0xC1, 0x85, 0x6A, 0x42, 0x9B, 0xF9, 0x7E, | ||
238 | 0x7E, 0x31, 0xC2, 0xE5, 0xBD, 0x66, | ||
239 | 0x01, 0x18, 0x39, 0x29, 0x6a, 0x78, 0x9a, 0x3b, 0xc0, 0x04, /* y */ | ||
240 | 0x5c, 0x8a, 0x5f, 0xb4, 0x2c, 0x7d, 0x1b, 0xd9, 0x98, 0xf5, | ||
241 | 0x44, 0x49, 0x57, 0x9b, 0x44, 0x68, 0x17, 0xaf, 0xbd, 0x17, | ||
242 | 0x27, 0x3e, 0x66, 0x2c, 0x97, 0xee, 0x72, 0x99, 0x5e, 0xf4, | ||
243 | 0x26, 0x40, 0xc5, 0x50, 0xb9, 0x01, 0x3f, 0xad, 0x07, 0x61, | ||
244 | 0x35, 0x3c, 0x70, 0x86, 0xa2, 0x72, 0xc2, 0x40, 0x88, 0xbe, | ||
245 | 0x94, 0x76, 0x9f, 0xd1, 0x66, 0x50, | ||
246 | 0x01, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, /* order */ | ||
247 | 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, | ||
248 | 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, | ||
249 | 0xFF, 0xFF, 0xFF, 0xFA, 0x51, 0x86, 0x87, 0x83, 0xBF, 0x2F, | ||
250 | 0x96, 0x6B, 0x7F, 0xCC, 0x01, 0x48, 0xF7, 0x09, 0xA5, 0xD0, | ||
251 | 0x3B, 0xB5, 0xC9, 0xB8, 0x89, 0x9C, 0x47, 0xAE, 0xBB, 0x6F, | ||
252 | 0xB7, 0x1E, 0x91, 0x38, 0x64, 0x09 | ||
253 | } | ||
254 | }; | ||
255 | |||
256 | /* the x9.62 prime curves (minus the nist prime curves) */ | ||
257 | static const struct { | ||
258 | EC_CURVE_DATA h; | ||
259 | unsigned char data[20 + 24 * 6]; | ||
260 | } | ||
261 | _EC_X9_62_PRIME_192V2 = { | ||
262 | { | ||
263 | NID_X9_62_prime_field, 20, 24, 1 | ||
264 | }, | ||
265 | { | ||
266 | 0x31, 0xA9, 0x2E, 0xE2, 0x02, 0x9F, 0xD1, 0x0D, 0x90, 0x1B, /* seed */ | ||
267 | 0x11, 0x3E, 0x99, 0x07, 0x10, 0xF0, 0xD2, 0x1A, 0xC6, 0xB6, | ||
268 | |||
269 | 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, /* p */ | ||
270 | 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFE, 0xFF, 0xFF, 0xFF, 0xFF, | ||
271 | 0xFF, 0xFF, 0xFF, 0xFF, | ||
272 | 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, /* a */ | ||
273 | 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFE, 0xFF, 0xFF, 0xFF, 0xFF, | ||
274 | 0xFF, 0xFF, 0xFF, 0xFC, | ||
275 | 0xCC, 0x22, 0xD6, 0xDF, 0xB9, 0x5C, 0x6B, 0x25, 0xE4, 0x9C, /* b */ | ||
276 | 0x0D, 0x63, 0x64, 0xA4, 0xE5, 0x98, 0x0C, 0x39, 0x3A, 0xA2, | ||
277 | 0x16, 0x68, 0xD9, 0x53, | ||
278 | 0xEE, 0xA2, 0xBA, 0xE7, 0xE1, 0x49, 0x78, 0x42, 0xF2, 0xDE, /* x */ | ||
279 | 0x77, 0x69, 0xCF, 0xE9, 0xC9, 0x89, 0xC0, 0x72, 0xAD, 0x69, | ||
280 | 0x6F, 0x48, 0x03, 0x4A, | ||
281 | 0x65, 0x74, 0xd1, 0x1d, 0x69, 0xb6, 0xec, 0x7a, 0x67, 0x2b, /* y */ | ||
282 | 0xb8, 0x2a, 0x08, 0x3d, 0xf2, 0xf2, 0xb0, 0x84, 0x7d, 0xe9, | ||
283 | 0x70, 0xb2, 0xde, 0x15, | ||
284 | 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, /* order */ | ||
285 | 0xFF, 0xFE, 0x5F, 0xB1, 0xA7, 0x24, 0xDC, 0x80, 0x41, 0x86, | ||
286 | 0x48, 0xD8, 0xDD, 0x31 | ||
287 | } | ||
288 | }; | ||
289 | |||
290 | static const struct { | ||
291 | EC_CURVE_DATA h; | ||
292 | unsigned char data[20 + 24 * 6]; | ||
293 | } | ||
294 | _EC_X9_62_PRIME_192V3 = { | ||
295 | { | ||
296 | NID_X9_62_prime_field, 20, 24, 1 | ||
297 | }, | ||
298 | { | ||
299 | 0xC4, 0x69, 0x68, 0x44, 0x35, 0xDE, 0xB3, 0x78, 0xC4, 0xB6, /* seed */ | ||
300 | 0x5C, 0xA9, 0x59, 0x1E, 0x2A, 0x57, 0x63, 0x05, 0x9A, 0x2E, | ||
301 | |||
302 | 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, /* p */ | ||
303 | 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFE, 0xFF, 0xFF, 0xFF, 0xFF, | ||
304 | 0xFF, 0xFF, 0xFF, 0xFF, | ||
305 | 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, /* a */ | ||
306 | 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFE, 0xFF, 0xFF, 0xFF, 0xFF, | ||
307 | 0xFF, 0xFF, 0xFF, 0xFC, | ||
308 | 0x22, 0x12, 0x3D, 0xC2, 0x39, 0x5A, 0x05, 0xCA, 0xA7, 0x42, /* b */ | ||
309 | 0x3D, 0xAE, 0xCC, 0xC9, 0x47, 0x60, 0xA7, 0xD4, 0x62, 0x25, | ||
310 | 0x6B, 0xD5, 0x69, 0x16, | ||
311 | 0x7D, 0x29, 0x77, 0x81, 0x00, 0xC6, 0x5A, 0x1D, 0xA1, 0x78, /* x */ | ||
312 | 0x37, 0x16, 0x58, 0x8D, 0xCE, 0x2B, 0x8B, 0x4A, 0xEE, 0x8E, | ||
313 | 0x22, 0x8F, 0x18, 0x96, | ||
314 | 0x38, 0xa9, 0x0f, 0x22, 0x63, 0x73, 0x37, 0x33, 0x4b, 0x49, /* y */ | ||
315 | 0xdc, 0xb6, 0x6a, 0x6d, 0xc8, 0xf9, 0x97, 0x8a, 0xca, 0x76, | ||
316 | 0x48, 0xa9, 0x43, 0xb0, | ||
317 | 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, /* order */ | ||
318 | 0xFF, 0xFF, 0x7A, 0x62, 0xD0, 0x31, 0xC8, 0x3F, 0x42, 0x94, | ||
319 | 0xF6, 0x40, 0xEC, 0x13 | ||
320 | } | ||
321 | }; | ||
322 | |||
323 | static const struct { | ||
324 | EC_CURVE_DATA h; | ||
325 | unsigned char data[20 + 30 * 6]; | ||
326 | } | ||
327 | _EC_X9_62_PRIME_239V1 = { | ||
328 | { | ||
329 | NID_X9_62_prime_field, 20, 30, 1 | ||
330 | }, | ||
331 | { | ||
332 | 0xE4, 0x3B, 0xB4, 0x60, 0xF0, 0xB8, 0x0C, 0xC0, 0xC0, 0xB0, /* seed */ | ||
333 | 0x75, 0x79, 0x8E, 0x94, 0x80, 0x60, 0xF8, 0x32, 0x1B, 0x7D, | ||
334 | |||
335 | 0x7F, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, /* p */ | ||
336 | 0xFF, 0xFF, 0x7F, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0x80, 0x00, | ||
337 | 0x00, 0x00, 0x00, 0x00, 0x7F, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, | ||
338 | |||
339 | 0x7F, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, /* a */ | ||
340 | 0xFF, 0xFF, 0x7F, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0x80, 0x00, | ||
341 | 0x00, 0x00, 0x00, 0x00, 0x7F, 0xFF, 0xFF, 0xFF, 0xFF, 0xFC, | ||
342 | |||
343 | 0x6B, 0x01, 0x6C, 0x3B, 0xDC, 0xF1, 0x89, 0x41, 0xD0, 0xD6, /* b */ | ||
344 | 0x54, 0x92, 0x14, 0x75, 0xCA, 0x71, 0xA9, 0xDB, 0x2F, 0xB2, | ||
345 | 0x7D, 0x1D, 0x37, 0x79, 0x61, 0x85, 0xC2, 0x94, 0x2C, 0x0A, | ||
346 | |||
347 | 0x0F, 0xFA, 0x96, 0x3C, 0xDC, 0xA8, 0x81, 0x6C, 0xCC, 0x33, /* x */ | ||
348 | 0xB8, 0x64, 0x2B, 0xED, 0xF9, 0x05, 0xC3, 0xD3, 0x58, 0x57, | ||
349 | 0x3D, 0x3F, 0x27, 0xFB, 0xBD, 0x3B, 0x3C, 0xB9, 0xAA, 0xAF, | ||
350 | |||
351 | 0x7d, 0xeb, 0xe8, 0xe4, 0xe9, 0x0a, 0x5d, 0xae, 0x6e, 0x40, /* y */ | ||
352 | 0x54, 0xca, 0x53, 0x0b, 0xa0, 0x46, 0x54, 0xb3, 0x68, 0x18, | ||
353 | 0xce, 0x22, 0x6b, 0x39, 0xfc, 0xcb, 0x7b, 0x02, 0xf1, 0xae, | ||
354 | |||
355 | 0x7F, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, /* order */ | ||
356 | 0xFF, 0xFF, 0x7F, 0xFF, 0xFF, 0x9E, 0x5E, 0x9A, 0x9F, 0x5D, | ||
357 | 0x90, 0x71, 0xFB, 0xD1, 0x52, 0x26, 0x88, 0x90, 0x9D, 0x0B | ||
358 | } | ||
359 | }; | ||
360 | |||
361 | static const struct { | ||
362 | EC_CURVE_DATA h; | ||
363 | unsigned char data[20 + 30 * 6]; | ||
364 | } | ||
365 | _EC_X9_62_PRIME_239V2 = { | ||
366 | { | ||
367 | NID_X9_62_prime_field, 20, 30, 1 | ||
368 | }, | ||
369 | { | ||
370 | 0xE8, 0xB4, 0x01, 0x16, 0x04, 0x09, 0x53, 0x03, 0xCA, 0x3B, /* seed */ | ||
371 | 0x80, 0x99, 0x98, 0x2B, 0xE0, 0x9F, 0xCB, 0x9A, 0xE6, 0x16, | ||
372 | |||
373 | 0x7F, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, /* p */ | ||
374 | 0xFF, 0xFF, 0x7F, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0x80, 0x00, | ||
375 | 0x00, 0x00, 0x00, 0x00, 0x7F, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, | ||
376 | |||
377 | 0x7F, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, /* a */ | ||
378 | 0xFF, 0xFF, 0x7F, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0x80, 0x00, | ||
379 | 0x00, 0x00, 0x00, 0x00, 0x7F, 0xFF, 0xFF, 0xFF, 0xFF, 0xFC, | ||
380 | |||
381 | 0x61, 0x7F, 0xAB, 0x68, 0x32, 0x57, 0x6C, 0xBB, 0xFE, 0xD5, /* b */ | ||
382 | 0x0D, 0x99, 0xF0, 0x24, 0x9C, 0x3F, 0xEE, 0x58, 0xB9, 0x4B, | ||
383 | 0xA0, 0x03, 0x8C, 0x7A, 0xE8, 0x4C, 0x8C, 0x83, 0x2F, 0x2C, | ||
384 | |||
385 | 0x38, 0xAF, 0x09, 0xD9, 0x87, 0x27, 0x70, 0x51, 0x20, 0xC9, /* x */ | ||
386 | 0x21, 0xBB, 0x5E, 0x9E, 0x26, 0x29, 0x6A, 0x3C, 0xDC, 0xF2, | ||
387 | 0xF3, 0x57, 0x57, 0xA0, 0xEA, 0xFD, 0x87, 0xB8, 0x30, 0xE7, | ||
388 | |||
389 | 0x5b, 0x01, 0x25, 0xe4, 0xdb, 0xea, 0x0e, 0xc7, 0x20, 0x6d, /* y */ | ||
390 | 0xa0, 0xfc, 0x01, 0xd9, 0xb0, 0x81, 0x32, 0x9f, 0xb5, 0x55, | ||
391 | 0xde, 0x6e, 0xf4, 0x60, 0x23, 0x7d, 0xff, 0x8b, 0xe4, 0xba, | ||
392 | |||
393 | 0x7F, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, /* order */ | ||
394 | 0xFF, 0xFF, 0x80, 0x00, 0x00, 0xCF, 0xA7, 0xE8, 0x59, 0x43, | ||
395 | 0x77, 0xD4, 0x14, 0xC0, 0x38, 0x21, 0xBC, 0x58, 0x20, 0x63 | ||
396 | } | ||
397 | }; | ||
398 | |||
399 | static const struct { | ||
400 | EC_CURVE_DATA h; | ||
401 | unsigned char data[20 + 30 * 6]; | ||
402 | } | ||
403 | _EC_X9_62_PRIME_239V3 = { | ||
404 | { | ||
405 | NID_X9_62_prime_field, 20, 30, 1 | ||
406 | }, | ||
407 | { | ||
408 | 0x7D, 0x73, 0x74, 0x16, 0x8F, 0xFE, 0x34, 0x71, 0xB6, 0x0A, /* seed */ | ||
409 | 0x85, 0x76, 0x86, 0xA1, 0x94, 0x75, 0xD3, 0xBF, 0xA2, 0xFF, | ||
410 | |||
411 | 0x7F, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, /* p */ | ||
412 | 0xFF, 0xFF, 0x7F, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0x80, 0x00, | ||
413 | 0x00, 0x00, 0x00, 0x00, 0x7F, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, | ||
414 | |||
415 | 0x7F, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, /* a */ | ||
416 | 0xFF, 0xFF, 0x7F, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0x80, 0x00, | ||
417 | 0x00, 0x00, 0x00, 0x00, 0x7F, 0xFF, 0xFF, 0xFF, 0xFF, 0xFC, | ||
418 | |||
419 | 0x25, 0x57, 0x05, 0xFA, 0x2A, 0x30, 0x66, 0x54, 0xB1, 0xF4, /* b */ | ||
420 | 0xCB, 0x03, 0xD6, 0xA7, 0x50, 0xA3, 0x0C, 0x25, 0x01, 0x02, | ||
421 | 0xD4, 0x98, 0x87, 0x17, 0xD9, 0xBA, 0x15, 0xAB, 0x6D, 0x3E, | ||
422 | |||
423 | 0x67, 0x68, 0xAE, 0x8E, 0x18, 0xBB, 0x92, 0xCF, 0xCF, 0x00, /* x */ | ||
424 | 0x5C, 0x94, 0x9A, 0xA2, 0xC6, 0xD9, 0x48, 0x53, 0xD0, 0xE6, | ||
425 | 0x60, 0xBB, 0xF8, 0x54, 0xB1, 0xC9, 0x50, 0x5F, 0xE9, 0x5A, | ||
426 | |||
427 | 0x16, 0x07, 0xe6, 0x89, 0x8f, 0x39, 0x0c, 0x06, 0xbc, 0x1d, /* y */ | ||
428 | 0x55, 0x2b, 0xad, 0x22, 0x6f, 0x3b, 0x6f, 0xcf, 0xe4, 0x8b, | ||
429 | 0x6e, 0x81, 0x84, 0x99, 0xaf, 0x18, 0xe3, 0xed, 0x6c, 0xf3, | ||
430 | |||
431 | 0x7F, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, /* order */ | ||
432 | 0xFF, 0xFF, 0x7F, 0xFF, 0xFF, 0x97, 0x5D, 0xEB, 0x41, 0xB3, | ||
433 | 0xA6, 0x05, 0x7C, 0x3C, 0x43, 0x21, 0x46, 0x52, 0x65, 0x51 | ||
434 | } | ||
435 | }; | ||
436 | |||
437 | |||
438 | static const struct { | ||
439 | EC_CURVE_DATA h; | ||
440 | unsigned char data[20 + 32 * 6]; | ||
441 | } | ||
442 | _EC_X9_62_PRIME_256V1 = { | ||
443 | { | ||
444 | NID_X9_62_prime_field, 20, 32, 1 | ||
445 | }, | ||
446 | { | ||
447 | 0xC4, 0x9D, 0x36, 0x08, 0x86, 0xE7, 0x04, 0x93, 0x6A, 0x66, /* seed */ | ||
448 | 0x78, 0xE1, 0x13, 0x9D, 0x26, 0xB7, 0x81, 0x9F, 0x7E, 0x90, | ||
449 | |||
450 | 0xFF, 0xFF, 0xFF, 0xFF, 0x00, 0x00, 0x00, 0x01, 0x00, 0x00, /* p */ | ||
451 | 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, | ||
452 | 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, | ||
453 | 0xFF, 0xFF, | ||
454 | 0xFF, 0xFF, 0xFF, 0xFF, 0x00, 0x00, 0x00, 0x01, 0x00, 0x00, /* a */ | ||
455 | 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, | ||
456 | 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, | ||
457 | 0xFF, 0xFC, | ||
458 | 0x5A, 0xC6, 0x35, 0xD8, 0xAA, 0x3A, 0x93, 0xE7, 0xB3, 0xEB, /* b */ | ||
459 | 0xBD, 0x55, 0x76, 0x98, 0x86, 0xBC, 0x65, 0x1D, 0x06, 0xB0, | ||
460 | 0xCC, 0x53, 0xB0, 0xF6, 0x3B, 0xCE, 0x3C, 0x3E, 0x27, 0xD2, | ||
461 | 0x60, 0x4B, | ||
462 | 0x6B, 0x17, 0xD1, 0xF2, 0xE1, 0x2C, 0x42, 0x47, 0xF8, 0xBC, /* x */ | ||
463 | 0xE6, 0xE5, 0x63, 0xA4, 0x40, 0xF2, 0x77, 0x03, 0x7D, 0x81, | ||
464 | 0x2D, 0xEB, 0x33, 0xA0, 0xF4, 0xA1, 0x39, 0x45, 0xD8, 0x98, | ||
465 | 0xC2, 0x96, | ||
466 | 0x4f, 0xe3, 0x42, 0xe2, 0xfe, 0x1a, 0x7f, 0x9b, 0x8e, 0xe7, /* y */ | ||
467 | 0xeb, 0x4a, 0x7c, 0x0f, 0x9e, 0x16, 0x2b, 0xce, 0x33, 0x57, | ||
468 | 0x6b, 0x31, 0x5e, 0xce, 0xcb, 0xb6, 0x40, 0x68, 0x37, 0xbf, | ||
469 | 0x51, 0xf5, | ||
470 | 0xFF, 0xFF, 0xFF, 0xFF, 0x00, 0x00, 0x00, 0x00, 0xFF, 0xFF, /* order */ | ||
471 | 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xBC, 0xE6, 0xFA, 0xAD, | ||
472 | 0xA7, 0x17, 0x9E, 0x84, 0xF3, 0xB9, 0xCA, 0xC2, 0xFC, 0x63, | ||
473 | 0x25, 0x51 | ||
474 | } | ||
475 | }; | ||
476 | |||
477 | /* the secg prime curves (minus the nist and x9.62 prime curves) */ | ||
478 | static const struct { | ||
479 | EC_CURVE_DATA h; | ||
480 | unsigned char data[20 + 14 * 6]; | ||
481 | } | ||
482 | _EC_SECG_PRIME_112R1 = { | ||
483 | { | ||
484 | NID_X9_62_prime_field, 20, 14, 1 | ||
485 | }, | ||
486 | { | ||
487 | 0x00, 0xF5, 0x0B, 0x02, 0x8E, 0x4D, 0x69, 0x6E, 0x67, 0x68, /* seed */ | ||
488 | 0x75, 0x61, 0x51, 0x75, 0x29, 0x04, 0x72, 0x78, 0x3F, 0xB1, | ||
489 | |||
490 | 0xDB, 0x7C, 0x2A, 0xBF, 0x62, 0xE3, 0x5E, 0x66, 0x80, 0x76, /* p */ | ||
491 | 0xBE, 0xAD, 0x20, 0x8B, | ||
492 | 0xDB, 0x7C, 0x2A, 0xBF, 0x62, 0xE3, 0x5E, 0x66, 0x80, 0x76, /* a */ | ||
493 | 0xBE, 0xAD, 0x20, 0x88, | ||
494 | 0x65, 0x9E, 0xF8, 0xBA, 0x04, 0x39, 0x16, 0xEE, 0xDE, 0x89, /* b */ | ||
495 | 0x11, 0x70, 0x2B, 0x22, | ||
496 | 0x09, 0x48, 0x72, 0x39, 0x99, 0x5A, 0x5E, 0xE7, 0x6B, 0x55, /* x */ | ||
497 | 0xF9, 0xC2, 0xF0, 0x98, | ||
498 | 0xa8, 0x9c, 0xe5, 0xaf, 0x87, 0x24, 0xc0, 0xa2, 0x3e, 0x0e, /* y */ | ||
499 | 0x0f, 0xf7, 0x75, 0x00, | ||
500 | 0xDB, 0x7C, 0x2A, 0xBF, 0x62, 0xE3, 0x5E, 0x76, 0x28, 0xDF, /* order */ | ||
501 | 0xAC, 0x65, 0x61, 0xC5 | ||
502 | } | ||
503 | }; | ||
504 | |||
505 | static const struct { | ||
506 | EC_CURVE_DATA h; | ||
507 | unsigned char data[20 + 14 * 6]; | ||
508 | } | ||
509 | _EC_SECG_PRIME_112R2 = { | ||
510 | { | ||
511 | NID_X9_62_prime_field, 20, 14, 4 | ||
512 | }, | ||
513 | { | ||
514 | 0x00, 0x27, 0x57, 0xA1, 0x11, 0x4D, 0x69, 0x6E, 0x67, 0x68, /* seed */ | ||
515 | 0x75, 0x61, 0x51, 0x75, 0x53, 0x16, 0xC0, 0x5E, 0x0B, 0xD4, | ||
516 | |||
517 | 0xDB, 0x7C, 0x2A, 0xBF, 0x62, 0xE3, 0x5E, 0x66, 0x80, 0x76, /* p */ | ||
518 | 0xBE, 0xAD, 0x20, 0x8B, | ||
519 | 0x61, 0x27, 0xC2, 0x4C, 0x05, 0xF3, 0x8A, 0x0A, 0xAA, 0xF6, /* a */ | ||
520 | 0x5C, 0x0E, 0xF0, 0x2C, | ||
521 | 0x51, 0xDE, 0xF1, 0x81, 0x5D, 0xB5, 0xED, 0x74, 0xFC, 0xC3, /* b */ | ||
522 | 0x4C, 0x85, 0xD7, 0x09, | ||
523 | 0x4B, 0xA3, 0x0A, 0xB5, 0xE8, 0x92, 0xB4, 0xE1, 0x64, 0x9D, /* x */ | ||
524 | 0xD0, 0x92, 0x86, 0x43, | ||
525 | 0xad, 0xcd, 0x46, 0xf5, 0x88, 0x2e, 0x37, 0x47, 0xde, 0xf3, /* y */ | ||
526 | 0x6e, 0x95, 0x6e, 0x97, | ||
527 | 0x36, 0xDF, 0x0A, 0xAF, 0xD8, 0xB8, 0xD7, 0x59, 0x7C, 0xA1, /* order */ | ||
528 | 0x05, 0x20, 0xD0, 0x4B | ||
529 | } | ||
530 | }; | ||
531 | |||
532 | static const struct { | ||
533 | EC_CURVE_DATA h; | ||
534 | unsigned char data[20 + 16 * 6]; | ||
535 | } | ||
536 | _EC_SECG_PRIME_128R1 = { | ||
537 | { | ||
538 | NID_X9_62_prime_field, 20, 16, 1 | ||
539 | }, | ||
540 | { | ||
541 | 0x00, 0x0E, 0x0D, 0x4D, 0x69, 0x6E, 0x67, 0x68, 0x75, 0x61, /* seed */ | ||
542 | 0x51, 0x75, 0x0C, 0xC0, 0x3A, 0x44, 0x73, 0xD0, 0x36, 0x79, | ||
543 | |||
544 | 0xFF, 0xFF, 0xFF, 0xFD, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, /* p */ | ||
545 | 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, | ||
546 | 0xFF, 0xFF, 0xFF, 0xFD, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, /* a */ | ||
547 | 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFC, | ||
548 | 0xE8, 0x75, 0x79, 0xC1, 0x10, 0x79, 0xF4, 0x3D, 0xD8, 0x24, /* b */ | ||
549 | 0x99, 0x3C, 0x2C, 0xEE, 0x5E, 0xD3, | ||
550 | 0x16, 0x1F, 0xF7, 0x52, 0x8B, 0x89, 0x9B, 0x2D, 0x0C, 0x28, /* x */ | ||
551 | 0x60, 0x7C, 0xA5, 0x2C, 0x5B, 0x86, | ||
552 | 0xcf, 0x5a, 0xc8, 0x39, 0x5b, 0xaf, 0xeb, 0x13, 0xc0, 0x2d, /* y */ | ||
553 | 0xa2, 0x92, 0xdd, 0xed, 0x7a, 0x83, | ||
554 | 0xFF, 0xFF, 0xFF, 0xFE, 0x00, 0x00, 0x00, 0x00, 0x75, 0xA3, /* order */ | ||
555 | 0x0D, 0x1B, 0x90, 0x38, 0xA1, 0x15 | ||
556 | } | ||
557 | }; | ||
558 | |||
559 | static const struct { | ||
560 | EC_CURVE_DATA h; | ||
561 | unsigned char data[20 + 16 * 6]; | ||
562 | } | ||
563 | _EC_SECG_PRIME_128R2 = { | ||
564 | { | ||
565 | NID_X9_62_prime_field, 20, 16, 4 | ||
566 | }, | ||
567 | { | ||
568 | 0x00, 0x4D, 0x69, 0x6E, 0x67, 0x68, 0x75, 0x61, 0x51, 0x75, /* seed */ | ||
569 | 0x12, 0xD8, 0xF0, 0x34, 0x31, 0xFC, 0xE6, 0x3B, 0x88, 0xF4, | ||
570 | |||
571 | 0xFF, 0xFF, 0xFF, 0xFD, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, /* p */ | ||
572 | 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, | ||
573 | 0xD6, 0x03, 0x19, 0x98, 0xD1, 0xB3, 0xBB, 0xFE, 0xBF, 0x59, /* a */ | ||
574 | 0xCC, 0x9B, 0xBF, 0xF9, 0xAE, 0xE1, | ||
575 | 0x5E, 0xEE, 0xFC, 0xA3, 0x80, 0xD0, 0x29, 0x19, 0xDC, 0x2C, /* b */ | ||
576 | 0x65, 0x58, 0xBB, 0x6D, 0x8A, 0x5D, | ||
577 | 0x7B, 0x6A, 0xA5, 0xD8, 0x5E, 0x57, 0x29, 0x83, 0xE6, 0xFB, /* x */ | ||
578 | 0x32, 0xA7, 0xCD, 0xEB, 0xC1, 0x40, | ||
579 | 0x27, 0xb6, 0x91, 0x6a, 0x89, 0x4d, 0x3a, 0xee, 0x71, 0x06, /* y */ | ||
580 | 0xfe, 0x80, 0x5f, 0xc3, 0x4b, 0x44, | ||
581 | 0x3F, 0xFF, 0xFF, 0xFF, 0x7F, 0xFF, 0xFF, 0xFF, 0xBE, 0x00, /* order */ | ||
582 | 0x24, 0x72, 0x06, 0x13, 0xB5, 0xA3 | ||
583 | } | ||
584 | }; | ||
585 | |||
586 | static const struct { | ||
587 | EC_CURVE_DATA h; | ||
588 | unsigned char data[0 + 21 * 6]; | ||
589 | } | ||
590 | _EC_SECG_PRIME_160K1 = { | ||
591 | { | ||
592 | NID_X9_62_prime_field, 0, 21, 1 | ||
593 | }, | ||
594 | { /* no seed */ | ||
595 | 0x00, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, /* p */ | ||
596 | 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFE, 0xFF, 0xFF, 0xAC, | ||
597 | 0x73, | ||
598 | 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, /* a */ | ||
599 | 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, | ||
600 | 0x00, | ||
601 | 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, /* b */ | ||
602 | 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, | ||
603 | 0x07, | ||
604 | 0x00, 0x3B, 0x4C, 0x38, 0x2C, 0xE3, 0x7A, 0xA1, 0x92, 0xA4, /* x */ | ||
605 | 0x01, 0x9E, 0x76, 0x30, 0x36, 0xF4, 0xF5, 0xDD, 0x4D, 0x7E, | ||
606 | 0xBB, | ||
607 | 0x00, 0x93, 0x8c, 0xf9, 0x35, 0x31, 0x8f, 0xdc, 0xed, 0x6b, /* y */ | ||
608 | 0xc2, 0x82, 0x86, 0x53, 0x17, 0x33, 0xc3, 0xf0, 0x3c, 0x4f, | ||
609 | 0xee, | ||
610 | 0x01, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, /* order */ | ||
611 | 0x01, 0xB8, 0xFA, 0x16, 0xDF, 0xAB, 0x9A, 0xCA, 0x16, 0xB6, | ||
612 | 0xB3 | ||
613 | } | ||
614 | }; | ||
615 | |||
616 | static const struct { | ||
617 | EC_CURVE_DATA h; | ||
618 | unsigned char data[20 + 21 * 6]; | ||
619 | } | ||
620 | _EC_SECG_PRIME_160R1 = { | ||
621 | { | ||
622 | NID_X9_62_prime_field, 20, 21, 1 | ||
623 | }, | ||
624 | { | ||
625 | 0x10, 0x53, 0xCD, 0xE4, 0x2C, 0x14, 0xD6, 0x96, 0xE6, 0x76, /* seed */ | ||
626 | 0x87, 0x56, 0x15, 0x17, 0x53, 0x3B, 0xF3, 0xF8, 0x33, 0x45, | ||
627 | |||
628 | 0x00, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, /* p */ | ||
629 | 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0x7F, 0xFF, 0xFF, | ||
630 | 0xFF, | ||
631 | 0x00, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, /* a */ | ||
632 | 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0x7F, 0xFF, 0xFF, | ||
633 | 0xFC, | ||
634 | 0x00, 0x1C, 0x97, 0xBE, 0xFC, 0x54, 0xBD, 0x7A, 0x8B, 0x65, /* b */ | ||
635 | 0xAC, 0xF8, 0x9F, 0x81, 0xD4, 0xD4, 0xAD, 0xC5, 0x65, 0xFA, | ||
636 | 0x45, | ||
637 | 0x00, 0x4A, 0x96, 0xB5, 0x68, 0x8E, 0xF5, 0x73, 0x28, 0x46, /* x */ | ||
638 | 0x64, 0x69, 0x89, 0x68, 0xC3, 0x8B, 0xB9, 0x13, 0xCB, 0xFC, | ||
639 | 0x82, | ||
640 | 0x00, 0x23, 0xa6, 0x28, 0x55, 0x31, 0x68, 0x94, 0x7d, 0x59, /* y */ | ||
641 | 0xdc, 0xc9, 0x12, 0x04, 0x23, 0x51, 0x37, 0x7a, 0xc5, 0xfb, | ||
642 | 0x32, | ||
643 | 0x01, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, /* order */ | ||
644 | 0x01, 0xF4, 0xC8, 0xF9, 0x27, 0xAE, 0xD3, 0xCA, 0x75, 0x22, | ||
645 | 0x57 | ||
646 | } | ||
647 | }; | ||
648 | |||
649 | static const struct { | ||
650 | EC_CURVE_DATA h; | ||
651 | unsigned char data[20 + 21 * 6]; | ||
652 | } | ||
653 | _EC_SECG_PRIME_160R2 = { | ||
654 | { | ||
655 | NID_X9_62_prime_field, 20, 21, 1 | ||
656 | }, | ||
657 | { | ||
658 | 0xB9, 0x9B, 0x99, 0xB0, 0x99, 0xB3, 0x23, 0xE0, 0x27, 0x09, /* seed */ | ||
659 | 0xA4, 0xD6, 0x96, 0xE6, 0x76, 0x87, 0x56, 0x15, 0x17, 0x51, | ||
660 | |||
661 | 0x00, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, /* p */ | ||
662 | 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFE, 0xFF, 0xFF, 0xAC, | ||
663 | 0x73, | ||
664 | 0x00, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, /* a */ | ||
665 | 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFE, 0xFF, 0xFF, 0xAC, | ||
666 | 0x70, | ||
667 | 0x00, 0xB4, 0xE1, 0x34, 0xD3, 0xFB, 0x59, 0xEB, 0x8B, 0xAB, /* b */ | ||
668 | 0x57, 0x27, 0x49, 0x04, 0x66, 0x4D, 0x5A, 0xF5, 0x03, 0x88, | ||
669 | 0xBA, | ||
670 | 0x00, 0x52, 0xDC, 0xB0, 0x34, 0x29, 0x3A, 0x11, 0x7E, 0x1F, /* x */ | ||
671 | 0x4F, 0xF1, 0x1B, 0x30, 0xF7, 0x19, 0x9D, 0x31, 0x44, 0xCE, | ||
672 | 0x6D, | ||
673 | 0x00, 0xfe, 0xaf, 0xfe, 0xf2, 0xe3, 0x31, 0xf2, 0x96, 0xe0, /* y */ | ||
674 | 0x71, 0xfa, 0x0d, 0xf9, 0x98, 0x2c, 0xfe, 0xa7, 0xd4, 0x3f, | ||
675 | 0x2e, | ||
676 | 0x01, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, /* order */ | ||
677 | 0x00, 0x35, 0x1E, 0xE7, 0x86, 0xA8, 0x18, 0xF3, 0xA1, 0xA1, | ||
678 | 0x6B | ||
679 | } | ||
680 | }; | ||
681 | |||
682 | static const struct { | ||
683 | EC_CURVE_DATA h; | ||
684 | unsigned char data[0 + 24 * 6]; | ||
685 | } | ||
686 | _EC_SECG_PRIME_192K1 = { | ||
687 | { | ||
688 | NID_X9_62_prime_field, 0, 24, 1 | ||
689 | }, | ||
690 | { /* no seed */ | ||
691 | 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, /* p */ | ||
692 | 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFE, | ||
693 | 0xFF, 0xFF, 0xEE, 0x37, | ||
694 | 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, /* a */ | ||
695 | 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, | ||
696 | 0x00, 0x00, 0x00, 0x00, | ||
697 | 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, /* b */ | ||
698 | 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, | ||
699 | 0x00, 0x00, 0x00, 0x03, | ||
700 | 0xDB, 0x4F, 0xF1, 0x0E, 0xC0, 0x57, 0xE9, 0xAE, 0x26, 0xB0, /* x */ | ||
701 | 0x7D, 0x02, 0x80, 0xB7, 0xF4, 0x34, 0x1D, 0xA5, 0xD1, 0xB1, | ||
702 | 0xEA, 0xE0, 0x6C, 0x7D, | ||
703 | 0x9b, 0x2f, 0x2f, 0x6d, 0x9c, 0x56, 0x28, 0xa7, 0x84, 0x41, /* y */ | ||
704 | 0x63, 0xd0, 0x15, 0xbe, 0x86, 0x34, 0x40, 0x82, 0xaa, 0x88, | ||
705 | 0xd9, 0x5e, 0x2f, 0x9d, | ||
706 | 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, /* order */ | ||
707 | 0xFF, 0xFE, 0x26, 0xF2, 0xFC, 0x17, 0x0F, 0x69, 0x46, 0x6A, | ||
708 | 0x74, 0xDE, 0xFD, 0x8D | ||
709 | } | ||
710 | }; | ||
711 | |||
712 | static const struct { | ||
713 | EC_CURVE_DATA h; | ||
714 | unsigned char data[0 + 29 * 6]; | ||
715 | } | ||
716 | _EC_SECG_PRIME_224K1 = { | ||
717 | { | ||
718 | NID_X9_62_prime_field, 0, 29, 1 | ||
719 | }, | ||
720 | { /* no seed */ | ||
721 | 0x00, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, /* p */ | ||
722 | 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, | ||
723 | 0xFF, 0xFF, 0xFF, 0xFF, 0xFE, 0xFF, 0xFF, 0xE5, 0x6D, | ||
724 | 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, /* a */ | ||
725 | 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, | ||
726 | 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, | ||
727 | 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, /* b */ | ||
728 | 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, | ||
729 | 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x05, | ||
730 | 0x00, 0xA1, 0x45, 0x5B, 0x33, 0x4D, 0xF0, 0x99, 0xDF, 0x30, /* x */ | ||
731 | 0xFC, 0x28, 0xA1, 0x69, 0xA4, 0x67, 0xE9, 0xE4, 0x70, 0x75, | ||
732 | 0xA9, 0x0F, 0x7E, 0x65, 0x0E, 0xB6, 0xB7, 0xA4, 0x5C, | ||
733 | 0x00, 0x7e, 0x08, 0x9f, 0xed, 0x7f, 0xba, 0x34, 0x42, 0x82, /* y */ | ||
734 | 0xca, 0xfb, 0xd6, 0xf7, 0xe3, 0x19, 0xf7, 0xc0, 0xb0, 0xbd, | ||
735 | 0x59, 0xe2, 0xca, 0x4b, 0xdb, 0x55, 0x6d, 0x61, 0xa5, | ||
736 | 0x01, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, /* order */ | ||
737 | 0x00, 0x00, 0x00, 0x00, 0x01, 0xDC, 0xE8, 0xD2, 0xEC, 0x61, | ||
738 | 0x84, 0xCA, 0xF0, 0xA9, 0x71, 0x76, 0x9F, 0xB1, 0xF7 | ||
739 | } | ||
740 | }; | ||
741 | |||
742 | static const struct { | ||
743 | EC_CURVE_DATA h; | ||
744 | unsigned char data[0 + 32 * 6]; | ||
745 | } | ||
746 | _EC_SECG_PRIME_256K1 = { | ||
747 | { | ||
748 | NID_X9_62_prime_field, 0, 32, 1 | ||
749 | }, | ||
750 | { /* no seed */ | ||
751 | 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, /* p */ | ||
752 | 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, | ||
753 | 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFE, 0xFF, 0xFF, | ||
754 | 0xFC, 0x2F, | ||
755 | 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, /* a */ | ||
756 | 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, | ||
757 | 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, | ||
758 | 0x00, 0x00, | ||
759 | 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, /* b */ | ||
760 | 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, | ||
761 | 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, | ||
762 | 0x00, 0x07, | ||
763 | 0x79, 0xBE, 0x66, 0x7E, 0xF9, 0xDC, 0xBB, 0xAC, 0x55, 0xA0, /* x */ | ||
764 | 0x62, 0x95, 0xCE, 0x87, 0x0B, 0x07, 0x02, 0x9B, 0xFC, 0xDB, | ||
765 | 0x2D, 0xCE, 0x28, 0xD9, 0x59, 0xF2, 0x81, 0x5B, 0x16, 0xF8, | ||
766 | 0x17, 0x98, | ||
767 | 0x48, 0x3a, 0xda, 0x77, 0x26, 0xa3, 0xc4, 0x65, 0x5d, 0xa4, /* y */ | ||
768 | 0xfb, 0xfc, 0x0e, 0x11, 0x08, 0xa8, 0xfd, 0x17, 0xb4, 0x48, | ||
769 | 0xa6, 0x85, 0x54, 0x19, 0x9c, 0x47, 0xd0, 0x8f, 0xfb, 0x10, | ||
770 | 0xd4, 0xb8, | ||
771 | 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, /* order */ | ||
772 | 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFE, 0xBA, 0xAE, 0xDC, 0xE6, | ||
773 | 0xAF, 0x48, 0xA0, 0x3B, 0xBF, 0xD2, 0x5E, 0x8C, 0xD0, 0x36, | ||
774 | 0x41, 0x41 | ||
775 | } | ||
776 | }; | ||
777 | |||
778 | /* some wap/wtls curves */ | ||
779 | static const struct { | ||
780 | EC_CURVE_DATA h; | ||
781 | unsigned char data[0 + 15 * 6]; | ||
782 | } | ||
783 | _EC_WTLS_8 = { | ||
784 | { | ||
785 | NID_X9_62_prime_field, 0, 15, 1 | ||
786 | }, | ||
787 | { /* no seed */ | ||
788 | 0x00, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, /* p */ | ||
789 | 0xFF, 0xFF, 0xFF, 0xFD, 0xE7, | ||
790 | 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, /* a */ | ||
791 | 0x00, 0x00, 0x00, 0x00, 0x00, | ||
792 | 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, /* b */ | ||
793 | 0x00, 0x00, 0x00, 0x00, 0x03, | ||
794 | 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, /* x */ | ||
795 | 0x00, 0x00, 0x00, 0x00, 0x01, | ||
796 | 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, /* y */ | ||
797 | 0x00, 0x00, 0x00, 0x00, 0x02, | ||
798 | 0x01, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x01, 0xEC, 0xEA, /* order */ | ||
799 | 0x55, 0x1A, 0xD8, 0x37, 0xE9 | ||
800 | } | ||
801 | }; | ||
802 | |||
803 | static const struct { | ||
804 | EC_CURVE_DATA h; | ||
805 | unsigned char data[0 + 21 * 6]; | ||
806 | } | ||
807 | _EC_WTLS_9 = { | ||
808 | { | ||
809 | NID_X9_62_prime_field, 0, 21, 1 | ||
810 | }, | ||
811 | { /* no seed */ | ||
812 | 0x00, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, /* p */ | ||
813 | 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFC, 0x80, | ||
814 | 0x8F, | ||
815 | 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, /* a */ | ||
816 | 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, | ||
817 | 0x00, | ||
818 | 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, /* b */ | ||
819 | 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, | ||
820 | 0x03, | ||
821 | 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, /* x */ | ||
822 | 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, | ||
823 | 0x01, | ||
824 | 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, /* y */ | ||
825 | 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, | ||
826 | 0x02, | ||
827 | 0x01, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, /* order */ | ||
828 | 0x01, 0xCD, 0xC9, 0x8A, 0xE0, 0xE2, 0xDE, 0x57, 0x4A, 0xBF, | ||
829 | 0x33 | ||
830 | } | ||
831 | }; | ||
832 | |||
833 | static const struct { | ||
834 | EC_CURVE_DATA h; | ||
835 | unsigned char data[0 + 28 * 6]; | ||
836 | } | ||
837 | _EC_WTLS_12 = { | ||
838 | { | ||
839 | NID_X9_62_prime_field, 0, 28, 1 | ||
840 | }, | ||
841 | { /* no seed */ | ||
842 | 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, /* p */ | ||
843 | 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0x00, 0x00, 0x00, 0x00, | ||
844 | 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x01, | ||
845 | 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, /* a */ | ||
846 | 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFE, 0xFF, 0xFF, 0xFF, 0xFF, | ||
847 | 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFE, | ||
848 | 0xB4, 0x05, 0x0A, 0x85, 0x0C, 0x04, 0xB3, 0xAB, 0xF5, 0x41, /* b */ | ||
849 | 0x32, 0x56, 0x50, 0x44, 0xB0, 0xB7, 0xD7, 0xBF, 0xD8, 0xBA, | ||
850 | 0x27, 0x0B, 0x39, 0x43, 0x23, 0x55, 0xFF, 0xB4, | ||
851 | 0xB7, 0x0E, 0x0C, 0xBD, 0x6B, 0xB4, 0xBF, 0x7F, 0x32, 0x13, /* x */ | ||
852 | 0x90, 0xB9, 0x4A, 0x03, 0xC1, 0xD3, 0x56, 0xC2, 0x11, 0x22, | ||
853 | 0x34, 0x32, 0x80, 0xD6, 0x11, 0x5C, 0x1D, 0x21, | ||
854 | 0xbd, 0x37, 0x63, 0x88, 0xb5, 0xf7, 0x23, 0xfb, 0x4c, 0x22, /* y */ | ||
855 | 0xdf, 0xe6, 0xcd, 0x43, 0x75, 0xa0, 0x5a, 0x07, 0x47, 0x64, | ||
856 | 0x44, 0xd5, 0x81, 0x99, 0x85, 0x00, 0x7e, 0x34, | ||
857 | 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, /* order */ | ||
858 | 0xFF, 0xFF, 0xFF, 0xFF, 0x16, 0xA2, 0xE0, 0xB8, 0xF0, 0x3E, | ||
859 | 0x13, 0xDD, 0x29, 0x45, 0x5C, 0x5C, 0x2A, 0x3D | ||
860 | } | ||
861 | }; | ||
862 | |||
863 | #ifndef OPENSSL_NO_EC2M | ||
864 | |||
865 | /* characteristic two curves */ | ||
866 | static const struct { | ||
867 | EC_CURVE_DATA h; | ||
868 | unsigned char data[20 + 15 * 6]; | ||
869 | } | ||
870 | _EC_SECG_CHAR2_113R1 = { | ||
871 | { | ||
872 | NID_X9_62_characteristic_two_field, 20, 15, 2 | ||
873 | }, | ||
874 | { | ||
875 | 0x10, 0xE7, 0x23, 0xAB, 0x14, 0xD6, 0x96, 0xE6, 0x76, 0x87, /* seed */ | ||
876 | 0x56, 0x15, 0x17, 0x56, 0xFE, 0xBF, 0x8F, 0xCB, 0x49, 0xA9, | ||
877 | |||
878 | 0x02, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, /* p */ | ||
879 | 0x00, 0x00, 0x00, 0x02, 0x01, | ||
880 | 0x00, 0x30, 0x88, 0x25, 0x0C, 0xA6, 0xE7, 0xC7, 0xFE, 0x64, /* a */ | ||
881 | 0x9C, 0xE8, 0x58, 0x20, 0xF7, | ||
882 | 0x00, 0xE8, 0xBE, 0xE4, 0xD3, 0xE2, 0x26, 0x07, 0x44, 0x18, /* b */ | ||
883 | 0x8B, 0xE0, 0xE9, 0xC7, 0x23, | ||
884 | 0x00, 0x9D, 0x73, 0x61, 0x6F, 0x35, 0xF4, 0xAB, 0x14, 0x07, /* x */ | ||
885 | 0xD7, 0x35, 0x62, 0xC1, 0x0F, | ||
886 | 0x00, 0xA5, 0x28, 0x30, 0x27, 0x79, 0x58, 0xEE, 0x84, 0xD1, /* y */ | ||
887 | 0x31, 0x5E, 0xD3, 0x18, 0x86, | ||
888 | 0x01, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0xD9, 0xCC, /* order */ | ||
889 | 0xEC, 0x8A, 0x39, 0xE5, 0x6F | ||
890 | } | ||
891 | }; | ||
892 | |||
893 | static const struct { | ||
894 | EC_CURVE_DATA h; | ||
895 | unsigned char data[20 + 15 * 6]; | ||
896 | } | ||
897 | _EC_SECG_CHAR2_113R2 = { | ||
898 | { | ||
899 | NID_X9_62_characteristic_two_field, 20, 15, 2 | ||
900 | }, | ||
901 | { | ||
902 | 0x10, 0xC0, 0xFB, 0x15, 0x76, 0x08, 0x60, 0xDE, 0xF1, 0xEE, /* seed */ | ||
903 | 0xF4, 0xD6, 0x96, 0xE6, 0x76, 0x87, 0x56, 0x15, 0x17, 0x5D, | ||
904 | |||
905 | 0x02, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, /* p */ | ||
906 | 0x00, 0x00, 0x00, 0x02, 0x01, | ||
907 | 0x00, 0x68, 0x99, 0x18, 0xDB, 0xEC, 0x7E, 0x5A, 0x0D, 0xD6, /* a */ | ||
908 | 0xDF, 0xC0, 0xAA, 0x55, 0xC7, | ||
909 | 0x00, 0x95, 0xE9, 0xA9, 0xEC, 0x9B, 0x29, 0x7B, 0xD4, 0xBF, /* b */ | ||
910 | 0x36, 0xE0, 0x59, 0x18, 0x4F, | ||
911 | 0x01, 0xA5, 0x7A, 0x6A, 0x7B, 0x26, 0xCA, 0x5E, 0xF5, 0x2F, /* x */ | ||
912 | 0xCD, 0xB8, 0x16, 0x47, 0x97, | ||
913 | 0x00, 0xB3, 0xAD, 0xC9, 0x4E, 0xD1, 0xFE, 0x67, 0x4C, 0x06, /* y */ | ||
914 | 0xE6, 0x95, 0xBA, 0xBA, 0x1D, | ||
915 | 0x01, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x01, 0x08, 0x78, /* order */ | ||
916 | 0x9B, 0x24, 0x96, 0xAF, 0x93 | ||
917 | } | ||
918 | }; | ||
919 | |||
920 | static const struct { | ||
921 | EC_CURVE_DATA h; | ||
922 | unsigned char data[20 + 17 * 6]; | ||
923 | } | ||
924 | _EC_SECG_CHAR2_131R1 = { | ||
925 | { | ||
926 | NID_X9_62_characteristic_two_field, 20, 17, 2 | ||
927 | }, | ||
928 | { | ||
929 | 0x4D, 0x69, 0x6E, 0x67, 0x68, 0x75, 0x61, 0x51, 0x75, 0x98, /* seed */ | ||
930 | 0x5B, 0xD3, 0xAD, 0xBA, 0xDA, 0x21, 0xB4, 0x3A, 0x97, 0xE2, | ||
931 | |||
932 | 0x08, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, /* p */ | ||
933 | 0x00, 0x00, 0x00, 0x00, 0x00, 0x01, 0x0D, | ||
934 | 0x07, 0xA1, 0x1B, 0x09, 0xA7, 0x6B, 0x56, 0x21, 0x44, 0x41, /* a */ | ||
935 | 0x8F, 0xF3, 0xFF, 0x8C, 0x25, 0x70, 0xB8, | ||
936 | 0x02, 0x17, 0xC0, 0x56, 0x10, 0x88, 0x4B, 0x63, 0xB9, 0xC6, /* b */ | ||
937 | 0xC7, 0x29, 0x16, 0x78, 0xF9, 0xD3, 0x41, | ||
938 | 0x00, 0x81, 0xBA, 0xF9, 0x1F, 0xDF, 0x98, 0x33, 0xC4, 0x0F, /* x */ | ||
939 | 0x9C, 0x18, 0x13, 0x43, 0x63, 0x83, 0x99, | ||
940 | 0x07, 0x8C, 0x6E, 0x7E, 0xA3, 0x8C, 0x00, 0x1F, 0x73, 0xC8, /* y */ | ||
941 | 0x13, 0x4B, 0x1B, 0x4E, 0xF9, 0xE1, 0x50, | ||
942 | 0x04, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x02, 0x31, /* order */ | ||
943 | 0x23, 0x95, 0x3A, 0x94, 0x64, 0xB5, 0x4D | ||
944 | } | ||
945 | }; | ||
946 | |||
947 | static const struct { | ||
948 | EC_CURVE_DATA h; | ||
949 | unsigned char data[20 + 17 * 6]; | ||
950 | } | ||
951 | _EC_SECG_CHAR2_131R2 = { | ||
952 | { | ||
953 | NID_X9_62_characteristic_two_field, 20, 17, 2 | ||
954 | }, | ||
955 | { | ||
956 | 0x98, 0x5B, 0xD3, 0xAD, 0xBA, 0xD4, 0xD6, 0x96, 0xE6, 0x76, /* seed */ | ||
957 | 0x87, 0x56, 0x15, 0x17, 0x5A, 0x21, 0xB4, 0x3A, 0x97, 0xE3, | ||
958 | |||
959 | 0x08, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, /* p */ | ||
960 | 0x00, 0x00, 0x00, 0x00, 0x00, 0x01, 0x0D, | ||
961 | 0x03, 0xE5, 0xA8, 0x89, 0x19, 0xD7, 0xCA, 0xFC, 0xBF, 0x41, /* a */ | ||
962 | 0x5F, 0x07, 0xC2, 0x17, 0x65, 0x73, 0xB2, | ||
963 | 0x04, 0xB8, 0x26, 0x6A, 0x46, 0xC5, 0x56, 0x57, 0xAC, 0x73, /* b */ | ||
964 | 0x4C, 0xE3, 0x8F, 0x01, 0x8F, 0x21, 0x92, | ||
965 | 0x03, 0x56, 0xDC, 0xD8, 0xF2, 0xF9, 0x50, 0x31, 0xAD, 0x65, /* x */ | ||
966 | 0x2D, 0x23, 0x95, 0x1B, 0xB3, 0x66, 0xA8, | ||
967 | 0x06, 0x48, 0xF0, 0x6D, 0x86, 0x79, 0x40, 0xA5, 0x36, 0x6D, /* y */ | ||
968 | 0x9E, 0x26, 0x5D, 0xE9, 0xEB, 0x24, 0x0F, | ||
969 | 0x04, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x01, 0x69, /* order */ | ||
970 | 0x54, 0xA2, 0x33, 0x04, 0x9B, 0xA9, 0x8F | ||
971 | } | ||
972 | }; | ||
973 | |||
974 | static const struct { | ||
975 | EC_CURVE_DATA h; | ||
976 | unsigned char data[0 + 21 * 6]; | ||
977 | } | ||
978 | _EC_NIST_CHAR2_163K = { | ||
979 | { | ||
980 | NID_X9_62_characteristic_two_field, 0, 21, 2 | ||
981 | }, | ||
982 | { /* no seed */ | ||
983 | 0x08, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, /* p */ | ||
984 | 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, | ||
985 | 0xC9, | ||
986 | 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, /* a */ | ||
987 | 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, | ||
988 | 0x01, | ||
989 | 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, /* b */ | ||
990 | 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, | ||
991 | 0x01, | ||
992 | 0x02, 0xFE, 0x13, 0xC0, 0x53, 0x7B, 0xBC, 0x11, 0xAC, 0xAA, /* x */ | ||
993 | 0x07, 0xD7, 0x93, 0xDE, 0x4E, 0x6D, 0x5E, 0x5C, 0x94, 0xEE, | ||
994 | 0xE8, | ||
995 | 0x02, 0x89, 0x07, 0x0F, 0xB0, 0x5D, 0x38, 0xFF, 0x58, 0x32, /* y */ | ||
996 | 0x1F, 0x2E, 0x80, 0x05, 0x36, 0xD5, 0x38, 0xCC, 0xDA, 0xA3, | ||
997 | 0xD9, | ||
998 | 0x04, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, /* order */ | ||
999 | 0x02, 0x01, 0x08, 0xA2, 0xE0, 0xCC, 0x0D, 0x99, 0xF8, 0xA5, | ||
1000 | 0xEF | ||
1001 | } | ||
1002 | }; | ||
1003 | |||
1004 | static const struct { | ||
1005 | EC_CURVE_DATA h; | ||
1006 | unsigned char data[0 + 21 * 6]; | ||
1007 | } | ||
1008 | _EC_SECG_CHAR2_163R1 = { | ||
1009 | { | ||
1010 | NID_X9_62_characteristic_two_field, 0, 21, 2 | ||
1011 | }, | ||
1012 | { /* no seed */ | ||
1013 | 0x08, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, /* p */ | ||
1014 | 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, | ||
1015 | 0xC9, | ||
1016 | 0x07, 0xB6, 0x88, 0x2C, 0xAA, 0xEF, 0xA8, 0x4F, 0x95, 0x54, /* a */ | ||
1017 | 0xFF, 0x84, 0x28, 0xBD, 0x88, 0xE2, 0x46, 0xD2, 0x78, 0x2A, | ||
1018 | 0xE2, | ||
1019 | 0x07, 0x13, 0x61, 0x2D, 0xCD, 0xDC, 0xB4, 0x0A, 0xAB, 0x94, /* b */ | ||
1020 | 0x6B, 0xDA, 0x29, 0xCA, 0x91, 0xF7, 0x3A, 0xF9, 0x58, 0xAF, | ||
1021 | 0xD9, | ||
1022 | 0x03, 0x69, 0x97, 0x96, 0x97, 0xAB, 0x43, 0x89, 0x77, 0x89, /* x */ | ||
1023 | 0x56, 0x67, 0x89, 0x56, 0x7F, 0x78, 0x7A, 0x78, 0x76, 0xA6, | ||
1024 | 0x54, | ||
1025 | 0x00, 0x43, 0x5E, 0xDB, 0x42, 0xEF, 0xAF, 0xB2, 0x98, 0x9D, /* y */ | ||
1026 | 0x51, 0xFE, 0xFC, 0xE3, 0xC8, 0x09, 0x88, 0xF4, 0x1F, 0xF8, | ||
1027 | 0x83, | ||
1028 | 0x03, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, /* order */ | ||
1029 | 0xFF, 0x48, 0xAA, 0xB6, 0x89, 0xC2, 0x9C, 0xA7, 0x10, 0x27, | ||
1030 | 0x9B | ||
1031 | } | ||
1032 | }; | ||
1033 | |||
1034 | static const struct { | ||
1035 | EC_CURVE_DATA h; | ||
1036 | unsigned char data[0 + 21 * 6]; | ||
1037 | } | ||
1038 | _EC_NIST_CHAR2_163B = { | ||
1039 | { | ||
1040 | NID_X9_62_characteristic_two_field, 0, 21, 2 | ||
1041 | }, | ||
1042 | { /* no seed */ | ||
1043 | 0x08, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, /* p */ | ||
1044 | 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, | ||
1045 | 0xC9, | ||
1046 | 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, /* a */ | ||
1047 | 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, | ||
1048 | 0x01, | ||
1049 | 0x02, 0x0A, 0x60, 0x19, 0x07, 0xB8, 0xC9, 0x53, 0xCA, 0x14, /* b */ | ||
1050 | 0x81, 0xEB, 0x10, 0x51, 0x2F, 0x78, 0x74, 0x4A, 0x32, 0x05, | ||
1051 | 0xFD, | ||
1052 | 0x03, 0xF0, 0xEB, 0xA1, 0x62, 0x86, 0xA2, 0xD5, 0x7E, 0xA0, /* x */ | ||
1053 | 0x99, 0x11, 0x68, 0xD4, 0x99, 0x46, 0x37, 0xE8, 0x34, 0x3E, | ||
1054 | 0x36, | ||
1055 | 0x00, 0xD5, 0x1F, 0xBC, 0x6C, 0x71, 0xA0, 0x09, 0x4F, 0xA2, /* y */ | ||
1056 | 0xCD, 0xD5, 0x45, 0xB1, 0x1C, 0x5C, 0x0C, 0x79, 0x73, 0x24, | ||
1057 | 0xF1, | ||
1058 | 0x04, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, /* order */ | ||
1059 | 0x02, 0x92, 0xFE, 0x77, 0xE7, 0x0C, 0x12, 0xA4, 0x23, 0x4C, | ||
1060 | 0x33 | ||
1061 | } | ||
1062 | }; | ||
1063 | |||
1064 | static const struct { | ||
1065 | EC_CURVE_DATA h; | ||
1066 | unsigned char data[20 + 25 * 6]; | ||
1067 | } | ||
1068 | _EC_SECG_CHAR2_193R1 = { | ||
1069 | { | ||
1070 | NID_X9_62_characteristic_two_field, 20, 25, 2 | ||
1071 | }, | ||
1072 | { | ||
1073 | 0x10, 0x3F, 0xAE, 0xC7, 0x4D, 0x69, 0x6E, 0x67, 0x68, 0x75, /* seed */ | ||
1074 | 0x61, 0x51, 0x75, 0x77, 0x7F, 0xC5, 0xB1, 0x91, 0xEF, 0x30, | ||
1075 | |||
1076 | 0x02, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, /* p */ | ||
1077 | 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, | ||
1078 | 0x00, 0x00, 0x00, 0x80, 0x01, | ||
1079 | 0x00, 0x17, 0x85, 0x8F, 0xEB, 0x7A, 0x98, 0x97, 0x51, 0x69, /* a */ | ||
1080 | 0xE1, 0x71, 0xF7, 0x7B, 0x40, 0x87, 0xDE, 0x09, 0x8A, 0xC8, | ||
1081 | 0xA9, 0x11, 0xDF, 0x7B, 0x01, | ||
1082 | 0x00, 0xFD, 0xFB, 0x49, 0xBF, 0xE6, 0xC3, 0xA8, 0x9F, 0xAC, /* b */ | ||
1083 | 0xAD, 0xAA, 0x7A, 0x1E, 0x5B, 0xBC, 0x7C, 0xC1, 0xC2, 0xE5, | ||
1084 | 0xD8, 0x31, 0x47, 0x88, 0x14, | ||
1085 | 0x01, 0xF4, 0x81, 0xBC, 0x5F, 0x0F, 0xF8, 0x4A, 0x74, 0xAD, /* x */ | ||
1086 | 0x6C, 0xDF, 0x6F, 0xDE, 0xF4, 0xBF, 0x61, 0x79, 0x62, 0x53, | ||
1087 | 0x72, 0xD8, 0xC0, 0xC5, 0xE1, | ||
1088 | 0x00, 0x25, 0xE3, 0x99, 0xF2, 0x90, 0x37, 0x12, 0xCC, 0xF3, /* y */ | ||
1089 | 0xEA, 0x9E, 0x3A, 0x1A, 0xD1, 0x7F, 0xB0, 0xB3, 0x20, 0x1B, | ||
1090 | 0x6A, 0xF7, 0xCE, 0x1B, 0x05, | ||
1091 | 0x01, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, /* order */ | ||
1092 | 0x00, 0x00, 0x00, 0xC7, 0xF3, 0x4A, 0x77, 0x8F, 0x44, 0x3A, | ||
1093 | 0xCC, 0x92, 0x0E, 0xBA, 0x49 | ||
1094 | } | ||
1095 | }; | ||
1096 | |||
1097 | static const struct { | ||
1098 | EC_CURVE_DATA h; | ||
1099 | unsigned char data[20 + 25 * 6]; | ||
1100 | } | ||
1101 | _EC_SECG_CHAR2_193R2 = { | ||
1102 | { | ||
1103 | NID_X9_62_characteristic_two_field, 20, 25, 2 | ||
1104 | }, | ||
1105 | { | ||
1106 | 0x10, 0xB7, 0xB4, 0xD6, 0x96, 0xE6, 0x76, 0x87, 0x56, 0x15, /* seed */ | ||
1107 | 0x17, 0x51, 0x37, 0xC8, 0xA1, 0x6F, 0xD0, 0xDA, 0x22, 0x11, | ||
1108 | |||
1109 | 0x02, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, /* p */ | ||
1110 | 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, | ||
1111 | 0x00, 0x00, 0x00, 0x80, 0x01, | ||
1112 | 0x01, 0x63, 0xF3, 0x5A, 0x51, 0x37, 0xC2, 0xCE, 0x3E, 0xA6, /* a */ | ||
1113 | 0xED, 0x86, 0x67, 0x19, 0x0B, 0x0B, 0xC4, 0x3E, 0xCD, 0x69, | ||
1114 | 0x97, 0x77, 0x02, 0x70, 0x9B, | ||
1115 | 0x00, 0xC9, 0xBB, 0x9E, 0x89, 0x27, 0xD4, 0xD6, 0x4C, 0x37, /* b */ | ||
1116 | 0x7E, 0x2A, 0xB2, 0x85, 0x6A, 0x5B, 0x16, 0xE3, 0xEF, 0xB7, | ||
1117 | 0xF6, 0x1D, 0x43, 0x16, 0xAE, | ||
1118 | 0x00, 0xD9, 0xB6, 0x7D, 0x19, 0x2E, 0x03, 0x67, 0xC8, 0x03, /* x */ | ||
1119 | 0xF3, 0x9E, 0x1A, 0x7E, 0x82, 0xCA, 0x14, 0xA6, 0x51, 0x35, | ||
1120 | 0x0A, 0xAE, 0x61, 0x7E, 0x8F, | ||
1121 | 0x01, 0xCE, 0x94, 0x33, 0x56, 0x07, 0xC3, 0x04, 0xAC, 0x29, /* y */ | ||
1122 | 0xE7, 0xDE, 0xFB, 0xD9, 0xCA, 0x01, 0xF5, 0x96, 0xF9, 0x27, | ||
1123 | 0x22, 0x4C, 0xDE, 0xCF, 0x6C, | ||
1124 | 0x01, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, /* order */ | ||
1125 | 0x00, 0x00, 0x01, 0x5A, 0xAB, 0x56, 0x1B, 0x00, 0x54, 0x13, | ||
1126 | 0xCC, 0xD4, 0xEE, 0x99, 0xD5 | ||
1127 | } | ||
1128 | }; | ||
1129 | |||
1130 | static const struct { | ||
1131 | EC_CURVE_DATA h; | ||
1132 | unsigned char data[0 + 30 * 6]; | ||
1133 | } | ||
1134 | _EC_NIST_CHAR2_233K = { | ||
1135 | { | ||
1136 | NID_X9_62_characteristic_two_field, 0, 30, 4 | ||
1137 | }, | ||
1138 | { /* no seed */ | ||
1139 | 0x02, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, | ||
1140 | 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, | ||
1141 | 0x04, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x01, | ||
1142 | |||
1143 | 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, /* a */ | ||
1144 | 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, | ||
1145 | 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, | ||
1146 | |||
1147 | 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, /* b */ | ||
1148 | 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, | ||
1149 | 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x01, | ||
1150 | |||
1151 | 0x01, 0x72, 0x32, 0xBA, 0x85, 0x3A, 0x7E, 0x73, 0x1A, 0xF1, /* x */ | ||
1152 | 0x29, 0xF2, 0x2F, 0xF4, 0x14, 0x95, 0x63, 0xA4, 0x19, 0xC2, | ||
1153 | 0x6B, 0xF5, 0x0A, 0x4C, 0x9D, 0x6E, 0xEF, 0xAD, 0x61, 0x26, | ||
1154 | |||
1155 | 0x01, 0xDB, 0x53, 0x7D, 0xEC, 0xE8, 0x19, 0xB7, 0xF7, 0x0F, /* y */ | ||
1156 | 0x55, 0x5A, 0x67, 0xC4, 0x27, 0xA8, 0xCD, 0x9B, 0xF1, 0x8A, | ||
1157 | 0xEB, 0x9B, 0x56, 0xE0, 0xC1, 0x10, 0x56, 0xFA, 0xE6, 0xA3, | ||
1158 | |||
1159 | 0x00, 0x80, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, /* order */ | ||
1160 | 0x00, 0x00, 0x00, 0x00, 0x00, 0x06, 0x9D, 0x5B, 0xB9, 0x15, | ||
1161 | 0xBC, 0xD4, 0x6E, 0xFB, 0x1A, 0xD5, 0xF1, 0x73, 0xAB, 0xDF | ||
1162 | } | ||
1163 | }; | ||
1164 | |||
1165 | static const struct { | ||
1166 | EC_CURVE_DATA h; | ||
1167 | unsigned char data[20 + 30 * 6]; | ||
1168 | } | ||
1169 | _EC_NIST_CHAR2_233B = { | ||
1170 | { | ||
1171 | NID_X9_62_characteristic_two_field, 20, 30, 2 | ||
1172 | }, | ||
1173 | { | ||
1174 | 0x74, 0xD5, 0x9F, 0xF0, 0x7F, 0x6B, 0x41, 0x3D, 0x0E, 0xA1, /* seed */ | ||
1175 | 0x4B, 0x34, 0x4B, 0x20, 0xA2, 0xDB, 0x04, 0x9B, 0x50, 0xC3, | ||
1176 | |||
1177 | 0x02, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, /* p */ | ||
1178 | 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, | ||
1179 | 0x04, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x01, | ||
1180 | |||
1181 | 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, /* a */ | ||
1182 | 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, | ||
1183 | 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x01, | ||
1184 | |||
1185 | 0x00, 0x66, 0x64, 0x7E, 0xDE, 0x6C, 0x33, 0x2C, 0x7F, 0x8C, /* b */ | ||
1186 | 0x09, 0x23, 0xBB, 0x58, 0x21, 0x3B, 0x33, 0x3B, 0x20, 0xE9, | ||
1187 | 0xCE, 0x42, 0x81, 0xFE, 0x11, 0x5F, 0x7D, 0x8F, 0x90, 0xAD, | ||
1188 | |||
1189 | 0x00, 0xFA, 0xC9, 0xDF, 0xCB, 0xAC, 0x83, 0x13, 0xBB, 0x21, /* x */ | ||
1190 | 0x39, 0xF1, 0xBB, 0x75, 0x5F, 0xEF, 0x65, 0xBC, 0x39, 0x1F, | ||
1191 | 0x8B, 0x36, 0xF8, 0xF8, 0xEB, 0x73, 0x71, 0xFD, 0x55, 0x8B, | ||
1192 | |||
1193 | 0x01, 0x00, 0x6A, 0x08, 0xA4, 0x19, 0x03, 0x35, 0x06, 0x78, /* y */ | ||
1194 | 0xE5, 0x85, 0x28, 0xBE, 0xBF, 0x8A, 0x0B, 0xEF, 0xF8, 0x67, | ||
1195 | 0xA7, 0xCA, 0x36, 0x71, 0x6F, 0x7E, 0x01, 0xF8, 0x10, 0x52, | ||
1196 | |||
1197 | 0x01, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, /* order */ | ||
1198 | 0x00, 0x00, 0x00, 0x00, 0x00, 0x13, 0xE9, 0x74, 0xE7, 0x2F, | ||
1199 | 0x8A, 0x69, 0x22, 0x03, 0x1D, 0x26, 0x03, 0xCF, 0xE0, 0xD7 | ||
1200 | } | ||
1201 | }; | ||
1202 | |||
1203 | static const struct { | ||
1204 | EC_CURVE_DATA h; | ||
1205 | unsigned char data[0 + 30 * 6]; | ||
1206 | } | ||
1207 | _EC_SECG_CHAR2_239K1 = { | ||
1208 | { | ||
1209 | NID_X9_62_characteristic_two_field, 0, 30, 4 | ||
1210 | }, | ||
1211 | { /* no seed */ | ||
1212 | 0x80, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, | ||
1213 | 0x40, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, | ||
1214 | 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x01, | ||
1215 | |||
1216 | 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, /* a */ | ||
1217 | 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, | ||
1218 | 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, | ||
1219 | |||
1220 | 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, /* b */ | ||
1221 | 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, | ||
1222 | 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x01, | ||
1223 | |||
1224 | 0x29, 0xA0, 0xB6, 0xA8, 0x87, 0xA9, 0x83, 0xE9, 0x73, 0x09, /* x */ | ||
1225 | 0x88, 0xA6, 0x87, 0x27, 0xA8, 0xB2, 0xD1, 0x26, 0xC4, 0x4C, | ||
1226 | 0xC2, 0xCC, 0x7B, 0x2A, 0x65, 0x55, 0x19, 0x30, 0x35, 0xDC, | ||
1227 | |||
1228 | 0x76, 0x31, 0x08, 0x04, 0xF1, 0x2E, 0x54, 0x9B, 0xDB, 0x01, /* y */ | ||
1229 | 0x1C, 0x10, 0x30, 0x89, 0xE7, 0x35, 0x10, 0xAC, 0xB2, 0x75, | ||
1230 | 0xFC, 0x31, 0x2A, 0x5D, 0xC6, 0xB7, 0x65, 0x53, 0xF0, 0xCA, | ||
1231 | |||
1232 | 0x20, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, /* order */ | ||
1233 | 0x00, 0x00, 0x00, 0x00, 0x00, 0x5A, 0x79, 0xFE, 0xC6, 0x7C, | ||
1234 | 0xB6, 0xE9, 0x1F, 0x1C, 0x1D, 0xA8, 0x00, 0xE4, 0x78, 0xA5 | ||
1235 | } | ||
1236 | }; | ||
1237 | |||
1238 | static const struct { | ||
1239 | EC_CURVE_DATA h; | ||
1240 | unsigned char data[0 + 36 * 6]; | ||
1241 | } | ||
1242 | _EC_NIST_CHAR2_283K = { | ||
1243 | { | ||
1244 | NID_X9_62_characteristic_two_field, 0, 36, 4 | ||
1245 | }, | ||
1246 | { /* no seed */ | ||
1247 | 0x08, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, | ||
1248 | 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, | ||
1249 | 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, | ||
1250 | 0x00, 0x00, 0x00, 0x00, 0x10, 0xA1, | ||
1251 | 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, /* a */ | ||
1252 | 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, | ||
1253 | 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, | ||
1254 | 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, | ||
1255 | 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, /* b */ | ||
1256 | 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, | ||
1257 | 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, | ||
1258 | 0x00, 0x00, 0x00, 0x00, 0x00, 0x01, | ||
1259 | 0x05, 0x03, 0x21, 0x3F, 0x78, 0xCA, 0x44, 0x88, 0x3F, 0x1A, /* x */ | ||
1260 | 0x3B, 0x81, 0x62, 0xF1, 0x88, 0xE5, 0x53, 0xCD, 0x26, 0x5F, | ||
1261 | 0x23, 0xC1, 0x56, 0x7A, 0x16, 0x87, 0x69, 0x13, 0xB0, 0xC2, | ||
1262 | 0xAC, 0x24, 0x58, 0x49, 0x28, 0x36, | ||
1263 | 0x01, 0xCC, 0xDA, 0x38, 0x0F, 0x1C, 0x9E, 0x31, 0x8D, 0x90, /* y */ | ||
1264 | 0xF9, 0x5D, 0x07, 0xE5, 0x42, 0x6F, 0xE8, 0x7E, 0x45, 0xC0, | ||
1265 | 0xE8, 0x18, 0x46, 0x98, 0xE4, 0x59, 0x62, 0x36, 0x4E, 0x34, | ||
1266 | 0x11, 0x61, 0x77, 0xDD, 0x22, 0x59, | ||
1267 | 0x01, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, /* order */ | ||
1268 | 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xE9, 0xAE, | ||
1269 | 0x2E, 0xD0, 0x75, 0x77, 0x26, 0x5D, 0xFF, 0x7F, 0x94, 0x45, | ||
1270 | 0x1E, 0x06, 0x1E, 0x16, 0x3C, 0x61 | ||
1271 | } | ||
1272 | }; | ||
1273 | |||
1274 | static const struct { | ||
1275 | EC_CURVE_DATA h; | ||
1276 | unsigned char data[20 + 36 * 6]; | ||
1277 | } | ||
1278 | _EC_NIST_CHAR2_283B = { | ||
1279 | { | ||
1280 | NID_X9_62_characteristic_two_field, 20, 36, 2 | ||
1281 | }, | ||
1282 | { | ||
1283 | 0x77, 0xE2, 0xB0, 0x73, 0x70, 0xEB, 0x0F, 0x83, 0x2A, 0x6D, /* no seed */ | ||
1284 | 0xD5, 0xB6, 0x2D, 0xFC, 0x88, 0xCD, 0x06, 0xBB, 0x84, 0xBE, | ||
1285 | |||
1286 | 0x08, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, /* p */ | ||
1287 | 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, | ||
1288 | 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, | ||
1289 | 0x00, 0x00, 0x00, 0x00, 0x10, 0xA1, | ||
1290 | 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, /* a */ | ||
1291 | 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, | ||
1292 | 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, | ||
1293 | 0x00, 0x00, 0x00, 0x00, 0x00, 0x01, | ||
1294 | 0x02, 0x7B, 0x68, 0x0A, 0xC8, 0xB8, 0x59, 0x6D, 0xA5, 0xA4, /* b */ | ||
1295 | 0xAF, 0x8A, 0x19, 0xA0, 0x30, 0x3F, 0xCA, 0x97, 0xFD, 0x76, | ||
1296 | 0x45, 0x30, 0x9F, 0xA2, 0xA5, 0x81, 0x48, 0x5A, 0xF6, 0x26, | ||
1297 | 0x3E, 0x31, 0x3B, 0x79, 0xA2, 0xF5, | ||
1298 | 0x05, 0xF9, 0x39, 0x25, 0x8D, 0xB7, 0xDD, 0x90, 0xE1, 0x93, /* x */ | ||
1299 | 0x4F, 0x8C, 0x70, 0xB0, 0xDF, 0xEC, 0x2E, 0xED, 0x25, 0xB8, | ||
1300 | 0x55, 0x7E, 0xAC, 0x9C, 0x80, 0xE2, 0xE1, 0x98, 0xF8, 0xCD, | ||
1301 | 0xBE, 0xCD, 0x86, 0xB1, 0x20, 0x53, | ||
1302 | 0x03, 0x67, 0x68, 0x54, 0xFE, 0x24, 0x14, 0x1C, 0xB9, 0x8F, /* y */ | ||
1303 | 0xE6, 0xD4, 0xB2, 0x0D, 0x02, 0xB4, 0x51, 0x6F, 0xF7, 0x02, | ||
1304 | 0x35, 0x0E, 0xDD, 0xB0, 0x82, 0x67, 0x79, 0xC8, 0x13, 0xF0, | ||
1305 | 0xDF, 0x45, 0xBE, 0x81, 0x12, 0xF4, | ||
1306 | 0x03, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, /* order */ | ||
1307 | 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xEF, 0x90, | ||
1308 | 0x39, 0x96, 0x60, 0xFC, 0x93, 0x8A, 0x90, 0x16, 0x5B, 0x04, | ||
1309 | 0x2A, 0x7C, 0xEF, 0xAD, 0xB3, 0x07 | ||
1310 | } | ||
1311 | }; | ||
1312 | |||
1313 | static const struct { | ||
1314 | EC_CURVE_DATA h; | ||
1315 | unsigned char data[0 + 52 * 6]; | ||
1316 | } | ||
1317 | _EC_NIST_CHAR2_409K = { | ||
1318 | { | ||
1319 | NID_X9_62_characteristic_two_field, 0, 52, 4 | ||
1320 | }, | ||
1321 | { /* no seed */ | ||
1322 | 0x02, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, /* p */ | ||
1323 | 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, | ||
1324 | 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, | ||
1325 | 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, | ||
1326 | 0x00, 0x80, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, | ||
1327 | 0x00, 0x01, | ||
1328 | 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, /* a */ | ||
1329 | 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, | ||
1330 | 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, | ||
1331 | 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, | ||
1332 | 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, | ||
1333 | 0x00, 0x00, | ||
1334 | 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, /* b */ | ||
1335 | 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, | ||
1336 | 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, | ||
1337 | 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, | ||
1338 | 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, | ||
1339 | 0x00, 0x01, | ||
1340 | 0x00, 0x60, 0xF0, 0x5F, 0x65, 0x8F, 0x49, 0xC1, 0xAD, 0x3A, /* x */ | ||
1341 | 0xB1, 0x89, 0x0F, 0x71, 0x84, 0x21, 0x0E, 0xFD, 0x09, 0x87, | ||
1342 | 0xE3, 0x07, 0xC8, 0x4C, 0x27, 0xAC, 0xCF, 0xB8, 0xF9, 0xF6, | ||
1343 | 0x7C, 0xC2, 0xC4, 0x60, 0x18, 0x9E, 0xB5, 0xAA, 0xAA, 0x62, | ||
1344 | 0xEE, 0x22, 0x2E, 0xB1, 0xB3, 0x55, 0x40, 0xCF, 0xE9, 0x02, | ||
1345 | 0x37, 0x46, | ||
1346 | 0x01, 0xE3, 0x69, 0x05, 0x0B, 0x7C, 0x4E, 0x42, 0xAC, 0xBA, /* y */ | ||
1347 | 0x1D, 0xAC, 0xBF, 0x04, 0x29, 0x9C, 0x34, 0x60, 0x78, 0x2F, | ||
1348 | 0x91, 0x8E, 0xA4, 0x27, 0xE6, 0x32, 0x51, 0x65, 0xE9, 0xEA, | ||
1349 | 0x10, 0xE3, 0xDA, 0x5F, 0x6C, 0x42, 0xE9, 0xC5, 0x52, 0x15, | ||
1350 | 0xAA, 0x9C, 0xA2, 0x7A, 0x58, 0x63, 0xEC, 0x48, 0xD8, 0xE0, | ||
1351 | 0x28, 0x6B, | ||
1352 | 0x00, 0x7F, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, /* order */ | ||
1353 | 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, | ||
1354 | 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFE, 0x5F, 0x83, 0xB2, | ||
1355 | 0xD4, 0xEA, 0x20, 0x40, 0x0E, 0xC4, 0x55, 0x7D, 0x5E, 0xD3, | ||
1356 | 0xE3, 0xE7, 0xCA, 0x5B, 0x4B, 0x5C, 0x83, 0xB8, 0xE0, 0x1E, | ||
1357 | 0x5F, 0xCF | ||
1358 | } | ||
1359 | }; | ||
1360 | |||
1361 | static const struct { | ||
1362 | EC_CURVE_DATA h; | ||
1363 | unsigned char data[20 + 52 * 6]; | ||
1364 | } | ||
1365 | _EC_NIST_CHAR2_409B = { | ||
1366 | { | ||
1367 | NID_X9_62_characteristic_two_field, 20, 52, 2 | ||
1368 | }, | ||
1369 | { | ||
1370 | 0x40, 0x99, 0xB5, 0xA4, 0x57, 0xF9, 0xD6, 0x9F, 0x79, 0x21, /* seed */ | ||
1371 | 0x3D, 0x09, 0x4C, 0x4B, 0xCD, 0x4D, 0x42, 0x62, 0x21, 0x0B, | ||
1372 | |||
1373 | 0x02, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, /* p */ | ||
1374 | 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, | ||
1375 | 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, | ||
1376 | 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, | ||
1377 | 0x00, 0x80, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, | ||
1378 | 0x00, 0x01, | ||
1379 | 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, /* a */ | ||
1380 | 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, | ||
1381 | 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, | ||
1382 | 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, | ||
1383 | 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, | ||
1384 | 0x00, 0x01, | ||
1385 | 0x00, 0x21, 0xA5, 0xC2, 0xC8, 0xEE, 0x9F, 0xEB, 0x5C, 0x4B, /* b */ | ||
1386 | 0x9A, 0x75, 0x3B, 0x7B, 0x47, 0x6B, 0x7F, 0xD6, 0x42, 0x2E, | ||
1387 | 0xF1, 0xF3, 0xDD, 0x67, 0x47, 0x61, 0xFA, 0x99, 0xD6, 0xAC, | ||
1388 | 0x27, 0xC8, 0xA9, 0xA1, 0x97, 0xB2, 0x72, 0x82, 0x2F, 0x6C, | ||
1389 | 0xD5, 0x7A, 0x55, 0xAA, 0x4F, 0x50, 0xAE, 0x31, 0x7B, 0x13, | ||
1390 | 0x54, 0x5F, | ||
1391 | 0x01, 0x5D, 0x48, 0x60, 0xD0, 0x88, 0xDD, 0xB3, 0x49, 0x6B, /* x */ | ||
1392 | 0x0C, 0x60, 0x64, 0x75, 0x62, 0x60, 0x44, 0x1C, 0xDE, 0x4A, | ||
1393 | 0xF1, 0x77, 0x1D, 0x4D, 0xB0, 0x1F, 0xFE, 0x5B, 0x34, 0xE5, | ||
1394 | 0x97, 0x03, 0xDC, 0x25, 0x5A, 0x86, 0x8A, 0x11, 0x80, 0x51, | ||
1395 | 0x56, 0x03, 0xAE, 0xAB, 0x60, 0x79, 0x4E, 0x54, 0xBB, 0x79, | ||
1396 | 0x96, 0xA7, | ||
1397 | 0x00, 0x61, 0xB1, 0xCF, 0xAB, 0x6B, 0xE5, 0xF3, 0x2B, 0xBF, /* y */ | ||
1398 | 0xA7, 0x83, 0x24, 0xED, 0x10, 0x6A, 0x76, 0x36, 0xB9, 0xC5, | ||
1399 | 0xA7, 0xBD, 0x19, 0x8D, 0x01, 0x58, 0xAA, 0x4F, 0x54, 0x88, | ||
1400 | 0xD0, 0x8F, 0x38, 0x51, 0x4F, 0x1F, 0xDF, 0x4B, 0x4F, 0x40, | ||
1401 | 0xD2, 0x18, 0x1B, 0x36, 0x81, 0xC3, 0x64, 0xBA, 0x02, 0x73, | ||
1402 | 0xC7, 0x06, | ||
1403 | 0x01, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, /* order */ | ||
1404 | 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, | ||
1405 | 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x01, 0xE2, 0xAA, 0xD6, | ||
1406 | 0xA6, 0x12, 0xF3, 0x33, 0x07, 0xBE, 0x5F, 0xA4, 0x7C, 0x3C, | ||
1407 | 0x9E, 0x05, 0x2F, 0x83, 0x81, 0x64, 0xCD, 0x37, 0xD9, 0xA2, | ||
1408 | 0x11, 0x73 | ||
1409 | } | ||
1410 | }; | ||
1411 | |||
1412 | static const struct { | ||
1413 | EC_CURVE_DATA h; | ||
1414 | unsigned char data[0 + 72 * 6]; | ||
1415 | } | ||
1416 | _EC_NIST_CHAR2_571K = { | ||
1417 | { | ||
1418 | NID_X9_62_characteristic_two_field, 0, 72, 4 | ||
1419 | }, | ||
1420 | { /* no seed */ | ||
1421 | 0x08, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, /* p */ | ||
1422 | 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, | ||
1423 | 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, | ||
1424 | 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, | ||
1425 | 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, | ||
1426 | 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, | ||
1427 | 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, | ||
1428 | 0x04, 0x25, | ||
1429 | 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, /* a */ | ||
1430 | 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, | ||
1431 | 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, | ||
1432 | 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, | ||
1433 | 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, | ||
1434 | 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, | ||
1435 | 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, | ||
1436 | 0x00, 0x00, | ||
1437 | 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, /* b */ | ||
1438 | 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, | ||
1439 | 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, | ||
1440 | 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, | ||
1441 | 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, | ||
1442 | 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, | ||
1443 | 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, | ||
1444 | 0x00, 0x01, | ||
1445 | 0x02, 0x6E, 0xB7, 0xA8, 0x59, 0x92, 0x3F, 0xBC, 0x82, 0x18, /* x */ | ||
1446 | 0x96, 0x31, 0xF8, 0x10, 0x3F, 0xE4, 0xAC, 0x9C, 0xA2, 0x97, | ||
1447 | 0x00, 0x12, 0xD5, 0xD4, 0x60, 0x24, 0x80, 0x48, 0x01, 0x84, | ||
1448 | 0x1C, 0xA4, 0x43, 0x70, 0x95, 0x84, 0x93, 0xB2, 0x05, 0xE6, | ||
1449 | 0x47, 0xDA, 0x30, 0x4D, 0xB4, 0xCE, 0xB0, 0x8C, 0xBB, 0xD1, | ||
1450 | 0xBA, 0x39, 0x49, 0x47, 0x76, 0xFB, 0x98, 0x8B, 0x47, 0x17, | ||
1451 | 0x4D, 0xCA, 0x88, 0xC7, 0xE2, 0x94, 0x52, 0x83, 0xA0, 0x1C, | ||
1452 | 0x89, 0x72, | ||
1453 | 0x03, 0x49, 0xDC, 0x80, 0x7F, 0x4F, 0xBF, 0x37, 0x4F, 0x4A, /* y */ | ||
1454 | 0xEA, 0xDE, 0x3B, 0xCA, 0x95, 0x31, 0x4D, 0xD5, 0x8C, 0xEC, | ||
1455 | 0x9F, 0x30, 0x7A, 0x54, 0xFF, 0xC6, 0x1E, 0xFC, 0x00, 0x6D, | ||
1456 | 0x8A, 0x2C, 0x9D, 0x49, 0x79, 0xC0, 0xAC, 0x44, 0xAE, 0xA7, | ||
1457 | 0x4F, 0xBE, 0xBB, 0xB9, 0xF7, 0x72, 0xAE, 0xDC, 0xB6, 0x20, | ||
1458 | 0xB0, 0x1A, 0x7B, 0xA7, 0xAF, 0x1B, 0x32, 0x04, 0x30, 0xC8, | ||
1459 | 0x59, 0x19, 0x84, 0xF6, 0x01, 0xCD, 0x4C, 0x14, 0x3E, 0xF1, | ||
1460 | 0xC7, 0xA3, | ||
1461 | 0x02, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, /* order */ | ||
1462 | 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, | ||
1463 | 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, | ||
1464 | 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x13, 0x18, 0x50, 0xE1, | ||
1465 | 0xF1, 0x9A, 0x63, 0xE4, 0xB3, 0x91, 0xA8, 0xDB, 0x91, 0x7F, | ||
1466 | 0x41, 0x38, 0xB6, 0x30, 0xD8, 0x4B, 0xE5, 0xD6, 0x39, 0x38, | ||
1467 | 0x1E, 0x91, 0xDE, 0xB4, 0x5C, 0xFE, 0x77, 0x8F, 0x63, 0x7C, | ||
1468 | 0x10, 0x01 | ||
1469 | } | ||
1470 | }; | ||
1471 | |||
1472 | static const struct { | ||
1473 | EC_CURVE_DATA h; | ||
1474 | unsigned char data[20 + 72 * 6]; | ||
1475 | } | ||
1476 | _EC_NIST_CHAR2_571B = { | ||
1477 | { | ||
1478 | NID_X9_62_characteristic_two_field, 20, 72, 2 | ||
1479 | }, | ||
1480 | { | ||
1481 | 0x2A, 0xA0, 0x58, 0xF7, 0x3A, 0x0E, 0x33, 0xAB, 0x48, 0x6B, /* seed */ | ||
1482 | 0x0F, 0x61, 0x04, 0x10, 0xC5, 0x3A, 0x7F, 0x13, 0x23, 0x10, | ||
1483 | |||
1484 | 0x08, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, /* p */ | ||
1485 | 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, | ||
1486 | 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, | ||
1487 | 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, | ||
1488 | 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, | ||
1489 | 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, | ||
1490 | 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, | ||
1491 | 0x04, 0x25, | ||
1492 | 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, /* a */ | ||
1493 | 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, | ||
1494 | 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, | ||
1495 | 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, | ||
1496 | 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, | ||
1497 | 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, | ||
1498 | 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, | ||
1499 | 0x00, 0x01, | ||
1500 | 0x02, 0xF4, 0x0E, 0x7E, 0x22, 0x21, 0xF2, 0x95, 0xDE, 0x29, /* b */ | ||
1501 | 0x71, 0x17, 0xB7, 0xF3, 0xD6, 0x2F, 0x5C, 0x6A, 0x97, 0xFF, | ||
1502 | 0xCB, 0x8C, 0xEF, 0xF1, 0xCD, 0x6B, 0xA8, 0xCE, 0x4A, 0x9A, | ||
1503 | 0x18, 0xAD, 0x84, 0xFF, 0xAB, 0xBD, 0x8E, 0xFA, 0x59, 0x33, | ||
1504 | 0x2B, 0xE7, 0xAD, 0x67, 0x56, 0xA6, 0x6E, 0x29, 0x4A, 0xFD, | ||
1505 | 0x18, 0x5A, 0x78, 0xFF, 0x12, 0xAA, 0x52, 0x0E, 0x4D, 0xE7, | ||
1506 | 0x39, 0xBA, 0xCA, 0x0C, 0x7F, 0xFE, 0xFF, 0x7F, 0x29, 0x55, | ||
1507 | 0x72, 0x7A, | ||
1508 | 0x03, 0x03, 0x00, 0x1D, 0x34, 0xB8, 0x56, 0x29, 0x6C, 0x16, /* x */ | ||
1509 | 0xC0, 0xD4, 0x0D, 0x3C, 0xD7, 0x75, 0x0A, 0x93, 0xD1, 0xD2, | ||
1510 | 0x95, 0x5F, 0xA8, 0x0A, 0xA5, 0xF4, 0x0F, 0xC8, 0xDB, 0x7B, | ||
1511 | 0x2A, 0xBD, 0xBD, 0xE5, 0x39, 0x50, 0xF4, 0xC0, 0xD2, 0x93, | ||
1512 | 0xCD, 0xD7, 0x11, 0xA3, 0x5B, 0x67, 0xFB, 0x14, 0x99, 0xAE, | ||
1513 | 0x60, 0x03, 0x86, 0x14, 0xF1, 0x39, 0x4A, 0xBF, 0xA3, 0xB4, | ||
1514 | 0xC8, 0x50, 0xD9, 0x27, 0xE1, 0xE7, 0x76, 0x9C, 0x8E, 0xEC, | ||
1515 | 0x2D, 0x19, | ||
1516 | 0x03, 0x7B, 0xF2, 0x73, 0x42, 0xDA, 0x63, 0x9B, 0x6D, 0xCC, /* y */ | ||
1517 | 0xFF, 0xFE, 0xB7, 0x3D, 0x69, 0xD7, 0x8C, 0x6C, 0x27, 0xA6, | ||
1518 | 0x00, 0x9C, 0xBB, 0xCA, 0x19, 0x80, 0xF8, 0x53, 0x39, 0x21, | ||
1519 | 0xE8, 0xA6, 0x84, 0x42, 0x3E, 0x43, 0xBA, 0xB0, 0x8A, 0x57, | ||
1520 | 0x62, 0x91, 0xAF, 0x8F, 0x46, 0x1B, 0xB2, 0xA8, 0xB3, 0x53, | ||
1521 | 0x1D, 0x2F, 0x04, 0x85, 0xC1, 0x9B, 0x16, 0xE2, 0xF1, 0x51, | ||
1522 | 0x6E, 0x23, 0xDD, 0x3C, 0x1A, 0x48, 0x27, 0xAF, 0x1B, 0x8A, | ||
1523 | 0xC1, 0x5B, | ||
1524 | 0x03, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, /* order */ | ||
1525 | 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, | ||
1526 | 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, | ||
1527 | 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xE6, 0x61, 0xCE, 0x18, | ||
1528 | 0xFF, 0x55, 0x98, 0x73, 0x08, 0x05, 0x9B, 0x18, 0x68, 0x23, | ||
1529 | 0x85, 0x1E, 0xC7, 0xDD, 0x9C, 0xA1, 0x16, 0x1D, 0xE9, 0x3D, | ||
1530 | 0x51, 0x74, 0xD6, 0x6E, 0x83, 0x82, 0xE9, 0xBB, 0x2F, 0xE8, | ||
1531 | 0x4E, 0x47 | ||
1532 | } | ||
1533 | }; | ||
1534 | |||
1535 | static const struct { | ||
1536 | EC_CURVE_DATA h; | ||
1537 | unsigned char data[20 + 21 * 6]; | ||
1538 | } | ||
1539 | _EC_X9_62_CHAR2_163V1 = { | ||
1540 | { | ||
1541 | NID_X9_62_characteristic_two_field, 20, 21, 2 | ||
1542 | }, | ||
1543 | { | ||
1544 | 0xD2, 0xC0, 0xFB, 0x15, 0x76, 0x08, 0x60, 0xDE, 0xF1, 0xEE, | ||
1545 | 0xF4, 0xD6, 0x96, 0xE6, 0x76, 0x87, 0x56, 0x15, 0x17, 0x54, /* seed */ | ||
1546 | |||
1547 | 0x08, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, /* p */ | ||
1548 | 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x01, | ||
1549 | 0x07, | ||
1550 | 0x07, 0x25, 0x46, 0xB5, 0x43, 0x52, 0x34, 0xA4, 0x22, 0xE0, /* a */ | ||
1551 | 0x78, 0x96, 0x75, 0xF4, 0x32, 0xC8, 0x94, 0x35, 0xDE, 0x52, | ||
1552 | 0x42, | ||
1553 | 0x00, 0xC9, 0x51, 0x7D, 0x06, 0xD5, 0x24, 0x0D, 0x3C, 0xFF, /* b */ | ||
1554 | 0x38, 0xC7, 0x4B, 0x20, 0xB6, 0xCD, 0x4D, 0x6F, 0x9D, 0xD4, | ||
1555 | 0xD9, | ||
1556 | 0x07, 0xAF, 0x69, 0x98, 0x95, 0x46, 0x10, 0x3D, 0x79, 0x32, /* x */ | ||
1557 | 0x9F, 0xCC, 0x3D, 0x74, 0x88, 0x0F, 0x33, 0xBB, 0xE8, 0x03, | ||
1558 | 0xCB, | ||
1559 | 0x01, 0xEC, 0x23, 0x21, 0x1B, 0x59, 0x66, 0xAD, 0xEA, 0x1D, /* y */ | ||
1560 | 0x3F, 0x87, 0xF7, 0xEA, 0x58, 0x48, 0xAE, 0xF0, 0xB7, 0xCA, | ||
1561 | 0x9F, | ||
1562 | 0x04, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, /* order */ | ||
1563 | 0x01, 0xE6, 0x0F, 0xC8, 0x82, 0x1C, 0xC7, 0x4D, 0xAE, 0xAF, | ||
1564 | 0xC1 | ||
1565 | } | ||
1566 | }; | ||
1567 | |||
1568 | static const struct { | ||
1569 | EC_CURVE_DATA h; | ||
1570 | unsigned char data[20 + 21 * 6]; | ||
1571 | } | ||
1572 | _EC_X9_62_CHAR2_163V2 = { | ||
1573 | { | ||
1574 | NID_X9_62_characteristic_two_field, 20, 21, 2 | ||
1575 | }, | ||
1576 | { | ||
1577 | 0x53, 0x81, 0x4C, 0x05, 0x0D, 0x44, 0xD6, 0x96, 0xE6, 0x76, /* seed */ | ||
1578 | 0x87, 0x56, 0x15, 0x17, 0x58, 0x0C, 0xA4, 0xE2, 0x9F, 0xFD, | ||
1579 | |||
1580 | 0x08, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, /* p */ | ||
1581 | 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x01, | ||
1582 | 0x07, | ||
1583 | 0x01, 0x08, 0xB3, 0x9E, 0x77, 0xC4, 0xB1, 0x08, 0xBE, 0xD9, /* a */ | ||
1584 | 0x81, 0xED, 0x0E, 0x89, 0x0E, 0x11, 0x7C, 0x51, 0x1C, 0xF0, | ||
1585 | 0x72, | ||
1586 | 0x06, 0x67, 0xAC, 0xEB, 0x38, 0xAF, 0x4E, 0x48, 0x8C, 0x40, /* b */ | ||
1587 | 0x74, 0x33, 0xFF, 0xAE, 0x4F, 0x1C, 0x81, 0x16, 0x38, 0xDF, | ||
1588 | 0x20, | ||
1589 | 0x00, 0x24, 0x26, 0x6E, 0x4E, 0xB5, 0x10, 0x6D, 0x0A, 0x96, /* x */ | ||
1590 | 0x4D, 0x92, 0xC4, 0x86, 0x0E, 0x26, 0x71, 0xDB, 0x9B, 0x6C, | ||
1591 | 0xC5, | ||
1592 | 0x07, 0x9F, 0x68, 0x4D, 0xDF, 0x66, 0x84, 0xC5, 0xCD, 0x25, /* y */ | ||
1593 | 0x8B, 0x38, 0x90, 0x02, 0x1B, 0x23, 0x86, 0xDF, 0xD1, 0x9F, | ||
1594 | 0xC5, | ||
1595 | 0x03, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, /* order */ | ||
1596 | 0xFD, 0xF6, 0x4D, 0xE1, 0x15, 0x1A, 0xDB, 0xB7, 0x8F, 0x10, | ||
1597 | 0xA7 | ||
1598 | } | ||
1599 | }; | ||
1600 | |||
1601 | static const struct { | ||
1602 | EC_CURVE_DATA h; | ||
1603 | unsigned char data[20 + 21 * 6]; | ||
1604 | } | ||
1605 | _EC_X9_62_CHAR2_163V3 = { | ||
1606 | { | ||
1607 | NID_X9_62_characteristic_two_field, 20, 21, 2 | ||
1608 | }, | ||
1609 | { | ||
1610 | 0x50, 0xCB, 0xF1, 0xD9, 0x5C, 0xA9, 0x4D, 0x69, 0x6E, 0x67, /* seed */ | ||
1611 | 0x68, 0x75, 0x61, 0x51, 0x75, 0xF1, 0x6A, 0x36, 0xA3, 0xB8, | ||
1612 | |||
1613 | 0x08, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, /* p */ | ||
1614 | 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x01, | ||
1615 | 0x07, | ||
1616 | 0x07, 0xA5, 0x26, 0xC6, 0x3D, 0x3E, 0x25, 0xA2, 0x56, 0xA0, /* a */ | ||
1617 | 0x07, 0x69, 0x9F, 0x54, 0x47, 0xE3, 0x2A, 0xE4, 0x56, 0xB5, | ||
1618 | 0x0E, | ||
1619 | 0x03, 0xF7, 0x06, 0x17, 0x98, 0xEB, 0x99, 0xE2, 0x38, 0xFD, /* b */ | ||
1620 | 0x6F, 0x1B, 0xF9, 0x5B, 0x48, 0xFE, 0xEB, 0x48, 0x54, 0x25, | ||
1621 | 0x2B, | ||
1622 | 0x02, 0xF9, 0xF8, 0x7B, 0x7C, 0x57, 0x4D, 0x0B, 0xDE, 0xCF, /* x */ | ||
1623 | 0x8A, 0x22, 0xE6, 0x52, 0x47, 0x75, 0xF9, 0x8C, 0xDE, 0xBD, | ||
1624 | 0xCB, | ||
1625 | 0x05, 0xB9, 0x35, 0x59, 0x0C, 0x15, 0x5E, 0x17, 0xEA, 0x48, /* y */ | ||
1626 | 0xEB, 0x3F, 0xF3, 0x71, 0x8B, 0x89, 0x3D, 0xF5, 0x9A, 0x05, | ||
1627 | 0xD0, | ||
1628 | 0x03, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, /* order */ | ||
1629 | 0xFE, 0x1A, 0xEE, 0x14, 0x0F, 0x11, 0x0A, 0xFF, 0x96, 0x13, | ||
1630 | 0x09 | ||
1631 | } | ||
1632 | }; | ||
1633 | |||
1634 | static const struct { | ||
1635 | EC_CURVE_DATA h; | ||
1636 | unsigned char data[0 + 23 * 6]; | ||
1637 | } | ||
1638 | _EC_X9_62_CHAR2_176V1 = { | ||
1639 | { | ||
1640 | NID_X9_62_characteristic_two_field, 0, 23, 0xFF6E | ||
1641 | }, | ||
1642 | { /* no seed */ | ||
1643 | 0x01, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, /* p */ | ||
1644 | 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x08, 0x00, 0x00, | ||
1645 | 0x00, 0x00, 0x07, | ||
1646 | 0x00, 0xE4, 0xE6, 0xDB, 0x29, 0x95, 0x06, 0x5C, 0x40, 0x7D, /* a */ | ||
1647 | 0x9D, 0x39, 0xB8, 0xD0, 0x96, 0x7B, 0x96, 0x70, 0x4B, 0xA8, | ||
1648 | 0xE9, 0xC9, 0x0B, | ||
1649 | 0x00, 0x5D, 0xDA, 0x47, 0x0A, 0xBE, 0x64, 0x14, 0xDE, 0x8E, /* b */ | ||
1650 | 0xC1, 0x33, 0xAE, 0x28, 0xE9, 0xBB, 0xD7, 0xFC, 0xEC, 0x0A, | ||
1651 | 0xE0, 0xFF, 0xF2, | ||
1652 | 0x00, 0x8D, 0x16, 0xC2, 0x86, 0x67, 0x98, 0xB6, 0x00, 0xF9, /* x */ | ||
1653 | 0xF0, 0x8B, 0xB4, 0xA8, 0xE8, 0x60, 0xF3, 0x29, 0x8C, 0xE0, | ||
1654 | 0x4A, 0x57, 0x98, | ||
1655 | 0x00, 0x6F, 0xA4, 0x53, 0x9C, 0x2D, 0xAD, 0xDD, 0xD6, 0xBA, /* y */ | ||
1656 | 0xB5, 0x16, 0x7D, 0x61, 0xB4, 0x36, 0xE1, 0xD9, 0x2B, 0xB1, | ||
1657 | 0x6A, 0x56, 0x2C, | ||
1658 | 0x00, 0x00, 0x01, 0x00, 0x92, 0x53, 0x73, 0x97, 0xEC, 0xA4, /* order */ | ||
1659 | 0xF6, 0x14, 0x57, 0x99, 0xD6, 0x2B, 0x0A, 0x19, 0xCE, 0x06, | ||
1660 | 0xFE, 0x26, 0xAD | ||
1661 | } | ||
1662 | }; | ||
1663 | |||
1664 | static const struct { | ||
1665 | EC_CURVE_DATA h; | ||
1666 | unsigned char data[20 + 24 * 6]; | ||
1667 | } | ||
1668 | _EC_X9_62_CHAR2_191V1 = { | ||
1669 | { | ||
1670 | NID_X9_62_characteristic_two_field, 20, 24, 2 | ||
1671 | }, | ||
1672 | { | ||
1673 | 0x4E, 0x13, 0xCA, 0x54, 0x27, 0x44, 0xD6, 0x96, 0xE6, 0x76, /* seed */ | ||
1674 | 0x87, 0x56, 0x15, 0x17, 0x55, 0x2F, 0x27, 0x9A, 0x8C, 0x84, | ||
1675 | |||
1676 | 0x80, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, /* p */ | ||
1677 | 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, | ||
1678 | 0x00, 0x00, 0x02, 0x01, | ||
1679 | 0x28, 0x66, 0x53, 0x7B, 0x67, 0x67, 0x52, 0x63, 0x6A, 0x68, /* a */ | ||
1680 | 0xF5, 0x65, 0x54, 0xE1, 0x26, 0x40, 0x27, 0x6B, 0x64, 0x9E, | ||
1681 | 0xF7, 0x52, 0x62, 0x67, | ||
1682 | 0x2E, 0x45, 0xEF, 0x57, 0x1F, 0x00, 0x78, 0x6F, 0x67, 0xB0, /* b */ | ||
1683 | 0x08, 0x1B, 0x94, 0x95, 0xA3, 0xD9, 0x54, 0x62, 0xF5, 0xDE, | ||
1684 | 0x0A, 0xA1, 0x85, 0xEC, | ||
1685 | 0x36, 0xB3, 0xDA, 0xF8, 0xA2, 0x32, 0x06, 0xF9, 0xC4, 0xF2, /* x */ | ||
1686 | 0x99, 0xD7, 0xB2, 0x1A, 0x9C, 0x36, 0x91, 0x37, 0xF2, 0xC8, | ||
1687 | 0x4A, 0xE1, 0xAA, 0x0D, | ||
1688 | 0x76, 0x5B, 0xE7, 0x34, 0x33, 0xB3, 0xF9, 0x5E, 0x33, 0x29, /* y */ | ||
1689 | 0x32, 0xE7, 0x0E, 0xA2, 0x45, 0xCA, 0x24, 0x18, 0xEA, 0x0E, | ||
1690 | 0xF9, 0x80, 0x18, 0xFB, | ||
1691 | 0x40, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, /* order */ | ||
1692 | 0x00, 0x00, 0x04, 0xA2, 0x0E, 0x90, 0xC3, 0x90, 0x67, 0xC8, | ||
1693 | 0x93, 0xBB, 0xB9, 0xA5 | ||
1694 | } | ||
1695 | }; | ||
1696 | |||
1697 | static const struct { | ||
1698 | EC_CURVE_DATA h; | ||
1699 | unsigned char data[20 + 24 * 6]; | ||
1700 | } | ||
1701 | _EC_X9_62_CHAR2_191V2 = { | ||
1702 | { | ||
1703 | NID_X9_62_characteristic_two_field, 20, 24, 4 | ||
1704 | }, | ||
1705 | { | ||
1706 | 0x08, 0x71, 0xEF, 0x2F, 0xEF, 0x24, 0xD6, 0x96, 0xE6, 0x76, /* seed */ | ||
1707 | 0x87, 0x56, 0x15, 0x17, 0x58, 0xBE, 0xE0, 0xD9, 0x5C, 0x15, | ||
1708 | |||
1709 | 0x80, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, /* p */ | ||
1710 | 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, | ||
1711 | 0x00, 0x00, 0x02, 0x01, | ||
1712 | 0x40, 0x10, 0x28, 0x77, 0x4D, 0x77, 0x77, 0xC7, 0xB7, 0x66, /* a */ | ||
1713 | 0x6D, 0x13, 0x66, 0xEA, 0x43, 0x20, 0x71, 0x27, 0x4F, 0x89, | ||
1714 | 0xFF, 0x01, 0xE7, 0x18, | ||
1715 | 0x06, 0x20, 0x04, 0x8D, 0x28, 0xBC, 0xBD, 0x03, 0xB6, 0x24, /* b */ | ||
1716 | 0x9C, 0x99, 0x18, 0x2B, 0x7C, 0x8C, 0xD1, 0x97, 0x00, 0xC3, | ||
1717 | 0x62, 0xC4, 0x6A, 0x01, | ||
1718 | 0x38, 0x09, 0xB2, 0xB7, 0xCC, 0x1B, 0x28, 0xCC, 0x5A, 0x87, /* x */ | ||
1719 | 0x92, 0x6A, 0xAD, 0x83, 0xFD, 0x28, 0x78, 0x9E, 0x81, 0xE2, | ||
1720 | 0xC9, 0xE3, 0xBF, 0x10, | ||
1721 | 0x17, 0x43, 0x43, 0x86, 0x62, 0x6D, 0x14, 0xF3, 0xDB, 0xF0, /* y */ | ||
1722 | 0x17, 0x60, 0xD9, 0x21, 0x3A, 0x3E, 0x1C, 0xF3, 0x7A, 0xEC, | ||
1723 | 0x43, 0x7D, 0x66, 0x8A, | ||
1724 | 0x20, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, /* order */ | ||
1725 | 0x00, 0x00, 0x50, 0x50, 0x8C, 0xB8, 0x9F, 0x65, 0x28, 0x24, | ||
1726 | 0xE0, 0x6B, 0x81, 0x73 | ||
1727 | } | ||
1728 | }; | ||
1729 | |||
1730 | static const struct { | ||
1731 | EC_CURVE_DATA h; | ||
1732 | unsigned char data[20 + 24 * 6]; | ||
1733 | } | ||
1734 | _EC_X9_62_CHAR2_191V3 = { | ||
1735 | { | ||
1736 | NID_X9_62_characteristic_two_field, 20, 24, 6 | ||
1737 | }, | ||
1738 | { | ||
1739 | 0xE0, 0x53, 0x51, 0x2D, 0xC6, 0x84, 0xD6, 0x96, 0xE6, 0x76, /* seed */ | ||
1740 | 0x87, 0x56, 0x15, 0x17, 0x50, 0x67, 0xAE, 0x78, 0x6D, 0x1F, | ||
1741 | |||
1742 | 0x80, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, /* p */ | ||
1743 | 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, | ||
1744 | 0x00, 0x00, 0x02, 0x01, | ||
1745 | 0x6C, 0x01, 0x07, 0x47, 0x56, 0x09, 0x91, 0x22, 0x22, 0x10, /* a */ | ||
1746 | 0x56, 0x91, 0x1C, 0x77, 0xD7, 0x7E, 0x77, 0xA7, 0x77, 0xE7, | ||
1747 | 0xE7, 0xE7, 0x7F, 0xCB, | ||
1748 | 0x71, 0xFE, 0x1A, 0xF9, 0x26, 0xCF, 0x84, 0x79, 0x89, 0xEF, /* b */ | ||
1749 | 0xEF, 0x8D, 0xB4, 0x59, 0xF6, 0x63, 0x94, 0xD9, 0x0F, 0x32, | ||
1750 | 0xAD, 0x3F, 0x15, 0xE8, | ||
1751 | 0x37, 0x5D, 0x4C, 0xE2, 0x4F, 0xDE, 0x43, 0x44, 0x89, 0xDE, /* x */ | ||
1752 | 0x87, 0x46, 0xE7, 0x17, 0x86, 0x01, 0x50, 0x09, 0xE6, 0x6E, | ||
1753 | 0x38, 0xA9, 0x26, 0xDD, | ||
1754 | 0x54, 0x5A, 0x39, 0x17, 0x61, 0x96, 0x57, 0x5D, 0x98, 0x59, /* y */ | ||
1755 | 0x99, 0x36, 0x6E, 0x6A, 0xD3, 0x4C, 0xE0, 0xA7, 0x7C, 0xD7, | ||
1756 | 0x12, 0x7B, 0x06, 0xBE, | ||
1757 | 0x15, 0x55, 0x55, 0x55, 0x55, 0x55, 0x55, 0x55, 0x55, 0x55, /* order */ | ||
1758 | 0x55, 0x55, 0x61, 0x0C, 0x0B, 0x19, 0x68, 0x12, 0xBF, 0xB6, | ||
1759 | 0x28, 0x8A, 0x3E, 0xA3 | ||
1760 | } | ||
1761 | }; | ||
1762 | |||
1763 | static const struct { | ||
1764 | EC_CURVE_DATA h; | ||
1765 | unsigned char data[0 + 27 * 6]; | ||
1766 | } | ||
1767 | _EC_X9_62_CHAR2_208W1 = { | ||
1768 | { | ||
1769 | NID_X9_62_characteristic_two_field, 0, 27, 0xFE48 | ||
1770 | }, | ||
1771 | { /* no seed */ | ||
1772 | 0x01, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, /* p */ | ||
1773 | 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x08, 0x00, 0x00, 0x00, | ||
1774 | 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x07, | ||
1775 | 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, /* a */ | ||
1776 | 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, | ||
1777 | 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, | ||
1778 | 0x00, 0xC8, 0x61, 0x9E, 0xD4, 0x5A, 0x62, 0xE6, 0x21, 0x2E, /* b */ | ||
1779 | 0x11, 0x60, 0x34, 0x9E, 0x2B, 0xFA, 0x84, 0x44, 0x39, 0xFA, | ||
1780 | 0xFC, 0x2A, 0x3F, 0xD1, 0x63, 0x8F, 0x9E, | ||
1781 | 0x00, 0x89, 0xFD, 0xFB, 0xE4, 0xAB, 0xE1, 0x93, 0xDF, 0x95, /* x */ | ||
1782 | 0x59, 0xEC, 0xF0, 0x7A, 0xC0, 0xCE, 0x78, 0x55, 0x4E, 0x27, | ||
1783 | 0x84, 0xEB, 0x8C, 0x1E, 0xD1, 0xA5, 0x7A, | ||
1784 | 0x00, 0x0F, 0x55, 0xB5, 0x1A, 0x06, 0xE7, 0x8E, 0x9A, 0xC3, /* y */ | ||
1785 | 0x8A, 0x03, 0x5F, 0xF5, 0x20, 0xD8, 0xB0, 0x17, 0x81, 0xBE, | ||
1786 | 0xB1, 0xA6, 0xBB, 0x08, 0x61, 0x7D, 0xE3, | ||
1787 | 0x00, 0x00, 0x01, 0x01, 0xBA, 0xF9, 0x5C, 0x97, 0x23, 0xC5, /* order */ | ||
1788 | 0x7B, 0x6C, 0x21, 0xDA, 0x2E, 0xFF, 0x2D, 0x5E, 0xD5, 0x88, | ||
1789 | 0xBD, 0xD5, 0x71, 0x7E, 0x21, 0x2F, 0x9D | ||
1790 | } | ||
1791 | }; | ||
1792 | |||
1793 | static const struct { | ||
1794 | EC_CURVE_DATA h; | ||
1795 | unsigned char data[20 + 30 * 6]; | ||
1796 | } | ||
1797 | _EC_X9_62_CHAR2_239V1 = { | ||
1798 | { | ||
1799 | NID_X9_62_characteristic_two_field, 20, 30, 4 | ||
1800 | }, | ||
1801 | { | ||
1802 | 0xD3, 0x4B, 0x9A, 0x4D, 0x69, 0x6E, 0x67, 0x68, 0x75, 0x61, /* seed */ | ||
1803 | 0x51, 0x75, 0xCA, 0x71, 0xB9, 0x20, 0xBF, 0xEF, 0xB0, 0x5D, | ||
1804 | |||
1805 | 0x80, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, /* p */ | ||
1806 | 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, | ||
1807 | 0x00, 0x00, 0x00, 0x00, 0x00, 0x10, 0x00, 0x00, 0x00, 0x01, | ||
1808 | |||
1809 | 0x32, 0x01, 0x08, 0x57, 0x07, 0x7C, 0x54, 0x31, 0x12, 0x3A, /* a */ | ||
1810 | 0x46, 0xB8, 0x08, 0x90, 0x67, 0x56, 0xF5, 0x43, 0x42, 0x3E, | ||
1811 | 0x8D, 0x27, 0x87, 0x75, 0x78, 0x12, 0x57, 0x78, 0xAC, 0x76, | ||
1812 | |||
1813 | 0x79, 0x04, 0x08, 0xF2, 0xEE, 0xDA, 0xF3, 0x92, 0xB0, 0x12, /* b */ | ||
1814 | 0xED, 0xEF, 0xB3, 0x39, 0x2F, 0x30, 0xF4, 0x32, 0x7C, 0x0C, | ||
1815 | 0xA3, 0xF3, 0x1F, 0xC3, 0x83, 0xC4, 0x22, 0xAA, 0x8C, 0x16, | ||
1816 | |||
1817 | 0x57, 0x92, 0x70, 0x98, 0xFA, 0x93, 0x2E, 0x7C, 0x0A, 0x96, /* x */ | ||
1818 | 0xD3, 0xFD, 0x5B, 0x70, 0x6E, 0xF7, 0xE5, 0xF5, 0xC1, 0x56, | ||
1819 | 0xE1, 0x6B, 0x7E, 0x7C, 0x86, 0x03, 0x85, 0x52, 0xE9, 0x1D, | ||
1820 | |||
1821 | 0x61, 0xD8, 0xEE, 0x50, 0x77, 0xC3, 0x3F, 0xEC, 0xF6, 0xF1, /* y */ | ||
1822 | 0xA1, 0x6B, 0x26, 0x8D, 0xE4, 0x69, 0xC3, 0xC7, 0x74, 0x4E, | ||
1823 | 0xA9, 0xA9, 0x71, 0x64, 0x9F, 0xC7, 0xA9, 0x61, 0x63, 0x05, | ||
1824 | |||
1825 | 0x20, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, /* order */ | ||
1826 | 0x00, 0x00, 0x00, 0x00, 0x00, 0x0F, 0x4D, 0x42, 0xFF, 0xE1, | ||
1827 | 0x49, 0x2A, 0x49, 0x93, 0xF1, 0xCA, 0xD6, 0x66, 0xE4, 0x47 | ||
1828 | } | ||
1829 | }; | ||
1830 | |||
1831 | static const struct { | ||
1832 | EC_CURVE_DATA h; | ||
1833 | unsigned char data[20 + 30 * 6]; | ||
1834 | } | ||
1835 | _EC_X9_62_CHAR2_239V2 = { | ||
1836 | { | ||
1837 | NID_X9_62_characteristic_two_field, 20, 30, 6 | ||
1838 | }, | ||
1839 | { | ||
1840 | 0x2A, 0xA6, 0x98, 0x2F, 0xDF, 0xA4, 0xD6, 0x96, 0xE6, 0x76, /* seed */ | ||
1841 | 0x87, 0x56, 0x15, 0x17, 0x5D, 0x26, 0x67, 0x27, 0x27, 0x7D, | ||
1842 | |||
1843 | 0x80, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, /* p */ | ||
1844 | 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, | ||
1845 | 0x00, 0x00, 0x00, 0x00, 0x00, 0x10, 0x00, 0x00, 0x00, 0x01, | ||
1846 | |||
1847 | 0x42, 0x30, 0x01, 0x77, 0x57, 0xA7, 0x67, 0xFA, 0xE4, 0x23, /* a */ | ||
1848 | 0x98, 0x56, 0x9B, 0x74, 0x63, 0x25, 0xD4, 0x53, 0x13, 0xAF, | ||
1849 | 0x07, 0x66, 0x26, 0x64, 0x79, 0xB7, 0x56, 0x54, 0xE6, 0x5F, | ||
1850 | |||
1851 | 0x50, 0x37, 0xEA, 0x65, 0x41, 0x96, 0xCF, 0xF0, 0xCD, 0x82, /* b */ | ||
1852 | 0xB2, 0xC1, 0x4A, 0x2F, 0xCF, 0x2E, 0x3F, 0xF8, 0x77, 0x52, | ||
1853 | 0x85, 0xB5, 0x45, 0x72, 0x2F, 0x03, 0xEA, 0xCD, 0xB7, 0x4B, | ||
1854 | |||
1855 | 0x28, 0xF9, 0xD0, 0x4E, 0x90, 0x00, 0x69, 0xC8, 0xDC, 0x47, /* x */ | ||
1856 | 0xA0, 0x85, 0x34, 0xFE, 0x76, 0xD2, 0xB9, 0x00, 0xB7, 0xD7, | ||
1857 | 0xEF, 0x31, 0xF5, 0x70, 0x9F, 0x20, 0x0C, 0x4C, 0xA2, 0x05, | ||
1858 | |||
1859 | 0x56, 0x67, 0x33, 0x4C, 0x45, 0xAF, 0xF3, 0xB5, 0xA0, 0x3B, /* y */ | ||
1860 | 0xAD, 0x9D, 0xD7, 0x5E, 0x2C, 0x71, 0xA9, 0x93, 0x62, 0x56, | ||
1861 | 0x7D, 0x54, 0x53, 0xF7, 0xFA, 0x6E, 0x22, 0x7E, 0xC8, 0x33, | ||
1862 | |||
1863 | 0x15, 0x55, 0x55, 0x55, 0x55, 0x55, 0x55, 0x55, 0x55, 0x55, /* order */ | ||
1864 | 0x55, 0x55, 0x55, 0x55, 0x55, 0x3C, 0x6F, 0x28, 0x85, 0x25, | ||
1865 | 0x9C, 0x31, 0xE3, 0xFC, 0xDF, 0x15, 0x46, 0x24, 0x52, 0x2D | ||
1866 | } | ||
1867 | }; | ||
1868 | |||
1869 | static const struct { | ||
1870 | EC_CURVE_DATA h; | ||
1871 | unsigned char data[20 + 30 * 6]; | ||
1872 | } | ||
1873 | _EC_X9_62_CHAR2_239V3 = { | ||
1874 | { | ||
1875 | NID_X9_62_characteristic_two_field, 20, 30, 0xA | ||
1876 | }, | ||
1877 | { | ||
1878 | 0x9E, 0x07, 0x6F, 0x4D, 0x69, 0x6E, 0x67, 0x68, 0x75, 0x61, /* seed */ | ||
1879 | 0x51, 0x75, 0xE1, 0x1E, 0x9F, 0xDD, 0x77, 0xF9, 0x20, 0x41, | ||
1880 | |||
1881 | 0x80, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, /* p */ | ||
1882 | 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, | ||
1883 | 0x00, 0x00, 0x00, 0x00, 0x00, 0x10, 0x00, 0x00, 0x00, 0x01, | ||
1884 | |||
1885 | 0x01, 0x23, 0x87, 0x74, 0x66, 0x6A, 0x67, 0x76, 0x6D, 0x66, /* a */ | ||
1886 | 0x76, 0xF7, 0x78, 0xE6, 0x76, 0xB6, 0x69, 0x99, 0x17, 0x66, | ||
1887 | 0x66, 0xE6, 0x87, 0x66, 0x6D, 0x87, 0x66, 0xC6, 0x6A, 0x9F, | ||
1888 | |||
1889 | 0x6A, 0x94, 0x19, 0x77, 0xBA, 0x9F, 0x6A, 0x43, 0x51, 0x99, /* b */ | ||
1890 | 0xAC, 0xFC, 0x51, 0x06, 0x7E, 0xD5, 0x87, 0xF5, 0x19, 0xC5, | ||
1891 | 0xEC, 0xB5, 0x41, 0xB8, 0xE4, 0x41, 0x11, 0xDE, 0x1D, 0x40, | ||
1892 | |||
1893 | 0x70, 0xF6, 0xE9, 0xD0, 0x4D, 0x28, 0x9C, 0x4E, 0x89, 0x91, /* x */ | ||
1894 | 0x3C, 0xE3, 0x53, 0x0B, 0xFD, 0xE9, 0x03, 0x97, 0x7D, 0x42, | ||
1895 | 0xB1, 0x46, 0xD5, 0x39, 0xBF, 0x1B, 0xDE, 0x4E, 0x9C, 0x92, | ||
1896 | |||
1897 | 0x2E, 0x5A, 0x0E, 0xAF, 0x6E, 0x5E, 0x13, 0x05, 0xB9, 0x00, /* y */ | ||
1898 | 0x4D, 0xCE, 0x5C, 0x0E, 0xD7, 0xFE, 0x59, 0xA3, 0x56, 0x08, | ||
1899 | 0xF3, 0x38, 0x37, 0xC8, 0x16, 0xD8, 0x0B, 0x79, 0xF4, 0x61, | ||
1900 | |||
1901 | 0x0C, 0xCC, 0xCC, 0xCC, 0xCC, 0xCC, 0xCC, 0xCC, 0xCC, 0xCC, /* order */ | ||
1902 | 0xCC, 0xCC, 0xCC, 0xCC, 0xCC, 0xAC, 0x49, 0x12, 0xD2, 0xD9, | ||
1903 | 0xDF, 0x90, 0x3E, 0xF9, 0x88, 0x8B, 0x8A, 0x0E, 0x4C, 0xFF | ||
1904 | } | ||
1905 | }; | ||
1906 | |||
1907 | static const struct { | ||
1908 | EC_CURVE_DATA h; | ||
1909 | unsigned char data[0 + 35 * 6]; | ||
1910 | } | ||
1911 | _EC_X9_62_CHAR2_272W1 = { | ||
1912 | { | ||
1913 | NID_X9_62_characteristic_two_field, 0, 35, 0xFF06 | ||
1914 | }, | ||
1915 | { /* no seed */ | ||
1916 | 0x01, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, /* p */ | ||
1917 | 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, | ||
1918 | 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x01, 0x00, 0x00, | ||
1919 | 0x00, 0x00, 0x00, 0x00, 0x0B, | ||
1920 | 0x00, 0x91, 0xA0, 0x91, 0xF0, 0x3B, 0x5F, 0xBA, 0x4A, 0xB2, /* a */ | ||
1921 | 0xCC, 0xF4, 0x9C, 0x4E, 0xDD, 0x22, 0x0F, 0xB0, 0x28, 0x71, | ||
1922 | 0x2D, 0x42, 0xBE, 0x75, 0x2B, 0x2C, 0x40, 0x09, 0x4D, 0xBA, | ||
1923 | 0xCD, 0xB5, 0x86, 0xFB, 0x20, | ||
1924 | 0x00, 0x71, 0x67, 0xEF, 0xC9, 0x2B, 0xB2, 0xE3, 0xCE, 0x7C, /* b */ | ||
1925 | 0x8A, 0xAA, 0xFF, 0x34, 0xE1, 0x2A, 0x9C, 0x55, 0x70, 0x03, | ||
1926 | 0xD7, 0xC7, 0x3A, 0x6F, 0xAF, 0x00, 0x3F, 0x99, 0xF6, 0xCC, | ||
1927 | 0x84, 0x82, 0xE5, 0x40, 0xF7, | ||
1928 | 0x00, 0x61, 0x08, 0xBA, 0xBB, 0x2C, 0xEE, 0xBC, 0xF7, 0x87, /* x */ | ||
1929 | 0x05, 0x8A, 0x05, 0x6C, 0xBE, 0x0C, 0xFE, 0x62, 0x2D, 0x77, | ||
1930 | 0x23, 0xA2, 0x89, 0xE0, 0x8A, 0x07, 0xAE, 0x13, 0xEF, 0x0D, | ||
1931 | 0x10, 0xD1, 0x71, 0xDD, 0x8D, | ||
1932 | 0x00, 0x10, 0xC7, 0x69, 0x57, 0x16, 0x85, 0x1E, 0xEF, 0x6B, /* y */ | ||
1933 | 0xA7, 0xF6, 0x87, 0x2E, 0x61, 0x42, 0xFB, 0xD2, 0x41, 0xB8, | ||
1934 | 0x30, 0xFF, 0x5E, 0xFC, 0xAC, 0xEC, 0xCA, 0xB0, 0x5E, 0x02, | ||
1935 | 0x00, 0x5D, 0xDE, 0x9D, 0x23, | ||
1936 | 0x00, 0x00, 0x01, 0x00, 0xFA, 0xF5, 0x13, 0x54, 0xE0, 0xE3, /* order */ | ||
1937 | 0x9E, 0x48, 0x92, 0xDF, 0x6E, 0x31, 0x9C, 0x72, 0xC8, 0x16, | ||
1938 | 0x16, 0x03, 0xFA, 0x45, 0xAA, 0x7B, 0x99, 0x8A, 0x16, 0x7B, | ||
1939 | 0x8F, 0x1E, 0x62, 0x95, 0x21 | ||
1940 | } | ||
1941 | }; | ||
1942 | |||
1943 | static const struct { | ||
1944 | EC_CURVE_DATA h; | ||
1945 | unsigned char data[0 + 39 * 6]; | ||
1946 | } | ||
1947 | _EC_X9_62_CHAR2_304W1 = { | ||
1948 | { | ||
1949 | NID_X9_62_characteristic_two_field, 0, 39, 0xFE2E | ||
1950 | }, | ||
1951 | { /* no seed */ | ||
1952 | 0x01, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, /* p */ | ||
1953 | 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, | ||
1954 | 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, | ||
1955 | 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x08, 0x07, | ||
1956 | 0x00, 0xFD, 0x0D, 0x69, 0x31, 0x49, 0xA1, 0x18, 0xF6, 0x51, /* a */ | ||
1957 | 0xE6, 0xDC, 0xE6, 0x80, 0x20, 0x85, 0x37, 0x7E, 0x5F, 0x88, | ||
1958 | 0x2D, 0x1B, 0x51, 0x0B, 0x44, 0x16, 0x00, 0x74, 0xC1, 0x28, | ||
1959 | 0x80, 0x78, 0x36, 0x5A, 0x03, 0x96, 0xC8, 0xE6, 0x81, | ||
1960 | 0x00, 0xBD, 0xDB, 0x97, 0xE5, 0x55, 0xA5, 0x0A, 0x90, 0x8E, /* b */ | ||
1961 | 0x43, 0xB0, 0x1C, 0x79, 0x8E, 0xA5, 0xDA, 0xA6, 0x78, 0x8F, | ||
1962 | 0x1E, 0xA2, 0x79, 0x4E, 0xFC, 0xF5, 0x71, 0x66, 0xB8, 0xC1, | ||
1963 | 0x40, 0x39, 0x60, 0x1E, 0x55, 0x82, 0x73, 0x40, 0xBE, | ||
1964 | 0x00, 0x19, 0x7B, 0x07, 0x84, 0x5E, 0x9B, 0xE2, 0xD9, 0x6A, /* x */ | ||
1965 | 0xDB, 0x0F, 0x5F, 0x3C, 0x7F, 0x2C, 0xFF, 0xBD, 0x7A, 0x3E, | ||
1966 | 0xB8, 0xB6, 0xFE, 0xC3, 0x5C, 0x7F, 0xD6, 0x7F, 0x26, 0xDD, | ||
1967 | 0xF6, 0x28, 0x5A, 0x64, 0x4F, 0x74, 0x0A, 0x26, 0x14, | ||
1968 | 0x00, 0xE1, 0x9F, 0xBE, 0xB7, 0x6E, 0x0D, 0xA1, 0x71, 0x51, /* y */ | ||
1969 | 0x7E, 0xCF, 0x40, 0x1B, 0x50, 0x28, 0x9B, 0xF0, 0x14, 0x10, | ||
1970 | 0x32, 0x88, 0x52, 0x7A, 0x9B, 0x41, 0x6A, 0x10, 0x5E, 0x80, | ||
1971 | 0x26, 0x0B, 0x54, 0x9F, 0xDC, 0x1B, 0x92, 0xC0, 0x3B, | ||
1972 | 0x00, 0x00, 0x01, 0x01, 0xD5, 0x56, 0x57, 0x2A, 0xAB, 0xAC, /* order */ | ||
1973 | 0x80, 0x01, 0x01, 0xD5, 0x56, 0x57, 0x2A, 0xAB, 0xAC, 0x80, | ||
1974 | 0x01, 0x02, 0x2D, 0x5C, 0x91, 0xDD, 0x17, 0x3F, 0x8F, 0xB5, | ||
1975 | 0x61, 0xDA, 0x68, 0x99, 0x16, 0x44, 0x43, 0x05, 0x1D | ||
1976 | } | ||
1977 | }; | ||
1978 | |||
1979 | static const struct { | ||
1980 | EC_CURVE_DATA h; | ||
1981 | unsigned char data[20 + 45 * 6]; | ||
1982 | } | ||
1983 | _EC_X9_62_CHAR2_359V1 = { | ||
1984 | { | ||
1985 | NID_X9_62_characteristic_two_field, 20, 45, 0x4C | ||
1986 | }, | ||
1987 | { | ||
1988 | 0x2B, 0x35, 0x49, 0x20, 0xB7, 0x24, 0xD6, 0x96, 0xE6, 0x76, /* seed */ | ||
1989 | 0x87, 0x56, 0x15, 0x17, 0x58, 0x5B, 0xA1, 0x33, 0x2D, 0xC6, | ||
1990 | |||
1991 | 0x80, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, /* p */ | ||
1992 | 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, | ||
1993 | 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, | ||
1994 | 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x10, 0x00, 0x00, 0x00, | ||
1995 | 0x00, 0x00, 0x00, 0x00, 0x01, | ||
1996 | 0x56, 0x67, 0x67, 0x6A, 0x65, 0x4B, 0x20, 0x75, 0x4F, 0x35, /* a */ | ||
1997 | 0x6E, 0xA9, 0x20, 0x17, 0xD9, 0x46, 0x56, 0x7C, 0x46, 0x67, | ||
1998 | 0x55, 0x56, 0xF1, 0x95, 0x56, 0xA0, 0x46, 0x16, 0xB5, 0x67, | ||
1999 | 0xD2, 0x23, 0xA5, 0xE0, 0x56, 0x56, 0xFB, 0x54, 0x90, 0x16, | ||
2000 | 0xA9, 0x66, 0x56, 0xA5, 0x57, | ||
2001 | 0x24, 0x72, 0xE2, 0xD0, 0x19, 0x7C, 0x49, 0x36, 0x3F, 0x1F, /* b */ | ||
2002 | 0xE7, 0xF5, 0xB6, 0xDB, 0x07, 0x5D, 0x52, 0xB6, 0x94, 0x7D, | ||
2003 | 0x13, 0x5D, 0x8C, 0xA4, 0x45, 0x80, 0x5D, 0x39, 0xBC, 0x34, | ||
2004 | 0x56, 0x26, 0x08, 0x96, 0x87, 0x74, 0x2B, 0x63, 0x29, 0xE7, | ||
2005 | 0x06, 0x80, 0x23, 0x19, 0x88, | ||
2006 | 0x3C, 0x25, 0x8E, 0xF3, 0x04, 0x77, 0x67, 0xE7, 0xED, 0xE0, /* x */ | ||
2007 | 0xF1, 0xFD, 0xAA, 0x79, 0xDA, 0xEE, 0x38, 0x41, 0x36, 0x6A, | ||
2008 | 0x13, 0x2E, 0x16, 0x3A, 0xCE, 0xD4, 0xED, 0x24, 0x01, 0xDF, | ||
2009 | 0x9C, 0x6B, 0xDC, 0xDE, 0x98, 0xE8, 0xE7, 0x07, 0xC0, 0x7A, | ||
2010 | 0x22, 0x39, 0xB1, 0xB0, 0x97, | ||
2011 | 0x53, 0xD7, 0xE0, 0x85, 0x29, 0x54, 0x70, 0x48, 0x12, 0x1E, /* y */ | ||
2012 | 0x9C, 0x95, 0xF3, 0x79, 0x1D, 0xD8, 0x04, 0x96, 0x39, 0x48, | ||
2013 | 0xF3, 0x4F, 0xAE, 0x7B, 0xF4, 0x4E, 0xA8, 0x23, 0x65, 0xDC, | ||
2014 | 0x78, 0x68, 0xFE, 0x57, 0xE4, 0xAE, 0x2D, 0xE2, 0x11, 0x30, | ||
2015 | 0x5A, 0x40, 0x71, 0x04, 0xBD, | ||
2016 | 0x01, 0xAF, 0x28, 0x6B, 0xCA, 0x1A, 0xF2, 0x86, 0xBC, 0xA1, /* order */ | ||
2017 | 0xAF, 0x28, 0x6B, 0xCA, 0x1A, 0xF2, 0x86, 0xBC, 0xA1, 0xAF, | ||
2018 | 0x28, 0x6B, 0xC9, 0xFB, 0x8F, 0x6B, 0x85, 0xC5, 0x56, 0x89, | ||
2019 | 0x2C, 0x20, 0xA7, 0xEB, 0x96, 0x4F, 0xE7, 0x71, 0x9E, 0x74, | ||
2020 | 0xF4, 0x90, 0x75, 0x8D, 0x3B | ||
2021 | } | ||
2022 | }; | ||
2023 | |||
2024 | static const struct { | ||
2025 | EC_CURVE_DATA h; | ||
2026 | unsigned char data[0 + 47 * 6]; | ||
2027 | } | ||
2028 | _EC_X9_62_CHAR2_368W1 = { | ||
2029 | { | ||
2030 | NID_X9_62_characteristic_two_field, 0, 47, 0xFF70 | ||
2031 | }, | ||
2032 | { /* no seed */ | ||
2033 | 0x01, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, /* p */ | ||
2034 | 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, | ||
2035 | 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, | ||
2036 | 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x20, 0x00, 0x00, 0x00, | ||
2037 | 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x07, | ||
2038 | 0x00, 0xE0, 0xD2, 0xEE, 0x25, 0x09, 0x52, 0x06, 0xF5, 0xE2, /* a */ | ||
2039 | 0xA4, 0xF9, 0xED, 0x22, 0x9F, 0x1F, 0x25, 0x6E, 0x79, 0xA0, | ||
2040 | 0xE2, 0xB4, 0x55, 0x97, 0x0D, 0x8D, 0x0D, 0x86, 0x5B, 0xD9, | ||
2041 | 0x47, 0x78, 0xC5, 0x76, 0xD6, 0x2F, 0x0A, 0xB7, 0x51, 0x9C, | ||
2042 | 0xCD, 0x2A, 0x1A, 0x90, 0x6A, 0xE3, 0x0D, | ||
2043 | 0x00, 0xFC, 0x12, 0x17, 0xD4, 0x32, 0x0A, 0x90, 0x45, 0x2C, /* b */ | ||
2044 | 0x76, 0x0A, 0x58, 0xED, 0xCD, 0x30, 0xC8, 0xDD, 0x06, 0x9B, | ||
2045 | 0x3C, 0x34, 0x45, 0x38, 0x37, 0xA3, 0x4E, 0xD5, 0x0C, 0xB5, | ||
2046 | 0x49, 0x17, 0xE1, 0xC2, 0x11, 0x2D, 0x84, 0xD1, 0x64, 0xF4, | ||
2047 | 0x44, 0xF8, 0xF7, 0x47, 0x86, 0x04, 0x6A, | ||
2048 | 0x00, 0x10, 0x85, 0xE2, 0x75, 0x53, 0x81, 0xDC, 0xCC, 0xE3, /* x */ | ||
2049 | 0xC1, 0x55, 0x7A, 0xFA, 0x10, 0xC2, 0xF0, 0xC0, 0xC2, 0x82, | ||
2050 | 0x56, 0x46, 0xC5, 0xB3, 0x4A, 0x39, 0x4C, 0xBC, 0xFA, 0x8B, | ||
2051 | 0xC1, 0x6B, 0x22, 0xE7, 0xE7, 0x89, 0xE9, 0x27, 0xBE, 0x21, | ||
2052 | 0x6F, 0x02, 0xE1, 0xFB, 0x13, 0x6A, 0x5F, | ||
2053 | 0x00, 0x7B, 0x3E, 0xB1, 0xBD, 0xDC, 0xBA, 0x62, 0xD5, 0xD8, /* y */ | ||
2054 | 0xB2, 0x05, 0x9B, 0x52, 0x57, 0x97, 0xFC, 0x73, 0x82, 0x2C, | ||
2055 | 0x59, 0x05, 0x9C, 0x62, 0x3A, 0x45, 0xFF, 0x38, 0x43, 0xCE, | ||
2056 | 0xE8, 0xF8, 0x7C, 0xD1, 0x85, 0x5A, 0xDA, 0xA8, 0x1E, 0x2A, | ||
2057 | 0x07, 0x50, 0xB8, 0x0F, 0xDA, 0x23, 0x10, | ||
2058 | 0x00, 0x00, 0x01, 0x00, 0x90, 0x51, 0x2D, 0xA9, 0xAF, 0x72, /* order */ | ||
2059 | 0xB0, 0x83, 0x49, 0xD9, 0x8A, 0x5D, 0xD4, 0xC7, 0xB0, 0x53, | ||
2060 | 0x2E, 0xCA, 0x51, 0xCE, 0x03, 0xE2, 0xD1, 0x0F, 0x3B, 0x7A, | ||
2061 | 0xC5, 0x79, 0xBD, 0x87, 0xE9, 0x09, 0xAE, 0x40, 0xA6, 0xF1, | ||
2062 | 0x31, 0xE9, 0xCF, 0xCE, 0x5B, 0xD9, 0x67 | ||
2063 | } | ||
2064 | }; | ||
2065 | |||
2066 | static const struct { | ||
2067 | EC_CURVE_DATA h; | ||
2068 | unsigned char data[0 + 54 * 6]; | ||
2069 | } | ||
2070 | _EC_X9_62_CHAR2_431R1 = { | ||
2071 | { | ||
2072 | NID_X9_62_characteristic_two_field, 0, 54, 0x2760 | ||
2073 | }, | ||
2074 | { /* no seed */ | ||
2075 | 0x80, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, /* p */ | ||
2076 | 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, | ||
2077 | 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, | ||
2078 | 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x01, 0x00, | ||
2079 | 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, | ||
2080 | 0x00, 0x00, 0x00, 0x01, | ||
2081 | 0x1A, 0x82, 0x7E, 0xF0, 0x0D, 0xD6, 0xFC, 0x0E, 0x23, 0x4C, /* a */ | ||
2082 | 0xAF, 0x04, 0x6C, 0x6A, 0x5D, 0x8A, 0x85, 0x39, 0x5B, 0x23, | ||
2083 | 0x6C, 0xC4, 0xAD, 0x2C, 0xF3, 0x2A, 0x0C, 0xAD, 0xBD, 0xC9, | ||
2084 | 0xDD, 0xF6, 0x20, 0xB0, 0xEB, 0x99, 0x06, 0xD0, 0x95, 0x7F, | ||
2085 | 0x6C, 0x6F, 0xEA, 0xCD, 0x61, 0x54, 0x68, 0xDF, 0x10, 0x4D, | ||
2086 | 0xE2, 0x96, 0xCD, 0x8F, | ||
2087 | 0x10, 0xD9, 0xB4, 0xA3, 0xD9, 0x04, 0x7D, 0x8B, 0x15, 0x43, /* b */ | ||
2088 | 0x59, 0xAB, 0xFB, 0x1B, 0x7F, 0x54, 0x85, 0xB0, 0x4C, 0xEB, | ||
2089 | 0x86, 0x82, 0x37, 0xDD, 0xC9, 0xDE, 0xDA, 0x98, 0x2A, 0x67, | ||
2090 | 0x9A, 0x5A, 0x91, 0x9B, 0x62, 0x6D, 0x4E, 0x50, 0xA8, 0xDD, | ||
2091 | 0x73, 0x1B, 0x10, 0x7A, 0x99, 0x62, 0x38, 0x1F, 0xB5, 0xD8, | ||
2092 | 0x07, 0xBF, 0x26, 0x18, | ||
2093 | 0x12, 0x0F, 0xC0, 0x5D, 0x3C, 0x67, 0xA9, 0x9D, 0xE1, 0x61, /* x */ | ||
2094 | 0xD2, 0xF4, 0x09, 0x26, 0x22, 0xFE, 0xCA, 0x70, 0x1B, 0xE4, | ||
2095 | 0xF5, 0x0F, 0x47, 0x58, 0x71, 0x4E, 0x8A, 0x87, 0xBB, 0xF2, | ||
2096 | 0xA6, 0x58, 0xEF, 0x8C, 0x21, 0xE7, 0xC5, 0xEF, 0xE9, 0x65, | ||
2097 | 0x36, 0x1F, 0x6C, 0x29, 0x99, 0xC0, 0xC2, 0x47, 0xB0, 0xDB, | ||
2098 | 0xD7, 0x0C, 0xE6, 0xB7, | ||
2099 | 0x20, 0xD0, 0xAF, 0x89, 0x03, 0xA9, 0x6F, 0x8D, 0x5F, 0xA2, /* y */ | ||
2100 | 0xC2, 0x55, 0x74, 0x5D, 0x3C, 0x45, 0x1B, 0x30, 0x2C, 0x93, | ||
2101 | 0x46, 0xD9, 0xB7, 0xE4, 0x85, 0xE7, 0xBC, 0xE4, 0x1F, 0x6B, | ||
2102 | 0x59, 0x1F, 0x3E, 0x8F, 0x6A, 0xDD, 0xCB, 0xB0, 0xBC, 0x4C, | ||
2103 | 0x2F, 0x94, 0x7A, 0x7D, 0xE1, 0xA8, 0x9B, 0x62, 0x5D, 0x6A, | ||
2104 | 0x59, 0x8B, 0x37, 0x60, | ||
2105 | 0x00, 0x03, 0x40, 0x34, 0x03, 0x40, 0x34, 0x03, 0x40, 0x34, /* order */ | ||
2106 | 0x03, 0x40, 0x34, 0x03, 0x40, 0x34, 0x03, 0x40, 0x34, 0x03, | ||
2107 | 0x40, 0x34, 0x03, 0x40, 0x34, 0x03, 0x40, 0x34, 0x03, 0x23, | ||
2108 | 0xC3, 0x13, 0xFA, 0xB5, 0x05, 0x89, 0x70, 0x3B, 0x5E, 0xC6, | ||
2109 | 0x8D, 0x35, 0x87, 0xFE, 0xC6, 0x0D, 0x16, 0x1C, 0xC1, 0x49, | ||
2110 | 0xC1, 0xAD, 0x4A, 0x91 | ||
2111 | } | ||
2112 | }; | ||
2113 | |||
2114 | static const struct { | ||
2115 | EC_CURVE_DATA h; | ||
2116 | unsigned char data[0 + 15 * 6]; | ||
2117 | } | ||
2118 | _EC_WTLS_1 = { | ||
2119 | { | ||
2120 | NID_X9_62_characteristic_two_field, 0, 15, 2 | ||
2121 | }, | ||
2122 | { /* no seed */ | ||
2123 | 0x02, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, /* p */ | ||
2124 | 0x00, 0x00, 0x00, 0x02, 0x01, | ||
2125 | 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, /* a */ | ||
2126 | 0x00, 0x00, 0x00, 0x00, 0x01, | ||
2127 | 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, /* b */ | ||
2128 | 0x00, 0x00, 0x00, 0x00, 0x01, | ||
2129 | 0x01, 0x66, 0x79, 0x79, 0xA4, 0x0B, 0xA4, 0x97, 0xE5, 0xD5, /* x */ | ||
2130 | 0xC2, 0x70, 0x78, 0x06, 0x17, | ||
2131 | 0x00, 0xF4, 0x4B, 0x4A, 0xF1, 0xEC, 0xC2, 0x63, 0x0E, 0x08, /* y */ | ||
2132 | 0x78, 0x5C, 0xEB, 0xCC, 0x15, | ||
2133 | 0x00, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFD, 0xBF, /* order */ | ||
2134 | 0x91, 0xAF, 0x6D, 0xEA, 0x73 | ||
2135 | } | ||
2136 | }; | ||
2137 | |||
2138 | /* IPSec curves */ | ||
2139 | /* NOTE: The of curves over a extension field of non prime degree | ||
2140 | * is not recommended (Weil-descent). | ||
2141 | * As the group order is not a prime this curve is not suitable | ||
2142 | * for ECDSA. | ||
2143 | */ | ||
2144 | static const struct { | ||
2145 | EC_CURVE_DATA h; | ||
2146 | unsigned char data[0 + 20 * 6]; | ||
2147 | } | ||
2148 | _EC_IPSEC_155_ID3 = { | ||
2149 | { | ||
2150 | NID_X9_62_characteristic_two_field, 0, 20, 3 | ||
2151 | }, | ||
2152 | { /* no seed */ | ||
2153 | 0x08, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, /* p */ | ||
2154 | 0x00, 0x00, 0x40, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x01, | ||
2155 | |||
2156 | 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, /* a */ | ||
2157 | 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, | ||
2158 | |||
2159 | 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, /* b */ | ||
2160 | 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x07, 0x33, 0x8f, | ||
2161 | |||
2162 | 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, /* x */ | ||
2163 | 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x7b, | ||
2164 | |||
2165 | 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, /* y */ | ||
2166 | 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x01, 0xc8, | ||
2167 | |||
2168 | 0x02, 0xAA, 0xAA, 0xAA, 0xAA, 0xAA, 0xAA, 0xAA, 0xAA, 0xAA, /* order */ | ||
2169 | 0xC7, 0xF3, 0xC7, 0x88, 0x1B, 0xD0, 0x86, 0x8F, 0xA8, 0x6C | ||
2170 | } | ||
2171 | }; | ||
2172 | |||
2173 | /* NOTE: The of curves over a extension field of non prime degree | ||
2174 | * is not recommended (Weil-descent). | ||
2175 | * As the group order is not a prime this curve is not suitable | ||
2176 | * for ECDSA. | ||
2177 | */ | ||
2178 | static const struct { | ||
2179 | EC_CURVE_DATA h; | ||
2180 | unsigned char data[0 + 24 * 6]; | ||
2181 | } | ||
2182 | _EC_IPSEC_185_ID4 = { | ||
2183 | { | ||
2184 | NID_X9_62_characteristic_two_field, 0, 24, 2 | ||
2185 | }, | ||
2186 | { /* no seed */ | ||
2187 | 0x02, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, /* p */ | ||
2188 | 0x00, 0x00, 0x00, 0x00, 0x00, 0x20, 0x00, 0x00, 0x00, 0x00, | ||
2189 | 0x00, 0x00, 0x00, 0x01, | ||
2190 | 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, /* a */ | ||
2191 | 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, | ||
2192 | 0x00, 0x00, 0x00, 0x00, | ||
2193 | 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, /* b */ | ||
2194 | 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, | ||
2195 | 0x00, 0x00, 0x1e, 0xe9, | ||
2196 | 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, /* x */ | ||
2197 | 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, | ||
2198 | 0x00, 0x00, 0x00, 0x18, | ||
2199 | 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, /* y */ | ||
2200 | 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, | ||
2201 | 0x00, 0x00, 0x00, 0x0d, | ||
2202 | 0x00, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, /* order */ | ||
2203 | 0xFF, 0xFF, 0xED, 0xF9, 0x7C, 0x44, 0xDB, 0x9F, 0x24, 0x20, | ||
2204 | 0xBA, 0xFC, 0xA7, 0x5E | ||
2205 | } | ||
2206 | }; | ||
2207 | |||
2208 | #endif | ||
2209 | |||
2210 | /* These curves were added by Annie Yousar <a.yousar@informatik.hu-berlin.de> | ||
2211 | * For the definition of RFC 5639 curves see | ||
2212 | * https://www.ietf.org/rfc/rfc5639.txt | ||
2213 | * These curves are generated verifiable at random, nevertheless the seed is | ||
2214 | * omitted as parameter because the generation mechanism is different from | ||
2215 | * those defined in ANSI X9.62. | ||
2216 | */ | ||
2217 | |||
2218 | static const struct { | ||
2219 | EC_CURVE_DATA h; | ||
2220 | unsigned char data[0 + 20 * 6]; | ||
2221 | } | ||
2222 | _EC_brainpoolP160r1 = { | ||
2223 | { | ||
2224 | NID_X9_62_prime_field, 0, 20, 1 | ||
2225 | }, | ||
2226 | { /* no seed */ | ||
2227 | 0xE9, 0x5E, 0x4A, 0x5F, 0x73, 0x70, 0x59, 0xDC, 0x60, 0xDF, /* p */ | ||
2228 | 0xC7, 0xAD, 0x95, 0xB3, 0xD8, 0x13, 0x95, 0x15, 0x62, 0x0F, | ||
2229 | 0x34, 0x0E, 0x7B, 0xE2, 0xA2, 0x80, 0xEB, 0x74, 0xE2, 0xBE, /* a */ | ||
2230 | 0x61, 0xBA, 0xDA, 0x74, 0x5D, 0x97, 0xE8, 0xF7, 0xC3, 0x00, | ||
2231 | 0x1E, 0x58, 0x9A, 0x85, 0x95, 0x42, 0x34, 0x12, 0x13, 0x4F, /* b */ | ||
2232 | 0xAA, 0x2D, 0xBD, 0xEC, 0x95, 0xC8, 0xD8, 0x67, 0x5E, 0x58, | ||
2233 | 0xBE, 0xD5, 0xAF, 0x16, 0xEA, 0x3F, 0x6A, 0x4F, 0x62, 0x93, /* x */ | ||
2234 | 0x8C, 0x46, 0x31, 0xEB, 0x5A, 0xF7, 0xBD, 0xBC, 0xDB, 0xC3, | ||
2235 | 0x16, 0x67, 0xCB, 0x47, 0x7A, 0x1A, 0x8E, 0xC3, 0x38, 0xF9, /* y */ | ||
2236 | 0x47, 0x41, 0x66, 0x9C, 0x97, 0x63, 0x16, 0xDA, 0x63, 0x21, | ||
2237 | 0xE9, 0x5E, 0x4A, 0x5F, 0x73, 0x70, 0x59, 0xDC, 0x60, 0xDF, /* order */ | ||
2238 | 0x59, 0x91, 0xD4, 0x50, 0x29, 0x40, 0x9E, 0x60, 0xFC, 0x09 | ||
2239 | } | ||
2240 | }; | ||
2241 | |||
2242 | static const struct { | ||
2243 | EC_CURVE_DATA h; | ||
2244 | unsigned char data[0 + 20 * 6]; | ||
2245 | } | ||
2246 | _EC_brainpoolP160t1 = { | ||
2247 | { | ||
2248 | NID_X9_62_prime_field, 0, 20, 1 | ||
2249 | }, | ||
2250 | { /* no seed */ | ||
2251 | 0xE9, 0x5E, 0x4A, 0x5F, 0x73, 0x70, 0x59, 0xDC, 0x60, 0xDF, /* p */ | ||
2252 | 0xC7, 0xAD, 0x95, 0xB3, 0xD8, 0x13, 0x95, 0x15, 0x62, 0x0F, | ||
2253 | 0xE9, 0x5E, 0x4A, 0x5F, 0x73, 0x70, 0x59, 0xDC, 0x60, 0xDF, /* a */ | ||
2254 | 0xC7, 0xAD, 0x95, 0xB3, 0xD8, 0x13, 0x95, 0x15, 0x62, 0x0C, | ||
2255 | 0x7A, 0x55, 0x6B, 0x6D, 0xAE, 0x53, 0x5B, 0x7B, 0x51, 0xED, /* b */ | ||
2256 | 0x2C, 0x4D, 0x7D, 0xAA, 0x7A, 0x0B, 0x5C, 0x55, 0xF3, 0x80, | ||
2257 | 0xB1, 0x99, 0xB1, 0x3B, 0x9B, 0x34, 0xEF, 0xC1, 0x39, 0x7E, /* x */ | ||
2258 | 0x64, 0xBA, 0xEB, 0x05, 0xAC, 0xC2, 0x65, 0xFF, 0x23, 0x78, | ||
2259 | 0xAD, 0xD6, 0x71, 0x8B, 0x7C, 0x7C, 0x19, 0x61, 0xF0, 0x99, /* y */ | ||
2260 | 0x1B, 0x84, 0x24, 0x43, 0x77, 0x21, 0x52, 0xC9, 0xE0, 0xAD, | ||
2261 | 0xE9, 0x5E, 0x4A, 0x5F, 0x73, 0x70, 0x59, 0xDC, 0x60, 0xDF, /* order */ | ||
2262 | 0x59, 0x91, 0xD4, 0x50, 0x29, 0x40, 0x9E, 0x60, 0xFC, 0x09 | ||
2263 | } | ||
2264 | }; | ||
2265 | |||
2266 | static const struct { | ||
2267 | EC_CURVE_DATA h; | ||
2268 | unsigned char data[0 + 24 * 6]; | ||
2269 | } | ||
2270 | _EC_brainpoolP192r1 = { | ||
2271 | { | ||
2272 | NID_X9_62_prime_field, 0, 24, 1 | ||
2273 | }, | ||
2274 | { /* no seed */ | ||
2275 | 0xC3, 0x02, 0xF4, 0x1D, 0x93, 0x2A, 0x36, 0xCD, 0xA7, 0xA3, /* p */ | ||
2276 | 0x46, 0x30, 0x93, 0xD1, 0x8D, 0xB7, 0x8F, 0xCE, 0x47, 0x6D, | ||
2277 | 0xE1, 0xA8, 0x62, 0x97, | ||
2278 | 0x6A, 0x91, 0x17, 0x40, 0x76, 0xB1, 0xE0, 0xE1, 0x9C, 0x39, /* a */ | ||
2279 | 0xC0, 0x31, 0xFE, 0x86, 0x85, 0xC1, 0xCA, 0xE0, 0x40, 0xE5, | ||
2280 | 0xC6, 0x9A, 0x28, 0xEF, | ||
2281 | 0x46, 0x9A, 0x28, 0xEF, 0x7C, 0x28, 0xCC, 0xA3, 0xDC, 0x72, /* b */ | ||
2282 | 0x1D, 0x04, 0x4F, 0x44, 0x96, 0xBC, 0xCA, 0x7E, 0xF4, 0x14, | ||
2283 | 0x6F, 0xBF, 0x25, 0xC9, | ||
2284 | 0xC0, 0xA0, 0x64, 0x7E, 0xAA, 0xB6, 0xA4, 0x87, 0x53, 0xB0, /* x */ | ||
2285 | 0x33, 0xC5, 0x6C, 0xB0, 0xF0, 0x90, 0x0A, 0x2F, 0x5C, 0x48, | ||
2286 | 0x53, 0x37, 0x5F, 0xD6, | ||
2287 | 0x14, 0xB6, 0x90, 0x86, 0x6A, 0xBD, 0x5B, 0xB8, 0x8B, 0x5F, /* y */ | ||
2288 | 0x48, 0x28, 0xC1, 0x49, 0x00, 0x02, 0xE6, 0x77, 0x3F, 0xA2, | ||
2289 | 0xFA, 0x29, 0x9B, 0x8F, | ||
2290 | 0xC3, 0x02, 0xF4, 0x1D, 0x93, 0x2A, 0x36, 0xCD, 0xA7, 0xA3, /* order */ | ||
2291 | 0x46, 0x2F, 0x9E, 0x9E, 0x91, 0x6B, 0x5B, 0xE8, 0xF1, 0x02, | ||
2292 | 0x9A, 0xC4, 0xAC, 0xC1 | ||
2293 | } | ||
2294 | }; | ||
2295 | |||
2296 | static const struct { | ||
2297 | EC_CURVE_DATA h; | ||
2298 | unsigned char data[0 + 24 * 6]; | ||
2299 | } | ||
2300 | _EC_brainpoolP192t1 = { | ||
2301 | { | ||
2302 | NID_X9_62_prime_field, 0, 24, 1 | ||
2303 | }, | ||
2304 | { /* no seed */ | ||
2305 | 0xC3, 0x02, 0xF4, 0x1D, 0x93, 0x2A, 0x36, 0xCD, 0xA7, 0xA3, /* p */ | ||
2306 | 0x46, 0x30, 0x93, 0xD1, 0x8D, 0xB7, 0x8F, 0xCE, 0x47, 0x6D, | ||
2307 | 0xE1, 0xA8, 0x62, 0x97, | ||
2308 | 0xC3, 0x02, 0xF4, 0x1D, 0x93, 0x2A, 0x36, 0xCD, 0xA7, 0xA3, /* a */ | ||
2309 | 0x46, 0x30, 0x93, 0xD1, 0x8D, 0xB7, 0x8F, 0xCE, 0x47, 0x6D, | ||
2310 | 0xE1, 0xA8, 0x62, 0x94, | ||
2311 | 0x13, 0xD5, 0x6F, 0xFA, 0xEC, 0x78, 0x68, 0x1E, 0x68, 0xF9, /* b */ | ||
2312 | 0xDE, 0xB4, 0x3B, 0x35, 0xBE, 0xC2, 0xFB, 0x68, 0x54, 0x2E, | ||
2313 | 0x27, 0x89, 0x7B, 0x79, | ||
2314 | 0x3A, 0xE9, 0xE5, 0x8C, 0x82, 0xF6, 0x3C, 0x30, 0x28, 0x2E, /* x */ | ||
2315 | 0x1F, 0xE7, 0xBB, 0xF4, 0x3F, 0xA7, 0x2C, 0x44, 0x6A, 0xF6, | ||
2316 | 0xF4, 0x61, 0x81, 0x29, | ||
2317 | 0x09, 0x7E, 0x2C, 0x56, 0x67, 0xC2, 0x22, 0x3A, 0x90, 0x2A, /* y */ | ||
2318 | 0xB5, 0xCA, 0x44, 0x9D, 0x00, 0x84, 0xB7, 0xE5, 0xB3, 0xDE, | ||
2319 | 0x7C, 0xCC, 0x01, 0xC9, | ||
2320 | 0xC3, 0x02, 0xF4, 0x1D, 0x93, 0x2A, 0x36, 0xCD, 0xA7, 0xA3, /* order */ | ||
2321 | 0x46, 0x2F, 0x9E, 0x9E, 0x91, 0x6B, 0x5B, 0xE8, 0xF1, 0x02, | ||
2322 | 0x9A, 0xC4, 0xAC, 0xC1 | ||
2323 | } | ||
2324 | }; | ||
2325 | |||
2326 | static const struct { | ||
2327 | EC_CURVE_DATA h; | ||
2328 | unsigned char data[0 + 28 * 6]; | ||
2329 | } | ||
2330 | _EC_brainpoolP224r1 = { | ||
2331 | { | ||
2332 | NID_X9_62_prime_field, 0, 28, 1 | ||
2333 | }, | ||
2334 | { /* no seed */ | ||
2335 | 0xD7, 0xC1, 0x34, 0xAA, 0x26, 0x43, 0x66, 0x86, 0x2A, 0x18, /* p */ | ||
2336 | 0x30, 0x25, 0x75, 0xD1, 0xD7, 0x87, 0xB0, 0x9F, 0x07, 0x57, | ||
2337 | 0x97, 0xDA, 0x89, 0xF5, 0x7E, 0xC8, 0xC0, 0xFF, | ||
2338 | 0x68, 0xA5, 0xE6, 0x2C, 0xA9, 0xCE, 0x6C, 0x1C, 0x29, 0x98, /* a */ | ||
2339 | 0x03, 0xA6, 0xC1, 0x53, 0x0B, 0x51, 0x4E, 0x18, 0x2A, 0xD8, | ||
2340 | 0xB0, 0x04, 0x2A, 0x59, 0xCA, 0xD2, 0x9F, 0x43, | ||
2341 | 0x25, 0x80, 0xF6, 0x3C, 0xCF, 0xE4, 0x41, 0x38, 0x87, 0x07, /* b */ | ||
2342 | 0x13, 0xB1, 0xA9, 0x23, 0x69, 0xE3, 0x3E, 0x21, 0x35, 0xD2, | ||
2343 | 0x66, 0xDB, 0xB3, 0x72, 0x38, 0x6C, 0x40, 0x0B, | ||
2344 | 0x0D, 0x90, 0x29, 0xAD, 0x2C, 0x7E, 0x5C, 0xF4, 0x34, 0x08, /* x */ | ||
2345 | 0x23, 0xB2, 0xA8, 0x7D, 0xC6, 0x8C, 0x9E, 0x4C, 0xE3, 0x17, | ||
2346 | 0x4C, 0x1E, 0x6E, 0xFD, 0xEE, 0x12, 0xC0, 0x7D, | ||
2347 | 0x58, 0xAA, 0x56, 0xF7, 0x72, 0xC0, 0x72, 0x6F, 0x24, 0xC6, /* y */ | ||
2348 | 0xB8, 0x9E, 0x4E, 0xCD, 0xAC, 0x24, 0x35, 0x4B, 0x9E, 0x99, | ||
2349 | 0xCA, 0xA3, 0xF6, 0xD3, 0x76, 0x14, 0x02, 0xCD, | ||
2350 | 0xD7, 0xC1, 0x34, 0xAA, 0x26, 0x43, 0x66, 0x86, 0x2A, 0x18, /* order */ | ||
2351 | 0x30, 0x25, 0x75, 0xD0, 0xFB, 0x98, 0xD1, 0x16, 0xBC, 0x4B, | ||
2352 | 0x6D, 0xDE, 0xBC, 0xA3, 0xA5, 0xA7, 0x93, 0x9F | ||
2353 | } | ||
2354 | }; | ||
2355 | |||
2356 | static const struct { | ||
2357 | EC_CURVE_DATA h; | ||
2358 | unsigned char data[0 + 28 * 6]; | ||
2359 | } | ||
2360 | _EC_brainpoolP224t1 = { | ||
2361 | { | ||
2362 | NID_X9_62_prime_field, 0, 28, 1 | ||
2363 | }, | ||
2364 | { /* no seed */ | ||
2365 | 0xD7, 0xC1, 0x34, 0xAA, 0x26, 0x43, 0x66, 0x86, 0x2A, 0x18, /* p */ | ||
2366 | 0x30, 0x25, 0x75, 0xD1, 0xD7, 0x87, 0xB0, 0x9F, 0x07, 0x57, | ||
2367 | 0x97, 0xDA, 0x89, 0xF5, 0x7E, 0xC8, 0xC0, 0xFF, | ||
2368 | 0xD7, 0xC1, 0x34, 0xAA, 0x26, 0x43, 0x66, 0x86, 0x2A, 0x18, /* a */ | ||
2369 | 0x30, 0x25, 0x75, 0xD1, 0xD7, 0x87, 0xB0, 0x9F, 0x07, 0x57, | ||
2370 | 0x97, 0xDA, 0x89, 0xF5, 0x7E, 0xC8, 0xC0, 0xFC, | ||
2371 | 0x4B, 0x33, 0x7D, 0x93, 0x41, 0x04, 0xCD, 0x7B, 0xEF, 0x27, /* b */ | ||
2372 | 0x1B, 0xF6, 0x0C, 0xED, 0x1E, 0xD2, 0x0D, 0xA1, 0x4C, 0x08, | ||
2373 | 0xB3, 0xBB, 0x64, 0xF1, 0x8A, 0x60, 0x88, 0x8D, | ||
2374 | 0x6A, 0xB1, 0xE3, 0x44, 0xCE, 0x25, 0xFF, 0x38, 0x96, 0x42, /* x */ | ||
2375 | 0x4E, 0x7F, 0xFE, 0x14, 0x76, 0x2E, 0xCB, 0x49, 0xF8, 0x92, | ||
2376 | 0x8A, 0xC0, 0xC7, 0x60, 0x29, 0xB4, 0xD5, 0x80, | ||
2377 | 0x03, 0x74, 0xE9, 0xF5, 0x14, 0x3E, 0x56, 0x8C, 0xD2, 0x3F, /* y */ | ||
2378 | 0x3F, 0x4D, 0x7C, 0x0D, 0x4B, 0x1E, 0x41, 0xC8, 0xCC, 0x0D, | ||
2379 | 0x1C, 0x6A, 0xBD, 0x5F, 0x1A, 0x46, 0xDB, 0x4C, | ||
2380 | 0xD7, 0xC1, 0x34, 0xAA, 0x26, 0x43, 0x66, 0x86, 0x2A, 0x18, /* order */ | ||
2381 | 0x30, 0x25, 0x75, 0xD0, 0xFB, 0x98, 0xD1, 0x16, 0xBC, 0x4B, | ||
2382 | 0x6D, 0xDE, 0xBC, 0xA3, 0xA5, 0xA7, 0x93, 0x9F | ||
2383 | } | ||
2384 | }; | ||
2385 | |||
2386 | static const struct { | ||
2387 | EC_CURVE_DATA h; | ||
2388 | unsigned char data[0 + 32 * 6]; | ||
2389 | } | ||
2390 | _EC_brainpoolP256r1 = { | ||
2391 | { | ||
2392 | NID_X9_62_prime_field, 0, 32, 1 | ||
2393 | }, | ||
2394 | { /* no seed */ | ||
2395 | 0xA9, 0xFB, 0x57, 0xDB, 0xA1, 0xEE, 0xA9, 0xBC, 0x3E, 0x66, /* p */ | ||
2396 | 0x0A, 0x90, 0x9D, 0x83, 0x8D, 0x72, 0x6E, 0x3B, 0xF6, 0x23, | ||
2397 | 0xD5, 0x26, 0x20, 0x28, 0x20, 0x13, 0x48, 0x1D, 0x1F, 0x6E, | ||
2398 | 0x53, 0x77, | ||
2399 | 0x7D, 0x5A, 0x09, 0x75, 0xFC, 0x2C, 0x30, 0x57, 0xEE, 0xF6, /* a */ | ||
2400 | 0x75, 0x30, 0x41, 0x7A, 0xFF, 0xE7, 0xFB, 0x80, 0x55, 0xC1, | ||
2401 | 0x26, 0xDC, 0x5C, 0x6C, 0xE9, 0x4A, 0x4B, 0x44, 0xF3, 0x30, | ||
2402 | 0xB5, 0xD9, | ||
2403 | 0x26, 0xDC, 0x5C, 0x6C, 0xE9, 0x4A, 0x4B, 0x44, 0xF3, 0x30, /* b */ | ||
2404 | 0xB5, 0xD9, 0xBB, 0xD7, 0x7C, 0xBF, 0x95, 0x84, 0x16, 0x29, | ||
2405 | 0x5C, 0xF7, 0xE1, 0xCE, 0x6B, 0xCC, 0xDC, 0x18, 0xFF, 0x8C, | ||
2406 | 0x07, 0xB6, | ||
2407 | 0x8B, 0xD2, 0xAE, 0xB9, 0xCB, 0x7E, 0x57, 0xCB, 0x2C, 0x4B, /* x */ | ||
2408 | 0x48, 0x2F, 0xFC, 0x81, 0xB7, 0xAF, 0xB9, 0xDE, 0x27, 0xE1, | ||
2409 | 0xE3, 0xBD, 0x23, 0xC2, 0x3A, 0x44, 0x53, 0xBD, 0x9A, 0xCE, | ||
2410 | 0x32, 0x62, | ||
2411 | 0x54, 0x7E, 0xF8, 0x35, 0xC3, 0xDA, 0xC4, 0xFD, 0x97, 0xF8, /* y */ | ||
2412 | 0x46, 0x1A, 0x14, 0x61, 0x1D, 0xC9, 0xC2, 0x77, 0x45, 0x13, | ||
2413 | 0x2D, 0xED, 0x8E, 0x54, 0x5C, 0x1D, 0x54, 0xC7, 0x2F, 0x04, | ||
2414 | 0x69, 0x97, | ||
2415 | 0xA9, 0xFB, 0x57, 0xDB, 0xA1, 0xEE, 0xA9, 0xBC, 0x3E, 0x66, /* order */ | ||
2416 | 0x0A, 0x90, 0x9D, 0x83, 0x8D, 0x71, 0x8C, 0x39, 0x7A, 0xA3, | ||
2417 | 0xB5, 0x61, 0xA6, 0xF7, 0x90, 0x1E, 0x0E, 0x82, 0x97, 0x48, | ||
2418 | 0x56, 0xA7 | ||
2419 | } | ||
2420 | }; | ||
2421 | |||
2422 | static const struct { | ||
2423 | EC_CURVE_DATA h; | ||
2424 | unsigned char data[0 + 32 * 6]; | ||
2425 | } | ||
2426 | _EC_brainpoolP256t1 = { | ||
2427 | { | ||
2428 | NID_X9_62_prime_field, 0, 32, 1 | ||
2429 | }, | ||
2430 | { /* no seed */ | ||
2431 | 0xA9, 0xFB, 0x57, 0xDB, 0xA1, 0xEE, 0xA9, 0xBC, 0x3E, 0x66, /* p */ | ||
2432 | 0x0A, 0x90, 0x9D, 0x83, 0x8D, 0x72, 0x6E, 0x3B, 0xF6, 0x23, | ||
2433 | 0xD5, 0x26, 0x20, 0x28, 0x20, 0x13, 0x48, 0x1D, 0x1F, 0x6E, | ||
2434 | 0x53, 0x77, | ||
2435 | 0xA9, 0xFB, 0x57, 0xDB, 0xA1, 0xEE, 0xA9, 0xBC, 0x3E, 0x66, /* a */ | ||
2436 | 0x0A, 0x90, 0x9D, 0x83, 0x8D, 0x72, 0x6E, 0x3B, 0xF6, 0x23, | ||
2437 | 0xD5, 0x26, 0x20, 0x28, 0x20, 0x13, 0x48, 0x1D, 0x1F, 0x6E, | ||
2438 | 0x53, 0x74, | ||
2439 | 0x66, 0x2C, 0x61, 0xC4, 0x30, 0xD8, 0x4E, 0xA4, 0xFE, 0x66, /* b */ | ||
2440 | 0xA7, 0x73, 0x3D, 0x0B, 0x76, 0xB7, 0xBF, 0x93, 0xEB, 0xC4, | ||
2441 | 0xAF, 0x2F, 0x49, 0x25, 0x6A, 0xE5, 0x81, 0x01, 0xFE, 0xE9, | ||
2442 | 0x2B, 0x04, | ||
2443 | 0xA3, 0xE8, 0xEB, 0x3C, 0xC1, 0xCF, 0xE7, 0xB7, 0x73, 0x22, /* x */ | ||
2444 | 0x13, 0xB2, 0x3A, 0x65, 0x61, 0x49, 0xAF, 0xA1, 0x42, 0xC4, | ||
2445 | 0x7A, 0xAF, 0xBC, 0x2B, 0x79, 0xA1, 0x91, 0x56, 0x2E, 0x13, | ||
2446 | 0x05, 0xF4, | ||
2447 | 0x2D, 0x99, 0x6C, 0x82, 0x34, 0x39, 0xC5, 0x6D, 0x7F, 0x7B, /* y */ | ||
2448 | 0x22, 0xE1, 0x46, 0x44, 0x41, 0x7E, 0x69, 0xBC, 0xB6, 0xDE, | ||
2449 | 0x39, 0xD0, 0x27, 0x00, 0x1D, 0xAB, 0xE8, 0xF3, 0x5B, 0x25, | ||
2450 | 0xC9, 0xBE, | ||
2451 | 0xA9, 0xFB, 0x57, 0xDB, 0xA1, 0xEE, 0xA9, 0xBC, 0x3E, 0x66, /* order */ | ||
2452 | 0x0A, 0x90, 0x9D, 0x83, 0x8D, 0x71, 0x8C, 0x39, 0x7A, 0xA3, | ||
2453 | 0xB5, 0x61, 0xA6, 0xF7, 0x90, 0x1E, 0x0E, 0x82, 0x97, 0x48, | ||
2454 | 0x56, 0xA7 | ||
2455 | } | ||
2456 | }; | ||
2457 | |||
2458 | static const struct { | ||
2459 | EC_CURVE_DATA h; | ||
2460 | unsigned char data[0 + 40 * 6]; | ||
2461 | } | ||
2462 | _EC_brainpoolP320r1 = { | ||
2463 | { | ||
2464 | NID_X9_62_prime_field, 0, 40, 1 | ||
2465 | }, | ||
2466 | { /* no seed */ | ||
2467 | 0xD3, 0x5E, 0x47, 0x20, 0x36, 0xBC, 0x4F, 0xB7, 0xE1, 0x3C, /* p */ | ||
2468 | 0x78, 0x5E, 0xD2, 0x01, 0xE0, 0x65, 0xF9, 0x8F, 0xCF, 0xA6, | ||
2469 | 0xF6, 0xF4, 0x0D, 0xEF, 0x4F, 0x92, 0xB9, 0xEC, 0x78, 0x93, | ||
2470 | 0xEC, 0x28, 0xFC, 0xD4, 0x12, 0xB1, 0xF1, 0xB3, 0x2E, 0x27, | ||
2471 | 0x3E, 0xE3, 0x0B, 0x56, 0x8F, 0xBA, 0xB0, 0xF8, 0x83, 0xCC, /* a */ | ||
2472 | 0xEB, 0xD4, 0x6D, 0x3F, 0x3B, 0xB8, 0xA2, 0xA7, 0x35, 0x13, | ||
2473 | 0xF5, 0xEB, 0x79, 0xDA, 0x66, 0x19, 0x0E, 0xB0, 0x85, 0xFF, | ||
2474 | 0xA9, 0xF4, 0x92, 0xF3, 0x75, 0xA9, 0x7D, 0x86, 0x0E, 0xB4, | ||
2475 | 0x52, 0x08, 0x83, 0x94, 0x9D, 0xFD, 0xBC, 0x42, 0xD3, 0xAD, /* b */ | ||
2476 | 0x19, 0x86, 0x40, 0x68, 0x8A, 0x6F, 0xE1, 0x3F, 0x41, 0x34, | ||
2477 | 0x95, 0x54, 0xB4, 0x9A, 0xCC, 0x31, 0xDC, 0xCD, 0x88, 0x45, | ||
2478 | 0x39, 0x81, 0x6F, 0x5E, 0xB4, 0xAC, 0x8F, 0xB1, 0xF1, 0xA6, | ||
2479 | 0x43, 0xBD, 0x7E, 0x9A, 0xFB, 0x53, 0xD8, 0xB8, 0x52, 0x89, /* x */ | ||
2480 | 0xBC, 0xC4, 0x8E, 0xE5, 0xBF, 0xE6, 0xF2, 0x01, 0x37, 0xD1, | ||
2481 | 0x0A, 0x08, 0x7E, 0xB6, 0xE7, 0x87, 0x1E, 0x2A, 0x10, 0xA5, | ||
2482 | 0x99, 0xC7, 0x10, 0xAF, 0x8D, 0x0D, 0x39, 0xE2, 0x06, 0x11, | ||
2483 | 0x14, 0xFD, 0xD0, 0x55, 0x45, 0xEC, 0x1C, 0xC8, 0xAB, 0x40, /* y */ | ||
2484 | 0x93, 0x24, 0x7F, 0x77, 0x27, 0x5E, 0x07, 0x43, 0xFF, 0xED, | ||
2485 | 0x11, 0x71, 0x82, 0xEA, 0xA9, 0xC7, 0x78, 0x77, 0xAA, 0xAC, | ||
2486 | 0x6A, 0xC7, 0xD3, 0x52, 0x45, 0xD1, 0x69, 0x2E, 0x8E, 0xE1, | ||
2487 | 0xD3, 0x5E, 0x47, 0x20, 0x36, 0xBC, 0x4F, 0xB7, 0xE1, 0x3C, /* order */ | ||
2488 | 0x78, 0x5E, 0xD2, 0x01, 0xE0, 0x65, 0xF9, 0x8F, 0xCF, 0xA5, | ||
2489 | 0xB6, 0x8F, 0x12, 0xA3, 0x2D, 0x48, 0x2E, 0xC7, 0xEE, 0x86, | ||
2490 | 0x58, 0xE9, 0x86, 0x91, 0x55, 0x5B, 0x44, 0xC5, 0x93, 0x11 | ||
2491 | } | ||
2492 | }; | ||
2493 | |||
2494 | static const struct { | ||
2495 | EC_CURVE_DATA h; | ||
2496 | unsigned char data[0 + 40 * 6]; | ||
2497 | } | ||
2498 | _EC_brainpoolP320t1 = { | ||
2499 | { | ||
2500 | NID_X9_62_prime_field, 0, 40, 1 | ||
2501 | }, | ||
2502 | { /* no seed */ | ||
2503 | 0xD3, 0x5E, 0x47, 0x20, 0x36, 0xBC, 0x4F, 0xB7, 0xE1, 0x3C, /* p */ | ||
2504 | 0x78, 0x5E, 0xD2, 0x01, 0xE0, 0x65, 0xF9, 0x8F, 0xCF, 0xA6, | ||
2505 | 0xF6, 0xF4, 0x0D, 0xEF, 0x4F, 0x92, 0xB9, 0xEC, 0x78, 0x93, | ||
2506 | 0xEC, 0x28, 0xFC, 0xD4, 0x12, 0xB1, 0xF1, 0xB3, 0x2E, 0x27, | ||
2507 | 0xD3, 0x5E, 0x47, 0x20, 0x36, 0xBC, 0x4F, 0xB7, 0xE1, 0x3C, /* a */ | ||
2508 | 0x78, 0x5E, 0xD2, 0x01, 0xE0, 0x65, 0xF9, 0x8F, 0xCF, 0xA6, | ||
2509 | 0xF6, 0xF4, 0x0D, 0xEF, 0x4F, 0x92, 0xB9, 0xEC, 0x78, 0x93, | ||
2510 | 0xEC, 0x28, 0xFC, 0xD4, 0x12, 0xB1, 0xF1, 0xB3, 0x2E, 0x24, | ||
2511 | 0xA7, 0xF5, 0x61, 0xE0, 0x38, 0xEB, 0x1E, 0xD5, 0x60, 0xB3, /* b */ | ||
2512 | 0xD1, 0x47, 0xDB, 0x78, 0x20, 0x13, 0x06, 0x4C, 0x19, 0xF2, | ||
2513 | 0x7E, 0xD2, 0x7C, 0x67, 0x80, 0xAA, 0xF7, 0x7F, 0xB8, 0xA5, | ||
2514 | 0x47, 0xCE, 0xB5, 0xB4, 0xFE, 0xF4, 0x22, 0x34, 0x03, 0x53, | ||
2515 | 0x92, 0x5B, 0xE9, 0xFB, 0x01, 0xAF, 0xC6, 0xFB, 0x4D, 0x3E, /* x */ | ||
2516 | 0x7D, 0x49, 0x90, 0x01, 0x0F, 0x81, 0x34, 0x08, 0xAB, 0x10, | ||
2517 | 0x6C, 0x4F, 0x09, 0xCB, 0x7E, 0xE0, 0x78, 0x68, 0xCC, 0x13, | ||
2518 | 0x6F, 0xFF, 0x33, 0x57, 0xF6, 0x24, 0xA2, 0x1B, 0xED, 0x52, | ||
2519 | 0x63, 0xBA, 0x3A, 0x7A, 0x27, 0x48, 0x3E, 0xBF, 0x66, 0x71, /* y */ | ||
2520 | 0xDB, 0xEF, 0x7A, 0xBB, 0x30, 0xEB, 0xEE, 0x08, 0x4E, 0x58, | ||
2521 | 0xA0, 0xB0, 0x77, 0xAD, 0x42, 0xA5, 0xA0, 0x98, 0x9D, 0x1E, | ||
2522 | 0xE7, 0x1B, 0x1B, 0x9B, 0xC0, 0x45, 0x5F, 0xB0, 0xD2, 0xC3, | ||
2523 | 0xD3, 0x5E, 0x47, 0x20, 0x36, 0xBC, 0x4F, 0xB7, 0xE1, 0x3C, /* order */ | ||
2524 | 0x78, 0x5E, 0xD2, 0x01, 0xE0, 0x65, 0xF9, 0x8F, 0xCF, 0xA5, | ||
2525 | 0xB6, 0x8F, 0x12, 0xA3, 0x2D, 0x48, 0x2E, 0xC7, 0xEE, 0x86, | ||
2526 | 0x58, 0xE9, 0x86, 0x91, 0x55, 0x5B, 0x44, 0xC5, 0x93, 0x11 | ||
2527 | } | ||
2528 | }; | ||
2529 | |||
2530 | static const struct { | ||
2531 | EC_CURVE_DATA h; | ||
2532 | unsigned char data[0 + 48 * 6]; | ||
2533 | } | ||
2534 | _EC_brainpoolP384r1 = { | ||
2535 | { | ||
2536 | NID_X9_62_prime_field, 0, 48, 1 | ||
2537 | }, | ||
2538 | { /* no seed */ | ||
2539 | 0x8C, 0xB9, 0x1E, 0x82, 0xA3, 0x38, 0x6D, 0x28, 0x0F, 0x5D, /* p */ | ||
2540 | 0x6F, 0x7E, 0x50, 0xE6, 0x41, 0xDF, 0x15, 0x2F, 0x71, 0x09, | ||
2541 | 0xED, 0x54, 0x56, 0xB4, 0x12, 0xB1, 0xDA, 0x19, 0x7F, 0xB7, | ||
2542 | 0x11, 0x23, 0xAC, 0xD3, 0xA7, 0x29, 0x90, 0x1D, 0x1A, 0x71, | ||
2543 | 0x87, 0x47, 0x00, 0x13, 0x31, 0x07, 0xEC, 0x53, | ||
2544 | 0x7B, 0xC3, 0x82, 0xC6, 0x3D, 0x8C, 0x15, 0x0C, 0x3C, 0x72, /* a */ | ||
2545 | 0x08, 0x0A, 0xCE, 0x05, 0xAF, 0xA0, 0xC2, 0xBE, 0xA2, 0x8E, | ||
2546 | 0x4F, 0xB2, 0x27, 0x87, 0x13, 0x91, 0x65, 0xEF, 0xBA, 0x91, | ||
2547 | 0xF9, 0x0F, 0x8A, 0xA5, 0x81, 0x4A, 0x50, 0x3A, 0xD4, 0xEB, | ||
2548 | 0x04, 0xA8, 0xC7, 0xDD, 0x22, 0xCE, 0x28, 0x26, | ||
2549 | 0x04, 0xA8, 0xC7, 0xDD, 0x22, 0xCE, 0x28, 0x26, 0x8B, 0x39, /* b */ | ||
2550 | 0xB5, 0x54, 0x16, 0xF0, 0x44, 0x7C, 0x2F, 0xB7, 0x7D, 0xE1, | ||
2551 | 0x07, 0xDC, 0xD2, 0xA6, 0x2E, 0x88, 0x0E, 0xA5, 0x3E, 0xEB, | ||
2552 | 0x62, 0xD5, 0x7C, 0xB4, 0x39, 0x02, 0x95, 0xDB, 0xC9, 0x94, | ||
2553 | 0x3A, 0xB7, 0x86, 0x96, 0xFA, 0x50, 0x4C, 0x11, | ||
2554 | 0x1D, 0x1C, 0x64, 0xF0, 0x68, 0xCF, 0x45, 0xFF, 0xA2, 0xA6, /* x */ | ||
2555 | 0x3A, 0x81, 0xB7, 0xC1, 0x3F, 0x6B, 0x88, 0x47, 0xA3, 0xE7, | ||
2556 | 0x7E, 0xF1, 0x4F, 0xE3, 0xDB, 0x7F, 0xCA, 0xFE, 0x0C, 0xBD, | ||
2557 | 0x10, 0xE8, 0xE8, 0x26, 0xE0, 0x34, 0x36, 0xD6, 0x46, 0xAA, | ||
2558 | 0xEF, 0x87, 0xB2, 0xE2, 0x47, 0xD4, 0xAF, 0x1E, | ||
2559 | 0x8A, 0xBE, 0x1D, 0x75, 0x20, 0xF9, 0xC2, 0xA4, 0x5C, 0xB1, /* y */ | ||
2560 | 0xEB, 0x8E, 0x95, 0xCF, 0xD5, 0x52, 0x62, 0xB7, 0x0B, 0x29, | ||
2561 | 0xFE, 0xEC, 0x58, 0x64, 0xE1, 0x9C, 0x05, 0x4F, 0xF9, 0x91, | ||
2562 | 0x29, 0x28, 0x0E, 0x46, 0x46, 0x21, 0x77, 0x91, 0x81, 0x11, | ||
2563 | 0x42, 0x82, 0x03, 0x41, 0x26, 0x3C, 0x53, 0x15, | ||
2564 | 0x8C, 0xB9, 0x1E, 0x82, 0xA3, 0x38, 0x6D, 0x28, 0x0F, 0x5D, /* order */ | ||
2565 | 0x6F, 0x7E, 0x50, 0xE6, 0x41, 0xDF, 0x15, 0x2F, 0x71, 0x09, | ||
2566 | 0xED, 0x54, 0x56, 0xB3, 0x1F, 0x16, 0x6E, 0x6C, 0xAC, 0x04, | ||
2567 | 0x25, 0xA7, 0xCF, 0x3A, 0xB6, 0xAF, 0x6B, 0x7F, 0xC3, 0x10, | ||
2568 | 0x3B, 0x88, 0x32, 0x02, 0xE9, 0x04, 0x65, 0x65 | ||
2569 | } | ||
2570 | }; | ||
2571 | |||
2572 | static const struct { | ||
2573 | EC_CURVE_DATA h; | ||
2574 | unsigned char data[0 + 48 * 6]; | ||
2575 | } | ||
2576 | _EC_brainpoolP384t1 = { | ||
2577 | { | ||
2578 | NID_X9_62_prime_field, 0, 48, 1 | ||
2579 | }, | ||
2580 | { /* no seed */ | ||
2581 | 0x8C, 0xB9, 0x1E, 0x82, 0xA3, 0x38, 0x6D, 0x28, 0x0F, 0x5D, /* p */ | ||
2582 | 0x6F, 0x7E, 0x50, 0xE6, 0x41, 0xDF, 0x15, 0x2F, 0x71, 0x09, | ||
2583 | 0xED, 0x54, 0x56, 0xB4, 0x12, 0xB1, 0xDA, 0x19, 0x7F, 0xB7, | ||
2584 | 0x11, 0x23, 0xAC, 0xD3, 0xA7, 0x29, 0x90, 0x1D, 0x1A, 0x71, | ||
2585 | 0x87, 0x47, 0x00, 0x13, 0x31, 0x07, 0xEC, 0x53, | ||
2586 | 0x8C, 0xB9, 0x1E, 0x82, 0xA3, 0x38, 0x6D, 0x28, 0x0F, 0x5D, /* a */ | ||
2587 | 0x6F, 0x7E, 0x50, 0xE6, 0x41, 0xDF, 0x15, 0x2F, 0x71, 0x09, | ||
2588 | 0xED, 0x54, 0x56, 0xB4, 0x12, 0xB1, 0xDA, 0x19, 0x7F, 0xB7, | ||
2589 | 0x11, 0x23, 0xAC, 0xD3, 0xA7, 0x29, 0x90, 0x1D, 0x1A, 0x71, | ||
2590 | 0x87, 0x47, 0x00, 0x13, 0x31, 0x07, 0xEC, 0x50, | ||
2591 | 0x7F, 0x51, 0x9E, 0xAD, 0xA7, 0xBD, 0xA8, 0x1B, 0xD8, 0x26, /* b */ | ||
2592 | 0xDB, 0xA6, 0x47, 0x91, 0x0F, 0x8C, 0x4B, 0x93, 0x46, 0xED, | ||
2593 | 0x8C, 0xCD, 0xC6, 0x4E, 0x4B, 0x1A, 0xBD, 0x11, 0x75, 0x6D, | ||
2594 | 0xCE, 0x1D, 0x20, 0x74, 0xAA, 0x26, 0x3B, 0x88, 0x80, 0x5C, | ||
2595 | 0xED, 0x70, 0x35, 0x5A, 0x33, 0xB4, 0x71, 0xEE, | ||
2596 | 0x18, 0xDE, 0x98, 0xB0, 0x2D, 0xB9, 0xA3, 0x06, 0xF2, 0xAF, /* x */ | ||
2597 | 0xCD, 0x72, 0x35, 0xF7, 0x2A, 0x81, 0x9B, 0x80, 0xAB, 0x12, | ||
2598 | 0xEB, 0xD6, 0x53, 0x17, 0x24, 0x76, 0xFE, 0xCD, 0x46, 0x2A, | ||
2599 | 0xAB, 0xFF, 0xC4, 0xFF, 0x19, 0x1B, 0x94, 0x6A, 0x5F, 0x54, | ||
2600 | 0xD8, 0xD0, 0xAA, 0x2F, 0x41, 0x88, 0x08, 0xCC, | ||
2601 | 0x25, 0xAB, 0x05, 0x69, 0x62, 0xD3, 0x06, 0x51, 0xA1, 0x14, /* y */ | ||
2602 | 0xAF, 0xD2, 0x75, 0x5A, 0xD3, 0x36, 0x74, 0x7F, 0x93, 0x47, | ||
2603 | 0x5B, 0x7A, 0x1F, 0xCA, 0x3B, 0x88, 0xF2, 0xB6, 0xA2, 0x08, | ||
2604 | 0xCC, 0xFE, 0x46, 0x94, 0x08, 0x58, 0x4D, 0xC2, 0xB2, 0x91, | ||
2605 | 0x26, 0x75, 0xBF, 0x5B, 0x9E, 0x58, 0x29, 0x28, | ||
2606 | 0x8C, 0xB9, 0x1E, 0x82, 0xA3, 0x38, 0x6D, 0x28, 0x0F, 0x5D, /* order */ | ||
2607 | 0x6F, 0x7E, 0x50, 0xE6, 0x41, 0xDF, 0x15, 0x2F, 0x71, 0x09, | ||
2608 | 0xED, 0x54, 0x56, 0xB3, 0x1F, 0x16, 0x6E, 0x6C, 0xAC, 0x04, | ||
2609 | 0x25, 0xA7, 0xCF, 0x3A, 0xB6, 0xAF, 0x6B, 0x7F, 0xC3, 0x10, | ||
2610 | 0x3B, 0x88, 0x32, 0x02, 0xE9, 0x04, 0x65, 0x65 | ||
2611 | } | ||
2612 | }; | ||
2613 | |||
2614 | static const struct { | ||
2615 | EC_CURVE_DATA h; | ||
2616 | unsigned char data[0 + 64 * 6]; | ||
2617 | } | ||
2618 | _EC_brainpoolP512r1 = { | ||
2619 | { | ||
2620 | NID_X9_62_prime_field, 0, 64, 1 | ||
2621 | }, | ||
2622 | { /* no seed */ | ||
2623 | 0xAA, 0xDD, 0x9D, 0xB8, 0xDB, 0xE9, 0xC4, 0x8B, 0x3F, 0xD4, /* p */ | ||
2624 | 0xE6, 0xAE, 0x33, 0xC9, 0xFC, 0x07, 0xCB, 0x30, 0x8D, 0xB3, | ||
2625 | 0xB3, 0xC9, 0xD2, 0x0E, 0xD6, 0x63, 0x9C, 0xCA, 0x70, 0x33, | ||
2626 | 0x08, 0x71, 0x7D, 0x4D, 0x9B, 0x00, 0x9B, 0xC6, 0x68, 0x42, | ||
2627 | 0xAE, 0xCD, 0xA1, 0x2A, 0xE6, 0xA3, 0x80, 0xE6, 0x28, 0x81, | ||
2628 | 0xFF, 0x2F, 0x2D, 0x82, 0xC6, 0x85, 0x28, 0xAA, 0x60, 0x56, | ||
2629 | 0x58, 0x3A, 0x48, 0xF3, | ||
2630 | 0x78, 0x30, 0xA3, 0x31, 0x8B, 0x60, 0x3B, 0x89, 0xE2, 0x32, /* a */ | ||
2631 | 0x71, 0x45, 0xAC, 0x23, 0x4C, 0xC5, 0x94, 0xCB, 0xDD, 0x8D, | ||
2632 | 0x3D, 0xF9, 0x16, 0x10, 0xA8, 0x34, 0x41, 0xCA, 0xEA, 0x98, | ||
2633 | 0x63, 0xBC, 0x2D, 0xED, 0x5D, 0x5A, 0xA8, 0x25, 0x3A, 0xA1, | ||
2634 | 0x0A, 0x2E, 0xF1, 0xC9, 0x8B, 0x9A, 0xC8, 0xB5, 0x7F, 0x11, | ||
2635 | 0x17, 0xA7, 0x2B, 0xF2, 0xC7, 0xB9, 0xE7, 0xC1, 0xAC, 0x4D, | ||
2636 | 0x77, 0xFC, 0x94, 0xCA, | ||
2637 | 0x3D, 0xF9, 0x16, 0x10, 0xA8, 0x34, 0x41, 0xCA, 0xEA, 0x98, /* b */ | ||
2638 | 0x63, 0xBC, 0x2D, 0xED, 0x5D, 0x5A, 0xA8, 0x25, 0x3A, 0xA1, | ||
2639 | 0x0A, 0x2E, 0xF1, 0xC9, 0x8B, 0x9A, 0xC8, 0xB5, 0x7F, 0x11, | ||
2640 | 0x17, 0xA7, 0x2B, 0xF2, 0xC7, 0xB9, 0xE7, 0xC1, 0xAC, 0x4D, | ||
2641 | 0x77, 0xFC, 0x94, 0xCA, 0xDC, 0x08, 0x3E, 0x67, 0x98, 0x40, | ||
2642 | 0x50, 0xB7, 0x5E, 0xBA, 0xE5, 0xDD, 0x28, 0x09, 0xBD, 0x63, | ||
2643 | 0x80, 0x16, 0xF7, 0x23, | ||
2644 | 0x81, 0xAE, 0xE4, 0xBD, 0xD8, 0x2E, 0xD9, 0x64, 0x5A, 0x21, /* x */ | ||
2645 | 0x32, 0x2E, 0x9C, 0x4C, 0x6A, 0x93, 0x85, 0xED, 0x9F, 0x70, | ||
2646 | 0xB5, 0xD9, 0x16, 0xC1, 0xB4, 0x3B, 0x62, 0xEE, 0xF4, 0xD0, | ||
2647 | 0x09, 0x8E, 0xFF, 0x3B, 0x1F, 0x78, 0xE2, 0xD0, 0xD4, 0x8D, | ||
2648 | 0x50, 0xD1, 0x68, 0x7B, 0x93, 0xB9, 0x7D, 0x5F, 0x7C, 0x6D, | ||
2649 | 0x50, 0x47, 0x40, 0x6A, 0x5E, 0x68, 0x8B, 0x35, 0x22, 0x09, | ||
2650 | 0xBC, 0xB9, 0xF8, 0x22, | ||
2651 | 0x7D, 0xDE, 0x38, 0x5D, 0x56, 0x63, 0x32, 0xEC, 0xC0, 0xEA, /* y */ | ||
2652 | 0xBF, 0xA9, 0xCF, 0x78, 0x22, 0xFD, 0xF2, 0x09, 0xF7, 0x00, | ||
2653 | 0x24, 0xA5, 0x7B, 0x1A, 0xA0, 0x00, 0xC5, 0x5B, 0x88, 0x1F, | ||
2654 | 0x81, 0x11, 0xB2, 0xDC, 0xDE, 0x49, 0x4A, 0x5F, 0x48, 0x5E, | ||
2655 | 0x5B, 0xCA, 0x4B, 0xD8, 0x8A, 0x27, 0x63, 0xAE, 0xD1, 0xCA, | ||
2656 | 0x2B, 0x2F, 0xA8, 0xF0, 0x54, 0x06, 0x78, 0xCD, 0x1E, 0x0F, | ||
2657 | 0x3A, 0xD8, 0x08, 0x92, | ||
2658 | 0xAA, 0xDD, 0x9D, 0xB8, 0xDB, 0xE9, 0xC4, 0x8B, 0x3F, 0xD4, /* order */ | ||
2659 | 0xE6, 0xAE, 0x33, 0xC9, 0xFC, 0x07, 0xCB, 0x30, 0x8D, 0xB3, | ||
2660 | 0xB3, 0xC9, 0xD2, 0x0E, 0xD6, 0x63, 0x9C, 0xCA, 0x70, 0x33, | ||
2661 | 0x08, 0x70, 0x55, 0x3E, 0x5C, 0x41, 0x4C, 0xA9, 0x26, 0x19, | ||
2662 | 0x41, 0x86, 0x61, 0x19, 0x7F, 0xAC, 0x10, 0x47, 0x1D, 0xB1, | ||
2663 | 0xD3, 0x81, 0x08, 0x5D, 0xDA, 0xDD, 0xB5, 0x87, 0x96, 0x82, | ||
2664 | 0x9C, 0xA9, 0x00, 0x69 | ||
2665 | } | ||
2666 | }; | ||
2667 | |||
2668 | static const struct { | ||
2669 | EC_CURVE_DATA h; | ||
2670 | unsigned char data[0 + 64 * 6]; | ||
2671 | } | ||
2672 | _EC_brainpoolP512t1 = { | ||
2673 | { | ||
2674 | NID_X9_62_prime_field, 0, 64, 1 | ||
2675 | }, | ||
2676 | { /* no seed */ | ||
2677 | 0xAA, 0xDD, 0x9D, 0xB8, 0xDB, 0xE9, 0xC4, 0x8B, 0x3F, 0xD4, /* p */ | ||
2678 | 0xE6, 0xAE, 0x33, 0xC9, 0xFC, 0x07, 0xCB, 0x30, 0x8D, 0xB3, | ||
2679 | 0xB3, 0xC9, 0xD2, 0x0E, 0xD6, 0x63, 0x9C, 0xCA, 0x70, 0x33, | ||
2680 | 0x08, 0x71, 0x7D, 0x4D, 0x9B, 0x00, 0x9B, 0xC6, 0x68, 0x42, | ||
2681 | 0xAE, 0xCD, 0xA1, 0x2A, 0xE6, 0xA3, 0x80, 0xE6, 0x28, 0x81, | ||
2682 | 0xFF, 0x2F, 0x2D, 0x82, 0xC6, 0x85, 0x28, 0xAA, 0x60, 0x56, | ||
2683 | 0x58, 0x3A, 0x48, 0xF3, | ||
2684 | 0xAA, 0xDD, 0x9D, 0xB8, 0xDB, 0xE9, 0xC4, 0x8B, 0x3F, 0xD4, /* a */ | ||
2685 | 0xE6, 0xAE, 0x33, 0xC9, 0xFC, 0x07, 0xCB, 0x30, 0x8D, 0xB3, | ||
2686 | 0xB3, 0xC9, 0xD2, 0x0E, 0xD6, 0x63, 0x9C, 0xCA, 0x70, 0x33, | ||
2687 | 0x08, 0x71, 0x7D, 0x4D, 0x9B, 0x00, 0x9B, 0xC6, 0x68, 0x42, | ||
2688 | 0xAE, 0xCD, 0xA1, 0x2A, 0xE6, 0xA3, 0x80, 0xE6, 0x28, 0x81, | ||
2689 | 0xFF, 0x2F, 0x2D, 0x82, 0xC6, 0x85, 0x28, 0xAA, 0x60, 0x56, | ||
2690 | 0x58, 0x3A, 0x48, 0xF0, | ||
2691 | 0x7C, 0xBB, 0xBC, 0xF9, 0x44, 0x1C, 0xFA, 0xB7, 0x6E, 0x18, /* b */ | ||
2692 | 0x90, 0xE4, 0x68, 0x84, 0xEA, 0xE3, 0x21, 0xF7, 0x0C, 0x0B, | ||
2693 | 0xCB, 0x49, 0x81, 0x52, 0x78, 0x97, 0x50, 0x4B, 0xEC, 0x3E, | ||
2694 | 0x36, 0xA6, 0x2B, 0xCD, 0xFA, 0x23, 0x04, 0x97, 0x65, 0x40, | ||
2695 | 0xF6, 0x45, 0x00, 0x85, 0xF2, 0xDA, 0xE1, 0x45, 0xC2, 0x25, | ||
2696 | 0x53, 0xB4, 0x65, 0x76, 0x36, 0x89, 0x18, 0x0E, 0xA2, 0x57, | ||
2697 | 0x18, 0x67, 0x42, 0x3E, | ||
2698 | 0x64, 0x0E, 0xCE, 0x5C, 0x12, 0x78, 0x87, 0x17, 0xB9, 0xC1, /* x */ | ||
2699 | 0xBA, 0x06, 0xCB, 0xC2, 0xA6, 0xFE, 0xBA, 0x85, 0x84, 0x24, | ||
2700 | 0x58, 0xC5, 0x6D, 0xDE, 0x9D, 0xB1, 0x75, 0x8D, 0x39, 0xC0, | ||
2701 | 0x31, 0x3D, 0x82, 0xBA, 0x51, 0x73, 0x5C, 0xDB, 0x3E, 0xA4, | ||
2702 | 0x99, 0xAA, 0x77, 0xA7, 0xD6, 0x94, 0x3A, 0x64, 0xF7, 0xA3, | ||
2703 | 0xF2, 0x5F, 0xE2, 0x6F, 0x06, 0xB5, 0x1B, 0xAA, 0x26, 0x96, | ||
2704 | 0xFA, 0x90, 0x35, 0xDA, | ||
2705 | 0x5B, 0x53, 0x4B, 0xD5, 0x95, 0xF5, 0xAF, 0x0F, 0xA2, 0xC8, /* y */ | ||
2706 | 0x92, 0x37, 0x6C, 0x84, 0xAC, 0xE1, 0xBB, 0x4E, 0x30, 0x19, | ||
2707 | 0xB7, 0x16, 0x34, 0xC0, 0x11, 0x31, 0x15, 0x9C, 0xAE, 0x03, | ||
2708 | 0xCE, 0xE9, 0xD9, 0x93, 0x21, 0x84, 0xBE, 0xEF, 0x21, 0x6B, | ||
2709 | 0xD7, 0x1D, 0xF2, 0xDA, 0xDF, 0x86, 0xA6, 0x27, 0x30, 0x6E, | ||
2710 | 0xCF, 0xF9, 0x6D, 0xBB, 0x8B, 0xAC, 0xE1, 0x98, 0xB6, 0x1E, | ||
2711 | 0x00, 0xF8, 0xB3, 0x32, | ||
2712 | 0xAA, 0xDD, 0x9D, 0xB8, 0xDB, 0xE9, 0xC4, 0x8B, 0x3F, 0xD4, /* order */ | ||
2713 | 0xE6, 0xAE, 0x33, 0xC9, 0xFC, 0x07, 0xCB, 0x30, 0x8D, 0xB3, | ||
2714 | 0xB3, 0xC9, 0xD2, 0x0E, 0xD6, 0x63, 0x9C, 0xCA, 0x70, 0x33, | ||
2715 | 0x08, 0x70, 0x55, 0x3E, 0x5C, 0x41, 0x4C, 0xA9, 0x26, 0x19, | ||
2716 | 0x41, 0x86, 0x61, 0x19, 0x7F, 0xAC, 0x10, 0x47, 0x1D, 0xB1, | ||
2717 | 0xD3, 0x81, 0x08, 0x5D, 0xDA, 0xDD, 0xB5, 0x87, 0x96, 0x82, | ||
2718 | 0x9C, 0xA9, 0x00, 0x69 | ||
2719 | } | ||
2720 | }; | ||
2721 | |||
2722 | static const struct { | ||
2723 | EC_CURVE_DATA h; | ||
2724 | unsigned char data[0 + 32 * 6]; | ||
2725 | } | ||
2726 | _EC_FRP256v1 = { | ||
2727 | { | ||
2728 | NID_X9_62_prime_field, 0, 32, 1 | ||
2729 | }, | ||
2730 | { /* no seed */ | ||
2731 | 0xF1, 0xFD, 0x17, 0x8C, 0x0B, 0x3A, 0xD5, 0x8F, 0x10, 0x12, /* p */ | ||
2732 | 0x6D, 0xE8, 0xCE, 0x42, 0x43, 0x5B, 0x39, 0x61, 0xAD, 0xBC, | ||
2733 | 0xAB, 0xC8, 0xCA, 0x6D, 0xE8, 0xFC, 0xF3, 0x53, 0xD8, 0x6E, | ||
2734 | 0x9C, 0x03, | ||
2735 | 0xF1, 0xFD, 0x17, 0x8C, 0x0B, 0x3A, 0xD5, 0x8F, 0x10, 0x12, /* a */ | ||
2736 | 0x6D, 0xE8, 0xCE, 0x42, 0x43, 0x5B, 0x39, 0x61, 0xAD, 0xBC, | ||
2737 | 0xAB, 0xC8, 0xCA, 0x6D, 0xE8, 0xFC, 0xF3, 0x53, 0xD8, 0x6E, | ||
2738 | 0x9C, 0x00, | ||
2739 | 0xEE, 0x35, 0x3F, 0xCA, 0x54, 0x28, 0xA9, 0x30, 0x0D, 0x4A, /* b */ | ||
2740 | 0xBA, 0x75, 0x4A, 0x44, 0xC0, 0x0F, 0xDF, 0xEC, 0x0C, 0x9A, | ||
2741 | 0xE4, 0xB1, 0xA1, 0x80, 0x30, 0x75, 0xED, 0x96, 0x7B, 0x7B, | ||
2742 | 0xB7, 0x3F, | ||
2743 | 0xB6, 0xB3, 0xD4, 0xC3, 0x56, 0xC1, 0x39, 0xEB, 0x31, 0x18, /* x */ | ||
2744 | 0x3D, 0x47, 0x49, 0xD4, 0x23, 0x95, 0x8C, 0x27, 0xD2, 0xDC, | ||
2745 | 0xAF, 0x98, 0xB7, 0x01, 0x64, 0xC9, 0x7A, 0x2D, 0xD9, 0x8F, | ||
2746 | 0x5C, 0xFF, | ||
2747 | 0x61, 0x42, 0xE0, 0xF7, 0xC8, 0xB2, 0x04, 0x91, 0x1F, 0x92, /* y */ | ||
2748 | 0x71, 0xF0, 0xF3, 0xEC, 0xEF, 0x8C, 0x27, 0x01, 0xC3, 0x07, | ||
2749 | 0xE8, 0xE4, 0xC9, 0xE1, 0x83, 0x11, 0x5A, 0x15, 0x54, 0x06, | ||
2750 | 0x2C, 0xFB, | ||
2751 | 0xF1, 0xFD, 0x17, 0x8C, 0x0B, 0x3A, 0xD5, 0x8F, 0x10, 0x12, /* order */ | ||
2752 | 0x6D, 0xE8, 0xCE, 0x42, 0x43, 0x5B, 0x53, 0xDC, 0x67, 0xE1, | ||
2753 | 0x40, 0xD2, 0xBF, 0x94, 0x1F, 0xFD, 0xD4, 0x59, 0xC6, 0xD6, | ||
2754 | 0x55, 0xE1 | ||
2755 | } | ||
2756 | }; | ||
2757 | |||
2758 | #ifndef OPENSSL_NO_GOST | ||
2759 | static const struct { | ||
2760 | EC_CURVE_DATA h; | ||
2761 | unsigned char data[0 + 32 * 6]; | ||
2762 | } | ||
2763 | _EC_GOST_2001_Test = { | ||
2764 | { | ||
2765 | NID_X9_62_prime_field, 0, 32, 1 | ||
2766 | }, | ||
2767 | { /* no seed */ | ||
2768 | 0x80, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, /* p */ | ||
2769 | 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, | ||
2770 | 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, | ||
2771 | 0x04, 0x31, | ||
2772 | 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, /* a */ | ||
2773 | 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, | ||
2774 | 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, | ||
2775 | 0x00, 0x07, | ||
2776 | 0x5F, 0xBF, 0xF4, 0x98, 0xAA, 0x93, 0x8C, 0xE7, 0x39, 0xB8, /* b */ | ||
2777 | 0xE0, 0x22, 0xFB, 0xAF, 0xEF, 0x40, 0x56, 0x3F, 0x6E, 0x6A, | ||
2778 | 0x34, 0x72, 0xFC, 0x2A, 0x51, 0x4C, 0x0C, 0xE9, 0xDA, 0xE2, | ||
2779 | 0x3B, 0x7E, | ||
2780 | 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, /* x */ | ||
2781 | 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, | ||
2782 | 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, | ||
2783 | 0x00, 0x02, | ||
2784 | 0x08, 0xE2, 0xA8, 0xA0, 0xE6, 0x51, 0x47, 0xD4, 0xBD, 0x63, /* y */ | ||
2785 | 0x16, 0x03, 0x0E, 0x16, 0xD1, 0x9C, 0x85, 0xC9, 0x7F, 0x0A, | ||
2786 | 0x9C, 0xA2, 0x67, 0x12, 0x2B, 0x96, 0xAB, 0xBC, 0xEA, 0x7E, | ||
2787 | 0x8F, 0xC8, | ||
2788 | 0x80, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, /* order */ | ||
2789 | 0x00, 0x00, 0x00, 0x00, 0x00, 0x01, 0x50, 0xFE, 0x8A, 0x18, | ||
2790 | 0x92, 0x97, 0x61, 0x54, 0xC5, 0x9C, 0xFC, 0x19, 0x3A, 0xCC, | ||
2791 | 0xF5, 0xB3, | ||
2792 | } | ||
2793 | }; | ||
2794 | |||
2795 | static const struct { | ||
2796 | EC_CURVE_DATA h; | ||
2797 | unsigned char data[0 + 32 * 6]; | ||
2798 | } | ||
2799 | _EC_GOST_2001_CryptoPro_A = { | ||
2800 | { | ||
2801 | NID_X9_62_prime_field, 0, 32, 1 | ||
2802 | }, | ||
2803 | { /* no seed */ | ||
2804 | 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, /* p */ | ||
2805 | 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, | ||
2806 | 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, | ||
2807 | 0xFD, 0x97, | ||
2808 | 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, /* a */ | ||
2809 | 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, | ||
2810 | 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, | ||
2811 | 0xFD, 0x94, | ||
2812 | 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, /* b */ | ||
2813 | 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, | ||
2814 | 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, | ||
2815 | 0x00, 0xA6, | ||
2816 | 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, /* x */ | ||
2817 | 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, | ||
2818 | 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, | ||
2819 | 0x00, 0x01, | ||
2820 | 0x8D, 0x91, 0xE4, 0x71, 0xE0, 0x98, 0x9C, 0xDA, 0x27, 0xDF, /* y */ | ||
2821 | 0x50, 0x5A, 0x45, 0x3F, 0x2B, 0x76, 0x35, 0x29, 0x4F, 0x2D, | ||
2822 | 0xDF, 0x23, 0xE3, 0xB1, 0x22, 0xAC, 0xC9, 0x9C, 0x9E, 0x9F, | ||
2823 | 0x1E, 0x14, | ||
2824 | 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, /* order */ | ||
2825 | 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0x6C, 0x61, 0x10, 0x70, | ||
2826 | 0x99, 0x5A, 0xD1, 0x00, 0x45, 0x84, 0x1B, 0x09, 0xB7, 0x61, | ||
2827 | 0xB8, 0x93, | ||
2828 | } | ||
2829 | }; | ||
2830 | |||
2831 | static const struct { | ||
2832 | EC_CURVE_DATA h; | ||
2833 | unsigned char data[0 + 32 * 6]; | ||
2834 | } | ||
2835 | _EC_GOST_2001_CryptoPro_B = { | ||
2836 | { | ||
2837 | NID_X9_62_prime_field, 0, 32, 1 | ||
2838 | }, | ||
2839 | { /* no seed */ | ||
2840 | 0x80, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, /* p */ | ||
2841 | 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, | ||
2842 | 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, | ||
2843 | 0x0C, 0x99, | ||
2844 | 0x80, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, /* a */ | ||
2845 | 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, | ||
2846 | 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, | ||
2847 | 0x0C, 0x96, | ||
2848 | 0x3E, 0x1A, 0xF4, 0x19, 0xA2, 0x69, 0xA5, 0xF8, 0x66, 0xA7, /* b */ | ||
2849 | 0xD3, 0xC2, 0x5C, 0x3D, 0xF8, 0x0A, 0xE9, 0x79, 0x25, 0x93, | ||
2850 | 0x73, 0xFF, 0x2B, 0x18, 0x2F, 0x49, 0xD4, 0xCE, 0x7E, 0x1B, | ||
2851 | 0xBC, 0x8B, | ||
2852 | 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, /* x */ | ||
2853 | 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, | ||
2854 | 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, | ||
2855 | 0x00, 0x01, | ||
2856 | 0x3F, 0xA8, 0x12, 0x43, 0x59, 0xF9, 0x66, 0x80, 0xB8, 0x3D, /* y */ | ||
2857 | 0x1C, 0x3E, 0xB2, 0xC0, 0x70, 0xE5, 0xC5, 0x45, 0xC9, 0x85, | ||
2858 | 0x8D, 0x03, 0xEC, 0xFB, 0x74, 0x4B, 0xF8, 0xD7, 0x17, 0x71, | ||
2859 | 0x7E, 0xFC, | ||
2860 | 0x80, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, /* order */ | ||
2861 | 0x00, 0x00, 0x00, 0x00, 0x00, 0x01, 0x5F, 0x70, 0x0C, 0xFF, | ||
2862 | 0xF1, 0xA6, 0x24, 0xE5, 0xE4, 0x97, 0x16, 0x1B, 0xCC, 0x8A, | ||
2863 | 0x19, 0x8F, | ||
2864 | } | ||
2865 | }; | ||
2866 | |||
2867 | static const struct { | ||
2868 | EC_CURVE_DATA h; | ||
2869 | unsigned char data[0 + 32 * 6]; | ||
2870 | } | ||
2871 | _EC_GOST_2001_CryptoPro_C = { | ||
2872 | { | ||
2873 | NID_X9_62_prime_field, 0, 32, 1 | ||
2874 | }, | ||
2875 | { /* no seed */ | ||
2876 | 0x9B, 0x9F, 0x60, 0x5F, 0x5A, 0x85, 0x81, 0x07, 0xAB, 0x1E, /* p */ | ||
2877 | 0xC8, 0x5E, 0x6B, 0x41, 0xC8, 0xAA, 0xCF, 0x84, 0x6E, 0x86, | ||
2878 | 0x78, 0x90, 0x51, 0xD3, 0x79, 0x98, 0xF7, 0xB9, 0x02, 0x2D, | ||
2879 | 0x75, 0x9B, | ||
2880 | 0x9B, 0x9F, 0x60, 0x5F, 0x5A, 0x85, 0x81, 0x07, 0xAB, 0x1E, /* a */ | ||
2881 | 0xC8, 0x5E, 0x6B, 0x41, 0xC8, 0xAA, 0xCF, 0x84, 0x6E, 0x86, | ||
2882 | 0x78, 0x90, 0x51, 0xD3, 0x79, 0x98, 0xF7, 0xB9, 0x02, 0x2D, | ||
2883 | 0x75, 0x98, | ||
2884 | 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, /* b */ | ||
2885 | 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, | ||
2886 | 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, | ||
2887 | 0x80, 0x5A, | ||
2888 | 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, /* x */ | ||
2889 | 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, | ||
2890 | 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, | ||
2891 | 0x00, 0x00, | ||
2892 | 0x41, 0xEC, 0xE5, 0x57, 0x43, 0x71, 0x1A, 0x8C, 0x3C, 0xBF, /* y */ | ||
2893 | 0x37, 0x83, 0xCD, 0x08, 0xC0, 0xEE, 0x4D, 0x4D, 0xC4, 0x40, | ||
2894 | 0xD4, 0x64, 0x1A, 0x8F, 0x36, 0x6E, 0x55, 0x0D, 0xFD, 0xB3, | ||
2895 | 0xBB, 0x67, | ||
2896 | 0x9B, 0x9F, 0x60, 0x5F, 0x5A, 0x85, 0x81, 0x07, 0xAB, 0x1E, /* order */ | ||
2897 | 0xC8, 0x5E, 0x6B, 0x41, 0xC8, 0xAA, 0x58, 0x2C, 0xA3, 0x51, | ||
2898 | 0x1E, 0xDD, 0xFB, 0x74, 0xF0, 0x2F, 0x3A, 0x65, 0x98, 0x98, | ||
2899 | 0x0B, 0xB9, | ||
2900 | } | ||
2901 | }; | ||
2902 | |||
2903 | static const struct { | ||
2904 | EC_CURVE_DATA h; | ||
2905 | unsigned char data[0 + 64 * 6]; | ||
2906 | } | ||
2907 | _EC_GOST_2012_TC26_A = { | ||
2908 | { | ||
2909 | NID_X9_62_prime_field, 0, 64, 1 | ||
2910 | }, | ||
2911 | { /* no seed */ | ||
2912 | 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, /* p */ | ||
2913 | 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, | ||
2914 | 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, | ||
2915 | 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, | ||
2916 | 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, | ||
2917 | 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, | ||
2918 | 0xff, 0xff, 0xfd, 0xc7, | ||
2919 | 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, /* a */ | ||
2920 | 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, | ||
2921 | 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, | ||
2922 | 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, | ||
2923 | 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, | ||
2924 | 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, | ||
2925 | 0xff, 0xff, 0xfd, 0xc4, | ||
2926 | 0xe8, 0xc2, 0x50, 0x5d, 0xed, 0xfc, 0x86, 0xdd, 0xc1, 0xbd, /* b */ | ||
2927 | 0x0b, 0x2b, 0x66, 0x67, 0xf1, 0xda, 0x34, 0xb8, 0x25, 0x74, | ||
2928 | 0x76, 0x1c, 0xb0, 0xe8, 0x79, 0xbd, 0x08, 0x1c, 0xfd, 0x0b, | ||
2929 | 0x62, 0x65, 0xee, 0x3c, 0xb0, 0x90, 0xf3, 0x0d, 0x27, 0x61, | ||
2930 | 0x4c, 0xb4, 0x57, 0x40, 0x10, 0xda, 0x90, 0xdd, 0x86, 0x2e, | ||
2931 | 0xf9, 0xd4, 0xeb, 0xee, 0x47, 0x61, 0x50, 0x31, 0x90, 0x78, | ||
2932 | 0x5a, 0x71, 0xc7, 0x60, | ||
2933 | 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, /* x */ | ||
2934 | 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, | ||
2935 | 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, | ||
2936 | 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, | ||
2937 | 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, | ||
2938 | 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, | ||
2939 | 0x00, 0x00, 0x00, 0x03, | ||
2940 | 0x75, 0x03, 0xcf, 0xe8, 0x7a, 0x83, 0x6a, 0xe3, 0xa6, 0x1b, /* y */ | ||
2941 | 0x88, 0x16, 0xe2, 0x54, 0x50, 0xe6, 0xce, 0x5e, 0x1c, 0x93, | ||
2942 | 0xac, 0xf1, 0xab, 0xc1, 0x77, 0x80, 0x64, 0xfd, 0xcb, 0xef, | ||
2943 | 0xa9, 0x21, 0xdf, 0x16, 0x26, 0xbe, 0x4f, 0xd0, 0x36, 0xe9, | ||
2944 | 0x3d, 0x75, 0xe6, 0xa5, 0x0e, 0x3a, 0x41, 0xe9, 0x80, 0x28, | ||
2945 | 0xfe, 0x5f, 0xc2, 0x35, 0xf5, 0xb8, 0x89, 0xa5, 0x89, 0xcb, | ||
2946 | 0x52, 0x15, 0xf2, 0xa4, | ||
2947 | 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, /* order */ | ||
2948 | 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, | ||
2949 | 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, | ||
2950 | 0xff, 0xff, 0x27, 0xe6, 0x95, 0x32, 0xf4, 0x8d, 0x89, 0x11, | ||
2951 | 0x6f, 0xf2, 0x2b, 0x8d, 0x4e, 0x05, 0x60, 0x60, 0x9b, 0x4b, | ||
2952 | 0x38, 0xab, 0xfa, 0xd2, 0xb8, 0x5d, 0xca, 0xcd, 0xb1, 0x41, | ||
2953 | 0x1f, 0x10, 0xb2, 0x75 | ||
2954 | } | ||
2955 | }; | ||
2956 | |||
2957 | static const struct { | ||
2958 | EC_CURVE_DATA h; | ||
2959 | unsigned char data[0 + 64 * 6]; | ||
2960 | } | ||
2961 | _EC_GOST_2012_TC26_B = { | ||
2962 | { | ||
2963 | NID_X9_62_prime_field, 0, 64, 1 | ||
2964 | }, | ||
2965 | { /* no seed */ | ||
2966 | 0x80, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, /* p */ | ||
2967 | 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, | ||
2968 | 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, | ||
2969 | 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, | ||
2970 | 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, | ||
2971 | 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, | ||
2972 | 0x00, 0x00, 0x00, 0x6f, | ||
2973 | 0x80, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, /* a */ | ||
2974 | 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, | ||
2975 | 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, | ||
2976 | 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, | ||
2977 | 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, | ||
2978 | 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, | ||
2979 | 0x00, 0x00, 0x00, 0x6c, | ||
2980 | 0x68, 0x7d, 0x1b, 0x45, 0x9d, 0xc8, 0x41, 0x45, 0x7e, 0x3e, /* b */ | ||
2981 | 0x06, 0xcf, 0x6f, 0x5e, 0x25, 0x17, 0xb9, 0x7c, 0x7d, 0x61, | ||
2982 | 0x4a, 0xf1, 0x38, 0xbc, 0xbf, 0x85, 0xdc, 0x80, 0x6c, 0x4b, | ||
2983 | 0x28, 0x9f, 0x3e, 0x96, 0x5d, 0x2d, 0xb1, 0x41, 0x6d, 0x21, | ||
2984 | 0x7f, 0x8b, 0x27, 0x6f, 0xad, 0x1a, 0xb6, 0x9c, 0x50, 0xf7, | ||
2985 | 0x8b, 0xee, 0x1f, 0xa3, 0x10, 0x6e, 0xfb, 0x8c, 0xcb, 0xc7, | ||
2986 | 0xc5, 0x14, 0x01, 0x16, | ||
2987 | 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, /* x */ | ||
2988 | 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, | ||
2989 | 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, | ||
2990 | 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, | ||
2991 | 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, | ||
2992 | 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, | ||
2993 | 0x00, 0x00, 0x00, 0x02, | ||
2994 | 0x1a, 0x8f, 0x7e, 0xda, 0x38, 0x9b, 0x09, 0x4c, 0x2c, 0x07, /* y */ | ||
2995 | 0x1e, 0x36, 0x47, 0xa8, 0x94, 0x0f, 0x3c, 0x12, 0x3b, 0x69, | ||
2996 | 0x75, 0x78, 0xc2, 0x13, 0xbe, 0x6d, 0xd9, 0xe6, 0xc8, 0xec, | ||
2997 | 0x73, 0x35, 0xdc, 0xb2, 0x28, 0xfd, 0x1e, 0xdf, 0x4a, 0x39, | ||
2998 | 0x15, 0x2c, 0xbc, 0xaa, 0xf8, 0xc0, 0x39, 0x88, 0x28, 0x04, | ||
2999 | 0x10, 0x55, 0xf9, 0x4c, 0xee, 0xec, 0x7e, 0x21, 0x34, 0x07, | ||
3000 | 0x80, 0xfe, 0x41, 0xbd, | ||
3001 | 0x80, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, /* order */ | ||
3002 | 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, | ||
3003 | 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, | ||
3004 | 0x00, 0x01, 0x49, 0xa1, 0xec, 0x14, 0x25, 0x65, 0xa5, 0x45, | ||
3005 | 0xac, 0xfd, 0xb7, 0x7b, 0xd9, 0xd4, 0x0c, 0xfa, 0x8b, 0x99, | ||
3006 | 0x67, 0x12, 0x10, 0x1b, 0xea, 0x0e, 0xc6, 0x34, 0x6c, 0x54, | ||
3007 | 0x37, 0x4f, 0x25, 0xbd | ||
3008 | } | ||
3009 | }; | ||
3010 | |||
3011 | #endif | ||
3012 | |||
3013 | typedef struct _ec_list_element_st { | ||
3014 | int nid; | ||
3015 | const EC_CURVE_DATA *data; | ||
3016 | const EC_METHOD *(*meth) (void); | ||
3017 | const char *comment; | ||
3018 | } ec_list_element; | ||
3019 | |||
3020 | static const ec_list_element curve_list[] = { | ||
3021 | /* prime field curves */ | ||
3022 | /* secg curves */ | ||
3023 | {NID_secp112r1, &_EC_SECG_PRIME_112R1.h, 0, "SECG/WTLS curve over a 112 bit prime field"}, | ||
3024 | {NID_secp112r2, &_EC_SECG_PRIME_112R2.h, 0, "SECG curve over a 112 bit prime field"}, | ||
3025 | {NID_secp128r1, &_EC_SECG_PRIME_128R1.h, 0, "SECG curve over a 128 bit prime field"}, | ||
3026 | {NID_secp128r2, &_EC_SECG_PRIME_128R2.h, 0, "SECG curve over a 128 bit prime field"}, | ||
3027 | {NID_secp160k1, &_EC_SECG_PRIME_160K1.h, 0, "SECG curve over a 160 bit prime field"}, | ||
3028 | {NID_secp160r1, &_EC_SECG_PRIME_160R1.h, 0, "SECG curve over a 160 bit prime field"}, | ||
3029 | {NID_secp160r2, &_EC_SECG_PRIME_160R2.h, 0, "SECG/WTLS curve over a 160 bit prime field"}, | ||
3030 | /* SECG secp192r1 is the same as X9.62 prime192v1 and hence omitted */ | ||
3031 | {NID_secp192k1, &_EC_SECG_PRIME_192K1.h, 0, "SECG curve over a 192 bit prime field"}, | ||
3032 | {NID_secp224k1, &_EC_SECG_PRIME_224K1.h, 0, "SECG curve over a 224 bit prime field"}, | ||
3033 | #ifndef OPENSSL_NO_EC_NISTP_64_GCC_128 | ||
3034 | {NID_secp224r1, &_EC_NIST_PRIME_224.h, EC_GFp_nistp224_method, "NIST/SECG curve over a 224 bit prime field"}, | ||
3035 | #else | ||
3036 | {NID_secp224r1, &_EC_NIST_PRIME_224.h, 0, "NIST/SECG curve over a 224 bit prime field"}, | ||
3037 | #endif | ||
3038 | {NID_secp256k1, &_EC_SECG_PRIME_256K1.h, 0, "SECG curve over a 256 bit prime field"}, | ||
3039 | /* SECG secp256r1 is the same as X9.62 prime256v1 and hence omitted */ | ||
3040 | {NID_secp384r1, &_EC_NIST_PRIME_384.h, 0, "NIST/SECG curve over a 384 bit prime field"}, | ||
3041 | #ifndef OPENSSL_NO_EC_NISTP_64_GCC_128 | ||
3042 | {NID_secp521r1, &_EC_NIST_PRIME_521.h, EC_GFp_nistp521_method, "NIST/SECG curve over a 521 bit prime field"}, | ||
3043 | #else | ||
3044 | {NID_secp521r1, &_EC_NIST_PRIME_521.h, 0, "NIST/SECG curve over a 521 bit prime field"}, | ||
3045 | #endif | ||
3046 | /* X9.62 curves */ | ||
3047 | {NID_X9_62_prime192v1, &_EC_NIST_PRIME_192.h, 0, "NIST/X9.62/SECG curve over a 192 bit prime field"}, | ||
3048 | {NID_X9_62_prime192v2, &_EC_X9_62_PRIME_192V2.h, 0, "X9.62 curve over a 192 bit prime field"}, | ||
3049 | {NID_X9_62_prime192v3, &_EC_X9_62_PRIME_192V3.h, 0, "X9.62 curve over a 192 bit prime field"}, | ||
3050 | {NID_X9_62_prime239v1, &_EC_X9_62_PRIME_239V1.h, 0, "X9.62 curve over a 239 bit prime field"}, | ||
3051 | {NID_X9_62_prime239v2, &_EC_X9_62_PRIME_239V2.h, 0, "X9.62 curve over a 239 bit prime field"}, | ||
3052 | {NID_X9_62_prime239v3, &_EC_X9_62_PRIME_239V3.h, 0, "X9.62 curve over a 239 bit prime field"}, | ||
3053 | #ifndef OPENSSL_NO_EC_NISTP_64_GCC_128 | ||
3054 | {NID_X9_62_prime256v1, &_EC_X9_62_PRIME_256V1.h, EC_GFp_nistp256_method, "X9.62/SECG curve over a 256 bit prime field"}, | ||
3055 | #else | ||
3056 | {NID_X9_62_prime256v1, &_EC_X9_62_PRIME_256V1.h, 0, "X9.62/SECG curve over a 256 bit prime field"}, | ||
3057 | #endif | ||
3058 | #ifndef OPENSSL_NO_EC2M | ||
3059 | /* characteristic two field curves */ | ||
3060 | /* NIST/SECG curves */ | ||
3061 | {NID_sect113r1, &_EC_SECG_CHAR2_113R1.h, 0, "SECG curve over a 113 bit binary field"}, | ||
3062 | {NID_sect113r2, &_EC_SECG_CHAR2_113R2.h, 0, "SECG curve over a 113 bit binary field"}, | ||
3063 | {NID_sect131r1, &_EC_SECG_CHAR2_131R1.h, 0, "SECG/WTLS curve over a 131 bit binary field"}, | ||
3064 | {NID_sect131r2, &_EC_SECG_CHAR2_131R2.h, 0, "SECG curve over a 131 bit binary field"}, | ||
3065 | {NID_sect163k1, &_EC_NIST_CHAR2_163K.h, 0, "NIST/SECG/WTLS curve over a 163 bit binary field"}, | ||
3066 | {NID_sect163r1, &_EC_SECG_CHAR2_163R1.h, 0, "SECG curve over a 163 bit binary field"}, | ||
3067 | {NID_sect163r2, &_EC_NIST_CHAR2_163B.h, 0, "NIST/SECG curve over a 163 bit binary field"}, | ||
3068 | {NID_sect193r1, &_EC_SECG_CHAR2_193R1.h, 0, "SECG curve over a 193 bit binary field"}, | ||
3069 | {NID_sect193r2, &_EC_SECG_CHAR2_193R2.h, 0, "SECG curve over a 193 bit binary field"}, | ||
3070 | {NID_sect233k1, &_EC_NIST_CHAR2_233K.h, 0, "NIST/SECG/WTLS curve over a 233 bit binary field"}, | ||
3071 | {NID_sect233r1, &_EC_NIST_CHAR2_233B.h, 0, "NIST/SECG/WTLS curve over a 233 bit binary field"}, | ||
3072 | {NID_sect239k1, &_EC_SECG_CHAR2_239K1.h, 0, "SECG curve over a 239 bit binary field"}, | ||
3073 | {NID_sect283k1, &_EC_NIST_CHAR2_283K.h, 0, "NIST/SECG curve over a 283 bit binary field"}, | ||
3074 | {NID_sect283r1, &_EC_NIST_CHAR2_283B.h, 0, "NIST/SECG curve over a 283 bit binary field"}, | ||
3075 | {NID_sect409k1, &_EC_NIST_CHAR2_409K.h, 0, "NIST/SECG curve over a 409 bit binary field"}, | ||
3076 | {NID_sect409r1, &_EC_NIST_CHAR2_409B.h, 0, "NIST/SECG curve over a 409 bit binary field"}, | ||
3077 | {NID_sect571k1, &_EC_NIST_CHAR2_571K.h, 0, "NIST/SECG curve over a 571 bit binary field"}, | ||
3078 | {NID_sect571r1, &_EC_NIST_CHAR2_571B.h, 0, "NIST/SECG curve over a 571 bit binary field"}, | ||
3079 | /* X9.62 curves */ | ||
3080 | {NID_X9_62_c2pnb163v1, &_EC_X9_62_CHAR2_163V1.h, 0, "X9.62 curve over a 163 bit binary field"}, | ||
3081 | {NID_X9_62_c2pnb163v2, &_EC_X9_62_CHAR2_163V2.h, 0, "X9.62 curve over a 163 bit binary field"}, | ||
3082 | {NID_X9_62_c2pnb163v3, &_EC_X9_62_CHAR2_163V3.h, 0, "X9.62 curve over a 163 bit binary field"}, | ||
3083 | {NID_X9_62_c2pnb176v1, &_EC_X9_62_CHAR2_176V1.h, 0, "X9.62 curve over a 176 bit binary field"}, | ||
3084 | {NID_X9_62_c2tnb191v1, &_EC_X9_62_CHAR2_191V1.h, 0, "X9.62 curve over a 191 bit binary field"}, | ||
3085 | {NID_X9_62_c2tnb191v2, &_EC_X9_62_CHAR2_191V2.h, 0, "X9.62 curve over a 191 bit binary field"}, | ||
3086 | {NID_X9_62_c2tnb191v3, &_EC_X9_62_CHAR2_191V3.h, 0, "X9.62 curve over a 191 bit binary field"}, | ||
3087 | {NID_X9_62_c2pnb208w1, &_EC_X9_62_CHAR2_208W1.h, 0, "X9.62 curve over a 208 bit binary field"}, | ||
3088 | {NID_X9_62_c2tnb239v1, &_EC_X9_62_CHAR2_239V1.h, 0, "X9.62 curve over a 239 bit binary field"}, | ||
3089 | {NID_X9_62_c2tnb239v2, &_EC_X9_62_CHAR2_239V2.h, 0, "X9.62 curve over a 239 bit binary field"}, | ||
3090 | {NID_X9_62_c2tnb239v3, &_EC_X9_62_CHAR2_239V3.h, 0, "X9.62 curve over a 239 bit binary field"}, | ||
3091 | {NID_X9_62_c2pnb272w1, &_EC_X9_62_CHAR2_272W1.h, 0, "X9.62 curve over a 272 bit binary field"}, | ||
3092 | {NID_X9_62_c2pnb304w1, &_EC_X9_62_CHAR2_304W1.h, 0, "X9.62 curve over a 304 bit binary field"}, | ||
3093 | {NID_X9_62_c2tnb359v1, &_EC_X9_62_CHAR2_359V1.h, 0, "X9.62 curve over a 359 bit binary field"}, | ||
3094 | {NID_X9_62_c2pnb368w1, &_EC_X9_62_CHAR2_368W1.h, 0, "X9.62 curve over a 368 bit binary field"}, | ||
3095 | {NID_X9_62_c2tnb431r1, &_EC_X9_62_CHAR2_431R1.h, 0, "X9.62 curve over a 431 bit binary field"}, | ||
3096 | /* | ||
3097 | * the WAP/WTLS curves [unlike SECG, spec has its own OIDs for curves | ||
3098 | * from X9.62] | ||
3099 | */ | ||
3100 | {NID_wap_wsg_idm_ecid_wtls1, &_EC_WTLS_1.h, 0, "WTLS curve over a 113 bit binary field"}, | ||
3101 | {NID_wap_wsg_idm_ecid_wtls3, &_EC_NIST_CHAR2_163K.h, 0, "NIST/SECG/WTLS curve over a 163 bit binary field"}, | ||
3102 | {NID_wap_wsg_idm_ecid_wtls4, &_EC_SECG_CHAR2_113R1.h, 0, "SECG curve over a 113 bit binary field"}, | ||
3103 | {NID_wap_wsg_idm_ecid_wtls5, &_EC_X9_62_CHAR2_163V1.h, 0, "X9.62 curve over a 163 bit binary field"}, | ||
3104 | #endif | ||
3105 | {NID_wap_wsg_idm_ecid_wtls6, &_EC_SECG_PRIME_112R1.h, 0, "SECG/WTLS curve over a 112 bit prime field"}, | ||
3106 | {NID_wap_wsg_idm_ecid_wtls7, &_EC_SECG_PRIME_160R2.h, 0, "SECG/WTLS curve over a 160 bit prime field"}, | ||
3107 | {NID_wap_wsg_idm_ecid_wtls8, &_EC_WTLS_8.h, 0, "WTLS curve over a 112 bit prime field"}, | ||
3108 | {NID_wap_wsg_idm_ecid_wtls9, &_EC_WTLS_9.h, 0, "WTLS curve over a 160 bit prime field"}, | ||
3109 | #ifndef OPENSSL_NO_EC2M | ||
3110 | {NID_wap_wsg_idm_ecid_wtls10, &_EC_NIST_CHAR2_233K.h, 0, "NIST/SECG/WTLS curve over a 233 bit binary field"}, | ||
3111 | {NID_wap_wsg_idm_ecid_wtls11, &_EC_NIST_CHAR2_233B.h, 0, "NIST/SECG/WTLS curve over a 233 bit binary field"}, | ||
3112 | #endif | ||
3113 | {NID_wap_wsg_idm_ecid_wtls12, &_EC_WTLS_12.h, 0, "WTLS curve over a 224 bit prime field"}, | ||
3114 | #ifndef OPENSSL_NO_EC2M | ||
3115 | /* IPSec curves */ | ||
3116 | {NID_ipsec3, &_EC_IPSEC_155_ID3.h, 0, "\n\tIPSec/IKE/Oakley curve #3 over a 155 bit binary field.\n" | ||
3117 | "\tNot suitable for ECDSA.\n\tQuestionable extension field!"}, | ||
3118 | {NID_ipsec4, &_EC_IPSEC_185_ID4.h, 0, "\n\tIPSec/IKE/Oakley curve #4 over a 185 bit binary field.\n" | ||
3119 | "\tNot suitable for ECDSA.\n\tQuestionable extension field!"}, | ||
3120 | #endif | ||
3121 | /* RFC 5639 curves */ | ||
3122 | {NID_brainpoolP160r1, &_EC_brainpoolP160r1.h, 0, "RFC 5639 curve over a 160 bit prime field"}, | ||
3123 | {NID_brainpoolP160t1, &_EC_brainpoolP160t1.h, 0, "RFC 5639 curve over a 160 bit prime field"}, | ||
3124 | {NID_brainpoolP192r1, &_EC_brainpoolP192r1.h, 0, "RFC 5639 curve over a 192 bit prime field"}, | ||
3125 | {NID_brainpoolP192t1, &_EC_brainpoolP192t1.h, 0, "RFC 5639 curve over a 192 bit prime field"}, | ||
3126 | {NID_brainpoolP224r1, &_EC_brainpoolP224r1.h, 0, "RFC 5639 curve over a 224 bit prime field"}, | ||
3127 | {NID_brainpoolP224t1, &_EC_brainpoolP224t1.h, 0, "RFC 5639 curve over a 224 bit prime field"}, | ||
3128 | {NID_brainpoolP256r1, &_EC_brainpoolP256r1.h, 0, "RFC 5639 curve over a 256 bit prime field"}, | ||
3129 | {NID_brainpoolP256t1, &_EC_brainpoolP256t1.h, 0, "RFC 5639 curve over a 256 bit prime field"}, | ||
3130 | {NID_brainpoolP320r1, &_EC_brainpoolP320r1.h, 0, "RFC 5639 curve over a 320 bit prime field"}, | ||
3131 | {NID_brainpoolP320t1, &_EC_brainpoolP320t1.h, 0, "RFC 5639 curve over a 320 bit prime field"}, | ||
3132 | {NID_brainpoolP384r1, &_EC_brainpoolP384r1.h, 0, "RFC 5639 curve over a 384 bit prime field"}, | ||
3133 | {NID_brainpoolP384t1, &_EC_brainpoolP384t1.h, 0, "RFC 5639 curve over a 384 bit prime field"}, | ||
3134 | {NID_brainpoolP512r1, &_EC_brainpoolP512r1.h, 0, "RFC 5639 curve over a 512 bit prime field"}, | ||
3135 | {NID_brainpoolP512t1, &_EC_brainpoolP512t1.h, 0, "RFC 5639 curve over a 512 bit prime field"}, | ||
3136 | /* ANSSI */ | ||
3137 | {NID_FRP256v1, &_EC_FRP256v1.h, 0, "FRP256v1"}, | ||
3138 | #ifndef OPENSSL_NO_GOST | ||
3139 | /* GOST R 34.10-2001 */ | ||
3140 | {NID_id_GostR3410_2001_TestParamSet, &_EC_GOST_2001_Test.h, 0, "GOST R 34.10-2001 Test Curve"}, | ||
3141 | {NID_id_GostR3410_2001_CryptoPro_A_ParamSet, &_EC_GOST_2001_CryptoPro_A.h, 0, "GOST R 34.10-2001 CryptoPro-A"}, | ||
3142 | {NID_id_GostR3410_2001_CryptoPro_B_ParamSet, &_EC_GOST_2001_CryptoPro_B.h, 0, "GOST R 34.10-2001 CryptoPro-B"}, | ||
3143 | {NID_id_GostR3410_2001_CryptoPro_C_ParamSet, &_EC_GOST_2001_CryptoPro_C.h, 0, "GOST R 34.10-2001 CryptoPro-C"}, | ||
3144 | {NID_id_GostR3410_2001_CryptoPro_XchA_ParamSet, &_EC_GOST_2001_CryptoPro_A.h, 0, "GOST R 34.10-2001 CryptoPro-XchA"}, | ||
3145 | {NID_id_GostR3410_2001_CryptoPro_XchB_ParamSet, &_EC_GOST_2001_CryptoPro_C.h, 0, "GOST R 34.10-2001 CryptoPro-XchB"}, | ||
3146 | {NID_id_tc26_gost_3410_2012_512_paramSetA, &_EC_GOST_2012_TC26_A.h, 0, "GOST R 34.10-2012 TC26-A"}, | ||
3147 | {NID_id_tc26_gost_3410_2012_512_paramSetB, &_EC_GOST_2012_TC26_B.h, 0, "GOST R 34.10-2012 TC26-B"}, | ||
3148 | #endif | ||
3149 | }; | ||
3150 | |||
3151 | #define curve_list_length (sizeof(curve_list)/sizeof(ec_list_element)) | ||
3152 | |||
3153 | static EC_GROUP * | ||
3154 | ec_group_new_from_data(const ec_list_element curve) | ||
3155 | { | ||
3156 | EC_GROUP *group = NULL; | ||
3157 | EC_POINT *P = NULL; | ||
3158 | BN_CTX *ctx = NULL; | ||
3159 | BIGNUM *p = NULL, *a = NULL, *b = NULL, *x = NULL, *y = NULL, *order = NULL; | ||
3160 | int ok = 0; | ||
3161 | int seed_len, param_len; | ||
3162 | const EC_METHOD *meth; | ||
3163 | const EC_CURVE_DATA *data; | ||
3164 | const unsigned char *params; | ||
3165 | |||
3166 | if ((ctx = BN_CTX_new()) == NULL) { | ||
3167 | ECerr(EC_F_EC_GROUP_NEW_FROM_DATA, ERR_R_MALLOC_FAILURE); | ||
3168 | goto err; | ||
3169 | } | ||
3170 | data = curve.data; | ||
3171 | seed_len = data->seed_len; | ||
3172 | param_len = data->param_len; | ||
3173 | params = (const unsigned char *) (data + 1); /* skip header */ | ||
3174 | params += seed_len; /* skip seed */ | ||
3175 | |||
3176 | if (!(p = BN_bin2bn(params + 0 * param_len, param_len, NULL)) || | ||
3177 | !(a = BN_bin2bn(params + 1 * param_len, param_len, NULL)) || | ||
3178 | !(b = BN_bin2bn(params + 2 * param_len, param_len, NULL))) { | ||
3179 | ECerr(EC_F_EC_GROUP_NEW_FROM_DATA, ERR_R_BN_LIB); | ||
3180 | goto err; | ||
3181 | } | ||
3182 | if (curve.meth != 0) { | ||
3183 | meth = curve.meth(); | ||
3184 | if (((group = EC_GROUP_new(meth)) == NULL) || | ||
3185 | (!(group->meth->group_set_curve(group, p, a, b, ctx)))) { | ||
3186 | ECerr(EC_F_EC_GROUP_NEW_FROM_DATA, ERR_R_EC_LIB); | ||
3187 | goto err; | ||
3188 | } | ||
3189 | } else if (data->field_type == NID_X9_62_prime_field) { | ||
3190 | if ((group = EC_GROUP_new_curve_GFp(p, a, b, ctx)) == NULL) { | ||
3191 | ECerr(EC_F_EC_GROUP_NEW_FROM_DATA, ERR_R_EC_LIB); | ||
3192 | goto err; | ||
3193 | } | ||
3194 | } | ||
3195 | #ifndef OPENSSL_NO_EC2M | ||
3196 | else { /* field_type == | ||
3197 | * NID_X9_62_characteristic_two_field */ | ||
3198 | if ((group = EC_GROUP_new_curve_GF2m(p, a, b, ctx)) == NULL) { | ||
3199 | ECerr(EC_F_EC_GROUP_NEW_FROM_DATA, ERR_R_EC_LIB); | ||
3200 | goto err; | ||
3201 | } | ||
3202 | } | ||
3203 | #endif | ||
3204 | |||
3205 | if ((P = EC_POINT_new(group)) == NULL) { | ||
3206 | ECerr(EC_F_EC_GROUP_NEW_FROM_DATA, ERR_R_EC_LIB); | ||
3207 | goto err; | ||
3208 | } | ||
3209 | if (!(x = BN_bin2bn(params + 3 * param_len, param_len, NULL)) | ||
3210 | || !(y = BN_bin2bn(params + 4 * param_len, param_len, NULL))) { | ||
3211 | ECerr(EC_F_EC_GROUP_NEW_FROM_DATA, ERR_R_BN_LIB); | ||
3212 | goto err; | ||
3213 | } | ||
3214 | if (!EC_POINT_set_affine_coordinates_GFp(group, P, x, y, ctx)) { | ||
3215 | ECerr(EC_F_EC_GROUP_NEW_FROM_DATA, ERR_R_EC_LIB); | ||
3216 | goto err; | ||
3217 | } | ||
3218 | if (!(order = BN_bin2bn(params + 5 * param_len, param_len, NULL)) | ||
3219 | || !BN_set_word(x, (BN_ULONG) data->cofactor)) { | ||
3220 | ECerr(EC_F_EC_GROUP_NEW_FROM_DATA, ERR_R_BN_LIB); | ||
3221 | goto err; | ||
3222 | } | ||
3223 | if (!EC_GROUP_set_generator(group, P, order, x)) { | ||
3224 | ECerr(EC_F_EC_GROUP_NEW_FROM_DATA, ERR_R_EC_LIB); | ||
3225 | goto err; | ||
3226 | } | ||
3227 | if (seed_len) { | ||
3228 | if (!EC_GROUP_set_seed(group, params - seed_len, seed_len)) { | ||
3229 | ECerr(EC_F_EC_GROUP_NEW_FROM_DATA, ERR_R_EC_LIB); | ||
3230 | goto err; | ||
3231 | } | ||
3232 | } | ||
3233 | ok = 1; | ||
3234 | err: | ||
3235 | if (!ok) { | ||
3236 | EC_GROUP_free(group); | ||
3237 | group = NULL; | ||
3238 | } | ||
3239 | EC_POINT_free(P); | ||
3240 | BN_CTX_free(ctx); | ||
3241 | BN_free(p); | ||
3242 | BN_free(a); | ||
3243 | BN_free(b); | ||
3244 | BN_free(order); | ||
3245 | BN_free(x); | ||
3246 | BN_free(y); | ||
3247 | return group; | ||
3248 | } | ||
3249 | |||
3250 | EC_GROUP * | ||
3251 | EC_GROUP_new_by_curve_name(int nid) | ||
3252 | { | ||
3253 | size_t i; | ||
3254 | EC_GROUP *ret = NULL; | ||
3255 | |||
3256 | if (nid <= 0) | ||
3257 | return NULL; | ||
3258 | |||
3259 | for (i = 0; i < curve_list_length; i++) | ||
3260 | if (curve_list[i].nid == nid) { | ||
3261 | ret = ec_group_new_from_data(curve_list[i]); | ||
3262 | break; | ||
3263 | } | ||
3264 | if (ret == NULL) { | ||
3265 | ECerr(EC_F_EC_GROUP_NEW_BY_CURVE_NAME, EC_R_UNKNOWN_GROUP); | ||
3266 | return NULL; | ||
3267 | } | ||
3268 | EC_GROUP_set_curve_name(ret, nid); | ||
3269 | |||
3270 | return ret; | ||
3271 | } | ||
3272 | |||
3273 | size_t | ||
3274 | EC_get_builtin_curves(EC_builtin_curve * r, size_t nitems) | ||
3275 | { | ||
3276 | size_t i, min; | ||
3277 | |||
3278 | if (r == NULL || nitems == 0) | ||
3279 | return curve_list_length; | ||
3280 | |||
3281 | min = nitems < curve_list_length ? nitems : curve_list_length; | ||
3282 | |||
3283 | for (i = 0; i < min; i++) { | ||
3284 | r[i].nid = curve_list[i].nid; | ||
3285 | r[i].comment = curve_list[i].comment; | ||
3286 | } | ||
3287 | |||
3288 | return curve_list_length; | ||
3289 | } | ||
3290 | |||
3291 | /* | ||
3292 | * Functions to translate between common NIST curve names and NIDs. | ||
3293 | */ | ||
3294 | |||
3295 | typedef struct { | ||
3296 | const char *name; /* NIST Name of curve */ | ||
3297 | int nid; /* Curve NID */ | ||
3298 | } EC_NIST_NAME; | ||
3299 | |||
3300 | static EC_NIST_NAME nist_curves[] = { | ||
3301 | { "B-163", NID_sect163r2 }, | ||
3302 | { "B-233", NID_sect233r1 }, | ||
3303 | { "B-283", NID_sect283r1 }, | ||
3304 | { "B-409", NID_sect409r1 }, | ||
3305 | { "B-571", NID_sect571r1 }, | ||
3306 | { "K-163", NID_sect163k1 }, | ||
3307 | { "K-233", NID_sect233k1 }, | ||
3308 | { "K-283", NID_sect283k1 }, | ||
3309 | { "K-409", NID_sect409k1 }, | ||
3310 | { "K-571", NID_sect571k1 }, | ||
3311 | { "P-192", NID_X9_62_prime192v1 }, | ||
3312 | { "P-224", NID_secp224r1 }, | ||
3313 | { "P-256", NID_X9_62_prime256v1 }, | ||
3314 | { "P-384", NID_secp384r1 }, | ||
3315 | { "P-521", NID_secp521r1 } | ||
3316 | }; | ||
3317 | |||
3318 | const char * | ||
3319 | EC_curve_nid2nist(int nid) | ||
3320 | { | ||
3321 | size_t i; | ||
3322 | |||
3323 | for (i = 0; i < sizeof(nist_curves) / sizeof(EC_NIST_NAME); i++) { | ||
3324 | if (nist_curves[i].nid == nid) | ||
3325 | return (nist_curves[i].name); | ||
3326 | } | ||
3327 | return (NULL); | ||
3328 | } | ||
3329 | |||
3330 | int | ||
3331 | EC_curve_nist2nid(const char *name) | ||
3332 | { | ||
3333 | size_t i; | ||
3334 | |||
3335 | for (i = 0; i < sizeof(nist_curves) / sizeof(EC_NIST_NAME); i++) { | ||
3336 | if (!strcmp(nist_curves[i].name, name)) | ||
3337 | return (nist_curves[i].nid); | ||
3338 | } | ||
3339 | return (NID_undef); | ||
3340 | } | ||
diff --git a/src/lib/libcrypto/ec/ec_cvt.c b/src/lib/libcrypto/ec/ec_cvt.c deleted file mode 100644 index a0982064b8..0000000000 --- a/src/lib/libcrypto/ec/ec_cvt.c +++ /dev/null | |||
@@ -1,167 +0,0 @@ | |||
1 | /* $OpenBSD: ec_cvt.c,v 1.6 2014/07/10 22:45:57 jsing Exp $ */ | ||
2 | /* | ||
3 | * Originally written by Bodo Moeller for the OpenSSL project. | ||
4 | */ | ||
5 | /* ==================================================================== | ||
6 | * Copyright (c) 1998-2002 The OpenSSL Project. All rights reserved. | ||
7 | * | ||
8 | * Redistribution and use in source and binary forms, with or without | ||
9 | * modification, are permitted provided that the following conditions | ||
10 | * are met: | ||
11 | * | ||
12 | * 1. Redistributions of source code must retain the above copyright | ||
13 | * notice, this list of conditions and the following disclaimer. | ||
14 | * | ||
15 | * 2. Redistributions in binary form must reproduce the above copyright | ||
16 | * notice, this list of conditions and the following disclaimer in | ||
17 | * the documentation and/or other materials provided with the | ||
18 | * distribution. | ||
19 | * | ||
20 | * 3. All advertising materials mentioning features or use of this | ||
21 | * software must display the following acknowledgment: | ||
22 | * "This product includes software developed by the OpenSSL Project | ||
23 | * for use in the OpenSSL Toolkit. (http://www.openssl.org/)" | ||
24 | * | ||
25 | * 4. The names "OpenSSL Toolkit" and "OpenSSL Project" must not be used to | ||
26 | * endorse or promote products derived from this software without | ||
27 | * prior written permission. For written permission, please contact | ||
28 | * openssl-core@openssl.org. | ||
29 | * | ||
30 | * 5. Products derived from this software may not be called "OpenSSL" | ||
31 | * nor may "OpenSSL" appear in their names without prior written | ||
32 | * permission of the OpenSSL Project. | ||
33 | * | ||
34 | * 6. Redistributions of any form whatsoever must retain the following | ||
35 | * acknowledgment: | ||
36 | * "This product includes software developed by the OpenSSL Project | ||
37 | * for use in the OpenSSL Toolkit (http://www.openssl.org/)" | ||
38 | * | ||
39 | * THIS SOFTWARE IS PROVIDED BY THE OpenSSL PROJECT ``AS IS'' AND ANY | ||
40 | * EXPRESSED OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE | ||
41 | * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR | ||
42 | * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE OpenSSL PROJECT OR | ||
43 | * ITS CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, | ||
44 | * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT | ||
45 | * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; | ||
46 | * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) | ||
47 | * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, | ||
48 | * STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) | ||
49 | * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED | ||
50 | * OF THE POSSIBILITY OF SUCH DAMAGE. | ||
51 | * ==================================================================== | ||
52 | * | ||
53 | * This product includes cryptographic software written by Eric Young | ||
54 | * (eay@cryptsoft.com). This product includes software written by Tim | ||
55 | * Hudson (tjh@cryptsoft.com). | ||
56 | * | ||
57 | */ | ||
58 | /* ==================================================================== | ||
59 | * Copyright 2002 Sun Microsystems, Inc. ALL RIGHTS RESERVED. | ||
60 | * | ||
61 | * Portions of the attached software ("Contribution") are developed by | ||
62 | * SUN MICROSYSTEMS, INC., and are contributed to the OpenSSL project. | ||
63 | * | ||
64 | * The Contribution is licensed pursuant to the OpenSSL open source | ||
65 | * license provided above. | ||
66 | * | ||
67 | * The elliptic curve binary polynomial software is originally written by | ||
68 | * Sheueling Chang Shantz and Douglas Stebila of Sun Microsystems Laboratories. | ||
69 | * | ||
70 | */ | ||
71 | |||
72 | #include <openssl/opensslconf.h> | ||
73 | |||
74 | #include <openssl/err.h> | ||
75 | #include "ec_lcl.h" | ||
76 | |||
77 | EC_GROUP * | ||
78 | EC_GROUP_new_curve_GFp(const BIGNUM *p, const BIGNUM *a, const BIGNUM *b, | ||
79 | BN_CTX *ctx) | ||
80 | { | ||
81 | const EC_METHOD *meth; | ||
82 | EC_GROUP *ret; | ||
83 | |||
84 | #if defined(OPENSSL_BN_ASM_MONT) | ||
85 | /* | ||
86 | * This might appear controversial, but the fact is that generic | ||
87 | * prime method was observed to deliver better performance even | ||
88 | * for NIST primes on a range of platforms, e.g.: 60%-15% | ||
89 | * improvement on IA-64, ~25% on ARM, 30%-90% on P4, 20%-25% | ||
90 | * in 32-bit build and 35%--12% in 64-bit build on Core2... | ||
91 | * Coefficients are relative to optimized bn_nist.c for most | ||
92 | * intensive ECDSA verify and ECDH operations for 192- and 521- | ||
93 | * bit keys respectively. Choice of these boundary values is | ||
94 | * arguable, because the dependency of improvement coefficient | ||
95 | * from key length is not a "monotone" curve. For example while | ||
96 | * 571-bit result is 23% on ARM, 384-bit one is -1%. But it's | ||
97 | * generally faster, sometimes "respectfully" faster, sometimes | ||
98 | * "tolerably" slower... What effectively happens is that loop | ||
99 | * with bn_mul_add_words is put against bn_mul_mont, and the | ||
100 | * latter "wins" on short vectors. Correct solution should be | ||
101 | * implementing dedicated NxN multiplication subroutines for | ||
102 | * small N. But till it materializes, let's stick to generic | ||
103 | * prime method... | ||
104 | * <appro> | ||
105 | */ | ||
106 | meth = EC_GFp_mont_method(); | ||
107 | #else | ||
108 | meth = EC_GFp_nist_method(); | ||
109 | #endif | ||
110 | |||
111 | ret = EC_GROUP_new(meth); | ||
112 | if (ret == NULL) | ||
113 | return NULL; | ||
114 | |||
115 | if (!EC_GROUP_set_curve_GFp(ret, p, a, b, ctx)) { | ||
116 | unsigned long err; | ||
117 | |||
118 | err = ERR_peek_last_error(); | ||
119 | |||
120 | if (!(ERR_GET_LIB(err) == ERR_LIB_EC && | ||
121 | ((ERR_GET_REASON(err) == EC_R_NOT_A_NIST_PRIME) || | ||
122 | (ERR_GET_REASON(err) == EC_R_NOT_A_SUPPORTED_NIST_PRIME)))) { | ||
123 | /* real error */ | ||
124 | |||
125 | EC_GROUP_clear_free(ret); | ||
126 | return NULL; | ||
127 | } | ||
128 | /* not an actual error, we just cannot use EC_GFp_nist_method */ | ||
129 | |||
130 | ERR_clear_error(); | ||
131 | |||
132 | EC_GROUP_clear_free(ret); | ||
133 | meth = EC_GFp_mont_method(); | ||
134 | |||
135 | ret = EC_GROUP_new(meth); | ||
136 | if (ret == NULL) | ||
137 | return NULL; | ||
138 | |||
139 | if (!EC_GROUP_set_curve_GFp(ret, p, a, b, ctx)) { | ||
140 | EC_GROUP_clear_free(ret); | ||
141 | return NULL; | ||
142 | } | ||
143 | } | ||
144 | return ret; | ||
145 | } | ||
146 | |||
147 | #ifndef OPENSSL_NO_EC2M | ||
148 | EC_GROUP * | ||
149 | EC_GROUP_new_curve_GF2m(const BIGNUM *p, const BIGNUM *a, const BIGNUM *b, | ||
150 | BN_CTX *ctx) | ||
151 | { | ||
152 | const EC_METHOD *meth; | ||
153 | EC_GROUP *ret; | ||
154 | |||
155 | meth = EC_GF2m_simple_method(); | ||
156 | |||
157 | ret = EC_GROUP_new(meth); | ||
158 | if (ret == NULL) | ||
159 | return NULL; | ||
160 | |||
161 | if (!EC_GROUP_set_curve_GF2m(ret, p, a, b, ctx)) { | ||
162 | EC_GROUP_clear_free(ret); | ||
163 | return NULL; | ||
164 | } | ||
165 | return ret; | ||
166 | } | ||
167 | #endif | ||
diff --git a/src/lib/libcrypto/ec/ec_err.c b/src/lib/libcrypto/ec/ec_err.c deleted file mode 100644 index 0ba510adae..0000000000 --- a/src/lib/libcrypto/ec/ec_err.c +++ /dev/null | |||
@@ -1,279 +0,0 @@ | |||
1 | /* $OpenBSD: ec_err.c,v 1.9 2014/07/10 22:45:57 jsing Exp $ */ | ||
2 | /* ==================================================================== | ||
3 | * Copyright (c) 1999-2011 The OpenSSL Project. All rights reserved. | ||
4 | * | ||
5 | * Redistribution and use in source and binary forms, with or without | ||
6 | * modification, are permitted provided that the following conditions | ||
7 | * are met: | ||
8 | * | ||
9 | * 1. Redistributions of source code must retain the above copyright | ||
10 | * notice, this list of conditions and the following disclaimer. | ||
11 | * | ||
12 | * 2. Redistributions in binary form must reproduce the above copyright | ||
13 | * notice, this list of conditions and the following disclaimer in | ||
14 | * the documentation and/or other materials provided with the | ||
15 | * distribution. | ||
16 | * | ||
17 | * 3. All advertising materials mentioning features or use of this | ||
18 | * software must display the following acknowledgment: | ||
19 | * "This product includes software developed by the OpenSSL Project | ||
20 | * for use in the OpenSSL Toolkit. (http://www.OpenSSL.org/)" | ||
21 | * | ||
22 | * 4. The names "OpenSSL Toolkit" and "OpenSSL Project" must not be used to | ||
23 | * endorse or promote products derived from this software without | ||
24 | * prior written permission. For written permission, please contact | ||
25 | * openssl-core@OpenSSL.org. | ||
26 | * | ||
27 | * 5. Products derived from this software may not be called "OpenSSL" | ||
28 | * nor may "OpenSSL" appear in their names without prior written | ||
29 | * permission of the OpenSSL Project. | ||
30 | * | ||
31 | * 6. Redistributions of any form whatsoever must retain the following | ||
32 | * acknowledgment: | ||
33 | * "This product includes software developed by the OpenSSL Project | ||
34 | * for use in the OpenSSL Toolkit (http://www.OpenSSL.org/)" | ||
35 | * | ||
36 | * THIS SOFTWARE IS PROVIDED BY THE OpenSSL PROJECT ``AS IS'' AND ANY | ||
37 | * EXPRESSED OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE | ||
38 | * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR | ||
39 | * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE OpenSSL PROJECT OR | ||
40 | * ITS CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, | ||
41 | * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT | ||
42 | * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; | ||
43 | * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) | ||
44 | * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, | ||
45 | * STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) | ||
46 | * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED | ||
47 | * OF THE POSSIBILITY OF SUCH DAMAGE. | ||
48 | * ==================================================================== | ||
49 | * | ||
50 | * This product includes cryptographic software written by Eric Young | ||
51 | * (eay@cryptsoft.com). This product includes software written by Tim | ||
52 | * Hudson (tjh@cryptsoft.com). | ||
53 | * | ||
54 | */ | ||
55 | |||
56 | /* NOTE: this file was auto generated by the mkerr.pl script: any changes | ||
57 | * made to it will be overwritten when the script next updates this file, | ||
58 | * only reason strings will be preserved. | ||
59 | */ | ||
60 | |||
61 | #include <stdio.h> | ||
62 | |||
63 | #include <openssl/opensslconf.h> | ||
64 | |||
65 | #include <openssl/err.h> | ||
66 | #include <openssl/ec.h> | ||
67 | |||
68 | /* BEGIN ERROR CODES */ | ||
69 | #ifndef OPENSSL_NO_ERR | ||
70 | |||
71 | #define ERR_FUNC(func) ERR_PACK(ERR_LIB_EC,func,0) | ||
72 | #define ERR_REASON(reason) ERR_PACK(ERR_LIB_EC,0,reason) | ||
73 | |||
74 | static ERR_STRING_DATA EC_str_functs[] = | ||
75 | { | ||
76 | {ERR_FUNC(EC_F_BN_TO_FELEM), "BN_TO_FELEM"}, | ||
77 | {ERR_FUNC(EC_F_COMPUTE_WNAF), "COMPUTE_WNAF"}, | ||
78 | {ERR_FUNC(EC_F_D2I_ECPARAMETERS), "d2i_ECParameters"}, | ||
79 | {ERR_FUNC(EC_F_D2I_ECPKPARAMETERS), "d2i_ECPKParameters"}, | ||
80 | {ERR_FUNC(EC_F_D2I_ECPRIVATEKEY), "d2i_ECPrivateKey"}, | ||
81 | {ERR_FUNC(EC_F_DO_EC_KEY_PRINT), "DO_EC_KEY_PRINT"}, | ||
82 | {ERR_FUNC(EC_F_ECKEY_PARAM2TYPE), "ECKEY_PARAM2TYPE"}, | ||
83 | {ERR_FUNC(EC_F_ECKEY_PARAM_DECODE), "ECKEY_PARAM_DECODE"}, | ||
84 | {ERR_FUNC(EC_F_ECKEY_PRIV_DECODE), "ECKEY_PRIV_DECODE"}, | ||
85 | {ERR_FUNC(EC_F_ECKEY_PRIV_ENCODE), "ECKEY_PRIV_ENCODE"}, | ||
86 | {ERR_FUNC(EC_F_ECKEY_PUB_DECODE), "ECKEY_PUB_DECODE"}, | ||
87 | {ERR_FUNC(EC_F_ECKEY_PUB_ENCODE), "ECKEY_PUB_ENCODE"}, | ||
88 | {ERR_FUNC(EC_F_ECKEY_TYPE2PARAM), "ECKEY_TYPE2PARAM"}, | ||
89 | {ERR_FUNC(EC_F_ECPARAMETERS_PRINT), "ECParameters_print"}, | ||
90 | {ERR_FUNC(EC_F_ECPARAMETERS_PRINT_FP), "ECParameters_print_fp"}, | ||
91 | {ERR_FUNC(EC_F_ECPKPARAMETERS_PRINT), "ECPKParameters_print"}, | ||
92 | {ERR_FUNC(EC_F_ECPKPARAMETERS_PRINT_FP), "ECPKParameters_print_fp"}, | ||
93 | {ERR_FUNC(EC_F_ECP_NIST_MOD_192), "ECP_NIST_MOD_192"}, | ||
94 | {ERR_FUNC(EC_F_ECP_NIST_MOD_224), "ECP_NIST_MOD_224"}, | ||
95 | {ERR_FUNC(EC_F_ECP_NIST_MOD_256), "ECP_NIST_MOD_256"}, | ||
96 | {ERR_FUNC(EC_F_ECP_NIST_MOD_521), "ECP_NIST_MOD_521"}, | ||
97 | {ERR_FUNC(EC_F_EC_ASN1_GROUP2CURVE), "EC_ASN1_GROUP2CURVE"}, | ||
98 | {ERR_FUNC(EC_F_EC_ASN1_GROUP2FIELDID), "EC_ASN1_GROUP2FIELDID"}, | ||
99 | {ERR_FUNC(EC_F_EC_ASN1_GROUP2PARAMETERS), "EC_ASN1_GROUP2PARAMETERS"}, | ||
100 | {ERR_FUNC(EC_F_EC_ASN1_GROUP2PKPARAMETERS), "EC_ASN1_GROUP2PKPARAMETERS"}, | ||
101 | {ERR_FUNC(EC_F_EC_ASN1_PARAMETERS2GROUP), "EC_ASN1_PARAMETERS2GROUP"}, | ||
102 | {ERR_FUNC(EC_F_EC_ASN1_PKPARAMETERS2GROUP), "EC_ASN1_PKPARAMETERS2GROUP"}, | ||
103 | {ERR_FUNC(EC_F_EC_EX_DATA_SET_DATA), "EC_EX_DATA_set_data"}, | ||
104 | {ERR_FUNC(EC_F_EC_GF2M_MONTGOMERY_POINT_MULTIPLY), "EC_GF2M_MONTGOMERY_POINT_MULTIPLY"}, | ||
105 | {ERR_FUNC(EC_F_EC_GF2M_SIMPLE_GROUP_CHECK_DISCRIMINANT), "ec_GF2m_simple_group_check_discriminant"}, | ||
106 | {ERR_FUNC(EC_F_EC_GF2M_SIMPLE_GROUP_SET_CURVE), "ec_GF2m_simple_group_set_curve"}, | ||
107 | {ERR_FUNC(EC_F_EC_GF2M_SIMPLE_OCT2POINT), "ec_GF2m_simple_oct2point"}, | ||
108 | {ERR_FUNC(EC_F_EC_GF2M_SIMPLE_POINT2OCT), "ec_GF2m_simple_point2oct"}, | ||
109 | {ERR_FUNC(EC_F_EC_GF2M_SIMPLE_POINT_GET_AFFINE_COORDINATES), "ec_GF2m_simple_point_get_affine_coordinates"}, | ||
110 | {ERR_FUNC(EC_F_EC_GF2M_SIMPLE_POINT_SET_AFFINE_COORDINATES), "ec_GF2m_simple_point_set_affine_coordinates"}, | ||
111 | {ERR_FUNC(EC_F_EC_GF2M_SIMPLE_SET_COMPRESSED_COORDINATES), "ec_GF2m_simple_set_compressed_coordinates"}, | ||
112 | {ERR_FUNC(EC_F_EC_GFP_MONT_FIELD_DECODE), "ec_GFp_mont_field_decode"}, | ||
113 | {ERR_FUNC(EC_F_EC_GFP_MONT_FIELD_ENCODE), "ec_GFp_mont_field_encode"}, | ||
114 | {ERR_FUNC(EC_F_EC_GFP_MONT_FIELD_MUL), "ec_GFp_mont_field_mul"}, | ||
115 | {ERR_FUNC(EC_F_EC_GFP_MONT_FIELD_SET_TO_ONE), "ec_GFp_mont_field_set_to_one"}, | ||
116 | {ERR_FUNC(EC_F_EC_GFP_MONT_FIELD_SQR), "ec_GFp_mont_field_sqr"}, | ||
117 | {ERR_FUNC(EC_F_EC_GFP_MONT_GROUP_SET_CURVE), "ec_GFp_mont_group_set_curve"}, | ||
118 | {ERR_FUNC(EC_F_EC_GFP_MONT_GROUP_SET_CURVE_GFP), "EC_GFP_MONT_GROUP_SET_CURVE_GFP"}, | ||
119 | {ERR_FUNC(EC_F_EC_GFP_NISTP224_GROUP_SET_CURVE), "ec_GFp_nistp224_group_set_curve"}, | ||
120 | {ERR_FUNC(EC_F_EC_GFP_NISTP224_POINTS_MUL), "ec_GFp_nistp224_points_mul"}, | ||
121 | {ERR_FUNC(EC_F_EC_GFP_NISTP224_POINT_GET_AFFINE_COORDINATES), "ec_GFp_nistp224_point_get_affine_coordinates"}, | ||
122 | {ERR_FUNC(EC_F_EC_GFP_NISTP256_GROUP_SET_CURVE), "ec_GFp_nistp256_group_set_curve"}, | ||
123 | {ERR_FUNC(EC_F_EC_GFP_NISTP256_POINTS_MUL), "ec_GFp_nistp256_points_mul"}, | ||
124 | {ERR_FUNC(EC_F_EC_GFP_NISTP256_POINT_GET_AFFINE_COORDINATES), "ec_GFp_nistp256_point_get_affine_coordinates"}, | ||
125 | {ERR_FUNC(EC_F_EC_GFP_NISTP521_GROUP_SET_CURVE), "ec_GFp_nistp521_group_set_curve"}, | ||
126 | {ERR_FUNC(EC_F_EC_GFP_NISTP521_POINTS_MUL), "ec_GFp_nistp521_points_mul"}, | ||
127 | {ERR_FUNC(EC_F_EC_GFP_NISTP521_POINT_GET_AFFINE_COORDINATES), "ec_GFp_nistp521_point_get_affine_coordinates"}, | ||
128 | {ERR_FUNC(EC_F_EC_GFP_NIST_FIELD_MUL), "ec_GFp_nist_field_mul"}, | ||
129 | {ERR_FUNC(EC_F_EC_GFP_NIST_FIELD_SQR), "ec_GFp_nist_field_sqr"}, | ||
130 | {ERR_FUNC(EC_F_EC_GFP_NIST_GROUP_SET_CURVE), "ec_GFp_nist_group_set_curve"}, | ||
131 | {ERR_FUNC(EC_F_EC_GFP_SIMPLE_GROUP_CHECK_DISCRIMINANT), "ec_GFp_simple_group_check_discriminant"}, | ||
132 | {ERR_FUNC(EC_F_EC_GFP_SIMPLE_GROUP_SET_CURVE), "ec_GFp_simple_group_set_curve"}, | ||
133 | {ERR_FUNC(EC_F_EC_GFP_SIMPLE_GROUP_SET_CURVE_GFP), "EC_GFP_SIMPLE_GROUP_SET_CURVE_GFP"}, | ||
134 | {ERR_FUNC(EC_F_EC_GFP_SIMPLE_GROUP_SET_GENERATOR), "EC_GFP_SIMPLE_GROUP_SET_GENERATOR"}, | ||
135 | {ERR_FUNC(EC_F_EC_GFP_SIMPLE_MAKE_AFFINE), "ec_GFp_simple_make_affine"}, | ||
136 | {ERR_FUNC(EC_F_EC_GFP_SIMPLE_OCT2POINT), "ec_GFp_simple_oct2point"}, | ||
137 | {ERR_FUNC(EC_F_EC_GFP_SIMPLE_POINT2OCT), "ec_GFp_simple_point2oct"}, | ||
138 | {ERR_FUNC(EC_F_EC_GFP_SIMPLE_POINTS_MAKE_AFFINE), "ec_GFp_simple_points_make_affine"}, | ||
139 | {ERR_FUNC(EC_F_EC_GFP_SIMPLE_POINT_GET_AFFINE_COORDINATES), "ec_GFp_simple_point_get_affine_coordinates"}, | ||
140 | {ERR_FUNC(EC_F_EC_GFP_SIMPLE_POINT_GET_AFFINE_COORDINATES_GFP), "EC_GFP_SIMPLE_POINT_GET_AFFINE_COORDINATES_GFP"}, | ||
141 | {ERR_FUNC(EC_F_EC_GFP_SIMPLE_POINT_SET_AFFINE_COORDINATES), "ec_GFp_simple_point_set_affine_coordinates"}, | ||
142 | {ERR_FUNC(EC_F_EC_GFP_SIMPLE_POINT_SET_AFFINE_COORDINATES_GFP), "EC_GFP_SIMPLE_POINT_SET_AFFINE_COORDINATES_GFP"}, | ||
143 | {ERR_FUNC(EC_F_EC_GFP_SIMPLE_SET_COMPRESSED_COORDINATES), "ec_GFp_simple_set_compressed_coordinates"}, | ||
144 | {ERR_FUNC(EC_F_EC_GFP_SIMPLE_SET_COMPRESSED_COORDINATES_GFP), "EC_GFP_SIMPLE_SET_COMPRESSED_COORDINATES_GFP"}, | ||
145 | {ERR_FUNC(EC_F_EC_GROUP_CHECK), "EC_GROUP_check"}, | ||
146 | {ERR_FUNC(EC_F_EC_GROUP_CHECK_DISCRIMINANT), "EC_GROUP_check_discriminant"}, | ||
147 | {ERR_FUNC(EC_F_EC_GROUP_COPY), "EC_GROUP_copy"}, | ||
148 | {ERR_FUNC(EC_F_EC_GROUP_GET0_GENERATOR), "EC_GROUP_get0_generator"}, | ||
149 | {ERR_FUNC(EC_F_EC_GROUP_GET_COFACTOR), "EC_GROUP_get_cofactor"}, | ||
150 | {ERR_FUNC(EC_F_EC_GROUP_GET_CURVE_GF2M), "EC_GROUP_get_curve_GF2m"}, | ||
151 | {ERR_FUNC(EC_F_EC_GROUP_GET_CURVE_GFP), "EC_GROUP_get_curve_GFp"}, | ||
152 | {ERR_FUNC(EC_F_EC_GROUP_GET_DEGREE), "EC_GROUP_get_degree"}, | ||
153 | {ERR_FUNC(EC_F_EC_GROUP_GET_ORDER), "EC_GROUP_get_order"}, | ||
154 | {ERR_FUNC(EC_F_EC_GROUP_GET_PENTANOMIAL_BASIS), "EC_GROUP_get_pentanomial_basis"}, | ||
155 | {ERR_FUNC(EC_F_EC_GROUP_GET_TRINOMIAL_BASIS), "EC_GROUP_get_trinomial_basis"}, | ||
156 | {ERR_FUNC(EC_F_EC_GROUP_NEW), "EC_GROUP_new"}, | ||
157 | {ERR_FUNC(EC_F_EC_GROUP_NEW_BY_CURVE_NAME), "EC_GROUP_new_by_curve_name"}, | ||
158 | {ERR_FUNC(EC_F_EC_GROUP_NEW_FROM_DATA), "EC_GROUP_NEW_FROM_DATA"}, | ||
159 | {ERR_FUNC(EC_F_EC_GROUP_PRECOMPUTE_MULT), "EC_GROUP_precompute_mult"}, | ||
160 | {ERR_FUNC(EC_F_EC_GROUP_SET_CURVE_GF2M), "EC_GROUP_set_curve_GF2m"}, | ||
161 | {ERR_FUNC(EC_F_EC_GROUP_SET_CURVE_GFP), "EC_GROUP_set_curve_GFp"}, | ||
162 | {ERR_FUNC(EC_F_EC_GROUP_SET_EXTRA_DATA), "EC_GROUP_SET_EXTRA_DATA"}, | ||
163 | {ERR_FUNC(EC_F_EC_GROUP_SET_GENERATOR), "EC_GROUP_set_generator"}, | ||
164 | {ERR_FUNC(EC_F_EC_KEY_CHECK_KEY), "EC_KEY_check_key"}, | ||
165 | {ERR_FUNC(EC_F_EC_KEY_COPY), "EC_KEY_copy"}, | ||
166 | {ERR_FUNC(EC_F_EC_KEY_GENERATE_KEY), "EC_KEY_generate_key"}, | ||
167 | {ERR_FUNC(EC_F_EC_KEY_NEW), "EC_KEY_new"}, | ||
168 | {ERR_FUNC(EC_F_EC_KEY_PRINT), "EC_KEY_print"}, | ||
169 | {ERR_FUNC(EC_F_EC_KEY_PRINT_FP), "EC_KEY_print_fp"}, | ||
170 | {ERR_FUNC(EC_F_EC_KEY_SET_PUBLIC_KEY_AFFINE_COORDINATES), "EC_KEY_set_public_key_affine_coordinates"}, | ||
171 | {ERR_FUNC(EC_F_EC_POINTS_MAKE_AFFINE), "EC_POINTs_make_affine"}, | ||
172 | {ERR_FUNC(EC_F_EC_POINT_ADD), "EC_POINT_add"}, | ||
173 | {ERR_FUNC(EC_F_EC_POINT_CMP), "EC_POINT_cmp"}, | ||
174 | {ERR_FUNC(EC_F_EC_POINT_COPY), "EC_POINT_copy"}, | ||
175 | {ERR_FUNC(EC_F_EC_POINT_DBL), "EC_POINT_dbl"}, | ||
176 | {ERR_FUNC(EC_F_EC_POINT_GET_AFFINE_COORDINATES_GF2M), "EC_POINT_get_affine_coordinates_GF2m"}, | ||
177 | {ERR_FUNC(EC_F_EC_POINT_GET_AFFINE_COORDINATES_GFP), "EC_POINT_get_affine_coordinates_GFp"}, | ||
178 | {ERR_FUNC(EC_F_EC_POINT_GET_JPROJECTIVE_COORDINATES_GFP), "EC_POINT_get_Jprojective_coordinates_GFp"}, | ||
179 | {ERR_FUNC(EC_F_EC_POINT_INVERT), "EC_POINT_invert"}, | ||
180 | {ERR_FUNC(EC_F_EC_POINT_IS_AT_INFINITY), "EC_POINT_is_at_infinity"}, | ||
181 | {ERR_FUNC(EC_F_EC_POINT_IS_ON_CURVE), "EC_POINT_is_on_curve"}, | ||
182 | {ERR_FUNC(EC_F_EC_POINT_MAKE_AFFINE), "EC_POINT_make_affine"}, | ||
183 | {ERR_FUNC(EC_F_EC_POINT_MUL), "EC_POINT_mul"}, | ||
184 | {ERR_FUNC(EC_F_EC_POINT_NEW), "EC_POINT_new"}, | ||
185 | {ERR_FUNC(EC_F_EC_POINT_OCT2POINT), "EC_POINT_oct2point"}, | ||
186 | {ERR_FUNC(EC_F_EC_POINT_POINT2OCT), "EC_POINT_point2oct"}, | ||
187 | {ERR_FUNC(EC_F_EC_POINT_SET_AFFINE_COORDINATES_GF2M), "EC_POINT_set_affine_coordinates_GF2m"}, | ||
188 | {ERR_FUNC(EC_F_EC_POINT_SET_AFFINE_COORDINATES_GFP), "EC_POINT_set_affine_coordinates_GFp"}, | ||
189 | {ERR_FUNC(EC_F_EC_POINT_SET_COMPRESSED_COORDINATES_GF2M), "EC_POINT_set_compressed_coordinates_GF2m"}, | ||
190 | {ERR_FUNC(EC_F_EC_POINT_SET_COMPRESSED_COORDINATES_GFP), "EC_POINT_set_compressed_coordinates_GFp"}, | ||
191 | {ERR_FUNC(EC_F_EC_POINT_SET_JPROJECTIVE_COORDINATES_GFP), "EC_POINT_set_Jprojective_coordinates_GFp"}, | ||
192 | {ERR_FUNC(EC_F_EC_POINT_SET_TO_INFINITY), "EC_POINT_set_to_infinity"}, | ||
193 | {ERR_FUNC(EC_F_EC_PRE_COMP_DUP), "EC_PRE_COMP_DUP"}, | ||
194 | {ERR_FUNC(EC_F_EC_PRE_COMP_NEW), "EC_PRE_COMP_NEW"}, | ||
195 | {ERR_FUNC(EC_F_EC_WNAF_MUL), "ec_wNAF_mul"}, | ||
196 | {ERR_FUNC(EC_F_EC_WNAF_PRECOMPUTE_MULT), "ec_wNAF_precompute_mult"}, | ||
197 | {ERR_FUNC(EC_F_I2D_ECPARAMETERS), "i2d_ECParameters"}, | ||
198 | {ERR_FUNC(EC_F_I2D_ECPKPARAMETERS), "i2d_ECPKParameters"}, | ||
199 | {ERR_FUNC(EC_F_I2D_ECPRIVATEKEY), "i2d_ECPrivateKey"}, | ||
200 | {ERR_FUNC(EC_F_I2O_ECPUBLICKEY), "i2o_ECPublicKey"}, | ||
201 | {ERR_FUNC(EC_F_NISTP224_PRE_COMP_NEW), "NISTP224_PRE_COMP_NEW"}, | ||
202 | {ERR_FUNC(EC_F_NISTP256_PRE_COMP_NEW), "NISTP256_PRE_COMP_NEW"}, | ||
203 | {ERR_FUNC(EC_F_NISTP521_PRE_COMP_NEW), "NISTP521_PRE_COMP_NEW"}, | ||
204 | {ERR_FUNC(EC_F_O2I_ECPUBLICKEY), "o2i_ECPublicKey"}, | ||
205 | {ERR_FUNC(EC_F_OLD_EC_PRIV_DECODE), "OLD_EC_PRIV_DECODE"}, | ||
206 | {ERR_FUNC(EC_F_PKEY_EC_CTRL), "PKEY_EC_CTRL"}, | ||
207 | {ERR_FUNC(EC_F_PKEY_EC_CTRL_STR), "PKEY_EC_CTRL_STR"}, | ||
208 | {ERR_FUNC(EC_F_PKEY_EC_DERIVE), "PKEY_EC_DERIVE"}, | ||
209 | {ERR_FUNC(EC_F_PKEY_EC_KEYGEN), "PKEY_EC_KEYGEN"}, | ||
210 | {ERR_FUNC(EC_F_PKEY_EC_PARAMGEN), "PKEY_EC_PARAMGEN"}, | ||
211 | {ERR_FUNC(EC_F_PKEY_EC_SIGN), "PKEY_EC_SIGN"}, | ||
212 | {0, NULL} | ||
213 | }; | ||
214 | |||
215 | static ERR_STRING_DATA EC_str_reasons[] = | ||
216 | { | ||
217 | {ERR_REASON(EC_R_ASN1_ERROR), "asn1 error"}, | ||
218 | {ERR_REASON(EC_R_ASN1_UNKNOWN_FIELD), "asn1 unknown field"}, | ||
219 | {ERR_REASON(EC_R_BIGNUM_OUT_OF_RANGE), "bignum out of range"}, | ||
220 | {ERR_REASON(EC_R_BUFFER_TOO_SMALL), "buffer too small"}, | ||
221 | {ERR_REASON(EC_R_COORDINATES_OUT_OF_RANGE), "coordinates out of range"}, | ||
222 | {ERR_REASON(EC_R_D2I_ECPKPARAMETERS_FAILURE), "d2i ecpkparameters failure"}, | ||
223 | {ERR_REASON(EC_R_DECODE_ERROR), "decode error"}, | ||
224 | {ERR_REASON(EC_R_DISCRIMINANT_IS_ZERO), "discriminant is zero"}, | ||
225 | {ERR_REASON(EC_R_EC_GROUP_NEW_BY_NAME_FAILURE), "ec group new by name failure"}, | ||
226 | {ERR_REASON(EC_R_FIELD_TOO_LARGE), "field too large"}, | ||
227 | {ERR_REASON(EC_R_GF2M_NOT_SUPPORTED), "gf2m not supported"}, | ||
228 | {ERR_REASON(EC_R_GROUP2PKPARAMETERS_FAILURE), "group2pkparameters failure"}, | ||
229 | {ERR_REASON(EC_R_I2D_ECPKPARAMETERS_FAILURE), "i2d ecpkparameters failure"}, | ||
230 | {ERR_REASON(EC_R_INCOMPATIBLE_OBJECTS), "incompatible objects"}, | ||
231 | {ERR_REASON(EC_R_INVALID_ARGUMENT), "invalid argument"}, | ||
232 | {ERR_REASON(EC_R_INVALID_COMPRESSED_POINT), "invalid compressed point"}, | ||
233 | {ERR_REASON(EC_R_INVALID_COMPRESSION_BIT), "invalid compression bit"}, | ||
234 | {ERR_REASON(EC_R_INVALID_CURVE), "invalid curve"}, | ||
235 | {ERR_REASON(EC_R_INVALID_DIGEST_TYPE), "invalid digest type"}, | ||
236 | {ERR_REASON(EC_R_INVALID_ENCODING), "invalid encoding"}, | ||
237 | {ERR_REASON(EC_R_INVALID_FIELD), "invalid field"}, | ||
238 | {ERR_REASON(EC_R_INVALID_FORM), "invalid form"}, | ||
239 | {ERR_REASON(EC_R_INVALID_GROUP_ORDER), "invalid group order"}, | ||
240 | {ERR_REASON(EC_R_INVALID_PENTANOMIAL_BASIS), "invalid pentanomial basis"}, | ||
241 | {ERR_REASON(EC_R_INVALID_PRIVATE_KEY), "invalid private key"}, | ||
242 | {ERR_REASON(EC_R_INVALID_TRINOMIAL_BASIS), "invalid trinomial basis"}, | ||
243 | {ERR_REASON(EC_R_KEYS_NOT_SET), "keys not set"}, | ||
244 | {ERR_REASON(EC_R_MISSING_PARAMETERS), "missing parameters"}, | ||
245 | {ERR_REASON(EC_R_MISSING_PRIVATE_KEY), "missing private key"}, | ||
246 | {ERR_REASON(EC_R_NOT_A_NIST_PRIME), "not a NIST prime"}, | ||
247 | {ERR_REASON(EC_R_NOT_A_SUPPORTED_NIST_PRIME), "not a supported NIST prime"}, | ||
248 | {ERR_REASON(EC_R_NOT_IMPLEMENTED), "not implemented"}, | ||
249 | {ERR_REASON(EC_R_NOT_INITIALIZED), "not initialized"}, | ||
250 | {ERR_REASON(EC_R_NO_FIELD_MOD), "no field mod"}, | ||
251 | {ERR_REASON(EC_R_NO_PARAMETERS_SET), "no parameters set"}, | ||
252 | {ERR_REASON(EC_R_PASSED_NULL_PARAMETER), "passed null parameter"}, | ||
253 | {ERR_REASON(EC_R_PKPARAMETERS2GROUP_FAILURE), "pkparameters2group failure"}, | ||
254 | {ERR_REASON(EC_R_POINT_AT_INFINITY), "point at infinity"}, | ||
255 | {ERR_REASON(EC_R_POINT_IS_NOT_ON_CURVE), "point is not on curve"}, | ||
256 | {ERR_REASON(EC_R_SLOT_FULL), "slot full"}, | ||
257 | {ERR_REASON(EC_R_UNDEFINED_GENERATOR), "undefined generator"}, | ||
258 | {ERR_REASON(EC_R_UNDEFINED_ORDER), "undefined order"}, | ||
259 | {ERR_REASON(EC_R_UNKNOWN_GROUP), "unknown group"}, | ||
260 | {ERR_REASON(EC_R_UNKNOWN_ORDER), "unknown order"}, | ||
261 | {ERR_REASON(EC_R_UNSUPPORTED_FIELD), "unsupported field"}, | ||
262 | {ERR_REASON(EC_R_WRONG_CURVE_PARAMETERS), "wrong curve parameters"}, | ||
263 | {ERR_REASON(EC_R_WRONG_ORDER), "wrong order"}, | ||
264 | {0, NULL} | ||
265 | }; | ||
266 | |||
267 | #endif | ||
268 | |||
269 | void | ||
270 | ERR_load_EC_strings(void) | ||
271 | { | ||
272 | #ifndef OPENSSL_NO_ERR | ||
273 | |||
274 | if (ERR_func_error_string(EC_str_functs[0].error) == NULL) { | ||
275 | ERR_load_strings(0, EC_str_functs); | ||
276 | ERR_load_strings(0, EC_str_reasons); | ||
277 | } | ||
278 | #endif | ||
279 | } | ||
diff --git a/src/lib/libcrypto/ec/ec_key.c b/src/lib/libcrypto/ec/ec_key.c deleted file mode 100644 index fa962e4d0f..0000000000 --- a/src/lib/libcrypto/ec/ec_key.c +++ /dev/null | |||
@@ -1,540 +0,0 @@ | |||
1 | /* $OpenBSD: ec_key.c,v 1.12 2015/09/10 15:56:25 jsing Exp $ */ | ||
2 | /* | ||
3 | * Written by Nils Larsch for the OpenSSL project. | ||
4 | */ | ||
5 | /* ==================================================================== | ||
6 | * Copyright (c) 1998-2005 The OpenSSL Project. All rights reserved. | ||
7 | * | ||
8 | * Redistribution and use in source and binary forms, with or without | ||
9 | * modification, are permitted provided that the following conditions | ||
10 | * are met: | ||
11 | * | ||
12 | * 1. Redistributions of source code must retain the above copyright | ||
13 | * notice, this list of conditions and the following disclaimer. | ||
14 | * | ||
15 | * 2. Redistributions in binary form must reproduce the above copyright | ||
16 | * notice, this list of conditions and the following disclaimer in | ||
17 | * the documentation and/or other materials provided with the | ||
18 | * distribution. | ||
19 | * | ||
20 | * 3. All advertising materials mentioning features or use of this | ||
21 | * software must display the following acknowledgment: | ||
22 | * "This product includes software developed by the OpenSSL Project | ||
23 | * for use in the OpenSSL Toolkit. (http://www.openssl.org/)" | ||
24 | * | ||
25 | * 4. The names "OpenSSL Toolkit" and "OpenSSL Project" must not be used to | ||
26 | * endorse or promote products derived from this software without | ||
27 | * prior written permission. For written permission, please contact | ||
28 | * openssl-core@openssl.org. | ||
29 | * | ||
30 | * 5. Products derived from this software may not be called "OpenSSL" | ||
31 | * nor may "OpenSSL" appear in their names without prior written | ||
32 | * permission of the OpenSSL Project. | ||
33 | * | ||
34 | * 6. Redistributions of any form whatsoever must retain the following | ||
35 | * acknowledgment: | ||
36 | * "This product includes software developed by the OpenSSL Project | ||
37 | * for use in the OpenSSL Toolkit (http://www.openssl.org/)" | ||
38 | * | ||
39 | * THIS SOFTWARE IS PROVIDED BY THE OpenSSL PROJECT ``AS IS'' AND ANY | ||
40 | * EXPRESSED OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE | ||
41 | * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR | ||
42 | * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE OpenSSL PROJECT OR | ||
43 | * ITS CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, | ||
44 | * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT | ||
45 | * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; | ||
46 | * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) | ||
47 | * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, | ||
48 | * STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) | ||
49 | * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED | ||
50 | * OF THE POSSIBILITY OF SUCH DAMAGE. | ||
51 | * ==================================================================== | ||
52 | * | ||
53 | * This product includes cryptographic software written by Eric Young | ||
54 | * (eay@cryptsoft.com). This product includes software written by Tim | ||
55 | * Hudson (tjh@cryptsoft.com). | ||
56 | * | ||
57 | */ | ||
58 | /* ==================================================================== | ||
59 | * Copyright 2002 Sun Microsystems, Inc. ALL RIGHTS RESERVED. | ||
60 | * Portions originally developed by SUN MICROSYSTEMS, INC., and | ||
61 | * contributed to the OpenSSL project. | ||
62 | */ | ||
63 | |||
64 | #include <string.h> | ||
65 | |||
66 | #include <openssl/opensslconf.h> | ||
67 | |||
68 | #include "ec_lcl.h" | ||
69 | #include <openssl/err.h> | ||
70 | |||
71 | EC_KEY * | ||
72 | EC_KEY_new(void) | ||
73 | { | ||
74 | EC_KEY *ret; | ||
75 | |||
76 | ret = malloc(sizeof(EC_KEY)); | ||
77 | if (ret == NULL) { | ||
78 | ECerr(EC_F_EC_KEY_NEW, ERR_R_MALLOC_FAILURE); | ||
79 | return (NULL); | ||
80 | } | ||
81 | ret->version = 1; | ||
82 | ret->flags = 0; | ||
83 | ret->group = NULL; | ||
84 | ret->pub_key = NULL; | ||
85 | ret->priv_key = NULL; | ||
86 | ret->enc_flag = 0; | ||
87 | ret->conv_form = POINT_CONVERSION_UNCOMPRESSED; | ||
88 | ret->references = 1; | ||
89 | ret->method_data = NULL; | ||
90 | return (ret); | ||
91 | } | ||
92 | |||
93 | EC_KEY * | ||
94 | EC_KEY_new_by_curve_name(int nid) | ||
95 | { | ||
96 | EC_KEY *ret = EC_KEY_new(); | ||
97 | if (ret == NULL) | ||
98 | return NULL; | ||
99 | ret->group = EC_GROUP_new_by_curve_name(nid); | ||
100 | if (ret->group == NULL) { | ||
101 | EC_KEY_free(ret); | ||
102 | return NULL; | ||
103 | } | ||
104 | return ret; | ||
105 | } | ||
106 | |||
107 | void | ||
108 | EC_KEY_free(EC_KEY * r) | ||
109 | { | ||
110 | int i; | ||
111 | |||
112 | if (r == NULL) | ||
113 | return; | ||
114 | |||
115 | i = CRYPTO_add(&r->references, -1, CRYPTO_LOCK_EC); | ||
116 | if (i > 0) | ||
117 | return; | ||
118 | |||
119 | EC_GROUP_free(r->group); | ||
120 | EC_POINT_free(r->pub_key); | ||
121 | BN_clear_free(r->priv_key); | ||
122 | |||
123 | EC_EX_DATA_free_all_data(&r->method_data); | ||
124 | |||
125 | explicit_bzero((void *) r, sizeof(EC_KEY)); | ||
126 | |||
127 | free(r); | ||
128 | } | ||
129 | |||
130 | EC_KEY * | ||
131 | EC_KEY_copy(EC_KEY * dest, const EC_KEY * src) | ||
132 | { | ||
133 | EC_EXTRA_DATA *d; | ||
134 | |||
135 | if (dest == NULL || src == NULL) { | ||
136 | ECerr(EC_F_EC_KEY_COPY, ERR_R_PASSED_NULL_PARAMETER); | ||
137 | return NULL; | ||
138 | } | ||
139 | /* copy the parameters */ | ||
140 | if (src->group) { | ||
141 | const EC_METHOD *meth = EC_GROUP_method_of(src->group); | ||
142 | /* clear the old group */ | ||
143 | EC_GROUP_free(dest->group); | ||
144 | dest->group = EC_GROUP_new(meth); | ||
145 | if (dest->group == NULL) | ||
146 | return NULL; | ||
147 | if (!EC_GROUP_copy(dest->group, src->group)) | ||
148 | return NULL; | ||
149 | } | ||
150 | /* copy the public key */ | ||
151 | if (src->pub_key && src->group) { | ||
152 | EC_POINT_free(dest->pub_key); | ||
153 | dest->pub_key = EC_POINT_new(src->group); | ||
154 | if (dest->pub_key == NULL) | ||
155 | return NULL; | ||
156 | if (!EC_POINT_copy(dest->pub_key, src->pub_key)) | ||
157 | return NULL; | ||
158 | } | ||
159 | /* copy the private key */ | ||
160 | if (src->priv_key) { | ||
161 | if (dest->priv_key == NULL) { | ||
162 | dest->priv_key = BN_new(); | ||
163 | if (dest->priv_key == NULL) | ||
164 | return NULL; | ||
165 | } | ||
166 | if (!BN_copy(dest->priv_key, src->priv_key)) | ||
167 | return NULL; | ||
168 | } | ||
169 | /* copy method/extra data */ | ||
170 | EC_EX_DATA_free_all_data(&dest->method_data); | ||
171 | |||
172 | for (d = src->method_data; d != NULL; d = d->next) { | ||
173 | void *t = d->dup_func(d->data); | ||
174 | |||
175 | if (t == NULL) | ||
176 | return 0; | ||
177 | if (!EC_EX_DATA_set_data(&dest->method_data, t, d->dup_func, | ||
178 | d->free_func, d->clear_free_func)) | ||
179 | return 0; | ||
180 | } | ||
181 | |||
182 | /* copy the rest */ | ||
183 | dest->enc_flag = src->enc_flag; | ||
184 | dest->conv_form = src->conv_form; | ||
185 | dest->version = src->version; | ||
186 | dest->flags = src->flags; | ||
187 | |||
188 | return dest; | ||
189 | } | ||
190 | |||
191 | EC_KEY * | ||
192 | EC_KEY_dup(const EC_KEY * ec_key) | ||
193 | { | ||
194 | EC_KEY *ret = EC_KEY_new(); | ||
195 | if (ret == NULL) | ||
196 | return NULL; | ||
197 | if (EC_KEY_copy(ret, ec_key) == NULL) { | ||
198 | EC_KEY_free(ret); | ||
199 | return NULL; | ||
200 | } | ||
201 | return ret; | ||
202 | } | ||
203 | |||
204 | int | ||
205 | EC_KEY_up_ref(EC_KEY * r) | ||
206 | { | ||
207 | int i = CRYPTO_add(&r->references, 1, CRYPTO_LOCK_EC); | ||
208 | return ((i > 1) ? 1 : 0); | ||
209 | } | ||
210 | |||
211 | int | ||
212 | EC_KEY_generate_key(EC_KEY * eckey) | ||
213 | { | ||
214 | int ok = 0; | ||
215 | BN_CTX *ctx = NULL; | ||
216 | BIGNUM *priv_key = NULL, *order = NULL; | ||
217 | EC_POINT *pub_key = NULL; | ||
218 | |||
219 | if (!eckey || !eckey->group) { | ||
220 | ECerr(EC_F_EC_KEY_GENERATE_KEY, ERR_R_PASSED_NULL_PARAMETER); | ||
221 | return 0; | ||
222 | } | ||
223 | if ((order = BN_new()) == NULL) | ||
224 | goto err; | ||
225 | if ((ctx = BN_CTX_new()) == NULL) | ||
226 | goto err; | ||
227 | |||
228 | if (eckey->priv_key == NULL) { | ||
229 | priv_key = BN_new(); | ||
230 | if (priv_key == NULL) | ||
231 | goto err; | ||
232 | } else | ||
233 | priv_key = eckey->priv_key; | ||
234 | |||
235 | if (!EC_GROUP_get_order(eckey->group, order, ctx)) | ||
236 | goto err; | ||
237 | |||
238 | do | ||
239 | if (!BN_rand_range(priv_key, order)) | ||
240 | goto err; | ||
241 | while (BN_is_zero(priv_key)); | ||
242 | |||
243 | if (eckey->pub_key == NULL) { | ||
244 | pub_key = EC_POINT_new(eckey->group); | ||
245 | if (pub_key == NULL) | ||
246 | goto err; | ||
247 | } else | ||
248 | pub_key = eckey->pub_key; | ||
249 | |||
250 | if (!EC_POINT_mul(eckey->group, pub_key, priv_key, NULL, NULL, ctx)) | ||
251 | goto err; | ||
252 | |||
253 | eckey->priv_key = priv_key; | ||
254 | eckey->pub_key = pub_key; | ||
255 | |||
256 | ok = 1; | ||
257 | |||
258 | err: | ||
259 | BN_free(order); | ||
260 | if (pub_key != NULL && eckey->pub_key == NULL) | ||
261 | EC_POINT_free(pub_key); | ||
262 | if (priv_key != NULL && eckey->priv_key == NULL) | ||
263 | BN_free(priv_key); | ||
264 | BN_CTX_free(ctx); | ||
265 | return (ok); | ||
266 | } | ||
267 | |||
268 | int | ||
269 | EC_KEY_check_key(const EC_KEY * eckey) | ||
270 | { | ||
271 | int ok = 0; | ||
272 | BN_CTX *ctx = NULL; | ||
273 | const BIGNUM *order = NULL; | ||
274 | EC_POINT *point = NULL; | ||
275 | |||
276 | if (!eckey || !eckey->group || !eckey->pub_key) { | ||
277 | ECerr(EC_F_EC_KEY_CHECK_KEY, ERR_R_PASSED_NULL_PARAMETER); | ||
278 | return 0; | ||
279 | } | ||
280 | if (EC_POINT_is_at_infinity(eckey->group, eckey->pub_key) > 0) { | ||
281 | ECerr(EC_F_EC_KEY_CHECK_KEY, EC_R_POINT_AT_INFINITY); | ||
282 | goto err; | ||
283 | } | ||
284 | if ((ctx = BN_CTX_new()) == NULL) | ||
285 | goto err; | ||
286 | if ((point = EC_POINT_new(eckey->group)) == NULL) | ||
287 | goto err; | ||
288 | |||
289 | /* testing whether the pub_key is on the elliptic curve */ | ||
290 | if (EC_POINT_is_on_curve(eckey->group, eckey->pub_key, ctx) <= 0) { | ||
291 | ECerr(EC_F_EC_KEY_CHECK_KEY, EC_R_POINT_IS_NOT_ON_CURVE); | ||
292 | goto err; | ||
293 | } | ||
294 | /* testing whether pub_key * order is the point at infinity */ | ||
295 | order = &eckey->group->order; | ||
296 | if (BN_is_zero(order)) { | ||
297 | ECerr(EC_F_EC_KEY_CHECK_KEY, EC_R_INVALID_GROUP_ORDER); | ||
298 | goto err; | ||
299 | } | ||
300 | if (!EC_POINT_mul(eckey->group, point, NULL, eckey->pub_key, order, ctx)) { | ||
301 | ECerr(EC_F_EC_KEY_CHECK_KEY, ERR_R_EC_LIB); | ||
302 | goto err; | ||
303 | } | ||
304 | if (EC_POINT_is_at_infinity(eckey->group, point) <= 0) { | ||
305 | ECerr(EC_F_EC_KEY_CHECK_KEY, EC_R_WRONG_ORDER); | ||
306 | goto err; | ||
307 | } | ||
308 | /* | ||
309 | * in case the priv_key is present : check if generator * priv_key == | ||
310 | * pub_key | ||
311 | */ | ||
312 | if (eckey->priv_key) { | ||
313 | if (BN_cmp(eckey->priv_key, order) >= 0) { | ||
314 | ECerr(EC_F_EC_KEY_CHECK_KEY, EC_R_WRONG_ORDER); | ||
315 | goto err; | ||
316 | } | ||
317 | if (!EC_POINT_mul(eckey->group, point, eckey->priv_key, | ||
318 | NULL, NULL, ctx)) { | ||
319 | ECerr(EC_F_EC_KEY_CHECK_KEY, ERR_R_EC_LIB); | ||
320 | goto err; | ||
321 | } | ||
322 | if (EC_POINT_cmp(eckey->group, point, eckey->pub_key, | ||
323 | ctx) != 0) { | ||
324 | ECerr(EC_F_EC_KEY_CHECK_KEY, EC_R_INVALID_PRIVATE_KEY); | ||
325 | goto err; | ||
326 | } | ||
327 | } | ||
328 | ok = 1; | ||
329 | err: | ||
330 | BN_CTX_free(ctx); | ||
331 | EC_POINT_free(point); | ||
332 | return (ok); | ||
333 | } | ||
334 | |||
335 | int | ||
336 | EC_KEY_set_public_key_affine_coordinates(EC_KEY * key, BIGNUM * x, BIGNUM * y) | ||
337 | { | ||
338 | BN_CTX *ctx = NULL; | ||
339 | BIGNUM *tx, *ty; | ||
340 | EC_POINT *point = NULL; | ||
341 | int ok = 0, tmp_nid, is_char_two = 0; | ||
342 | |||
343 | if (!key || !key->group || !x || !y) { | ||
344 | ECerr(EC_F_EC_KEY_SET_PUBLIC_KEY_AFFINE_COORDINATES, | ||
345 | ERR_R_PASSED_NULL_PARAMETER); | ||
346 | return 0; | ||
347 | } | ||
348 | ctx = BN_CTX_new(); | ||
349 | if (!ctx) | ||
350 | goto err; | ||
351 | |||
352 | point = EC_POINT_new(key->group); | ||
353 | |||
354 | if (!point) | ||
355 | goto err; | ||
356 | |||
357 | tmp_nid = EC_METHOD_get_field_type(EC_GROUP_method_of(key->group)); | ||
358 | |||
359 | if (tmp_nid == NID_X9_62_characteristic_two_field) | ||
360 | is_char_two = 1; | ||
361 | |||
362 | if ((tx = BN_CTX_get(ctx)) == NULL) | ||
363 | goto err; | ||
364 | if ((ty = BN_CTX_get(ctx)) == NULL) | ||
365 | goto err; | ||
366 | |||
367 | #ifndef OPENSSL_NO_EC2M | ||
368 | if (is_char_two) { | ||
369 | if (!EC_POINT_set_affine_coordinates_GF2m(key->group, point, | ||
370 | x, y, ctx)) | ||
371 | goto err; | ||
372 | if (!EC_POINT_get_affine_coordinates_GF2m(key->group, point, | ||
373 | tx, ty, ctx)) | ||
374 | goto err; | ||
375 | } else | ||
376 | #endif | ||
377 | { | ||
378 | if (!EC_POINT_set_affine_coordinates_GFp(key->group, point, | ||
379 | x, y, ctx)) | ||
380 | goto err; | ||
381 | if (!EC_POINT_get_affine_coordinates_GFp(key->group, point, | ||
382 | tx, ty, ctx)) | ||
383 | goto err; | ||
384 | } | ||
385 | /* | ||
386 | * Check if retrieved coordinates match originals: if not values are | ||
387 | * out of range. | ||
388 | */ | ||
389 | if (BN_cmp(x, tx) || BN_cmp(y, ty)) { | ||
390 | ECerr(EC_F_EC_KEY_SET_PUBLIC_KEY_AFFINE_COORDINATES, | ||
391 | EC_R_COORDINATES_OUT_OF_RANGE); | ||
392 | goto err; | ||
393 | } | ||
394 | if (!EC_KEY_set_public_key(key, point)) | ||
395 | goto err; | ||
396 | |||
397 | if (EC_KEY_check_key(key) == 0) | ||
398 | goto err; | ||
399 | |||
400 | ok = 1; | ||
401 | |||
402 | err: | ||
403 | BN_CTX_free(ctx); | ||
404 | EC_POINT_free(point); | ||
405 | return ok; | ||
406 | |||
407 | } | ||
408 | |||
409 | const EC_GROUP * | ||
410 | EC_KEY_get0_group(const EC_KEY * key) | ||
411 | { | ||
412 | return key->group; | ||
413 | } | ||
414 | |||
415 | int | ||
416 | EC_KEY_set_group(EC_KEY * key, const EC_GROUP * group) | ||
417 | { | ||
418 | EC_GROUP_free(key->group); | ||
419 | key->group = EC_GROUP_dup(group); | ||
420 | return (key->group == NULL) ? 0 : 1; | ||
421 | } | ||
422 | |||
423 | const BIGNUM * | ||
424 | EC_KEY_get0_private_key(const EC_KEY * key) | ||
425 | { | ||
426 | return key->priv_key; | ||
427 | } | ||
428 | |||
429 | int | ||
430 | EC_KEY_set_private_key(EC_KEY * key, const BIGNUM * priv_key) | ||
431 | { | ||
432 | BN_clear_free(key->priv_key); | ||
433 | key->priv_key = BN_dup(priv_key); | ||
434 | return (key->priv_key == NULL) ? 0 : 1; | ||
435 | } | ||
436 | |||
437 | const EC_POINT * | ||
438 | EC_KEY_get0_public_key(const EC_KEY * key) | ||
439 | { | ||
440 | return key->pub_key; | ||
441 | } | ||
442 | |||
443 | int | ||
444 | EC_KEY_set_public_key(EC_KEY * key, const EC_POINT * pub_key) | ||
445 | { | ||
446 | EC_POINT_free(key->pub_key); | ||
447 | key->pub_key = EC_POINT_dup(pub_key, key->group); | ||
448 | return (key->pub_key == NULL) ? 0 : 1; | ||
449 | } | ||
450 | |||
451 | unsigned int | ||
452 | EC_KEY_get_enc_flags(const EC_KEY * key) | ||
453 | { | ||
454 | return key->enc_flag; | ||
455 | } | ||
456 | |||
457 | void | ||
458 | EC_KEY_set_enc_flags(EC_KEY * key, unsigned int flags) | ||
459 | { | ||
460 | key->enc_flag = flags; | ||
461 | } | ||
462 | |||
463 | point_conversion_form_t | ||
464 | EC_KEY_get_conv_form(const EC_KEY * key) | ||
465 | { | ||
466 | return key->conv_form; | ||
467 | } | ||
468 | |||
469 | void | ||
470 | EC_KEY_set_conv_form(EC_KEY * key, point_conversion_form_t cform) | ||
471 | { | ||
472 | key->conv_form = cform; | ||
473 | if (key->group != NULL) | ||
474 | EC_GROUP_set_point_conversion_form(key->group, cform); | ||
475 | } | ||
476 | |||
477 | void * | ||
478 | EC_KEY_get_key_method_data(EC_KEY *key, | ||
479 | void *(*dup_func) (void *), | ||
480 | void (*free_func) (void *), | ||
481 | void (*clear_free_func) (void *)) | ||
482 | { | ||
483 | void *ret; | ||
484 | |||
485 | CRYPTO_r_lock(CRYPTO_LOCK_EC); | ||
486 | ret = EC_EX_DATA_get_data(key->method_data, dup_func, free_func, clear_free_func); | ||
487 | CRYPTO_r_unlock(CRYPTO_LOCK_EC); | ||
488 | |||
489 | return ret; | ||
490 | } | ||
491 | |||
492 | void * | ||
493 | EC_KEY_insert_key_method_data(EC_KEY * key, void *data, | ||
494 | void *(*dup_func) (void *), | ||
495 | void (*free_func) (void *), | ||
496 | void (*clear_free_func) (void *)) | ||
497 | { | ||
498 | EC_EXTRA_DATA *ex_data; | ||
499 | |||
500 | CRYPTO_w_lock(CRYPTO_LOCK_EC); | ||
501 | ex_data = EC_EX_DATA_get_data(key->method_data, dup_func, free_func, clear_free_func); | ||
502 | if (ex_data == NULL) | ||
503 | EC_EX_DATA_set_data(&key->method_data, data, dup_func, free_func, clear_free_func); | ||
504 | CRYPTO_w_unlock(CRYPTO_LOCK_EC); | ||
505 | |||
506 | return ex_data; | ||
507 | } | ||
508 | |||
509 | void | ||
510 | EC_KEY_set_asn1_flag(EC_KEY * key, int flag) | ||
511 | { | ||
512 | if (key->group != NULL) | ||
513 | EC_GROUP_set_asn1_flag(key->group, flag); | ||
514 | } | ||
515 | |||
516 | int | ||
517 | EC_KEY_precompute_mult(EC_KEY * key, BN_CTX * ctx) | ||
518 | { | ||
519 | if (key->group == NULL) | ||
520 | return 0; | ||
521 | return EC_GROUP_precompute_mult(key->group, ctx); | ||
522 | } | ||
523 | |||
524 | int | ||
525 | EC_KEY_get_flags(const EC_KEY * key) | ||
526 | { | ||
527 | return key->flags; | ||
528 | } | ||
529 | |||
530 | void | ||
531 | EC_KEY_set_flags(EC_KEY * key, int flags) | ||
532 | { | ||
533 | key->flags |= flags; | ||
534 | } | ||
535 | |||
536 | void | ||
537 | EC_KEY_clear_flags(EC_KEY * key, int flags) | ||
538 | { | ||
539 | key->flags &= ~flags; | ||
540 | } | ||
diff --git a/src/lib/libcrypto/ec/ec_lcl.h b/src/lib/libcrypto/ec/ec_lcl.h deleted file mode 100644 index faed33fe56..0000000000 --- a/src/lib/libcrypto/ec/ec_lcl.h +++ /dev/null | |||
@@ -1,446 +0,0 @@ | |||
1 | /* $OpenBSD: ec_lcl.h,v 1.5 2014/06/12 15:49:29 deraadt Exp $ */ | ||
2 | /* | ||
3 | * Originally written by Bodo Moeller for the OpenSSL project. | ||
4 | */ | ||
5 | /* ==================================================================== | ||
6 | * Copyright (c) 1998-2010 The OpenSSL Project. All rights reserved. | ||
7 | * | ||
8 | * Redistribution and use in source and binary forms, with or without | ||
9 | * modification, are permitted provided that the following conditions | ||
10 | * are met: | ||
11 | * | ||
12 | * 1. Redistributions of source code must retain the above copyright | ||
13 | * notice, this list of conditions and the following disclaimer. | ||
14 | * | ||
15 | * 2. Redistributions in binary form must reproduce the above copyright | ||
16 | * notice, this list of conditions and the following disclaimer in | ||
17 | * the documentation and/or other materials provided with the | ||
18 | * distribution. | ||
19 | * | ||
20 | * 3. All advertising materials mentioning features or use of this | ||
21 | * software must display the following acknowledgment: | ||
22 | * "This product includes software developed by the OpenSSL Project | ||
23 | * for use in the OpenSSL Toolkit. (http://www.openssl.org/)" | ||
24 | * | ||
25 | * 4. The names "OpenSSL Toolkit" and "OpenSSL Project" must not be used to | ||
26 | * endorse or promote products derived from this software without | ||
27 | * prior written permission. For written permission, please contact | ||
28 | * openssl-core@openssl.org. | ||
29 | * | ||
30 | * 5. Products derived from this software may not be called "OpenSSL" | ||
31 | * nor may "OpenSSL" appear in their names without prior written | ||
32 | * permission of the OpenSSL Project. | ||
33 | * | ||
34 | * 6. Redistributions of any form whatsoever must retain the following | ||
35 | * acknowledgment: | ||
36 | * "This product includes software developed by the OpenSSL Project | ||
37 | * for use in the OpenSSL Toolkit (http://www.openssl.org/)" | ||
38 | * | ||
39 | * THIS SOFTWARE IS PROVIDED BY THE OpenSSL PROJECT ``AS IS'' AND ANY | ||
40 | * EXPRESSED OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE | ||
41 | * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR | ||
42 | * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE OpenSSL PROJECT OR | ||
43 | * ITS CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, | ||
44 | * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT | ||
45 | * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; | ||
46 | * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) | ||
47 | * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, | ||
48 | * STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) | ||
49 | * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED | ||
50 | * OF THE POSSIBILITY OF SUCH DAMAGE. | ||
51 | * ==================================================================== | ||
52 | * | ||
53 | * This product includes cryptographic software written by Eric Young | ||
54 | * (eay@cryptsoft.com). This product includes software written by Tim | ||
55 | * Hudson (tjh@cryptsoft.com). | ||
56 | * | ||
57 | */ | ||
58 | /* ==================================================================== | ||
59 | * Copyright 2002 Sun Microsystems, Inc. ALL RIGHTS RESERVED. | ||
60 | * | ||
61 | * Portions of the attached software ("Contribution") are developed by | ||
62 | * SUN MICROSYSTEMS, INC., and are contributed to the OpenSSL project. | ||
63 | * | ||
64 | * The Contribution is licensed pursuant to the OpenSSL open source | ||
65 | * license provided above. | ||
66 | * | ||
67 | * The elliptic curve binary polynomial software is originally written by | ||
68 | * Sheueling Chang Shantz and Douglas Stebila of Sun Microsystems Laboratories. | ||
69 | * | ||
70 | */ | ||
71 | |||
72 | |||
73 | #include <stdlib.h> | ||
74 | |||
75 | #include <openssl/obj_mac.h> | ||
76 | #include <openssl/ec.h> | ||
77 | #include <openssl/bn.h> | ||
78 | |||
79 | #if defined(__SUNPRO_C) | ||
80 | # if __SUNPRO_C >= 0x520 | ||
81 | # pragma error_messages (off,E_ARRAY_OF_INCOMPLETE_NONAME,E_ARRAY_OF_INCOMPLETE) | ||
82 | # endif | ||
83 | #endif | ||
84 | |||
85 | /* Use default functions for poin2oct, oct2point and compressed coordinates */ | ||
86 | #define EC_FLAGS_DEFAULT_OCT 0x1 | ||
87 | |||
88 | /* Structure details are not part of the exported interface, | ||
89 | * so all this may change in future versions. */ | ||
90 | |||
91 | struct ec_method_st { | ||
92 | /* Various method flags */ | ||
93 | int flags; | ||
94 | /* used by EC_METHOD_get_field_type: */ | ||
95 | int field_type; /* a NID */ | ||
96 | |||
97 | /* used by EC_GROUP_new, EC_GROUP_free, EC_GROUP_clear_free, EC_GROUP_copy: */ | ||
98 | int (*group_init)(EC_GROUP *); | ||
99 | void (*group_finish)(EC_GROUP *); | ||
100 | void (*group_clear_finish)(EC_GROUP *); | ||
101 | int (*group_copy)(EC_GROUP *, const EC_GROUP *); | ||
102 | |||
103 | /* used by EC_GROUP_set_curve_GFp, EC_GROUP_get_curve_GFp, */ | ||
104 | /* EC_GROUP_set_curve_GF2m, and EC_GROUP_get_curve_GF2m: */ | ||
105 | int (*group_set_curve)(EC_GROUP *, const BIGNUM *p, const BIGNUM *a, const BIGNUM *b, BN_CTX *); | ||
106 | int (*group_get_curve)(const EC_GROUP *, BIGNUM *p, BIGNUM *a, BIGNUM *b, BN_CTX *); | ||
107 | |||
108 | /* used by EC_GROUP_get_degree: */ | ||
109 | int (*group_get_degree)(const EC_GROUP *); | ||
110 | |||
111 | /* used by EC_GROUP_check: */ | ||
112 | int (*group_check_discriminant)(const EC_GROUP *, BN_CTX *); | ||
113 | |||
114 | /* used by EC_POINT_new, EC_POINT_free, EC_POINT_clear_free, EC_POINT_copy: */ | ||
115 | int (*point_init)(EC_POINT *); | ||
116 | void (*point_finish)(EC_POINT *); | ||
117 | void (*point_clear_finish)(EC_POINT *); | ||
118 | int (*point_copy)(EC_POINT *, const EC_POINT *); | ||
119 | |||
120 | /* used by EC_POINT_set_to_infinity, | ||
121 | * EC_POINT_set_Jprojective_coordinates_GFp, | ||
122 | * EC_POINT_get_Jprojective_coordinates_GFp, | ||
123 | * EC_POINT_set_affine_coordinates_GFp, ..._GF2m, | ||
124 | * EC_POINT_get_affine_coordinates_GFp, ..._GF2m, | ||
125 | * EC_POINT_set_compressed_coordinates_GFp, ..._GF2m: | ||
126 | */ | ||
127 | int (*point_set_to_infinity)(const EC_GROUP *, EC_POINT *); | ||
128 | int (*point_set_Jprojective_coordinates_GFp)(const EC_GROUP *, EC_POINT *, | ||
129 | const BIGNUM *x, const BIGNUM *y, const BIGNUM *z, BN_CTX *); | ||
130 | int (*point_get_Jprojective_coordinates_GFp)(const EC_GROUP *, const EC_POINT *, | ||
131 | BIGNUM *x, BIGNUM *y, BIGNUM *z, BN_CTX *); | ||
132 | int (*point_set_affine_coordinates)(const EC_GROUP *, EC_POINT *, | ||
133 | const BIGNUM *x, const BIGNUM *y, BN_CTX *); | ||
134 | int (*point_get_affine_coordinates)(const EC_GROUP *, const EC_POINT *, | ||
135 | BIGNUM *x, BIGNUM *y, BN_CTX *); | ||
136 | int (*point_set_compressed_coordinates)(const EC_GROUP *, EC_POINT *, | ||
137 | const BIGNUM *x, int y_bit, BN_CTX *); | ||
138 | |||
139 | /* used by EC_POINT_point2oct, EC_POINT_oct2point: */ | ||
140 | size_t (*point2oct)(const EC_GROUP *, const EC_POINT *, point_conversion_form_t form, | ||
141 | unsigned char *buf, size_t len, BN_CTX *); | ||
142 | int (*oct2point)(const EC_GROUP *, EC_POINT *, | ||
143 | const unsigned char *buf, size_t len, BN_CTX *); | ||
144 | |||
145 | /* used by EC_POINT_add, EC_POINT_dbl, ECP_POINT_invert: */ | ||
146 | int (*add)(const EC_GROUP *, EC_POINT *r, const EC_POINT *a, const EC_POINT *b, BN_CTX *); | ||
147 | int (*dbl)(const EC_GROUP *, EC_POINT *r, const EC_POINT *a, BN_CTX *); | ||
148 | int (*invert)(const EC_GROUP *, EC_POINT *, BN_CTX *); | ||
149 | |||
150 | /* used by EC_POINT_is_at_infinity, EC_POINT_is_on_curve, EC_POINT_cmp: */ | ||
151 | int (*is_at_infinity)(const EC_GROUP *, const EC_POINT *); | ||
152 | int (*is_on_curve)(const EC_GROUP *, const EC_POINT *, BN_CTX *); | ||
153 | int (*point_cmp)(const EC_GROUP *, const EC_POINT *a, const EC_POINT *b, BN_CTX *); | ||
154 | |||
155 | /* used by EC_POINT_make_affine, EC_POINTs_make_affine: */ | ||
156 | int (*make_affine)(const EC_GROUP *, EC_POINT *, BN_CTX *); | ||
157 | int (*points_make_affine)(const EC_GROUP *, size_t num, EC_POINT *[], BN_CTX *); | ||
158 | |||
159 | /* used by EC_POINTs_mul, EC_POINT_mul, EC_POINT_precompute_mult, EC_POINT_have_precompute_mult | ||
160 | * (default implementations are used if the 'mul' pointer is 0): */ | ||
161 | int (*mul)(const EC_GROUP *group, EC_POINT *r, const BIGNUM *scalar, | ||
162 | size_t num, const EC_POINT *points[], const BIGNUM *scalars[], BN_CTX *); | ||
163 | int (*precompute_mult)(EC_GROUP *group, BN_CTX *); | ||
164 | int (*have_precompute_mult)(const EC_GROUP *group); | ||
165 | |||
166 | |||
167 | /* internal functions */ | ||
168 | |||
169 | /* 'field_mul', 'field_sqr', and 'field_div' can be used by 'add' and 'dbl' so that | ||
170 | * the same implementations of point operations can be used with different | ||
171 | * optimized implementations of expensive field operations: */ | ||
172 | int (*field_mul)(const EC_GROUP *, BIGNUM *r, const BIGNUM *a, const BIGNUM *b, BN_CTX *); | ||
173 | int (*field_sqr)(const EC_GROUP *, BIGNUM *r, const BIGNUM *a, BN_CTX *); | ||
174 | int (*field_div)(const EC_GROUP *, BIGNUM *r, const BIGNUM *a, const BIGNUM *b, BN_CTX *); | ||
175 | |||
176 | int (*field_encode)(const EC_GROUP *, BIGNUM *r, const BIGNUM *a, BN_CTX *); /* e.g. to Montgomery */ | ||
177 | int (*field_decode)(const EC_GROUP *, BIGNUM *r, const BIGNUM *a, BN_CTX *); /* e.g. from Montgomery */ | ||
178 | int (*field_set_to_one)(const EC_GROUP *, BIGNUM *r, BN_CTX *); | ||
179 | } /* EC_METHOD */; | ||
180 | |||
181 | typedef struct ec_extra_data_st { | ||
182 | struct ec_extra_data_st *next; | ||
183 | void *data; | ||
184 | void *(*dup_func)(void *); | ||
185 | void (*free_func)(void *); | ||
186 | void (*clear_free_func)(void *); | ||
187 | } EC_EXTRA_DATA; /* used in EC_GROUP */ | ||
188 | |||
189 | struct ec_group_st { | ||
190 | const EC_METHOD *meth; | ||
191 | |||
192 | EC_POINT *generator; /* optional */ | ||
193 | BIGNUM order, cofactor; | ||
194 | |||
195 | int curve_name;/* optional NID for named curve */ | ||
196 | int asn1_flag; /* flag to control the asn1 encoding */ | ||
197 | point_conversion_form_t asn1_form; | ||
198 | |||
199 | unsigned char *seed; /* optional seed for parameters (appears in ASN1) */ | ||
200 | size_t seed_len; | ||
201 | |||
202 | EC_EXTRA_DATA *extra_data; /* linked list */ | ||
203 | |||
204 | /* The following members are handled by the method functions, | ||
205 | * even if they appear generic */ | ||
206 | |||
207 | BIGNUM field; /* Field specification. | ||
208 | * For curves over GF(p), this is the modulus; | ||
209 | * for curves over GF(2^m), this is the | ||
210 | * irreducible polynomial defining the field. | ||
211 | */ | ||
212 | |||
213 | int poly[6]; /* Field specification for curves over GF(2^m). | ||
214 | * The irreducible f(t) is then of the form: | ||
215 | * t^poly[0] + t^poly[1] + ... + t^poly[k] | ||
216 | * where m = poly[0] > poly[1] > ... > poly[k] = 0. | ||
217 | * The array is terminated with poly[k+1]=-1. | ||
218 | * All elliptic curve irreducibles have at most 5 | ||
219 | * non-zero terms. | ||
220 | */ | ||
221 | |||
222 | BIGNUM a, b; /* Curve coefficients. | ||
223 | * (Here the assumption is that BIGNUMs can be used | ||
224 | * or abused for all kinds of fields, not just GF(p).) | ||
225 | * For characteristic > 3, the curve is defined | ||
226 | * by a Weierstrass equation of the form | ||
227 | * y^2 = x^3 + a*x + b. | ||
228 | * For characteristic 2, the curve is defined by | ||
229 | * an equation of the form | ||
230 | * y^2 + x*y = x^3 + a*x^2 + b. | ||
231 | */ | ||
232 | |||
233 | int a_is_minus3; /* enable optimized point arithmetics for special case */ | ||
234 | |||
235 | void *field_data1; /* method-specific (e.g., Montgomery structure) */ | ||
236 | void *field_data2; /* method-specific */ | ||
237 | int (*field_mod_func)(BIGNUM *, const BIGNUM *, const BIGNUM *, BN_CTX *); /* method-specific */ | ||
238 | } /* EC_GROUP */; | ||
239 | |||
240 | struct ec_key_st { | ||
241 | int version; | ||
242 | |||
243 | EC_GROUP *group; | ||
244 | |||
245 | EC_POINT *pub_key; | ||
246 | BIGNUM *priv_key; | ||
247 | |||
248 | unsigned int enc_flag; | ||
249 | point_conversion_form_t conv_form; | ||
250 | |||
251 | int references; | ||
252 | int flags; | ||
253 | |||
254 | EC_EXTRA_DATA *method_data; | ||
255 | } /* EC_KEY */; | ||
256 | |||
257 | /* Basically a 'mixin' for extra data, but available for EC_GROUPs/EC_KEYs only | ||
258 | * (with visibility limited to 'package' level for now). | ||
259 | * We use the function pointers as index for retrieval; this obviates | ||
260 | * global ex_data-style index tables. | ||
261 | */ | ||
262 | int EC_EX_DATA_set_data(EC_EXTRA_DATA **, void *data, | ||
263 | void *(*dup_func)(void *), void (*free_func)(void *), void (*clear_free_func)(void *)); | ||
264 | void *EC_EX_DATA_get_data(const EC_EXTRA_DATA *, | ||
265 | void *(*dup_func)(void *), void (*free_func)(void *), void (*clear_free_func)(void *)); | ||
266 | void EC_EX_DATA_free_data(EC_EXTRA_DATA **, | ||
267 | void *(*dup_func)(void *), void (*free_func)(void *), void (*clear_free_func)(void *)); | ||
268 | void EC_EX_DATA_clear_free_data(EC_EXTRA_DATA **, | ||
269 | void *(*dup_func)(void *), void (*free_func)(void *), void (*clear_free_func)(void *)); | ||
270 | void EC_EX_DATA_free_all_data(EC_EXTRA_DATA **); | ||
271 | void EC_EX_DATA_clear_free_all_data(EC_EXTRA_DATA **); | ||
272 | |||
273 | |||
274 | |||
275 | struct ec_point_st { | ||
276 | const EC_METHOD *meth; | ||
277 | |||
278 | /* All members except 'meth' are handled by the method functions, | ||
279 | * even if they appear generic */ | ||
280 | |||
281 | BIGNUM X; | ||
282 | BIGNUM Y; | ||
283 | BIGNUM Z; /* Jacobian projective coordinates: | ||
284 | * (X, Y, Z) represents (X/Z^2, Y/Z^3) if Z != 0 */ | ||
285 | int Z_is_one; /* enable optimized point arithmetics for special case */ | ||
286 | } /* EC_POINT */; | ||
287 | |||
288 | |||
289 | |||
290 | /* method functions in ec_mult.c | ||
291 | * (ec_lib.c uses these as defaults if group->method->mul is 0) */ | ||
292 | int ec_wNAF_mul(const EC_GROUP *group, EC_POINT *r, const BIGNUM *scalar, | ||
293 | size_t num, const EC_POINT *points[], const BIGNUM *scalars[], BN_CTX *); | ||
294 | int ec_wNAF_precompute_mult(EC_GROUP *group, BN_CTX *); | ||
295 | int ec_wNAF_have_precompute_mult(const EC_GROUP *group); | ||
296 | |||
297 | |||
298 | /* method functions in ecp_smpl.c */ | ||
299 | int ec_GFp_simple_group_init(EC_GROUP *); | ||
300 | void ec_GFp_simple_group_finish(EC_GROUP *); | ||
301 | void ec_GFp_simple_group_clear_finish(EC_GROUP *); | ||
302 | int ec_GFp_simple_group_copy(EC_GROUP *, const EC_GROUP *); | ||
303 | int ec_GFp_simple_group_set_curve(EC_GROUP *, const BIGNUM *p, const BIGNUM *a, const BIGNUM *b, BN_CTX *); | ||
304 | int ec_GFp_simple_group_get_curve(const EC_GROUP *, BIGNUM *p, BIGNUM *a, BIGNUM *b, BN_CTX *); | ||
305 | int ec_GFp_simple_group_get_degree(const EC_GROUP *); | ||
306 | int ec_GFp_simple_group_check_discriminant(const EC_GROUP *, BN_CTX *); | ||
307 | int ec_GFp_simple_point_init(EC_POINT *); | ||
308 | void ec_GFp_simple_point_finish(EC_POINT *); | ||
309 | void ec_GFp_simple_point_clear_finish(EC_POINT *); | ||
310 | int ec_GFp_simple_point_copy(EC_POINT *, const EC_POINT *); | ||
311 | int ec_GFp_simple_point_set_to_infinity(const EC_GROUP *, EC_POINT *); | ||
312 | int ec_GFp_simple_set_Jprojective_coordinates_GFp(const EC_GROUP *, EC_POINT *, | ||
313 | const BIGNUM *x, const BIGNUM *y, const BIGNUM *z, BN_CTX *); | ||
314 | int ec_GFp_simple_get_Jprojective_coordinates_GFp(const EC_GROUP *, const EC_POINT *, | ||
315 | BIGNUM *x, BIGNUM *y, BIGNUM *z, BN_CTX *); | ||
316 | int ec_GFp_simple_point_set_affine_coordinates(const EC_GROUP *, EC_POINT *, | ||
317 | const BIGNUM *x, const BIGNUM *y, BN_CTX *); | ||
318 | int ec_GFp_simple_point_get_affine_coordinates(const EC_GROUP *, const EC_POINT *, | ||
319 | BIGNUM *x, BIGNUM *y, BN_CTX *); | ||
320 | int ec_GFp_simple_set_compressed_coordinates(const EC_GROUP *, EC_POINT *, | ||
321 | const BIGNUM *x, int y_bit, BN_CTX *); | ||
322 | size_t ec_GFp_simple_point2oct(const EC_GROUP *, const EC_POINT *, point_conversion_form_t form, | ||
323 | unsigned char *buf, size_t len, BN_CTX *); | ||
324 | int ec_GFp_simple_oct2point(const EC_GROUP *, EC_POINT *, | ||
325 | const unsigned char *buf, size_t len, BN_CTX *); | ||
326 | int ec_GFp_simple_add(const EC_GROUP *, EC_POINT *r, const EC_POINT *a, const EC_POINT *b, BN_CTX *); | ||
327 | int ec_GFp_simple_dbl(const EC_GROUP *, EC_POINT *r, const EC_POINT *a, BN_CTX *); | ||
328 | int ec_GFp_simple_invert(const EC_GROUP *, EC_POINT *, BN_CTX *); | ||
329 | int ec_GFp_simple_is_at_infinity(const EC_GROUP *, const EC_POINT *); | ||
330 | int ec_GFp_simple_is_on_curve(const EC_GROUP *, const EC_POINT *, BN_CTX *); | ||
331 | int ec_GFp_simple_cmp(const EC_GROUP *, const EC_POINT *a, const EC_POINT *b, BN_CTX *); | ||
332 | int ec_GFp_simple_make_affine(const EC_GROUP *, EC_POINT *, BN_CTX *); | ||
333 | int ec_GFp_simple_points_make_affine(const EC_GROUP *, size_t num, EC_POINT *[], BN_CTX *); | ||
334 | int ec_GFp_simple_field_mul(const EC_GROUP *, BIGNUM *r, const BIGNUM *a, const BIGNUM *b, BN_CTX *); | ||
335 | int ec_GFp_simple_field_sqr(const EC_GROUP *, BIGNUM *r, const BIGNUM *a, BN_CTX *); | ||
336 | |||
337 | |||
338 | /* method functions in ecp_mont.c */ | ||
339 | int ec_GFp_mont_group_init(EC_GROUP *); | ||
340 | int ec_GFp_mont_group_set_curve(EC_GROUP *, const BIGNUM *p, const BIGNUM *a, const BIGNUM *b, BN_CTX *); | ||
341 | void ec_GFp_mont_group_finish(EC_GROUP *); | ||
342 | void ec_GFp_mont_group_clear_finish(EC_GROUP *); | ||
343 | int ec_GFp_mont_group_copy(EC_GROUP *, const EC_GROUP *); | ||
344 | int ec_GFp_mont_field_mul(const EC_GROUP *, BIGNUM *r, const BIGNUM *a, const BIGNUM *b, BN_CTX *); | ||
345 | int ec_GFp_mont_field_sqr(const EC_GROUP *, BIGNUM *r, const BIGNUM *a, BN_CTX *); | ||
346 | int ec_GFp_mont_field_encode(const EC_GROUP *, BIGNUM *r, const BIGNUM *a, BN_CTX *); | ||
347 | int ec_GFp_mont_field_decode(const EC_GROUP *, BIGNUM *r, const BIGNUM *a, BN_CTX *); | ||
348 | int ec_GFp_mont_field_set_to_one(const EC_GROUP *, BIGNUM *r, BN_CTX *); | ||
349 | |||
350 | |||
351 | /* method functions in ecp_nist.c */ | ||
352 | int ec_GFp_nist_group_copy(EC_GROUP *dest, const EC_GROUP *src); | ||
353 | int ec_GFp_nist_group_set_curve(EC_GROUP *, const BIGNUM *p, const BIGNUM *a, const BIGNUM *b, BN_CTX *); | ||
354 | int ec_GFp_nist_field_mul(const EC_GROUP *, BIGNUM *r, const BIGNUM *a, const BIGNUM *b, BN_CTX *); | ||
355 | int ec_GFp_nist_field_sqr(const EC_GROUP *, BIGNUM *r, const BIGNUM *a, BN_CTX *); | ||
356 | |||
357 | |||
358 | /* method functions in ec2_smpl.c */ | ||
359 | int ec_GF2m_simple_group_init(EC_GROUP *); | ||
360 | void ec_GF2m_simple_group_finish(EC_GROUP *); | ||
361 | void ec_GF2m_simple_group_clear_finish(EC_GROUP *); | ||
362 | int ec_GF2m_simple_group_copy(EC_GROUP *, const EC_GROUP *); | ||
363 | int ec_GF2m_simple_group_set_curve(EC_GROUP *, const BIGNUM *p, const BIGNUM *a, const BIGNUM *b, BN_CTX *); | ||
364 | int ec_GF2m_simple_group_get_curve(const EC_GROUP *, BIGNUM *p, BIGNUM *a, BIGNUM *b, BN_CTX *); | ||
365 | int ec_GF2m_simple_group_get_degree(const EC_GROUP *); | ||
366 | int ec_GF2m_simple_group_check_discriminant(const EC_GROUP *, BN_CTX *); | ||
367 | int ec_GF2m_simple_point_init(EC_POINT *); | ||
368 | void ec_GF2m_simple_point_finish(EC_POINT *); | ||
369 | void ec_GF2m_simple_point_clear_finish(EC_POINT *); | ||
370 | int ec_GF2m_simple_point_copy(EC_POINT *, const EC_POINT *); | ||
371 | int ec_GF2m_simple_point_set_to_infinity(const EC_GROUP *, EC_POINT *); | ||
372 | int ec_GF2m_simple_point_set_affine_coordinates(const EC_GROUP *, EC_POINT *, | ||
373 | const BIGNUM *x, const BIGNUM *y, BN_CTX *); | ||
374 | int ec_GF2m_simple_point_get_affine_coordinates(const EC_GROUP *, const EC_POINT *, | ||
375 | BIGNUM *x, BIGNUM *y, BN_CTX *); | ||
376 | int ec_GF2m_simple_set_compressed_coordinates(const EC_GROUP *, EC_POINT *, | ||
377 | const BIGNUM *x, int y_bit, BN_CTX *); | ||
378 | size_t ec_GF2m_simple_point2oct(const EC_GROUP *, const EC_POINT *, point_conversion_form_t form, | ||
379 | unsigned char *buf, size_t len, BN_CTX *); | ||
380 | int ec_GF2m_simple_oct2point(const EC_GROUP *, EC_POINT *, | ||
381 | const unsigned char *buf, size_t len, BN_CTX *); | ||
382 | int ec_GF2m_simple_add(const EC_GROUP *, EC_POINT *r, const EC_POINT *a, const EC_POINT *b, BN_CTX *); | ||
383 | int ec_GF2m_simple_dbl(const EC_GROUP *, EC_POINT *r, const EC_POINT *a, BN_CTX *); | ||
384 | int ec_GF2m_simple_invert(const EC_GROUP *, EC_POINT *, BN_CTX *); | ||
385 | int ec_GF2m_simple_is_at_infinity(const EC_GROUP *, const EC_POINT *); | ||
386 | int ec_GF2m_simple_is_on_curve(const EC_GROUP *, const EC_POINT *, BN_CTX *); | ||
387 | int ec_GF2m_simple_cmp(const EC_GROUP *, const EC_POINT *a, const EC_POINT *b, BN_CTX *); | ||
388 | int ec_GF2m_simple_make_affine(const EC_GROUP *, EC_POINT *, BN_CTX *); | ||
389 | int ec_GF2m_simple_points_make_affine(const EC_GROUP *, size_t num, EC_POINT *[], BN_CTX *); | ||
390 | int ec_GF2m_simple_field_mul(const EC_GROUP *, BIGNUM *r, const BIGNUM *a, const BIGNUM *b, BN_CTX *); | ||
391 | int ec_GF2m_simple_field_sqr(const EC_GROUP *, BIGNUM *r, const BIGNUM *a, BN_CTX *); | ||
392 | int ec_GF2m_simple_field_div(const EC_GROUP *, BIGNUM *r, const BIGNUM *a, const BIGNUM *b, BN_CTX *); | ||
393 | |||
394 | |||
395 | /* method functions in ec2_mult.c */ | ||
396 | int ec_GF2m_simple_mul(const EC_GROUP *group, EC_POINT *r, const BIGNUM *scalar, | ||
397 | size_t num, const EC_POINT *points[], const BIGNUM *scalars[], BN_CTX *); | ||
398 | int ec_GF2m_precompute_mult(EC_GROUP *group, BN_CTX *ctx); | ||
399 | int ec_GF2m_have_precompute_mult(const EC_GROUP *group); | ||
400 | |||
401 | /* method functions in ec2_mult.c */ | ||
402 | int ec_GF2m_simple_mul(const EC_GROUP *group, EC_POINT *r, const BIGNUM *scalar, | ||
403 | size_t num, const EC_POINT *points[], const BIGNUM *scalars[], BN_CTX *); | ||
404 | int ec_GF2m_precompute_mult(EC_GROUP *group, BN_CTX *ctx); | ||
405 | int ec_GF2m_have_precompute_mult(const EC_GROUP *group); | ||
406 | |||
407 | #ifndef OPENSSL_EC_NISTP_64_GCC_128 | ||
408 | /* method functions in ecp_nistp224.c */ | ||
409 | int ec_GFp_nistp224_group_init(EC_GROUP *group); | ||
410 | int ec_GFp_nistp224_group_set_curve(EC_GROUP *group, const BIGNUM *p, const BIGNUM *a, const BIGNUM *n, BN_CTX *); | ||
411 | int ec_GFp_nistp224_point_get_affine_coordinates(const EC_GROUP *group, const EC_POINT *point, BIGNUM *x, BIGNUM *y, BN_CTX *ctx); | ||
412 | int ec_GFp_nistp224_mul(const EC_GROUP *group, EC_POINT *r, const BIGNUM *scalar, size_t num, const EC_POINT *points[], const BIGNUM *scalars[], BN_CTX *); | ||
413 | int ec_GFp_nistp224_points_mul(const EC_GROUP *group, EC_POINT *r, const BIGNUM *scalar, size_t num, const EC_POINT *points[], const BIGNUM *scalars[], BN_CTX *ctx); | ||
414 | int ec_GFp_nistp224_precompute_mult(EC_GROUP *group, BN_CTX *ctx); | ||
415 | int ec_GFp_nistp224_have_precompute_mult(const EC_GROUP *group); | ||
416 | |||
417 | /* method functions in ecp_nistp256.c */ | ||
418 | int ec_GFp_nistp256_group_init(EC_GROUP *group); | ||
419 | int ec_GFp_nistp256_group_set_curve(EC_GROUP *group, const BIGNUM *p, const BIGNUM *a, const BIGNUM *n, BN_CTX *); | ||
420 | int ec_GFp_nistp256_point_get_affine_coordinates(const EC_GROUP *group, const EC_POINT *point, BIGNUM *x, BIGNUM *y, BN_CTX *ctx); | ||
421 | int ec_GFp_nistp256_mul(const EC_GROUP *group, EC_POINT *r, const BIGNUM *scalar, size_t num, const EC_POINT *points[], const BIGNUM *scalars[], BN_CTX *); | ||
422 | int ec_GFp_nistp256_points_mul(const EC_GROUP *group, EC_POINT *r, const BIGNUM *scalar, size_t num, const EC_POINT *points[], const BIGNUM *scalars[], BN_CTX *ctx); | ||
423 | int ec_GFp_nistp256_precompute_mult(EC_GROUP *group, BN_CTX *ctx); | ||
424 | int ec_GFp_nistp256_have_precompute_mult(const EC_GROUP *group); | ||
425 | |||
426 | /* method functions in ecp_nistp521.c */ | ||
427 | int ec_GFp_nistp521_group_init(EC_GROUP *group); | ||
428 | int ec_GFp_nistp521_group_set_curve(EC_GROUP *group, const BIGNUM *p, const BIGNUM *a, const BIGNUM *n, BN_CTX *); | ||
429 | int ec_GFp_nistp521_point_get_affine_coordinates(const EC_GROUP *group, const EC_POINT *point, BIGNUM *x, BIGNUM *y, BN_CTX *ctx); | ||
430 | int ec_GFp_nistp521_mul(const EC_GROUP *group, EC_POINT *r, const BIGNUM *scalar, size_t num, const EC_POINT *points[], const BIGNUM *scalars[], BN_CTX *); | ||
431 | int ec_GFp_nistp521_points_mul(const EC_GROUP *group, EC_POINT *r, const BIGNUM *scalar, size_t num, const EC_POINT *points[], const BIGNUM *scalars[], BN_CTX *ctx); | ||
432 | int ec_GFp_nistp521_precompute_mult(EC_GROUP *group, BN_CTX *ctx); | ||
433 | int ec_GFp_nistp521_have_precompute_mult(const EC_GROUP *group); | ||
434 | |||
435 | /* utility functions in ecp_nistputil.c */ | ||
436 | void ec_GFp_nistp_points_make_affine_internal(size_t num, void *point_array, | ||
437 | size_t felem_size, void *tmp_felems, | ||
438 | void (*felem_one)(void *out), | ||
439 | int (*felem_is_zero)(const void *in), | ||
440 | void (*felem_assign)(void *out, const void *in), | ||
441 | void (*felem_square)(void *out, const void *in), | ||
442 | void (*felem_mul)(void *out, const void *in1, const void *in2), | ||
443 | void (*felem_inv)(void *out, const void *in), | ||
444 | void (*felem_contract)(void *out, const void *in)); | ||
445 | void ec_GFp_nistp_recode_scalar_bits(unsigned char *sign, unsigned char *digit, unsigned char in); | ||
446 | #endif | ||
diff --git a/src/lib/libcrypto/ec/ec_lib.c b/src/lib/libcrypto/ec/ec_lib.c deleted file mode 100644 index 2b5abbd4bb..0000000000 --- a/src/lib/libcrypto/ec/ec_lib.c +++ /dev/null | |||
@@ -1,1120 +0,0 @@ | |||
1 | /* $OpenBSD: ec_lib.c,v 1.20 2015/10/13 15:25:18 jsing Exp $ */ | ||
2 | /* | ||
3 | * Originally written by Bodo Moeller for the OpenSSL project. | ||
4 | */ | ||
5 | /* ==================================================================== | ||
6 | * Copyright (c) 1998-2003 The OpenSSL Project. All rights reserved. | ||
7 | * | ||
8 | * Redistribution and use in source and binary forms, with or without | ||
9 | * modification, are permitted provided that the following conditions | ||
10 | * are met: | ||
11 | * | ||
12 | * 1. Redistributions of source code must retain the above copyright | ||
13 | * notice, this list of conditions and the following disclaimer. | ||
14 | * | ||
15 | * 2. Redistributions in binary form must reproduce the above copyright | ||
16 | * notice, this list of conditions and the following disclaimer in | ||
17 | * the documentation and/or other materials provided with the | ||
18 | * distribution. | ||
19 | * | ||
20 | * 3. All advertising materials mentioning features or use of this | ||
21 | * software must display the following acknowledgment: | ||
22 | * "This product includes software developed by the OpenSSL Project | ||
23 | * for use in the OpenSSL Toolkit. (http://www.openssl.org/)" | ||
24 | * | ||
25 | * 4. The names "OpenSSL Toolkit" and "OpenSSL Project" must not be used to | ||
26 | * endorse or promote products derived from this software without | ||
27 | * prior written permission. For written permission, please contact | ||
28 | * openssl-core@openssl.org. | ||
29 | * | ||
30 | * 5. Products derived from this software may not be called "OpenSSL" | ||
31 | * nor may "OpenSSL" appear in their names without prior written | ||
32 | * permission of the OpenSSL Project. | ||
33 | * | ||
34 | * 6. Redistributions of any form whatsoever must retain the following | ||
35 | * acknowledgment: | ||
36 | * "This product includes software developed by the OpenSSL Project | ||
37 | * for use in the OpenSSL Toolkit (http://www.openssl.org/)" | ||
38 | * | ||
39 | * THIS SOFTWARE IS PROVIDED BY THE OpenSSL PROJECT ``AS IS'' AND ANY | ||
40 | * EXPRESSED OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE | ||
41 | * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR | ||
42 | * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE OpenSSL PROJECT OR | ||
43 | * ITS CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, | ||
44 | * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT | ||
45 | * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; | ||
46 | * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) | ||
47 | * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, | ||
48 | * STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) | ||
49 | * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED | ||
50 | * OF THE POSSIBILITY OF SUCH DAMAGE. | ||
51 | * ==================================================================== | ||
52 | * | ||
53 | * This product includes cryptographic software written by Eric Young | ||
54 | * (eay@cryptsoft.com). This product includes software written by Tim | ||
55 | * Hudson (tjh@cryptsoft.com). | ||
56 | * | ||
57 | */ | ||
58 | /* ==================================================================== | ||
59 | * Copyright 2002 Sun Microsystems, Inc. ALL RIGHTS RESERVED. | ||
60 | * Binary polynomial ECC support in OpenSSL originally developed by | ||
61 | * SUN MICROSYSTEMS, INC., and contributed to the OpenSSL project. | ||
62 | */ | ||
63 | |||
64 | #include <string.h> | ||
65 | |||
66 | #include <openssl/opensslconf.h> | ||
67 | |||
68 | #include <openssl/err.h> | ||
69 | #include <openssl/opensslv.h> | ||
70 | |||
71 | #include "ec_lcl.h" | ||
72 | |||
73 | /* functions for EC_GROUP objects */ | ||
74 | |||
75 | EC_GROUP * | ||
76 | EC_GROUP_new(const EC_METHOD * meth) | ||
77 | { | ||
78 | EC_GROUP *ret; | ||
79 | |||
80 | if (meth == NULL) { | ||
81 | ECerr(EC_F_EC_GROUP_NEW, EC_R_SLOT_FULL); | ||
82 | return NULL; | ||
83 | } | ||
84 | if (meth->group_init == 0) { | ||
85 | ECerr(EC_F_EC_GROUP_NEW, ERR_R_SHOULD_NOT_HAVE_BEEN_CALLED); | ||
86 | return NULL; | ||
87 | } | ||
88 | ret = malloc(sizeof *ret); | ||
89 | if (ret == NULL) { | ||
90 | ECerr(EC_F_EC_GROUP_NEW, ERR_R_MALLOC_FAILURE); | ||
91 | return NULL; | ||
92 | } | ||
93 | ret->meth = meth; | ||
94 | |||
95 | ret->extra_data = NULL; | ||
96 | |||
97 | ret->generator = NULL; | ||
98 | BN_init(&ret->order); | ||
99 | BN_init(&ret->cofactor); | ||
100 | |||
101 | ret->curve_name = 0; | ||
102 | ret->asn1_flag = 0; | ||
103 | ret->asn1_form = POINT_CONVERSION_UNCOMPRESSED; | ||
104 | |||
105 | ret->seed = NULL; | ||
106 | ret->seed_len = 0; | ||
107 | |||
108 | if (!meth->group_init(ret)) { | ||
109 | free(ret); | ||
110 | return NULL; | ||
111 | } | ||
112 | return ret; | ||
113 | } | ||
114 | |||
115 | |||
116 | void | ||
117 | EC_GROUP_free(EC_GROUP * group) | ||
118 | { | ||
119 | if (!group) | ||
120 | return; | ||
121 | |||
122 | if (group->meth->group_finish != 0) | ||
123 | group->meth->group_finish(group); | ||
124 | |||
125 | EC_EX_DATA_free_all_data(&group->extra_data); | ||
126 | |||
127 | EC_POINT_free(group->generator); | ||
128 | BN_free(&group->order); | ||
129 | BN_free(&group->cofactor); | ||
130 | |||
131 | free(group->seed); | ||
132 | |||
133 | free(group); | ||
134 | } | ||
135 | |||
136 | |||
137 | void | ||
138 | EC_GROUP_clear_free(EC_GROUP * group) | ||
139 | { | ||
140 | if (!group) | ||
141 | return; | ||
142 | |||
143 | if (group->meth->group_clear_finish != 0) | ||
144 | group->meth->group_clear_finish(group); | ||
145 | else if (group->meth->group_finish != 0) | ||
146 | group->meth->group_finish(group); | ||
147 | |||
148 | EC_EX_DATA_clear_free_all_data(&group->extra_data); | ||
149 | |||
150 | EC_POINT_clear_free(group->generator); | ||
151 | BN_clear_free(&group->order); | ||
152 | BN_clear_free(&group->cofactor); | ||
153 | |||
154 | if (group->seed) { | ||
155 | explicit_bzero(group->seed, group->seed_len); | ||
156 | free(group->seed); | ||
157 | } | ||
158 | explicit_bzero(group, sizeof *group); | ||
159 | free(group); | ||
160 | } | ||
161 | |||
162 | |||
163 | int | ||
164 | EC_GROUP_copy(EC_GROUP * dest, const EC_GROUP * src) | ||
165 | { | ||
166 | EC_EXTRA_DATA *d; | ||
167 | |||
168 | if (dest->meth->group_copy == 0) { | ||
169 | ECerr(EC_F_EC_GROUP_COPY, ERR_R_SHOULD_NOT_HAVE_BEEN_CALLED); | ||
170 | return 0; | ||
171 | } | ||
172 | if (dest->meth != src->meth) { | ||
173 | ECerr(EC_F_EC_GROUP_COPY, EC_R_INCOMPATIBLE_OBJECTS); | ||
174 | return 0; | ||
175 | } | ||
176 | if (dest == src) | ||
177 | return 1; | ||
178 | |||
179 | EC_EX_DATA_free_all_data(&dest->extra_data); | ||
180 | |||
181 | for (d = src->extra_data; d != NULL; d = d->next) { | ||
182 | void *t = d->dup_func(d->data); | ||
183 | |||
184 | if (t == NULL) | ||
185 | return 0; | ||
186 | if (!EC_EX_DATA_set_data(&dest->extra_data, t, d->dup_func, | ||
187 | d->free_func, d->clear_free_func)) | ||
188 | return 0; | ||
189 | } | ||
190 | |||
191 | if (src->generator != NULL) { | ||
192 | if (dest->generator == NULL) { | ||
193 | dest->generator = EC_POINT_new(dest); | ||
194 | if (dest->generator == NULL) | ||
195 | return 0; | ||
196 | } | ||
197 | if (!EC_POINT_copy(dest->generator, src->generator)) | ||
198 | return 0; | ||
199 | } else { | ||
200 | /* src->generator == NULL */ | ||
201 | EC_POINT_clear_free(dest->generator); | ||
202 | dest->generator = NULL; | ||
203 | } | ||
204 | |||
205 | if (!BN_copy(&dest->order, &src->order)) | ||
206 | return 0; | ||
207 | if (!BN_copy(&dest->cofactor, &src->cofactor)) | ||
208 | return 0; | ||
209 | |||
210 | dest->curve_name = src->curve_name; | ||
211 | dest->asn1_flag = src->asn1_flag; | ||
212 | dest->asn1_form = src->asn1_form; | ||
213 | |||
214 | if (src->seed) { | ||
215 | free(dest->seed); | ||
216 | dest->seed = malloc(src->seed_len); | ||
217 | if (dest->seed == NULL) | ||
218 | return 0; | ||
219 | memcpy(dest->seed, src->seed, src->seed_len); | ||
220 | dest->seed_len = src->seed_len; | ||
221 | } else { | ||
222 | free(dest->seed); | ||
223 | dest->seed = NULL; | ||
224 | dest->seed_len = 0; | ||
225 | } | ||
226 | |||
227 | |||
228 | return dest->meth->group_copy(dest, src); | ||
229 | } | ||
230 | |||
231 | |||
232 | EC_GROUP * | ||
233 | EC_GROUP_dup(const EC_GROUP * a) | ||
234 | { | ||
235 | EC_GROUP *t = NULL; | ||
236 | int ok = 0; | ||
237 | |||
238 | if (a == NULL) | ||
239 | return NULL; | ||
240 | |||
241 | if ((t = EC_GROUP_new(a->meth)) == NULL) | ||
242 | return (NULL); | ||
243 | if (!EC_GROUP_copy(t, a)) | ||
244 | goto err; | ||
245 | |||
246 | ok = 1; | ||
247 | |||
248 | err: | ||
249 | if (!ok) { | ||
250 | EC_GROUP_free(t); | ||
251 | return NULL; | ||
252 | } else | ||
253 | return t; | ||
254 | } | ||
255 | |||
256 | |||
257 | const EC_METHOD * | ||
258 | EC_GROUP_method_of(const EC_GROUP *group) | ||
259 | { | ||
260 | return group->meth; | ||
261 | } | ||
262 | |||
263 | |||
264 | int | ||
265 | EC_METHOD_get_field_type(const EC_METHOD *meth) | ||
266 | { | ||
267 | return meth->field_type; | ||
268 | } | ||
269 | |||
270 | |||
271 | int | ||
272 | EC_GROUP_set_generator(EC_GROUP *group, const EC_POINT *generator, | ||
273 | const BIGNUM *order, const BIGNUM *cofactor) | ||
274 | { | ||
275 | if (generator == NULL) { | ||
276 | ECerr(EC_F_EC_GROUP_SET_GENERATOR, ERR_R_PASSED_NULL_PARAMETER); | ||
277 | return 0; | ||
278 | } | ||
279 | if (group->generator == NULL) { | ||
280 | group->generator = EC_POINT_new(group); | ||
281 | if (group->generator == NULL) | ||
282 | return 0; | ||
283 | } | ||
284 | if (!EC_POINT_copy(group->generator, generator)) | ||
285 | return 0; | ||
286 | |||
287 | if (order != NULL) { | ||
288 | if (!BN_copy(&group->order, order)) | ||
289 | return 0; | ||
290 | } else | ||
291 | BN_zero(&group->order); | ||
292 | |||
293 | if (cofactor != NULL) { | ||
294 | if (!BN_copy(&group->cofactor, cofactor)) | ||
295 | return 0; | ||
296 | } else | ||
297 | BN_zero(&group->cofactor); | ||
298 | |||
299 | return 1; | ||
300 | } | ||
301 | |||
302 | |||
303 | const EC_POINT * | ||
304 | EC_GROUP_get0_generator(const EC_GROUP *group) | ||
305 | { | ||
306 | return group->generator; | ||
307 | } | ||
308 | |||
309 | |||
310 | int | ||
311 | EC_GROUP_get_order(const EC_GROUP *group, BIGNUM *order, BN_CTX *ctx) | ||
312 | { | ||
313 | if (!BN_copy(order, &group->order)) | ||
314 | return 0; | ||
315 | |||
316 | return !BN_is_zero(order); | ||
317 | } | ||
318 | |||
319 | |||
320 | int | ||
321 | EC_GROUP_get_cofactor(const EC_GROUP *group, BIGNUM *cofactor, BN_CTX *ctx) | ||
322 | { | ||
323 | if (!BN_copy(cofactor, &group->cofactor)) | ||
324 | return 0; | ||
325 | |||
326 | return !BN_is_zero(&group->cofactor); | ||
327 | } | ||
328 | |||
329 | |||
330 | void | ||
331 | EC_GROUP_set_curve_name(EC_GROUP * group, int nid) | ||
332 | { | ||
333 | group->curve_name = nid; | ||
334 | } | ||
335 | |||
336 | |||
337 | int | ||
338 | EC_GROUP_get_curve_name(const EC_GROUP * group) | ||
339 | { | ||
340 | return group->curve_name; | ||
341 | } | ||
342 | |||
343 | |||
344 | void | ||
345 | EC_GROUP_set_asn1_flag(EC_GROUP * group, int flag) | ||
346 | { | ||
347 | group->asn1_flag = flag; | ||
348 | } | ||
349 | |||
350 | |||
351 | int | ||
352 | EC_GROUP_get_asn1_flag(const EC_GROUP * group) | ||
353 | { | ||
354 | return group->asn1_flag; | ||
355 | } | ||
356 | |||
357 | |||
358 | void | ||
359 | EC_GROUP_set_point_conversion_form(EC_GROUP * group, | ||
360 | point_conversion_form_t form) | ||
361 | { | ||
362 | group->asn1_form = form; | ||
363 | } | ||
364 | |||
365 | |||
366 | point_conversion_form_t | ||
367 | EC_GROUP_get_point_conversion_form(const EC_GROUP * group) | ||
368 | { | ||
369 | return group->asn1_form; | ||
370 | } | ||
371 | |||
372 | |||
373 | size_t | ||
374 | EC_GROUP_set_seed(EC_GROUP * group, const unsigned char *p, size_t len) | ||
375 | { | ||
376 | if (group->seed) { | ||
377 | free(group->seed); | ||
378 | group->seed = NULL; | ||
379 | group->seed_len = 0; | ||
380 | } | ||
381 | if (!len || !p) | ||
382 | return 1; | ||
383 | |||
384 | if ((group->seed = malloc(len)) == NULL) | ||
385 | return 0; | ||
386 | memcpy(group->seed, p, len); | ||
387 | group->seed_len = len; | ||
388 | |||
389 | return len; | ||
390 | } | ||
391 | |||
392 | |||
393 | unsigned char * | ||
394 | EC_GROUP_get0_seed(const EC_GROUP * group) | ||
395 | { | ||
396 | return group->seed; | ||
397 | } | ||
398 | |||
399 | |||
400 | size_t | ||
401 | EC_GROUP_get_seed_len(const EC_GROUP * group) | ||
402 | { | ||
403 | return group->seed_len; | ||
404 | } | ||
405 | |||
406 | |||
407 | int | ||
408 | EC_GROUP_set_curve_GFp(EC_GROUP * group, const BIGNUM * p, const BIGNUM * a, | ||
409 | const BIGNUM * b, BN_CTX * ctx) | ||
410 | { | ||
411 | if (group->meth->group_set_curve == 0) { | ||
412 | ECerr(EC_F_EC_GROUP_SET_CURVE_GFP, ERR_R_SHOULD_NOT_HAVE_BEEN_CALLED); | ||
413 | return 0; | ||
414 | } | ||
415 | return group->meth->group_set_curve(group, p, a, b, ctx); | ||
416 | } | ||
417 | |||
418 | |||
419 | int | ||
420 | EC_GROUP_get_curve_GFp(const EC_GROUP * group, BIGNUM * p, BIGNUM * a, | ||
421 | BIGNUM * b, BN_CTX * ctx) | ||
422 | { | ||
423 | if (group->meth->group_get_curve == 0) { | ||
424 | ECerr(EC_F_EC_GROUP_GET_CURVE_GFP, ERR_R_SHOULD_NOT_HAVE_BEEN_CALLED); | ||
425 | return 0; | ||
426 | } | ||
427 | return group->meth->group_get_curve(group, p, a, b, ctx); | ||
428 | } | ||
429 | |||
430 | #ifndef OPENSSL_NO_EC2M | ||
431 | int | ||
432 | EC_GROUP_set_curve_GF2m(EC_GROUP * group, const BIGNUM * p, const BIGNUM * a, | ||
433 | const BIGNUM * b, BN_CTX * ctx) | ||
434 | { | ||
435 | if (group->meth->group_set_curve == 0) { | ||
436 | ECerr(EC_F_EC_GROUP_SET_CURVE_GF2M, ERR_R_SHOULD_NOT_HAVE_BEEN_CALLED); | ||
437 | return 0; | ||
438 | } | ||
439 | return group->meth->group_set_curve(group, p, a, b, ctx); | ||
440 | } | ||
441 | |||
442 | |||
443 | int | ||
444 | EC_GROUP_get_curve_GF2m(const EC_GROUP * group, BIGNUM * p, BIGNUM * a, | ||
445 | BIGNUM * b, BN_CTX * ctx) | ||
446 | { | ||
447 | if (group->meth->group_get_curve == 0) { | ||
448 | ECerr(EC_F_EC_GROUP_GET_CURVE_GF2M, ERR_R_SHOULD_NOT_HAVE_BEEN_CALLED); | ||
449 | return 0; | ||
450 | } | ||
451 | return group->meth->group_get_curve(group, p, a, b, ctx); | ||
452 | } | ||
453 | #endif | ||
454 | |||
455 | int | ||
456 | EC_GROUP_get_degree(const EC_GROUP * group) | ||
457 | { | ||
458 | if (group->meth->group_get_degree == 0) { | ||
459 | ECerr(EC_F_EC_GROUP_GET_DEGREE, ERR_R_SHOULD_NOT_HAVE_BEEN_CALLED); | ||
460 | return 0; | ||
461 | } | ||
462 | return group->meth->group_get_degree(group); | ||
463 | } | ||
464 | |||
465 | |||
466 | int | ||
467 | EC_GROUP_check_discriminant(const EC_GROUP * group, BN_CTX * ctx) | ||
468 | { | ||
469 | if (group->meth->group_check_discriminant == 0) { | ||
470 | ECerr(EC_F_EC_GROUP_CHECK_DISCRIMINANT, ERR_R_SHOULD_NOT_HAVE_BEEN_CALLED); | ||
471 | return 0; | ||
472 | } | ||
473 | return group->meth->group_check_discriminant(group, ctx); | ||
474 | } | ||
475 | |||
476 | |||
477 | int | ||
478 | EC_GROUP_cmp(const EC_GROUP * a, const EC_GROUP * b, BN_CTX * ctx) | ||
479 | { | ||
480 | int r = 0; | ||
481 | BIGNUM *a1, *a2, *a3, *b1, *b2, *b3; | ||
482 | BN_CTX *ctx_new = NULL; | ||
483 | |||
484 | /* compare the field types */ | ||
485 | if (EC_METHOD_get_field_type(EC_GROUP_method_of(a)) != | ||
486 | EC_METHOD_get_field_type(EC_GROUP_method_of(b))) | ||
487 | return 1; | ||
488 | /* compare the curve name (if present in both) */ | ||
489 | if (EC_GROUP_get_curve_name(a) && EC_GROUP_get_curve_name(b) && | ||
490 | EC_GROUP_get_curve_name(a) != EC_GROUP_get_curve_name(b)) | ||
491 | return 1; | ||
492 | |||
493 | if (!ctx) | ||
494 | ctx_new = ctx = BN_CTX_new(); | ||
495 | if (!ctx) | ||
496 | return -1; | ||
497 | |||
498 | BN_CTX_start(ctx); | ||
499 | if ((a1 = BN_CTX_get(ctx)) == NULL) | ||
500 | goto err; | ||
501 | if ((a2 = BN_CTX_get(ctx)) == NULL) | ||
502 | goto err; | ||
503 | if ((a3 = BN_CTX_get(ctx)) == NULL) | ||
504 | goto err; | ||
505 | if ((b1 = BN_CTX_get(ctx)) == NULL) | ||
506 | goto err; | ||
507 | if ((b2 = BN_CTX_get(ctx)) == NULL) | ||
508 | goto err; | ||
509 | if ((b3 = BN_CTX_get(ctx)) == NULL) | ||
510 | goto err; | ||
511 | |||
512 | /* | ||
513 | * XXX This approach assumes that the external representation of | ||
514 | * curves over the same field type is the same. | ||
515 | */ | ||
516 | if (!a->meth->group_get_curve(a, a1, a2, a3, ctx) || | ||
517 | !b->meth->group_get_curve(b, b1, b2, b3, ctx)) | ||
518 | r = 1; | ||
519 | |||
520 | if (r || BN_cmp(a1, b1) || BN_cmp(a2, b2) || BN_cmp(a3, b3)) | ||
521 | r = 1; | ||
522 | |||
523 | /* XXX EC_POINT_cmp() assumes that the methods are equal */ | ||
524 | if (r || EC_POINT_cmp(a, EC_GROUP_get0_generator(a), | ||
525 | EC_GROUP_get0_generator(b), ctx)) | ||
526 | r = 1; | ||
527 | |||
528 | if (!r) { | ||
529 | /* compare the order and cofactor */ | ||
530 | if (!EC_GROUP_get_order(a, a1, ctx) || | ||
531 | !EC_GROUP_get_order(b, b1, ctx) || | ||
532 | !EC_GROUP_get_cofactor(a, a2, ctx) || | ||
533 | !EC_GROUP_get_cofactor(b, b2, ctx)) | ||
534 | goto err; | ||
535 | if (BN_cmp(a1, b1) || BN_cmp(a2, b2)) | ||
536 | r = 1; | ||
537 | } | ||
538 | BN_CTX_end(ctx); | ||
539 | if (ctx_new) | ||
540 | BN_CTX_free(ctx); | ||
541 | |||
542 | return r; | ||
543 | |||
544 | err: | ||
545 | BN_CTX_end(ctx); | ||
546 | if (ctx_new) | ||
547 | BN_CTX_free(ctx); | ||
548 | return -1; | ||
549 | } | ||
550 | |||
551 | |||
552 | /* this has 'package' visibility */ | ||
553 | int | ||
554 | EC_EX_DATA_set_data(EC_EXTRA_DATA ** ex_data, void *data, | ||
555 | void *(*dup_func) (void *), | ||
556 | void (*free_func) (void *), | ||
557 | void (*clear_free_func) (void *)) | ||
558 | { | ||
559 | EC_EXTRA_DATA *d; | ||
560 | |||
561 | if (ex_data == NULL) | ||
562 | return 0; | ||
563 | |||
564 | for (d = *ex_data; d != NULL; d = d->next) { | ||
565 | if (d->dup_func == dup_func && d->free_func == free_func && | ||
566 | d->clear_free_func == clear_free_func) { | ||
567 | ECerr(EC_F_EC_EX_DATA_SET_DATA, EC_R_SLOT_FULL); | ||
568 | return 0; | ||
569 | } | ||
570 | } | ||
571 | |||
572 | if (data == NULL) | ||
573 | /* no explicit entry needed */ | ||
574 | return 1; | ||
575 | |||
576 | d = malloc(sizeof *d); | ||
577 | if (d == NULL) | ||
578 | return 0; | ||
579 | |||
580 | d->data = data; | ||
581 | d->dup_func = dup_func; | ||
582 | d->free_func = free_func; | ||
583 | d->clear_free_func = clear_free_func; | ||
584 | |||
585 | d->next = *ex_data; | ||
586 | *ex_data = d; | ||
587 | |||
588 | return 1; | ||
589 | } | ||
590 | |||
591 | /* this has 'package' visibility */ | ||
592 | void * | ||
593 | EC_EX_DATA_get_data(const EC_EXTRA_DATA * ex_data, | ||
594 | void *(*dup_func) (void *), | ||
595 | void (*free_func) (void *), | ||
596 | void (*clear_free_func) (void *)) | ||
597 | { | ||
598 | const EC_EXTRA_DATA *d; | ||
599 | |||
600 | for (d = ex_data; d != NULL; d = d->next) { | ||
601 | if (d->dup_func == dup_func && d->free_func == free_func && d->clear_free_func == clear_free_func) | ||
602 | return d->data; | ||
603 | } | ||
604 | |||
605 | return NULL; | ||
606 | } | ||
607 | |||
608 | /* this has 'package' visibility */ | ||
609 | void | ||
610 | EC_EX_DATA_free_data(EC_EXTRA_DATA ** ex_data, | ||
611 | void *(*dup_func) (void *), | ||
612 | void (*free_func) (void *), | ||
613 | void (*clear_free_func) (void *)) | ||
614 | { | ||
615 | EC_EXTRA_DATA **p; | ||
616 | |||
617 | if (ex_data == NULL) | ||
618 | return; | ||
619 | |||
620 | for (p = ex_data; *p != NULL; p = &((*p)->next)) { | ||
621 | if ((*p)->dup_func == dup_func && | ||
622 | (*p)->free_func == free_func && | ||
623 | (*p)->clear_free_func == clear_free_func) { | ||
624 | EC_EXTRA_DATA *next = (*p)->next; | ||
625 | |||
626 | (*p)->free_func((*p)->data); | ||
627 | free(*p); | ||
628 | |||
629 | *p = next; | ||
630 | return; | ||
631 | } | ||
632 | } | ||
633 | } | ||
634 | |||
635 | /* this has 'package' visibility */ | ||
636 | void | ||
637 | EC_EX_DATA_clear_free_data(EC_EXTRA_DATA ** ex_data, | ||
638 | void *(*dup_func) (void *), | ||
639 | void (*free_func) (void *), | ||
640 | void (*clear_free_func) (void *)) | ||
641 | { | ||
642 | EC_EXTRA_DATA **p; | ||
643 | |||
644 | if (ex_data == NULL) | ||
645 | return; | ||
646 | |||
647 | for (p = ex_data; *p != NULL; p = &((*p)->next)) { | ||
648 | if ((*p)->dup_func == dup_func && | ||
649 | (*p)->free_func == free_func && | ||
650 | (*p)->clear_free_func == clear_free_func) { | ||
651 | EC_EXTRA_DATA *next = (*p)->next; | ||
652 | |||
653 | (*p)->clear_free_func((*p)->data); | ||
654 | free(*p); | ||
655 | |||
656 | *p = next; | ||
657 | return; | ||
658 | } | ||
659 | } | ||
660 | } | ||
661 | |||
662 | /* this has 'package' visibility */ | ||
663 | void | ||
664 | EC_EX_DATA_free_all_data(EC_EXTRA_DATA ** ex_data) | ||
665 | { | ||
666 | EC_EXTRA_DATA *d; | ||
667 | |||
668 | if (ex_data == NULL) | ||
669 | return; | ||
670 | |||
671 | d = *ex_data; | ||
672 | while (d) { | ||
673 | EC_EXTRA_DATA *next = d->next; | ||
674 | |||
675 | d->free_func(d->data); | ||
676 | free(d); | ||
677 | |||
678 | d = next; | ||
679 | } | ||
680 | *ex_data = NULL; | ||
681 | } | ||
682 | |||
683 | /* this has 'package' visibility */ | ||
684 | void | ||
685 | EC_EX_DATA_clear_free_all_data(EC_EXTRA_DATA ** ex_data) | ||
686 | { | ||
687 | EC_EXTRA_DATA *d; | ||
688 | |||
689 | if (ex_data == NULL) | ||
690 | return; | ||
691 | |||
692 | d = *ex_data; | ||
693 | while (d) { | ||
694 | EC_EXTRA_DATA *next = d->next; | ||
695 | |||
696 | d->clear_free_func(d->data); | ||
697 | free(d); | ||
698 | |||
699 | d = next; | ||
700 | } | ||
701 | *ex_data = NULL; | ||
702 | } | ||
703 | |||
704 | |||
705 | /* functions for EC_POINT objects */ | ||
706 | |||
707 | EC_POINT * | ||
708 | EC_POINT_new(const EC_GROUP * group) | ||
709 | { | ||
710 | EC_POINT *ret; | ||
711 | |||
712 | if (group == NULL) { | ||
713 | ECerr(EC_F_EC_POINT_NEW, ERR_R_PASSED_NULL_PARAMETER); | ||
714 | return NULL; | ||
715 | } | ||
716 | if (group->meth->point_init == 0) { | ||
717 | ECerr(EC_F_EC_POINT_NEW, ERR_R_SHOULD_NOT_HAVE_BEEN_CALLED); | ||
718 | return NULL; | ||
719 | } | ||
720 | ret = malloc(sizeof *ret); | ||
721 | if (ret == NULL) { | ||
722 | ECerr(EC_F_EC_POINT_NEW, ERR_R_MALLOC_FAILURE); | ||
723 | return NULL; | ||
724 | } | ||
725 | ret->meth = group->meth; | ||
726 | |||
727 | if (!ret->meth->point_init(ret)) { | ||
728 | free(ret); | ||
729 | return NULL; | ||
730 | } | ||
731 | return ret; | ||
732 | } | ||
733 | |||
734 | |||
735 | void | ||
736 | EC_POINT_free(EC_POINT * point) | ||
737 | { | ||
738 | if (!point) | ||
739 | return; | ||
740 | |||
741 | if (point->meth->point_finish != 0) | ||
742 | point->meth->point_finish(point); | ||
743 | free(point); | ||
744 | } | ||
745 | |||
746 | |||
747 | void | ||
748 | EC_POINT_clear_free(EC_POINT * point) | ||
749 | { | ||
750 | if (!point) | ||
751 | return; | ||
752 | |||
753 | if (point->meth->point_clear_finish != 0) | ||
754 | point->meth->point_clear_finish(point); | ||
755 | else if (point->meth->point_finish != 0) | ||
756 | point->meth->point_finish(point); | ||
757 | explicit_bzero(point, sizeof *point); | ||
758 | free(point); | ||
759 | } | ||
760 | |||
761 | |||
762 | int | ||
763 | EC_POINT_copy(EC_POINT * dest, const EC_POINT * src) | ||
764 | { | ||
765 | if (dest->meth->point_copy == 0) { | ||
766 | ECerr(EC_F_EC_POINT_COPY, ERR_R_SHOULD_NOT_HAVE_BEEN_CALLED); | ||
767 | return 0; | ||
768 | } | ||
769 | if (dest->meth != src->meth) { | ||
770 | ECerr(EC_F_EC_POINT_COPY, EC_R_INCOMPATIBLE_OBJECTS); | ||
771 | return 0; | ||
772 | } | ||
773 | if (dest == src) | ||
774 | return 1; | ||
775 | return dest->meth->point_copy(dest, src); | ||
776 | } | ||
777 | |||
778 | |||
779 | EC_POINT * | ||
780 | EC_POINT_dup(const EC_POINT * a, const EC_GROUP * group) | ||
781 | { | ||
782 | EC_POINT *t; | ||
783 | int r; | ||
784 | |||
785 | if (a == NULL) | ||
786 | return NULL; | ||
787 | |||
788 | t = EC_POINT_new(group); | ||
789 | if (t == NULL) | ||
790 | return (NULL); | ||
791 | r = EC_POINT_copy(t, a); | ||
792 | if (!r) { | ||
793 | EC_POINT_free(t); | ||
794 | return NULL; | ||
795 | } else | ||
796 | return t; | ||
797 | } | ||
798 | |||
799 | |||
800 | const EC_METHOD * | ||
801 | EC_POINT_method_of(const EC_POINT * point) | ||
802 | { | ||
803 | return point->meth; | ||
804 | } | ||
805 | |||
806 | |||
807 | int | ||
808 | EC_POINT_set_to_infinity(const EC_GROUP * group, EC_POINT * point) | ||
809 | { | ||
810 | if (group->meth->point_set_to_infinity == 0) { | ||
811 | ECerr(EC_F_EC_POINT_SET_TO_INFINITY, ERR_R_SHOULD_NOT_HAVE_BEEN_CALLED); | ||
812 | return 0; | ||
813 | } | ||
814 | if (group->meth != point->meth) { | ||
815 | ECerr(EC_F_EC_POINT_SET_TO_INFINITY, EC_R_INCOMPATIBLE_OBJECTS); | ||
816 | return 0; | ||
817 | } | ||
818 | return group->meth->point_set_to_infinity(group, point); | ||
819 | } | ||
820 | |||
821 | |||
822 | int | ||
823 | EC_POINT_set_Jprojective_coordinates_GFp(const EC_GROUP *group, EC_POINT *point, | ||
824 | const BIGNUM *x, const BIGNUM *y, const BIGNUM *z, BN_CTX *ctx) | ||
825 | { | ||
826 | if (group->meth->point_set_Jprojective_coordinates_GFp == 0) { | ||
827 | ECerr(EC_F_EC_POINT_SET_JPROJECTIVE_COORDINATES_GFP, ERR_R_SHOULD_NOT_HAVE_BEEN_CALLED); | ||
828 | return 0; | ||
829 | } | ||
830 | if (group->meth != point->meth) { | ||
831 | ECerr(EC_F_EC_POINT_SET_JPROJECTIVE_COORDINATES_GFP, EC_R_INCOMPATIBLE_OBJECTS); | ||
832 | return 0; | ||
833 | } | ||
834 | return group->meth->point_set_Jprojective_coordinates_GFp(group, point, x, y, z, ctx); | ||
835 | } | ||
836 | |||
837 | |||
838 | int | ||
839 | EC_POINT_get_Jprojective_coordinates_GFp(const EC_GROUP *group, | ||
840 | const EC_POINT *point, BIGNUM *x, BIGNUM *y, BIGNUM *z, BN_CTX *ctx) | ||
841 | { | ||
842 | if (group->meth->point_get_Jprojective_coordinates_GFp == 0) { | ||
843 | ECerr(EC_F_EC_POINT_GET_JPROJECTIVE_COORDINATES_GFP, ERR_R_SHOULD_NOT_HAVE_BEEN_CALLED); | ||
844 | return 0; | ||
845 | } | ||
846 | if (group->meth != point->meth) { | ||
847 | ECerr(EC_F_EC_POINT_GET_JPROJECTIVE_COORDINATES_GFP, EC_R_INCOMPATIBLE_OBJECTS); | ||
848 | return 0; | ||
849 | } | ||
850 | return group->meth->point_get_Jprojective_coordinates_GFp(group, point, x, y, z, ctx); | ||
851 | } | ||
852 | |||
853 | |||
854 | int | ||
855 | EC_POINT_set_affine_coordinates_GFp(const EC_GROUP *group, EC_POINT *point, | ||
856 | const BIGNUM *x, const BIGNUM *y, BN_CTX *ctx) | ||
857 | { | ||
858 | if (group->meth->point_set_affine_coordinates == 0) { | ||
859 | ECerr(EC_F_EC_POINT_SET_AFFINE_COORDINATES_GFP, ERR_R_SHOULD_NOT_HAVE_BEEN_CALLED); | ||
860 | return 0; | ||
861 | } | ||
862 | if (group->meth != point->meth) { | ||
863 | ECerr(EC_F_EC_POINT_SET_AFFINE_COORDINATES_GFP, EC_R_INCOMPATIBLE_OBJECTS); | ||
864 | return 0; | ||
865 | } | ||
866 | return group->meth->point_set_affine_coordinates(group, point, x, y, ctx); | ||
867 | } | ||
868 | |||
869 | #ifndef OPENSSL_NO_EC2M | ||
870 | int | ||
871 | EC_POINT_set_affine_coordinates_GF2m(const EC_GROUP *group, EC_POINT *point, | ||
872 | const BIGNUM *x, const BIGNUM *y, BN_CTX *ctx) | ||
873 | { | ||
874 | if (group->meth->point_set_affine_coordinates == 0) { | ||
875 | ECerr(EC_F_EC_POINT_SET_AFFINE_COORDINATES_GF2M, ERR_R_SHOULD_NOT_HAVE_BEEN_CALLED); | ||
876 | return 0; | ||
877 | } | ||
878 | if (group->meth != point->meth) { | ||
879 | ECerr(EC_F_EC_POINT_SET_AFFINE_COORDINATES_GF2M, EC_R_INCOMPATIBLE_OBJECTS); | ||
880 | return 0; | ||
881 | } | ||
882 | return group->meth->point_set_affine_coordinates(group, point, x, y, ctx); | ||
883 | } | ||
884 | #endif | ||
885 | |||
886 | int | ||
887 | EC_POINT_get_affine_coordinates_GFp(const EC_GROUP *group, const EC_POINT *point, | ||
888 | BIGNUM *x, BIGNUM *y, BN_CTX *ctx) | ||
889 | { | ||
890 | if (group->meth->point_get_affine_coordinates == 0) { | ||
891 | ECerr(EC_F_EC_POINT_GET_AFFINE_COORDINATES_GFP, ERR_R_SHOULD_NOT_HAVE_BEEN_CALLED); | ||
892 | return 0; | ||
893 | } | ||
894 | if (group->meth != point->meth) { | ||
895 | ECerr(EC_F_EC_POINT_GET_AFFINE_COORDINATES_GFP, EC_R_INCOMPATIBLE_OBJECTS); | ||
896 | return 0; | ||
897 | } | ||
898 | return group->meth->point_get_affine_coordinates(group, point, x, y, ctx); | ||
899 | } | ||
900 | |||
901 | #ifndef OPENSSL_NO_EC2M | ||
902 | int | ||
903 | EC_POINT_get_affine_coordinates_GF2m(const EC_GROUP *group, const EC_POINT *point, | ||
904 | BIGNUM *x, BIGNUM *y, BN_CTX *ctx) | ||
905 | { | ||
906 | if (group->meth->point_get_affine_coordinates == 0) { | ||
907 | ECerr(EC_F_EC_POINT_GET_AFFINE_COORDINATES_GF2M, ERR_R_SHOULD_NOT_HAVE_BEEN_CALLED); | ||
908 | return 0; | ||
909 | } | ||
910 | if (group->meth != point->meth) { | ||
911 | ECerr(EC_F_EC_POINT_GET_AFFINE_COORDINATES_GF2M, EC_R_INCOMPATIBLE_OBJECTS); | ||
912 | return 0; | ||
913 | } | ||
914 | return group->meth->point_get_affine_coordinates(group, point, x, y, ctx); | ||
915 | } | ||
916 | #endif | ||
917 | |||
918 | int | ||
919 | EC_POINT_add(const EC_GROUP *group, EC_POINT *r, const EC_POINT *a, | ||
920 | const EC_POINT *b, BN_CTX *ctx) | ||
921 | { | ||
922 | if (group->meth->add == 0) { | ||
923 | ECerr(EC_F_EC_POINT_ADD, ERR_R_SHOULD_NOT_HAVE_BEEN_CALLED); | ||
924 | return 0; | ||
925 | } | ||
926 | if ((group->meth != r->meth) || (r->meth != a->meth) || (a->meth != b->meth)) { | ||
927 | ECerr(EC_F_EC_POINT_ADD, EC_R_INCOMPATIBLE_OBJECTS); | ||
928 | return 0; | ||
929 | } | ||
930 | return group->meth->add(group, r, a, b, ctx); | ||
931 | } | ||
932 | |||
933 | |||
934 | int | ||
935 | EC_POINT_dbl(const EC_GROUP *group, EC_POINT *r, const EC_POINT *a, BN_CTX *ctx) | ||
936 | { | ||
937 | if (group->meth->dbl == 0) { | ||
938 | ECerr(EC_F_EC_POINT_DBL, ERR_R_SHOULD_NOT_HAVE_BEEN_CALLED); | ||
939 | return 0; | ||
940 | } | ||
941 | if ((group->meth != r->meth) || (r->meth != a->meth)) { | ||
942 | ECerr(EC_F_EC_POINT_DBL, EC_R_INCOMPATIBLE_OBJECTS); | ||
943 | return 0; | ||
944 | } | ||
945 | return group->meth->dbl(group, r, a, ctx); | ||
946 | } | ||
947 | |||
948 | |||
949 | int | ||
950 | EC_POINT_invert(const EC_GROUP *group, EC_POINT *a, BN_CTX *ctx) | ||
951 | { | ||
952 | if (group->meth->invert == 0) { | ||
953 | ECerr(EC_F_EC_POINT_INVERT, ERR_R_SHOULD_NOT_HAVE_BEEN_CALLED); | ||
954 | return 0; | ||
955 | } | ||
956 | if (group->meth != a->meth) { | ||
957 | ECerr(EC_F_EC_POINT_INVERT, EC_R_INCOMPATIBLE_OBJECTS); | ||
958 | return 0; | ||
959 | } | ||
960 | return group->meth->invert(group, a, ctx); | ||
961 | } | ||
962 | |||
963 | |||
964 | int | ||
965 | EC_POINT_is_at_infinity(const EC_GROUP *group, const EC_POINT *point) | ||
966 | { | ||
967 | if (group->meth->is_at_infinity == 0) { | ||
968 | ECerr(EC_F_EC_POINT_IS_AT_INFINITY, ERR_R_SHOULD_NOT_HAVE_BEEN_CALLED); | ||
969 | return 0; | ||
970 | } | ||
971 | if (group->meth != point->meth) { | ||
972 | ECerr(EC_F_EC_POINT_IS_AT_INFINITY, EC_R_INCOMPATIBLE_OBJECTS); | ||
973 | return 0; | ||
974 | } | ||
975 | return group->meth->is_at_infinity(group, point); | ||
976 | } | ||
977 | |||
978 | |||
979 | int | ||
980 | EC_POINT_is_on_curve(const EC_GROUP * group, const EC_POINT * point, BN_CTX * ctx) | ||
981 | { | ||
982 | if (group->meth->is_on_curve == 0) { | ||
983 | ECerr(EC_F_EC_POINT_IS_ON_CURVE, ERR_R_SHOULD_NOT_HAVE_BEEN_CALLED); | ||
984 | return 0; | ||
985 | } | ||
986 | if (group->meth != point->meth) { | ||
987 | ECerr(EC_F_EC_POINT_IS_ON_CURVE, EC_R_INCOMPATIBLE_OBJECTS); | ||
988 | return 0; | ||
989 | } | ||
990 | return group->meth->is_on_curve(group, point, ctx); | ||
991 | } | ||
992 | |||
993 | |||
994 | int | ||
995 | EC_POINT_cmp(const EC_GROUP *group, const EC_POINT *a, const EC_POINT *b, | ||
996 | BN_CTX * ctx) | ||
997 | { | ||
998 | if (group->meth->point_cmp == 0) { | ||
999 | ECerr(EC_F_EC_POINT_CMP, ERR_R_SHOULD_NOT_HAVE_BEEN_CALLED); | ||
1000 | return -1; | ||
1001 | } | ||
1002 | if ((group->meth != a->meth) || (a->meth != b->meth)) { | ||
1003 | ECerr(EC_F_EC_POINT_CMP, EC_R_INCOMPATIBLE_OBJECTS); | ||
1004 | return -1; | ||
1005 | } | ||
1006 | return group->meth->point_cmp(group, a, b, ctx); | ||
1007 | } | ||
1008 | |||
1009 | |||
1010 | int | ||
1011 | EC_POINT_make_affine(const EC_GROUP *group, EC_POINT *point, BN_CTX *ctx) | ||
1012 | { | ||
1013 | if (group->meth->make_affine == 0) { | ||
1014 | ECerr(EC_F_EC_POINT_MAKE_AFFINE, ERR_R_SHOULD_NOT_HAVE_BEEN_CALLED); | ||
1015 | return 0; | ||
1016 | } | ||
1017 | if (group->meth != point->meth) { | ||
1018 | ECerr(EC_F_EC_POINT_MAKE_AFFINE, EC_R_INCOMPATIBLE_OBJECTS); | ||
1019 | return 0; | ||
1020 | } | ||
1021 | return group->meth->make_affine(group, point, ctx); | ||
1022 | } | ||
1023 | |||
1024 | |||
1025 | int | ||
1026 | EC_POINTs_make_affine(const EC_GROUP *group, size_t num, EC_POINT *points[], | ||
1027 | BN_CTX *ctx) | ||
1028 | { | ||
1029 | size_t i; | ||
1030 | |||
1031 | if (group->meth->points_make_affine == 0) { | ||
1032 | ECerr(EC_F_EC_POINTS_MAKE_AFFINE, ERR_R_SHOULD_NOT_HAVE_BEEN_CALLED); | ||
1033 | return 0; | ||
1034 | } | ||
1035 | for (i = 0; i < num; i++) { | ||
1036 | if (group->meth != points[i]->meth) { | ||
1037 | ECerr(EC_F_EC_POINTS_MAKE_AFFINE, EC_R_INCOMPATIBLE_OBJECTS); | ||
1038 | return 0; | ||
1039 | } | ||
1040 | } | ||
1041 | return group->meth->points_make_affine(group, num, points, ctx); | ||
1042 | } | ||
1043 | |||
1044 | |||
1045 | /* Functions for point multiplication. | ||
1046 | * | ||
1047 | * If group->meth->mul is 0, we use the wNAF-based implementations in ec_mult.c; | ||
1048 | * otherwise we dispatch through methods. | ||
1049 | */ | ||
1050 | |||
1051 | int | ||
1052 | EC_POINTs_mul(const EC_GROUP *group, EC_POINT *r, const BIGNUM *scalar, | ||
1053 | size_t num, const EC_POINT *points[], const BIGNUM *scalars[], BN_CTX *ctx) | ||
1054 | { | ||
1055 | if (group->meth->mul == 0) | ||
1056 | /* use default */ | ||
1057 | return ec_wNAF_mul(group, r, scalar, num, points, scalars, ctx); | ||
1058 | |||
1059 | return group->meth->mul(group, r, scalar, num, points, scalars, ctx); | ||
1060 | } | ||
1061 | |||
1062 | int | ||
1063 | EC_POINT_mul(const EC_GROUP *group, EC_POINT *r, const BIGNUM *g_scalar, | ||
1064 | const EC_POINT *point, const BIGNUM *p_scalar, BN_CTX *ctx) | ||
1065 | { | ||
1066 | /* just a convenient interface to EC_POINTs_mul() */ | ||
1067 | |||
1068 | const EC_POINT *points[1]; | ||
1069 | const BIGNUM *scalars[1]; | ||
1070 | |||
1071 | points[0] = point; | ||
1072 | scalars[0] = p_scalar; | ||
1073 | |||
1074 | return EC_POINTs_mul(group, r, g_scalar, | ||
1075 | (point != NULL && p_scalar != NULL), | ||
1076 | points, scalars, ctx); | ||
1077 | } | ||
1078 | |||
1079 | int | ||
1080 | EC_GROUP_precompute_mult(EC_GROUP * group, BN_CTX * ctx) | ||
1081 | { | ||
1082 | if (group->meth->mul == 0) | ||
1083 | /* use default */ | ||
1084 | return ec_wNAF_precompute_mult(group, ctx); | ||
1085 | |||
1086 | if (group->meth->precompute_mult != 0) | ||
1087 | return group->meth->precompute_mult(group, ctx); | ||
1088 | else | ||
1089 | return 1; /* nothing to do, so report success */ | ||
1090 | } | ||
1091 | |||
1092 | int | ||
1093 | EC_GROUP_have_precompute_mult(const EC_GROUP * group) | ||
1094 | { | ||
1095 | if (group->meth->mul == 0) | ||
1096 | /* use default */ | ||
1097 | return ec_wNAF_have_precompute_mult(group); | ||
1098 | |||
1099 | if (group->meth->have_precompute_mult != 0) | ||
1100 | return group->meth->have_precompute_mult(group); | ||
1101 | else | ||
1102 | return 0; /* cannot tell whether precomputation has | ||
1103 | * been performed */ | ||
1104 | } | ||
1105 | |||
1106 | EC_KEY * | ||
1107 | ECParameters_dup(EC_KEY *key) | ||
1108 | { | ||
1109 | unsigned char *p = NULL; | ||
1110 | EC_KEY *k = NULL; | ||
1111 | int len; | ||
1112 | |||
1113 | if (key == NULL) | ||
1114 | return (NULL); | ||
1115 | |||
1116 | if ((len = i2d_ECParameters(key, &p)) > 0) | ||
1117 | k = d2i_ECParameters(NULL, (const unsigned char **)&p, len); | ||
1118 | |||
1119 | return (k); | ||
1120 | } | ||
diff --git a/src/lib/libcrypto/ec/ec_mult.c b/src/lib/libcrypto/ec/ec_mult.c deleted file mode 100644 index e428ac586b..0000000000 --- a/src/lib/libcrypto/ec/ec_mult.c +++ /dev/null | |||
@@ -1,886 +0,0 @@ | |||
1 | /* $OpenBSD: ec_mult.c,v 1.19 2015/09/10 15:56:25 jsing Exp $ */ | ||
2 | /* | ||
3 | * Originally written by Bodo Moeller and Nils Larsch for the OpenSSL project. | ||
4 | */ | ||
5 | /* ==================================================================== | ||
6 | * Copyright (c) 1998-2007 The OpenSSL Project. All rights reserved. | ||
7 | * | ||
8 | * Redistribution and use in source and binary forms, with or without | ||
9 | * modification, are permitted provided that the following conditions | ||
10 | * are met: | ||
11 | * | ||
12 | * 1. Redistributions of source code must retain the above copyright | ||
13 | * notice, this list of conditions and the following disclaimer. | ||
14 | * | ||
15 | * 2. Redistributions in binary form must reproduce the above copyright | ||
16 | * notice, this list of conditions and the following disclaimer in | ||
17 | * the documentation and/or other materials provided with the | ||
18 | * distribution. | ||
19 | * | ||
20 | * 3. All advertising materials mentioning features or use of this | ||
21 | * software must display the following acknowledgment: | ||
22 | * "This product includes software developed by the OpenSSL Project | ||
23 | * for use in the OpenSSL Toolkit. (http://www.openssl.org/)" | ||
24 | * | ||
25 | * 4. The names "OpenSSL Toolkit" and "OpenSSL Project" must not be used to | ||
26 | * endorse or promote products derived from this software without | ||
27 | * prior written permission. For written permission, please contact | ||
28 | * openssl-core@openssl.org. | ||
29 | * | ||
30 | * 5. Products derived from this software may not be called "OpenSSL" | ||
31 | * nor may "OpenSSL" appear in their names without prior written | ||
32 | * permission of the OpenSSL Project. | ||
33 | * | ||
34 | * 6. Redistributions of any form whatsoever must retain the following | ||
35 | * acknowledgment: | ||
36 | * "This product includes software developed by the OpenSSL Project | ||
37 | * for use in the OpenSSL Toolkit (http://www.openssl.org/)" | ||
38 | * | ||
39 | * THIS SOFTWARE IS PROVIDED BY THE OpenSSL PROJECT ``AS IS'' AND ANY | ||
40 | * EXPRESSED OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE | ||
41 | * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR | ||
42 | * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE OpenSSL PROJECT OR | ||
43 | * ITS CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, | ||
44 | * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT | ||
45 | * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; | ||
46 | * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) | ||
47 | * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, | ||
48 | * STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) | ||
49 | * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED | ||
50 | * OF THE POSSIBILITY OF SUCH DAMAGE. | ||
51 | * ==================================================================== | ||
52 | * | ||
53 | * This product includes cryptographic software written by Eric Young | ||
54 | * (eay@cryptsoft.com). This product includes software written by Tim | ||
55 | * Hudson (tjh@cryptsoft.com). | ||
56 | * | ||
57 | */ | ||
58 | /* ==================================================================== | ||
59 | * Copyright 2002 Sun Microsystems, Inc. ALL RIGHTS RESERVED. | ||
60 | * Portions of this software developed by SUN MICROSYSTEMS, INC., | ||
61 | * and contributed to the OpenSSL project. | ||
62 | */ | ||
63 | |||
64 | #include <string.h> | ||
65 | |||
66 | #include <openssl/err.h> | ||
67 | |||
68 | #include "ec_lcl.h" | ||
69 | |||
70 | |||
71 | /* | ||
72 | * This file implements the wNAF-based interleaving multi-exponentation method | ||
73 | * (<URL:http://www.informatik.tu-darmstadt.de/TI/Mitarbeiter/moeller.html#multiexp>); | ||
74 | * for multiplication with precomputation, we use wNAF splitting | ||
75 | * (<URL:http://www.informatik.tu-darmstadt.de/TI/Mitarbeiter/moeller.html#fastexp>). | ||
76 | */ | ||
77 | |||
78 | |||
79 | |||
80 | |||
81 | /* structure for precomputed multiples of the generator */ | ||
82 | typedef struct ec_pre_comp_st { | ||
83 | const EC_GROUP *group; /* parent EC_GROUP object */ | ||
84 | size_t blocksize; /* block size for wNAF splitting */ | ||
85 | size_t numblocks; /* max. number of blocks for which we have | ||
86 | * precomputation */ | ||
87 | size_t w; /* window size */ | ||
88 | EC_POINT **points; /* array with pre-calculated multiples of | ||
89 | * generator: 'num' pointers to EC_POINT | ||
90 | * objects followed by a NULL */ | ||
91 | size_t num; /* numblocks * 2^(w-1) */ | ||
92 | int references; | ||
93 | } EC_PRE_COMP; | ||
94 | |||
95 | /* functions to manage EC_PRE_COMP within the EC_GROUP extra_data framework */ | ||
96 | static void *ec_pre_comp_dup(void *); | ||
97 | static void ec_pre_comp_free(void *); | ||
98 | static void ec_pre_comp_clear_free(void *); | ||
99 | |||
100 | static EC_PRE_COMP * | ||
101 | ec_pre_comp_new(const EC_GROUP * group) | ||
102 | { | ||
103 | EC_PRE_COMP *ret = NULL; | ||
104 | |||
105 | if (!group) | ||
106 | return NULL; | ||
107 | |||
108 | ret = malloc(sizeof(EC_PRE_COMP)); | ||
109 | if (!ret) { | ||
110 | ECerr(EC_F_EC_PRE_COMP_NEW, ERR_R_MALLOC_FAILURE); | ||
111 | return ret; | ||
112 | } | ||
113 | ret->group = group; | ||
114 | ret->blocksize = 8; /* default */ | ||
115 | ret->numblocks = 0; | ||
116 | ret->w = 4; /* default */ | ||
117 | ret->points = NULL; | ||
118 | ret->num = 0; | ||
119 | ret->references = 1; | ||
120 | return ret; | ||
121 | } | ||
122 | |||
123 | static void * | ||
124 | ec_pre_comp_dup(void *src_) | ||
125 | { | ||
126 | EC_PRE_COMP *src = src_; | ||
127 | |||
128 | /* no need to actually copy, these objects never change! */ | ||
129 | |||
130 | CRYPTO_add(&src->references, 1, CRYPTO_LOCK_EC_PRE_COMP); | ||
131 | |||
132 | return src_; | ||
133 | } | ||
134 | |||
135 | static void | ||
136 | ec_pre_comp_free(void *pre_) | ||
137 | { | ||
138 | int i; | ||
139 | EC_PRE_COMP *pre = pre_; | ||
140 | |||
141 | if (!pre) | ||
142 | return; | ||
143 | |||
144 | i = CRYPTO_add(&pre->references, -1, CRYPTO_LOCK_EC_PRE_COMP); | ||
145 | if (i > 0) | ||
146 | return; | ||
147 | |||
148 | if (pre->points) { | ||
149 | EC_POINT **p; | ||
150 | |||
151 | for (p = pre->points; *p != NULL; p++) | ||
152 | EC_POINT_free(*p); | ||
153 | free(pre->points); | ||
154 | } | ||
155 | free(pre); | ||
156 | } | ||
157 | |||
158 | static void | ||
159 | ec_pre_comp_clear_free(void *pre_) | ||
160 | { | ||
161 | int i; | ||
162 | EC_PRE_COMP *pre = pre_; | ||
163 | |||
164 | if (!pre) | ||
165 | return; | ||
166 | |||
167 | i = CRYPTO_add(&pre->references, -1, CRYPTO_LOCK_EC_PRE_COMP); | ||
168 | if (i > 0) | ||
169 | return; | ||
170 | |||
171 | if (pre->points) { | ||
172 | EC_POINT **p; | ||
173 | |||
174 | for (p = pre->points; *p != NULL; p++) { | ||
175 | EC_POINT_clear_free(*p); | ||
176 | explicit_bzero(p, sizeof *p); | ||
177 | } | ||
178 | free(pre->points); | ||
179 | } | ||
180 | explicit_bzero(pre, sizeof *pre); | ||
181 | free(pre); | ||
182 | } | ||
183 | |||
184 | |||
185 | |||
186 | |||
187 | /* Determine the modified width-(w+1) Non-Adjacent Form (wNAF) of 'scalar'. | ||
188 | * This is an array r[] of values that are either zero or odd with an | ||
189 | * absolute value less than 2^w satisfying | ||
190 | * scalar = \sum_j r[j]*2^j | ||
191 | * where at most one of any w+1 consecutive digits is non-zero | ||
192 | * with the exception that the most significant digit may be only | ||
193 | * w-1 zeros away from that next non-zero digit. | ||
194 | */ | ||
195 | static signed char * | ||
196 | compute_wNAF(const BIGNUM * scalar, int w, size_t * ret_len) | ||
197 | { | ||
198 | int window_val; | ||
199 | int ok = 0; | ||
200 | signed char *r = NULL; | ||
201 | int sign = 1; | ||
202 | int bit, next_bit, mask; | ||
203 | size_t len = 0, j; | ||
204 | |||
205 | if (BN_is_zero(scalar)) { | ||
206 | r = malloc(1); | ||
207 | if (!r) { | ||
208 | ECerr(EC_F_COMPUTE_WNAF, ERR_R_MALLOC_FAILURE); | ||
209 | goto err; | ||
210 | } | ||
211 | r[0] = 0; | ||
212 | *ret_len = 1; | ||
213 | return r; | ||
214 | } | ||
215 | if (w <= 0 || w > 7) { | ||
216 | /* 'signed char' can represent integers with | ||
217 | * absolute values less than 2^7 */ | ||
218 | ECerr(EC_F_COMPUTE_WNAF, ERR_R_INTERNAL_ERROR); | ||
219 | goto err; | ||
220 | } | ||
221 | bit = 1 << w; /* at most 128 */ | ||
222 | next_bit = bit << 1; /* at most 256 */ | ||
223 | mask = next_bit - 1; /* at most 255 */ | ||
224 | |||
225 | if (BN_is_negative(scalar)) { | ||
226 | sign = -1; | ||
227 | } | ||
228 | if (scalar->d == NULL || scalar->top == 0) { | ||
229 | ECerr(EC_F_COMPUTE_WNAF, ERR_R_INTERNAL_ERROR); | ||
230 | goto err; | ||
231 | } | ||
232 | len = BN_num_bits(scalar); | ||
233 | r = malloc(len + 1); /* modified wNAF may be one digit longer than | ||
234 | * binary representation (*ret_len will be | ||
235 | * set to the actual length, i.e. at most | ||
236 | * BN_num_bits(scalar) + 1) */ | ||
237 | if (r == NULL) { | ||
238 | ECerr(EC_F_COMPUTE_WNAF, ERR_R_MALLOC_FAILURE); | ||
239 | goto err; | ||
240 | } | ||
241 | window_val = scalar->d[0] & mask; | ||
242 | j = 0; | ||
243 | while ((window_val != 0) || (j + w + 1 < len)) { | ||
244 | /* if j+w+1 >= len, window_val will not increase */ | ||
245 | int digit = 0; | ||
246 | |||
247 | /* 0 <= window_val <= 2^(w+1) */ | ||
248 | if (window_val & 1) { | ||
249 | /* 0 < window_val < 2^(w+1) */ | ||
250 | if (window_val & bit) { | ||
251 | digit = window_val - next_bit; /* -2^w < digit < 0 */ | ||
252 | |||
253 | #if 1 /* modified wNAF */ | ||
254 | if (j + w + 1 >= len) { | ||
255 | /* | ||
256 | * special case for generating | ||
257 | * modified wNAFs: no new bits will | ||
258 | * be added into window_val, so using | ||
259 | * a positive digit here will | ||
260 | * decrease the total length of the | ||
261 | * representation | ||
262 | */ | ||
263 | |||
264 | digit = window_val & (mask >> 1); /* 0 < digit < 2^w */ | ||
265 | } | ||
266 | #endif | ||
267 | } else { | ||
268 | digit = window_val; /* 0 < digit < 2^w */ | ||
269 | } | ||
270 | |||
271 | if (digit <= -bit || digit >= bit || !(digit & 1)) { | ||
272 | ECerr(EC_F_COMPUTE_WNAF, ERR_R_INTERNAL_ERROR); | ||
273 | goto err; | ||
274 | } | ||
275 | window_val -= digit; | ||
276 | |||
277 | /* | ||
278 | * now window_val is 0 or 2^(w+1) in standard wNAF | ||
279 | * generation; for modified window NAFs, it may also | ||
280 | * be 2^w | ||
281 | */ | ||
282 | if (window_val != 0 && window_val != next_bit && window_val != bit) { | ||
283 | ECerr(EC_F_COMPUTE_WNAF, ERR_R_INTERNAL_ERROR); | ||
284 | goto err; | ||
285 | } | ||
286 | } | ||
287 | r[j++] = sign * digit; | ||
288 | |||
289 | window_val >>= 1; | ||
290 | window_val += bit * BN_is_bit_set(scalar, j + w); | ||
291 | |||
292 | if (window_val > next_bit) { | ||
293 | ECerr(EC_F_COMPUTE_WNAF, ERR_R_INTERNAL_ERROR); | ||
294 | goto err; | ||
295 | } | ||
296 | } | ||
297 | |||
298 | if (j > len + 1) { | ||
299 | ECerr(EC_F_COMPUTE_WNAF, ERR_R_INTERNAL_ERROR); | ||
300 | goto err; | ||
301 | } | ||
302 | len = j; | ||
303 | ok = 1; | ||
304 | |||
305 | err: | ||
306 | if (!ok) { | ||
307 | free(r); | ||
308 | r = NULL; | ||
309 | } | ||
310 | if (ok) | ||
311 | *ret_len = len; | ||
312 | return r; | ||
313 | } | ||
314 | |||
315 | |||
316 | /* TODO: table should be optimised for the wNAF-based implementation, | ||
317 | * sometimes smaller windows will give better performance | ||
318 | * (thus the boundaries should be increased) | ||
319 | */ | ||
320 | #define EC_window_bits_for_scalar_size(b) \ | ||
321 | ((size_t) \ | ||
322 | ((b) >= 2000 ? 6 : \ | ||
323 | (b) >= 800 ? 5 : \ | ||
324 | (b) >= 300 ? 4 : \ | ||
325 | (b) >= 70 ? 3 : \ | ||
326 | (b) >= 20 ? 2 : \ | ||
327 | 1)) | ||
328 | |||
329 | /* Compute | ||
330 | * \sum scalars[i]*points[i], | ||
331 | * also including | ||
332 | * scalar*generator | ||
333 | * in the addition if scalar != NULL | ||
334 | */ | ||
335 | int | ||
336 | ec_wNAF_mul(const EC_GROUP * group, EC_POINT * r, const BIGNUM * scalar, | ||
337 | size_t num, const EC_POINT * points[], const BIGNUM * scalars[], BN_CTX * ctx) | ||
338 | { | ||
339 | BN_CTX *new_ctx = NULL; | ||
340 | const EC_POINT *generator = NULL; | ||
341 | EC_POINT *tmp = NULL; | ||
342 | size_t totalnum; | ||
343 | size_t blocksize = 0, numblocks = 0; /* for wNAF splitting */ | ||
344 | size_t pre_points_per_block = 0; | ||
345 | size_t i, j; | ||
346 | int k; | ||
347 | int r_is_inverted = 0; | ||
348 | int r_is_at_infinity = 1; | ||
349 | size_t *wsize = NULL; /* individual window sizes */ | ||
350 | signed char **wNAF = NULL; /* individual wNAFs */ | ||
351 | signed char *tmp_wNAF = NULL; | ||
352 | size_t *wNAF_len = NULL; | ||
353 | size_t max_len = 0; | ||
354 | size_t num_val; | ||
355 | EC_POINT **val = NULL; /* precomputation */ | ||
356 | EC_POINT **v; | ||
357 | EC_POINT ***val_sub = NULL; /* pointers to sub-arrays of 'val' or | ||
358 | * 'pre_comp->points' */ | ||
359 | const EC_PRE_COMP *pre_comp = NULL; | ||
360 | int num_scalar = 0; /* flag: will be set to 1 if 'scalar' must be | ||
361 | * treated like other scalars, i.e. | ||
362 | * precomputation is not available */ | ||
363 | int ret = 0; | ||
364 | |||
365 | if (group->meth != r->meth) { | ||
366 | ECerr(EC_F_EC_WNAF_MUL, EC_R_INCOMPATIBLE_OBJECTS); | ||
367 | return 0; | ||
368 | } | ||
369 | if ((scalar == NULL) && (num == 0)) { | ||
370 | return EC_POINT_set_to_infinity(group, r); | ||
371 | } | ||
372 | for (i = 0; i < num; i++) { | ||
373 | if (group->meth != points[i]->meth) { | ||
374 | ECerr(EC_F_EC_WNAF_MUL, EC_R_INCOMPATIBLE_OBJECTS); | ||
375 | return 0; | ||
376 | } | ||
377 | } | ||
378 | |||
379 | if (ctx == NULL) { | ||
380 | ctx = new_ctx = BN_CTX_new(); | ||
381 | if (ctx == NULL) | ||
382 | goto err; | ||
383 | } | ||
384 | if (scalar != NULL) { | ||
385 | generator = EC_GROUP_get0_generator(group); | ||
386 | if (generator == NULL) { | ||
387 | ECerr(EC_F_EC_WNAF_MUL, EC_R_UNDEFINED_GENERATOR); | ||
388 | goto err; | ||
389 | } | ||
390 | /* look if we can use precomputed multiples of generator */ | ||
391 | |||
392 | pre_comp = EC_EX_DATA_get_data(group->extra_data, ec_pre_comp_dup, ec_pre_comp_free, ec_pre_comp_clear_free); | ||
393 | |||
394 | if (pre_comp && pre_comp->numblocks && | ||
395 | (EC_POINT_cmp(group, generator, pre_comp->points[0], ctx) == 0)) { | ||
396 | blocksize = pre_comp->blocksize; | ||
397 | |||
398 | /* | ||
399 | * determine maximum number of blocks that wNAF | ||
400 | * splitting may yield (NB: maximum wNAF length is | ||
401 | * bit length plus one) | ||
402 | */ | ||
403 | numblocks = (BN_num_bits(scalar) / blocksize) + 1; | ||
404 | |||
405 | /* | ||
406 | * we cannot use more blocks than we have | ||
407 | * precomputation for | ||
408 | */ | ||
409 | if (numblocks > pre_comp->numblocks) | ||
410 | numblocks = pre_comp->numblocks; | ||
411 | |||
412 | pre_points_per_block = (size_t) 1 << (pre_comp->w - 1); | ||
413 | |||
414 | /* check that pre_comp looks sane */ | ||
415 | if (pre_comp->num != (pre_comp->numblocks * pre_points_per_block)) { | ||
416 | ECerr(EC_F_EC_WNAF_MUL, ERR_R_INTERNAL_ERROR); | ||
417 | goto err; | ||
418 | } | ||
419 | } else { | ||
420 | /* can't use precomputation */ | ||
421 | pre_comp = NULL; | ||
422 | numblocks = 1; | ||
423 | num_scalar = 1; /* treat 'scalar' like 'num'-th | ||
424 | * element of 'scalars' */ | ||
425 | } | ||
426 | } | ||
427 | totalnum = num + numblocks; | ||
428 | |||
429 | /* includes space for pivot */ | ||
430 | wNAF = reallocarray(NULL, (totalnum + 1), sizeof wNAF[0]); | ||
431 | if (wNAF == NULL) { | ||
432 | ECerr(EC_F_EC_WNAF_MUL, ERR_R_MALLOC_FAILURE); | ||
433 | goto err; | ||
434 | } | ||
435 | |||
436 | wNAF[0] = NULL; /* preliminary pivot */ | ||
437 | |||
438 | wsize = reallocarray(NULL, totalnum, sizeof wsize[0]); | ||
439 | wNAF_len = reallocarray(NULL, totalnum, sizeof wNAF_len[0]); | ||
440 | val_sub = reallocarray(NULL, totalnum, sizeof val_sub[0]); | ||
441 | |||
442 | if (wsize == NULL || wNAF_len == NULL || val_sub == NULL) { | ||
443 | ECerr(EC_F_EC_WNAF_MUL, ERR_R_MALLOC_FAILURE); | ||
444 | goto err; | ||
445 | } | ||
446 | |||
447 | /* num_val will be the total number of temporarily precomputed points */ | ||
448 | num_val = 0; | ||
449 | |||
450 | for (i = 0; i < num + num_scalar; i++) { | ||
451 | size_t bits; | ||
452 | |||
453 | bits = i < num ? BN_num_bits(scalars[i]) : BN_num_bits(scalar); | ||
454 | wsize[i] = EC_window_bits_for_scalar_size(bits); | ||
455 | num_val += (size_t) 1 << (wsize[i] - 1); | ||
456 | wNAF[i + 1] = NULL; /* make sure we always have a pivot */ | ||
457 | wNAF[i] = compute_wNAF((i < num ? scalars[i] : scalar), wsize[i], &wNAF_len[i]); | ||
458 | if (wNAF[i] == NULL) | ||
459 | goto err; | ||
460 | if (wNAF_len[i] > max_len) | ||
461 | max_len = wNAF_len[i]; | ||
462 | } | ||
463 | |||
464 | if (numblocks) { | ||
465 | /* we go here iff scalar != NULL */ | ||
466 | |||
467 | if (pre_comp == NULL) { | ||
468 | if (num_scalar != 1) { | ||
469 | ECerr(EC_F_EC_WNAF_MUL, ERR_R_INTERNAL_ERROR); | ||
470 | goto err; | ||
471 | } | ||
472 | /* we have already generated a wNAF for 'scalar' */ | ||
473 | } else { | ||
474 | size_t tmp_len = 0; | ||
475 | |||
476 | if (num_scalar != 0) { | ||
477 | ECerr(EC_F_EC_WNAF_MUL, ERR_R_INTERNAL_ERROR); | ||
478 | goto err; | ||
479 | } | ||
480 | /* | ||
481 | * use the window size for which we have | ||
482 | * precomputation | ||
483 | */ | ||
484 | wsize[num] = pre_comp->w; | ||
485 | tmp_wNAF = compute_wNAF(scalar, wsize[num], &tmp_len); | ||
486 | if (tmp_wNAF == NULL) | ||
487 | goto err; | ||
488 | |||
489 | if (tmp_len <= max_len) { | ||
490 | /* | ||
491 | * One of the other wNAFs is at least as long | ||
492 | * as the wNAF belonging to the generator, so | ||
493 | * wNAF splitting will not buy us anything. | ||
494 | */ | ||
495 | |||
496 | numblocks = 1; | ||
497 | totalnum = num + 1; /* don't use wNAF | ||
498 | * splitting */ | ||
499 | wNAF[num] = tmp_wNAF; | ||
500 | tmp_wNAF = NULL; | ||
501 | wNAF[num + 1] = NULL; | ||
502 | wNAF_len[num] = tmp_len; | ||
503 | if (tmp_len > max_len) | ||
504 | max_len = tmp_len; | ||
505 | /* | ||
506 | * pre_comp->points starts with the points | ||
507 | * that we need here: | ||
508 | */ | ||
509 | val_sub[num] = pre_comp->points; | ||
510 | } else { | ||
511 | /* | ||
512 | * don't include tmp_wNAF directly into wNAF | ||
513 | * array - use wNAF splitting and include the | ||
514 | * blocks | ||
515 | */ | ||
516 | |||
517 | signed char *pp; | ||
518 | EC_POINT **tmp_points; | ||
519 | |||
520 | if (tmp_len < numblocks * blocksize) { | ||
521 | /* | ||
522 | * possibly we can do with fewer | ||
523 | * blocks than estimated | ||
524 | */ | ||
525 | numblocks = (tmp_len + blocksize - 1) / blocksize; | ||
526 | if (numblocks > pre_comp->numblocks) { | ||
527 | ECerr(EC_F_EC_WNAF_MUL, ERR_R_INTERNAL_ERROR); | ||
528 | goto err; | ||
529 | } | ||
530 | totalnum = num + numblocks; | ||
531 | } | ||
532 | /* split wNAF in 'numblocks' parts */ | ||
533 | pp = tmp_wNAF; | ||
534 | tmp_points = pre_comp->points; | ||
535 | |||
536 | for (i = num; i < totalnum; i++) { | ||
537 | if (i < totalnum - 1) { | ||
538 | wNAF_len[i] = blocksize; | ||
539 | if (tmp_len < blocksize) { | ||
540 | ECerr(EC_F_EC_WNAF_MUL, ERR_R_INTERNAL_ERROR); | ||
541 | goto err; | ||
542 | } | ||
543 | tmp_len -= blocksize; | ||
544 | } else | ||
545 | /* | ||
546 | * last block gets whatever | ||
547 | * is left (this could be | ||
548 | * more or less than | ||
549 | * 'blocksize'!) | ||
550 | */ | ||
551 | wNAF_len[i] = tmp_len; | ||
552 | |||
553 | wNAF[i + 1] = NULL; | ||
554 | wNAF[i] = malloc(wNAF_len[i]); | ||
555 | if (wNAF[i] == NULL) { | ||
556 | ECerr(EC_F_EC_WNAF_MUL, ERR_R_MALLOC_FAILURE); | ||
557 | goto err; | ||
558 | } | ||
559 | memcpy(wNAF[i], pp, wNAF_len[i]); | ||
560 | if (wNAF_len[i] > max_len) | ||
561 | max_len = wNAF_len[i]; | ||
562 | |||
563 | if (*tmp_points == NULL) { | ||
564 | ECerr(EC_F_EC_WNAF_MUL, ERR_R_INTERNAL_ERROR); | ||
565 | goto err; | ||
566 | } | ||
567 | val_sub[i] = tmp_points; | ||
568 | tmp_points += pre_points_per_block; | ||
569 | pp += blocksize; | ||
570 | } | ||
571 | } | ||
572 | } | ||
573 | } | ||
574 | /* | ||
575 | * All points we precompute now go into a single array 'val'. | ||
576 | * 'val_sub[i]' is a pointer to the subarray for the i-th point, or | ||
577 | * to a subarray of 'pre_comp->points' if we already have | ||
578 | * precomputation. | ||
579 | */ | ||
580 | val = reallocarray(NULL, (num_val + 1), sizeof val[0]); | ||
581 | if (val == NULL) { | ||
582 | ECerr(EC_F_EC_WNAF_MUL, ERR_R_MALLOC_FAILURE); | ||
583 | goto err; | ||
584 | } | ||
585 | val[num_val] = NULL; /* pivot element */ | ||
586 | |||
587 | /* allocate points for precomputation */ | ||
588 | v = val; | ||
589 | for (i = 0; i < num + num_scalar; i++) { | ||
590 | val_sub[i] = v; | ||
591 | for (j = 0; j < ((size_t) 1 << (wsize[i] - 1)); j++) { | ||
592 | *v = EC_POINT_new(group); | ||
593 | if (*v == NULL) | ||
594 | goto err; | ||
595 | v++; | ||
596 | } | ||
597 | } | ||
598 | if (!(v == val + num_val)) { | ||
599 | ECerr(EC_F_EC_WNAF_MUL, ERR_R_INTERNAL_ERROR); | ||
600 | goto err; | ||
601 | } | ||
602 | if (!(tmp = EC_POINT_new(group))) | ||
603 | goto err; | ||
604 | |||
605 | /* | ||
606 | * prepare precomputed values: val_sub[i][0] := points[i] | ||
607 | * val_sub[i][1] := 3 * points[i] val_sub[i][2] := 5 * points[i] ... | ||
608 | */ | ||
609 | for (i = 0; i < num + num_scalar; i++) { | ||
610 | if (i < num) { | ||
611 | if (!EC_POINT_copy(val_sub[i][0], points[i])) | ||
612 | goto err; | ||
613 | } else { | ||
614 | if (!EC_POINT_copy(val_sub[i][0], generator)) | ||
615 | goto err; | ||
616 | } | ||
617 | |||
618 | if (wsize[i] > 1) { | ||
619 | if (!EC_POINT_dbl(group, tmp, val_sub[i][0], ctx)) | ||
620 | goto err; | ||
621 | for (j = 1; j < ((size_t) 1 << (wsize[i] - 1)); j++) { | ||
622 | if (!EC_POINT_add(group, val_sub[i][j], val_sub[i][j - 1], tmp, ctx)) | ||
623 | goto err; | ||
624 | } | ||
625 | } | ||
626 | } | ||
627 | |||
628 | if (!EC_POINTs_make_affine(group, num_val, val, ctx)) | ||
629 | goto err; | ||
630 | |||
631 | r_is_at_infinity = 1; | ||
632 | |||
633 | for (k = max_len - 1; k >= 0; k--) { | ||
634 | if (!r_is_at_infinity) { | ||
635 | if (!EC_POINT_dbl(group, r, r, ctx)) | ||
636 | goto err; | ||
637 | } | ||
638 | for (i = 0; i < totalnum; i++) { | ||
639 | if (wNAF_len[i] > (size_t) k) { | ||
640 | int digit = wNAF[i][k]; | ||
641 | int is_neg; | ||
642 | |||
643 | if (digit) { | ||
644 | is_neg = digit < 0; | ||
645 | |||
646 | if (is_neg) | ||
647 | digit = -digit; | ||
648 | |||
649 | if (is_neg != r_is_inverted) { | ||
650 | if (!r_is_at_infinity) { | ||
651 | if (!EC_POINT_invert(group, r, ctx)) | ||
652 | goto err; | ||
653 | } | ||
654 | r_is_inverted = !r_is_inverted; | ||
655 | } | ||
656 | /* digit > 0 */ | ||
657 | |||
658 | if (r_is_at_infinity) { | ||
659 | if (!EC_POINT_copy(r, val_sub[i][digit >> 1])) | ||
660 | goto err; | ||
661 | r_is_at_infinity = 0; | ||
662 | } else { | ||
663 | if (!EC_POINT_add(group, r, r, val_sub[i][digit >> 1], ctx)) | ||
664 | goto err; | ||
665 | } | ||
666 | } | ||
667 | } | ||
668 | } | ||
669 | } | ||
670 | |||
671 | if (r_is_at_infinity) { | ||
672 | if (!EC_POINT_set_to_infinity(group, r)) | ||
673 | goto err; | ||
674 | } else { | ||
675 | if (r_is_inverted) | ||
676 | if (!EC_POINT_invert(group, r, ctx)) | ||
677 | goto err; | ||
678 | } | ||
679 | |||
680 | ret = 1; | ||
681 | |||
682 | err: | ||
683 | BN_CTX_free(new_ctx); | ||
684 | EC_POINT_free(tmp); | ||
685 | free(wsize); | ||
686 | free(wNAF_len); | ||
687 | free(tmp_wNAF); | ||
688 | if (wNAF != NULL) { | ||
689 | signed char **w; | ||
690 | |||
691 | for (w = wNAF; *w != NULL; w++) | ||
692 | free(*w); | ||
693 | |||
694 | free(wNAF); | ||
695 | } | ||
696 | if (val != NULL) { | ||
697 | for (v = val; *v != NULL; v++) | ||
698 | EC_POINT_clear_free(*v); | ||
699 | free(val); | ||
700 | } | ||
701 | free(val_sub); | ||
702 | return ret; | ||
703 | } | ||
704 | |||
705 | |||
706 | /* ec_wNAF_precompute_mult() | ||
707 | * creates an EC_PRE_COMP object with preprecomputed multiples of the generator | ||
708 | * for use with wNAF splitting as implemented in ec_wNAF_mul(). | ||
709 | * | ||
710 | * 'pre_comp->points' is an array of multiples of the generator | ||
711 | * of the following form: | ||
712 | * points[0] = generator; | ||
713 | * points[1] = 3 * generator; | ||
714 | * ... | ||
715 | * points[2^(w-1)-1] = (2^(w-1)-1) * generator; | ||
716 | * points[2^(w-1)] = 2^blocksize * generator; | ||
717 | * points[2^(w-1)+1] = 3 * 2^blocksize * generator; | ||
718 | * ... | ||
719 | * points[2^(w-1)*(numblocks-1)-1] = (2^(w-1)) * 2^(blocksize*(numblocks-2)) * generator | ||
720 | * points[2^(w-1)*(numblocks-1)] = 2^(blocksize*(numblocks-1)) * generator | ||
721 | * ... | ||
722 | * points[2^(w-1)*numblocks-1] = (2^(w-1)) * 2^(blocksize*(numblocks-1)) * generator | ||
723 | * points[2^(w-1)*numblocks] = NULL | ||
724 | */ | ||
725 | int | ||
726 | ec_wNAF_precompute_mult(EC_GROUP * group, BN_CTX * ctx) | ||
727 | { | ||
728 | const EC_POINT *generator; | ||
729 | EC_POINT *tmp_point = NULL, *base = NULL, **var; | ||
730 | BN_CTX *new_ctx = NULL; | ||
731 | BIGNUM *order; | ||
732 | size_t i, bits, w, pre_points_per_block, blocksize, numblocks, | ||
733 | num; | ||
734 | EC_POINT **points = NULL; | ||
735 | EC_PRE_COMP *pre_comp; | ||
736 | int ret = 0; | ||
737 | |||
738 | /* if there is an old EC_PRE_COMP object, throw it away */ | ||
739 | EC_EX_DATA_free_data(&group->extra_data, ec_pre_comp_dup, ec_pre_comp_free, ec_pre_comp_clear_free); | ||
740 | |||
741 | if ((pre_comp = ec_pre_comp_new(group)) == NULL) | ||
742 | return 0; | ||
743 | |||
744 | generator = EC_GROUP_get0_generator(group); | ||
745 | if (generator == NULL) { | ||
746 | ECerr(EC_F_EC_WNAF_PRECOMPUTE_MULT, EC_R_UNDEFINED_GENERATOR); | ||
747 | goto err; | ||
748 | } | ||
749 | if (ctx == NULL) { | ||
750 | ctx = new_ctx = BN_CTX_new(); | ||
751 | if (ctx == NULL) | ||
752 | goto err; | ||
753 | } | ||
754 | BN_CTX_start(ctx); | ||
755 | if ((order = BN_CTX_get(ctx)) == NULL) | ||
756 | goto err; | ||
757 | |||
758 | if (!EC_GROUP_get_order(group, order, ctx)) | ||
759 | goto err; | ||
760 | if (BN_is_zero(order)) { | ||
761 | ECerr(EC_F_EC_WNAF_PRECOMPUTE_MULT, EC_R_UNKNOWN_ORDER); | ||
762 | goto err; | ||
763 | } | ||
764 | bits = BN_num_bits(order); | ||
765 | /* | ||
766 | * The following parameters mean we precompute (approximately) one | ||
767 | * point per bit. | ||
768 | * | ||
769 | * TBD: The combination 8, 4 is perfect for 160 bits; for other bit | ||
770 | * lengths, other parameter combinations might provide better | ||
771 | * efficiency. | ||
772 | */ | ||
773 | blocksize = 8; | ||
774 | w = 4; | ||
775 | if (EC_window_bits_for_scalar_size(bits) > w) { | ||
776 | /* let's not make the window too small ... */ | ||
777 | w = EC_window_bits_for_scalar_size(bits); | ||
778 | } | ||
779 | numblocks = (bits + blocksize - 1) / blocksize; /* max. number of blocks | ||
780 | * to use for wNAF | ||
781 | * splitting */ | ||
782 | |||
783 | pre_points_per_block = (size_t) 1 << (w - 1); | ||
784 | num = pre_points_per_block * numblocks; /* number of points to | ||
785 | * compute and store */ | ||
786 | |||
787 | points = reallocarray(NULL, (num + 1), sizeof(EC_POINT *)); | ||
788 | if (!points) { | ||
789 | ECerr(EC_F_EC_WNAF_PRECOMPUTE_MULT, ERR_R_MALLOC_FAILURE); | ||
790 | goto err; | ||
791 | } | ||
792 | var = points; | ||
793 | var[num] = NULL; /* pivot */ | ||
794 | for (i = 0; i < num; i++) { | ||
795 | if ((var[i] = EC_POINT_new(group)) == NULL) { | ||
796 | ECerr(EC_F_EC_WNAF_PRECOMPUTE_MULT, ERR_R_MALLOC_FAILURE); | ||
797 | goto err; | ||
798 | } | ||
799 | } | ||
800 | |||
801 | if (!(tmp_point = EC_POINT_new(group)) || !(base = EC_POINT_new(group))) { | ||
802 | ECerr(EC_F_EC_WNAF_PRECOMPUTE_MULT, ERR_R_MALLOC_FAILURE); | ||
803 | goto err; | ||
804 | } | ||
805 | if (!EC_POINT_copy(base, generator)) | ||
806 | goto err; | ||
807 | |||
808 | /* do the precomputation */ | ||
809 | for (i = 0; i < numblocks; i++) { | ||
810 | size_t j; | ||
811 | |||
812 | if (!EC_POINT_dbl(group, tmp_point, base, ctx)) | ||
813 | goto err; | ||
814 | |||
815 | if (!EC_POINT_copy(*var++, base)) | ||
816 | goto err; | ||
817 | |||
818 | for (j = 1; j < pre_points_per_block; j++, var++) { | ||
819 | /* calculate odd multiples of the current base point */ | ||
820 | if (!EC_POINT_add(group, *var, tmp_point, *(var - 1), ctx)) | ||
821 | goto err; | ||
822 | } | ||
823 | |||
824 | if (i < numblocks - 1) { | ||
825 | /* | ||
826 | * get the next base (multiply current one by | ||
827 | * 2^blocksize) | ||
828 | */ | ||
829 | size_t k; | ||
830 | |||
831 | if (blocksize <= 2) { | ||
832 | ECerr(EC_F_EC_WNAF_PRECOMPUTE_MULT, ERR_R_INTERNAL_ERROR); | ||
833 | goto err; | ||
834 | } | ||
835 | if (!EC_POINT_dbl(group, base, tmp_point, ctx)) | ||
836 | goto err; | ||
837 | for (k = 2; k < blocksize; k++) { | ||
838 | if (!EC_POINT_dbl(group, base, base, ctx)) | ||
839 | goto err; | ||
840 | } | ||
841 | } | ||
842 | } | ||
843 | |||
844 | if (!EC_POINTs_make_affine(group, num, points, ctx)) | ||
845 | goto err; | ||
846 | |||
847 | pre_comp->group = group; | ||
848 | pre_comp->blocksize = blocksize; | ||
849 | pre_comp->numblocks = numblocks; | ||
850 | pre_comp->w = w; | ||
851 | pre_comp->points = points; | ||
852 | points = NULL; | ||
853 | pre_comp->num = num; | ||
854 | |||
855 | if (!EC_EX_DATA_set_data(&group->extra_data, pre_comp, | ||
856 | ec_pre_comp_dup, ec_pre_comp_free, ec_pre_comp_clear_free)) | ||
857 | goto err; | ||
858 | pre_comp = NULL; | ||
859 | |||
860 | ret = 1; | ||
861 | err: | ||
862 | if (ctx != NULL) | ||
863 | BN_CTX_end(ctx); | ||
864 | BN_CTX_free(new_ctx); | ||
865 | ec_pre_comp_free(pre_comp); | ||
866 | if (points) { | ||
867 | EC_POINT **p; | ||
868 | |||
869 | for (p = points; *p != NULL; p++) | ||
870 | EC_POINT_free(*p); | ||
871 | free(points); | ||
872 | } | ||
873 | EC_POINT_free(tmp_point); | ||
874 | EC_POINT_free(base); | ||
875 | return ret; | ||
876 | } | ||
877 | |||
878 | |||
879 | int | ||
880 | ec_wNAF_have_precompute_mult(const EC_GROUP * group) | ||
881 | { | ||
882 | if (EC_EX_DATA_get_data(group->extra_data, ec_pre_comp_dup, ec_pre_comp_free, ec_pre_comp_clear_free) != NULL) | ||
883 | return 1; | ||
884 | else | ||
885 | return 0; | ||
886 | } | ||
diff --git a/src/lib/libcrypto/ec/ec_oct.c b/src/lib/libcrypto/ec/ec_oct.c deleted file mode 100644 index 82124a8f80..0000000000 --- a/src/lib/libcrypto/ec/ec_oct.c +++ /dev/null | |||
@@ -1,192 +0,0 @@ | |||
1 | /* $OpenBSD: ec_oct.c,v 1.4 2014/07/10 22:45:57 jsing Exp $ */ | ||
2 | /* | ||
3 | * Originally written by Bodo Moeller for the OpenSSL project. | ||
4 | */ | ||
5 | /* ==================================================================== | ||
6 | * Copyright (c) 1998-2003 The OpenSSL Project. All rights reserved. | ||
7 | * | ||
8 | * Redistribution and use in source and binary forms, with or without | ||
9 | * modification, are permitted provided that the following conditions | ||
10 | * are met: | ||
11 | * | ||
12 | * 1. Redistributions of source code must retain the above copyright | ||
13 | * notice, this list of conditions and the following disclaimer. | ||
14 | * | ||
15 | * 2. Redistributions in binary form must reproduce the above copyright | ||
16 | * notice, this list of conditions and the following disclaimer in | ||
17 | * the documentation and/or other materials provided with the | ||
18 | * distribution. | ||
19 | * | ||
20 | * 3. All advertising materials mentioning features or use of this | ||
21 | * software must display the following acknowledgment: | ||
22 | * "This product includes software developed by the OpenSSL Project | ||
23 | * for use in the OpenSSL Toolkit. (http://www.openssl.org/)" | ||
24 | * | ||
25 | * 4. The names "OpenSSL Toolkit" and "OpenSSL Project" must not be used to | ||
26 | * endorse or promote products derived from this software without | ||
27 | * prior written permission. For written permission, please contact | ||
28 | * openssl-core@openssl.org. | ||
29 | * | ||
30 | * 5. Products derived from this software may not be called "OpenSSL" | ||
31 | * nor may "OpenSSL" appear in their names without prior written | ||
32 | * permission of the OpenSSL Project. | ||
33 | * | ||
34 | * 6. Redistributions of any form whatsoever must retain the following | ||
35 | * acknowledgment: | ||
36 | * "This product includes software developed by the OpenSSL Project | ||
37 | * for use in the OpenSSL Toolkit (http://www.openssl.org/)" | ||
38 | * | ||
39 | * THIS SOFTWARE IS PROVIDED BY THE OpenSSL PROJECT ``AS IS'' AND ANY | ||
40 | * EXPRESSED OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE | ||
41 | * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR | ||
42 | * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE OpenSSL PROJECT OR | ||
43 | * ITS CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, | ||
44 | * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT | ||
45 | * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; | ||
46 | * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) | ||
47 | * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, | ||
48 | * STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) | ||
49 | * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED | ||
50 | * OF THE POSSIBILITY OF SUCH DAMAGE. | ||
51 | * ==================================================================== | ||
52 | * | ||
53 | * This product includes cryptographic software written by Eric Young | ||
54 | * (eay@cryptsoft.com). This product includes software written by Tim | ||
55 | * Hudson (tjh@cryptsoft.com). | ||
56 | * | ||
57 | */ | ||
58 | /* ==================================================================== | ||
59 | * Copyright 2002 Sun Microsystems, Inc. ALL RIGHTS RESERVED. | ||
60 | * Binary polynomial ECC support in OpenSSL originally developed by | ||
61 | * SUN MICROSYSTEMS, INC., and contributed to the OpenSSL project. | ||
62 | */ | ||
63 | |||
64 | #include <string.h> | ||
65 | |||
66 | #include <openssl/opensslconf.h> | ||
67 | |||
68 | #include <openssl/err.h> | ||
69 | #include <openssl/opensslv.h> | ||
70 | |||
71 | #include "ec_lcl.h" | ||
72 | |||
73 | int | ||
74 | EC_POINT_set_compressed_coordinates_GFp(const EC_GROUP * group, EC_POINT * point, | ||
75 | const BIGNUM * x, int y_bit, BN_CTX * ctx) | ||
76 | { | ||
77 | if (group->meth->point_set_compressed_coordinates == 0 | ||
78 | && !(group->meth->flags & EC_FLAGS_DEFAULT_OCT)) { | ||
79 | ECerr(EC_F_EC_POINT_SET_COMPRESSED_COORDINATES_GFP, ERR_R_SHOULD_NOT_HAVE_BEEN_CALLED); | ||
80 | return 0; | ||
81 | } | ||
82 | if (group->meth != point->meth) { | ||
83 | ECerr(EC_F_EC_POINT_SET_COMPRESSED_COORDINATES_GFP, EC_R_INCOMPATIBLE_OBJECTS); | ||
84 | return 0; | ||
85 | } | ||
86 | if (group->meth->flags & EC_FLAGS_DEFAULT_OCT) { | ||
87 | if (group->meth->field_type == NID_X9_62_prime_field) | ||
88 | return ec_GFp_simple_set_compressed_coordinates( | ||
89 | group, point, x, y_bit, ctx); | ||
90 | else | ||
91 | #ifdef OPENSSL_NO_EC2M | ||
92 | { | ||
93 | ECerr(EC_F_EC_POINT_SET_COMPRESSED_COORDINATES_GFP, EC_R_GF2M_NOT_SUPPORTED); | ||
94 | return 0; | ||
95 | } | ||
96 | #else | ||
97 | return ec_GF2m_simple_set_compressed_coordinates( | ||
98 | group, point, x, y_bit, ctx); | ||
99 | #endif | ||
100 | } | ||
101 | return group->meth->point_set_compressed_coordinates(group, point, x, y_bit, ctx); | ||
102 | } | ||
103 | |||
104 | #ifndef OPENSSL_NO_EC2M | ||
105 | int | ||
106 | EC_POINT_set_compressed_coordinates_GF2m(const EC_GROUP * group, EC_POINT * point, | ||
107 | const BIGNUM * x, int y_bit, BN_CTX * ctx) | ||
108 | { | ||
109 | if (group->meth->point_set_compressed_coordinates == 0 | ||
110 | && !(group->meth->flags & EC_FLAGS_DEFAULT_OCT)) { | ||
111 | ECerr(EC_F_EC_POINT_SET_COMPRESSED_COORDINATES_GF2M, ERR_R_SHOULD_NOT_HAVE_BEEN_CALLED); | ||
112 | return 0; | ||
113 | } | ||
114 | if (group->meth != point->meth) { | ||
115 | ECerr(EC_F_EC_POINT_SET_COMPRESSED_COORDINATES_GF2M, EC_R_INCOMPATIBLE_OBJECTS); | ||
116 | return 0; | ||
117 | } | ||
118 | if (group->meth->flags & EC_FLAGS_DEFAULT_OCT) { | ||
119 | if (group->meth->field_type == NID_X9_62_prime_field) | ||
120 | return ec_GFp_simple_set_compressed_coordinates( | ||
121 | group, point, x, y_bit, ctx); | ||
122 | else | ||
123 | return ec_GF2m_simple_set_compressed_coordinates( | ||
124 | group, point, x, y_bit, ctx); | ||
125 | } | ||
126 | return group->meth->point_set_compressed_coordinates(group, point, x, y_bit, ctx); | ||
127 | } | ||
128 | #endif | ||
129 | |||
130 | size_t | ||
131 | EC_POINT_point2oct(const EC_GROUP *group, const EC_POINT *point, | ||
132 | point_conversion_form_t form, | ||
133 | unsigned char *buf, size_t len, BN_CTX *ctx) | ||
134 | { | ||
135 | if (group->meth->point2oct == 0 | ||
136 | && !(group->meth->flags & EC_FLAGS_DEFAULT_OCT)) { | ||
137 | ECerr(EC_F_EC_POINT_POINT2OCT, ERR_R_SHOULD_NOT_HAVE_BEEN_CALLED); | ||
138 | return 0; | ||
139 | } | ||
140 | if (group->meth != point->meth) { | ||
141 | ECerr(EC_F_EC_POINT_POINT2OCT, EC_R_INCOMPATIBLE_OBJECTS); | ||
142 | return 0; | ||
143 | } | ||
144 | if (group->meth->flags & EC_FLAGS_DEFAULT_OCT) { | ||
145 | if (group->meth->field_type == NID_X9_62_prime_field) | ||
146 | return ec_GFp_simple_point2oct(group, point, | ||
147 | form, buf, len, ctx); | ||
148 | else | ||
149 | #ifdef OPENSSL_NO_EC2M | ||
150 | { | ||
151 | ECerr(EC_F_EC_POINT_POINT2OCT, EC_R_GF2M_NOT_SUPPORTED); | ||
152 | return 0; | ||
153 | } | ||
154 | #else | ||
155 | return ec_GF2m_simple_point2oct(group, point, | ||
156 | form, buf, len, ctx); | ||
157 | #endif | ||
158 | } | ||
159 | return group->meth->point2oct(group, point, form, buf, len, ctx); | ||
160 | } | ||
161 | |||
162 | |||
163 | int | ||
164 | EC_POINT_oct2point(const EC_GROUP *group, EC_POINT *point, | ||
165 | const unsigned char *buf, size_t len, BN_CTX *ctx) | ||
166 | { | ||
167 | if (group->meth->oct2point == 0 && | ||
168 | !(group->meth->flags & EC_FLAGS_DEFAULT_OCT)) { | ||
169 | ECerr(EC_F_EC_POINT_OCT2POINT, ERR_R_SHOULD_NOT_HAVE_BEEN_CALLED); | ||
170 | return 0; | ||
171 | } | ||
172 | if (group->meth != point->meth) { | ||
173 | ECerr(EC_F_EC_POINT_OCT2POINT, EC_R_INCOMPATIBLE_OBJECTS); | ||
174 | return 0; | ||
175 | } | ||
176 | if (group->meth->flags & EC_FLAGS_DEFAULT_OCT) { | ||
177 | if (group->meth->field_type == NID_X9_62_prime_field) | ||
178 | return ec_GFp_simple_oct2point(group, point, | ||
179 | buf, len, ctx); | ||
180 | else | ||
181 | #ifdef OPENSSL_NO_EC2M | ||
182 | { | ||
183 | ECerr(EC_F_EC_POINT_OCT2POINT, EC_R_GF2M_NOT_SUPPORTED); | ||
184 | return 0; | ||
185 | } | ||
186 | #else | ||
187 | return ec_GF2m_simple_oct2point(group, point, | ||
188 | buf, len, ctx); | ||
189 | #endif | ||
190 | } | ||
191 | return group->meth->oct2point(group, point, buf, len, ctx); | ||
192 | } | ||
diff --git a/src/lib/libcrypto/ec/ec_pmeth.c b/src/lib/libcrypto/ec/ec_pmeth.c deleted file mode 100644 index a52bff1f2f..0000000000 --- a/src/lib/libcrypto/ec/ec_pmeth.c +++ /dev/null | |||
@@ -1,323 +0,0 @@ | |||
1 | /* $OpenBSD: ec_pmeth.c,v 1.9 2015/06/20 14:19:39 jsing Exp $ */ | ||
2 | /* Written by Dr Stephen N Henson (steve@openssl.org) for the OpenSSL | ||
3 | * project 2006. | ||
4 | */ | ||
5 | /* ==================================================================== | ||
6 | * Copyright (c) 2006 The OpenSSL Project. All rights reserved. | ||
7 | * | ||
8 | * Redistribution and use in source and binary forms, with or without | ||
9 | * modification, are permitted provided that the following conditions | ||
10 | * are met: | ||
11 | * | ||
12 | * 1. Redistributions of source code must retain the above copyright | ||
13 | * notice, this list of conditions and the following disclaimer. | ||
14 | * | ||
15 | * 2. Redistributions in binary form must reproduce the above copyright | ||
16 | * notice, this list of conditions and the following disclaimer in | ||
17 | * the documentation and/or other materials provided with the | ||
18 | * distribution. | ||
19 | * | ||
20 | * 3. All advertising materials mentioning features or use of this | ||
21 | * software must display the following acknowledgment: | ||
22 | * "This product includes software developed by the OpenSSL Project | ||
23 | * for use in the OpenSSL Toolkit. (http://www.OpenSSL.org/)" | ||
24 | * | ||
25 | * 4. The names "OpenSSL Toolkit" and "OpenSSL Project" must not be used to | ||
26 | * endorse or promote products derived from this software without | ||
27 | * prior written permission. For written permission, please contact | ||
28 | * licensing@OpenSSL.org. | ||
29 | * | ||
30 | * 5. Products derived from this software may not be called "OpenSSL" | ||
31 | * nor may "OpenSSL" appear in their names without prior written | ||
32 | * permission of the OpenSSL Project. | ||
33 | * | ||
34 | * 6. Redistributions of any form whatsoever must retain the following | ||
35 | * acknowledgment: | ||
36 | * "This product includes software developed by the OpenSSL Project | ||
37 | * for use in the OpenSSL Toolkit (http://www.OpenSSL.org/)" | ||
38 | * | ||
39 | * THIS SOFTWARE IS PROVIDED BY THE OpenSSL PROJECT ``AS IS'' AND ANY | ||
40 | * EXPRESSED OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE | ||
41 | * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR | ||
42 | * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE OpenSSL PROJECT OR | ||
43 | * ITS CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, | ||
44 | * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT | ||
45 | * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; | ||
46 | * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) | ||
47 | * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, | ||
48 | * STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) | ||
49 | * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED | ||
50 | * OF THE POSSIBILITY OF SUCH DAMAGE. | ||
51 | * ==================================================================== | ||
52 | * | ||
53 | * This product includes cryptographic software written by Eric Young | ||
54 | * (eay@cryptsoft.com). This product includes software written by Tim | ||
55 | * Hudson (tjh@cryptsoft.com). | ||
56 | * | ||
57 | */ | ||
58 | |||
59 | #include <stdio.h> | ||
60 | #include <string.h> | ||
61 | |||
62 | #include <openssl/asn1t.h> | ||
63 | #include <openssl/ec.h> | ||
64 | #include <openssl/ecdsa.h> | ||
65 | #include <openssl/err.h> | ||
66 | #include <openssl/evp.h> | ||
67 | #include <openssl/x509.h> | ||
68 | |||
69 | #include "evp_locl.h" | ||
70 | |||
71 | /* EC pkey context structure */ | ||
72 | |||
73 | typedef struct { | ||
74 | /* Key and paramgen group */ | ||
75 | EC_GROUP *gen_group; | ||
76 | /* message digest */ | ||
77 | const EVP_MD *md; | ||
78 | } EC_PKEY_CTX; | ||
79 | |||
80 | static int | ||
81 | pkey_ec_init(EVP_PKEY_CTX * ctx) | ||
82 | { | ||
83 | EC_PKEY_CTX *dctx; | ||
84 | dctx = malloc(sizeof(EC_PKEY_CTX)); | ||
85 | if (!dctx) | ||
86 | return 0; | ||
87 | dctx->gen_group = NULL; | ||
88 | dctx->md = NULL; | ||
89 | |||
90 | ctx->data = dctx; | ||
91 | |||
92 | return 1; | ||
93 | } | ||
94 | |||
95 | static int | ||
96 | pkey_ec_copy(EVP_PKEY_CTX * dst, EVP_PKEY_CTX * src) | ||
97 | { | ||
98 | EC_PKEY_CTX *dctx, *sctx; | ||
99 | if (!pkey_ec_init(dst)) | ||
100 | return 0; | ||
101 | sctx = src->data; | ||
102 | dctx = dst->data; | ||
103 | if (sctx->gen_group) { | ||
104 | dctx->gen_group = EC_GROUP_dup(sctx->gen_group); | ||
105 | if (!dctx->gen_group) | ||
106 | return 0; | ||
107 | } | ||
108 | dctx->md = sctx->md; | ||
109 | return 1; | ||
110 | } | ||
111 | |||
112 | static void | ||
113 | pkey_ec_cleanup(EVP_PKEY_CTX * ctx) | ||
114 | { | ||
115 | EC_PKEY_CTX *dctx = ctx->data; | ||
116 | if (dctx) { | ||
117 | EC_GROUP_free(dctx->gen_group); | ||
118 | free(dctx); | ||
119 | } | ||
120 | } | ||
121 | |||
122 | static int | ||
123 | pkey_ec_sign(EVP_PKEY_CTX * ctx, unsigned char *sig, size_t * siglen, | ||
124 | const unsigned char *tbs, size_t tbslen) | ||
125 | { | ||
126 | int ret, type; | ||
127 | unsigned int sltmp; | ||
128 | EC_PKEY_CTX *dctx = ctx->data; | ||
129 | EC_KEY *ec = ctx->pkey->pkey.ec; | ||
130 | |||
131 | if (!sig) { | ||
132 | *siglen = ECDSA_size(ec); | ||
133 | return 1; | ||
134 | } else if (*siglen < (size_t) ECDSA_size(ec)) { | ||
135 | ECerr(EC_F_PKEY_EC_SIGN, EC_R_BUFFER_TOO_SMALL); | ||
136 | return 0; | ||
137 | } | ||
138 | if (dctx->md) | ||
139 | type = EVP_MD_type(dctx->md); | ||
140 | else | ||
141 | type = NID_sha1; | ||
142 | |||
143 | |||
144 | ret = ECDSA_sign(type, tbs, tbslen, sig, &sltmp, ec); | ||
145 | |||
146 | if (ret <= 0) | ||
147 | return ret; | ||
148 | *siglen = (size_t) sltmp; | ||
149 | return 1; | ||
150 | } | ||
151 | |||
152 | static int | ||
153 | pkey_ec_verify(EVP_PKEY_CTX * ctx, | ||
154 | const unsigned char *sig, size_t siglen, | ||
155 | const unsigned char *tbs, size_t tbslen) | ||
156 | { | ||
157 | int ret, type; | ||
158 | EC_PKEY_CTX *dctx = ctx->data; | ||
159 | EC_KEY *ec = ctx->pkey->pkey.ec; | ||
160 | |||
161 | if (dctx->md) | ||
162 | type = EVP_MD_type(dctx->md); | ||
163 | else | ||
164 | type = NID_sha1; | ||
165 | |||
166 | ret = ECDSA_verify(type, tbs, tbslen, sig, siglen, ec); | ||
167 | |||
168 | return ret; | ||
169 | } | ||
170 | |||
171 | static int | ||
172 | pkey_ec_derive(EVP_PKEY_CTX * ctx, unsigned char *key, size_t * keylen) | ||
173 | { | ||
174 | int ret; | ||
175 | size_t outlen; | ||
176 | const EC_POINT *pubkey = NULL; | ||
177 | if (!ctx->pkey || !ctx->peerkey) { | ||
178 | ECerr(EC_F_PKEY_EC_DERIVE, EC_R_KEYS_NOT_SET); | ||
179 | return 0; | ||
180 | } | ||
181 | if (!key) { | ||
182 | const EC_GROUP *group; | ||
183 | group = EC_KEY_get0_group(ctx->pkey->pkey.ec); | ||
184 | *keylen = (EC_GROUP_get_degree(group) + 7) / 8; | ||
185 | return 1; | ||
186 | } | ||
187 | pubkey = EC_KEY_get0_public_key(ctx->peerkey->pkey.ec); | ||
188 | |||
189 | /* | ||
190 | * NB: unlike PKCS#3 DH, if *outlen is less than maximum size this is | ||
191 | * not an error, the result is truncated. | ||
192 | */ | ||
193 | |||
194 | outlen = *keylen; | ||
195 | |||
196 | ret = ECDH_compute_key(key, outlen, pubkey, ctx->pkey->pkey.ec, 0); | ||
197 | if (ret < 0) | ||
198 | return ret; | ||
199 | *keylen = ret; | ||
200 | return 1; | ||
201 | } | ||
202 | |||
203 | static int | ||
204 | pkey_ec_ctrl(EVP_PKEY_CTX * ctx, int type, int p1, void *p2) | ||
205 | { | ||
206 | EC_PKEY_CTX *dctx = ctx->data; | ||
207 | EC_GROUP *group; | ||
208 | switch (type) { | ||
209 | case EVP_PKEY_CTRL_EC_PARAMGEN_CURVE_NID: | ||
210 | group = EC_GROUP_new_by_curve_name(p1); | ||
211 | if (group == NULL) { | ||
212 | ECerr(EC_F_PKEY_EC_CTRL, EC_R_INVALID_CURVE); | ||
213 | return 0; | ||
214 | } | ||
215 | EC_GROUP_free(dctx->gen_group); | ||
216 | dctx->gen_group = group; | ||
217 | return 1; | ||
218 | |||
219 | case EVP_PKEY_CTRL_MD: | ||
220 | if (EVP_MD_type((const EVP_MD *) p2) != NID_sha1 && | ||
221 | EVP_MD_type((const EVP_MD *) p2) != NID_ecdsa_with_SHA1 && | ||
222 | EVP_MD_type((const EVP_MD *) p2) != NID_sha224 && | ||
223 | EVP_MD_type((const EVP_MD *) p2) != NID_sha256 && | ||
224 | EVP_MD_type((const EVP_MD *) p2) != NID_sha384 && | ||
225 | EVP_MD_type((const EVP_MD *) p2) != NID_sha512) { | ||
226 | ECerr(EC_F_PKEY_EC_CTRL, EC_R_INVALID_DIGEST_TYPE); | ||
227 | return 0; | ||
228 | } | ||
229 | dctx->md = p2; | ||
230 | return 1; | ||
231 | |||
232 | case EVP_PKEY_CTRL_PEER_KEY: | ||
233 | /* Default behaviour is OK */ | ||
234 | case EVP_PKEY_CTRL_DIGESTINIT: | ||
235 | case EVP_PKEY_CTRL_PKCS7_SIGN: | ||
236 | case EVP_PKEY_CTRL_CMS_SIGN: | ||
237 | return 1; | ||
238 | |||
239 | default: | ||
240 | return -2; | ||
241 | |||
242 | } | ||
243 | } | ||
244 | |||
245 | static int | ||
246 | pkey_ec_ctrl_str(EVP_PKEY_CTX * ctx, | ||
247 | const char *type, const char *value) | ||
248 | { | ||
249 | if (!strcmp(type, "ec_paramgen_curve")) { | ||
250 | int nid; | ||
251 | nid = EC_curve_nist2nid(value); | ||
252 | if (nid == NID_undef) | ||
253 | nid = OBJ_sn2nid(value); | ||
254 | if (nid == NID_undef) | ||
255 | nid = OBJ_ln2nid(value); | ||
256 | if (nid == NID_undef) { | ||
257 | ECerr(EC_F_PKEY_EC_CTRL_STR, EC_R_INVALID_CURVE); | ||
258 | return 0; | ||
259 | } | ||
260 | return EVP_PKEY_CTX_set_ec_paramgen_curve_nid(ctx, nid); | ||
261 | } | ||
262 | return -2; | ||
263 | } | ||
264 | |||
265 | static int | ||
266 | pkey_ec_paramgen(EVP_PKEY_CTX * ctx, EVP_PKEY * pkey) | ||
267 | { | ||
268 | EC_KEY *ec = NULL; | ||
269 | EC_PKEY_CTX *dctx = ctx->data; | ||
270 | int ret = 0; | ||
271 | if (dctx->gen_group == NULL) { | ||
272 | ECerr(EC_F_PKEY_EC_PARAMGEN, EC_R_NO_PARAMETERS_SET); | ||
273 | return 0; | ||
274 | } | ||
275 | ec = EC_KEY_new(); | ||
276 | if (!ec) | ||
277 | return 0; | ||
278 | ret = EC_KEY_set_group(ec, dctx->gen_group); | ||
279 | if (ret) | ||
280 | EVP_PKEY_assign_EC_KEY(pkey, ec); | ||
281 | else | ||
282 | EC_KEY_free(ec); | ||
283 | return ret; | ||
284 | } | ||
285 | |||
286 | static int | ||
287 | pkey_ec_keygen(EVP_PKEY_CTX * ctx, EVP_PKEY * pkey) | ||
288 | { | ||
289 | EC_KEY *ec = NULL; | ||
290 | if (ctx->pkey == NULL) { | ||
291 | ECerr(EC_F_PKEY_EC_KEYGEN, EC_R_NO_PARAMETERS_SET); | ||
292 | return 0; | ||
293 | } | ||
294 | ec = EC_KEY_new(); | ||
295 | if (!ec) | ||
296 | return 0; | ||
297 | EVP_PKEY_assign_EC_KEY(pkey, ec); | ||
298 | /* Note: if error return, pkey is freed by parent routine */ | ||
299 | if (!EVP_PKEY_copy_parameters(pkey, ctx->pkey)) | ||
300 | return 0; | ||
301 | return EC_KEY_generate_key(pkey->pkey.ec); | ||
302 | } | ||
303 | |||
304 | const EVP_PKEY_METHOD ec_pkey_meth = { | ||
305 | .pkey_id = EVP_PKEY_EC, | ||
306 | |||
307 | .init = pkey_ec_init, | ||
308 | .copy = pkey_ec_copy, | ||
309 | .cleanup = pkey_ec_cleanup, | ||
310 | |||
311 | .paramgen = pkey_ec_paramgen, | ||
312 | |||
313 | .keygen = pkey_ec_keygen, | ||
314 | |||
315 | .sign = pkey_ec_sign, | ||
316 | |||
317 | .verify = pkey_ec_verify, | ||
318 | |||
319 | .derive = pkey_ec_derive, | ||
320 | |||
321 | .ctrl = pkey_ec_ctrl, | ||
322 | .ctrl_str = pkey_ec_ctrl_str | ||
323 | }; | ||
diff --git a/src/lib/libcrypto/ec/ec_print.c b/src/lib/libcrypto/ec/ec_print.c deleted file mode 100644 index af4d1996c0..0000000000 --- a/src/lib/libcrypto/ec/ec_print.c +++ /dev/null | |||
@@ -1,178 +0,0 @@ | |||
1 | /* $OpenBSD: ec_print.c,v 1.7 2014/12/03 19:53:20 deraadt Exp $ */ | ||
2 | /* ==================================================================== | ||
3 | * Copyright (c) 1998-2002 The OpenSSL Project. All rights reserved. | ||
4 | * | ||
5 | * Redistribution and use in source and binary forms, with or without | ||
6 | * modification, are permitted provided that the following conditions | ||
7 | * are met: | ||
8 | * | ||
9 | * 1. Redistributions of source code must retain the above copyright | ||
10 | * notice, this list of conditions and the following disclaimer. | ||
11 | * | ||
12 | * 2. Redistributions in binary form must reproduce the above copyright | ||
13 | * notice, this list of conditions and the following disclaimer in | ||
14 | * the documentation and/or other materials provided with the | ||
15 | * distribution. | ||
16 | * | ||
17 | * 3. All advertising materials mentioning features or use of this | ||
18 | * software must display the following acknowledgment: | ||
19 | * "This product includes software developed by the OpenSSL Project | ||
20 | * for use in the OpenSSL Toolkit. (http://www.openssl.org/)" | ||
21 | * | ||
22 | * 4. The names "OpenSSL Toolkit" and "OpenSSL Project" must not be used to | ||
23 | * endorse or promote products derived from this software without | ||
24 | * prior written permission. For written permission, please contact | ||
25 | * openssl-core@openssl.org. | ||
26 | * | ||
27 | * 5. Products derived from this software may not be called "OpenSSL" | ||
28 | * nor may "OpenSSL" appear in their names without prior written | ||
29 | * permission of the OpenSSL Project. | ||
30 | * | ||
31 | * 6. Redistributions of any form whatsoever must retain the following | ||
32 | * acknowledgment: | ||
33 | * "This product includes software developed by the OpenSSL Project | ||
34 | * for use in the OpenSSL Toolkit (http://www.openssl.org/)" | ||
35 | * | ||
36 | * THIS SOFTWARE IS PROVIDED BY THE OpenSSL PROJECT ``AS IS'' AND ANY | ||
37 | * EXPRESSED OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE | ||
38 | * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR | ||
39 | * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE OpenSSL PROJECT OR | ||
40 | * ITS CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, | ||
41 | * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT | ||
42 | * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; | ||
43 | * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) | ||
44 | * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, | ||
45 | * STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) | ||
46 | * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED | ||
47 | * OF THE POSSIBILITY OF SUCH DAMAGE. | ||
48 | * ==================================================================== | ||
49 | * | ||
50 | * This product includes cryptographic software written by Eric Young | ||
51 | * (eay@cryptsoft.com). This product includes software written by Tim | ||
52 | * Hudson (tjh@cryptsoft.com). | ||
53 | * | ||
54 | */ | ||
55 | |||
56 | #include <openssl/crypto.h> | ||
57 | #include "ec_lcl.h" | ||
58 | |||
59 | BIGNUM * | ||
60 | EC_POINT_point2bn(const EC_GROUP * group, const EC_POINT * point, | ||
61 | point_conversion_form_t form, BIGNUM * ret, BN_CTX * ctx) | ||
62 | { | ||
63 | size_t buf_len = 0; | ||
64 | unsigned char *buf; | ||
65 | |||
66 | buf_len = EC_POINT_point2oct(group, point, form, | ||
67 | NULL, 0, ctx); | ||
68 | if (buf_len == 0) | ||
69 | return NULL; | ||
70 | |||
71 | if ((buf = malloc(buf_len)) == NULL) | ||
72 | return NULL; | ||
73 | |||
74 | if (!EC_POINT_point2oct(group, point, form, buf, buf_len, ctx)) { | ||
75 | free(buf); | ||
76 | return NULL; | ||
77 | } | ||
78 | ret = BN_bin2bn(buf, buf_len, ret); | ||
79 | |||
80 | free(buf); | ||
81 | |||
82 | return ret; | ||
83 | } | ||
84 | |||
85 | EC_POINT * | ||
86 | EC_POINT_bn2point(const EC_GROUP * group, | ||
87 | const BIGNUM * bn, EC_POINT * point, BN_CTX * ctx) | ||
88 | { | ||
89 | size_t buf_len = 0; | ||
90 | unsigned char *buf; | ||
91 | EC_POINT *ret; | ||
92 | |||
93 | if ((buf_len = BN_num_bytes(bn)) == 0) | ||
94 | return NULL; | ||
95 | buf = malloc(buf_len); | ||
96 | if (buf == NULL) | ||
97 | return NULL; | ||
98 | |||
99 | if (!BN_bn2bin(bn, buf)) { | ||
100 | free(buf); | ||
101 | return NULL; | ||
102 | } | ||
103 | if (point == NULL) { | ||
104 | if ((ret = EC_POINT_new(group)) == NULL) { | ||
105 | free(buf); | ||
106 | return NULL; | ||
107 | } | ||
108 | } else | ||
109 | ret = point; | ||
110 | |||
111 | if (!EC_POINT_oct2point(group, ret, buf, buf_len, ctx)) { | ||
112 | if (point == NULL) | ||
113 | EC_POINT_clear_free(ret); | ||
114 | free(buf); | ||
115 | return NULL; | ||
116 | } | ||
117 | free(buf); | ||
118 | return ret; | ||
119 | } | ||
120 | |||
121 | static const char *HEX_DIGITS = "0123456789ABCDEF"; | ||
122 | |||
123 | /* the return value must be freed (using free()) */ | ||
124 | char * | ||
125 | EC_POINT_point2hex(const EC_GROUP * group, const EC_POINT * point, | ||
126 | point_conversion_form_t form, BN_CTX * ctx) | ||
127 | { | ||
128 | char *ret, *p; | ||
129 | size_t buf_len = 0, i; | ||
130 | unsigned char *buf, *pbuf; | ||
131 | |||
132 | buf_len = EC_POINT_point2oct(group, point, form, | ||
133 | NULL, 0, ctx); | ||
134 | if (buf_len == 0 || buf_len + 1 == 0) | ||
135 | return NULL; | ||
136 | |||
137 | if ((buf = malloc(buf_len)) == NULL) | ||
138 | return NULL; | ||
139 | |||
140 | if (!EC_POINT_point2oct(group, point, form, buf, buf_len, ctx)) { | ||
141 | free(buf); | ||
142 | return NULL; | ||
143 | } | ||
144 | ret = reallocarray(NULL, buf_len + 1, 2); | ||
145 | if (ret == NULL) { | ||
146 | free(buf); | ||
147 | return NULL; | ||
148 | } | ||
149 | p = ret; | ||
150 | pbuf = buf; | ||
151 | for (i = buf_len; i > 0; i--) { | ||
152 | int v = (int) *(pbuf++); | ||
153 | *(p++) = HEX_DIGITS[v >> 4]; | ||
154 | *(p++) = HEX_DIGITS[v & 0x0F]; | ||
155 | } | ||
156 | *p = '\0'; | ||
157 | |||
158 | free(buf); | ||
159 | |||
160 | return ret; | ||
161 | } | ||
162 | |||
163 | EC_POINT * | ||
164 | EC_POINT_hex2point(const EC_GROUP * group, const char *buf, | ||
165 | EC_POINT * point, BN_CTX * ctx) | ||
166 | { | ||
167 | EC_POINT *ret = NULL; | ||
168 | BIGNUM *tmp_bn = NULL; | ||
169 | |||
170 | if (!BN_hex2bn(&tmp_bn, buf)) | ||
171 | return NULL; | ||
172 | |||
173 | ret = EC_POINT_bn2point(group, tmp_bn, point, ctx); | ||
174 | |||
175 | BN_clear_free(tmp_bn); | ||
176 | |||
177 | return ret; | ||
178 | } | ||
diff --git a/src/lib/libcrypto/ec/eck_prn.c b/src/lib/libcrypto/ec/eck_prn.c deleted file mode 100644 index 06cdd69591..0000000000 --- a/src/lib/libcrypto/ec/eck_prn.c +++ /dev/null | |||
@@ -1,371 +0,0 @@ | |||
1 | /* $OpenBSD: eck_prn.c,v 1.11 2015/06/20 14:17:07 jsing Exp $ */ | ||
2 | /* | ||
3 | * Written by Nils Larsch for the OpenSSL project. | ||
4 | */ | ||
5 | /* ==================================================================== | ||
6 | * Copyright (c) 1998-2005 The OpenSSL Project. All rights reserved. | ||
7 | * | ||
8 | * Redistribution and use in source and binary forms, with or without | ||
9 | * modification, are permitted provided that the following conditions | ||
10 | * are met: | ||
11 | * | ||
12 | * 1. Redistributions of source code must retain the above copyright | ||
13 | * notice, this list of conditions and the following disclaimer. | ||
14 | * | ||
15 | * 2. Redistributions in binary form must reproduce the above copyright | ||
16 | * notice, this list of conditions and the following disclaimer in | ||
17 | * the documentation and/or other materials provided with the | ||
18 | * distribution. | ||
19 | * | ||
20 | * 3. All advertising materials mentioning features or use of this | ||
21 | * software must display the following acknowledgment: | ||
22 | * "This product includes software developed by the OpenSSL Project | ||
23 | * for use in the OpenSSL Toolkit. (http://www.openssl.org/)" | ||
24 | * | ||
25 | * 4. The names "OpenSSL Toolkit" and "OpenSSL Project" must not be used to | ||
26 | * endorse or promote products derived from this software without | ||
27 | * prior written permission. For written permission, please contact | ||
28 | * openssl-core@openssl.org. | ||
29 | * | ||
30 | * 5. Products derived from this software may not be called "OpenSSL" | ||
31 | * nor may "OpenSSL" appear in their names without prior written | ||
32 | * permission of the OpenSSL Project. | ||
33 | * | ||
34 | * 6. Redistributions of any form whatsoever must retain the following | ||
35 | * acknowledgment: | ||
36 | * "This product includes software developed by the OpenSSL Project | ||
37 | * for use in the OpenSSL Toolkit (http://www.openssl.org/)" | ||
38 | * | ||
39 | * THIS SOFTWARE IS PROVIDED BY THE OpenSSL PROJECT ``AS IS'' AND ANY | ||
40 | * EXPRESSED OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE | ||
41 | * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR | ||
42 | * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE OpenSSL PROJECT OR | ||
43 | * ITS CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, | ||
44 | * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT | ||
45 | * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; | ||
46 | * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) | ||
47 | * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, | ||
48 | * STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) | ||
49 | * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED | ||
50 | * OF THE POSSIBILITY OF SUCH DAMAGE. | ||
51 | * ==================================================================== | ||
52 | * | ||
53 | * This product includes cryptographic software written by Eric Young | ||
54 | * (eay@cryptsoft.com). This product includes software written by Tim | ||
55 | * Hudson (tjh@cryptsoft.com). | ||
56 | * | ||
57 | */ | ||
58 | /* ==================================================================== | ||
59 | * Copyright 2002 Sun Microsystems, Inc. ALL RIGHTS RESERVED. | ||
60 | * Portions originally developed by SUN MICROSYSTEMS, INC., and | ||
61 | * contributed to the OpenSSL project. | ||
62 | */ | ||
63 | |||
64 | #include <stdio.h> | ||
65 | #include <string.h> | ||
66 | |||
67 | #include <openssl/opensslconf.h> | ||
68 | |||
69 | #include <openssl/bn.h> | ||
70 | #include <openssl/ec.h> | ||
71 | #include <openssl/err.h> | ||
72 | #include <openssl/evp.h> | ||
73 | |||
74 | int | ||
75 | ECPKParameters_print_fp(FILE * fp, const EC_GROUP * x, int off) | ||
76 | { | ||
77 | BIO *b; | ||
78 | int ret; | ||
79 | |||
80 | if ((b = BIO_new(BIO_s_file())) == NULL) { | ||
81 | ECerr(EC_F_ECPKPARAMETERS_PRINT_FP, ERR_R_BUF_LIB); | ||
82 | return (0); | ||
83 | } | ||
84 | BIO_set_fp(b, fp, BIO_NOCLOSE); | ||
85 | ret = ECPKParameters_print(b, x, off); | ||
86 | BIO_free(b); | ||
87 | return (ret); | ||
88 | } | ||
89 | |||
90 | int | ||
91 | EC_KEY_print_fp(FILE * fp, const EC_KEY * x, int off) | ||
92 | { | ||
93 | BIO *b; | ||
94 | int ret; | ||
95 | |||
96 | if ((b = BIO_new(BIO_s_file())) == NULL) { | ||
97 | ECerr(EC_F_EC_KEY_PRINT_FP, ERR_R_BIO_LIB); | ||
98 | return (0); | ||
99 | } | ||
100 | BIO_set_fp(b, fp, BIO_NOCLOSE); | ||
101 | ret = EC_KEY_print(b, x, off); | ||
102 | BIO_free(b); | ||
103 | return (ret); | ||
104 | } | ||
105 | |||
106 | int | ||
107 | ECParameters_print_fp(FILE * fp, const EC_KEY * x) | ||
108 | { | ||
109 | BIO *b; | ||
110 | int ret; | ||
111 | |||
112 | if ((b = BIO_new(BIO_s_file())) == NULL) { | ||
113 | ECerr(EC_F_ECPARAMETERS_PRINT_FP, ERR_R_BIO_LIB); | ||
114 | return (0); | ||
115 | } | ||
116 | BIO_set_fp(b, fp, BIO_NOCLOSE); | ||
117 | ret = ECParameters_print(b, x); | ||
118 | BIO_free(b); | ||
119 | return (ret); | ||
120 | } | ||
121 | |||
122 | int | ||
123 | EC_KEY_print(BIO * bp, const EC_KEY * x, int off) | ||
124 | { | ||
125 | EVP_PKEY *pk; | ||
126 | int ret; | ||
127 | pk = EVP_PKEY_new(); | ||
128 | if (!pk || !EVP_PKEY_set1_EC_KEY(pk, (EC_KEY *) x)) | ||
129 | return 0; | ||
130 | ret = EVP_PKEY_print_private(bp, pk, off, NULL); | ||
131 | EVP_PKEY_free(pk); | ||
132 | return ret; | ||
133 | } | ||
134 | |||
135 | int | ||
136 | ECParameters_print(BIO * bp, const EC_KEY * x) | ||
137 | { | ||
138 | EVP_PKEY *pk; | ||
139 | int ret; | ||
140 | pk = EVP_PKEY_new(); | ||
141 | if (!pk || !EVP_PKEY_set1_EC_KEY(pk, (EC_KEY *) x)) | ||
142 | return 0; | ||
143 | ret = EVP_PKEY_print_params(bp, pk, 4, NULL); | ||
144 | EVP_PKEY_free(pk); | ||
145 | return ret; | ||
146 | } | ||
147 | |||
148 | static int | ||
149 | print_bin(BIO * fp, const char *str, const unsigned char *num, | ||
150 | size_t len, int off); | ||
151 | |||
152 | int | ||
153 | ECPKParameters_print(BIO * bp, const EC_GROUP * x, int off) | ||
154 | { | ||
155 | unsigned char *buffer = NULL; | ||
156 | size_t buf_len = 0, i; | ||
157 | int ret = 0, reason = ERR_R_BIO_LIB; | ||
158 | BN_CTX *ctx = NULL; | ||
159 | const EC_POINT *point = NULL; | ||
160 | BIGNUM *p = NULL, *a = NULL, *b = NULL, *gen = NULL, *order = NULL, | ||
161 | *cofactor = NULL; | ||
162 | const unsigned char *seed; | ||
163 | size_t seed_len = 0; | ||
164 | const char *nname; | ||
165 | |||
166 | static const char *gen_compressed = "Generator (compressed):"; | ||
167 | static const char *gen_uncompressed = "Generator (uncompressed):"; | ||
168 | static const char *gen_hybrid = "Generator (hybrid):"; | ||
169 | |||
170 | if (!x) { | ||
171 | reason = ERR_R_PASSED_NULL_PARAMETER; | ||
172 | goto err; | ||
173 | } | ||
174 | ctx = BN_CTX_new(); | ||
175 | if (ctx == NULL) { | ||
176 | reason = ERR_R_MALLOC_FAILURE; | ||
177 | goto err; | ||
178 | } | ||
179 | if (EC_GROUP_get_asn1_flag(x)) { | ||
180 | /* the curve parameter are given by an asn1 OID */ | ||
181 | int nid; | ||
182 | |||
183 | if (!BIO_indent(bp, off, 128)) | ||
184 | goto err; | ||
185 | |||
186 | nid = EC_GROUP_get_curve_name(x); | ||
187 | if (nid == 0) | ||
188 | goto err; | ||
189 | |||
190 | if (BIO_printf(bp, "ASN1 OID: %s", OBJ_nid2sn(nid)) <= 0) | ||
191 | goto err; | ||
192 | if (BIO_printf(bp, "\n") <= 0) | ||
193 | goto err; | ||
194 | |||
195 | nname = EC_curve_nid2nist(nid); | ||
196 | if (nname) { | ||
197 | if (!BIO_indent(bp, off, 128)) | ||
198 | goto err; | ||
199 | if (BIO_printf(bp, "NIST CURVE: %s\n", nname) <= 0) | ||
200 | goto err; | ||
201 | } | ||
202 | } else { | ||
203 | /* explicit parameters */ | ||
204 | int is_char_two = 0; | ||
205 | point_conversion_form_t form; | ||
206 | int tmp_nid = EC_METHOD_get_field_type(EC_GROUP_method_of(x)); | ||
207 | |||
208 | if (tmp_nid == NID_X9_62_characteristic_two_field) | ||
209 | is_char_two = 1; | ||
210 | |||
211 | if ((p = BN_new()) == NULL || (a = BN_new()) == NULL || | ||
212 | (b = BN_new()) == NULL || (order = BN_new()) == NULL || | ||
213 | (cofactor = BN_new()) == NULL) { | ||
214 | reason = ERR_R_MALLOC_FAILURE; | ||
215 | goto err; | ||
216 | } | ||
217 | #ifndef OPENSSL_NO_EC2M | ||
218 | if (is_char_two) { | ||
219 | if (!EC_GROUP_get_curve_GF2m(x, p, a, b, ctx)) { | ||
220 | reason = ERR_R_EC_LIB; | ||
221 | goto err; | ||
222 | } | ||
223 | } else /* prime field */ | ||
224 | #endif | ||
225 | { | ||
226 | if (!EC_GROUP_get_curve_GFp(x, p, a, b, ctx)) { | ||
227 | reason = ERR_R_EC_LIB; | ||
228 | goto err; | ||
229 | } | ||
230 | } | ||
231 | |||
232 | if ((point = EC_GROUP_get0_generator(x)) == NULL) { | ||
233 | reason = ERR_R_EC_LIB; | ||
234 | goto err; | ||
235 | } | ||
236 | if (!EC_GROUP_get_order(x, order, NULL) || | ||
237 | !EC_GROUP_get_cofactor(x, cofactor, NULL)) { | ||
238 | reason = ERR_R_EC_LIB; | ||
239 | goto err; | ||
240 | } | ||
241 | form = EC_GROUP_get_point_conversion_form(x); | ||
242 | |||
243 | if ((gen = EC_POINT_point2bn(x, point, | ||
244 | form, NULL, ctx)) == NULL) { | ||
245 | reason = ERR_R_EC_LIB; | ||
246 | goto err; | ||
247 | } | ||
248 | buf_len = (size_t) BN_num_bytes(p); | ||
249 | if (buf_len < (i = (size_t) BN_num_bytes(a))) | ||
250 | buf_len = i; | ||
251 | if (buf_len < (i = (size_t) BN_num_bytes(b))) | ||
252 | buf_len = i; | ||
253 | if (buf_len < (i = (size_t) BN_num_bytes(gen))) | ||
254 | buf_len = i; | ||
255 | if (buf_len < (i = (size_t) BN_num_bytes(order))) | ||
256 | buf_len = i; | ||
257 | if (buf_len < (i = (size_t) BN_num_bytes(cofactor))) | ||
258 | buf_len = i; | ||
259 | |||
260 | if ((seed = EC_GROUP_get0_seed(x)) != NULL) | ||
261 | seed_len = EC_GROUP_get_seed_len(x); | ||
262 | |||
263 | buf_len += 10; | ||
264 | if ((buffer = malloc(buf_len)) == NULL) { | ||
265 | reason = ERR_R_MALLOC_FAILURE; | ||
266 | goto err; | ||
267 | } | ||
268 | if (!BIO_indent(bp, off, 128)) | ||
269 | goto err; | ||
270 | |||
271 | /* print the 'short name' of the field type */ | ||
272 | if (BIO_printf(bp, "Field Type: %s\n", OBJ_nid2sn(tmp_nid)) | ||
273 | <= 0) | ||
274 | goto err; | ||
275 | |||
276 | if (is_char_two) { | ||
277 | /* print the 'short name' of the base type OID */ | ||
278 | int basis_type = EC_GROUP_get_basis_type(x); | ||
279 | if (basis_type == 0) | ||
280 | goto err; | ||
281 | |||
282 | if (!BIO_indent(bp, off, 128)) | ||
283 | goto err; | ||
284 | |||
285 | if (BIO_printf(bp, "Basis Type: %s\n", | ||
286 | OBJ_nid2sn(basis_type)) <= 0) | ||
287 | goto err; | ||
288 | |||
289 | /* print the polynomial */ | ||
290 | if ((p != NULL) && !ASN1_bn_print(bp, "Polynomial:", p, buffer, | ||
291 | off)) | ||
292 | goto err; | ||
293 | } else { | ||
294 | if ((p != NULL) && !ASN1_bn_print(bp, "Prime:", p, buffer, off)) | ||
295 | goto err; | ||
296 | } | ||
297 | if ((a != NULL) && !ASN1_bn_print(bp, "A: ", a, buffer, off)) | ||
298 | goto err; | ||
299 | if ((b != NULL) && !ASN1_bn_print(bp, "B: ", b, buffer, off)) | ||
300 | goto err; | ||
301 | if (form == POINT_CONVERSION_COMPRESSED) { | ||
302 | if ((gen != NULL) && !ASN1_bn_print(bp, gen_compressed, gen, | ||
303 | buffer, off)) | ||
304 | goto err; | ||
305 | } else if (form == POINT_CONVERSION_UNCOMPRESSED) { | ||
306 | if ((gen != NULL) && !ASN1_bn_print(bp, gen_uncompressed, gen, | ||
307 | buffer, off)) | ||
308 | goto err; | ||
309 | } else { /* form == POINT_CONVERSION_HYBRID */ | ||
310 | if ((gen != NULL) && !ASN1_bn_print(bp, gen_hybrid, gen, | ||
311 | buffer, off)) | ||
312 | goto err; | ||
313 | } | ||
314 | if ((order != NULL) && !ASN1_bn_print(bp, "Order: ", order, | ||
315 | buffer, off)) | ||
316 | goto err; | ||
317 | if ((cofactor != NULL) && !ASN1_bn_print(bp, "Cofactor: ", cofactor, | ||
318 | buffer, off)) | ||
319 | goto err; | ||
320 | if (seed && !print_bin(bp, "Seed:", seed, seed_len, off)) | ||
321 | goto err; | ||
322 | } | ||
323 | ret = 1; | ||
324 | err: | ||
325 | if (!ret) | ||
326 | ECerr(EC_F_ECPKPARAMETERS_PRINT, reason); | ||
327 | BN_free(p); | ||
328 | BN_free(a); | ||
329 | BN_free(b); | ||
330 | BN_free(gen); | ||
331 | BN_free(order); | ||
332 | BN_free(cofactor); | ||
333 | BN_CTX_free(ctx); | ||
334 | free(buffer); | ||
335 | return (ret); | ||
336 | } | ||
337 | |||
338 | static int | ||
339 | print_bin(BIO * fp, const char *name, const unsigned char *buf, | ||
340 | size_t len, int off) | ||
341 | { | ||
342 | size_t i; | ||
343 | char str[128]; | ||
344 | |||
345 | if (buf == NULL) | ||
346 | return 1; | ||
347 | if (off) { | ||
348 | if (off > 128) | ||
349 | off = 128; | ||
350 | memset(str, ' ', off); | ||
351 | if (BIO_write(fp, str, off) <= 0) | ||
352 | return 0; | ||
353 | } | ||
354 | if (BIO_printf(fp, "%s", name) <= 0) | ||
355 | return 0; | ||
356 | |||
357 | for (i = 0; i < len; i++) { | ||
358 | if ((i % 15) == 0) { | ||
359 | str[0] = '\n'; | ||
360 | memset(&(str[1]), ' ', off + 4); | ||
361 | if (BIO_write(fp, str, off + 1 + 4) <= 0) | ||
362 | return 0; | ||
363 | } | ||
364 | if (BIO_printf(fp, "%02x%s", buf[i], ((i + 1) == len) ? "" : ":") <= 0) | ||
365 | return 0; | ||
366 | } | ||
367 | if (BIO_write(fp, "\n", 1) <= 0) | ||
368 | return 0; | ||
369 | |||
370 | return 1; | ||
371 | } | ||
diff --git a/src/lib/libcrypto/ec/ecp_mont.c b/src/lib/libcrypto/ec/ecp_mont.c deleted file mode 100644 index a3ad4e1ce9..0000000000 --- a/src/lib/libcrypto/ec/ecp_mont.c +++ /dev/null | |||
@@ -1,294 +0,0 @@ | |||
1 | /* $OpenBSD: ecp_mont.c,v 1.10 2015/02/13 00:46:03 beck Exp $ */ | ||
2 | /* | ||
3 | * Originally written by Bodo Moeller for the OpenSSL project. | ||
4 | */ | ||
5 | /* ==================================================================== | ||
6 | * Copyright (c) 1998-2001 The OpenSSL Project. All rights reserved. | ||
7 | * | ||
8 | * Redistribution and use in source and binary forms, with or without | ||
9 | * modification, are permitted provided that the following conditions | ||
10 | * are met: | ||
11 | * | ||
12 | * 1. Redistributions of source code must retain the above copyright | ||
13 | * notice, this list of conditions and the following disclaimer. | ||
14 | * | ||
15 | * 2. Redistributions in binary form must reproduce the above copyright | ||
16 | * notice, this list of conditions and the following disclaimer in | ||
17 | * the documentation and/or other materials provided with the | ||
18 | * distribution. | ||
19 | * | ||
20 | * 3. All advertising materials mentioning features or use of this | ||
21 | * software must display the following acknowledgment: | ||
22 | * "This product includes software developed by the OpenSSL Project | ||
23 | * for use in the OpenSSL Toolkit. (http://www.openssl.org/)" | ||
24 | * | ||
25 | * 4. The names "OpenSSL Toolkit" and "OpenSSL Project" must not be used to | ||
26 | * endorse or promote products derived from this software without | ||
27 | * prior written permission. For written permission, please contact | ||
28 | * openssl-core@openssl.org. | ||
29 | * | ||
30 | * 5. Products derived from this software may not be called "OpenSSL" | ||
31 | * nor may "OpenSSL" appear in their names without prior written | ||
32 | * permission of the OpenSSL Project. | ||
33 | * | ||
34 | * 6. Redistributions of any form whatsoever must retain the following | ||
35 | * acknowledgment: | ||
36 | * "This product includes software developed by the OpenSSL Project | ||
37 | * for use in the OpenSSL Toolkit (http://www.openssl.org/)" | ||
38 | * | ||
39 | * THIS SOFTWARE IS PROVIDED BY THE OpenSSL PROJECT ``AS IS'' AND ANY | ||
40 | * EXPRESSED OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE | ||
41 | * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR | ||
42 | * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE OpenSSL PROJECT OR | ||
43 | * ITS CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, | ||
44 | * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT | ||
45 | * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; | ||
46 | * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) | ||
47 | * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, | ||
48 | * STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) | ||
49 | * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED | ||
50 | * OF THE POSSIBILITY OF SUCH DAMAGE. | ||
51 | * ==================================================================== | ||
52 | * | ||
53 | * This product includes cryptographic software written by Eric Young | ||
54 | * (eay@cryptsoft.com). This product includes software written by Tim | ||
55 | * Hudson (tjh@cryptsoft.com). | ||
56 | * | ||
57 | */ | ||
58 | /* ==================================================================== | ||
59 | * Copyright 2002 Sun Microsystems, Inc. ALL RIGHTS RESERVED. | ||
60 | * Portions of this software developed by SUN MICROSYSTEMS, INC., | ||
61 | * and contributed to the OpenSSL project. | ||
62 | */ | ||
63 | |||
64 | #include <openssl/err.h> | ||
65 | |||
66 | #include "ec_lcl.h" | ||
67 | |||
68 | |||
69 | const EC_METHOD * | ||
70 | EC_GFp_mont_method(void) | ||
71 | { | ||
72 | static const EC_METHOD ret = { | ||
73 | .flags = EC_FLAGS_DEFAULT_OCT, | ||
74 | .field_type = NID_X9_62_prime_field, | ||
75 | .group_init = ec_GFp_mont_group_init, | ||
76 | .group_finish = ec_GFp_mont_group_finish, | ||
77 | .group_clear_finish = ec_GFp_mont_group_clear_finish, | ||
78 | .group_copy = ec_GFp_mont_group_copy, | ||
79 | .group_set_curve = ec_GFp_mont_group_set_curve, | ||
80 | .group_get_curve = ec_GFp_simple_group_get_curve, | ||
81 | .group_get_degree = ec_GFp_simple_group_get_degree, | ||
82 | .group_check_discriminant = | ||
83 | ec_GFp_simple_group_check_discriminant, | ||
84 | .point_init = ec_GFp_simple_point_init, | ||
85 | .point_finish = ec_GFp_simple_point_finish, | ||
86 | .point_clear_finish = ec_GFp_simple_point_clear_finish, | ||
87 | .point_copy = ec_GFp_simple_point_copy, | ||
88 | .point_set_to_infinity = ec_GFp_simple_point_set_to_infinity, | ||
89 | .point_set_Jprojective_coordinates_GFp = | ||
90 | ec_GFp_simple_set_Jprojective_coordinates_GFp, | ||
91 | .point_get_Jprojective_coordinates_GFp = | ||
92 | ec_GFp_simple_get_Jprojective_coordinates_GFp, | ||
93 | .point_set_affine_coordinates = | ||
94 | ec_GFp_simple_point_set_affine_coordinates, | ||
95 | .point_get_affine_coordinates = | ||
96 | ec_GFp_simple_point_get_affine_coordinates, | ||
97 | .add = ec_GFp_simple_add, | ||
98 | .dbl = ec_GFp_simple_dbl, | ||
99 | .invert = ec_GFp_simple_invert, | ||
100 | .is_at_infinity = ec_GFp_simple_is_at_infinity, | ||
101 | .is_on_curve = ec_GFp_simple_is_on_curve, | ||
102 | .point_cmp = ec_GFp_simple_cmp, | ||
103 | .make_affine = ec_GFp_simple_make_affine, | ||
104 | .points_make_affine = ec_GFp_simple_points_make_affine, | ||
105 | .field_mul = ec_GFp_mont_field_mul, | ||
106 | .field_sqr = ec_GFp_mont_field_sqr, | ||
107 | .field_encode = ec_GFp_mont_field_encode, | ||
108 | .field_decode = ec_GFp_mont_field_decode, | ||
109 | .field_set_to_one = ec_GFp_mont_field_set_to_one | ||
110 | }; | ||
111 | |||
112 | return &ret; | ||
113 | } | ||
114 | |||
115 | |||
116 | int | ||
117 | ec_GFp_mont_group_init(EC_GROUP * group) | ||
118 | { | ||
119 | int ok; | ||
120 | |||
121 | ok = ec_GFp_simple_group_init(group); | ||
122 | group->field_data1 = NULL; | ||
123 | group->field_data2 = NULL; | ||
124 | return ok; | ||
125 | } | ||
126 | |||
127 | |||
128 | void | ||
129 | ec_GFp_mont_group_finish(EC_GROUP * group) | ||
130 | { | ||
131 | BN_MONT_CTX_free(group->field_data1); | ||
132 | group->field_data1 = NULL; | ||
133 | BN_free(group->field_data2); | ||
134 | group->field_data2 = NULL; | ||
135 | ec_GFp_simple_group_finish(group); | ||
136 | } | ||
137 | |||
138 | |||
139 | void | ||
140 | ec_GFp_mont_group_clear_finish(EC_GROUP * group) | ||
141 | { | ||
142 | BN_MONT_CTX_free(group->field_data1); | ||
143 | group->field_data1 = NULL; | ||
144 | BN_clear_free(group->field_data2); | ||
145 | group->field_data2 = NULL; | ||
146 | ec_GFp_simple_group_clear_finish(group); | ||
147 | } | ||
148 | |||
149 | |||
150 | int | ||
151 | ec_GFp_mont_group_copy(EC_GROUP * dest, const EC_GROUP * src) | ||
152 | { | ||
153 | BN_MONT_CTX_free(dest->field_data1); | ||
154 | dest->field_data1 = NULL; | ||
155 | BN_clear_free(dest->field_data2); | ||
156 | dest->field_data2 = NULL; | ||
157 | |||
158 | if (!ec_GFp_simple_group_copy(dest, src)) | ||
159 | return 0; | ||
160 | |||
161 | if (src->field_data1 != NULL) { | ||
162 | dest->field_data1 = BN_MONT_CTX_new(); | ||
163 | if (dest->field_data1 == NULL) | ||
164 | return 0; | ||
165 | if (!BN_MONT_CTX_copy(dest->field_data1, src->field_data1)) | ||
166 | goto err; | ||
167 | } | ||
168 | if (src->field_data2 != NULL) { | ||
169 | dest->field_data2 = BN_dup(src->field_data2); | ||
170 | if (dest->field_data2 == NULL) | ||
171 | goto err; | ||
172 | } | ||
173 | return 1; | ||
174 | |||
175 | err: | ||
176 | if (dest->field_data1 != NULL) { | ||
177 | BN_MONT_CTX_free(dest->field_data1); | ||
178 | dest->field_data1 = NULL; | ||
179 | } | ||
180 | return 0; | ||
181 | } | ||
182 | |||
183 | |||
184 | int | ||
185 | ec_GFp_mont_group_set_curve(EC_GROUP *group, const BIGNUM *p, const BIGNUM *a, | ||
186 | const BIGNUM *b, BN_CTX *ctx) | ||
187 | { | ||
188 | BN_CTX *new_ctx = NULL; | ||
189 | BN_MONT_CTX *mont = NULL; | ||
190 | BIGNUM *one = NULL; | ||
191 | int ret = 0; | ||
192 | |||
193 | BN_MONT_CTX_free(group->field_data1); | ||
194 | group->field_data1 = NULL; | ||
195 | BN_free(group->field_data2); | ||
196 | group->field_data2 = NULL; | ||
197 | if (ctx == NULL) { | ||
198 | ctx = new_ctx = BN_CTX_new(); | ||
199 | if (ctx == NULL) | ||
200 | return 0; | ||
201 | } | ||
202 | mont = BN_MONT_CTX_new(); | ||
203 | if (mont == NULL) | ||
204 | goto err; | ||
205 | if (!BN_MONT_CTX_set(mont, p, ctx)) { | ||
206 | ECerr(EC_F_EC_GFP_MONT_GROUP_SET_CURVE, ERR_R_BN_LIB); | ||
207 | goto err; | ||
208 | } | ||
209 | one = BN_new(); | ||
210 | if (one == NULL) | ||
211 | goto err; | ||
212 | if (!BN_to_montgomery(one, BN_value_one(), mont, ctx)) | ||
213 | goto err; | ||
214 | |||
215 | group->field_data1 = mont; | ||
216 | mont = NULL; | ||
217 | group->field_data2 = one; | ||
218 | one = NULL; | ||
219 | |||
220 | ret = ec_GFp_simple_group_set_curve(group, p, a, b, ctx); | ||
221 | |||
222 | if (!ret) { | ||
223 | BN_MONT_CTX_free(group->field_data1); | ||
224 | group->field_data1 = NULL; | ||
225 | BN_free(group->field_data2); | ||
226 | group->field_data2 = NULL; | ||
227 | } | ||
228 | err: | ||
229 | BN_CTX_free(new_ctx); | ||
230 | BN_MONT_CTX_free(mont); | ||
231 | BN_free(one); | ||
232 | return ret; | ||
233 | } | ||
234 | |||
235 | |||
236 | int | ||
237 | ec_GFp_mont_field_mul(const EC_GROUP *group, BIGNUM *r, const BIGNUM *a, | ||
238 | const BIGNUM *b, BN_CTX *ctx) | ||
239 | { | ||
240 | if (group->field_data1 == NULL) { | ||
241 | ECerr(EC_F_EC_GFP_MONT_FIELD_MUL, EC_R_NOT_INITIALIZED); | ||
242 | return 0; | ||
243 | } | ||
244 | return BN_mod_mul_montgomery(r, a, b, group->field_data1, ctx); | ||
245 | } | ||
246 | |||
247 | |||
248 | int | ||
249 | ec_GFp_mont_field_sqr(const EC_GROUP *group, BIGNUM *r, const BIGNUM *a, | ||
250 | BN_CTX *ctx) | ||
251 | { | ||
252 | if (group->field_data1 == NULL) { | ||
253 | ECerr(EC_F_EC_GFP_MONT_FIELD_SQR, EC_R_NOT_INITIALIZED); | ||
254 | return 0; | ||
255 | } | ||
256 | return BN_mod_mul_montgomery(r, a, a, group->field_data1, ctx); | ||
257 | } | ||
258 | |||
259 | |||
260 | int | ||
261 | ec_GFp_mont_field_encode(const EC_GROUP *group, BIGNUM *r, const BIGNUM *a, | ||
262 | BN_CTX *ctx) | ||
263 | { | ||
264 | if (group->field_data1 == NULL) { | ||
265 | ECerr(EC_F_EC_GFP_MONT_FIELD_ENCODE, EC_R_NOT_INITIALIZED); | ||
266 | return 0; | ||
267 | } | ||
268 | return BN_to_montgomery(r, a, (BN_MONT_CTX *) group->field_data1, ctx); | ||
269 | } | ||
270 | |||
271 | |||
272 | int | ||
273 | ec_GFp_mont_field_decode(const EC_GROUP *group, BIGNUM *r, const BIGNUM *a, | ||
274 | BN_CTX *ctx) | ||
275 | { | ||
276 | if (group->field_data1 == NULL) { | ||
277 | ECerr(EC_F_EC_GFP_MONT_FIELD_DECODE, EC_R_NOT_INITIALIZED); | ||
278 | return 0; | ||
279 | } | ||
280 | return BN_from_montgomery(r, a, group->field_data1, ctx); | ||
281 | } | ||
282 | |||
283 | |||
284 | int | ||
285 | ec_GFp_mont_field_set_to_one(const EC_GROUP *group, BIGNUM *r, BN_CTX *ctx) | ||
286 | { | ||
287 | if (group->field_data2 == NULL) { | ||
288 | ECerr(EC_F_EC_GFP_MONT_FIELD_SET_TO_ONE, EC_R_NOT_INITIALIZED); | ||
289 | return 0; | ||
290 | } | ||
291 | if (!BN_copy(r, group->field_data2)) | ||
292 | return 0; | ||
293 | return 1; | ||
294 | } | ||
diff --git a/src/lib/libcrypto/ec/ecp_nist.c b/src/lib/libcrypto/ec/ecp_nist.c deleted file mode 100644 index a33f9d9e39..0000000000 --- a/src/lib/libcrypto/ec/ecp_nist.c +++ /dev/null | |||
@@ -1,212 +0,0 @@ | |||
1 | /* $OpenBSD: ecp_nist.c,v 1.9 2014/07/12 16:03:37 miod Exp $ */ | ||
2 | /* | ||
3 | * Written by Nils Larsch for the OpenSSL project. | ||
4 | */ | ||
5 | /* ==================================================================== | ||
6 | * Copyright (c) 1998-2003 The OpenSSL Project. All rights reserved. | ||
7 | * | ||
8 | * Redistribution and use in source and binary forms, with or without | ||
9 | * modification, are permitted provided that the following conditions | ||
10 | * are met: | ||
11 | * | ||
12 | * 1. Redistributions of source code must retain the above copyright | ||
13 | * notice, this list of conditions and the following disclaimer. | ||
14 | * | ||
15 | * 2. Redistributions in binary form must reproduce the above copyright | ||
16 | * notice, this list of conditions and the following disclaimer in | ||
17 | * the documentation and/or other materials provided with the | ||
18 | * distribution. | ||
19 | * | ||
20 | * 3. All advertising materials mentioning features or use of this | ||
21 | * software must display the following acknowledgment: | ||
22 | * "This product includes software developed by the OpenSSL Project | ||
23 | * for use in the OpenSSL Toolkit. (http://www.openssl.org/)" | ||
24 | * | ||
25 | * 4. The names "OpenSSL Toolkit" and "OpenSSL Project" must not be used to | ||
26 | * endorse or promote products derived from this software without | ||
27 | * prior written permission. For written permission, please contact | ||
28 | * openssl-core@openssl.org. | ||
29 | * | ||
30 | * 5. Products derived from this software may not be called "OpenSSL" | ||
31 | * nor may "OpenSSL" appear in their names without prior written | ||
32 | * permission of the OpenSSL Project. | ||
33 | * | ||
34 | * 6. Redistributions of any form whatsoever must retain the following | ||
35 | * acknowledgment: | ||
36 | * "This product includes software developed by the OpenSSL Project | ||
37 | * for use in the OpenSSL Toolkit (http://www.openssl.org/)" | ||
38 | * | ||
39 | * THIS SOFTWARE IS PROVIDED BY THE OpenSSL PROJECT ``AS IS'' AND ANY | ||
40 | * EXPRESSED OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE | ||
41 | * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR | ||
42 | * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE OpenSSL PROJECT OR | ||
43 | * ITS CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, | ||
44 | * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT | ||
45 | * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; | ||
46 | * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) | ||
47 | * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, | ||
48 | * STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) | ||
49 | * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED | ||
50 | * OF THE POSSIBILITY OF SUCH DAMAGE. | ||
51 | * ==================================================================== | ||
52 | * | ||
53 | * This product includes cryptographic software written by Eric Young | ||
54 | * (eay@cryptsoft.com). This product includes software written by Tim | ||
55 | * Hudson (tjh@cryptsoft.com). | ||
56 | * | ||
57 | */ | ||
58 | /* ==================================================================== | ||
59 | * Copyright 2002 Sun Microsystems, Inc. ALL RIGHTS RESERVED. | ||
60 | * Portions of this software developed by SUN MICROSYSTEMS, INC., | ||
61 | * and contributed to the OpenSSL project. | ||
62 | */ | ||
63 | |||
64 | #include <limits.h> | ||
65 | |||
66 | #include <openssl/err.h> | ||
67 | #include <openssl/obj_mac.h> | ||
68 | #include "ec_lcl.h" | ||
69 | |||
70 | const EC_METHOD * | ||
71 | EC_GFp_nist_method(void) | ||
72 | { | ||
73 | static const EC_METHOD ret = { | ||
74 | .flags = EC_FLAGS_DEFAULT_OCT, | ||
75 | .field_type = NID_X9_62_prime_field, | ||
76 | .group_init = ec_GFp_simple_group_init, | ||
77 | .group_finish = ec_GFp_simple_group_finish, | ||
78 | .group_clear_finish = ec_GFp_simple_group_clear_finish, | ||
79 | .group_copy = ec_GFp_nist_group_copy, | ||
80 | .group_set_curve = ec_GFp_nist_group_set_curve, | ||
81 | .group_get_curve = ec_GFp_simple_group_get_curve, | ||
82 | .group_get_degree = ec_GFp_simple_group_get_degree, | ||
83 | .group_check_discriminant = | ||
84 | ec_GFp_simple_group_check_discriminant, | ||
85 | .point_init = ec_GFp_simple_point_init, | ||
86 | .point_finish = ec_GFp_simple_point_finish, | ||
87 | .point_clear_finish = ec_GFp_simple_point_clear_finish, | ||
88 | .point_copy = ec_GFp_simple_point_copy, | ||
89 | .point_set_to_infinity = ec_GFp_simple_point_set_to_infinity, | ||
90 | .point_set_Jprojective_coordinates_GFp = | ||
91 | ec_GFp_simple_set_Jprojective_coordinates_GFp, | ||
92 | .point_get_Jprojective_coordinates_GFp = | ||
93 | ec_GFp_simple_get_Jprojective_coordinates_GFp, | ||
94 | .point_set_affine_coordinates = | ||
95 | ec_GFp_simple_point_set_affine_coordinates, | ||
96 | .point_get_affine_coordinates = | ||
97 | ec_GFp_simple_point_get_affine_coordinates, | ||
98 | .add = ec_GFp_simple_add, | ||
99 | .dbl = ec_GFp_simple_dbl, | ||
100 | .invert = ec_GFp_simple_invert, | ||
101 | .is_at_infinity = ec_GFp_simple_is_at_infinity, | ||
102 | .is_on_curve = ec_GFp_simple_is_on_curve, | ||
103 | .point_cmp = ec_GFp_simple_cmp, | ||
104 | .make_affine = ec_GFp_simple_make_affine, | ||
105 | .points_make_affine = ec_GFp_simple_points_make_affine, | ||
106 | .field_mul = ec_GFp_nist_field_mul, | ||
107 | .field_sqr = ec_GFp_nist_field_sqr | ||
108 | }; | ||
109 | |||
110 | return &ret; | ||
111 | } | ||
112 | |||
113 | int | ||
114 | ec_GFp_nist_group_copy(EC_GROUP * dest, const EC_GROUP * src) | ||
115 | { | ||
116 | dest->field_mod_func = src->field_mod_func; | ||
117 | |||
118 | return ec_GFp_simple_group_copy(dest, src); | ||
119 | } | ||
120 | |||
121 | int | ||
122 | ec_GFp_nist_group_set_curve(EC_GROUP *group, const BIGNUM *p, | ||
123 | const BIGNUM *a, const BIGNUM *b, BN_CTX *ctx) | ||
124 | { | ||
125 | int ret = 0; | ||
126 | BN_CTX *new_ctx = NULL; | ||
127 | BIGNUM *tmp_bn; | ||
128 | |||
129 | if (ctx == NULL) | ||
130 | if ((ctx = new_ctx = BN_CTX_new()) == NULL) | ||
131 | return 0; | ||
132 | |||
133 | BN_CTX_start(ctx); | ||
134 | if ((tmp_bn = BN_CTX_get(ctx)) == NULL) | ||
135 | goto err; | ||
136 | |||
137 | if (BN_ucmp(BN_get0_nist_prime_192(), p) == 0) | ||
138 | group->field_mod_func = BN_nist_mod_192; | ||
139 | else if (BN_ucmp(BN_get0_nist_prime_224(), p) == 0) | ||
140 | group->field_mod_func = BN_nist_mod_224; | ||
141 | else if (BN_ucmp(BN_get0_nist_prime_256(), p) == 0) | ||
142 | group->field_mod_func = BN_nist_mod_256; | ||
143 | else if (BN_ucmp(BN_get0_nist_prime_384(), p) == 0) | ||
144 | group->field_mod_func = BN_nist_mod_384; | ||
145 | else if (BN_ucmp(BN_get0_nist_prime_521(), p) == 0) | ||
146 | group->field_mod_func = BN_nist_mod_521; | ||
147 | else { | ||
148 | ECerr(EC_F_EC_GFP_NIST_GROUP_SET_CURVE, EC_R_NOT_A_NIST_PRIME); | ||
149 | goto err; | ||
150 | } | ||
151 | |||
152 | ret = ec_GFp_simple_group_set_curve(group, p, a, b, ctx); | ||
153 | |||
154 | err: | ||
155 | BN_CTX_end(ctx); | ||
156 | BN_CTX_free(new_ctx); | ||
157 | return ret; | ||
158 | } | ||
159 | |||
160 | |||
161 | int | ||
162 | ec_GFp_nist_field_mul(const EC_GROUP *group, BIGNUM *r, const BIGNUM *a, | ||
163 | const BIGNUM *b, BN_CTX *ctx) | ||
164 | { | ||
165 | int ret = 0; | ||
166 | BN_CTX *ctx_new = NULL; | ||
167 | |||
168 | if (!group || !r || !a || !b) { | ||
169 | ECerr(EC_F_EC_GFP_NIST_FIELD_MUL, ERR_R_PASSED_NULL_PARAMETER); | ||
170 | goto err; | ||
171 | } | ||
172 | if (!ctx) | ||
173 | if ((ctx_new = ctx = BN_CTX_new()) == NULL) | ||
174 | goto err; | ||
175 | |||
176 | if (!BN_mul(r, a, b, ctx)) | ||
177 | goto err; | ||
178 | if (!group->field_mod_func(r, r, &group->field, ctx)) | ||
179 | goto err; | ||
180 | |||
181 | ret = 1; | ||
182 | err: | ||
183 | BN_CTX_free(ctx_new); | ||
184 | return ret; | ||
185 | } | ||
186 | |||
187 | |||
188 | int | ||
189 | ec_GFp_nist_field_sqr(const EC_GROUP * group, BIGNUM * r, const BIGNUM * a, | ||
190 | BN_CTX * ctx) | ||
191 | { | ||
192 | int ret = 0; | ||
193 | BN_CTX *ctx_new = NULL; | ||
194 | |||
195 | if (!group || !r || !a) { | ||
196 | ECerr(EC_F_EC_GFP_NIST_FIELD_SQR, EC_R_PASSED_NULL_PARAMETER); | ||
197 | goto err; | ||
198 | } | ||
199 | if (!ctx) | ||
200 | if ((ctx_new = ctx = BN_CTX_new()) == NULL) | ||
201 | goto err; | ||
202 | |||
203 | if (!BN_sqr(r, a, ctx)) | ||
204 | goto err; | ||
205 | if (!group->field_mod_func(r, r, &group->field, ctx)) | ||
206 | goto err; | ||
207 | |||
208 | ret = 1; | ||
209 | err: | ||
210 | BN_CTX_free(ctx_new); | ||
211 | return ret; | ||
212 | } | ||
diff --git a/src/lib/libcrypto/ec/ecp_nistp224.c b/src/lib/libcrypto/ec/ecp_nistp224.c deleted file mode 100644 index 0976f24a9f..0000000000 --- a/src/lib/libcrypto/ec/ecp_nistp224.c +++ /dev/null | |||
@@ -1,1693 +0,0 @@ | |||
1 | /* $OpenBSD: ecp_nistp224.c,v 1.17 2015/09/10 15:56:25 jsing Exp $ */ | ||
2 | /* | ||
3 | * Written by Emilia Kasper (Google) for the OpenSSL project. | ||
4 | */ | ||
5 | /* | ||
6 | * Copyright (c) 2011 Google Inc. | ||
7 | * | ||
8 | * Permission to use, copy, modify, and distribute this software for any | ||
9 | * purpose with or without fee is hereby granted, provided that the above | ||
10 | * copyright notice and this permission notice appear in all copies. | ||
11 | * | ||
12 | * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES | ||
13 | * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF | ||
14 | * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR | ||
15 | * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES | ||
16 | * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN | ||
17 | * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF | ||
18 | * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE. | ||
19 | */ | ||
20 | |||
21 | /* | ||
22 | * A 64-bit implementation of the NIST P-224 elliptic curve point multiplication | ||
23 | * | ||
24 | * Inspired by Daniel J. Bernstein's public domain nistp224 implementation | ||
25 | * and Adam Langley's public domain 64-bit C implementation of curve25519 | ||
26 | */ | ||
27 | |||
28 | #include <stdint.h> | ||
29 | #include <string.h> | ||
30 | |||
31 | #include <openssl/opensslconf.h> | ||
32 | |||
33 | #ifndef OPENSSL_NO_EC_NISTP_64_GCC_128 | ||
34 | |||
35 | #include <openssl/err.h> | ||
36 | #include "ec_lcl.h" | ||
37 | |||
38 | #if defined(__GNUC__) && (__GNUC__ > 3 || (__GNUC__ == 3 && __GNUC_MINOR__ >= 1)) | ||
39 | /* even with gcc, the typedef won't work for 32-bit platforms */ | ||
40 | typedef __uint128_t uint128_t; /* nonstandard; implemented by gcc on 64-bit platforms */ | ||
41 | #else | ||
42 | #error "Need GCC 3.1 or later to define type uint128_t" | ||
43 | #endif | ||
44 | |||
45 | typedef uint8_t u8; | ||
46 | typedef uint64_t u64; | ||
47 | typedef int64_t s64; | ||
48 | |||
49 | |||
50 | /******************************************************************************/ | ||
51 | /* INTERNAL REPRESENTATION OF FIELD ELEMENTS | ||
52 | * | ||
53 | * Field elements are represented as a_0 + 2^56*a_1 + 2^112*a_2 + 2^168*a_3 | ||
54 | * using 64-bit coefficients called 'limbs', | ||
55 | * and sometimes (for multiplication results) as | ||
56 | * b_0 + 2^56*b_1 + 2^112*b_2 + 2^168*b_3 + 2^224*b_4 + 2^280*b_5 + 2^336*b_6 | ||
57 | * using 128-bit coefficients called 'widelimbs'. | ||
58 | * A 4-limb representation is an 'felem'; | ||
59 | * a 7-widelimb representation is a 'widefelem'. | ||
60 | * Even within felems, bits of adjacent limbs overlap, and we don't always | ||
61 | * reduce the representations: we ensure that inputs to each felem | ||
62 | * multiplication satisfy a_i < 2^60, so outputs satisfy b_i < 4*2^60*2^60, | ||
63 | * and fit into a 128-bit word without overflow. The coefficients are then | ||
64 | * again partially reduced to obtain an felem satisfying a_i < 2^57. | ||
65 | * We only reduce to the unique minimal representation at the end of the | ||
66 | * computation. | ||
67 | */ | ||
68 | |||
69 | typedef uint64_t limb; | ||
70 | typedef uint128_t widelimb; | ||
71 | |||
72 | typedef limb felem[4]; | ||
73 | typedef widelimb widefelem[7]; | ||
74 | |||
75 | /* Field element represented as a byte arrary. | ||
76 | * 28*8 = 224 bits is also the group order size for the elliptic curve, | ||
77 | * and we also use this type for scalars for point multiplication. | ||
78 | */ | ||
79 | typedef u8 felem_bytearray[28]; | ||
80 | |||
81 | static const felem_bytearray nistp224_curve_params[5] = { | ||
82 | {0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF, /* p */ | ||
83 | 0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0x00,0x00,0x00,0x00, | ||
84 | 0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x01}, | ||
85 | {0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF, /* a */ | ||
86 | 0xFF,0xFF,0xFF,0xFF,0xFF,0xFE,0xFF,0xFF,0xFF,0xFF, | ||
87 | 0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFE}, | ||
88 | {0xB4,0x05,0x0A,0x85,0x0C,0x04,0xB3,0xAB,0xF5,0x41, /* b */ | ||
89 | 0x32,0x56,0x50,0x44,0xB0,0xB7,0xD7,0xBF,0xD8,0xBA, | ||
90 | 0x27,0x0B,0x39,0x43,0x23,0x55,0xFF,0xB4}, | ||
91 | {0xB7,0x0E,0x0C,0xBD,0x6B,0xB4,0xBF,0x7F,0x32,0x13, /* x */ | ||
92 | 0x90,0xB9,0x4A,0x03,0xC1,0xD3,0x56,0xC2,0x11,0x22, | ||
93 | 0x34,0x32,0x80,0xD6,0x11,0x5C,0x1D,0x21}, | ||
94 | {0xbd,0x37,0x63,0x88,0xb5,0xf7,0x23,0xfb,0x4c,0x22, /* y */ | ||
95 | 0xdf,0xe6,0xcd,0x43,0x75,0xa0,0x5a,0x07,0x47,0x64, | ||
96 | 0x44,0xd5,0x81,0x99,0x85,0x00,0x7e,0x34} | ||
97 | }; | ||
98 | |||
99 | /* Precomputed multiples of the standard generator | ||
100 | * Points are given in coordinates (X, Y, Z) where Z normally is 1 | ||
101 | * (0 for the point at infinity). | ||
102 | * For each field element, slice a_0 is word 0, etc. | ||
103 | * | ||
104 | * The table has 2 * 16 elements, starting with the following: | ||
105 | * index | bits | point | ||
106 | * ------+---------+------------------------------ | ||
107 | * 0 | 0 0 0 0 | 0G | ||
108 | * 1 | 0 0 0 1 | 1G | ||
109 | * 2 | 0 0 1 0 | 2^56G | ||
110 | * 3 | 0 0 1 1 | (2^56 + 1)G | ||
111 | * 4 | 0 1 0 0 | 2^112G | ||
112 | * 5 | 0 1 0 1 | (2^112 + 1)G | ||
113 | * 6 | 0 1 1 0 | (2^112 + 2^56)G | ||
114 | * 7 | 0 1 1 1 | (2^112 + 2^56 + 1)G | ||
115 | * 8 | 1 0 0 0 | 2^168G | ||
116 | * 9 | 1 0 0 1 | (2^168 + 1)G | ||
117 | * 10 | 1 0 1 0 | (2^168 + 2^56)G | ||
118 | * 11 | 1 0 1 1 | (2^168 + 2^56 + 1)G | ||
119 | * 12 | 1 1 0 0 | (2^168 + 2^112)G | ||
120 | * 13 | 1 1 0 1 | (2^168 + 2^112 + 1)G | ||
121 | * 14 | 1 1 1 0 | (2^168 + 2^112 + 2^56)G | ||
122 | * 15 | 1 1 1 1 | (2^168 + 2^112 + 2^56 + 1)G | ||
123 | * followed by a copy of this with each element multiplied by 2^28. | ||
124 | * | ||
125 | * The reason for this is so that we can clock bits into four different | ||
126 | * locations when doing simple scalar multiplies against the base point, | ||
127 | * and then another four locations using the second 16 elements. | ||
128 | */ | ||
129 | static const felem gmul[2][16][3] = | ||
130 | {{{{0, 0, 0, 0}, | ||
131 | {0, 0, 0, 0}, | ||
132 | {0, 0, 0, 0}}, | ||
133 | {{0x3280d6115c1d21, 0xc1d356c2112234, 0x7f321390b94a03, 0xb70e0cbd6bb4bf}, | ||
134 | {0xd5819985007e34, 0x75a05a07476444, 0xfb4c22dfe6cd43, 0xbd376388b5f723}, | ||
135 | {1, 0, 0, 0}}, | ||
136 | {{0xfd9675666ebbe9, 0xbca7664d40ce5e, 0x2242df8d8a2a43, 0x1f49bbb0f99bc5}, | ||
137 | {0x29e0b892dc9c43, 0xece8608436e662, 0xdc858f185310d0, 0x9812dd4eb8d321}, | ||
138 | {1, 0, 0, 0}}, | ||
139 | {{0x6d3e678d5d8eb8, 0x559eed1cb362f1, 0x16e9a3bbce8a3f, 0xeedcccd8c2a748}, | ||
140 | {0xf19f90ed50266d, 0xabf2b4bf65f9df, 0x313865468fafec, 0x5cb379ba910a17}, | ||
141 | {1, 0, 0, 0}}, | ||
142 | {{0x0641966cab26e3, 0x91fb2991fab0a0, 0xefec27a4e13a0b, 0x0499aa8a5f8ebe}, | ||
143 | {0x7510407766af5d, 0x84d929610d5450, 0x81d77aae82f706, 0x6916f6d4338c5b}, | ||
144 | {1, 0, 0, 0}}, | ||
145 | {{0xea95ac3b1f15c6, 0x086000905e82d4, 0xdd323ae4d1c8b1, 0x932b56be7685a3}, | ||
146 | {0x9ef93dea25dbbf, 0x41665960f390f0, 0xfdec76dbe2a8a7, 0x523e80f019062a}, | ||
147 | {1, 0, 0, 0}}, | ||
148 | {{0x822fdd26732c73, 0xa01c83531b5d0f, 0x363f37347c1ba4, 0xc391b45c84725c}, | ||
149 | {0xbbd5e1b2d6ad24, 0xddfbcde19dfaec, 0xc393da7e222a7f, 0x1efb7890ede244}, | ||
150 | {1, 0, 0, 0}}, | ||
151 | {{0x4c9e90ca217da1, 0xd11beca79159bb, 0xff8d33c2c98b7c, 0x2610b39409f849}, | ||
152 | {0x44d1352ac64da0, 0xcdbb7b2c46b4fb, 0x966c079b753c89, 0xfe67e4e820b112}, | ||
153 | {1, 0, 0, 0}}, | ||
154 | {{0xe28cae2df5312d, 0xc71b61d16f5c6e, 0x79b7619a3e7c4c, 0x05c73240899b47}, | ||
155 | {0x9f7f6382c73e3a, 0x18615165c56bda, 0x641fab2116fd56, 0x72855882b08394}, | ||
156 | {1, 0, 0, 0}}, | ||
157 | {{0x0469182f161c09, 0x74a98ca8d00fb5, 0xb89da93489a3e0, 0x41c98768fb0c1d}, | ||
158 | {0xe5ea05fb32da81, 0x3dce9ffbca6855, 0x1cfe2d3fbf59e6, 0x0e5e03408738a7}, | ||
159 | {1, 0, 0, 0}}, | ||
160 | {{0xdab22b2333e87f, 0x4430137a5dd2f6, 0xe03ab9f738beb8, 0xcb0c5d0dc34f24}, | ||
161 | {0x764a7df0c8fda5, 0x185ba5c3fa2044, 0x9281d688bcbe50, 0xc40331df893881}, | ||
162 | {1, 0, 0, 0}}, | ||
163 | {{0xb89530796f0f60, 0xade92bd26909a3, 0x1a0c83fb4884da, 0x1765bf22a5a984}, | ||
164 | {0x772a9ee75db09e, 0x23bc6c67cec16f, 0x4c1edba8b14e2f, 0xe2a215d9611369}, | ||
165 | {1, 0, 0, 0}}, | ||
166 | {{0x571e509fb5efb3, 0xade88696410552, 0xc8ae85fada74fe, 0x6c7e4be83bbde3}, | ||
167 | {0xff9f51160f4652, 0xb47ce2495a6539, 0xa2946c53b582f4, 0x286d2db3ee9a60}, | ||
168 | {1, 0, 0, 0}}, | ||
169 | {{0x40bbd5081a44af, 0x0995183b13926c, 0xbcefba6f47f6d0, 0x215619e9cc0057}, | ||
170 | {0x8bc94d3b0df45e, 0xf11c54a3694f6f, 0x8631b93cdfe8b5, 0xe7e3f4b0982db9}, | ||
171 | {1, 0, 0, 0}}, | ||
172 | {{0xb17048ab3e1c7b, 0xac38f36ff8a1d8, 0x1c29819435d2c6, 0xc813132f4c07e9}, | ||
173 | {0x2891425503b11f, 0x08781030579fea, 0xf5426ba5cc9674, 0x1e28ebf18562bc}, | ||
174 | {1, 0, 0, 0}}, | ||
175 | {{0x9f31997cc864eb, 0x06cd91d28b5e4c, 0xff17036691a973, 0xf1aef351497c58}, | ||
176 | {0xdd1f2d600564ff, 0xdead073b1402db, 0x74a684435bd693, 0xeea7471f962558}, | ||
177 | {1, 0, 0, 0}}}, | ||
178 | {{{0, 0, 0, 0}, | ||
179 | {0, 0, 0, 0}, | ||
180 | {0, 0, 0, 0}}, | ||
181 | {{0x9665266dddf554, 0x9613d78b60ef2d, 0xce27a34cdba417, 0xd35ab74d6afc31}, | ||
182 | {0x85ccdd22deb15e, 0x2137e5783a6aab, 0xa141cffd8c93c6, 0x355a1830e90f2d}, | ||
183 | {1, 0, 0, 0}}, | ||
184 | {{0x1a494eadaade65, 0xd6da4da77fe53c, 0xe7992996abec86, 0x65c3553c6090e3}, | ||
185 | {0xfa610b1fb09346, 0xf1c6540b8a4aaf, 0xc51a13ccd3cbab, 0x02995b1b18c28a}, | ||
186 | {1, 0, 0, 0}}, | ||
187 | {{0x7874568e7295ef, 0x86b419fbe38d04, 0xdc0690a7550d9a, 0xd3966a44beac33}, | ||
188 | {0x2b7280ec29132f, 0xbeaa3b6a032df3, 0xdc7dd88ae41200, 0xd25e2513e3a100}, | ||
189 | {1, 0, 0, 0}}, | ||
190 | {{0x924857eb2efafd, 0xac2bce41223190, 0x8edaa1445553fc, 0x825800fd3562d5}, | ||
191 | {0x8d79148ea96621, 0x23a01c3dd9ed8d, 0xaf8b219f9416b5, 0xd8db0cc277daea}, | ||
192 | {1, 0, 0, 0}}, | ||
193 | {{0x76a9c3b1a700f0, 0xe9acd29bc7e691, 0x69212d1a6b0327, 0x6322e97fe154be}, | ||
194 | {0x469fc5465d62aa, 0x8d41ed18883b05, 0x1f8eae66c52b88, 0xe4fcbe9325be51}, | ||
195 | {1, 0, 0, 0}}, | ||
196 | {{0x825fdf583cac16, 0x020b857c7b023a, 0x683c17744b0165, 0x14ffd0a2daf2f1}, | ||
197 | {0x323b36184218f9, 0x4944ec4e3b47d4, 0xc15b3080841acf, 0x0bced4b01a28bb}, | ||
198 | {1, 0, 0, 0}}, | ||
199 | {{0x92ac22230df5c4, 0x52f33b4063eda8, 0xcb3f19870c0c93, 0x40064f2ba65233}, | ||
200 | {0xfe16f0924f8992, 0x012da25af5b517, 0x1a57bb24f723a6, 0x06f8bc76760def}, | ||
201 | {1, 0, 0, 0}}, | ||
202 | {{0x4a7084f7817cb9, 0xbcab0738ee9a78, 0x3ec11e11d9c326, 0xdc0fe90e0f1aae}, | ||
203 | {0xcf639ea5f98390, 0x5c350aa22ffb74, 0x9afae98a4047b7, 0x956ec2d617fc45}, | ||
204 | {1, 0, 0, 0}}, | ||
205 | {{0x4306d648c1be6a, 0x9247cd8bc9a462, 0xf5595e377d2f2e, 0xbd1c3caff1a52e}, | ||
206 | {0x045e14472409d0, 0x29f3e17078f773, 0x745a602b2d4f7d, 0x191837685cdfbb}, | ||
207 | {1, 0, 0, 0}}, | ||
208 | {{0x5b6ee254a8cb79, 0x4953433f5e7026, 0xe21faeb1d1def4, 0xc4c225785c09de}, | ||
209 | {0x307ce7bba1e518, 0x31b125b1036db8, 0x47e91868839e8f, 0xc765866e33b9f3}, | ||
210 | {1, 0, 0, 0}}, | ||
211 | {{0x3bfece24f96906, 0x4794da641e5093, 0xde5df64f95db26, 0x297ecd89714b05}, | ||
212 | {0x701bd3ebb2c3aa, 0x7073b4f53cb1d5, 0x13c5665658af16, 0x9895089d66fe58}, | ||
213 | {1, 0, 0, 0}}, | ||
214 | {{0x0fef05f78c4790, 0x2d773633b05d2e, 0x94229c3a951c94, 0xbbbd70df4911bb}, | ||
215 | {0xb2c6963d2c1168, 0x105f47a72b0d73, 0x9fdf6111614080, 0x7b7e94b39e67b0}, | ||
216 | {1, 0, 0, 0}}, | ||
217 | {{0xad1a7d6efbe2b3, 0xf012482c0da69d, 0x6b3bdf12438345, 0x40d7558d7aa4d9}, | ||
218 | {0x8a09fffb5c6d3d, 0x9a356e5d9ffd38, 0x5973f15f4f9b1c, 0xdcd5f59f63c3ea}, | ||
219 | {1, 0, 0, 0}}, | ||
220 | {{0xacf39f4c5ca7ab, 0x4c8071cc5fd737, 0xc64e3602cd1184, 0x0acd4644c9abba}, | ||
221 | {0x6c011a36d8bf6e, 0xfecd87ba24e32a, 0x19f6f56574fad8, 0x050b204ced9405}, | ||
222 | {1, 0, 0, 0}}, | ||
223 | {{0xed4f1cae7d9a96, 0x5ceef7ad94c40a, 0x778e4a3bf3ef9b, 0x7405783dc3b55e}, | ||
224 | {0x32477c61b6e8c6, 0xb46a97570f018b, 0x91176d0a7e95d1, 0x3df90fbc4c7d0e}, | ||
225 | {1, 0, 0, 0}}}}; | ||
226 | |||
227 | /* Precomputation for the group generator. */ | ||
228 | typedef struct { | ||
229 | felem g_pre_comp[2][16][3]; | ||
230 | int references; | ||
231 | } NISTP224_PRE_COMP; | ||
232 | |||
233 | const EC_METHOD * | ||
234 | EC_GFp_nistp224_method(void) | ||
235 | { | ||
236 | static const EC_METHOD ret = { | ||
237 | .flags = EC_FLAGS_DEFAULT_OCT, | ||
238 | .field_type = NID_X9_62_prime_field, | ||
239 | .group_init = ec_GFp_nistp224_group_init, | ||
240 | .group_finish = ec_GFp_simple_group_finish, | ||
241 | .group_clear_finish = ec_GFp_simple_group_clear_finish, | ||
242 | .group_copy = ec_GFp_nist_group_copy, | ||
243 | .group_set_curve = ec_GFp_nistp224_group_set_curve, | ||
244 | .group_get_curve = ec_GFp_simple_group_get_curve, | ||
245 | .group_get_degree = ec_GFp_simple_group_get_degree, | ||
246 | .group_check_discriminant = | ||
247 | ec_GFp_simple_group_check_discriminant, | ||
248 | .point_init = ec_GFp_simple_point_init, | ||
249 | .point_finish = ec_GFp_simple_point_finish, | ||
250 | .point_clear_finish = ec_GFp_simple_point_clear_finish, | ||
251 | .point_copy = ec_GFp_simple_point_copy, | ||
252 | .point_set_to_infinity = ec_GFp_simple_point_set_to_infinity, | ||
253 | .point_set_Jprojective_coordinates_GFp = | ||
254 | ec_GFp_simple_set_Jprojective_coordinates_GFp, | ||
255 | .point_get_Jprojective_coordinates_GFp = | ||
256 | ec_GFp_simple_get_Jprojective_coordinates_GFp, | ||
257 | .point_set_affine_coordinates = | ||
258 | ec_GFp_simple_point_set_affine_coordinates, | ||
259 | .point_get_affine_coordinates = | ||
260 | ec_GFp_nistp224_point_get_affine_coordinates, | ||
261 | .add = ec_GFp_simple_add, | ||
262 | .dbl = ec_GFp_simple_dbl, | ||
263 | .invert = ec_GFp_simple_invert, | ||
264 | .is_at_infinity = ec_GFp_simple_is_at_infinity, | ||
265 | .is_on_curve = ec_GFp_simple_is_on_curve, | ||
266 | .point_cmp = ec_GFp_simple_cmp, | ||
267 | .make_affine = ec_GFp_simple_make_affine, | ||
268 | .points_make_affine = ec_GFp_simple_points_make_affine, | ||
269 | .mul = ec_GFp_nistp224_points_mul, | ||
270 | .precompute_mult = ec_GFp_nistp224_precompute_mult, | ||
271 | .have_precompute_mult = ec_GFp_nistp224_have_precompute_mult, | ||
272 | .field_mul = ec_GFp_nist_field_mul, | ||
273 | .field_sqr = ec_GFp_nist_field_sqr | ||
274 | }; | ||
275 | |||
276 | return &ret; | ||
277 | } | ||
278 | |||
279 | /* Helper functions to convert field elements to/from internal representation */ | ||
280 | static void | ||
281 | bin28_to_felem(felem out, const u8 in[28]) | ||
282 | { | ||
283 | out[0] = *((const uint64_t *) (in)) & 0x00ffffffffffffff; | ||
284 | out[1] = (*((const uint64_t *) (in + 7))) & 0x00ffffffffffffff; | ||
285 | out[2] = (*((const uint64_t *) (in + 14))) & 0x00ffffffffffffff; | ||
286 | out[3] = (*((const uint64_t *) (in + 21))) & 0x00ffffffffffffff; | ||
287 | } | ||
288 | |||
289 | static void | ||
290 | felem_to_bin28(u8 out[28], const felem in) | ||
291 | { | ||
292 | unsigned i; | ||
293 | for (i = 0; i < 7; ++i) { | ||
294 | out[i] = in[0] >> (8 * i); | ||
295 | out[i + 7] = in[1] >> (8 * i); | ||
296 | out[i + 14] = in[2] >> (8 * i); | ||
297 | out[i + 21] = in[3] >> (8 * i); | ||
298 | } | ||
299 | } | ||
300 | |||
301 | /* To preserve endianness when using BN_bn2bin and BN_bin2bn */ | ||
302 | static void | ||
303 | flip_endian(u8 * out, const u8 * in, unsigned len) | ||
304 | { | ||
305 | unsigned i; | ||
306 | for (i = 0; i < len; ++i) | ||
307 | out[i] = in[len - 1 - i]; | ||
308 | } | ||
309 | |||
310 | /* From OpenSSL BIGNUM to internal representation */ | ||
311 | static int | ||
312 | BN_to_felem(felem out, const BIGNUM * bn) | ||
313 | { | ||
314 | felem_bytearray b_in; | ||
315 | felem_bytearray b_out; | ||
316 | unsigned num_bytes; | ||
317 | |||
318 | /* BN_bn2bin eats leading zeroes */ | ||
319 | memset(b_out, 0, sizeof b_out); | ||
320 | num_bytes = BN_num_bytes(bn); | ||
321 | if (num_bytes > sizeof b_out) { | ||
322 | ECerr(EC_F_BN_TO_FELEM, EC_R_BIGNUM_OUT_OF_RANGE); | ||
323 | return 0; | ||
324 | } | ||
325 | if (BN_is_negative(bn)) { | ||
326 | ECerr(EC_F_BN_TO_FELEM, EC_R_BIGNUM_OUT_OF_RANGE); | ||
327 | return 0; | ||
328 | } | ||
329 | num_bytes = BN_bn2bin(bn, b_in); | ||
330 | flip_endian(b_out, b_in, num_bytes); | ||
331 | bin28_to_felem(out, b_out); | ||
332 | return 1; | ||
333 | } | ||
334 | |||
335 | /* From internal representation to OpenSSL BIGNUM */ | ||
336 | static BIGNUM * | ||
337 | felem_to_BN(BIGNUM * out, const felem in) | ||
338 | { | ||
339 | felem_bytearray b_in, b_out; | ||
340 | felem_to_bin28(b_in, in); | ||
341 | flip_endian(b_out, b_in, sizeof b_out); | ||
342 | return BN_bin2bn(b_out, sizeof b_out, out); | ||
343 | } | ||
344 | |||
345 | /******************************************************************************/ | ||
346 | /* FIELD OPERATIONS | ||
347 | * | ||
348 | * Field operations, using the internal representation of field elements. | ||
349 | * NB! These operations are specific to our point multiplication and cannot be | ||
350 | * expected to be correct in general - e.g., multiplication with a large scalar | ||
351 | * will cause an overflow. | ||
352 | * | ||
353 | */ | ||
354 | |||
355 | static void | ||
356 | felem_one(felem out) | ||
357 | { | ||
358 | out[0] = 1; | ||
359 | out[1] = 0; | ||
360 | out[2] = 0; | ||
361 | out[3] = 0; | ||
362 | } | ||
363 | |||
364 | static void | ||
365 | felem_assign(felem out, const felem in) | ||
366 | { | ||
367 | out[0] = in[0]; | ||
368 | out[1] = in[1]; | ||
369 | out[2] = in[2]; | ||
370 | out[3] = in[3]; | ||
371 | } | ||
372 | |||
373 | /* Sum two field elements: out += in */ | ||
374 | static void | ||
375 | felem_sum(felem out, const felem in) | ||
376 | { | ||
377 | out[0] += in[0]; | ||
378 | out[1] += in[1]; | ||
379 | out[2] += in[2]; | ||
380 | out[3] += in[3]; | ||
381 | } | ||
382 | |||
383 | /* Get negative value: out = -in */ | ||
384 | /* Assumes in[i] < 2^57 */ | ||
385 | static void | ||
386 | felem_neg(felem out, const felem in) | ||
387 | { | ||
388 | static const limb two58p2 = (((limb) 1) << 58) + (((limb) 1) << 2); | ||
389 | static const limb two58m2 = (((limb) 1) << 58) - (((limb) 1) << 2); | ||
390 | static const limb two58m42m2 = (((limb) 1) << 58) - | ||
391 | (((limb) 1) << 42) - (((limb) 1) << 2); | ||
392 | |||
393 | /* Set to 0 mod 2^224-2^96+1 to ensure out > in */ | ||
394 | out[0] = two58p2 - in[0]; | ||
395 | out[1] = two58m42m2 - in[1]; | ||
396 | out[2] = two58m2 - in[2]; | ||
397 | out[3] = two58m2 - in[3]; | ||
398 | } | ||
399 | |||
400 | /* Subtract field elements: out -= in */ | ||
401 | /* Assumes in[i] < 2^57 */ | ||
402 | static void | ||
403 | felem_diff(felem out, const felem in) | ||
404 | { | ||
405 | static const limb two58p2 = (((limb) 1) << 58) + (((limb) 1) << 2); | ||
406 | static const limb two58m2 = (((limb) 1) << 58) - (((limb) 1) << 2); | ||
407 | static const limb two58m42m2 = (((limb) 1) << 58) - | ||
408 | (((limb) 1) << 42) - (((limb) 1) << 2); | ||
409 | |||
410 | /* Add 0 mod 2^224-2^96+1 to ensure out > in */ | ||
411 | out[0] += two58p2; | ||
412 | out[1] += two58m42m2; | ||
413 | out[2] += two58m2; | ||
414 | out[3] += two58m2; | ||
415 | |||
416 | out[0] -= in[0]; | ||
417 | out[1] -= in[1]; | ||
418 | out[2] -= in[2]; | ||
419 | out[3] -= in[3]; | ||
420 | } | ||
421 | |||
422 | /* Subtract in unreduced 128-bit mode: out -= in */ | ||
423 | /* Assumes in[i] < 2^119 */ | ||
424 | static void | ||
425 | widefelem_diff(widefelem out, const widefelem in) | ||
426 | { | ||
427 | static const widelimb two120 = ((widelimb) 1) << 120; | ||
428 | static const widelimb two120m64 = (((widelimb) 1) << 120) - | ||
429 | (((widelimb) 1) << 64); | ||
430 | static const widelimb two120m104m64 = (((widelimb) 1) << 120) - | ||
431 | (((widelimb) 1) << 104) - (((widelimb) 1) << 64); | ||
432 | |||
433 | /* Add 0 mod 2^224-2^96+1 to ensure out > in */ | ||
434 | out[0] += two120; | ||
435 | out[1] += two120m64; | ||
436 | out[2] += two120m64; | ||
437 | out[3] += two120; | ||
438 | out[4] += two120m104m64; | ||
439 | out[5] += two120m64; | ||
440 | out[6] += two120m64; | ||
441 | |||
442 | out[0] -= in[0]; | ||
443 | out[1] -= in[1]; | ||
444 | out[2] -= in[2]; | ||
445 | out[3] -= in[3]; | ||
446 | out[4] -= in[4]; | ||
447 | out[5] -= in[5]; | ||
448 | out[6] -= in[6]; | ||
449 | } | ||
450 | |||
451 | /* Subtract in mixed mode: out128 -= in64 */ | ||
452 | /* in[i] < 2^63 */ | ||
453 | static void | ||
454 | felem_diff_128_64(widefelem out, const felem in) | ||
455 | { | ||
456 | static const widelimb two64p8 = (((widelimb) 1) << 64) + | ||
457 | (((widelimb) 1) << 8); | ||
458 | static const widelimb two64m8 = (((widelimb) 1) << 64) - | ||
459 | (((widelimb) 1) << 8); | ||
460 | static const widelimb two64m48m8 = (((widelimb) 1) << 64) - | ||
461 | (((widelimb) 1) << 48) - (((widelimb) 1) << 8); | ||
462 | |||
463 | /* Add 0 mod 2^224-2^96+1 to ensure out > in */ | ||
464 | out[0] += two64p8; | ||
465 | out[1] += two64m48m8; | ||
466 | out[2] += two64m8; | ||
467 | out[3] += two64m8; | ||
468 | |||
469 | out[0] -= in[0]; | ||
470 | out[1] -= in[1]; | ||
471 | out[2] -= in[2]; | ||
472 | out[3] -= in[3]; | ||
473 | } | ||
474 | |||
475 | /* Multiply a field element by a scalar: out = out * scalar | ||
476 | * The scalars we actually use are small, so results fit without overflow */ | ||
477 | static void | ||
478 | felem_scalar(felem out, const limb scalar) | ||
479 | { | ||
480 | out[0] *= scalar; | ||
481 | out[1] *= scalar; | ||
482 | out[2] *= scalar; | ||
483 | out[3] *= scalar; | ||
484 | } | ||
485 | |||
486 | /* Multiply an unreduced field element by a scalar: out = out * scalar | ||
487 | * The scalars we actually use are small, so results fit without overflow */ | ||
488 | static void | ||
489 | widefelem_scalar(widefelem out, const widelimb scalar) | ||
490 | { | ||
491 | out[0] *= scalar; | ||
492 | out[1] *= scalar; | ||
493 | out[2] *= scalar; | ||
494 | out[3] *= scalar; | ||
495 | out[4] *= scalar; | ||
496 | out[5] *= scalar; | ||
497 | out[6] *= scalar; | ||
498 | } | ||
499 | |||
500 | /* Square a field element: out = in^2 */ | ||
501 | static void | ||
502 | felem_square(widefelem out, const felem in) | ||
503 | { | ||
504 | limb tmp0, tmp1, tmp2; | ||
505 | tmp0 = 2 * in[0]; | ||
506 | tmp1 = 2 * in[1]; | ||
507 | tmp2 = 2 * in[2]; | ||
508 | out[0] = ((widelimb) in[0]) * in[0]; | ||
509 | out[1] = ((widelimb) in[0]) * tmp1; | ||
510 | out[2] = ((widelimb) in[0]) * tmp2 + ((widelimb) in[1]) * in[1]; | ||
511 | out[3] = ((widelimb) in[3]) * tmp0 + | ||
512 | ((widelimb) in[1]) * tmp2; | ||
513 | out[4] = ((widelimb) in[3]) * tmp1 + ((widelimb) in[2]) * in[2]; | ||
514 | out[5] = ((widelimb) in[3]) * tmp2; | ||
515 | out[6] = ((widelimb) in[3]) * in[3]; | ||
516 | } | ||
517 | |||
518 | /* Multiply two field elements: out = in1 * in2 */ | ||
519 | static void | ||
520 | felem_mul(widefelem out, const felem in1, const felem in2) | ||
521 | { | ||
522 | out[0] = ((widelimb) in1[0]) * in2[0]; | ||
523 | out[1] = ((widelimb) in1[0]) * in2[1] + ((widelimb) in1[1]) * in2[0]; | ||
524 | out[2] = ((widelimb) in1[0]) * in2[2] + ((widelimb) in1[1]) * in2[1] + | ||
525 | ((widelimb) in1[2]) * in2[0]; | ||
526 | out[3] = ((widelimb) in1[0]) * in2[3] + ((widelimb) in1[1]) * in2[2] + | ||
527 | ((widelimb) in1[2]) * in2[1] + ((widelimb) in1[3]) * in2[0]; | ||
528 | out[4] = ((widelimb) in1[1]) * in2[3] + ((widelimb) in1[2]) * in2[2] + | ||
529 | ((widelimb) in1[3]) * in2[1]; | ||
530 | out[5] = ((widelimb) in1[2]) * in2[3] + ((widelimb) in1[3]) * in2[2]; | ||
531 | out[6] = ((widelimb) in1[3]) * in2[3]; | ||
532 | } | ||
533 | |||
534 | /* Reduce seven 128-bit coefficients to four 64-bit coefficients. | ||
535 | * Requires in[i] < 2^126, | ||
536 | * ensures out[0] < 2^56, out[1] < 2^56, out[2] < 2^56, out[3] <= 2^56 + 2^16 */ | ||
537 | static void | ||
538 | felem_reduce(felem out, const widefelem in) | ||
539 | { | ||
540 | static const widelimb two127p15 = (((widelimb) 1) << 127) + | ||
541 | (((widelimb) 1) << 15); | ||
542 | static const widelimb two127m71 = (((widelimb) 1) << 127) - | ||
543 | (((widelimb) 1) << 71); | ||
544 | static const widelimb two127m71m55 = (((widelimb) 1) << 127) - | ||
545 | (((widelimb) 1) << 71) - (((widelimb) 1) << 55); | ||
546 | widelimb output[5]; | ||
547 | |||
548 | /* Add 0 mod 2^224-2^96+1 to ensure all differences are positive */ | ||
549 | output[0] = in[0] + two127p15; | ||
550 | output[1] = in[1] + two127m71m55; | ||
551 | output[2] = in[2] + two127m71; | ||
552 | output[3] = in[3]; | ||
553 | output[4] = in[4]; | ||
554 | |||
555 | /* Eliminate in[4], in[5], in[6] */ | ||
556 | output[4] += in[6] >> 16; | ||
557 | output[3] += (in[6] & 0xffff) << 40; | ||
558 | output[2] -= in[6]; | ||
559 | |||
560 | output[3] += in[5] >> 16; | ||
561 | output[2] += (in[5] & 0xffff) << 40; | ||
562 | output[1] -= in[5]; | ||
563 | |||
564 | output[2] += output[4] >> 16; | ||
565 | output[1] += (output[4] & 0xffff) << 40; | ||
566 | output[0] -= output[4]; | ||
567 | |||
568 | /* Carry 2 -> 3 -> 4 */ | ||
569 | output[3] += output[2] >> 56; | ||
570 | output[2] &= 0x00ffffffffffffff; | ||
571 | |||
572 | output[4] = output[3] >> 56; | ||
573 | output[3] &= 0x00ffffffffffffff; | ||
574 | |||
575 | /* Now output[2] < 2^56, output[3] < 2^56, output[4] < 2^72 */ | ||
576 | |||
577 | /* Eliminate output[4] */ | ||
578 | output[2] += output[4] >> 16; | ||
579 | /* output[2] < 2^56 + 2^56 = 2^57 */ | ||
580 | output[1] += (output[4] & 0xffff) << 40; | ||
581 | output[0] -= output[4]; | ||
582 | |||
583 | /* Carry 0 -> 1 -> 2 -> 3 */ | ||
584 | output[1] += output[0] >> 56; | ||
585 | out[0] = output[0] & 0x00ffffffffffffff; | ||
586 | |||
587 | output[2] += output[1] >> 56; | ||
588 | /* output[2] < 2^57 + 2^72 */ | ||
589 | out[1] = output[1] & 0x00ffffffffffffff; | ||
590 | output[3] += output[2] >> 56; | ||
591 | /* output[3] <= 2^56 + 2^16 */ | ||
592 | out[2] = output[2] & 0x00ffffffffffffff; | ||
593 | |||
594 | /* | ||
595 | * out[0] < 2^56, out[1] < 2^56, out[2] < 2^56, out[3] <= 2^56 + 2^16 | ||
596 | * (due to final carry), so out < 2*p | ||
597 | */ | ||
598 | out[3] = output[3]; | ||
599 | } | ||
600 | |||
601 | static void | ||
602 | felem_square_reduce(felem out, const felem in) | ||
603 | { | ||
604 | widefelem tmp; | ||
605 | felem_square(tmp, in); | ||
606 | felem_reduce(out, tmp); | ||
607 | } | ||
608 | |||
609 | static void | ||
610 | felem_mul_reduce(felem out, const felem in1, const felem in2) | ||
611 | { | ||
612 | widefelem tmp; | ||
613 | felem_mul(tmp, in1, in2); | ||
614 | felem_reduce(out, tmp); | ||
615 | } | ||
616 | |||
617 | /* Reduce to unique minimal representation. | ||
618 | * Requires 0 <= in < 2*p (always call felem_reduce first) */ | ||
619 | static void | ||
620 | felem_contract(felem out, const felem in) | ||
621 | { | ||
622 | static const int64_t two56 = ((limb) 1) << 56; | ||
623 | /* 0 <= in < 2*p, p = 2^224 - 2^96 + 1 */ | ||
624 | /* if in > p , reduce in = in - 2^224 + 2^96 - 1 */ | ||
625 | int64_t tmp[4], a; | ||
626 | tmp[0] = in[0]; | ||
627 | tmp[1] = in[1]; | ||
628 | tmp[2] = in[2]; | ||
629 | tmp[3] = in[3]; | ||
630 | /* Case 1: a = 1 iff in >= 2^224 */ | ||
631 | a = (in[3] >> 56); | ||
632 | tmp[0] -= a; | ||
633 | tmp[1] += a << 40; | ||
634 | tmp[3] &= 0x00ffffffffffffff; | ||
635 | /* | ||
636 | * Case 2: a = 0 iff p <= in < 2^224, i.e., the high 128 bits are all | ||
637 | * 1 and the lower part is non-zero | ||
638 | */ | ||
639 | a = ((in[3] & in[2] & (in[1] | 0x000000ffffffffff)) + 1) | | ||
640 | (((int64_t) (in[0] + (in[1] & 0x000000ffffffffff)) - 1) >> 63); | ||
641 | a &= 0x00ffffffffffffff; | ||
642 | /* turn a into an all-one mask (if a = 0) or an all-zero mask */ | ||
643 | a = (a - 1) >> 63; | ||
644 | /* subtract 2^224 - 2^96 + 1 if a is all-one */ | ||
645 | tmp[3] &= a ^ 0xffffffffffffffff; | ||
646 | tmp[2] &= a ^ 0xffffffffffffffff; | ||
647 | tmp[1] &= (a ^ 0xffffffffffffffff) | 0x000000ffffffffff; | ||
648 | tmp[0] -= 1 & a; | ||
649 | |||
650 | /* | ||
651 | * eliminate negative coefficients: if tmp[0] is negative, tmp[1] | ||
652 | * must be non-zero, so we only need one step | ||
653 | */ | ||
654 | a = tmp[0] >> 63; | ||
655 | tmp[0] += two56 & a; | ||
656 | tmp[1] -= 1 & a; | ||
657 | |||
658 | /* carry 1 -> 2 -> 3 */ | ||
659 | tmp[2] += tmp[1] >> 56; | ||
660 | tmp[1] &= 0x00ffffffffffffff; | ||
661 | |||
662 | tmp[3] += tmp[2] >> 56; | ||
663 | tmp[2] &= 0x00ffffffffffffff; | ||
664 | |||
665 | /* Now 0 <= out < p */ | ||
666 | out[0] = tmp[0]; | ||
667 | out[1] = tmp[1]; | ||
668 | out[2] = tmp[2]; | ||
669 | out[3] = tmp[3]; | ||
670 | } | ||
671 | |||
672 | /* Zero-check: returns 1 if input is 0, and 0 otherwise. | ||
673 | * We know that field elements are reduced to in < 2^225, | ||
674 | * so we only need to check three cases: 0, 2^224 - 2^96 + 1, | ||
675 | * and 2^225 - 2^97 + 2 */ | ||
676 | static limb | ||
677 | felem_is_zero(const felem in) | ||
678 | { | ||
679 | limb zero, two224m96p1, two225m97p2; | ||
680 | |||
681 | zero = in[0] | in[1] | in[2] | in[3]; | ||
682 | zero = (((int64_t) (zero) - 1) >> 63) & 1; | ||
683 | two224m96p1 = (in[0] ^ 1) | (in[1] ^ 0x00ffff0000000000) | ||
684 | | (in[2] ^ 0x00ffffffffffffff) | (in[3] ^ 0x00ffffffffffffff); | ||
685 | two224m96p1 = (((int64_t) (two224m96p1) - 1) >> 63) & 1; | ||
686 | two225m97p2 = (in[0] ^ 2) | (in[1] ^ 0x00fffe0000000000) | ||
687 | | (in[2] ^ 0x00ffffffffffffff) | (in[3] ^ 0x01ffffffffffffff); | ||
688 | two225m97p2 = (((int64_t) (two225m97p2) - 1) >> 63) & 1; | ||
689 | return (zero | two224m96p1 | two225m97p2); | ||
690 | } | ||
691 | |||
692 | static limb | ||
693 | felem_is_zero_int(const felem in) | ||
694 | { | ||
695 | return (int) (felem_is_zero(in) & ((limb) 1)); | ||
696 | } | ||
697 | |||
698 | /* Invert a field element */ | ||
699 | /* Computation chain copied from djb's code */ | ||
700 | static void | ||
701 | felem_inv(felem out, const felem in) | ||
702 | { | ||
703 | felem ftmp, ftmp2, ftmp3, ftmp4; | ||
704 | widefelem tmp; | ||
705 | unsigned i; | ||
706 | |||
707 | felem_square(tmp, in); | ||
708 | felem_reduce(ftmp, tmp);/* 2 */ | ||
709 | felem_mul(tmp, in, ftmp); | ||
710 | felem_reduce(ftmp, tmp);/* 2^2 - 1 */ | ||
711 | felem_square(tmp, ftmp); | ||
712 | felem_reduce(ftmp, tmp);/* 2^3 - 2 */ | ||
713 | felem_mul(tmp, in, ftmp); | ||
714 | felem_reduce(ftmp, tmp);/* 2^3 - 1 */ | ||
715 | felem_square(tmp, ftmp); | ||
716 | felem_reduce(ftmp2, tmp); /* 2^4 - 2 */ | ||
717 | felem_square(tmp, ftmp2); | ||
718 | felem_reduce(ftmp2, tmp); /* 2^5 - 4 */ | ||
719 | felem_square(tmp, ftmp2); | ||
720 | felem_reduce(ftmp2, tmp); /* 2^6 - 8 */ | ||
721 | felem_mul(tmp, ftmp2, ftmp); | ||
722 | felem_reduce(ftmp, tmp);/* 2^6 - 1 */ | ||
723 | felem_square(tmp, ftmp); | ||
724 | felem_reduce(ftmp2, tmp); /* 2^7 - 2 */ | ||
725 | for (i = 0; i < 5; ++i) { /* 2^12 - 2^6 */ | ||
726 | felem_square(tmp, ftmp2); | ||
727 | felem_reduce(ftmp2, tmp); | ||
728 | } | ||
729 | felem_mul(tmp, ftmp2, ftmp); | ||
730 | felem_reduce(ftmp2, tmp); /* 2^12 - 1 */ | ||
731 | felem_square(tmp, ftmp2); | ||
732 | felem_reduce(ftmp3, tmp); /* 2^13 - 2 */ | ||
733 | for (i = 0; i < 11; ++i) { /* 2^24 - 2^12 */ | ||
734 | felem_square(tmp, ftmp3); | ||
735 | felem_reduce(ftmp3, tmp); | ||
736 | } | ||
737 | felem_mul(tmp, ftmp3, ftmp2); | ||
738 | felem_reduce(ftmp2, tmp); /* 2^24 - 1 */ | ||
739 | felem_square(tmp, ftmp2); | ||
740 | felem_reduce(ftmp3, tmp); /* 2^25 - 2 */ | ||
741 | for (i = 0; i < 23; ++i) { /* 2^48 - 2^24 */ | ||
742 | felem_square(tmp, ftmp3); | ||
743 | felem_reduce(ftmp3, tmp); | ||
744 | } | ||
745 | felem_mul(tmp, ftmp3, ftmp2); | ||
746 | felem_reduce(ftmp3, tmp); /* 2^48 - 1 */ | ||
747 | felem_square(tmp, ftmp3); | ||
748 | felem_reduce(ftmp4, tmp); /* 2^49 - 2 */ | ||
749 | for (i = 0; i < 47; ++i) { /* 2^96 - 2^48 */ | ||
750 | felem_square(tmp, ftmp4); | ||
751 | felem_reduce(ftmp4, tmp); | ||
752 | } | ||
753 | felem_mul(tmp, ftmp3, ftmp4); | ||
754 | felem_reduce(ftmp3, tmp); /* 2^96 - 1 */ | ||
755 | felem_square(tmp, ftmp3); | ||
756 | felem_reduce(ftmp4, tmp); /* 2^97 - 2 */ | ||
757 | for (i = 0; i < 23; ++i) { /* 2^120 - 2^24 */ | ||
758 | felem_square(tmp, ftmp4); | ||
759 | felem_reduce(ftmp4, tmp); | ||
760 | } | ||
761 | felem_mul(tmp, ftmp2, ftmp4); | ||
762 | felem_reduce(ftmp2, tmp); /* 2^120 - 1 */ | ||
763 | for (i = 0; i < 6; ++i) { /* 2^126 - 2^6 */ | ||
764 | felem_square(tmp, ftmp2); | ||
765 | felem_reduce(ftmp2, tmp); | ||
766 | } | ||
767 | felem_mul(tmp, ftmp2, ftmp); | ||
768 | felem_reduce(ftmp, tmp);/* 2^126 - 1 */ | ||
769 | felem_square(tmp, ftmp); | ||
770 | felem_reduce(ftmp, tmp);/* 2^127 - 2 */ | ||
771 | felem_mul(tmp, ftmp, in); | ||
772 | felem_reduce(ftmp, tmp);/* 2^127 - 1 */ | ||
773 | for (i = 0; i < 97; ++i) { /* 2^224 - 2^97 */ | ||
774 | felem_square(tmp, ftmp); | ||
775 | felem_reduce(ftmp, tmp); | ||
776 | } | ||
777 | felem_mul(tmp, ftmp, ftmp3); | ||
778 | felem_reduce(out, tmp); /* 2^224 - 2^96 - 1 */ | ||
779 | } | ||
780 | |||
781 | /* Copy in constant time: | ||
782 | * if icopy == 1, copy in to out, | ||
783 | * if icopy == 0, copy out to itself. */ | ||
784 | static void | ||
785 | copy_conditional(felem out, const felem in, limb icopy) | ||
786 | { | ||
787 | unsigned i; | ||
788 | /* icopy is a (64-bit) 0 or 1, so copy is either all-zero or all-one */ | ||
789 | const limb copy = -icopy; | ||
790 | for (i = 0; i < 4; ++i) { | ||
791 | const limb tmp = copy & (in[i] ^ out[i]); | ||
792 | out[i] ^= tmp; | ||
793 | } | ||
794 | } | ||
795 | |||
796 | /******************************************************************************/ | ||
797 | /* ELLIPTIC CURVE POINT OPERATIONS | ||
798 | * | ||
799 | * Points are represented in Jacobian projective coordinates: | ||
800 | * (X, Y, Z) corresponds to the affine point (X/Z^2, Y/Z^3), | ||
801 | * or to the point at infinity if Z == 0. | ||
802 | * | ||
803 | */ | ||
804 | |||
805 | /* Double an elliptic curve point: | ||
806 | * (X', Y', Z') = 2 * (X, Y, Z), where | ||
807 | * X' = (3 * (X - Z^2) * (X + Z^2))^2 - 8 * X * Y^2 | ||
808 | * Y' = 3 * (X - Z^2) * (X + Z^2) * (4 * X * Y^2 - X') - 8 * Y^2 | ||
809 | * Z' = (Y + Z)^2 - Y^2 - Z^2 = 2 * Y * Z | ||
810 | * Outputs can equal corresponding inputs, i.e., x_out == x_in is allowed, | ||
811 | * while x_out == y_in is not (maybe this works, but it's not tested). */ | ||
812 | static void | ||
813 | point_double(felem x_out, felem y_out, felem z_out, | ||
814 | const felem x_in, const felem y_in, const felem z_in) | ||
815 | { | ||
816 | widefelem tmp, tmp2; | ||
817 | felem delta, gamma, beta, alpha, ftmp, ftmp2; | ||
818 | |||
819 | felem_assign(ftmp, x_in); | ||
820 | felem_assign(ftmp2, x_in); | ||
821 | |||
822 | /* delta = z^2 */ | ||
823 | felem_square(tmp, z_in); | ||
824 | felem_reduce(delta, tmp); | ||
825 | |||
826 | /* gamma = y^2 */ | ||
827 | felem_square(tmp, y_in); | ||
828 | felem_reduce(gamma, tmp); | ||
829 | |||
830 | /* beta = x*gamma */ | ||
831 | felem_mul(tmp, x_in, gamma); | ||
832 | felem_reduce(beta, tmp); | ||
833 | |||
834 | /* alpha = 3*(x-delta)*(x+delta) */ | ||
835 | felem_diff(ftmp, delta); | ||
836 | /* ftmp[i] < 2^57 + 2^58 + 2 < 2^59 */ | ||
837 | felem_sum(ftmp2, delta); | ||
838 | /* ftmp2[i] < 2^57 + 2^57 = 2^58 */ | ||
839 | felem_scalar(ftmp2, 3); | ||
840 | /* ftmp2[i] < 3 * 2^58 < 2^60 */ | ||
841 | felem_mul(tmp, ftmp, ftmp2); | ||
842 | /* tmp[i] < 2^60 * 2^59 * 4 = 2^121 */ | ||
843 | felem_reduce(alpha, tmp); | ||
844 | |||
845 | /* x' = alpha^2 - 8*beta */ | ||
846 | felem_square(tmp, alpha); | ||
847 | /* tmp[i] < 4 * 2^57 * 2^57 = 2^116 */ | ||
848 | felem_assign(ftmp, beta); | ||
849 | felem_scalar(ftmp, 8); | ||
850 | /* ftmp[i] < 8 * 2^57 = 2^60 */ | ||
851 | felem_diff_128_64(tmp, ftmp); | ||
852 | /* tmp[i] < 2^116 + 2^64 + 8 < 2^117 */ | ||
853 | felem_reduce(x_out, tmp); | ||
854 | |||
855 | /* z' = (y + z)^2 - gamma - delta */ | ||
856 | felem_sum(delta, gamma); | ||
857 | /* delta[i] < 2^57 + 2^57 = 2^58 */ | ||
858 | felem_assign(ftmp, y_in); | ||
859 | felem_sum(ftmp, z_in); | ||
860 | /* ftmp[i] < 2^57 + 2^57 = 2^58 */ | ||
861 | felem_square(tmp, ftmp); | ||
862 | /* tmp[i] < 4 * 2^58 * 2^58 = 2^118 */ | ||
863 | felem_diff_128_64(tmp, delta); | ||
864 | /* tmp[i] < 2^118 + 2^64 + 8 < 2^119 */ | ||
865 | felem_reduce(z_out, tmp); | ||
866 | |||
867 | /* y' = alpha*(4*beta - x') - 8*gamma^2 */ | ||
868 | felem_scalar(beta, 4); | ||
869 | /* beta[i] < 4 * 2^57 = 2^59 */ | ||
870 | felem_diff(beta, x_out); | ||
871 | /* beta[i] < 2^59 + 2^58 + 2 < 2^60 */ | ||
872 | felem_mul(tmp, alpha, beta); | ||
873 | /* tmp[i] < 4 * 2^57 * 2^60 = 2^119 */ | ||
874 | felem_square(tmp2, gamma); | ||
875 | /* tmp2[i] < 4 * 2^57 * 2^57 = 2^116 */ | ||
876 | widefelem_scalar(tmp2, 8); | ||
877 | /* tmp2[i] < 8 * 2^116 = 2^119 */ | ||
878 | widefelem_diff(tmp, tmp2); | ||
879 | /* tmp[i] < 2^119 + 2^120 < 2^121 */ | ||
880 | felem_reduce(y_out, tmp); | ||
881 | } | ||
882 | |||
883 | /* Add two elliptic curve points: | ||
884 | * (X_1, Y_1, Z_1) + (X_2, Y_2, Z_2) = (X_3, Y_3, Z_3), where | ||
885 | * X_3 = (Z_1^3 * Y_2 - Z_2^3 * Y_1)^2 - (Z_1^2 * X_2 - Z_2^2 * X_1)^3 - | ||
886 | * 2 * Z_2^2 * X_1 * (Z_1^2 * X_2 - Z_2^2 * X_1)^2 | ||
887 | * Y_3 = (Z_1^3 * Y_2 - Z_2^3 * Y_1) * (Z_2^2 * X_1 * (Z_1^2 * X_2 - Z_2^2 * X_1)^2 - X_3) - | ||
888 | * Z_2^3 * Y_1 * (Z_1^2 * X_2 - Z_2^2 * X_1)^3 | ||
889 | * Z_3 = (Z_1^2 * X_2 - Z_2^2 * X_1) * (Z_1 * Z_2) | ||
890 | * | ||
891 | * This runs faster if 'mixed' is set, which requires Z_2 = 1 or Z_2 = 0. | ||
892 | */ | ||
893 | |||
894 | /* This function is not entirely constant-time: | ||
895 | * it includes a branch for checking whether the two input points are equal, | ||
896 | * (while not equal to the point at infinity). | ||
897 | * This case never happens during single point multiplication, | ||
898 | * so there is no timing leak for ECDH or ECDSA signing. */ | ||
899 | static void | ||
900 | point_add(felem x3, felem y3, felem z3, | ||
901 | const felem x1, const felem y1, const felem z1, | ||
902 | const int mixed, const felem x2, const felem y2, const felem z2) | ||
903 | { | ||
904 | felem ftmp, ftmp2, ftmp3, ftmp4, ftmp5, x_out, y_out, z_out; | ||
905 | widefelem tmp, tmp2; | ||
906 | limb z1_is_zero, z2_is_zero, x_equal, y_equal; | ||
907 | |||
908 | if (!mixed) { | ||
909 | /* ftmp2 = z2^2 */ | ||
910 | felem_square(tmp, z2); | ||
911 | felem_reduce(ftmp2, tmp); | ||
912 | |||
913 | /* ftmp4 = z2^3 */ | ||
914 | felem_mul(tmp, ftmp2, z2); | ||
915 | felem_reduce(ftmp4, tmp); | ||
916 | |||
917 | /* ftmp4 = z2^3*y1 */ | ||
918 | felem_mul(tmp2, ftmp4, y1); | ||
919 | felem_reduce(ftmp4, tmp2); | ||
920 | |||
921 | /* ftmp2 = z2^2*x1 */ | ||
922 | felem_mul(tmp2, ftmp2, x1); | ||
923 | felem_reduce(ftmp2, tmp2); | ||
924 | } else { | ||
925 | /* We'll assume z2 = 1 (special case z2 = 0 is handled later) */ | ||
926 | |||
927 | /* ftmp4 = z2^3*y1 */ | ||
928 | felem_assign(ftmp4, y1); | ||
929 | |||
930 | /* ftmp2 = z2^2*x1 */ | ||
931 | felem_assign(ftmp2, x1); | ||
932 | } | ||
933 | |||
934 | /* ftmp = z1^2 */ | ||
935 | felem_square(tmp, z1); | ||
936 | felem_reduce(ftmp, tmp); | ||
937 | |||
938 | /* ftmp3 = z1^3 */ | ||
939 | felem_mul(tmp, ftmp, z1); | ||
940 | felem_reduce(ftmp3, tmp); | ||
941 | |||
942 | /* tmp = z1^3*y2 */ | ||
943 | felem_mul(tmp, ftmp3, y2); | ||
944 | /* tmp[i] < 4 * 2^57 * 2^57 = 2^116 */ | ||
945 | |||
946 | /* ftmp3 = z1^3*y2 - z2^3*y1 */ | ||
947 | felem_diff_128_64(tmp, ftmp4); | ||
948 | /* tmp[i] < 2^116 + 2^64 + 8 < 2^117 */ | ||
949 | felem_reduce(ftmp3, tmp); | ||
950 | |||
951 | /* tmp = z1^2*x2 */ | ||
952 | felem_mul(tmp, ftmp, x2); | ||
953 | /* tmp[i] < 4 * 2^57 * 2^57 = 2^116 */ | ||
954 | |||
955 | /* ftmp = z1^2*x2 - z2^2*x1 */ | ||
956 | felem_diff_128_64(tmp, ftmp2); | ||
957 | /* tmp[i] < 2^116 + 2^64 + 8 < 2^117 */ | ||
958 | felem_reduce(ftmp, tmp); | ||
959 | |||
960 | /* | ||
961 | * the formulae are incorrect if the points are equal so we check for | ||
962 | * this and do doubling if this happens | ||
963 | */ | ||
964 | x_equal = felem_is_zero(ftmp); | ||
965 | y_equal = felem_is_zero(ftmp3); | ||
966 | z1_is_zero = felem_is_zero(z1); | ||
967 | z2_is_zero = felem_is_zero(z2); | ||
968 | /* In affine coordinates, (X_1, Y_1) == (X_2, Y_2) */ | ||
969 | if (x_equal && y_equal && !z1_is_zero && !z2_is_zero) { | ||
970 | point_double(x3, y3, z3, x1, y1, z1); | ||
971 | return; | ||
972 | } | ||
973 | /* ftmp5 = z1*z2 */ | ||
974 | if (!mixed) { | ||
975 | felem_mul(tmp, z1, z2); | ||
976 | felem_reduce(ftmp5, tmp); | ||
977 | } else { | ||
978 | /* special case z2 = 0 is handled later */ | ||
979 | felem_assign(ftmp5, z1); | ||
980 | } | ||
981 | |||
982 | /* z_out = (z1^2*x2 - z2^2*x1)*(z1*z2) */ | ||
983 | felem_mul(tmp, ftmp, ftmp5); | ||
984 | felem_reduce(z_out, tmp); | ||
985 | |||
986 | /* ftmp = (z1^2*x2 - z2^2*x1)^2 */ | ||
987 | felem_assign(ftmp5, ftmp); | ||
988 | felem_square(tmp, ftmp); | ||
989 | felem_reduce(ftmp, tmp); | ||
990 | |||
991 | /* ftmp5 = (z1^2*x2 - z2^2*x1)^3 */ | ||
992 | felem_mul(tmp, ftmp, ftmp5); | ||
993 | felem_reduce(ftmp5, tmp); | ||
994 | |||
995 | /* ftmp2 = z2^2*x1*(z1^2*x2 - z2^2*x1)^2 */ | ||
996 | felem_mul(tmp, ftmp2, ftmp); | ||
997 | felem_reduce(ftmp2, tmp); | ||
998 | |||
999 | /* tmp = z2^3*y1*(z1^2*x2 - z2^2*x1)^3 */ | ||
1000 | felem_mul(tmp, ftmp4, ftmp5); | ||
1001 | /* tmp[i] < 4 * 2^57 * 2^57 = 2^116 */ | ||
1002 | |||
1003 | /* tmp2 = (z1^3*y2 - z2^3*y1)^2 */ | ||
1004 | felem_square(tmp2, ftmp3); | ||
1005 | /* tmp2[i] < 4 * 2^57 * 2^57 < 2^116 */ | ||
1006 | |||
1007 | /* tmp2 = (z1^3*y2 - z2^3*y1)^2 - (z1^2*x2 - z2^2*x1)^3 */ | ||
1008 | felem_diff_128_64(tmp2, ftmp5); | ||
1009 | /* tmp2[i] < 2^116 + 2^64 + 8 < 2^117 */ | ||
1010 | |||
1011 | /* ftmp5 = 2*z2^2*x1*(z1^2*x2 - z2^2*x1)^2 */ | ||
1012 | felem_assign(ftmp5, ftmp2); | ||
1013 | felem_scalar(ftmp5, 2); | ||
1014 | /* ftmp5[i] < 2 * 2^57 = 2^58 */ | ||
1015 | |||
1016 | /* | ||
1017 | * x_out = (z1^3*y2 - z2^3*y1)^2 - (z1^2*x2 - z2^2*x1)^3 - | ||
1018 | * 2*z2^2*x1*(z1^2*x2 - z2^2*x1)^2 | ||
1019 | */ | ||
1020 | felem_diff_128_64(tmp2, ftmp5); | ||
1021 | /* tmp2[i] < 2^117 + 2^64 + 8 < 2^118 */ | ||
1022 | felem_reduce(x_out, tmp2); | ||
1023 | |||
1024 | /* ftmp2 = z2^2*x1*(z1^2*x2 - z2^2*x1)^2 - x_out */ | ||
1025 | felem_diff(ftmp2, x_out); | ||
1026 | /* ftmp2[i] < 2^57 + 2^58 + 2 < 2^59 */ | ||
1027 | |||
1028 | /* tmp2 = (z1^3*y2 - z2^3*y1)*(z2^2*x1*(z1^2*x2 - z2^2*x1)^2 - x_out) */ | ||
1029 | felem_mul(tmp2, ftmp3, ftmp2); | ||
1030 | /* tmp2[i] < 4 * 2^57 * 2^59 = 2^118 */ | ||
1031 | |||
1032 | /* | ||
1033 | * y_out = (z1^3*y2 - z2^3*y1)*(z2^2*x1*(z1^2*x2 - z2^2*x1)^2 - | ||
1034 | * x_out) - z2^3*y1*(z1^2*x2 - z2^2*x1)^3 | ||
1035 | */ | ||
1036 | widefelem_diff(tmp2, tmp); | ||
1037 | /* tmp2[i] < 2^118 + 2^120 < 2^121 */ | ||
1038 | felem_reduce(y_out, tmp2); | ||
1039 | |||
1040 | /* | ||
1041 | * the result (x_out, y_out, z_out) is incorrect if one of the inputs | ||
1042 | * is the point at infinity, so we need to check for this separately | ||
1043 | */ | ||
1044 | |||
1045 | /* if point 1 is at infinity, copy point 2 to output, and vice versa */ | ||
1046 | copy_conditional(x_out, x2, z1_is_zero); | ||
1047 | copy_conditional(x_out, x1, z2_is_zero); | ||
1048 | copy_conditional(y_out, y2, z1_is_zero); | ||
1049 | copy_conditional(y_out, y1, z2_is_zero); | ||
1050 | copy_conditional(z_out, z2, z1_is_zero); | ||
1051 | copy_conditional(z_out, z1, z2_is_zero); | ||
1052 | felem_assign(x3, x_out); | ||
1053 | felem_assign(y3, y_out); | ||
1054 | felem_assign(z3, z_out); | ||
1055 | } | ||
1056 | |||
1057 | /* select_point selects the |idx|th point from a precomputation table and | ||
1058 | * copies it to out. */ | ||
1059 | static void | ||
1060 | select_point(const u64 idx, unsigned int size, const felem pre_comp[ /* size */ ][3], felem out[3]) | ||
1061 | { | ||
1062 | unsigned i, j; | ||
1063 | limb *outlimbs = &out[0][0]; | ||
1064 | memset(outlimbs, 0, 3 * sizeof(felem)); | ||
1065 | |||
1066 | for (i = 0; i < size; i++) { | ||
1067 | const limb *inlimbs = &pre_comp[i][0][0]; | ||
1068 | u64 mask = i ^ idx; | ||
1069 | mask |= mask >> 4; | ||
1070 | mask |= mask >> 2; | ||
1071 | mask |= mask >> 1; | ||
1072 | mask &= 1; | ||
1073 | mask--; | ||
1074 | for (j = 0; j < 4 * 3; j++) | ||
1075 | outlimbs[j] |= inlimbs[j] & mask; | ||
1076 | } | ||
1077 | } | ||
1078 | |||
1079 | /* get_bit returns the |i|th bit in |in| */ | ||
1080 | static char | ||
1081 | get_bit(const felem_bytearray in, unsigned i) | ||
1082 | { | ||
1083 | if (i >= 224) | ||
1084 | return 0; | ||
1085 | return (in[i >> 3] >> (i & 7)) & 1; | ||
1086 | } | ||
1087 | |||
1088 | /* Interleaved point multiplication using precomputed point multiples: | ||
1089 | * The small point multiples 0*P, 1*P, ..., 16*P are in pre_comp[], | ||
1090 | * the scalars in scalars[]. If g_scalar is non-NULL, we also add this multiple | ||
1091 | * of the generator, using certain (large) precomputed multiples in g_pre_comp. | ||
1092 | * Output point (X, Y, Z) is stored in x_out, y_out, z_out */ | ||
1093 | static void | ||
1094 | batch_mul(felem x_out, felem y_out, felem z_out, | ||
1095 | const felem_bytearray scalars[], const unsigned num_points, const u8 * g_scalar, | ||
1096 | const int mixed, const felem pre_comp[][17][3], const felem g_pre_comp[2][16][3]) | ||
1097 | { | ||
1098 | int i, skip; | ||
1099 | unsigned num; | ||
1100 | unsigned gen_mul = (g_scalar != NULL); | ||
1101 | felem nq[3], tmp[4]; | ||
1102 | u64 bits; | ||
1103 | u8 sign, digit; | ||
1104 | |||
1105 | /* set nq to the point at infinity */ | ||
1106 | memset(nq, 0, 3 * sizeof(felem)); | ||
1107 | |||
1108 | /* | ||
1109 | * Loop over all scalars msb-to-lsb, interleaving additions of | ||
1110 | * multiples of the generator (two in each of the last 28 rounds) and | ||
1111 | * additions of other points multiples (every 5th round). | ||
1112 | */ | ||
1113 | skip = 1; /* save two point operations in the first | ||
1114 | * round */ | ||
1115 | for (i = (num_points ? 220 : 27); i >= 0; --i) { | ||
1116 | /* double */ | ||
1117 | if (!skip) | ||
1118 | point_double(nq[0], nq[1], nq[2], nq[0], nq[1], nq[2]); | ||
1119 | |||
1120 | /* add multiples of the generator */ | ||
1121 | if (gen_mul && (i <= 27)) { | ||
1122 | /* first, look 28 bits upwards */ | ||
1123 | bits = get_bit(g_scalar, i + 196) << 3; | ||
1124 | bits |= get_bit(g_scalar, i + 140) << 2; | ||
1125 | bits |= get_bit(g_scalar, i + 84) << 1; | ||
1126 | bits |= get_bit(g_scalar, i + 28); | ||
1127 | /* select the point to add, in constant time */ | ||
1128 | select_point(bits, 16, g_pre_comp[1], tmp); | ||
1129 | |||
1130 | if (!skip) { | ||
1131 | point_add(nq[0], nq[1], nq[2], | ||
1132 | nq[0], nq[1], nq[2], | ||
1133 | 1 /* mixed */ , tmp[0], tmp[1], tmp[2]); | ||
1134 | } else { | ||
1135 | memcpy(nq, tmp, 3 * sizeof(felem)); | ||
1136 | skip = 0; | ||
1137 | } | ||
1138 | |||
1139 | /* second, look at the current position */ | ||
1140 | bits = get_bit(g_scalar, i + 168) << 3; | ||
1141 | bits |= get_bit(g_scalar, i + 112) << 2; | ||
1142 | bits |= get_bit(g_scalar, i + 56) << 1; | ||
1143 | bits |= get_bit(g_scalar, i); | ||
1144 | /* select the point to add, in constant time */ | ||
1145 | select_point(bits, 16, g_pre_comp[0], tmp); | ||
1146 | point_add(nq[0], nq[1], nq[2], | ||
1147 | nq[0], nq[1], nq[2], | ||
1148 | 1 /* mixed */ , tmp[0], tmp[1], tmp[2]); | ||
1149 | } | ||
1150 | /* do other additions every 5 doublings */ | ||
1151 | if (num_points && (i % 5 == 0)) { | ||
1152 | /* loop over all scalars */ | ||
1153 | for (num = 0; num < num_points; ++num) { | ||
1154 | bits = get_bit(scalars[num], i + 4) << 5; | ||
1155 | bits |= get_bit(scalars[num], i + 3) << 4; | ||
1156 | bits |= get_bit(scalars[num], i + 2) << 3; | ||
1157 | bits |= get_bit(scalars[num], i + 1) << 2; | ||
1158 | bits |= get_bit(scalars[num], i) << 1; | ||
1159 | bits |= get_bit(scalars[num], i - 1); | ||
1160 | ec_GFp_nistp_recode_scalar_bits(&sign, &digit, bits); | ||
1161 | |||
1162 | /* select the point to add or subtract */ | ||
1163 | select_point(digit, 17, pre_comp[num], tmp); | ||
1164 | felem_neg(tmp[3], tmp[1]); /* (X, -Y, Z) is the | ||
1165 | * negative point */ | ||
1166 | copy_conditional(tmp[1], tmp[3], sign); | ||
1167 | |||
1168 | if (!skip) { | ||
1169 | point_add(nq[0], nq[1], nq[2], | ||
1170 | nq[0], nq[1], nq[2], | ||
1171 | mixed, tmp[0], tmp[1], tmp[2]); | ||
1172 | } else { | ||
1173 | memcpy(nq, tmp, 3 * sizeof(felem)); | ||
1174 | skip = 0; | ||
1175 | } | ||
1176 | } | ||
1177 | } | ||
1178 | } | ||
1179 | felem_assign(x_out, nq[0]); | ||
1180 | felem_assign(y_out, nq[1]); | ||
1181 | felem_assign(z_out, nq[2]); | ||
1182 | } | ||
1183 | |||
1184 | /******************************************************************************/ | ||
1185 | /* FUNCTIONS TO MANAGE PRECOMPUTATION | ||
1186 | */ | ||
1187 | |||
1188 | static NISTP224_PRE_COMP * | ||
1189 | nistp224_pre_comp_new() | ||
1190 | { | ||
1191 | NISTP224_PRE_COMP *ret = NULL; | ||
1192 | ret = malloc(sizeof *ret); | ||
1193 | if (!ret) { | ||
1194 | ECerr(EC_F_NISTP224_PRE_COMP_NEW, ERR_R_MALLOC_FAILURE); | ||
1195 | return ret; | ||
1196 | } | ||
1197 | memset(ret->g_pre_comp, 0, sizeof(ret->g_pre_comp)); | ||
1198 | ret->references = 1; | ||
1199 | return ret; | ||
1200 | } | ||
1201 | |||
1202 | static void * | ||
1203 | nistp224_pre_comp_dup(void *src_) | ||
1204 | { | ||
1205 | NISTP224_PRE_COMP *src = src_; | ||
1206 | |||
1207 | /* no need to actually copy, these objects never change! */ | ||
1208 | CRYPTO_add(&src->references, 1, CRYPTO_LOCK_EC_PRE_COMP); | ||
1209 | |||
1210 | return src_; | ||
1211 | } | ||
1212 | |||
1213 | static void | ||
1214 | nistp224_pre_comp_free(void *pre_) | ||
1215 | { | ||
1216 | int i; | ||
1217 | NISTP224_PRE_COMP *pre = pre_; | ||
1218 | |||
1219 | if (!pre) | ||
1220 | return; | ||
1221 | |||
1222 | i = CRYPTO_add(&pre->references, -1, CRYPTO_LOCK_EC_PRE_COMP); | ||
1223 | if (i > 0) | ||
1224 | return; | ||
1225 | |||
1226 | free(pre); | ||
1227 | } | ||
1228 | |||
1229 | static void | ||
1230 | nistp224_pre_comp_clear_free(void *pre_) | ||
1231 | { | ||
1232 | int i; | ||
1233 | NISTP224_PRE_COMP *pre = pre_; | ||
1234 | |||
1235 | if (!pre) | ||
1236 | return; | ||
1237 | |||
1238 | i = CRYPTO_add(&pre->references, -1, CRYPTO_LOCK_EC_PRE_COMP); | ||
1239 | if (i > 0) | ||
1240 | return; | ||
1241 | |||
1242 | explicit_bzero(pre, sizeof *pre); | ||
1243 | free(pre); | ||
1244 | } | ||
1245 | |||
1246 | /******************************************************************************/ | ||
1247 | /* OPENSSL EC_METHOD FUNCTIONS | ||
1248 | */ | ||
1249 | |||
1250 | int | ||
1251 | ec_GFp_nistp224_group_init(EC_GROUP * group) | ||
1252 | { | ||
1253 | int ret; | ||
1254 | ret = ec_GFp_simple_group_init(group); | ||
1255 | group->a_is_minus3 = 1; | ||
1256 | return ret; | ||
1257 | } | ||
1258 | |||
1259 | int | ||
1260 | ec_GFp_nistp224_group_set_curve(EC_GROUP * group, const BIGNUM * p, | ||
1261 | const BIGNUM * a, const BIGNUM * b, BN_CTX * ctx) | ||
1262 | { | ||
1263 | int ret = 0; | ||
1264 | BN_CTX *new_ctx = NULL; | ||
1265 | BIGNUM *curve_p, *curve_a, *curve_b; | ||
1266 | |||
1267 | if (ctx == NULL) | ||
1268 | if ((ctx = new_ctx = BN_CTX_new()) == NULL) | ||
1269 | return 0; | ||
1270 | BN_CTX_start(ctx); | ||
1271 | if (((curve_p = BN_CTX_get(ctx)) == NULL) || | ||
1272 | ((curve_a = BN_CTX_get(ctx)) == NULL) || | ||
1273 | ((curve_b = BN_CTX_get(ctx)) == NULL)) | ||
1274 | goto err; | ||
1275 | BN_bin2bn(nistp224_curve_params[0], sizeof(felem_bytearray), curve_p); | ||
1276 | BN_bin2bn(nistp224_curve_params[1], sizeof(felem_bytearray), curve_a); | ||
1277 | BN_bin2bn(nistp224_curve_params[2], sizeof(felem_bytearray), curve_b); | ||
1278 | if ((BN_cmp(curve_p, p)) || (BN_cmp(curve_a, a)) || | ||
1279 | (BN_cmp(curve_b, b))) { | ||
1280 | ECerr(EC_F_EC_GFP_NISTP224_GROUP_SET_CURVE, | ||
1281 | EC_R_WRONG_CURVE_PARAMETERS); | ||
1282 | goto err; | ||
1283 | } | ||
1284 | group->field_mod_func = BN_nist_mod_224; | ||
1285 | ret = ec_GFp_simple_group_set_curve(group, p, a, b, ctx); | ||
1286 | err: | ||
1287 | BN_CTX_end(ctx); | ||
1288 | BN_CTX_free(new_ctx); | ||
1289 | return ret; | ||
1290 | } | ||
1291 | |||
1292 | /* Takes the Jacobian coordinates (X, Y, Z) of a point and returns | ||
1293 | * (X', Y') = (X/Z^2, Y/Z^3) */ | ||
1294 | int | ||
1295 | ec_GFp_nistp224_point_get_affine_coordinates(const EC_GROUP * group, | ||
1296 | const EC_POINT * point, BIGNUM * x, BIGNUM * y, BN_CTX * ctx) | ||
1297 | { | ||
1298 | felem z1, z2, x_in, y_in, x_out, y_out; | ||
1299 | widefelem tmp; | ||
1300 | |||
1301 | if (EC_POINT_is_at_infinity(group, point) > 0) { | ||
1302 | ECerr(EC_F_EC_GFP_NISTP224_POINT_GET_AFFINE_COORDINATES, | ||
1303 | EC_R_POINT_AT_INFINITY); | ||
1304 | return 0; | ||
1305 | } | ||
1306 | if ((!BN_to_felem(x_in, &point->X)) || (!BN_to_felem(y_in, &point->Y)) || | ||
1307 | (!BN_to_felem(z1, &point->Z))) | ||
1308 | return 0; | ||
1309 | felem_inv(z2, z1); | ||
1310 | felem_square(tmp, z2); | ||
1311 | felem_reduce(z1, tmp); | ||
1312 | felem_mul(tmp, x_in, z1); | ||
1313 | felem_reduce(x_in, tmp); | ||
1314 | felem_contract(x_out, x_in); | ||
1315 | if (x != NULL) { | ||
1316 | if (!felem_to_BN(x, x_out)) { | ||
1317 | ECerr(EC_F_EC_GFP_NISTP224_POINT_GET_AFFINE_COORDINATES, | ||
1318 | ERR_R_BN_LIB); | ||
1319 | return 0; | ||
1320 | } | ||
1321 | } | ||
1322 | felem_mul(tmp, z1, z2); | ||
1323 | felem_reduce(z1, tmp); | ||
1324 | felem_mul(tmp, y_in, z1); | ||
1325 | felem_reduce(y_in, tmp); | ||
1326 | felem_contract(y_out, y_in); | ||
1327 | if (y != NULL) { | ||
1328 | if (!felem_to_BN(y, y_out)) { | ||
1329 | ECerr(EC_F_EC_GFP_NISTP224_POINT_GET_AFFINE_COORDINATES, | ||
1330 | ERR_R_BN_LIB); | ||
1331 | return 0; | ||
1332 | } | ||
1333 | } | ||
1334 | return 1; | ||
1335 | } | ||
1336 | |||
1337 | static void | ||
1338 | make_points_affine(size_t num, felem points[ /* num */ ][3], felem tmp_felems[ /* num+1 */ ]) | ||
1339 | { | ||
1340 | /* | ||
1341 | * Runs in constant time, unless an input is the point at infinity | ||
1342 | * (which normally shouldn't happen). | ||
1343 | */ | ||
1344 | ec_GFp_nistp_points_make_affine_internal( | ||
1345 | num, | ||
1346 | points, | ||
1347 | sizeof(felem), | ||
1348 | tmp_felems, | ||
1349 | (void (*) (void *)) felem_one, | ||
1350 | (int (*) (const void *)) felem_is_zero_int, | ||
1351 | (void (*) (void *, const void *)) felem_assign, | ||
1352 | (void (*) (void *, const void *)) felem_square_reduce, | ||
1353 | (void (*) (void *, const void *, const void *)) felem_mul_reduce, | ||
1354 | (void (*) (void *, const void *)) felem_inv, | ||
1355 | (void (*) (void *, const void *)) felem_contract); | ||
1356 | } | ||
1357 | |||
1358 | /* Computes scalar*generator + \sum scalars[i]*points[i], ignoring NULL values | ||
1359 | * Result is stored in r (r can equal one of the inputs). */ | ||
1360 | int | ||
1361 | ec_GFp_nistp224_points_mul(const EC_GROUP * group, EC_POINT * r, | ||
1362 | const BIGNUM * scalar, size_t num, const EC_POINT * points[], | ||
1363 | const BIGNUM * scalars[], BN_CTX * ctx) | ||
1364 | { | ||
1365 | int ret = 0; | ||
1366 | int j; | ||
1367 | unsigned i; | ||
1368 | int mixed = 0; | ||
1369 | BN_CTX *new_ctx = NULL; | ||
1370 | BIGNUM *x, *y, *z, *tmp_scalar; | ||
1371 | felem_bytearray g_secret; | ||
1372 | felem_bytearray *secrets = NULL; | ||
1373 | felem(*pre_comp)[17][3] = NULL; | ||
1374 | felem *tmp_felems = NULL; | ||
1375 | felem_bytearray tmp; | ||
1376 | unsigned num_bytes; | ||
1377 | int have_pre_comp = 0; | ||
1378 | size_t num_points = num; | ||
1379 | felem x_in, y_in, z_in, x_out, y_out, z_out; | ||
1380 | NISTP224_PRE_COMP *pre = NULL; | ||
1381 | const felem(*g_pre_comp)[16][3] = NULL; | ||
1382 | EC_POINT *generator = NULL; | ||
1383 | const EC_POINT *p = NULL; | ||
1384 | const BIGNUM *p_scalar = NULL; | ||
1385 | |||
1386 | if (ctx == NULL) | ||
1387 | if ((ctx = new_ctx = BN_CTX_new()) == NULL) | ||
1388 | return 0; | ||
1389 | BN_CTX_start(ctx); | ||
1390 | if (((x = BN_CTX_get(ctx)) == NULL) || | ||
1391 | ((y = BN_CTX_get(ctx)) == NULL) || | ||
1392 | ((z = BN_CTX_get(ctx)) == NULL) || | ||
1393 | ((tmp_scalar = BN_CTX_get(ctx)) == NULL)) | ||
1394 | goto err; | ||
1395 | |||
1396 | if (scalar != NULL) { | ||
1397 | pre = EC_EX_DATA_get_data(group->extra_data, | ||
1398 | nistp224_pre_comp_dup, nistp224_pre_comp_free, | ||
1399 | nistp224_pre_comp_clear_free); | ||
1400 | if (pre) | ||
1401 | /* we have precomputation, try to use it */ | ||
1402 | g_pre_comp = (const felem(*)[16][3]) pre->g_pre_comp; | ||
1403 | else | ||
1404 | /* try to use the standard precomputation */ | ||
1405 | g_pre_comp = &gmul[0]; | ||
1406 | generator = EC_POINT_new(group); | ||
1407 | if (generator == NULL) | ||
1408 | goto err; | ||
1409 | /* get the generator from precomputation */ | ||
1410 | if (!felem_to_BN(x, g_pre_comp[0][1][0]) || | ||
1411 | !felem_to_BN(y, g_pre_comp[0][1][1]) || | ||
1412 | !felem_to_BN(z, g_pre_comp[0][1][2])) { | ||
1413 | ECerr(EC_F_EC_GFP_NISTP224_POINTS_MUL, ERR_R_BN_LIB); | ||
1414 | goto err; | ||
1415 | } | ||
1416 | if (!EC_POINT_set_Jprojective_coordinates_GFp(group, | ||
1417 | generator, x, y, z, ctx)) | ||
1418 | goto err; | ||
1419 | if (0 == EC_POINT_cmp(group, generator, group->generator, ctx)) | ||
1420 | /* precomputation matches generator */ | ||
1421 | have_pre_comp = 1; | ||
1422 | else | ||
1423 | /* | ||
1424 | * we don't have valid precomputation: treat the | ||
1425 | * generator as a random point | ||
1426 | */ | ||
1427 | num_points = num_points + 1; | ||
1428 | } | ||
1429 | if (num_points > 0) { | ||
1430 | if (num_points >= 3) { | ||
1431 | /* | ||
1432 | * unless we precompute multiples for just one or two | ||
1433 | * points, converting those into affine form is time | ||
1434 | * well spent | ||
1435 | */ | ||
1436 | mixed = 1; | ||
1437 | } | ||
1438 | secrets = calloc(num_points, sizeof(felem_bytearray)); | ||
1439 | pre_comp = calloc(num_points, 17 * 3 * sizeof(felem)); | ||
1440 | if (mixed) { | ||
1441 | /* XXX should do more int overflow checking */ | ||
1442 | tmp_felems = reallocarray(NULL, | ||
1443 | (num_points * 17 + 1), sizeof(felem)); | ||
1444 | } | ||
1445 | if ((secrets == NULL) || (pre_comp == NULL) || (mixed && (tmp_felems == NULL))) { | ||
1446 | ECerr(EC_F_EC_GFP_NISTP224_POINTS_MUL, ERR_R_MALLOC_FAILURE); | ||
1447 | goto err; | ||
1448 | } | ||
1449 | /* | ||
1450 | * we treat NULL scalars as 0, and NULL points as points at | ||
1451 | * infinity, i.e., they contribute nothing to the linear | ||
1452 | * combination | ||
1453 | */ | ||
1454 | for (i = 0; i < num_points; ++i) { | ||
1455 | if (i == num) | ||
1456 | /* the generator */ | ||
1457 | { | ||
1458 | p = EC_GROUP_get0_generator(group); | ||
1459 | p_scalar = scalar; | ||
1460 | } else | ||
1461 | /* the i^th point */ | ||
1462 | { | ||
1463 | p = points[i]; | ||
1464 | p_scalar = scalars[i]; | ||
1465 | } | ||
1466 | if ((p_scalar != NULL) && (p != NULL)) { | ||
1467 | /* reduce scalar to 0 <= scalar < 2^224 */ | ||
1468 | if ((BN_num_bits(p_scalar) > 224) || (BN_is_negative(p_scalar))) { | ||
1469 | /* | ||
1470 | * this is an unusual input, and we | ||
1471 | * don't guarantee constant-timeness | ||
1472 | */ | ||
1473 | if (!BN_nnmod(tmp_scalar, p_scalar, &group->order, ctx)) { | ||
1474 | ECerr(EC_F_EC_GFP_NISTP224_POINTS_MUL, ERR_R_BN_LIB); | ||
1475 | goto err; | ||
1476 | } | ||
1477 | num_bytes = BN_bn2bin(tmp_scalar, tmp); | ||
1478 | } else | ||
1479 | num_bytes = BN_bn2bin(p_scalar, tmp); | ||
1480 | flip_endian(secrets[i], tmp, num_bytes); | ||
1481 | /* precompute multiples */ | ||
1482 | if ((!BN_to_felem(x_out, &p->X)) || | ||
1483 | (!BN_to_felem(y_out, &p->Y)) || | ||
1484 | (!BN_to_felem(z_out, &p->Z))) | ||
1485 | goto err; | ||
1486 | felem_assign(pre_comp[i][1][0], x_out); | ||
1487 | felem_assign(pre_comp[i][1][1], y_out); | ||
1488 | felem_assign(pre_comp[i][1][2], z_out); | ||
1489 | for (j = 2; j <= 16; ++j) { | ||
1490 | if (j & 1) { | ||
1491 | point_add( | ||
1492 | pre_comp[i][j][0], pre_comp[i][j][1], pre_comp[i][j][2], | ||
1493 | pre_comp[i][1][0], pre_comp[i][1][1], pre_comp[i][1][2], | ||
1494 | 0, pre_comp[i][j - 1][0], pre_comp[i][j - 1][1], pre_comp[i][j - 1][2]); | ||
1495 | } else { | ||
1496 | point_double( | ||
1497 | pre_comp[i][j][0], pre_comp[i][j][1], pre_comp[i][j][2], | ||
1498 | pre_comp[i][j / 2][0], pre_comp[i][j / 2][1], pre_comp[i][j / 2][2]); | ||
1499 | } | ||
1500 | } | ||
1501 | } | ||
1502 | } | ||
1503 | if (mixed) | ||
1504 | make_points_affine(num_points * 17, pre_comp[0], tmp_felems); | ||
1505 | } | ||
1506 | /* the scalar for the generator */ | ||
1507 | if ((scalar != NULL) && (have_pre_comp)) { | ||
1508 | memset(g_secret, 0, sizeof g_secret); | ||
1509 | /* reduce scalar to 0 <= scalar < 2^224 */ | ||
1510 | if ((BN_num_bits(scalar) > 224) || (BN_is_negative(scalar))) { | ||
1511 | /* | ||
1512 | * this is an unusual input, and we don't guarantee | ||
1513 | * constant-timeness | ||
1514 | */ | ||
1515 | if (!BN_nnmod(tmp_scalar, scalar, &group->order, ctx)) { | ||
1516 | ECerr(EC_F_EC_GFP_NISTP224_POINTS_MUL, ERR_R_BN_LIB); | ||
1517 | goto err; | ||
1518 | } | ||
1519 | num_bytes = BN_bn2bin(tmp_scalar, tmp); | ||
1520 | } else | ||
1521 | num_bytes = BN_bn2bin(scalar, tmp); | ||
1522 | flip_endian(g_secret, tmp, num_bytes); | ||
1523 | /* do the multiplication with generator precomputation */ | ||
1524 | batch_mul(x_out, y_out, z_out, | ||
1525 | (const felem_bytearray(*)) secrets, num_points, | ||
1526 | g_secret, | ||
1527 | mixed, (const felem(*)[17][3]) pre_comp, | ||
1528 | g_pre_comp); | ||
1529 | } else | ||
1530 | /* do the multiplication without generator precomputation */ | ||
1531 | batch_mul(x_out, y_out, z_out, | ||
1532 | (const felem_bytearray(*)) secrets, num_points, | ||
1533 | NULL, mixed, (const felem(*)[17][3]) pre_comp, NULL); | ||
1534 | /* reduce the output to its unique minimal representation */ | ||
1535 | felem_contract(x_in, x_out); | ||
1536 | felem_contract(y_in, y_out); | ||
1537 | felem_contract(z_in, z_out); | ||
1538 | if ((!felem_to_BN(x, x_in)) || (!felem_to_BN(y, y_in)) || | ||
1539 | (!felem_to_BN(z, z_in))) { | ||
1540 | ECerr(EC_F_EC_GFP_NISTP224_POINTS_MUL, ERR_R_BN_LIB); | ||
1541 | goto err; | ||
1542 | } | ||
1543 | ret = EC_POINT_set_Jprojective_coordinates_GFp(group, r, x, y, z, ctx); | ||
1544 | |||
1545 | err: | ||
1546 | BN_CTX_end(ctx); | ||
1547 | EC_POINT_free(generator); | ||
1548 | BN_CTX_free(new_ctx); | ||
1549 | free(secrets); | ||
1550 | free(pre_comp); | ||
1551 | free(tmp_felems); | ||
1552 | return ret; | ||
1553 | } | ||
1554 | |||
1555 | int | ||
1556 | ec_GFp_nistp224_precompute_mult(EC_GROUP * group, BN_CTX * ctx) | ||
1557 | { | ||
1558 | int ret = 0; | ||
1559 | NISTP224_PRE_COMP *pre = NULL; | ||
1560 | int i, j; | ||
1561 | BN_CTX *new_ctx = NULL; | ||
1562 | BIGNUM *x, *y; | ||
1563 | EC_POINT *generator = NULL; | ||
1564 | felem tmp_felems[32]; | ||
1565 | |||
1566 | /* throw away old precomputation */ | ||
1567 | EC_EX_DATA_free_data(&group->extra_data, nistp224_pre_comp_dup, | ||
1568 | nistp224_pre_comp_free, nistp224_pre_comp_clear_free); | ||
1569 | if (ctx == NULL) | ||
1570 | if ((ctx = new_ctx = BN_CTX_new()) == NULL) | ||
1571 | return 0; | ||
1572 | BN_CTX_start(ctx); | ||
1573 | if (((x = BN_CTX_get(ctx)) == NULL) || | ||
1574 | ((y = BN_CTX_get(ctx)) == NULL)) | ||
1575 | goto err; | ||
1576 | /* get the generator */ | ||
1577 | if (group->generator == NULL) | ||
1578 | goto err; | ||
1579 | generator = EC_POINT_new(group); | ||
1580 | if (generator == NULL) | ||
1581 | goto err; | ||
1582 | BN_bin2bn(nistp224_curve_params[3], sizeof(felem_bytearray), x); | ||
1583 | BN_bin2bn(nistp224_curve_params[4], sizeof(felem_bytearray), y); | ||
1584 | if (!EC_POINT_set_affine_coordinates_GFp(group, generator, x, y, ctx)) | ||
1585 | goto err; | ||
1586 | if ((pre = nistp224_pre_comp_new()) == NULL) | ||
1587 | goto err; | ||
1588 | /* if the generator is the standard one, use built-in precomputation */ | ||
1589 | if (0 == EC_POINT_cmp(group, generator, group->generator, ctx)) { | ||
1590 | memcpy(pre->g_pre_comp, gmul, sizeof(pre->g_pre_comp)); | ||
1591 | ret = 1; | ||
1592 | goto err; | ||
1593 | } | ||
1594 | if ((!BN_to_felem(pre->g_pre_comp[0][1][0], &group->generator->X)) || | ||
1595 | (!BN_to_felem(pre->g_pre_comp[0][1][1], &group->generator->Y)) || | ||
1596 | (!BN_to_felem(pre->g_pre_comp[0][1][2], &group->generator->Z))) | ||
1597 | goto err; | ||
1598 | /* | ||
1599 | * compute 2^56*G, 2^112*G, 2^168*G for the first table, 2^28*G, | ||
1600 | * 2^84*G, 2^140*G, 2^196*G for the second one | ||
1601 | */ | ||
1602 | for (i = 1; i <= 8; i <<= 1) { | ||
1603 | point_double( | ||
1604 | pre->g_pre_comp[1][i][0], pre->g_pre_comp[1][i][1], pre->g_pre_comp[1][i][2], | ||
1605 | pre->g_pre_comp[0][i][0], pre->g_pre_comp[0][i][1], pre->g_pre_comp[0][i][2]); | ||
1606 | for (j = 0; j < 27; ++j) { | ||
1607 | point_double( | ||
1608 | pre->g_pre_comp[1][i][0], pre->g_pre_comp[1][i][1], pre->g_pre_comp[1][i][2], | ||
1609 | pre->g_pre_comp[1][i][0], pre->g_pre_comp[1][i][1], pre->g_pre_comp[1][i][2]); | ||
1610 | } | ||
1611 | if (i == 8) | ||
1612 | break; | ||
1613 | point_double( | ||
1614 | pre->g_pre_comp[0][2 * i][0], pre->g_pre_comp[0][2 * i][1], pre->g_pre_comp[0][2 * i][2], | ||
1615 | pre->g_pre_comp[1][i][0], pre->g_pre_comp[1][i][1], pre->g_pre_comp[1][i][2]); | ||
1616 | for (j = 0; j < 27; ++j) { | ||
1617 | point_double( | ||
1618 | pre->g_pre_comp[0][2 * i][0], pre->g_pre_comp[0][2 * i][1], pre->g_pre_comp[0][2 * i][2], | ||
1619 | pre->g_pre_comp[0][2 * i][0], pre->g_pre_comp[0][2 * i][1], pre->g_pre_comp[0][2 * i][2]); | ||
1620 | } | ||
1621 | } | ||
1622 | for (i = 0; i < 2; i++) { | ||
1623 | /* g_pre_comp[i][0] is the point at infinity */ | ||
1624 | memset(pre->g_pre_comp[i][0], 0, sizeof(pre->g_pre_comp[i][0])); | ||
1625 | /* the remaining multiples */ | ||
1626 | /* 2^56*G + 2^112*G resp. 2^84*G + 2^140*G */ | ||
1627 | point_add( | ||
1628 | pre->g_pre_comp[i][6][0], pre->g_pre_comp[i][6][1], | ||
1629 | pre->g_pre_comp[i][6][2], pre->g_pre_comp[i][4][0], | ||
1630 | pre->g_pre_comp[i][4][1], pre->g_pre_comp[i][4][2], | ||
1631 | 0, pre->g_pre_comp[i][2][0], pre->g_pre_comp[i][2][1], | ||
1632 | pre->g_pre_comp[i][2][2]); | ||
1633 | /* 2^56*G + 2^168*G resp. 2^84*G + 2^196*G */ | ||
1634 | point_add( | ||
1635 | pre->g_pre_comp[i][10][0], pre->g_pre_comp[i][10][1], | ||
1636 | pre->g_pre_comp[i][10][2], pre->g_pre_comp[i][8][0], | ||
1637 | pre->g_pre_comp[i][8][1], pre->g_pre_comp[i][8][2], | ||
1638 | 0, pre->g_pre_comp[i][2][0], pre->g_pre_comp[i][2][1], | ||
1639 | pre->g_pre_comp[i][2][2]); | ||
1640 | /* 2^112*G + 2^168*G resp. 2^140*G + 2^196*G */ | ||
1641 | point_add( | ||
1642 | pre->g_pre_comp[i][12][0], pre->g_pre_comp[i][12][1], | ||
1643 | pre->g_pre_comp[i][12][2], pre->g_pre_comp[i][8][0], | ||
1644 | pre->g_pre_comp[i][8][1], pre->g_pre_comp[i][8][2], | ||
1645 | 0, pre->g_pre_comp[i][4][0], pre->g_pre_comp[i][4][1], | ||
1646 | pre->g_pre_comp[i][4][2]); | ||
1647 | /* | ||
1648 | * 2^56*G + 2^112*G + 2^168*G resp. 2^84*G + 2^140*G + | ||
1649 | * 2^196*G | ||
1650 | */ | ||
1651 | point_add( | ||
1652 | pre->g_pre_comp[i][14][0], pre->g_pre_comp[i][14][1], | ||
1653 | pre->g_pre_comp[i][14][2], pre->g_pre_comp[i][12][0], | ||
1654 | pre->g_pre_comp[i][12][1], pre->g_pre_comp[i][12][2], | ||
1655 | 0, pre->g_pre_comp[i][2][0], pre->g_pre_comp[i][2][1], | ||
1656 | pre->g_pre_comp[i][2][2]); | ||
1657 | for (j = 1; j < 8; ++j) { | ||
1658 | /* odd multiples: add G resp. 2^28*G */ | ||
1659 | point_add( | ||
1660 | pre->g_pre_comp[i][2 * j + 1][0], pre->g_pre_comp[i][2 * j + 1][1], | ||
1661 | pre->g_pre_comp[i][2 * j + 1][2], pre->g_pre_comp[i][2 * j][0], | ||
1662 | pre->g_pre_comp[i][2 * j][1], pre->g_pre_comp[i][2 * j][2], | ||
1663 | 0, pre->g_pre_comp[i][1][0], pre->g_pre_comp[i][1][1], | ||
1664 | pre->g_pre_comp[i][1][2]); | ||
1665 | } | ||
1666 | } | ||
1667 | make_points_affine(31, &(pre->g_pre_comp[0][1]), tmp_felems); | ||
1668 | |||
1669 | if (!EC_EX_DATA_set_data(&group->extra_data, pre, nistp224_pre_comp_dup, | ||
1670 | nistp224_pre_comp_free, nistp224_pre_comp_clear_free)) | ||
1671 | goto err; | ||
1672 | ret = 1; | ||
1673 | pre = NULL; | ||
1674 | err: | ||
1675 | BN_CTX_end(ctx); | ||
1676 | EC_POINT_free(generator); | ||
1677 | BN_CTX_free(new_ctx); | ||
1678 | nistp224_pre_comp_free(pre); | ||
1679 | return ret; | ||
1680 | } | ||
1681 | |||
1682 | int | ||
1683 | ec_GFp_nistp224_have_precompute_mult(const EC_GROUP * group) | ||
1684 | { | ||
1685 | if (EC_EX_DATA_get_data(group->extra_data, nistp224_pre_comp_dup, | ||
1686 | nistp224_pre_comp_free, nistp224_pre_comp_clear_free) | ||
1687 | != NULL) | ||
1688 | return 1; | ||
1689 | else | ||
1690 | return 0; | ||
1691 | } | ||
1692 | |||
1693 | #endif | ||
diff --git a/src/lib/libcrypto/ec/ecp_nistp256.c b/src/lib/libcrypto/ec/ecp_nistp256.c deleted file mode 100644 index be1d2a5402..0000000000 --- a/src/lib/libcrypto/ec/ecp_nistp256.c +++ /dev/null | |||
@@ -1,2239 +0,0 @@ | |||
1 | /* $OpenBSD: ecp_nistp256.c,v 1.16 2015/09/10 15:56:25 jsing Exp $ */ | ||
2 | /* | ||
3 | * Written by Adam Langley (Google) for the OpenSSL project | ||
4 | */ | ||
5 | /* | ||
6 | * Copyright (c) 2011 Google Inc. | ||
7 | * | ||
8 | * Permission to use, copy, modify, and distribute this software for any | ||
9 | * purpose with or without fee is hereby granted, provided that the above | ||
10 | * copyright notice and this permission notice appear in all copies. | ||
11 | * | ||
12 | * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES | ||
13 | * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF | ||
14 | * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR | ||
15 | * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES | ||
16 | * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN | ||
17 | * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF | ||
18 | * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE. | ||
19 | */ | ||
20 | |||
21 | /* | ||
22 | * A 64-bit implementation of the NIST P-256 elliptic curve point multiplication | ||
23 | * | ||
24 | * OpenSSL integration was taken from Emilia Kasper's work in ecp_nistp224.c. | ||
25 | * Otherwise based on Emilia's P224 work, which was inspired by my curve25519 | ||
26 | * work which got its smarts from Daniel J. Bernstein's work on the same. | ||
27 | */ | ||
28 | |||
29 | #include <stdint.h> | ||
30 | #include <string.h> | ||
31 | |||
32 | #include <openssl/opensslconf.h> | ||
33 | |||
34 | #ifndef OPENSSL_NO_EC_NISTP_64_GCC_128 | ||
35 | |||
36 | #include <openssl/err.h> | ||
37 | #include "ec_lcl.h" | ||
38 | |||
39 | #if defined(__GNUC__) && (__GNUC__ > 3 || (__GNUC__ == 3 && __GNUC_MINOR__ >= 1)) | ||
40 | /* even with gcc, the typedef won't work for 32-bit platforms */ | ||
41 | typedef __uint128_t uint128_t; /* nonstandard; implemented by gcc on 64-bit platforms */ | ||
42 | typedef __int128_t int128_t; | ||
43 | #else | ||
44 | #error "Need GCC 3.1 or later to define type uint128_t" | ||
45 | #endif | ||
46 | |||
47 | typedef uint8_t u8; | ||
48 | typedef uint32_t u32; | ||
49 | typedef uint64_t u64; | ||
50 | typedef int64_t s64; | ||
51 | |||
52 | /* The underlying field. | ||
53 | * | ||
54 | * P256 operates over GF(2^256-2^224+2^192+2^96-1). We can serialise an element | ||
55 | * of this field into 32 bytes. We call this an felem_bytearray. */ | ||
56 | |||
57 | typedef u8 felem_bytearray[32]; | ||
58 | |||
59 | /* These are the parameters of P256, taken from FIPS 186-3, page 86. These | ||
60 | * values are big-endian. */ | ||
61 | static const felem_bytearray nistp256_curve_params[5] = { | ||
62 | {0xff, 0xff, 0xff, 0xff, 0x00, 0x00, 0x00, 0x01, /* p */ | ||
63 | 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, | ||
64 | 0x00, 0x00, 0x00, 0x00, 0xff, 0xff, 0xff, 0xff, | ||
65 | 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff}, | ||
66 | {0xff, 0xff, 0xff, 0xff, 0x00, 0x00, 0x00, 0x01, /* a = -3 */ | ||
67 | 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, | ||
68 | 0x00, 0x00, 0x00, 0x00, 0xff, 0xff, 0xff, 0xff, | ||
69 | 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xfc}, /* b */ | ||
70 | {0x5a, 0xc6, 0x35, 0xd8, 0xaa, 0x3a, 0x93, 0xe7, | ||
71 | 0xb3, 0xeb, 0xbd, 0x55, 0x76, 0x98, 0x86, 0xbc, | ||
72 | 0x65, 0x1d, 0x06, 0xb0, 0xcc, 0x53, 0xb0, 0xf6, | ||
73 | 0x3b, 0xce, 0x3c, 0x3e, 0x27, 0xd2, 0x60, 0x4b}, | ||
74 | {0x6b, 0x17, 0xd1, 0xf2, 0xe1, 0x2c, 0x42, 0x47, /* x */ | ||
75 | 0xf8, 0xbc, 0xe6, 0xe5, 0x63, 0xa4, 0x40, 0xf2, | ||
76 | 0x77, 0x03, 0x7d, 0x81, 0x2d, 0xeb, 0x33, 0xa0, | ||
77 | 0xf4, 0xa1, 0x39, 0x45, 0xd8, 0x98, 0xc2, 0x96}, | ||
78 | {0x4f, 0xe3, 0x42, 0xe2, 0xfe, 0x1a, 0x7f, 0x9b, /* y */ | ||
79 | 0x8e, 0xe7, 0xeb, 0x4a, 0x7c, 0x0f, 0x9e, 0x16, | ||
80 | 0x2b, 0xce, 0x33, 0x57, 0x6b, 0x31, 0x5e, 0xce, | ||
81 | 0xcb, 0xb6, 0x40, 0x68, 0x37, 0xbf, 0x51, 0xf5} | ||
82 | }; | ||
83 | |||
84 | /* The representation of field elements. | ||
85 | * ------------------------------------ | ||
86 | * | ||
87 | * We represent field elements with either four 128-bit values, eight 128-bit | ||
88 | * values, or four 64-bit values. The field element represented is: | ||
89 | * v[0]*2^0 + v[1]*2^64 + v[2]*2^128 + v[3]*2^192 (mod p) | ||
90 | * or: | ||
91 | * v[0]*2^0 + v[1]*2^64 + v[2]*2^128 + ... + v[8]*2^512 (mod p) | ||
92 | * | ||
93 | * 128-bit values are called 'limbs'. Since the limbs are spaced only 64 bits | ||
94 | * apart, but are 128-bits wide, the most significant bits of each limb overlap | ||
95 | * with the least significant bits of the next. | ||
96 | * | ||
97 | * A field element with four limbs is an 'felem'. One with eight limbs is a | ||
98 | * 'longfelem' | ||
99 | * | ||
100 | * A field element with four, 64-bit values is called a 'smallfelem'. Small | ||
101 | * values are used as intermediate values before multiplication. | ||
102 | */ | ||
103 | |||
104 | #define NLIMBS 4 | ||
105 | |||
106 | typedef uint128_t limb; | ||
107 | typedef limb felem[NLIMBS]; | ||
108 | typedef limb longfelem[NLIMBS * 2]; | ||
109 | typedef u64 smallfelem[NLIMBS]; | ||
110 | |||
111 | /* This is the value of the prime as four 64-bit words, little-endian. */ | ||
112 | static const u64 kPrime[4] = {0xfffffffffffffffful, 0xffffffff, 0, 0xffffffff00000001ul}; | ||
113 | static const limb bottom32bits = 0xffffffff; | ||
114 | static const u64 bottom63bits = 0x7ffffffffffffffful; | ||
115 | |||
116 | /* bin32_to_felem takes a little-endian byte array and converts it into felem | ||
117 | * form. This assumes that the CPU is little-endian. */ | ||
118 | static void | ||
119 | bin32_to_felem(felem out, const u8 in[32]) | ||
120 | { | ||
121 | out[0] = *((u64 *) & in[0]); | ||
122 | out[1] = *((u64 *) & in[8]); | ||
123 | out[2] = *((u64 *) & in[16]); | ||
124 | out[3] = *((u64 *) & in[24]); | ||
125 | } | ||
126 | |||
127 | /* smallfelem_to_bin32 takes a smallfelem and serialises into a little endian, | ||
128 | * 32 byte array. This assumes that the CPU is little-endian. */ | ||
129 | static void | ||
130 | smallfelem_to_bin32(u8 out[32], const smallfelem in) | ||
131 | { | ||
132 | *((u64 *) & out[0]) = in[0]; | ||
133 | *((u64 *) & out[8]) = in[1]; | ||
134 | *((u64 *) & out[16]) = in[2]; | ||
135 | *((u64 *) & out[24]) = in[3]; | ||
136 | } | ||
137 | |||
138 | /* To preserve endianness when using BN_bn2bin and BN_bin2bn */ | ||
139 | static void | ||
140 | flip_endian(u8 * out, const u8 * in, unsigned len) | ||
141 | { | ||
142 | unsigned i; | ||
143 | for (i = 0; i < len; ++i) | ||
144 | out[i] = in[len - 1 - i]; | ||
145 | } | ||
146 | |||
147 | /* BN_to_felem converts an OpenSSL BIGNUM into an felem */ | ||
148 | static int | ||
149 | BN_to_felem(felem out, const BIGNUM * bn) | ||
150 | { | ||
151 | felem_bytearray b_in; | ||
152 | felem_bytearray b_out; | ||
153 | unsigned num_bytes; | ||
154 | |||
155 | /* BN_bn2bin eats leading zeroes */ | ||
156 | memset(b_out, 0, sizeof b_out); | ||
157 | num_bytes = BN_num_bytes(bn); | ||
158 | if (num_bytes > sizeof b_out) { | ||
159 | ECerr(EC_F_BN_TO_FELEM, EC_R_BIGNUM_OUT_OF_RANGE); | ||
160 | return 0; | ||
161 | } | ||
162 | if (BN_is_negative(bn)) { | ||
163 | ECerr(EC_F_BN_TO_FELEM, EC_R_BIGNUM_OUT_OF_RANGE); | ||
164 | return 0; | ||
165 | } | ||
166 | num_bytes = BN_bn2bin(bn, b_in); | ||
167 | flip_endian(b_out, b_in, num_bytes); | ||
168 | bin32_to_felem(out, b_out); | ||
169 | return 1; | ||
170 | } | ||
171 | |||
172 | /* felem_to_BN converts an felem into an OpenSSL BIGNUM */ | ||
173 | static BIGNUM * | ||
174 | smallfelem_to_BN(BIGNUM * out, const smallfelem in) | ||
175 | { | ||
176 | felem_bytearray b_in, b_out; | ||
177 | smallfelem_to_bin32(b_in, in); | ||
178 | flip_endian(b_out, b_in, sizeof b_out); | ||
179 | return BN_bin2bn(b_out, sizeof b_out, out); | ||
180 | } | ||
181 | |||
182 | |||
183 | /* Field operations | ||
184 | * ---------------- */ | ||
185 | |||
186 | static void | ||
187 | smallfelem_one(smallfelem out) | ||
188 | { | ||
189 | out[0] = 1; | ||
190 | out[1] = 0; | ||
191 | out[2] = 0; | ||
192 | out[3] = 0; | ||
193 | } | ||
194 | |||
195 | static void | ||
196 | smallfelem_assign(smallfelem out, const smallfelem in) | ||
197 | { | ||
198 | out[0] = in[0]; | ||
199 | out[1] = in[1]; | ||
200 | out[2] = in[2]; | ||
201 | out[3] = in[3]; | ||
202 | } | ||
203 | |||
204 | static void | ||
205 | felem_assign(felem out, const felem in) | ||
206 | { | ||
207 | out[0] = in[0]; | ||
208 | out[1] = in[1]; | ||
209 | out[2] = in[2]; | ||
210 | out[3] = in[3]; | ||
211 | } | ||
212 | |||
213 | /* felem_sum sets out = out + in. */ | ||
214 | static void | ||
215 | felem_sum(felem out, const felem in) | ||
216 | { | ||
217 | out[0] += in[0]; | ||
218 | out[1] += in[1]; | ||
219 | out[2] += in[2]; | ||
220 | out[3] += in[3]; | ||
221 | } | ||
222 | |||
223 | /* felem_small_sum sets out = out + in. */ | ||
224 | static void | ||
225 | felem_small_sum(felem out, const smallfelem in) | ||
226 | { | ||
227 | out[0] += in[0]; | ||
228 | out[1] += in[1]; | ||
229 | out[2] += in[2]; | ||
230 | out[3] += in[3]; | ||
231 | } | ||
232 | |||
233 | /* felem_scalar sets out = out * scalar */ | ||
234 | static void | ||
235 | felem_scalar(felem out, const u64 scalar) | ||
236 | { | ||
237 | out[0] *= scalar; | ||
238 | out[1] *= scalar; | ||
239 | out[2] *= scalar; | ||
240 | out[3] *= scalar; | ||
241 | } | ||
242 | |||
243 | /* longfelem_scalar sets out = out * scalar */ | ||
244 | static void | ||
245 | longfelem_scalar(longfelem out, const u64 scalar) | ||
246 | { | ||
247 | out[0] *= scalar; | ||
248 | out[1] *= scalar; | ||
249 | out[2] *= scalar; | ||
250 | out[3] *= scalar; | ||
251 | out[4] *= scalar; | ||
252 | out[5] *= scalar; | ||
253 | out[6] *= scalar; | ||
254 | out[7] *= scalar; | ||
255 | } | ||
256 | |||
257 | #define two105m41m9 (((limb)1) << 105) - (((limb)1) << 41) - (((limb)1) << 9) | ||
258 | #define two105 (((limb)1) << 105) | ||
259 | #define two105m41p9 (((limb)1) << 105) - (((limb)1) << 41) + (((limb)1) << 9) | ||
260 | |||
261 | /* zero105 is 0 mod p */ | ||
262 | static const felem zero105 = {two105m41m9, two105, two105m41p9, two105m41p9}; | ||
263 | |||
264 | /* smallfelem_neg sets |out| to |-small| | ||
265 | * On exit: | ||
266 | * out[i] < out[i] + 2^105 | ||
267 | */ | ||
268 | static void | ||
269 | smallfelem_neg(felem out, const smallfelem small) | ||
270 | { | ||
271 | /* In order to prevent underflow, we subtract from 0 mod p. */ | ||
272 | out[0] = zero105[0] - small[0]; | ||
273 | out[1] = zero105[1] - small[1]; | ||
274 | out[2] = zero105[2] - small[2]; | ||
275 | out[3] = zero105[3] - small[3]; | ||
276 | } | ||
277 | |||
278 | /* felem_diff subtracts |in| from |out| | ||
279 | * On entry: | ||
280 | * in[i] < 2^104 | ||
281 | * On exit: | ||
282 | * out[i] < out[i] + 2^105 | ||
283 | */ | ||
284 | static void | ||
285 | felem_diff(felem out, const felem in) | ||
286 | { | ||
287 | /* In order to prevent underflow, we add 0 mod p before subtracting. */ | ||
288 | out[0] += zero105[0]; | ||
289 | out[1] += zero105[1]; | ||
290 | out[2] += zero105[2]; | ||
291 | out[3] += zero105[3]; | ||
292 | |||
293 | out[0] -= in[0]; | ||
294 | out[1] -= in[1]; | ||
295 | out[2] -= in[2]; | ||
296 | out[3] -= in[3]; | ||
297 | } | ||
298 | |||
299 | #define two107m43m11 (((limb)1) << 107) - (((limb)1) << 43) - (((limb)1) << 11) | ||
300 | #define two107 (((limb)1) << 107) | ||
301 | #define two107m43p11 (((limb)1) << 107) - (((limb)1) << 43) + (((limb)1) << 11) | ||
302 | |||
303 | /* zero107 is 0 mod p */ | ||
304 | static const felem zero107 = {two107m43m11, two107, two107m43p11, two107m43p11}; | ||
305 | |||
306 | /* An alternative felem_diff for larger inputs |in| | ||
307 | * felem_diff_zero107 subtracts |in| from |out| | ||
308 | * On entry: | ||
309 | * in[i] < 2^106 | ||
310 | * On exit: | ||
311 | * out[i] < out[i] + 2^107 | ||
312 | */ | ||
313 | static void | ||
314 | felem_diff_zero107(felem out, const felem in) | ||
315 | { | ||
316 | /* In order to prevent underflow, we add 0 mod p before subtracting. */ | ||
317 | out[0] += zero107[0]; | ||
318 | out[1] += zero107[1]; | ||
319 | out[2] += zero107[2]; | ||
320 | out[3] += zero107[3]; | ||
321 | |||
322 | out[0] -= in[0]; | ||
323 | out[1] -= in[1]; | ||
324 | out[2] -= in[2]; | ||
325 | out[3] -= in[3]; | ||
326 | } | ||
327 | |||
328 | /* longfelem_diff subtracts |in| from |out| | ||
329 | * On entry: | ||
330 | * in[i] < 7*2^67 | ||
331 | * On exit: | ||
332 | * out[i] < out[i] + 2^70 + 2^40 | ||
333 | */ | ||
334 | static void | ||
335 | longfelem_diff(longfelem out, const longfelem in) | ||
336 | { | ||
337 | static const limb two70m8p6 = (((limb) 1) << 70) - (((limb) 1) << 8) + (((limb) 1) << 6); | ||
338 | static const limb two70p40 = (((limb) 1) << 70) + (((limb) 1) << 40); | ||
339 | static const limb two70 = (((limb) 1) << 70); | ||
340 | static const limb two70m40m38p6 = (((limb) 1) << 70) - (((limb) 1) << 40) - (((limb) 1) << 38) + (((limb) 1) << 6); | ||
341 | static const limb two70m6 = (((limb) 1) << 70) - (((limb) 1) << 6); | ||
342 | |||
343 | /* add 0 mod p to avoid underflow */ | ||
344 | out[0] += two70m8p6; | ||
345 | out[1] += two70p40; | ||
346 | out[2] += two70; | ||
347 | out[3] += two70m40m38p6; | ||
348 | out[4] += two70m6; | ||
349 | out[5] += two70m6; | ||
350 | out[6] += two70m6; | ||
351 | out[7] += two70m6; | ||
352 | |||
353 | /* in[i] < 7*2^67 < 2^70 - 2^40 - 2^38 + 2^6 */ | ||
354 | out[0] -= in[0]; | ||
355 | out[1] -= in[1]; | ||
356 | out[2] -= in[2]; | ||
357 | out[3] -= in[3]; | ||
358 | out[4] -= in[4]; | ||
359 | out[5] -= in[5]; | ||
360 | out[6] -= in[6]; | ||
361 | out[7] -= in[7]; | ||
362 | } | ||
363 | |||
364 | #define two64m0 (((limb)1) << 64) - 1 | ||
365 | #define two110p32m0 (((limb)1) << 110) + (((limb)1) << 32) - 1 | ||
366 | #define two64m46 (((limb)1) << 64) - (((limb)1) << 46) | ||
367 | #define two64m32 (((limb)1) << 64) - (((limb)1) << 32) | ||
368 | |||
369 | /* zero110 is 0 mod p */ | ||
370 | static const felem zero110 = {two64m0, two110p32m0, two64m46, two64m32}; | ||
371 | |||
372 | /* felem_shrink converts an felem into a smallfelem. The result isn't quite | ||
373 | * minimal as the value may be greater than p. | ||
374 | * | ||
375 | * On entry: | ||
376 | * in[i] < 2^109 | ||
377 | * On exit: | ||
378 | * out[i] < 2^64 | ||
379 | */ | ||
380 | static void | ||
381 | felem_shrink(smallfelem out, const felem in) | ||
382 | { | ||
383 | felem tmp; | ||
384 | u64 a, b, mask; | ||
385 | s64 high, low; | ||
386 | static const u64 kPrime3Test = 0x7fffffff00000001ul; /* 2^63 - 2^32 + 1 */ | ||
387 | |||
388 | /* Carry 2->3 */ | ||
389 | tmp[3] = zero110[3] + in[3] + ((u64) (in[2] >> 64)); | ||
390 | /* tmp[3] < 2^110 */ | ||
391 | |||
392 | tmp[2] = zero110[2] + (u64) in[2]; | ||
393 | tmp[0] = zero110[0] + in[0]; | ||
394 | tmp[1] = zero110[1] + in[1]; | ||
395 | /* tmp[0] < 2**110, tmp[1] < 2^111, tmp[2] < 2**65 */ | ||
396 | |||
397 | /* | ||
398 | * We perform two partial reductions where we eliminate the high-word | ||
399 | * of tmp[3]. We don't update the other words till the end. | ||
400 | */ | ||
401 | a = tmp[3] >> 64; /* a < 2^46 */ | ||
402 | tmp[3] = (u64) tmp[3]; | ||
403 | tmp[3] -= a; | ||
404 | tmp[3] += ((limb) a) << 32; | ||
405 | /* tmp[3] < 2^79 */ | ||
406 | |||
407 | b = a; | ||
408 | a = tmp[3] >> 64; /* a < 2^15 */ | ||
409 | b += a; /* b < 2^46 + 2^15 < 2^47 */ | ||
410 | tmp[3] = (u64) tmp[3]; | ||
411 | tmp[3] -= a; | ||
412 | tmp[3] += ((limb) a) << 32; | ||
413 | /* tmp[3] < 2^64 + 2^47 */ | ||
414 | |||
415 | /* | ||
416 | * This adjusts the other two words to complete the two partial | ||
417 | * reductions. | ||
418 | */ | ||
419 | tmp[0] += b; | ||
420 | tmp[1] -= (((limb) b) << 32); | ||
421 | |||
422 | /* | ||
423 | * In order to make space in tmp[3] for the carry from 2 -> 3, we | ||
424 | * conditionally subtract kPrime if tmp[3] is large enough. | ||
425 | */ | ||
426 | high = tmp[3] >> 64; | ||
427 | /* As tmp[3] < 2^65, high is either 1 or 0 */ | ||
428 | high <<= 63; | ||
429 | high >>= 63; | ||
430 | /* | ||
431 | * high is: all ones if the high word of tmp[3] is 1 all zeros if | ||
432 | * the high word of tmp[3] if 0 | ||
433 | */ | ||
434 | low = tmp[3]; | ||
435 | mask = low >> 63; | ||
436 | /* | ||
437 | * mask is: all ones if the MSB of low is 1 all zeros if the MSB | ||
438 | * of low if 0 | ||
439 | */ | ||
440 | low &= bottom63bits; | ||
441 | low -= kPrime3Test; | ||
442 | /* if low was greater than kPrime3Test then the MSB is zero */ | ||
443 | low = ~low; | ||
444 | low >>= 63; | ||
445 | /* | ||
446 | * low is: all ones if low was > kPrime3Test all zeros if low was | ||
447 | * <= kPrime3Test | ||
448 | */ | ||
449 | mask = (mask & low) | high; | ||
450 | tmp[0] -= mask & kPrime[0]; | ||
451 | tmp[1] -= mask & kPrime[1]; | ||
452 | /* kPrime[2] is zero, so omitted */ | ||
453 | tmp[3] -= mask & kPrime[3]; | ||
454 | /* tmp[3] < 2**64 - 2**32 + 1 */ | ||
455 | |||
456 | tmp[1] += ((u64) (tmp[0] >> 64)); | ||
457 | tmp[0] = (u64) tmp[0]; | ||
458 | tmp[2] += ((u64) (tmp[1] >> 64)); | ||
459 | tmp[1] = (u64) tmp[1]; | ||
460 | tmp[3] += ((u64) (tmp[2] >> 64)); | ||
461 | tmp[2] = (u64) tmp[2]; | ||
462 | /* tmp[i] < 2^64 */ | ||
463 | |||
464 | out[0] = tmp[0]; | ||
465 | out[1] = tmp[1]; | ||
466 | out[2] = tmp[2]; | ||
467 | out[3] = tmp[3]; | ||
468 | } | ||
469 | |||
470 | /* smallfelem_expand converts a smallfelem to an felem */ | ||
471 | static void | ||
472 | smallfelem_expand(felem out, const smallfelem in) | ||
473 | { | ||
474 | out[0] = in[0]; | ||
475 | out[1] = in[1]; | ||
476 | out[2] = in[2]; | ||
477 | out[3] = in[3]; | ||
478 | } | ||
479 | |||
480 | /* smallfelem_square sets |out| = |small|^2 | ||
481 | * On entry: | ||
482 | * small[i] < 2^64 | ||
483 | * On exit: | ||
484 | * out[i] < 7 * 2^64 < 2^67 | ||
485 | */ | ||
486 | static void | ||
487 | smallfelem_square(longfelem out, const smallfelem small) | ||
488 | { | ||
489 | limb a; | ||
490 | u64 high, low; | ||
491 | |||
492 | a = ((uint128_t) small[0]) * small[0]; | ||
493 | low = a; | ||
494 | high = a >> 64; | ||
495 | out[0] = low; | ||
496 | out[1] = high; | ||
497 | |||
498 | a = ((uint128_t) small[0]) * small[1]; | ||
499 | low = a; | ||
500 | high = a >> 64; | ||
501 | out[1] += low; | ||
502 | out[1] += low; | ||
503 | out[2] = high; | ||
504 | |||
505 | a = ((uint128_t) small[0]) * small[2]; | ||
506 | low = a; | ||
507 | high = a >> 64; | ||
508 | out[2] += low; | ||
509 | out[2] *= 2; | ||
510 | out[3] = high; | ||
511 | |||
512 | a = ((uint128_t) small[0]) * small[3]; | ||
513 | low = a; | ||
514 | high = a >> 64; | ||
515 | out[3] += low; | ||
516 | out[4] = high; | ||
517 | |||
518 | a = ((uint128_t) small[1]) * small[2]; | ||
519 | low = a; | ||
520 | high = a >> 64; | ||
521 | out[3] += low; | ||
522 | out[3] *= 2; | ||
523 | out[4] += high; | ||
524 | |||
525 | a = ((uint128_t) small[1]) * small[1]; | ||
526 | low = a; | ||
527 | high = a >> 64; | ||
528 | out[2] += low; | ||
529 | out[3] += high; | ||
530 | |||
531 | a = ((uint128_t) small[1]) * small[3]; | ||
532 | low = a; | ||
533 | high = a >> 64; | ||
534 | out[4] += low; | ||
535 | out[4] *= 2; | ||
536 | out[5] = high; | ||
537 | |||
538 | a = ((uint128_t) small[2]) * small[3]; | ||
539 | low = a; | ||
540 | high = a >> 64; | ||
541 | out[5] += low; | ||
542 | out[5] *= 2; | ||
543 | out[6] = high; | ||
544 | out[6] += high; | ||
545 | |||
546 | a = ((uint128_t) small[2]) * small[2]; | ||
547 | low = a; | ||
548 | high = a >> 64; | ||
549 | out[4] += low; | ||
550 | out[5] += high; | ||
551 | |||
552 | a = ((uint128_t) small[3]) * small[3]; | ||
553 | low = a; | ||
554 | high = a >> 64; | ||
555 | out[6] += low; | ||
556 | out[7] = high; | ||
557 | } | ||
558 | |||
559 | /* felem_square sets |out| = |in|^2 | ||
560 | * On entry: | ||
561 | * in[i] < 2^109 | ||
562 | * On exit: | ||
563 | * out[i] < 7 * 2^64 < 2^67 | ||
564 | */ | ||
565 | static void | ||
566 | felem_square(longfelem out, const felem in) | ||
567 | { | ||
568 | u64 small[4]; | ||
569 | felem_shrink(small, in); | ||
570 | smallfelem_square(out, small); | ||
571 | } | ||
572 | |||
573 | /* smallfelem_mul sets |out| = |small1| * |small2| | ||
574 | * On entry: | ||
575 | * small1[i] < 2^64 | ||
576 | * small2[i] < 2^64 | ||
577 | * On exit: | ||
578 | * out[i] < 7 * 2^64 < 2^67 | ||
579 | */ | ||
580 | static void | ||
581 | smallfelem_mul(longfelem out, const smallfelem small1, const smallfelem small2) | ||
582 | { | ||
583 | limb a; | ||
584 | u64 high, low; | ||
585 | |||
586 | a = ((uint128_t) small1[0]) * small2[0]; | ||
587 | low = a; | ||
588 | high = a >> 64; | ||
589 | out[0] = low; | ||
590 | out[1] = high; | ||
591 | |||
592 | |||
593 | a = ((uint128_t) small1[0]) * small2[1]; | ||
594 | low = a; | ||
595 | high = a >> 64; | ||
596 | out[1] += low; | ||
597 | out[2] = high; | ||
598 | |||
599 | a = ((uint128_t) small1[1]) * small2[0]; | ||
600 | low = a; | ||
601 | high = a >> 64; | ||
602 | out[1] += low; | ||
603 | out[2] += high; | ||
604 | |||
605 | |||
606 | a = ((uint128_t) small1[0]) * small2[2]; | ||
607 | low = a; | ||
608 | high = a >> 64; | ||
609 | out[2] += low; | ||
610 | out[3] = high; | ||
611 | |||
612 | a = ((uint128_t) small1[1]) * small2[1]; | ||
613 | low = a; | ||
614 | high = a >> 64; | ||
615 | out[2] += low; | ||
616 | out[3] += high; | ||
617 | |||
618 | a = ((uint128_t) small1[2]) * small2[0]; | ||
619 | low = a; | ||
620 | high = a >> 64; | ||
621 | out[2] += low; | ||
622 | out[3] += high; | ||
623 | |||
624 | |||
625 | a = ((uint128_t) small1[0]) * small2[3]; | ||
626 | low = a; | ||
627 | high = a >> 64; | ||
628 | out[3] += low; | ||
629 | out[4] = high; | ||
630 | |||
631 | a = ((uint128_t) small1[1]) * small2[2]; | ||
632 | low = a; | ||
633 | high = a >> 64; | ||
634 | out[3] += low; | ||
635 | out[4] += high; | ||
636 | |||
637 | a = ((uint128_t) small1[2]) * small2[1]; | ||
638 | low = a; | ||
639 | high = a >> 64; | ||
640 | out[3] += low; | ||
641 | out[4] += high; | ||
642 | |||
643 | a = ((uint128_t) small1[3]) * small2[0]; | ||
644 | low = a; | ||
645 | high = a >> 64; | ||
646 | out[3] += low; | ||
647 | out[4] += high; | ||
648 | |||
649 | |||
650 | a = ((uint128_t) small1[1]) * small2[3]; | ||
651 | low = a; | ||
652 | high = a >> 64; | ||
653 | out[4] += low; | ||
654 | out[5] = high; | ||
655 | |||
656 | a = ((uint128_t) small1[2]) * small2[2]; | ||
657 | low = a; | ||
658 | high = a >> 64; | ||
659 | out[4] += low; | ||
660 | out[5] += high; | ||
661 | |||
662 | a = ((uint128_t) small1[3]) * small2[1]; | ||
663 | low = a; | ||
664 | high = a >> 64; | ||
665 | out[4] += low; | ||
666 | out[5] += high; | ||
667 | |||
668 | |||
669 | a = ((uint128_t) small1[2]) * small2[3]; | ||
670 | low = a; | ||
671 | high = a >> 64; | ||
672 | out[5] += low; | ||
673 | out[6] = high; | ||
674 | |||
675 | a = ((uint128_t) small1[3]) * small2[2]; | ||
676 | low = a; | ||
677 | high = a >> 64; | ||
678 | out[5] += low; | ||
679 | out[6] += high; | ||
680 | |||
681 | |||
682 | a = ((uint128_t) small1[3]) * small2[3]; | ||
683 | low = a; | ||
684 | high = a >> 64; | ||
685 | out[6] += low; | ||
686 | out[7] = high; | ||
687 | } | ||
688 | |||
689 | /* felem_mul sets |out| = |in1| * |in2| | ||
690 | * On entry: | ||
691 | * in1[i] < 2^109 | ||
692 | * in2[i] < 2^109 | ||
693 | * On exit: | ||
694 | * out[i] < 7 * 2^64 < 2^67 | ||
695 | */ | ||
696 | static void | ||
697 | felem_mul(longfelem out, const felem in1, const felem in2) | ||
698 | { | ||
699 | smallfelem small1, small2; | ||
700 | felem_shrink(small1, in1); | ||
701 | felem_shrink(small2, in2); | ||
702 | smallfelem_mul(out, small1, small2); | ||
703 | } | ||
704 | |||
705 | /* felem_small_mul sets |out| = |small1| * |in2| | ||
706 | * On entry: | ||
707 | * small1[i] < 2^64 | ||
708 | * in2[i] < 2^109 | ||
709 | * On exit: | ||
710 | * out[i] < 7 * 2^64 < 2^67 | ||
711 | */ | ||
712 | static void | ||
713 | felem_small_mul(longfelem out, const smallfelem small1, const felem in2) | ||
714 | { | ||
715 | smallfelem small2; | ||
716 | felem_shrink(small2, in2); | ||
717 | smallfelem_mul(out, small1, small2); | ||
718 | } | ||
719 | |||
720 | #define two100m36m4 (((limb)1) << 100) - (((limb)1) << 36) - (((limb)1) << 4) | ||
721 | #define two100 (((limb)1) << 100) | ||
722 | #define two100m36p4 (((limb)1) << 100) - (((limb)1) << 36) + (((limb)1) << 4) | ||
723 | /* zero100 is 0 mod p */ | ||
724 | static const felem zero100 = {two100m36m4, two100, two100m36p4, two100m36p4}; | ||
725 | |||
726 | /* Internal function for the different flavours of felem_reduce. | ||
727 | * felem_reduce_ reduces the higher coefficients in[4]-in[7]. | ||
728 | * On entry: | ||
729 | * out[0] >= in[6] + 2^32*in[6] + in[7] + 2^32*in[7] | ||
730 | * out[1] >= in[7] + 2^32*in[4] | ||
731 | * out[2] >= in[5] + 2^32*in[5] | ||
732 | * out[3] >= in[4] + 2^32*in[5] + 2^32*in[6] | ||
733 | * On exit: | ||
734 | * out[0] <= out[0] + in[4] + 2^32*in[5] | ||
735 | * out[1] <= out[1] + in[5] + 2^33*in[6] | ||
736 | * out[2] <= out[2] + in[7] + 2*in[6] + 2^33*in[7] | ||
737 | * out[3] <= out[3] + 2^32*in[4] + 3*in[7] | ||
738 | */ | ||
739 | static void | ||
740 | felem_reduce_(felem out, const longfelem in) | ||
741 | { | ||
742 | int128_t c; | ||
743 | /* combine common terms from below */ | ||
744 | c = in[4] + (in[5] << 32); | ||
745 | out[0] += c; | ||
746 | out[3] -= c; | ||
747 | |||
748 | c = in[5] - in[7]; | ||
749 | out[1] += c; | ||
750 | out[2] -= c; | ||
751 | |||
752 | /* the remaining terms */ | ||
753 | /* 256: [(0,1),(96,-1),(192,-1),(224,1)] */ | ||
754 | out[1] -= (in[4] << 32); | ||
755 | out[3] += (in[4] << 32); | ||
756 | |||
757 | /* 320: [(32,1),(64,1),(128,-1),(160,-1),(224,-1)] */ | ||
758 | out[2] -= (in[5] << 32); | ||
759 | |||
760 | /* 384: [(0,-1),(32,-1),(96,2),(128,2),(224,-1)] */ | ||
761 | out[0] -= in[6]; | ||
762 | out[0] -= (in[6] << 32); | ||
763 | out[1] += (in[6] << 33); | ||
764 | out[2] += (in[6] * 2); | ||
765 | out[3] -= (in[6] << 32); | ||
766 | |||
767 | /* 448: [(0,-1),(32,-1),(64,-1),(128,1),(160,2),(192,3)] */ | ||
768 | out[0] -= in[7]; | ||
769 | out[0] -= (in[7] << 32); | ||
770 | out[2] += (in[7] << 33); | ||
771 | out[3] += (in[7] * 3); | ||
772 | } | ||
773 | |||
774 | /* felem_reduce converts a longfelem into an felem. | ||
775 | * To be called directly after felem_square or felem_mul. | ||
776 | * On entry: | ||
777 | * in[0] < 2^64, in[1] < 3*2^64, in[2] < 5*2^64, in[3] < 7*2^64 | ||
778 | * in[4] < 7*2^64, in[5] < 5*2^64, in[6] < 3*2^64, in[7] < 2*64 | ||
779 | * On exit: | ||
780 | * out[i] < 2^101 | ||
781 | */ | ||
782 | static void | ||
783 | felem_reduce(felem out, const longfelem in) | ||
784 | { | ||
785 | out[0] = zero100[0] + in[0]; | ||
786 | out[1] = zero100[1] + in[1]; | ||
787 | out[2] = zero100[2] + in[2]; | ||
788 | out[3] = zero100[3] + in[3]; | ||
789 | |||
790 | felem_reduce_(out, in); | ||
791 | |||
792 | /* | ||
793 | * out[0] > 2^100 - 2^36 - 2^4 - 3*2^64 - 3*2^96 - 2^64 - 2^96 > 0 | ||
794 | * out[1] > 2^100 - 2^64 - 7*2^96 > 0 out[2] > 2^100 - 2^36 + 2^4 - | ||
795 | * 5*2^64 - 5*2^96 > 0 out[3] > 2^100 - 2^36 + 2^4 - 7*2^64 - 5*2^96 | ||
796 | * - 3*2^96 > 0 | ||
797 | * | ||
798 | * out[0] < 2^100 + 2^64 + 7*2^64 + 5*2^96 < 2^101 out[1] < 2^100 + | ||
799 | * 3*2^64 + 5*2^64 + 3*2^97 < 2^101 out[2] < 2^100 + 5*2^64 + 2^64 + | ||
800 | * 3*2^65 + 2^97 < 2^101 out[3] < 2^100 + 7*2^64 + 7*2^96 + 3*2^64 < | ||
801 | * 2^101 | ||
802 | */ | ||
803 | } | ||
804 | |||
805 | /* felem_reduce_zero105 converts a larger longfelem into an felem. | ||
806 | * On entry: | ||
807 | * in[0] < 2^71 | ||
808 | * On exit: | ||
809 | * out[i] < 2^106 | ||
810 | */ | ||
811 | static void | ||
812 | felem_reduce_zero105(felem out, const longfelem in) | ||
813 | { | ||
814 | out[0] = zero105[0] + in[0]; | ||
815 | out[1] = zero105[1] + in[1]; | ||
816 | out[2] = zero105[2] + in[2]; | ||
817 | out[3] = zero105[3] + in[3]; | ||
818 | |||
819 | felem_reduce_(out, in); | ||
820 | |||
821 | /* | ||
822 | * out[0] > 2^105 - 2^41 - 2^9 - 2^71 - 2^103 - 2^71 - 2^103 > 0 | ||
823 | * out[1] > 2^105 - 2^71 - 2^103 > 0 out[2] > 2^105 - 2^41 + 2^9 - | ||
824 | * 2^71 - 2^103 > 0 out[3] > 2^105 - 2^41 + 2^9 - 2^71 - 2^103 - | ||
825 | * 2^103 > 0 | ||
826 | * | ||
827 | * out[0] < 2^105 + 2^71 + 2^71 + 2^103 < 2^106 out[1] < 2^105 + 2^71 + | ||
828 | * 2^71 + 2^103 < 2^106 out[2] < 2^105 + 2^71 + 2^71 + 2^71 + 2^103 < | ||
829 | * 2^106 out[3] < 2^105 + 2^71 + 2^103 + 2^71 < 2^106 | ||
830 | */ | ||
831 | } | ||
832 | |||
833 | /* subtract_u64 sets *result = *result - v and *carry to one if the subtraction | ||
834 | * underflowed. */ | ||
835 | static void | ||
836 | subtract_u64(u64 * result, u64 * carry, u64 v) | ||
837 | { | ||
838 | uint128_t r = *result; | ||
839 | r -= v; | ||
840 | *carry = (r >> 64) & 1; | ||
841 | *result = (u64) r; | ||
842 | } | ||
843 | |||
844 | /* felem_contract converts |in| to its unique, minimal representation. | ||
845 | * On entry: | ||
846 | * in[i] < 2^109 | ||
847 | */ | ||
848 | static void | ||
849 | felem_contract(smallfelem out, const felem in) | ||
850 | { | ||
851 | unsigned i; | ||
852 | u64 all_equal_so_far = 0, result = 0, carry; | ||
853 | |||
854 | felem_shrink(out, in); | ||
855 | /* small is minimal except that the value might be > p */ | ||
856 | |||
857 | all_equal_so_far--; | ||
858 | /* | ||
859 | * We are doing a constant time test if out >= kPrime. We need to | ||
860 | * compare each u64, from most-significant to least significant. For | ||
861 | * each one, if all words so far have been equal (m is all ones) then | ||
862 | * a non-equal result is the answer. Otherwise we continue. | ||
863 | */ | ||
864 | for (i = 3; i < 4; i--) { | ||
865 | u64 equal; | ||
866 | uint128_t a = ((uint128_t) kPrime[i]) - out[i]; | ||
867 | /* | ||
868 | * if out[i] > kPrime[i] then a will underflow and the high | ||
869 | * 64-bits will all be set. | ||
870 | */ | ||
871 | result |= all_equal_so_far & ((u64) (a >> 64)); | ||
872 | |||
873 | /* | ||
874 | * if kPrime[i] == out[i] then |equal| will be all zeros and | ||
875 | * the decrement will make it all ones. | ||
876 | */ | ||
877 | equal = kPrime[i] ^ out[i]; | ||
878 | equal--; | ||
879 | equal &= equal << 32; | ||
880 | equal &= equal << 16; | ||
881 | equal &= equal << 8; | ||
882 | equal &= equal << 4; | ||
883 | equal &= equal << 2; | ||
884 | equal &= equal << 1; | ||
885 | equal = ((s64) equal) >> 63; | ||
886 | |||
887 | all_equal_so_far &= equal; | ||
888 | } | ||
889 | |||
890 | /* | ||
891 | * if all_equal_so_far is still all ones then the two values are | ||
892 | * equal and so out >= kPrime is true. | ||
893 | */ | ||
894 | result |= all_equal_so_far; | ||
895 | |||
896 | /* if out >= kPrime then we subtract kPrime. */ | ||
897 | subtract_u64(&out[0], &carry, result & kPrime[0]); | ||
898 | subtract_u64(&out[1], &carry, carry); | ||
899 | subtract_u64(&out[2], &carry, carry); | ||
900 | subtract_u64(&out[3], &carry, carry); | ||
901 | |||
902 | subtract_u64(&out[1], &carry, result & kPrime[1]); | ||
903 | subtract_u64(&out[2], &carry, carry); | ||
904 | subtract_u64(&out[3], &carry, carry); | ||
905 | |||
906 | subtract_u64(&out[2], &carry, result & kPrime[2]); | ||
907 | subtract_u64(&out[3], &carry, carry); | ||
908 | |||
909 | subtract_u64(&out[3], &carry, result & kPrime[3]); | ||
910 | } | ||
911 | |||
912 | static void | ||
913 | smallfelem_square_contract(smallfelem out, const smallfelem in) | ||
914 | { | ||
915 | longfelem longtmp; | ||
916 | felem tmp; | ||
917 | |||
918 | smallfelem_square(longtmp, in); | ||
919 | felem_reduce(tmp, longtmp); | ||
920 | felem_contract(out, tmp); | ||
921 | } | ||
922 | |||
923 | static void | ||
924 | smallfelem_mul_contract(smallfelem out, const smallfelem in1, const smallfelem in2) | ||
925 | { | ||
926 | longfelem longtmp; | ||
927 | felem tmp; | ||
928 | |||
929 | smallfelem_mul(longtmp, in1, in2); | ||
930 | felem_reduce(tmp, longtmp); | ||
931 | felem_contract(out, tmp); | ||
932 | } | ||
933 | |||
934 | /* felem_is_zero returns a limb with all bits set if |in| == 0 (mod p) and 0 | ||
935 | * otherwise. | ||
936 | * On entry: | ||
937 | * small[i] < 2^64 | ||
938 | */ | ||
939 | static limb | ||
940 | smallfelem_is_zero(const smallfelem small) | ||
941 | { | ||
942 | limb result; | ||
943 | u64 is_p; | ||
944 | |||
945 | u64 is_zero = small[0] | small[1] | small[2] | small[3]; | ||
946 | is_zero--; | ||
947 | is_zero &= is_zero << 32; | ||
948 | is_zero &= is_zero << 16; | ||
949 | is_zero &= is_zero << 8; | ||
950 | is_zero &= is_zero << 4; | ||
951 | is_zero &= is_zero << 2; | ||
952 | is_zero &= is_zero << 1; | ||
953 | is_zero = ((s64) is_zero) >> 63; | ||
954 | |||
955 | is_p = (small[0] ^ kPrime[0]) | | ||
956 | (small[1] ^ kPrime[1]) | | ||
957 | (small[2] ^ kPrime[2]) | | ||
958 | (small[3] ^ kPrime[3]); | ||
959 | is_p--; | ||
960 | is_p &= is_p << 32; | ||
961 | is_p &= is_p << 16; | ||
962 | is_p &= is_p << 8; | ||
963 | is_p &= is_p << 4; | ||
964 | is_p &= is_p << 2; | ||
965 | is_p &= is_p << 1; | ||
966 | is_p = ((s64) is_p) >> 63; | ||
967 | |||
968 | is_zero |= is_p; | ||
969 | |||
970 | result = is_zero; | ||
971 | result |= ((limb) is_zero) << 64; | ||
972 | return result; | ||
973 | } | ||
974 | |||
975 | static int | ||
976 | smallfelem_is_zero_int(const smallfelem small) | ||
977 | { | ||
978 | return (int) (smallfelem_is_zero(small) & ((limb) 1)); | ||
979 | } | ||
980 | |||
981 | /* felem_inv calculates |out| = |in|^{-1} | ||
982 | * | ||
983 | * Based on Fermat's Little Theorem: | ||
984 | * a^p = a (mod p) | ||
985 | * a^{p-1} = 1 (mod p) | ||
986 | * a^{p-2} = a^{-1} (mod p) | ||
987 | */ | ||
988 | static void | ||
989 | felem_inv(felem out, const felem in) | ||
990 | { | ||
991 | felem ftmp, ftmp2; | ||
992 | /* each e_I will hold |in|^{2^I - 1} */ | ||
993 | felem e2, e4, e8, e16, e32, e64; | ||
994 | longfelem tmp; | ||
995 | unsigned i; | ||
996 | |||
997 | felem_square(tmp, in); | ||
998 | felem_reduce(ftmp, tmp);/* 2^1 */ | ||
999 | felem_mul(tmp, in, ftmp); | ||
1000 | felem_reduce(ftmp, tmp);/* 2^2 - 2^0 */ | ||
1001 | felem_assign(e2, ftmp); | ||
1002 | felem_square(tmp, ftmp); | ||
1003 | felem_reduce(ftmp, tmp);/* 2^3 - 2^1 */ | ||
1004 | felem_square(tmp, ftmp); | ||
1005 | felem_reduce(ftmp, tmp);/* 2^4 - 2^2 */ | ||
1006 | felem_mul(tmp, ftmp, e2); | ||
1007 | felem_reduce(ftmp, tmp);/* 2^4 - 2^0 */ | ||
1008 | felem_assign(e4, ftmp); | ||
1009 | felem_square(tmp, ftmp); | ||
1010 | felem_reduce(ftmp, tmp);/* 2^5 - 2^1 */ | ||
1011 | felem_square(tmp, ftmp); | ||
1012 | felem_reduce(ftmp, tmp);/* 2^6 - 2^2 */ | ||
1013 | felem_square(tmp, ftmp); | ||
1014 | felem_reduce(ftmp, tmp);/* 2^7 - 2^3 */ | ||
1015 | felem_square(tmp, ftmp); | ||
1016 | felem_reduce(ftmp, tmp);/* 2^8 - 2^4 */ | ||
1017 | felem_mul(tmp, ftmp, e4); | ||
1018 | felem_reduce(ftmp, tmp);/* 2^8 - 2^0 */ | ||
1019 | felem_assign(e8, ftmp); | ||
1020 | for (i = 0; i < 8; i++) { | ||
1021 | felem_square(tmp, ftmp); | ||
1022 | felem_reduce(ftmp, tmp); | ||
1023 | } /* 2^16 - 2^8 */ | ||
1024 | felem_mul(tmp, ftmp, e8); | ||
1025 | felem_reduce(ftmp, tmp);/* 2^16 - 2^0 */ | ||
1026 | felem_assign(e16, ftmp); | ||
1027 | for (i = 0; i < 16; i++) { | ||
1028 | felem_square(tmp, ftmp); | ||
1029 | felem_reduce(ftmp, tmp); | ||
1030 | } /* 2^32 - 2^16 */ | ||
1031 | felem_mul(tmp, ftmp, e16); | ||
1032 | felem_reduce(ftmp, tmp);/* 2^32 - 2^0 */ | ||
1033 | felem_assign(e32, ftmp); | ||
1034 | for (i = 0; i < 32; i++) { | ||
1035 | felem_square(tmp, ftmp); | ||
1036 | felem_reduce(ftmp, tmp); | ||
1037 | } /* 2^64 - 2^32 */ | ||
1038 | felem_assign(e64, ftmp); | ||
1039 | felem_mul(tmp, ftmp, in); | ||
1040 | felem_reduce(ftmp, tmp);/* 2^64 - 2^32 + 2^0 */ | ||
1041 | for (i = 0; i < 192; i++) { | ||
1042 | felem_square(tmp, ftmp); | ||
1043 | felem_reduce(ftmp, tmp); | ||
1044 | } /* 2^256 - 2^224 + 2^192 */ | ||
1045 | |||
1046 | felem_mul(tmp, e64, e32); | ||
1047 | felem_reduce(ftmp2, tmp); /* 2^64 - 2^0 */ | ||
1048 | for (i = 0; i < 16; i++) { | ||
1049 | felem_square(tmp, ftmp2); | ||
1050 | felem_reduce(ftmp2, tmp); | ||
1051 | } /* 2^80 - 2^16 */ | ||
1052 | felem_mul(tmp, ftmp2, e16); | ||
1053 | felem_reduce(ftmp2, tmp); /* 2^80 - 2^0 */ | ||
1054 | for (i = 0; i < 8; i++) { | ||
1055 | felem_square(tmp, ftmp2); | ||
1056 | felem_reduce(ftmp2, tmp); | ||
1057 | } /* 2^88 - 2^8 */ | ||
1058 | felem_mul(tmp, ftmp2, e8); | ||
1059 | felem_reduce(ftmp2, tmp); /* 2^88 - 2^0 */ | ||
1060 | for (i = 0; i < 4; i++) { | ||
1061 | felem_square(tmp, ftmp2); | ||
1062 | felem_reduce(ftmp2, tmp); | ||
1063 | } /* 2^92 - 2^4 */ | ||
1064 | felem_mul(tmp, ftmp2, e4); | ||
1065 | felem_reduce(ftmp2, tmp); /* 2^92 - 2^0 */ | ||
1066 | felem_square(tmp, ftmp2); | ||
1067 | felem_reduce(ftmp2, tmp); /* 2^93 - 2^1 */ | ||
1068 | felem_square(tmp, ftmp2); | ||
1069 | felem_reduce(ftmp2, tmp); /* 2^94 - 2^2 */ | ||
1070 | felem_mul(tmp, ftmp2, e2); | ||
1071 | felem_reduce(ftmp2, tmp); /* 2^94 - 2^0 */ | ||
1072 | felem_square(tmp, ftmp2); | ||
1073 | felem_reduce(ftmp2, tmp); /* 2^95 - 2^1 */ | ||
1074 | felem_square(tmp, ftmp2); | ||
1075 | felem_reduce(ftmp2, tmp); /* 2^96 - 2^2 */ | ||
1076 | felem_mul(tmp, ftmp2, in); | ||
1077 | felem_reduce(ftmp2, tmp); /* 2^96 - 3 */ | ||
1078 | |||
1079 | felem_mul(tmp, ftmp2, ftmp); | ||
1080 | felem_reduce(out, tmp); /* 2^256 - 2^224 + 2^192 + 2^96 - 3 */ | ||
1081 | } | ||
1082 | |||
1083 | static void | ||
1084 | smallfelem_inv_contract(smallfelem out, const smallfelem in) | ||
1085 | { | ||
1086 | felem tmp; | ||
1087 | |||
1088 | smallfelem_expand(tmp, in); | ||
1089 | felem_inv(tmp, tmp); | ||
1090 | felem_contract(out, tmp); | ||
1091 | } | ||
1092 | |||
1093 | /* Group operations | ||
1094 | * ---------------- | ||
1095 | * | ||
1096 | * Building on top of the field operations we have the operations on the | ||
1097 | * elliptic curve group itself. Points on the curve are represented in Jacobian | ||
1098 | * coordinates */ | ||
1099 | |||
1100 | /* point_double calculates 2*(x_in, y_in, z_in) | ||
1101 | * | ||
1102 | * The method is taken from: | ||
1103 | * http://hyperelliptic.org/EFD/g1p/auto-shortw-jacobian-3.html#doubling-dbl-2001-b | ||
1104 | * | ||
1105 | * Outputs can equal corresponding inputs, i.e., x_out == x_in is allowed. | ||
1106 | * while x_out == y_in is not (maybe this works, but it's not tested). */ | ||
1107 | static void | ||
1108 | point_double(felem x_out, felem y_out, felem z_out, | ||
1109 | const felem x_in, const felem y_in, const felem z_in) | ||
1110 | { | ||
1111 | longfelem tmp, tmp2; | ||
1112 | felem delta, gamma, beta, alpha, ftmp, ftmp2; | ||
1113 | smallfelem small1, small2; | ||
1114 | |||
1115 | felem_assign(ftmp, x_in); | ||
1116 | /* ftmp[i] < 2^106 */ | ||
1117 | felem_assign(ftmp2, x_in); | ||
1118 | /* ftmp2[i] < 2^106 */ | ||
1119 | |||
1120 | /* delta = z^2 */ | ||
1121 | felem_square(tmp, z_in); | ||
1122 | felem_reduce(delta, tmp); | ||
1123 | /* delta[i] < 2^101 */ | ||
1124 | |||
1125 | /* gamma = y^2 */ | ||
1126 | felem_square(tmp, y_in); | ||
1127 | felem_reduce(gamma, tmp); | ||
1128 | /* gamma[i] < 2^101 */ | ||
1129 | felem_shrink(small1, gamma); | ||
1130 | |||
1131 | /* beta = x*gamma */ | ||
1132 | felem_small_mul(tmp, small1, x_in); | ||
1133 | felem_reduce(beta, tmp); | ||
1134 | /* beta[i] < 2^101 */ | ||
1135 | |||
1136 | /* alpha = 3*(x-delta)*(x+delta) */ | ||
1137 | felem_diff(ftmp, delta); | ||
1138 | /* ftmp[i] < 2^105 + 2^106 < 2^107 */ | ||
1139 | felem_sum(ftmp2, delta); | ||
1140 | /* ftmp2[i] < 2^105 + 2^106 < 2^107 */ | ||
1141 | felem_scalar(ftmp2, 3); | ||
1142 | /* ftmp2[i] < 3 * 2^107 < 2^109 */ | ||
1143 | felem_mul(tmp, ftmp, ftmp2); | ||
1144 | felem_reduce(alpha, tmp); | ||
1145 | /* alpha[i] < 2^101 */ | ||
1146 | felem_shrink(small2, alpha); | ||
1147 | |||
1148 | /* x' = alpha^2 - 8*beta */ | ||
1149 | smallfelem_square(tmp, small2); | ||
1150 | felem_reduce(x_out, tmp); | ||
1151 | felem_assign(ftmp, beta); | ||
1152 | felem_scalar(ftmp, 8); | ||
1153 | /* ftmp[i] < 8 * 2^101 = 2^104 */ | ||
1154 | felem_diff(x_out, ftmp); | ||
1155 | /* x_out[i] < 2^105 + 2^101 < 2^106 */ | ||
1156 | |||
1157 | /* z' = (y + z)^2 - gamma - delta */ | ||
1158 | felem_sum(delta, gamma); | ||
1159 | /* delta[i] < 2^101 + 2^101 = 2^102 */ | ||
1160 | felem_assign(ftmp, y_in); | ||
1161 | felem_sum(ftmp, z_in); | ||
1162 | /* ftmp[i] < 2^106 + 2^106 = 2^107 */ | ||
1163 | felem_square(tmp, ftmp); | ||
1164 | felem_reduce(z_out, tmp); | ||
1165 | felem_diff(z_out, delta); | ||
1166 | /* z_out[i] < 2^105 + 2^101 < 2^106 */ | ||
1167 | |||
1168 | /* y' = alpha*(4*beta - x') - 8*gamma^2 */ | ||
1169 | felem_scalar(beta, 4); | ||
1170 | /* beta[i] < 4 * 2^101 = 2^103 */ | ||
1171 | felem_diff_zero107(beta, x_out); | ||
1172 | /* beta[i] < 2^107 + 2^103 < 2^108 */ | ||
1173 | felem_small_mul(tmp, small2, beta); | ||
1174 | /* tmp[i] < 7 * 2^64 < 2^67 */ | ||
1175 | smallfelem_square(tmp2, small1); | ||
1176 | /* tmp2[i] < 7 * 2^64 */ | ||
1177 | longfelem_scalar(tmp2, 8); | ||
1178 | /* tmp2[i] < 8 * 7 * 2^64 = 7 * 2^67 */ | ||
1179 | longfelem_diff(tmp, tmp2); | ||
1180 | /* tmp[i] < 2^67 + 2^70 + 2^40 < 2^71 */ | ||
1181 | felem_reduce_zero105(y_out, tmp); | ||
1182 | /* y_out[i] < 2^106 */ | ||
1183 | } | ||
1184 | |||
1185 | /* point_double_small is the same as point_double, except that it operates on | ||
1186 | * smallfelems */ | ||
1187 | static void | ||
1188 | point_double_small(smallfelem x_out, smallfelem y_out, smallfelem z_out, | ||
1189 | const smallfelem x_in, const smallfelem y_in, const smallfelem z_in) | ||
1190 | { | ||
1191 | felem felem_x_out, felem_y_out, felem_z_out; | ||
1192 | felem felem_x_in, felem_y_in, felem_z_in; | ||
1193 | |||
1194 | smallfelem_expand(felem_x_in, x_in); | ||
1195 | smallfelem_expand(felem_y_in, y_in); | ||
1196 | smallfelem_expand(felem_z_in, z_in); | ||
1197 | point_double(felem_x_out, felem_y_out, felem_z_out, | ||
1198 | felem_x_in, felem_y_in, felem_z_in); | ||
1199 | felem_shrink(x_out, felem_x_out); | ||
1200 | felem_shrink(y_out, felem_y_out); | ||
1201 | felem_shrink(z_out, felem_z_out); | ||
1202 | } | ||
1203 | |||
1204 | /* copy_conditional copies in to out iff mask is all ones. */ | ||
1205 | static void | ||
1206 | copy_conditional(felem out, const felem in, limb mask) | ||
1207 | { | ||
1208 | unsigned i; | ||
1209 | for (i = 0; i < NLIMBS; ++i) { | ||
1210 | const limb tmp = mask & (in[i] ^ out[i]); | ||
1211 | out[i] ^= tmp; | ||
1212 | } | ||
1213 | } | ||
1214 | |||
1215 | /* copy_small_conditional copies in to out iff mask is all ones. */ | ||
1216 | static void | ||
1217 | copy_small_conditional(felem out, const smallfelem in, limb mask) | ||
1218 | { | ||
1219 | unsigned i; | ||
1220 | const u64 mask64 = mask; | ||
1221 | for (i = 0; i < NLIMBS; ++i) { | ||
1222 | out[i] = ((limb) (in[i] & mask64)) | (out[i] & ~mask); | ||
1223 | } | ||
1224 | } | ||
1225 | |||
1226 | /* point_add calcuates (x1, y1, z1) + (x2, y2, z2) | ||
1227 | * | ||
1228 | * The method is taken from: | ||
1229 | * http://hyperelliptic.org/EFD/g1p/auto-shortw-jacobian-3.html#addition-add-2007-bl, | ||
1230 | * adapted for mixed addition (z2 = 1, or z2 = 0 for the point at infinity). | ||
1231 | * | ||
1232 | * This function includes a branch for checking whether the two input points | ||
1233 | * are equal, (while not equal to the point at infinity). This case never | ||
1234 | * happens during single point multiplication, so there is no timing leak for | ||
1235 | * ECDH or ECDSA signing. */ | ||
1236 | static void | ||
1237 | point_add(felem x3, felem y3, felem z3, | ||
1238 | const felem x1, const felem y1, const felem z1, | ||
1239 | const int mixed, const smallfelem x2, const smallfelem y2, const smallfelem z2) | ||
1240 | { | ||
1241 | felem ftmp, ftmp2, ftmp3, ftmp4, ftmp5, ftmp6, x_out, y_out, z_out; | ||
1242 | longfelem tmp, tmp2; | ||
1243 | smallfelem small1, small2, small3, small4, small5; | ||
1244 | limb x_equal, y_equal, z1_is_zero, z2_is_zero; | ||
1245 | |||
1246 | felem_shrink(small3, z1); | ||
1247 | |||
1248 | z1_is_zero = smallfelem_is_zero(small3); | ||
1249 | z2_is_zero = smallfelem_is_zero(z2); | ||
1250 | |||
1251 | /* ftmp = z1z1 = z1**2 */ | ||
1252 | smallfelem_square(tmp, small3); | ||
1253 | felem_reduce(ftmp, tmp); | ||
1254 | /* ftmp[i] < 2^101 */ | ||
1255 | felem_shrink(small1, ftmp); | ||
1256 | |||
1257 | if (!mixed) { | ||
1258 | /* ftmp2 = z2z2 = z2**2 */ | ||
1259 | smallfelem_square(tmp, z2); | ||
1260 | felem_reduce(ftmp2, tmp); | ||
1261 | /* ftmp2[i] < 2^101 */ | ||
1262 | felem_shrink(small2, ftmp2); | ||
1263 | |||
1264 | felem_shrink(small5, x1); | ||
1265 | |||
1266 | /* u1 = ftmp3 = x1*z2z2 */ | ||
1267 | smallfelem_mul(tmp, small5, small2); | ||
1268 | felem_reduce(ftmp3, tmp); | ||
1269 | /* ftmp3[i] < 2^101 */ | ||
1270 | |||
1271 | /* ftmp5 = z1 + z2 */ | ||
1272 | felem_assign(ftmp5, z1); | ||
1273 | felem_small_sum(ftmp5, z2); | ||
1274 | /* ftmp5[i] < 2^107 */ | ||
1275 | |||
1276 | /* ftmp5 = (z1 + z2)**2 - (z1z1 + z2z2) = 2z1z2 */ | ||
1277 | felem_square(tmp, ftmp5); | ||
1278 | felem_reduce(ftmp5, tmp); | ||
1279 | /* ftmp2 = z2z2 + z1z1 */ | ||
1280 | felem_sum(ftmp2, ftmp); | ||
1281 | /* ftmp2[i] < 2^101 + 2^101 = 2^102 */ | ||
1282 | felem_diff(ftmp5, ftmp2); | ||
1283 | /* ftmp5[i] < 2^105 + 2^101 < 2^106 */ | ||
1284 | |||
1285 | /* ftmp2 = z2 * z2z2 */ | ||
1286 | smallfelem_mul(tmp, small2, z2); | ||
1287 | felem_reduce(ftmp2, tmp); | ||
1288 | |||
1289 | /* s1 = ftmp2 = y1 * z2**3 */ | ||
1290 | felem_mul(tmp, y1, ftmp2); | ||
1291 | felem_reduce(ftmp6, tmp); | ||
1292 | /* ftmp6[i] < 2^101 */ | ||
1293 | } else { | ||
1294 | /* We'll assume z2 = 1 (special case z2 = 0 is handled later) */ | ||
1295 | |||
1296 | /* u1 = ftmp3 = x1*z2z2 */ | ||
1297 | felem_assign(ftmp3, x1); | ||
1298 | /* ftmp3[i] < 2^106 */ | ||
1299 | |||
1300 | /* ftmp5 = 2z1z2 */ | ||
1301 | felem_assign(ftmp5, z1); | ||
1302 | felem_scalar(ftmp5, 2); | ||
1303 | /* ftmp5[i] < 2*2^106 = 2^107 */ | ||
1304 | |||
1305 | /* s1 = ftmp2 = y1 * z2**3 */ | ||
1306 | felem_assign(ftmp6, y1); | ||
1307 | /* ftmp6[i] < 2^106 */ | ||
1308 | } | ||
1309 | |||
1310 | /* u2 = x2*z1z1 */ | ||
1311 | smallfelem_mul(tmp, x2, small1); | ||
1312 | felem_reduce(ftmp4, tmp); | ||
1313 | |||
1314 | /* h = ftmp4 = u2 - u1 */ | ||
1315 | felem_diff_zero107(ftmp4, ftmp3); | ||
1316 | /* ftmp4[i] < 2^107 + 2^101 < 2^108 */ | ||
1317 | felem_shrink(small4, ftmp4); | ||
1318 | |||
1319 | x_equal = smallfelem_is_zero(small4); | ||
1320 | |||
1321 | /* z_out = ftmp5 * h */ | ||
1322 | felem_small_mul(tmp, small4, ftmp5); | ||
1323 | felem_reduce(z_out, tmp); | ||
1324 | /* z_out[i] < 2^101 */ | ||
1325 | |||
1326 | /* ftmp = z1 * z1z1 */ | ||
1327 | smallfelem_mul(tmp, small1, small3); | ||
1328 | felem_reduce(ftmp, tmp); | ||
1329 | |||
1330 | /* s2 = tmp = y2 * z1**3 */ | ||
1331 | felem_small_mul(tmp, y2, ftmp); | ||
1332 | felem_reduce(ftmp5, tmp); | ||
1333 | |||
1334 | /* r = ftmp5 = (s2 - s1)*2 */ | ||
1335 | felem_diff_zero107(ftmp5, ftmp6); | ||
1336 | /* ftmp5[i] < 2^107 + 2^107 = 2^108 */ | ||
1337 | felem_scalar(ftmp5, 2); | ||
1338 | /* ftmp5[i] < 2^109 */ | ||
1339 | felem_shrink(small1, ftmp5); | ||
1340 | y_equal = smallfelem_is_zero(small1); | ||
1341 | |||
1342 | if (x_equal && y_equal && !z1_is_zero && !z2_is_zero) { | ||
1343 | point_double(x3, y3, z3, x1, y1, z1); | ||
1344 | return; | ||
1345 | } | ||
1346 | /* I = ftmp = (2h)**2 */ | ||
1347 | felem_assign(ftmp, ftmp4); | ||
1348 | felem_scalar(ftmp, 2); | ||
1349 | /* ftmp[i] < 2*2^108 = 2^109 */ | ||
1350 | felem_square(tmp, ftmp); | ||
1351 | felem_reduce(ftmp, tmp); | ||
1352 | |||
1353 | /* J = ftmp2 = h * I */ | ||
1354 | felem_mul(tmp, ftmp4, ftmp); | ||
1355 | felem_reduce(ftmp2, tmp); | ||
1356 | |||
1357 | /* V = ftmp4 = U1 * I */ | ||
1358 | felem_mul(tmp, ftmp3, ftmp); | ||
1359 | felem_reduce(ftmp4, tmp); | ||
1360 | |||
1361 | /* x_out = r**2 - J - 2V */ | ||
1362 | smallfelem_square(tmp, small1); | ||
1363 | felem_reduce(x_out, tmp); | ||
1364 | felem_assign(ftmp3, ftmp4); | ||
1365 | felem_scalar(ftmp4, 2); | ||
1366 | felem_sum(ftmp4, ftmp2); | ||
1367 | /* ftmp4[i] < 2*2^101 + 2^101 < 2^103 */ | ||
1368 | felem_diff(x_out, ftmp4); | ||
1369 | /* x_out[i] < 2^105 + 2^101 */ | ||
1370 | |||
1371 | /* y_out = r(V-x_out) - 2 * s1 * J */ | ||
1372 | felem_diff_zero107(ftmp3, x_out); | ||
1373 | /* ftmp3[i] < 2^107 + 2^101 < 2^108 */ | ||
1374 | felem_small_mul(tmp, small1, ftmp3); | ||
1375 | felem_mul(tmp2, ftmp6, ftmp2); | ||
1376 | longfelem_scalar(tmp2, 2); | ||
1377 | /* tmp2[i] < 2*2^67 = 2^68 */ | ||
1378 | longfelem_diff(tmp, tmp2); | ||
1379 | /* tmp[i] < 2^67 + 2^70 + 2^40 < 2^71 */ | ||
1380 | felem_reduce_zero105(y_out, tmp); | ||
1381 | /* y_out[i] < 2^106 */ | ||
1382 | |||
1383 | copy_small_conditional(x_out, x2, z1_is_zero); | ||
1384 | copy_conditional(x_out, x1, z2_is_zero); | ||
1385 | copy_small_conditional(y_out, y2, z1_is_zero); | ||
1386 | copy_conditional(y_out, y1, z2_is_zero); | ||
1387 | copy_small_conditional(z_out, z2, z1_is_zero); | ||
1388 | copy_conditional(z_out, z1, z2_is_zero); | ||
1389 | felem_assign(x3, x_out); | ||
1390 | felem_assign(y3, y_out); | ||
1391 | felem_assign(z3, z_out); | ||
1392 | } | ||
1393 | |||
1394 | /* point_add_small is the same as point_add, except that it operates on | ||
1395 | * smallfelems */ | ||
1396 | static void | ||
1397 | point_add_small(smallfelem x3, smallfelem y3, smallfelem z3, | ||
1398 | smallfelem x1, smallfelem y1, smallfelem z1, | ||
1399 | smallfelem x2, smallfelem y2, smallfelem z2) | ||
1400 | { | ||
1401 | felem felem_x3, felem_y3, felem_z3; | ||
1402 | felem felem_x1, felem_y1, felem_z1; | ||
1403 | smallfelem_expand(felem_x1, x1); | ||
1404 | smallfelem_expand(felem_y1, y1); | ||
1405 | smallfelem_expand(felem_z1, z1); | ||
1406 | point_add(felem_x3, felem_y3, felem_z3, felem_x1, felem_y1, felem_z1, 0, x2, y2, z2); | ||
1407 | felem_shrink(x3, felem_x3); | ||
1408 | felem_shrink(y3, felem_y3); | ||
1409 | felem_shrink(z3, felem_z3); | ||
1410 | } | ||
1411 | |||
1412 | /* Base point pre computation | ||
1413 | * -------------------------- | ||
1414 | * | ||
1415 | * Two different sorts of precomputed tables are used in the following code. | ||
1416 | * Each contain various points on the curve, where each point is three field | ||
1417 | * elements (x, y, z). | ||
1418 | * | ||
1419 | * For the base point table, z is usually 1 (0 for the point at infinity). | ||
1420 | * This table has 2 * 16 elements, starting with the following: | ||
1421 | * index | bits | point | ||
1422 | * ------+---------+------------------------------ | ||
1423 | * 0 | 0 0 0 0 | 0G | ||
1424 | * 1 | 0 0 0 1 | 1G | ||
1425 | * 2 | 0 0 1 0 | 2^64G | ||
1426 | * 3 | 0 0 1 1 | (2^64 + 1)G | ||
1427 | * 4 | 0 1 0 0 | 2^128G | ||
1428 | * 5 | 0 1 0 1 | (2^128 + 1)G | ||
1429 | * 6 | 0 1 1 0 | (2^128 + 2^64)G | ||
1430 | * 7 | 0 1 1 1 | (2^128 + 2^64 + 1)G | ||
1431 | * 8 | 1 0 0 0 | 2^192G | ||
1432 | * 9 | 1 0 0 1 | (2^192 + 1)G | ||
1433 | * 10 | 1 0 1 0 | (2^192 + 2^64)G | ||
1434 | * 11 | 1 0 1 1 | (2^192 + 2^64 + 1)G | ||
1435 | * 12 | 1 1 0 0 | (2^192 + 2^128)G | ||
1436 | * 13 | 1 1 0 1 | (2^192 + 2^128 + 1)G | ||
1437 | * 14 | 1 1 1 0 | (2^192 + 2^128 + 2^64)G | ||
1438 | * 15 | 1 1 1 1 | (2^192 + 2^128 + 2^64 + 1)G | ||
1439 | * followed by a copy of this with each element multiplied by 2^32. | ||
1440 | * | ||
1441 | * The reason for this is so that we can clock bits into four different | ||
1442 | * locations when doing simple scalar multiplies against the base point, | ||
1443 | * and then another four locations using the second 16 elements. | ||
1444 | * | ||
1445 | * Tables for other points have table[i] = iG for i in 0 .. 16. */ | ||
1446 | |||
1447 | /* gmul is the table of precomputed base points */ | ||
1448 | static const smallfelem gmul[2][16][3] = | ||
1449 | {{{{0, 0, 0, 0}, | ||
1450 | {0, 0, 0, 0}, | ||
1451 | {0, 0, 0, 0}}, | ||
1452 | {{0xf4a13945d898c296, 0x77037d812deb33a0, 0xf8bce6e563a440f2, 0x6b17d1f2e12c4247}, | ||
1453 | {0xcbb6406837bf51f5, 0x2bce33576b315ece, 0x8ee7eb4a7c0f9e16, 0x4fe342e2fe1a7f9b}, | ||
1454 | {1, 0, 0, 0}}, | ||
1455 | {{0x90e75cb48e14db63, 0x29493baaad651f7e, 0x8492592e326e25de, 0x0fa822bc2811aaa5}, | ||
1456 | {0xe41124545f462ee7, 0x34b1a65050fe82f5, 0x6f4ad4bcb3df188b, 0xbff44ae8f5dba80d}, | ||
1457 | {1, 0, 0, 0}}, | ||
1458 | {{0x93391ce2097992af, 0xe96c98fd0d35f1fa, 0xb257c0de95e02789, 0x300a4bbc89d6726f}, | ||
1459 | {0xaa54a291c08127a0, 0x5bb1eeada9d806a5, 0x7f1ddb25ff1e3c6f, 0x72aac7e0d09b4644}, | ||
1460 | {1, 0, 0, 0}}, | ||
1461 | {{0x57c84fc9d789bd85, 0xfc35ff7dc297eac3, 0xfb982fd588c6766e, 0x447d739beedb5e67}, | ||
1462 | {0x0c7e33c972e25b32, 0x3d349b95a7fae500, 0xe12e9d953a4aaff7, 0x2d4825ab834131ee}, | ||
1463 | {1, 0, 0, 0}}, | ||
1464 | {{0x13949c932a1d367f, 0xef7fbd2b1a0a11b7, 0xddc6068bb91dfc60, 0xef9519328a9c72ff}, | ||
1465 | {0x196035a77376d8a8, 0x23183b0895ca1740, 0xc1ee9807022c219c, 0x611e9fc37dbb2c9b}, | ||
1466 | {1, 0, 0, 0}}, | ||
1467 | {{0xcae2b1920b57f4bc, 0x2936df5ec6c9bc36, 0x7dea6482e11238bf, 0x550663797b51f5d8}, | ||
1468 | {0x44ffe216348a964c, 0x9fb3d576dbdefbe1, 0x0afa40018d9d50e5, 0x157164848aecb851}, | ||
1469 | {1, 0, 0, 0}}, | ||
1470 | {{0xe48ecafffc5cde01, 0x7ccd84e70d715f26, 0xa2e8f483f43e4391, 0xeb5d7745b21141ea}, | ||
1471 | {0xcac917e2731a3479, 0x85f22cfe2844b645, 0x0990e6a158006cee, 0xeafd72ebdbecc17b}, | ||
1472 | {1, 0, 0, 0}}, | ||
1473 | {{0x6cf20ffb313728be, 0x96439591a3c6b94a, 0x2736ff8344315fc5, 0xa6d39677a7849276}, | ||
1474 | {0xf2bab833c357f5f4, 0x824a920c2284059b, 0x66b8babd2d27ecdf, 0x674f84749b0b8816}, | ||
1475 | {1, 0, 0, 0}}, | ||
1476 | {{0x2df48c04677c8a3e, 0x74e02f080203a56b, 0x31855f7db8c7fedb, 0x4e769e7672c9ddad}, | ||
1477 | {0xa4c36165b824bbb0, 0xfb9ae16f3b9122a5, 0x1ec0057206947281, 0x42b99082de830663}, | ||
1478 | {1, 0, 0, 0}}, | ||
1479 | {{0x6ef95150dda868b9, 0xd1f89e799c0ce131, 0x7fdc1ca008a1c478, 0x78878ef61c6ce04d}, | ||
1480 | {0x9c62b9121fe0d976, 0x6ace570ebde08d4f, 0xde53142c12309def, 0xb6cb3f5d7b72c321}, | ||
1481 | {1, 0, 0, 0}}, | ||
1482 | {{0x7f991ed2c31a3573, 0x5b82dd5bd54fb496, 0x595c5220812ffcae, 0x0c88bc4d716b1287}, | ||
1483 | {0x3a57bf635f48aca8, 0x7c8181f4df2564f3, 0x18d1b5b39c04e6aa, 0xdd5ddea3f3901dc6}, | ||
1484 | {1, 0, 0, 0}}, | ||
1485 | {{0xe96a79fb3e72ad0c, 0x43a0a28c42ba792f, 0xefe0a423083e49f3, 0x68f344af6b317466}, | ||
1486 | {0xcdfe17db3fb24d4a, 0x668bfc2271f5c626, 0x604ed93c24d67ff3, 0x31b9c405f8540a20}, | ||
1487 | {1, 0, 0, 0}}, | ||
1488 | {{0xd36b4789a2582e7f, 0x0d1a10144ec39c28, 0x663c62c3edbad7a0, 0x4052bf4b6f461db9}, | ||
1489 | {0x235a27c3188d25eb, 0xe724f33999bfcc5b, 0x862be6bd71d70cc8, 0xfecf4d5190b0fc61}, | ||
1490 | {1, 0, 0, 0}}, | ||
1491 | {{0x74346c10a1d4cfac, 0xafdf5cc08526a7a4, 0x123202a8f62bff7a, 0x1eddbae2c802e41a}, | ||
1492 | {0x8fa0af2dd603f844, 0x36e06b7e4c701917, 0x0c45f45273db33a0, 0x43104d86560ebcfc}, | ||
1493 | {1, 0, 0, 0}}, | ||
1494 | {{0x9615b5110d1d78e5, 0x66b0de3225c4744b, 0x0a4a46fb6aaf363a, 0xb48e26b484f7a21c}, | ||
1495 | {0x06ebb0f621a01b2d, 0xc004e4048b7b0f98, 0x64131bcdfed6f668, 0xfac015404d4d3dab}, | ||
1496 | {1, 0, 0, 0}}}, | ||
1497 | {{{0, 0, 0, 0}, | ||
1498 | {0, 0, 0, 0}, | ||
1499 | {0, 0, 0, 0}}, | ||
1500 | {{0x3a5a9e22185a5943, 0x1ab919365c65dfb6, 0x21656b32262c71da, 0x7fe36b40af22af89}, | ||
1501 | {0xd50d152c699ca101, 0x74b3d5867b8af212, 0x9f09f40407dca6f1, 0xe697d45825b63624}, | ||
1502 | {1, 0, 0, 0}}, | ||
1503 | {{0xa84aa9397512218e, 0xe9a521b074ca0141, 0x57880b3a18a2e902, 0x4a5b506612a677a6}, | ||
1504 | {0x0beada7a4c4f3840, 0x626db15419e26d9d, 0xc42604fbe1627d40, 0xeb13461ceac089f1}, | ||
1505 | {1, 0, 0, 0}}, | ||
1506 | {{0xf9faed0927a43281, 0x5e52c4144103ecbc, 0xc342967aa815c857, 0x0781b8291c6a220a}, | ||
1507 | {0x5a8343ceeac55f80, 0x88f80eeee54a05e3, 0x97b2a14f12916434, 0x690cde8df0151593}, | ||
1508 | {1, 0, 0, 0}}, | ||
1509 | {{0xaee9c75df7f82f2a, 0x9e4c35874afdf43a, 0xf5622df437371326, 0x8a535f566ec73617}, | ||
1510 | {0xc5f9a0ac223094b7, 0xcde533864c8c7669, 0x37e02819085a92bf, 0x0455c08468b08bd7}, | ||
1511 | {1, 0, 0, 0}}, | ||
1512 | {{0x0c0a6e2c9477b5d9, 0xf9a4bf62876dc444, 0x5050a949b6cdc279, 0x06bada7ab77f8276}, | ||
1513 | {0xc8b4aed1ea48dac9, 0xdebd8a4b7ea1070f, 0x427d49101366eb70, 0x5b476dfd0e6cb18a}, | ||
1514 | {1, 0, 0, 0}}, | ||
1515 | {{0x7c5c3e44278c340a, 0x4d54606812d66f3b, 0x29a751b1ae23c5d8, 0x3e29864e8a2ec908}, | ||
1516 | {0x142d2a6626dbb850, 0xad1744c4765bd780, 0x1f150e68e322d1ed, 0x239b90ea3dc31e7e}, | ||
1517 | {1, 0, 0, 0}}, | ||
1518 | {{0x78c416527a53322a, 0x305dde6709776f8e, 0xdbcab759f8862ed4, 0x820f4dd949f72ff7}, | ||
1519 | {0x6cc544a62b5debd4, 0x75be5d937b4e8cc4, 0x1b481b1b215c14d3, 0x140406ec783a05ec}, | ||
1520 | {1, 0, 0, 0}}, | ||
1521 | {{0x6a703f10e895df07, 0xfd75f3fa01876bd8, 0xeb5b06e70ce08ffe, 0x68f6b8542783dfee}, | ||
1522 | {0x90c76f8a78712655, 0xcf5293d2f310bf7f, 0xfbc8044dfda45028, 0xcbe1feba92e40ce6}, | ||
1523 | {1, 0, 0, 0}}, | ||
1524 | {{0xe998ceea4396e4c1, 0xfc82ef0b6acea274, 0x230f729f2250e927, 0xd0b2f94d2f420109}, | ||
1525 | {0x4305adddb38d4966, 0x10b838f8624c3b45, 0x7db2636658954e7a, 0x971459828b0719e5}, | ||
1526 | {1, 0, 0, 0}}, | ||
1527 | {{0x4bd6b72623369fc9, 0x57f2929e53d0b876, 0xc2d5cba4f2340687, 0x961610004a866aba}, | ||
1528 | {0x49997bcd2e407a5e, 0x69ab197d92ddcb24, 0x2cf1f2438fe5131c, 0x7acb9fadcee75e44}, | ||
1529 | {1, 0, 0, 0}}, | ||
1530 | {{0x254e839423d2d4c0, 0xf57f0c917aea685b, 0xa60d880f6f75aaea, 0x24eb9acca333bf5b}, | ||
1531 | {0xe3de4ccb1cda5dea, 0xfeef9341c51a6b4f, 0x743125f88bac4c4d, 0x69f891c5acd079cc}, | ||
1532 | {1, 0, 0, 0}}, | ||
1533 | {{0xeee44b35702476b5, 0x7ed031a0e45c2258, 0xb422d1e7bd6f8514, 0xe51f547c5972a107}, | ||
1534 | {0xa25bcd6fc9cf343d, 0x8ca922ee097c184e, 0xa62f98b3a9fe9a06, 0x1c309a2b25bb1387}, | ||
1535 | {1, 0, 0, 0}}, | ||
1536 | {{0x9295dbeb1967c459, 0xb00148833472c98e, 0xc504977708011828, 0x20b87b8aa2c4e503}, | ||
1537 | {0x3063175de057c277, 0x1bd539338fe582dd, 0x0d11adef5f69a044, 0xf5c6fa49919776be}, | ||
1538 | {1, 0, 0, 0}}, | ||
1539 | {{0x8c944e760fd59e11, 0x3876cba1102fad5f, 0xa454c3fad83faa56, 0x1ed7d1b9332010b9}, | ||
1540 | {0xa1011a270024b889, 0x05e4d0dcac0cd344, 0x52b520f0eb6a2a24, 0x3a2b03f03217257a}, | ||
1541 | {1, 0, 0, 0}}, | ||
1542 | {{0xf20fc2afdf1d043d, 0xf330240db58d5a62, 0xfc7d229ca0058c3b, 0x15fee545c78dd9f6}, | ||
1543 | {0x501e82885bc98cda, 0x41ef80e5d046ac04, 0x557d9f49461210fb, 0x4ab5b6b2b8753f81}, | ||
1544 | {1, 0, 0, 0}}}}; | ||
1545 | |||
1546 | /* select_point selects the |idx|th point from a precomputation table and | ||
1547 | * copies it to out. */ | ||
1548 | static void | ||
1549 | select_point(const u64 idx, unsigned int size, const smallfelem pre_comp[16][3], smallfelem out[3]) | ||
1550 | { | ||
1551 | unsigned i, j; | ||
1552 | u64 *outlimbs = &out[0][0]; | ||
1553 | memset(outlimbs, 0, 3 * sizeof(smallfelem)); | ||
1554 | |||
1555 | for (i = 0; i < size; i++) { | ||
1556 | const u64 *inlimbs = (u64 *) & pre_comp[i][0][0]; | ||
1557 | u64 mask = i ^ idx; | ||
1558 | mask |= mask >> 4; | ||
1559 | mask |= mask >> 2; | ||
1560 | mask |= mask >> 1; | ||
1561 | mask &= 1; | ||
1562 | mask--; | ||
1563 | for (j = 0; j < NLIMBS * 3; j++) | ||
1564 | outlimbs[j] |= inlimbs[j] & mask; | ||
1565 | } | ||
1566 | } | ||
1567 | |||
1568 | /* get_bit returns the |i|th bit in |in| */ | ||
1569 | static char | ||
1570 | get_bit(const felem_bytearray in, int i) | ||
1571 | { | ||
1572 | if ((i < 0) || (i >= 256)) | ||
1573 | return 0; | ||
1574 | return (in[i >> 3] >> (i & 7)) & 1; | ||
1575 | } | ||
1576 | |||
1577 | /* Interleaved point multiplication using precomputed point multiples: | ||
1578 | * The small point multiples 0*P, 1*P, ..., 17*P are in pre_comp[], | ||
1579 | * the scalars in scalars[]. If g_scalar is non-NULL, we also add this multiple | ||
1580 | * of the generator, using certain (large) precomputed multiples in g_pre_comp. | ||
1581 | * Output point (X, Y, Z) is stored in x_out, y_out, z_out */ | ||
1582 | static void | ||
1583 | batch_mul(felem x_out, felem y_out, felem z_out, | ||
1584 | const felem_bytearray scalars[], const unsigned num_points, const u8 * g_scalar, | ||
1585 | const int mixed, const smallfelem pre_comp[][17][3], const smallfelem g_pre_comp[2][16][3]) | ||
1586 | { | ||
1587 | int i, skip; | ||
1588 | unsigned num, gen_mul = (g_scalar != NULL); | ||
1589 | felem nq[3], ftmp; | ||
1590 | smallfelem tmp[3]; | ||
1591 | u64 bits; | ||
1592 | u8 sign, digit; | ||
1593 | |||
1594 | /* set nq to the point at infinity */ | ||
1595 | memset(nq, 0, 3 * sizeof(felem)); | ||
1596 | |||
1597 | /* | ||
1598 | * Loop over all scalars msb-to-lsb, interleaving additions of | ||
1599 | * multiples of the generator (two in each of the last 32 rounds) and | ||
1600 | * additions of other points multiples (every 5th round). | ||
1601 | */ | ||
1602 | skip = 1; /* save two point operations in the first | ||
1603 | * round */ | ||
1604 | for (i = (num_points ? 255 : 31); i >= 0; --i) { | ||
1605 | /* double */ | ||
1606 | if (!skip) | ||
1607 | point_double(nq[0], nq[1], nq[2], nq[0], nq[1], nq[2]); | ||
1608 | |||
1609 | /* add multiples of the generator */ | ||
1610 | if (gen_mul && (i <= 31)) { | ||
1611 | /* first, look 32 bits upwards */ | ||
1612 | bits = get_bit(g_scalar, i + 224) << 3; | ||
1613 | bits |= get_bit(g_scalar, i + 160) << 2; | ||
1614 | bits |= get_bit(g_scalar, i + 96) << 1; | ||
1615 | bits |= get_bit(g_scalar, i + 32); | ||
1616 | /* select the point to add, in constant time */ | ||
1617 | select_point(bits, 16, g_pre_comp[1], tmp); | ||
1618 | |||
1619 | if (!skip) { | ||
1620 | point_add(nq[0], nq[1], nq[2], | ||
1621 | nq[0], nq[1], nq[2], | ||
1622 | 1 /* mixed */ , tmp[0], tmp[1], tmp[2]); | ||
1623 | } else { | ||
1624 | smallfelem_expand(nq[0], tmp[0]); | ||
1625 | smallfelem_expand(nq[1], tmp[1]); | ||
1626 | smallfelem_expand(nq[2], tmp[2]); | ||
1627 | skip = 0; | ||
1628 | } | ||
1629 | |||
1630 | /* second, look at the current position */ | ||
1631 | bits = get_bit(g_scalar, i + 192) << 3; | ||
1632 | bits |= get_bit(g_scalar, i + 128) << 2; | ||
1633 | bits |= get_bit(g_scalar, i + 64) << 1; | ||
1634 | bits |= get_bit(g_scalar, i); | ||
1635 | /* select the point to add, in constant time */ | ||
1636 | select_point(bits, 16, g_pre_comp[0], tmp); | ||
1637 | point_add(nq[0], nq[1], nq[2], | ||
1638 | nq[0], nq[1], nq[2], | ||
1639 | 1 /* mixed */ , tmp[0], tmp[1], tmp[2]); | ||
1640 | } | ||
1641 | /* do other additions every 5 doublings */ | ||
1642 | if (num_points && (i % 5 == 0)) { | ||
1643 | /* loop over all scalars */ | ||
1644 | for (num = 0; num < num_points; ++num) { | ||
1645 | bits = get_bit(scalars[num], i + 4) << 5; | ||
1646 | bits |= get_bit(scalars[num], i + 3) << 4; | ||
1647 | bits |= get_bit(scalars[num], i + 2) << 3; | ||
1648 | bits |= get_bit(scalars[num], i + 1) << 2; | ||
1649 | bits |= get_bit(scalars[num], i) << 1; | ||
1650 | bits |= get_bit(scalars[num], i - 1); | ||
1651 | ec_GFp_nistp_recode_scalar_bits(&sign, &digit, bits); | ||
1652 | |||
1653 | /* | ||
1654 | * select the point to add or subtract, in | ||
1655 | * constant time | ||
1656 | */ | ||
1657 | select_point(digit, 17, pre_comp[num], tmp); | ||
1658 | smallfelem_neg(ftmp, tmp[1]); /* (X, -Y, Z) is the | ||
1659 | * negative point */ | ||
1660 | copy_small_conditional(ftmp, tmp[1], (((limb) sign) - 1)); | ||
1661 | felem_contract(tmp[1], ftmp); | ||
1662 | |||
1663 | if (!skip) { | ||
1664 | point_add(nq[0], nq[1], nq[2], | ||
1665 | nq[0], nq[1], nq[2], | ||
1666 | mixed, tmp[0], tmp[1], tmp[2]); | ||
1667 | } else { | ||
1668 | smallfelem_expand(nq[0], tmp[0]); | ||
1669 | smallfelem_expand(nq[1], tmp[1]); | ||
1670 | smallfelem_expand(nq[2], tmp[2]); | ||
1671 | skip = 0; | ||
1672 | } | ||
1673 | } | ||
1674 | } | ||
1675 | } | ||
1676 | felem_assign(x_out, nq[0]); | ||
1677 | felem_assign(y_out, nq[1]); | ||
1678 | felem_assign(z_out, nq[2]); | ||
1679 | } | ||
1680 | |||
1681 | /* Precomputation for the group generator. */ | ||
1682 | typedef struct { | ||
1683 | smallfelem g_pre_comp[2][16][3]; | ||
1684 | int references; | ||
1685 | } NISTP256_PRE_COMP; | ||
1686 | |||
1687 | const EC_METHOD * | ||
1688 | EC_GFp_nistp256_method(void) | ||
1689 | { | ||
1690 | static const EC_METHOD ret = { | ||
1691 | .flags = EC_FLAGS_DEFAULT_OCT, | ||
1692 | .field_type = NID_X9_62_prime_field, | ||
1693 | .group_init = ec_GFp_nistp256_group_init, | ||
1694 | .group_finish = ec_GFp_simple_group_finish, | ||
1695 | .group_clear_finish = ec_GFp_simple_group_clear_finish, | ||
1696 | .group_copy = ec_GFp_nist_group_copy, | ||
1697 | .group_set_curve = ec_GFp_nistp256_group_set_curve, | ||
1698 | .group_get_curve = ec_GFp_simple_group_get_curve, | ||
1699 | .group_get_degree = ec_GFp_simple_group_get_degree, | ||
1700 | .group_check_discriminant = | ||
1701 | ec_GFp_simple_group_check_discriminant, | ||
1702 | .point_init = ec_GFp_simple_point_init, | ||
1703 | .point_finish = ec_GFp_simple_point_finish, | ||
1704 | .point_clear_finish = ec_GFp_simple_point_clear_finish, | ||
1705 | .point_copy = ec_GFp_simple_point_copy, | ||
1706 | .point_set_to_infinity = ec_GFp_simple_point_set_to_infinity, | ||
1707 | .point_set_Jprojective_coordinates_GFp = | ||
1708 | ec_GFp_simple_set_Jprojective_coordinates_GFp, | ||
1709 | .point_get_Jprojective_coordinates_GFp = | ||
1710 | ec_GFp_simple_get_Jprojective_coordinates_GFp, | ||
1711 | .point_set_affine_coordinates = | ||
1712 | ec_GFp_simple_point_set_affine_coordinates, | ||
1713 | .point_get_affine_coordinates = | ||
1714 | ec_GFp_nistp256_point_get_affine_coordinates, | ||
1715 | .add = ec_GFp_simple_add, | ||
1716 | .dbl = ec_GFp_simple_dbl, | ||
1717 | .invert = ec_GFp_simple_invert, | ||
1718 | .is_at_infinity = ec_GFp_simple_is_at_infinity, | ||
1719 | .is_on_curve = ec_GFp_simple_is_on_curve, | ||
1720 | .point_cmp = ec_GFp_simple_cmp, | ||
1721 | .make_affine = ec_GFp_simple_make_affine, | ||
1722 | .points_make_affine = ec_GFp_simple_points_make_affine, | ||
1723 | .mul = ec_GFp_nistp256_points_mul, | ||
1724 | .precompute_mult = ec_GFp_nistp256_precompute_mult, | ||
1725 | .have_precompute_mult = ec_GFp_nistp256_have_precompute_mult, | ||
1726 | .field_mul = ec_GFp_nist_field_mul, | ||
1727 | .field_sqr = ec_GFp_nist_field_sqr | ||
1728 | }; | ||
1729 | |||
1730 | return &ret; | ||
1731 | } | ||
1732 | |||
1733 | /******************************************************************************/ | ||
1734 | /* FUNCTIONS TO MANAGE PRECOMPUTATION | ||
1735 | */ | ||
1736 | |||
1737 | static NISTP256_PRE_COMP * | ||
1738 | nistp256_pre_comp_new() | ||
1739 | { | ||
1740 | NISTP256_PRE_COMP *ret = NULL; | ||
1741 | ret = malloc(sizeof *ret); | ||
1742 | if (!ret) { | ||
1743 | ECerr(EC_F_NISTP256_PRE_COMP_NEW, ERR_R_MALLOC_FAILURE); | ||
1744 | return ret; | ||
1745 | } | ||
1746 | memset(ret->g_pre_comp, 0, sizeof(ret->g_pre_comp)); | ||
1747 | ret->references = 1; | ||
1748 | return ret; | ||
1749 | } | ||
1750 | |||
1751 | static void * | ||
1752 | nistp256_pre_comp_dup(void *src_) | ||
1753 | { | ||
1754 | NISTP256_PRE_COMP *src = src_; | ||
1755 | |||
1756 | /* no need to actually copy, these objects never change! */ | ||
1757 | CRYPTO_add(&src->references, 1, CRYPTO_LOCK_EC_PRE_COMP); | ||
1758 | |||
1759 | return src_; | ||
1760 | } | ||
1761 | |||
1762 | static void | ||
1763 | nistp256_pre_comp_free(void *pre_) | ||
1764 | { | ||
1765 | int i; | ||
1766 | NISTP256_PRE_COMP *pre = pre_; | ||
1767 | |||
1768 | if (!pre) | ||
1769 | return; | ||
1770 | |||
1771 | i = CRYPTO_add(&pre->references, -1, CRYPTO_LOCK_EC_PRE_COMP); | ||
1772 | if (i > 0) | ||
1773 | return; | ||
1774 | |||
1775 | free(pre); | ||
1776 | } | ||
1777 | |||
1778 | static void | ||
1779 | nistp256_pre_comp_clear_free(void *pre_) | ||
1780 | { | ||
1781 | int i; | ||
1782 | NISTP256_PRE_COMP *pre = pre_; | ||
1783 | |||
1784 | if (!pre) | ||
1785 | return; | ||
1786 | |||
1787 | i = CRYPTO_add(&pre->references, -1, CRYPTO_LOCK_EC_PRE_COMP); | ||
1788 | if (i > 0) | ||
1789 | return; | ||
1790 | |||
1791 | explicit_bzero(pre, sizeof *pre); | ||
1792 | free(pre); | ||
1793 | } | ||
1794 | |||
1795 | /******************************************************************************/ | ||
1796 | /* OPENSSL EC_METHOD FUNCTIONS | ||
1797 | */ | ||
1798 | |||
1799 | int | ||
1800 | ec_GFp_nistp256_group_init(EC_GROUP * group) | ||
1801 | { | ||
1802 | int ret; | ||
1803 | ret = ec_GFp_simple_group_init(group); | ||
1804 | group->a_is_minus3 = 1; | ||
1805 | return ret; | ||
1806 | } | ||
1807 | |||
1808 | int | ||
1809 | ec_GFp_nistp256_group_set_curve(EC_GROUP * group, const BIGNUM * p, | ||
1810 | const BIGNUM * a, const BIGNUM * b, BN_CTX * ctx) | ||
1811 | { | ||
1812 | int ret = 0; | ||
1813 | BN_CTX *new_ctx = NULL; | ||
1814 | BIGNUM *curve_p, *curve_a, *curve_b; | ||
1815 | |||
1816 | if (ctx == NULL) | ||
1817 | if ((ctx = new_ctx = BN_CTX_new()) == NULL) | ||
1818 | return 0; | ||
1819 | BN_CTX_start(ctx); | ||
1820 | if (((curve_p = BN_CTX_get(ctx)) == NULL) || | ||
1821 | ((curve_a = BN_CTX_get(ctx)) == NULL) || | ||
1822 | ((curve_b = BN_CTX_get(ctx)) == NULL)) | ||
1823 | goto err; | ||
1824 | BN_bin2bn(nistp256_curve_params[0], sizeof(felem_bytearray), curve_p); | ||
1825 | BN_bin2bn(nistp256_curve_params[1], sizeof(felem_bytearray), curve_a); | ||
1826 | BN_bin2bn(nistp256_curve_params[2], sizeof(felem_bytearray), curve_b); | ||
1827 | if ((BN_cmp(curve_p, p)) || (BN_cmp(curve_a, a)) || | ||
1828 | (BN_cmp(curve_b, b))) { | ||
1829 | ECerr(EC_F_EC_GFP_NISTP256_GROUP_SET_CURVE, | ||
1830 | EC_R_WRONG_CURVE_PARAMETERS); | ||
1831 | goto err; | ||
1832 | } | ||
1833 | group->field_mod_func = BN_nist_mod_256; | ||
1834 | ret = ec_GFp_simple_group_set_curve(group, p, a, b, ctx); | ||
1835 | err: | ||
1836 | BN_CTX_end(ctx); | ||
1837 | BN_CTX_free(new_ctx); | ||
1838 | return ret; | ||
1839 | } | ||
1840 | |||
1841 | /* Takes the Jacobian coordinates (X, Y, Z) of a point and returns | ||
1842 | * (X', Y') = (X/Z^2, Y/Z^3) */ | ||
1843 | int | ||
1844 | ec_GFp_nistp256_point_get_affine_coordinates(const EC_GROUP * group, | ||
1845 | const EC_POINT * point, BIGNUM * x, BIGNUM * y, BN_CTX * ctx) | ||
1846 | { | ||
1847 | felem z1, z2, x_in, y_in; | ||
1848 | smallfelem x_out, y_out; | ||
1849 | longfelem tmp; | ||
1850 | |||
1851 | if (EC_POINT_is_at_infinity(group, point) > 0) { | ||
1852 | ECerr(EC_F_EC_GFP_NISTP256_POINT_GET_AFFINE_COORDINATES, | ||
1853 | EC_R_POINT_AT_INFINITY); | ||
1854 | return 0; | ||
1855 | } | ||
1856 | if ((!BN_to_felem(x_in, &point->X)) || (!BN_to_felem(y_in, &point->Y)) || | ||
1857 | (!BN_to_felem(z1, &point->Z))) | ||
1858 | return 0; | ||
1859 | felem_inv(z2, z1); | ||
1860 | felem_square(tmp, z2); | ||
1861 | felem_reduce(z1, tmp); | ||
1862 | felem_mul(tmp, x_in, z1); | ||
1863 | felem_reduce(x_in, tmp); | ||
1864 | felem_contract(x_out, x_in); | ||
1865 | if (x != NULL) { | ||
1866 | if (!smallfelem_to_BN(x, x_out)) { | ||
1867 | ECerr(EC_F_EC_GFP_NISTP256_POINT_GET_AFFINE_COORDINATES, | ||
1868 | ERR_R_BN_LIB); | ||
1869 | return 0; | ||
1870 | } | ||
1871 | } | ||
1872 | felem_mul(tmp, z1, z2); | ||
1873 | felem_reduce(z1, tmp); | ||
1874 | felem_mul(tmp, y_in, z1); | ||
1875 | felem_reduce(y_in, tmp); | ||
1876 | felem_contract(y_out, y_in); | ||
1877 | if (y != NULL) { | ||
1878 | if (!smallfelem_to_BN(y, y_out)) { | ||
1879 | ECerr(EC_F_EC_GFP_NISTP256_POINT_GET_AFFINE_COORDINATES, | ||
1880 | ERR_R_BN_LIB); | ||
1881 | return 0; | ||
1882 | } | ||
1883 | } | ||
1884 | return 1; | ||
1885 | } | ||
1886 | |||
1887 | static void | ||
1888 | make_points_affine(size_t num, smallfelem points[ /* num */ ][3], smallfelem tmp_smallfelems[ /* num+1 */ ]) | ||
1889 | { | ||
1890 | /* | ||
1891 | * Runs in constant time, unless an input is the point at infinity | ||
1892 | * (which normally shouldn't happen). | ||
1893 | */ | ||
1894 | ec_GFp_nistp_points_make_affine_internal( | ||
1895 | num, | ||
1896 | points, | ||
1897 | sizeof(smallfelem), | ||
1898 | tmp_smallfelems, | ||
1899 | (void (*) (void *)) smallfelem_one, | ||
1900 | (int (*) (const void *)) smallfelem_is_zero_int, | ||
1901 | (void (*) (void *, const void *)) smallfelem_assign, | ||
1902 | (void (*) (void *, const void *)) smallfelem_square_contract, | ||
1903 | (void (*) (void *, const void *, const void *)) smallfelem_mul_contract, | ||
1904 | (void (*) (void *, const void *)) smallfelem_inv_contract, | ||
1905 | (void (*) (void *, const void *)) smallfelem_assign /* nothing to contract */ ); | ||
1906 | } | ||
1907 | |||
1908 | /* Computes scalar*generator + \sum scalars[i]*points[i], ignoring NULL values | ||
1909 | * Result is stored in r (r can equal one of the inputs). */ | ||
1910 | int | ||
1911 | ec_GFp_nistp256_points_mul(const EC_GROUP * group, EC_POINT * r, | ||
1912 | const BIGNUM * scalar, size_t num, const EC_POINT * points[], | ||
1913 | const BIGNUM * scalars[], BN_CTX * ctx) | ||
1914 | { | ||
1915 | int ret = 0; | ||
1916 | int j; | ||
1917 | int mixed = 0; | ||
1918 | BN_CTX *new_ctx = NULL; | ||
1919 | BIGNUM *x, *y, *z, *tmp_scalar; | ||
1920 | felem_bytearray g_secret; | ||
1921 | felem_bytearray *secrets = NULL; | ||
1922 | smallfelem(*pre_comp)[17][3] = NULL; | ||
1923 | smallfelem *tmp_smallfelems = NULL; | ||
1924 | felem_bytearray tmp; | ||
1925 | unsigned i, num_bytes; | ||
1926 | int have_pre_comp = 0; | ||
1927 | size_t num_points = num; | ||
1928 | smallfelem x_in, y_in, z_in; | ||
1929 | felem x_out, y_out, z_out; | ||
1930 | NISTP256_PRE_COMP *pre = NULL; | ||
1931 | const smallfelem(*g_pre_comp)[16][3] = NULL; | ||
1932 | EC_POINT *generator = NULL; | ||
1933 | const EC_POINT *p = NULL; | ||
1934 | const BIGNUM *p_scalar = NULL; | ||
1935 | |||
1936 | if (ctx == NULL) | ||
1937 | if ((ctx = new_ctx = BN_CTX_new()) == NULL) | ||
1938 | return 0; | ||
1939 | BN_CTX_start(ctx); | ||
1940 | if (((x = BN_CTX_get(ctx)) == NULL) || | ||
1941 | ((y = BN_CTX_get(ctx)) == NULL) || | ||
1942 | ((z = BN_CTX_get(ctx)) == NULL) || | ||
1943 | ((tmp_scalar = BN_CTX_get(ctx)) == NULL)) | ||
1944 | goto err; | ||
1945 | |||
1946 | if (scalar != NULL) { | ||
1947 | pre = EC_EX_DATA_get_data(group->extra_data, | ||
1948 | nistp256_pre_comp_dup, nistp256_pre_comp_free, | ||
1949 | nistp256_pre_comp_clear_free); | ||
1950 | if (pre) | ||
1951 | /* we have precomputation, try to use it */ | ||
1952 | g_pre_comp = (const smallfelem(*)[16][3]) pre->g_pre_comp; | ||
1953 | else | ||
1954 | /* try to use the standard precomputation */ | ||
1955 | g_pre_comp = &gmul[0]; | ||
1956 | generator = EC_POINT_new(group); | ||
1957 | if (generator == NULL) | ||
1958 | goto err; | ||
1959 | /* get the generator from precomputation */ | ||
1960 | if (!smallfelem_to_BN(x, g_pre_comp[0][1][0]) || | ||
1961 | !smallfelem_to_BN(y, g_pre_comp[0][1][1]) || | ||
1962 | !smallfelem_to_BN(z, g_pre_comp[0][1][2])) { | ||
1963 | ECerr(EC_F_EC_GFP_NISTP256_POINTS_MUL, ERR_R_BN_LIB); | ||
1964 | goto err; | ||
1965 | } | ||
1966 | if (!EC_POINT_set_Jprojective_coordinates_GFp(group, | ||
1967 | generator, x, y, z, ctx)) | ||
1968 | goto err; | ||
1969 | if (0 == EC_POINT_cmp(group, generator, group->generator, ctx)) | ||
1970 | /* precomputation matches generator */ | ||
1971 | have_pre_comp = 1; | ||
1972 | else | ||
1973 | /* | ||
1974 | * we don't have valid precomputation: treat the | ||
1975 | * generator as a random point | ||
1976 | */ | ||
1977 | num_points++; | ||
1978 | } | ||
1979 | if (num_points > 0) { | ||
1980 | if (num_points >= 3) { | ||
1981 | /* | ||
1982 | * unless we precompute multiples for just one or two | ||
1983 | * points, converting those into affine form is time | ||
1984 | * well spent | ||
1985 | */ | ||
1986 | mixed = 1; | ||
1987 | } | ||
1988 | secrets = calloc(num_points, sizeof(felem_bytearray)); | ||
1989 | pre_comp = calloc(num_points, 17 * 3 * sizeof(smallfelem)); | ||
1990 | if (mixed) { | ||
1991 | /* XXX should do more int overflow checking */ | ||
1992 | tmp_smallfelems = reallocarray(NULL, | ||
1993 | (num_points * 17 + 1), sizeof(smallfelem)); | ||
1994 | } | ||
1995 | if ((secrets == NULL) || (pre_comp == NULL) || (mixed && (tmp_smallfelems == NULL))) { | ||
1996 | ECerr(EC_F_EC_GFP_NISTP256_POINTS_MUL, ERR_R_MALLOC_FAILURE); | ||
1997 | goto err; | ||
1998 | } | ||
1999 | /* | ||
2000 | * we treat NULL scalars as 0, and NULL points as points at | ||
2001 | * infinity, i.e., they contribute nothing to the linear | ||
2002 | * combination | ||
2003 | */ | ||
2004 | for (i = 0; i < num_points; ++i) { | ||
2005 | if (i == num) | ||
2006 | /* | ||
2007 | * we didn't have a valid precomputation, so | ||
2008 | * we pick the generator | ||
2009 | */ | ||
2010 | { | ||
2011 | p = EC_GROUP_get0_generator(group); | ||
2012 | p_scalar = scalar; | ||
2013 | } else | ||
2014 | /* the i^th point */ | ||
2015 | { | ||
2016 | p = points[i]; | ||
2017 | p_scalar = scalars[i]; | ||
2018 | } | ||
2019 | if ((p_scalar != NULL) && (p != NULL)) { | ||
2020 | /* reduce scalar to 0 <= scalar < 2^256 */ | ||
2021 | if ((BN_num_bits(p_scalar) > 256) || (BN_is_negative(p_scalar))) { | ||
2022 | /* | ||
2023 | * this is an unusual input, and we | ||
2024 | * don't guarantee constant-timeness | ||
2025 | */ | ||
2026 | if (!BN_nnmod(tmp_scalar, p_scalar, &group->order, ctx)) { | ||
2027 | ECerr(EC_F_EC_GFP_NISTP256_POINTS_MUL, ERR_R_BN_LIB); | ||
2028 | goto err; | ||
2029 | } | ||
2030 | num_bytes = BN_bn2bin(tmp_scalar, tmp); | ||
2031 | } else | ||
2032 | num_bytes = BN_bn2bin(p_scalar, tmp); | ||
2033 | flip_endian(secrets[i], tmp, num_bytes); | ||
2034 | /* precompute multiples */ | ||
2035 | if ((!BN_to_felem(x_out, &p->X)) || | ||
2036 | (!BN_to_felem(y_out, &p->Y)) || | ||
2037 | (!BN_to_felem(z_out, &p->Z))) | ||
2038 | goto err; | ||
2039 | felem_shrink(pre_comp[i][1][0], x_out); | ||
2040 | felem_shrink(pre_comp[i][1][1], y_out); | ||
2041 | felem_shrink(pre_comp[i][1][2], z_out); | ||
2042 | for (j = 2; j <= 16; ++j) { | ||
2043 | if (j & 1) { | ||
2044 | point_add_small( | ||
2045 | pre_comp[i][j][0], pre_comp[i][j][1], pre_comp[i][j][2], | ||
2046 | pre_comp[i][1][0], pre_comp[i][1][1], pre_comp[i][1][2], | ||
2047 | pre_comp[i][j - 1][0], pre_comp[i][j - 1][1], pre_comp[i][j - 1][2]); | ||
2048 | } else { | ||
2049 | point_double_small( | ||
2050 | pre_comp[i][j][0], pre_comp[i][j][1], pre_comp[i][j][2], | ||
2051 | pre_comp[i][j / 2][0], pre_comp[i][j / 2][1], pre_comp[i][j / 2][2]); | ||
2052 | } | ||
2053 | } | ||
2054 | } | ||
2055 | } | ||
2056 | if (mixed) | ||
2057 | make_points_affine(num_points * 17, pre_comp[0], tmp_smallfelems); | ||
2058 | } | ||
2059 | /* the scalar for the generator */ | ||
2060 | if ((scalar != NULL) && (have_pre_comp)) { | ||
2061 | memset(g_secret, 0, sizeof(g_secret)); | ||
2062 | /* reduce scalar to 0 <= scalar < 2^256 */ | ||
2063 | if ((BN_num_bits(scalar) > 256) || (BN_is_negative(scalar))) { | ||
2064 | /* | ||
2065 | * this is an unusual input, and we don't guarantee | ||
2066 | * constant-timeness | ||
2067 | */ | ||
2068 | if (!BN_nnmod(tmp_scalar, scalar, &group->order, ctx)) { | ||
2069 | ECerr(EC_F_EC_GFP_NISTP256_POINTS_MUL, ERR_R_BN_LIB); | ||
2070 | goto err; | ||
2071 | } | ||
2072 | num_bytes = BN_bn2bin(tmp_scalar, tmp); | ||
2073 | } else | ||
2074 | num_bytes = BN_bn2bin(scalar, tmp); | ||
2075 | flip_endian(g_secret, tmp, num_bytes); | ||
2076 | /* do the multiplication with generator precomputation */ | ||
2077 | batch_mul(x_out, y_out, z_out, | ||
2078 | (const felem_bytearray(*)) secrets, num_points, | ||
2079 | g_secret, | ||
2080 | mixed, (const smallfelem(*)[17][3]) pre_comp, | ||
2081 | g_pre_comp); | ||
2082 | } else | ||
2083 | /* do the multiplication without generator precomputation */ | ||
2084 | batch_mul(x_out, y_out, z_out, | ||
2085 | (const felem_bytearray(*)) secrets, num_points, | ||
2086 | NULL, mixed, (const smallfelem(*)[17][3]) pre_comp, NULL); | ||
2087 | /* reduce the output to its unique minimal representation */ | ||
2088 | felem_contract(x_in, x_out); | ||
2089 | felem_contract(y_in, y_out); | ||
2090 | felem_contract(z_in, z_out); | ||
2091 | if ((!smallfelem_to_BN(x, x_in)) || (!smallfelem_to_BN(y, y_in)) || | ||
2092 | (!smallfelem_to_BN(z, z_in))) { | ||
2093 | ECerr(EC_F_EC_GFP_NISTP256_POINTS_MUL, ERR_R_BN_LIB); | ||
2094 | goto err; | ||
2095 | } | ||
2096 | ret = EC_POINT_set_Jprojective_coordinates_GFp(group, r, x, y, z, ctx); | ||
2097 | |||
2098 | err: | ||
2099 | BN_CTX_end(ctx); | ||
2100 | EC_POINT_free(generator); | ||
2101 | BN_CTX_free(new_ctx); | ||
2102 | free(secrets); | ||
2103 | free(pre_comp); | ||
2104 | free(tmp_smallfelems); | ||
2105 | return ret; | ||
2106 | } | ||
2107 | |||
2108 | int | ||
2109 | ec_GFp_nistp256_precompute_mult(EC_GROUP * group, BN_CTX * ctx) | ||
2110 | { | ||
2111 | int ret = 0; | ||
2112 | NISTP256_PRE_COMP *pre = NULL; | ||
2113 | int i, j; | ||
2114 | BN_CTX *new_ctx = NULL; | ||
2115 | BIGNUM *x, *y; | ||
2116 | EC_POINT *generator = NULL; | ||
2117 | smallfelem tmp_smallfelems[32]; | ||
2118 | felem x_tmp, y_tmp, z_tmp; | ||
2119 | |||
2120 | /* throw away old precomputation */ | ||
2121 | EC_EX_DATA_free_data(&group->extra_data, nistp256_pre_comp_dup, | ||
2122 | nistp256_pre_comp_free, nistp256_pre_comp_clear_free); | ||
2123 | if (ctx == NULL) | ||
2124 | if ((ctx = new_ctx = BN_CTX_new()) == NULL) | ||
2125 | return 0; | ||
2126 | BN_CTX_start(ctx); | ||
2127 | if (((x = BN_CTX_get(ctx)) == NULL) || | ||
2128 | ((y = BN_CTX_get(ctx)) == NULL)) | ||
2129 | goto err; | ||
2130 | /* get the generator */ | ||
2131 | if (group->generator == NULL) | ||
2132 | goto err; | ||
2133 | generator = EC_POINT_new(group); | ||
2134 | if (generator == NULL) | ||
2135 | goto err; | ||
2136 | BN_bin2bn(nistp256_curve_params[3], sizeof(felem_bytearray), x); | ||
2137 | BN_bin2bn(nistp256_curve_params[4], sizeof(felem_bytearray), y); | ||
2138 | if (!EC_POINT_set_affine_coordinates_GFp(group, generator, x, y, ctx)) | ||
2139 | goto err; | ||
2140 | if ((pre = nistp256_pre_comp_new()) == NULL) | ||
2141 | goto err; | ||
2142 | /* if the generator is the standard one, use built-in precomputation */ | ||
2143 | if (0 == EC_POINT_cmp(group, generator, group->generator, ctx)) { | ||
2144 | memcpy(pre->g_pre_comp, gmul, sizeof(pre->g_pre_comp)); | ||
2145 | ret = 1; | ||
2146 | goto err; | ||
2147 | } | ||
2148 | if ((!BN_to_felem(x_tmp, &group->generator->X)) || | ||
2149 | (!BN_to_felem(y_tmp, &group->generator->Y)) || | ||
2150 | (!BN_to_felem(z_tmp, &group->generator->Z))) | ||
2151 | goto err; | ||
2152 | felem_shrink(pre->g_pre_comp[0][1][0], x_tmp); | ||
2153 | felem_shrink(pre->g_pre_comp[0][1][1], y_tmp); | ||
2154 | felem_shrink(pre->g_pre_comp[0][1][2], z_tmp); | ||
2155 | /* | ||
2156 | * compute 2^64*G, 2^128*G, 2^192*G for the first table, 2^32*G, | ||
2157 | * 2^96*G, 2^160*G, 2^224*G for the second one | ||
2158 | */ | ||
2159 | for (i = 1; i <= 8; i <<= 1) { | ||
2160 | point_double_small( | ||
2161 | pre->g_pre_comp[1][i][0], pre->g_pre_comp[1][i][1], pre->g_pre_comp[1][i][2], | ||
2162 | pre->g_pre_comp[0][i][0], pre->g_pre_comp[0][i][1], pre->g_pre_comp[0][i][2]); | ||
2163 | for (j = 0; j < 31; ++j) { | ||
2164 | point_double_small( | ||
2165 | pre->g_pre_comp[1][i][0], pre->g_pre_comp[1][i][1], pre->g_pre_comp[1][i][2], | ||
2166 | pre->g_pre_comp[1][i][0], pre->g_pre_comp[1][i][1], pre->g_pre_comp[1][i][2]); | ||
2167 | } | ||
2168 | if (i == 8) | ||
2169 | break; | ||
2170 | point_double_small( | ||
2171 | pre->g_pre_comp[0][2 * i][0], pre->g_pre_comp[0][2 * i][1], pre->g_pre_comp[0][2 * i][2], | ||
2172 | pre->g_pre_comp[1][i][0], pre->g_pre_comp[1][i][1], pre->g_pre_comp[1][i][2]); | ||
2173 | for (j = 0; j < 31; ++j) { | ||
2174 | point_double_small( | ||
2175 | pre->g_pre_comp[0][2 * i][0], pre->g_pre_comp[0][2 * i][1], pre->g_pre_comp[0][2 * i][2], | ||
2176 | pre->g_pre_comp[0][2 * i][0], pre->g_pre_comp[0][2 * i][1], pre->g_pre_comp[0][2 * i][2]); | ||
2177 | } | ||
2178 | } | ||
2179 | for (i = 0; i < 2; i++) { | ||
2180 | /* g_pre_comp[i][0] is the point at infinity */ | ||
2181 | memset(pre->g_pre_comp[i][0], 0, sizeof(pre->g_pre_comp[i][0])); | ||
2182 | /* the remaining multiples */ | ||
2183 | /* 2^64*G + 2^128*G resp. 2^96*G + 2^160*G */ | ||
2184 | point_add_small( | ||
2185 | pre->g_pre_comp[i][6][0], pre->g_pre_comp[i][6][1], pre->g_pre_comp[i][6][2], | ||
2186 | pre->g_pre_comp[i][4][0], pre->g_pre_comp[i][4][1], pre->g_pre_comp[i][4][2], | ||
2187 | pre->g_pre_comp[i][2][0], pre->g_pre_comp[i][2][1], pre->g_pre_comp[i][2][2]); | ||
2188 | /* 2^64*G + 2^192*G resp. 2^96*G + 2^224*G */ | ||
2189 | point_add_small( | ||
2190 | pre->g_pre_comp[i][10][0], pre->g_pre_comp[i][10][1], pre->g_pre_comp[i][10][2], | ||
2191 | pre->g_pre_comp[i][8][0], pre->g_pre_comp[i][8][1], pre->g_pre_comp[i][8][2], | ||
2192 | pre->g_pre_comp[i][2][0], pre->g_pre_comp[i][2][1], pre->g_pre_comp[i][2][2]); | ||
2193 | /* 2^128*G + 2^192*G resp. 2^160*G + 2^224*G */ | ||
2194 | point_add_small( | ||
2195 | pre->g_pre_comp[i][12][0], pre->g_pre_comp[i][12][1], pre->g_pre_comp[i][12][2], | ||
2196 | pre->g_pre_comp[i][8][0], pre->g_pre_comp[i][8][1], pre->g_pre_comp[i][8][2], | ||
2197 | pre->g_pre_comp[i][4][0], pre->g_pre_comp[i][4][1], pre->g_pre_comp[i][4][2]); | ||
2198 | /* | ||
2199 | * 2^64*G + 2^128*G + 2^192*G resp. 2^96*G + 2^160*G + | ||
2200 | * 2^224*G | ||
2201 | */ | ||
2202 | point_add_small( | ||
2203 | pre->g_pre_comp[i][14][0], pre->g_pre_comp[i][14][1], pre->g_pre_comp[i][14][2], | ||
2204 | pre->g_pre_comp[i][12][0], pre->g_pre_comp[i][12][1], pre->g_pre_comp[i][12][2], | ||
2205 | pre->g_pre_comp[i][2][0], pre->g_pre_comp[i][2][1], pre->g_pre_comp[i][2][2]); | ||
2206 | for (j = 1; j < 8; ++j) { | ||
2207 | /* odd multiples: add G resp. 2^32*G */ | ||
2208 | point_add_small( | ||
2209 | pre->g_pre_comp[i][2 * j + 1][0], pre->g_pre_comp[i][2 * j + 1][1], pre->g_pre_comp[i][2 * j + 1][2], | ||
2210 | pre->g_pre_comp[i][2 * j][0], pre->g_pre_comp[i][2 * j][1], pre->g_pre_comp[i][2 * j][2], | ||
2211 | pre->g_pre_comp[i][1][0], pre->g_pre_comp[i][1][1], pre->g_pre_comp[i][1][2]); | ||
2212 | } | ||
2213 | } | ||
2214 | make_points_affine(31, &(pre->g_pre_comp[0][1]), tmp_smallfelems); | ||
2215 | |||
2216 | if (!EC_EX_DATA_set_data(&group->extra_data, pre, nistp256_pre_comp_dup, | ||
2217 | nistp256_pre_comp_free, nistp256_pre_comp_clear_free)) | ||
2218 | goto err; | ||
2219 | ret = 1; | ||
2220 | pre = NULL; | ||
2221 | err: | ||
2222 | BN_CTX_end(ctx); | ||
2223 | EC_POINT_free(generator); | ||
2224 | BN_CTX_free(new_ctx); | ||
2225 | nistp256_pre_comp_free(pre); | ||
2226 | return ret; | ||
2227 | } | ||
2228 | |||
2229 | int | ||
2230 | ec_GFp_nistp256_have_precompute_mult(const EC_GROUP * group) | ||
2231 | { | ||
2232 | if (EC_EX_DATA_get_data(group->extra_data, nistp256_pre_comp_dup, | ||
2233 | nistp256_pre_comp_free, nistp256_pre_comp_clear_free) | ||
2234 | != NULL) | ||
2235 | return 1; | ||
2236 | else | ||
2237 | return 0; | ||
2238 | } | ||
2239 | #endif | ||
diff --git a/src/lib/libcrypto/ec/ecp_nistp521.c b/src/lib/libcrypto/ec/ecp_nistp521.c deleted file mode 100644 index cfa13b41f8..0000000000 --- a/src/lib/libcrypto/ec/ecp_nistp521.c +++ /dev/null | |||
@@ -1,2113 +0,0 @@ | |||
1 | /* $OpenBSD: ecp_nistp521.c,v 1.17 2015/09/10 15:56:25 jsing Exp $ */ | ||
2 | /* | ||
3 | * Written by Adam Langley (Google) for the OpenSSL project | ||
4 | */ | ||
5 | /* | ||
6 | * Copyright (c) 2011 Google Inc. | ||
7 | * | ||
8 | * Permission to use, copy, modify, and distribute this software for any | ||
9 | * purpose with or without fee is hereby granted, provided that the above | ||
10 | * copyright notice and this permission notice appear in all copies. | ||
11 | * | ||
12 | * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES | ||
13 | * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF | ||
14 | * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR | ||
15 | * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES | ||
16 | * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN | ||
17 | * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF | ||
18 | * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE. | ||
19 | */ | ||
20 | |||
21 | /* | ||
22 | * A 64-bit implementation of the NIST P-521 elliptic curve point multiplication | ||
23 | * | ||
24 | * OpenSSL integration was taken from Emilia Kasper's work in ecp_nistp224.c. | ||
25 | * Otherwise based on Emilia's P224 work, which was inspired by my curve25519 | ||
26 | * work which got its smarts from Daniel J. Bernstein's work on the same. | ||
27 | */ | ||
28 | |||
29 | #include <stdint.h> | ||
30 | #include <string.h> | ||
31 | |||
32 | #include <openssl/opensslconf.h> | ||
33 | |||
34 | #ifndef OPENSSL_NO_EC_NISTP_64_GCC_128 | ||
35 | |||
36 | #include <openssl/err.h> | ||
37 | #include "ec_lcl.h" | ||
38 | |||
39 | #if defined(__GNUC__) && (__GNUC__ > 3 || (__GNUC__ == 3 && __GNUC_MINOR__ >= 1)) | ||
40 | /* even with gcc, the typedef won't work for 32-bit platforms */ | ||
41 | typedef __uint128_t uint128_t; /* nonstandard; implemented by gcc on 64-bit platforms */ | ||
42 | #else | ||
43 | #error "Need GCC 3.1 or later to define type uint128_t" | ||
44 | #endif | ||
45 | |||
46 | typedef uint8_t u8; | ||
47 | typedef uint64_t u64; | ||
48 | typedef int64_t s64; | ||
49 | |||
50 | /* The underlying field. | ||
51 | * | ||
52 | * P521 operates over GF(2^521-1). We can serialise an element of this field | ||
53 | * into 66 bytes where the most significant byte contains only a single bit. We | ||
54 | * call this an felem_bytearray. */ | ||
55 | |||
56 | typedef u8 felem_bytearray[66]; | ||
57 | |||
58 | /* These are the parameters of P521, taken from FIPS 186-3, section D.1.2.5. | ||
59 | * These values are big-endian. */ | ||
60 | static const felem_bytearray nistp521_curve_params[5] = | ||
61 | { | ||
62 | {0x01, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, /* p */ | ||
63 | 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, | ||
64 | 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, | ||
65 | 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, | ||
66 | 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, | ||
67 | 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, | ||
68 | 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, | ||
69 | 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, | ||
70 | 0xff, 0xff}, | ||
71 | {0x01, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, /* a = -3 */ | ||
72 | 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, | ||
73 | 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, | ||
74 | 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, | ||
75 | 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, | ||
76 | 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, | ||
77 | 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, | ||
78 | 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, | ||
79 | 0xff, 0xfc}, | ||
80 | {0x00, 0x51, 0x95, 0x3e, 0xb9, 0x61, 0x8e, 0x1c, /* b */ | ||
81 | 0x9a, 0x1f, 0x92, 0x9a, 0x21, 0xa0, 0xb6, 0x85, | ||
82 | 0x40, 0xee, 0xa2, 0xda, 0x72, 0x5b, 0x99, 0xb3, | ||
83 | 0x15, 0xf3, 0xb8, 0xb4, 0x89, 0x91, 0x8e, 0xf1, | ||
84 | 0x09, 0xe1, 0x56, 0x19, 0x39, 0x51, 0xec, 0x7e, | ||
85 | 0x93, 0x7b, 0x16, 0x52, 0xc0, 0xbd, 0x3b, 0xb1, | ||
86 | 0xbf, 0x07, 0x35, 0x73, 0xdf, 0x88, 0x3d, 0x2c, | ||
87 | 0x34, 0xf1, 0xef, 0x45, 0x1f, 0xd4, 0x6b, 0x50, | ||
88 | 0x3f, 0x00}, | ||
89 | {0x00, 0xc6, 0x85, 0x8e, 0x06, 0xb7, 0x04, 0x04, /* x */ | ||
90 | 0xe9, 0xcd, 0x9e, 0x3e, 0xcb, 0x66, 0x23, 0x95, | ||
91 | 0xb4, 0x42, 0x9c, 0x64, 0x81, 0x39, 0x05, 0x3f, | ||
92 | 0xb5, 0x21, 0xf8, 0x28, 0xaf, 0x60, 0x6b, 0x4d, | ||
93 | 0x3d, 0xba, 0xa1, 0x4b, 0x5e, 0x77, 0xef, 0xe7, | ||
94 | 0x59, 0x28, 0xfe, 0x1d, 0xc1, 0x27, 0xa2, 0xff, | ||
95 | 0xa8, 0xde, 0x33, 0x48, 0xb3, 0xc1, 0x85, 0x6a, | ||
96 | 0x42, 0x9b, 0xf9, 0x7e, 0x7e, 0x31, 0xc2, 0xe5, | ||
97 | 0xbd, 0x66}, | ||
98 | {0x01, 0x18, 0x39, 0x29, 0x6a, 0x78, 0x9a, 0x3b, /* y */ | ||
99 | 0xc0, 0x04, 0x5c, 0x8a, 0x5f, 0xb4, 0x2c, 0x7d, | ||
100 | 0x1b, 0xd9, 0x98, 0xf5, 0x44, 0x49, 0x57, 0x9b, | ||
101 | 0x44, 0x68, 0x17, 0xaf, 0xbd, 0x17, 0x27, 0x3e, | ||
102 | 0x66, 0x2c, 0x97, 0xee, 0x72, 0x99, 0x5e, 0xf4, | ||
103 | 0x26, 0x40, 0xc5, 0x50, 0xb9, 0x01, 0x3f, 0xad, | ||
104 | 0x07, 0x61, 0x35, 0x3c, 0x70, 0x86, 0xa2, 0x72, | ||
105 | 0xc2, 0x40, 0x88, 0xbe, 0x94, 0x76, 0x9f, 0xd1, | ||
106 | 0x66, 0x50} | ||
107 | }; | ||
108 | |||
109 | /* The representation of field elements. | ||
110 | * ------------------------------------ | ||
111 | * | ||
112 | * We represent field elements with nine values. These values are either 64 or | ||
113 | * 128 bits and the field element represented is: | ||
114 | * v[0]*2^0 + v[1]*2^58 + v[2]*2^116 + ... + v[8]*2^464 (mod p) | ||
115 | * Each of the nine values is called a 'limb'. Since the limbs are spaced only | ||
116 | * 58 bits apart, but are greater than 58 bits in length, the most significant | ||
117 | * bits of each limb overlap with the least significant bits of the next. | ||
118 | * | ||
119 | * A field element with 64-bit limbs is an 'felem'. One with 128-bit limbs is a | ||
120 | * 'largefelem' */ | ||
121 | |||
122 | #define NLIMBS 9 | ||
123 | |||
124 | typedef uint64_t limb; | ||
125 | typedef limb felem[NLIMBS]; | ||
126 | typedef uint128_t largefelem[NLIMBS]; | ||
127 | |||
128 | static const limb bottom57bits = 0x1ffffffffffffff; | ||
129 | static const limb bottom58bits = 0x3ffffffffffffff; | ||
130 | |||
131 | /* bin66_to_felem takes a little-endian byte array and converts it into felem | ||
132 | * form. This assumes that the CPU is little-endian. */ | ||
133 | static void | ||
134 | bin66_to_felem(felem out, const u8 in[66]) | ||
135 | { | ||
136 | out[0] = (*((limb *) & in[0])) & bottom58bits; | ||
137 | out[1] = (*((limb *) & in[7]) >> 2) & bottom58bits; | ||
138 | out[2] = (*((limb *) & in[14]) >> 4) & bottom58bits; | ||
139 | out[3] = (*((limb *) & in[21]) >> 6) & bottom58bits; | ||
140 | out[4] = (*((limb *) & in[29])) & bottom58bits; | ||
141 | out[5] = (*((limb *) & in[36]) >> 2) & bottom58bits; | ||
142 | out[6] = (*((limb *) & in[43]) >> 4) & bottom58bits; | ||
143 | out[7] = (*((limb *) & in[50]) >> 6) & bottom58bits; | ||
144 | out[8] = (*((limb *) & in[58])) & bottom57bits; | ||
145 | } | ||
146 | |||
147 | /* felem_to_bin66 takes an felem and serialises into a little endian, 66 byte | ||
148 | * array. This assumes that the CPU is little-endian. */ | ||
149 | static void | ||
150 | felem_to_bin66(u8 out[66], const felem in) | ||
151 | { | ||
152 | memset(out, 0, 66); | ||
153 | (*((limb *) & out[0])) = in[0]; | ||
154 | (*((limb *) & out[7])) |= in[1] << 2; | ||
155 | (*((limb *) & out[14])) |= in[2] << 4; | ||
156 | (*((limb *) & out[21])) |= in[3] << 6; | ||
157 | (*((limb *) & out[29])) = in[4]; | ||
158 | (*((limb *) & out[36])) |= in[5] << 2; | ||
159 | (*((limb *) & out[43])) |= in[6] << 4; | ||
160 | (*((limb *) & out[50])) |= in[7] << 6; | ||
161 | (*((limb *) & out[58])) = in[8]; | ||
162 | } | ||
163 | |||
164 | /* To preserve endianness when using BN_bn2bin and BN_bin2bn */ | ||
165 | static void | ||
166 | flip_endian(u8 * out, const u8 * in, unsigned len) | ||
167 | { | ||
168 | unsigned i; | ||
169 | for (i = 0; i < len; ++i) | ||
170 | out[i] = in[len - 1 - i]; | ||
171 | } | ||
172 | |||
173 | /* BN_to_felem converts an OpenSSL BIGNUM into an felem */ | ||
174 | static int | ||
175 | BN_to_felem(felem out, const BIGNUM * bn) | ||
176 | { | ||
177 | felem_bytearray b_in; | ||
178 | felem_bytearray b_out; | ||
179 | unsigned num_bytes; | ||
180 | |||
181 | /* BN_bn2bin eats leading zeroes */ | ||
182 | memset(b_out, 0, sizeof b_out); | ||
183 | num_bytes = BN_num_bytes(bn); | ||
184 | if (num_bytes > sizeof b_out) { | ||
185 | ECerr(EC_F_BN_TO_FELEM, EC_R_BIGNUM_OUT_OF_RANGE); | ||
186 | return 0; | ||
187 | } | ||
188 | if (BN_is_negative(bn)) { | ||
189 | ECerr(EC_F_BN_TO_FELEM, EC_R_BIGNUM_OUT_OF_RANGE); | ||
190 | return 0; | ||
191 | } | ||
192 | num_bytes = BN_bn2bin(bn, b_in); | ||
193 | flip_endian(b_out, b_in, num_bytes); | ||
194 | bin66_to_felem(out, b_out); | ||
195 | return 1; | ||
196 | } | ||
197 | |||
198 | /* felem_to_BN converts an felem into an OpenSSL BIGNUM */ | ||
199 | static BIGNUM * | ||
200 | felem_to_BN(BIGNUM * out, const felem in) | ||
201 | { | ||
202 | felem_bytearray b_in, b_out; | ||
203 | felem_to_bin66(b_in, in); | ||
204 | flip_endian(b_out, b_in, sizeof b_out); | ||
205 | return BN_bin2bn(b_out, sizeof b_out, out); | ||
206 | } | ||
207 | |||
208 | |||
209 | /* Field operations | ||
210 | * ---------------- */ | ||
211 | |||
212 | static void | ||
213 | felem_one(felem out) | ||
214 | { | ||
215 | out[0] = 1; | ||
216 | out[1] = 0; | ||
217 | out[2] = 0; | ||
218 | out[3] = 0; | ||
219 | out[4] = 0; | ||
220 | out[5] = 0; | ||
221 | out[6] = 0; | ||
222 | out[7] = 0; | ||
223 | out[8] = 0; | ||
224 | } | ||
225 | |||
226 | static void | ||
227 | felem_assign(felem out, const felem in) | ||
228 | { | ||
229 | out[0] = in[0]; | ||
230 | out[1] = in[1]; | ||
231 | out[2] = in[2]; | ||
232 | out[3] = in[3]; | ||
233 | out[4] = in[4]; | ||
234 | out[5] = in[5]; | ||
235 | out[6] = in[6]; | ||
236 | out[7] = in[7]; | ||
237 | out[8] = in[8]; | ||
238 | } | ||
239 | |||
240 | /* felem_sum64 sets out = out + in. */ | ||
241 | static void | ||
242 | felem_sum64(felem out, const felem in) | ||
243 | { | ||
244 | out[0] += in[0]; | ||
245 | out[1] += in[1]; | ||
246 | out[2] += in[2]; | ||
247 | out[3] += in[3]; | ||
248 | out[4] += in[4]; | ||
249 | out[5] += in[5]; | ||
250 | out[6] += in[6]; | ||
251 | out[7] += in[7]; | ||
252 | out[8] += in[8]; | ||
253 | } | ||
254 | |||
255 | /* felem_scalar sets out = in * scalar */ | ||
256 | static void | ||
257 | felem_scalar(felem out, const felem in, limb scalar) | ||
258 | { | ||
259 | out[0] = in[0] * scalar; | ||
260 | out[1] = in[1] * scalar; | ||
261 | out[2] = in[2] * scalar; | ||
262 | out[3] = in[3] * scalar; | ||
263 | out[4] = in[4] * scalar; | ||
264 | out[5] = in[5] * scalar; | ||
265 | out[6] = in[6] * scalar; | ||
266 | out[7] = in[7] * scalar; | ||
267 | out[8] = in[8] * scalar; | ||
268 | } | ||
269 | |||
270 | /* felem_scalar64 sets out = out * scalar */ | ||
271 | static void | ||
272 | felem_scalar64(felem out, limb scalar) | ||
273 | { | ||
274 | out[0] *= scalar; | ||
275 | out[1] *= scalar; | ||
276 | out[2] *= scalar; | ||
277 | out[3] *= scalar; | ||
278 | out[4] *= scalar; | ||
279 | out[5] *= scalar; | ||
280 | out[6] *= scalar; | ||
281 | out[7] *= scalar; | ||
282 | out[8] *= scalar; | ||
283 | } | ||
284 | |||
285 | /* felem_scalar128 sets out = out * scalar */ | ||
286 | static void | ||
287 | felem_scalar128(largefelem out, limb scalar) | ||
288 | { | ||
289 | out[0] *= scalar; | ||
290 | out[1] *= scalar; | ||
291 | out[2] *= scalar; | ||
292 | out[3] *= scalar; | ||
293 | out[4] *= scalar; | ||
294 | out[5] *= scalar; | ||
295 | out[6] *= scalar; | ||
296 | out[7] *= scalar; | ||
297 | out[8] *= scalar; | ||
298 | } | ||
299 | |||
300 | /* felem_neg sets |out| to |-in| | ||
301 | * On entry: | ||
302 | * in[i] < 2^59 + 2^14 | ||
303 | * On exit: | ||
304 | * out[i] < 2^62 | ||
305 | */ | ||
306 | static void | ||
307 | felem_neg(felem out, const felem in) | ||
308 | { | ||
309 | /* In order to prevent underflow, we subtract from 0 mod p. */ | ||
310 | static const limb two62m3 = (((limb) 1) << 62) - (((limb) 1) << 5); | ||
311 | static const limb two62m2 = (((limb) 1) << 62) - (((limb) 1) << 4); | ||
312 | |||
313 | out[0] = two62m3 - in[0]; | ||
314 | out[1] = two62m2 - in[1]; | ||
315 | out[2] = two62m2 - in[2]; | ||
316 | out[3] = two62m2 - in[3]; | ||
317 | out[4] = two62m2 - in[4]; | ||
318 | out[5] = two62m2 - in[5]; | ||
319 | out[6] = two62m2 - in[6]; | ||
320 | out[7] = two62m2 - in[7]; | ||
321 | out[8] = two62m2 - in[8]; | ||
322 | } | ||
323 | |||
324 | /* felem_diff64 subtracts |in| from |out| | ||
325 | * On entry: | ||
326 | * in[i] < 2^59 + 2^14 | ||
327 | * On exit: | ||
328 | * out[i] < out[i] + 2^62 | ||
329 | */ | ||
330 | static void | ||
331 | felem_diff64(felem out, const felem in) | ||
332 | { | ||
333 | /* In order to prevent underflow, we add 0 mod p before subtracting. */ | ||
334 | static const limb two62m3 = (((limb) 1) << 62) - (((limb) 1) << 5); | ||
335 | static const limb two62m2 = (((limb) 1) << 62) - (((limb) 1) << 4); | ||
336 | |||
337 | out[0] += two62m3 - in[0]; | ||
338 | out[1] += two62m2 - in[1]; | ||
339 | out[2] += two62m2 - in[2]; | ||
340 | out[3] += two62m2 - in[3]; | ||
341 | out[4] += two62m2 - in[4]; | ||
342 | out[5] += two62m2 - in[5]; | ||
343 | out[6] += two62m2 - in[6]; | ||
344 | out[7] += two62m2 - in[7]; | ||
345 | out[8] += two62m2 - in[8]; | ||
346 | } | ||
347 | |||
348 | /* felem_diff_128_64 subtracts |in| from |out| | ||
349 | * On entry: | ||
350 | * in[i] < 2^62 + 2^17 | ||
351 | * On exit: | ||
352 | * out[i] < out[i] + 2^63 | ||
353 | */ | ||
354 | static void | ||
355 | felem_diff_128_64(largefelem out, const felem in) | ||
356 | { | ||
357 | /* In order to prevent underflow, we add 0 mod p before subtracting. */ | ||
358 | static const limb two63m6 = (((limb) 1) << 62) - (((limb) 1) << 5); | ||
359 | static const limb two63m5 = (((limb) 1) << 62) - (((limb) 1) << 4); | ||
360 | |||
361 | out[0] += two63m6 - in[0]; | ||
362 | out[1] += two63m5 - in[1]; | ||
363 | out[2] += two63m5 - in[2]; | ||
364 | out[3] += two63m5 - in[3]; | ||
365 | out[4] += two63m5 - in[4]; | ||
366 | out[5] += two63m5 - in[5]; | ||
367 | out[6] += two63m5 - in[6]; | ||
368 | out[7] += two63m5 - in[7]; | ||
369 | out[8] += two63m5 - in[8]; | ||
370 | } | ||
371 | |||
372 | /* felem_diff_128_64 subtracts |in| from |out| | ||
373 | * On entry: | ||
374 | * in[i] < 2^126 | ||
375 | * On exit: | ||
376 | * out[i] < out[i] + 2^127 - 2^69 | ||
377 | */ | ||
378 | static void | ||
379 | felem_diff128(largefelem out, const largefelem in) | ||
380 | { | ||
381 | /* In order to prevent underflow, we add 0 mod p before subtracting. */ | ||
382 | static const uint128_t two127m70 = (((uint128_t) 1) << 127) - (((uint128_t) 1) << 70); | ||
383 | static const uint128_t two127m69 = (((uint128_t) 1) << 127) - (((uint128_t) 1) << 69); | ||
384 | |||
385 | out[0] += (two127m70 - in[0]); | ||
386 | out[1] += (two127m69 - in[1]); | ||
387 | out[2] += (two127m69 - in[2]); | ||
388 | out[3] += (two127m69 - in[3]); | ||
389 | out[4] += (two127m69 - in[4]); | ||
390 | out[5] += (two127m69 - in[5]); | ||
391 | out[6] += (two127m69 - in[6]); | ||
392 | out[7] += (two127m69 - in[7]); | ||
393 | out[8] += (two127m69 - in[8]); | ||
394 | } | ||
395 | |||
396 | /* felem_square sets |out| = |in|^2 | ||
397 | * On entry: | ||
398 | * in[i] < 2^62 | ||
399 | * On exit: | ||
400 | * out[i] < 17 * max(in[i]) * max(in[i]) | ||
401 | */ | ||
402 | static void | ||
403 | felem_square(largefelem out, const felem in) | ||
404 | { | ||
405 | felem inx2, inx4; | ||
406 | felem_scalar(inx2, in, 2); | ||
407 | felem_scalar(inx4, in, 4); | ||
408 | |||
409 | /* | ||
410 | * We have many cases were we want to do in[x] * in[y] + in[y] * | ||
411 | * in[x] This is obviously just 2 * in[x] * in[y] However, rather | ||
412 | * than do the doubling on the 128 bit result, we double one of the | ||
413 | * inputs to the multiplication by reading from |inx2| | ||
414 | */ | ||
415 | |||
416 | out[0] = ((uint128_t) in[0]) * in[0]; | ||
417 | out[1] = ((uint128_t) in[0]) * inx2[1]; | ||
418 | out[2] = ((uint128_t) in[0]) * inx2[2] + | ||
419 | ((uint128_t) in[1]) * in[1]; | ||
420 | out[3] = ((uint128_t) in[0]) * inx2[3] + | ||
421 | ((uint128_t) in[1]) * inx2[2]; | ||
422 | out[4] = ((uint128_t) in[0]) * inx2[4] + | ||
423 | ((uint128_t) in[1]) * inx2[3] + | ||
424 | ((uint128_t) in[2]) * in[2]; | ||
425 | out[5] = ((uint128_t) in[0]) * inx2[5] + | ||
426 | ((uint128_t) in[1]) * inx2[4] + | ||
427 | ((uint128_t) in[2]) * inx2[3]; | ||
428 | out[6] = ((uint128_t) in[0]) * inx2[6] + | ||
429 | ((uint128_t) in[1]) * inx2[5] + | ||
430 | ((uint128_t) in[2]) * inx2[4] + | ||
431 | ((uint128_t) in[3]) * in[3]; | ||
432 | out[7] = ((uint128_t) in[0]) * inx2[7] + | ||
433 | ((uint128_t) in[1]) * inx2[6] + | ||
434 | ((uint128_t) in[2]) * inx2[5] + | ||
435 | ((uint128_t) in[3]) * inx2[4]; | ||
436 | out[8] = ((uint128_t) in[0]) * inx2[8] + | ||
437 | ((uint128_t) in[1]) * inx2[7] + | ||
438 | ((uint128_t) in[2]) * inx2[6] + | ||
439 | ((uint128_t) in[3]) * inx2[5] + | ||
440 | ((uint128_t) in[4]) * in[4]; | ||
441 | |||
442 | /* | ||
443 | * The remaining limbs fall above 2^521, with the first falling at | ||
444 | * 2^522. They correspond to locations one bit up from the limbs | ||
445 | * produced above so we would have to multiply by two to align them. | ||
446 | * Again, rather than operate on the 128-bit result, we double one of | ||
447 | * the inputs to the multiplication. If we want to double for both | ||
448 | * this reason, and the reason above, then we end up multiplying by | ||
449 | * four. | ||
450 | */ | ||
451 | |||
452 | /* 9 */ | ||
453 | out[0] += ((uint128_t) in[1]) * inx4[8] + | ||
454 | ((uint128_t) in[2]) * inx4[7] + | ||
455 | ((uint128_t) in[3]) * inx4[6] + | ||
456 | ((uint128_t) in[4]) * inx4[5]; | ||
457 | |||
458 | /* 10 */ | ||
459 | out[1] += ((uint128_t) in[2]) * inx4[8] + | ||
460 | ((uint128_t) in[3]) * inx4[7] + | ||
461 | ((uint128_t) in[4]) * inx4[6] + | ||
462 | ((uint128_t) in[5]) * inx2[5]; | ||
463 | |||
464 | /* 11 */ | ||
465 | out[2] += ((uint128_t) in[3]) * inx4[8] + | ||
466 | ((uint128_t) in[4]) * inx4[7] + | ||
467 | ((uint128_t) in[5]) * inx4[6]; | ||
468 | |||
469 | /* 12 */ | ||
470 | out[3] += ((uint128_t) in[4]) * inx4[8] + | ||
471 | ((uint128_t) in[5]) * inx4[7] + | ||
472 | ((uint128_t) in[6]) * inx2[6]; | ||
473 | |||
474 | /* 13 */ | ||
475 | out[4] += ((uint128_t) in[5]) * inx4[8] + | ||
476 | ((uint128_t) in[6]) * inx4[7]; | ||
477 | |||
478 | /* 14 */ | ||
479 | out[5] += ((uint128_t) in[6]) * inx4[8] + | ||
480 | ((uint128_t) in[7]) * inx2[7]; | ||
481 | |||
482 | /* 15 */ | ||
483 | out[6] += ((uint128_t) in[7]) * inx4[8]; | ||
484 | |||
485 | /* 16 */ | ||
486 | out[7] += ((uint128_t) in[8]) * inx2[8]; | ||
487 | } | ||
488 | |||
489 | /* felem_mul sets |out| = |in1| * |in2| | ||
490 | * On entry: | ||
491 | * in1[i] < 2^64 | ||
492 | * in2[i] < 2^63 | ||
493 | * On exit: | ||
494 | * out[i] < 17 * max(in1[i]) * max(in2[i]) | ||
495 | */ | ||
496 | static void | ||
497 | felem_mul(largefelem out, const felem in1, const felem in2) | ||
498 | { | ||
499 | felem in2x2; | ||
500 | felem_scalar(in2x2, in2, 2); | ||
501 | |||
502 | out[0] = ((uint128_t) in1[0]) * in2[0]; | ||
503 | |||
504 | out[1] = ((uint128_t) in1[0]) * in2[1] + | ||
505 | ((uint128_t) in1[1]) * in2[0]; | ||
506 | |||
507 | out[2] = ((uint128_t) in1[0]) * in2[2] + | ||
508 | ((uint128_t) in1[1]) * in2[1] + | ||
509 | ((uint128_t) in1[2]) * in2[0]; | ||
510 | |||
511 | out[3] = ((uint128_t) in1[0]) * in2[3] + | ||
512 | ((uint128_t) in1[1]) * in2[2] + | ||
513 | ((uint128_t) in1[2]) * in2[1] + | ||
514 | ((uint128_t) in1[3]) * in2[0]; | ||
515 | |||
516 | out[4] = ((uint128_t) in1[0]) * in2[4] + | ||
517 | ((uint128_t) in1[1]) * in2[3] + | ||
518 | ((uint128_t) in1[2]) * in2[2] + | ||
519 | ((uint128_t) in1[3]) * in2[1] + | ||
520 | ((uint128_t) in1[4]) * in2[0]; | ||
521 | |||
522 | out[5] = ((uint128_t) in1[0]) * in2[5] + | ||
523 | ((uint128_t) in1[1]) * in2[4] + | ||
524 | ((uint128_t) in1[2]) * in2[3] + | ||
525 | ((uint128_t) in1[3]) * in2[2] + | ||
526 | ((uint128_t) in1[4]) * in2[1] + | ||
527 | ((uint128_t) in1[5]) * in2[0]; | ||
528 | |||
529 | out[6] = ((uint128_t) in1[0]) * in2[6] + | ||
530 | ((uint128_t) in1[1]) * in2[5] + | ||
531 | ((uint128_t) in1[2]) * in2[4] + | ||
532 | ((uint128_t) in1[3]) * in2[3] + | ||
533 | ((uint128_t) in1[4]) * in2[2] + | ||
534 | ((uint128_t) in1[5]) * in2[1] + | ||
535 | ((uint128_t) in1[6]) * in2[0]; | ||
536 | |||
537 | out[7] = ((uint128_t) in1[0]) * in2[7] + | ||
538 | ((uint128_t) in1[1]) * in2[6] + | ||
539 | ((uint128_t) in1[2]) * in2[5] + | ||
540 | ((uint128_t) in1[3]) * in2[4] + | ||
541 | ((uint128_t) in1[4]) * in2[3] + | ||
542 | ((uint128_t) in1[5]) * in2[2] + | ||
543 | ((uint128_t) in1[6]) * in2[1] + | ||
544 | ((uint128_t) in1[7]) * in2[0]; | ||
545 | |||
546 | out[8] = ((uint128_t) in1[0]) * in2[8] + | ||
547 | ((uint128_t) in1[1]) * in2[7] + | ||
548 | ((uint128_t) in1[2]) * in2[6] + | ||
549 | ((uint128_t) in1[3]) * in2[5] + | ||
550 | ((uint128_t) in1[4]) * in2[4] + | ||
551 | ((uint128_t) in1[5]) * in2[3] + | ||
552 | ((uint128_t) in1[6]) * in2[2] + | ||
553 | ((uint128_t) in1[7]) * in2[1] + | ||
554 | ((uint128_t) in1[8]) * in2[0]; | ||
555 | |||
556 | /* See comment in felem_square about the use of in2x2 here */ | ||
557 | |||
558 | out[0] += ((uint128_t) in1[1]) * in2x2[8] + | ||
559 | ((uint128_t) in1[2]) * in2x2[7] + | ||
560 | ((uint128_t) in1[3]) * in2x2[6] + | ||
561 | ((uint128_t) in1[4]) * in2x2[5] + | ||
562 | ((uint128_t) in1[5]) * in2x2[4] + | ||
563 | ((uint128_t) in1[6]) * in2x2[3] + | ||
564 | ((uint128_t) in1[7]) * in2x2[2] + | ||
565 | ((uint128_t) in1[8]) * in2x2[1]; | ||
566 | |||
567 | out[1] += ((uint128_t) in1[2]) * in2x2[8] + | ||
568 | ((uint128_t) in1[3]) * in2x2[7] + | ||
569 | ((uint128_t) in1[4]) * in2x2[6] + | ||
570 | ((uint128_t) in1[5]) * in2x2[5] + | ||
571 | ((uint128_t) in1[6]) * in2x2[4] + | ||
572 | ((uint128_t) in1[7]) * in2x2[3] + | ||
573 | ((uint128_t) in1[8]) * in2x2[2]; | ||
574 | |||
575 | out[2] += ((uint128_t) in1[3]) * in2x2[8] + | ||
576 | ((uint128_t) in1[4]) * in2x2[7] + | ||
577 | ((uint128_t) in1[5]) * in2x2[6] + | ||
578 | ((uint128_t) in1[6]) * in2x2[5] + | ||
579 | ((uint128_t) in1[7]) * in2x2[4] + | ||
580 | ((uint128_t) in1[8]) * in2x2[3]; | ||
581 | |||
582 | out[3] += ((uint128_t) in1[4]) * in2x2[8] + | ||
583 | ((uint128_t) in1[5]) * in2x2[7] + | ||
584 | ((uint128_t) in1[6]) * in2x2[6] + | ||
585 | ((uint128_t) in1[7]) * in2x2[5] + | ||
586 | ((uint128_t) in1[8]) * in2x2[4]; | ||
587 | |||
588 | out[4] += ((uint128_t) in1[5]) * in2x2[8] + | ||
589 | ((uint128_t) in1[6]) * in2x2[7] + | ||
590 | ((uint128_t) in1[7]) * in2x2[6] + | ||
591 | ((uint128_t) in1[8]) * in2x2[5]; | ||
592 | |||
593 | out[5] += ((uint128_t) in1[6]) * in2x2[8] + | ||
594 | ((uint128_t) in1[7]) * in2x2[7] + | ||
595 | ((uint128_t) in1[8]) * in2x2[6]; | ||
596 | |||
597 | out[6] += ((uint128_t) in1[7]) * in2x2[8] + | ||
598 | ((uint128_t) in1[8]) * in2x2[7]; | ||
599 | |||
600 | out[7] += ((uint128_t) in1[8]) * in2x2[8]; | ||
601 | } | ||
602 | |||
603 | static const limb bottom52bits = 0xfffffffffffff; | ||
604 | |||
605 | /* felem_reduce converts a largefelem to an felem. | ||
606 | * On entry: | ||
607 | * in[i] < 2^128 | ||
608 | * On exit: | ||
609 | * out[i] < 2^59 + 2^14 | ||
610 | */ | ||
611 | static void | ||
612 | felem_reduce(felem out, const largefelem in) | ||
613 | { | ||
614 | u64 overflow1, overflow2; | ||
615 | |||
616 | out[0] = ((limb) in[0]) & bottom58bits; | ||
617 | out[1] = ((limb) in[1]) & bottom58bits; | ||
618 | out[2] = ((limb) in[2]) & bottom58bits; | ||
619 | out[3] = ((limb) in[3]) & bottom58bits; | ||
620 | out[4] = ((limb) in[4]) & bottom58bits; | ||
621 | out[5] = ((limb) in[5]) & bottom58bits; | ||
622 | out[6] = ((limb) in[6]) & bottom58bits; | ||
623 | out[7] = ((limb) in[7]) & bottom58bits; | ||
624 | out[8] = ((limb) in[8]) & bottom58bits; | ||
625 | |||
626 | /* out[i] < 2^58 */ | ||
627 | |||
628 | out[1] += ((limb) in[0]) >> 58; | ||
629 | out[1] += (((limb) (in[0] >> 64)) & bottom52bits) << 6; | ||
630 | /* | ||
631 | * out[1] < 2^58 + 2^6 + 2^58 = 2^59 + 2^6 | ||
632 | */ | ||
633 | out[2] += ((limb) (in[0] >> 64)) >> 52; | ||
634 | |||
635 | out[2] += ((limb) in[1]) >> 58; | ||
636 | out[2] += (((limb) (in[1] >> 64)) & bottom52bits) << 6; | ||
637 | out[3] += ((limb) (in[1] >> 64)) >> 52; | ||
638 | |||
639 | out[3] += ((limb) in[2]) >> 58; | ||
640 | out[3] += (((limb) (in[2] >> 64)) & bottom52bits) << 6; | ||
641 | out[4] += ((limb) (in[2] >> 64)) >> 52; | ||
642 | |||
643 | out[4] += ((limb) in[3]) >> 58; | ||
644 | out[4] += (((limb) (in[3] >> 64)) & bottom52bits) << 6; | ||
645 | out[5] += ((limb) (in[3] >> 64)) >> 52; | ||
646 | |||
647 | out[5] += ((limb) in[4]) >> 58; | ||
648 | out[5] += (((limb) (in[4] >> 64)) & bottom52bits) << 6; | ||
649 | out[6] += ((limb) (in[4] >> 64)) >> 52; | ||
650 | |||
651 | out[6] += ((limb) in[5]) >> 58; | ||
652 | out[6] += (((limb) (in[5] >> 64)) & bottom52bits) << 6; | ||
653 | out[7] += ((limb) (in[5] >> 64)) >> 52; | ||
654 | |||
655 | out[7] += ((limb) in[6]) >> 58; | ||
656 | out[7] += (((limb) (in[6] >> 64)) & bottom52bits) << 6; | ||
657 | out[8] += ((limb) (in[6] >> 64)) >> 52; | ||
658 | |||
659 | out[8] += ((limb) in[7]) >> 58; | ||
660 | out[8] += (((limb) (in[7] >> 64)) & bottom52bits) << 6; | ||
661 | /* | ||
662 | * out[x > 1] < 2^58 + 2^6 + 2^58 + 2^12 < 2^59 + 2^13 | ||
663 | */ | ||
664 | overflow1 = ((limb) (in[7] >> 64)) >> 52; | ||
665 | |||
666 | overflow1 += ((limb) in[8]) >> 58; | ||
667 | overflow1 += (((limb) (in[8] >> 64)) & bottom52bits) << 6; | ||
668 | overflow2 = ((limb) (in[8] >> 64)) >> 52; | ||
669 | |||
670 | overflow1 <<= 1; /* overflow1 < 2^13 + 2^7 + 2^59 */ | ||
671 | overflow2 <<= 1; /* overflow2 < 2^13 */ | ||
672 | |||
673 | out[0] += overflow1; /* out[0] < 2^60 */ | ||
674 | out[1] += overflow2; /* out[1] < 2^59 + 2^6 + 2^13 */ | ||
675 | |||
676 | out[1] += out[0] >> 58; | ||
677 | out[0] &= bottom58bits; | ||
678 | /* | ||
679 | * out[0] < 2^58 out[1] < 2^59 + 2^6 + 2^13 + 2^2 < 2^59 + 2^14 | ||
680 | */ | ||
681 | } | ||
682 | |||
683 | static void | ||
684 | felem_square_reduce(felem out, const felem in) | ||
685 | { | ||
686 | largefelem tmp; | ||
687 | felem_square(tmp, in); | ||
688 | felem_reduce(out, tmp); | ||
689 | } | ||
690 | |||
691 | static void | ||
692 | felem_mul_reduce(felem out, const felem in1, const felem in2) | ||
693 | { | ||
694 | largefelem tmp; | ||
695 | felem_mul(tmp, in1, in2); | ||
696 | felem_reduce(out, tmp); | ||
697 | } | ||
698 | |||
699 | /* felem_inv calculates |out| = |in|^{-1} | ||
700 | * | ||
701 | * Based on Fermat's Little Theorem: | ||
702 | * a^p = a (mod p) | ||
703 | * a^{p-1} = 1 (mod p) | ||
704 | * a^{p-2} = a^{-1} (mod p) | ||
705 | */ | ||
706 | static void | ||
707 | felem_inv(felem out, const felem in) | ||
708 | { | ||
709 | felem ftmp, ftmp2, ftmp3, ftmp4; | ||
710 | largefelem tmp; | ||
711 | unsigned i; | ||
712 | |||
713 | felem_square(tmp, in); | ||
714 | felem_reduce(ftmp, tmp);/* 2^1 */ | ||
715 | felem_mul(tmp, in, ftmp); | ||
716 | felem_reduce(ftmp, tmp);/* 2^2 - 2^0 */ | ||
717 | felem_assign(ftmp2, ftmp); | ||
718 | felem_square(tmp, ftmp); | ||
719 | felem_reduce(ftmp, tmp);/* 2^3 - 2^1 */ | ||
720 | felem_mul(tmp, in, ftmp); | ||
721 | felem_reduce(ftmp, tmp);/* 2^3 - 2^0 */ | ||
722 | felem_square(tmp, ftmp); | ||
723 | felem_reduce(ftmp, tmp);/* 2^4 - 2^1 */ | ||
724 | |||
725 | felem_square(tmp, ftmp2); | ||
726 | felem_reduce(ftmp3, tmp); /* 2^3 - 2^1 */ | ||
727 | felem_square(tmp, ftmp3); | ||
728 | felem_reduce(ftmp3, tmp); /* 2^4 - 2^2 */ | ||
729 | felem_mul(tmp, ftmp3, ftmp2); | ||
730 | felem_reduce(ftmp3, tmp); /* 2^4 - 2^0 */ | ||
731 | |||
732 | felem_assign(ftmp2, ftmp3); | ||
733 | felem_square(tmp, ftmp3); | ||
734 | felem_reduce(ftmp3, tmp); /* 2^5 - 2^1 */ | ||
735 | felem_square(tmp, ftmp3); | ||
736 | felem_reduce(ftmp3, tmp); /* 2^6 - 2^2 */ | ||
737 | felem_square(tmp, ftmp3); | ||
738 | felem_reduce(ftmp3, tmp); /* 2^7 - 2^3 */ | ||
739 | felem_square(tmp, ftmp3); | ||
740 | felem_reduce(ftmp3, tmp); /* 2^8 - 2^4 */ | ||
741 | felem_assign(ftmp4, ftmp3); | ||
742 | felem_mul(tmp, ftmp3, ftmp); | ||
743 | felem_reduce(ftmp4, tmp); /* 2^8 - 2^1 */ | ||
744 | felem_square(tmp, ftmp4); | ||
745 | felem_reduce(ftmp4, tmp); /* 2^9 - 2^2 */ | ||
746 | felem_mul(tmp, ftmp3, ftmp2); | ||
747 | felem_reduce(ftmp3, tmp); /* 2^8 - 2^0 */ | ||
748 | felem_assign(ftmp2, ftmp3); | ||
749 | |||
750 | for (i = 0; i < 8; i++) { | ||
751 | felem_square(tmp, ftmp3); | ||
752 | felem_reduce(ftmp3, tmp); /* 2^16 - 2^8 */ | ||
753 | } | ||
754 | felem_mul(tmp, ftmp3, ftmp2); | ||
755 | felem_reduce(ftmp3, tmp); /* 2^16 - 2^0 */ | ||
756 | felem_assign(ftmp2, ftmp3); | ||
757 | |||
758 | for (i = 0; i < 16; i++) { | ||
759 | felem_square(tmp, ftmp3); | ||
760 | felem_reduce(ftmp3, tmp); /* 2^32 - 2^16 */ | ||
761 | } | ||
762 | felem_mul(tmp, ftmp3, ftmp2); | ||
763 | felem_reduce(ftmp3, tmp); /* 2^32 - 2^0 */ | ||
764 | felem_assign(ftmp2, ftmp3); | ||
765 | |||
766 | for (i = 0; i < 32; i++) { | ||
767 | felem_square(tmp, ftmp3); | ||
768 | felem_reduce(ftmp3, tmp); /* 2^64 - 2^32 */ | ||
769 | } | ||
770 | felem_mul(tmp, ftmp3, ftmp2); | ||
771 | felem_reduce(ftmp3, tmp); /* 2^64 - 2^0 */ | ||
772 | felem_assign(ftmp2, ftmp3); | ||
773 | |||
774 | for (i = 0; i < 64; i++) { | ||
775 | felem_square(tmp, ftmp3); | ||
776 | felem_reduce(ftmp3, tmp); /* 2^128 - 2^64 */ | ||
777 | } | ||
778 | felem_mul(tmp, ftmp3, ftmp2); | ||
779 | felem_reduce(ftmp3, tmp); /* 2^128 - 2^0 */ | ||
780 | felem_assign(ftmp2, ftmp3); | ||
781 | |||
782 | for (i = 0; i < 128; i++) { | ||
783 | felem_square(tmp, ftmp3); | ||
784 | felem_reduce(ftmp3, tmp); /* 2^256 - 2^128 */ | ||
785 | } | ||
786 | felem_mul(tmp, ftmp3, ftmp2); | ||
787 | felem_reduce(ftmp3, tmp); /* 2^256 - 2^0 */ | ||
788 | felem_assign(ftmp2, ftmp3); | ||
789 | |||
790 | for (i = 0; i < 256; i++) { | ||
791 | felem_square(tmp, ftmp3); | ||
792 | felem_reduce(ftmp3, tmp); /* 2^512 - 2^256 */ | ||
793 | } | ||
794 | felem_mul(tmp, ftmp3, ftmp2); | ||
795 | felem_reduce(ftmp3, tmp); /* 2^512 - 2^0 */ | ||
796 | |||
797 | for (i = 0; i < 9; i++) { | ||
798 | felem_square(tmp, ftmp3); | ||
799 | felem_reduce(ftmp3, tmp); /* 2^521 - 2^9 */ | ||
800 | } | ||
801 | felem_mul(tmp, ftmp3, ftmp4); | ||
802 | felem_reduce(ftmp3, tmp); /* 2^512 - 2^2 */ | ||
803 | felem_mul(tmp, ftmp3, in); | ||
804 | felem_reduce(out, tmp); /* 2^512 - 3 */ | ||
805 | } | ||
806 | |||
807 | /* This is 2^521-1, expressed as an felem */ | ||
808 | static const felem kPrime = | ||
809 | { | ||
810 | 0x03ffffffffffffff, 0x03ffffffffffffff, 0x03ffffffffffffff, | ||
811 | 0x03ffffffffffffff, 0x03ffffffffffffff, 0x03ffffffffffffff, | ||
812 | 0x03ffffffffffffff, 0x03ffffffffffffff, 0x01ffffffffffffff | ||
813 | }; | ||
814 | |||
815 | /* felem_is_zero returns a limb with all bits set if |in| == 0 (mod p) and 0 | ||
816 | * otherwise. | ||
817 | * On entry: | ||
818 | * in[i] < 2^59 + 2^14 | ||
819 | */ | ||
820 | static limb | ||
821 | felem_is_zero(const felem in) | ||
822 | { | ||
823 | felem ftmp; | ||
824 | limb is_zero, is_p; | ||
825 | felem_assign(ftmp, in); | ||
826 | |||
827 | ftmp[0] += ftmp[8] >> 57; | ||
828 | ftmp[8] &= bottom57bits; | ||
829 | /* ftmp[8] < 2^57 */ | ||
830 | ftmp[1] += ftmp[0] >> 58; | ||
831 | ftmp[0] &= bottom58bits; | ||
832 | ftmp[2] += ftmp[1] >> 58; | ||
833 | ftmp[1] &= bottom58bits; | ||
834 | ftmp[3] += ftmp[2] >> 58; | ||
835 | ftmp[2] &= bottom58bits; | ||
836 | ftmp[4] += ftmp[3] >> 58; | ||
837 | ftmp[3] &= bottom58bits; | ||
838 | ftmp[5] += ftmp[4] >> 58; | ||
839 | ftmp[4] &= bottom58bits; | ||
840 | ftmp[6] += ftmp[5] >> 58; | ||
841 | ftmp[5] &= bottom58bits; | ||
842 | ftmp[7] += ftmp[6] >> 58; | ||
843 | ftmp[6] &= bottom58bits; | ||
844 | ftmp[8] += ftmp[7] >> 58; | ||
845 | ftmp[7] &= bottom58bits; | ||
846 | /* ftmp[8] < 2^57 + 4 */ | ||
847 | |||
848 | /* | ||
849 | * The ninth limb of 2*(2^521-1) is 0x03ffffffffffffff, which is | ||
850 | * greater than our bound for ftmp[8]. Therefore we only have to | ||
851 | * check if the zero is zero or 2^521-1. | ||
852 | */ | ||
853 | |||
854 | is_zero = 0; | ||
855 | is_zero |= ftmp[0]; | ||
856 | is_zero |= ftmp[1]; | ||
857 | is_zero |= ftmp[2]; | ||
858 | is_zero |= ftmp[3]; | ||
859 | is_zero |= ftmp[4]; | ||
860 | is_zero |= ftmp[5]; | ||
861 | is_zero |= ftmp[6]; | ||
862 | is_zero |= ftmp[7]; | ||
863 | is_zero |= ftmp[8]; | ||
864 | |||
865 | is_zero--; | ||
866 | /* | ||
867 | * We know that ftmp[i] < 2^63, therefore the only way that the top | ||
868 | * bit can be set is if is_zero was 0 before the decrement. | ||
869 | */ | ||
870 | is_zero = ((s64) is_zero) >> 63; | ||
871 | |||
872 | is_p = ftmp[0] ^ kPrime[0]; | ||
873 | is_p |= ftmp[1] ^ kPrime[1]; | ||
874 | is_p |= ftmp[2] ^ kPrime[2]; | ||
875 | is_p |= ftmp[3] ^ kPrime[3]; | ||
876 | is_p |= ftmp[4] ^ kPrime[4]; | ||
877 | is_p |= ftmp[5] ^ kPrime[5]; | ||
878 | is_p |= ftmp[6] ^ kPrime[6]; | ||
879 | is_p |= ftmp[7] ^ kPrime[7]; | ||
880 | is_p |= ftmp[8] ^ kPrime[8]; | ||
881 | |||
882 | is_p--; | ||
883 | is_p = ((s64) is_p) >> 63; | ||
884 | |||
885 | is_zero |= is_p; | ||
886 | return is_zero; | ||
887 | } | ||
888 | |||
889 | static int | ||
890 | felem_is_zero_int(const felem in) | ||
891 | { | ||
892 | return (int) (felem_is_zero(in) & ((limb) 1)); | ||
893 | } | ||
894 | |||
895 | /* felem_contract converts |in| to its unique, minimal representation. | ||
896 | * On entry: | ||
897 | * in[i] < 2^59 + 2^14 | ||
898 | */ | ||
899 | static void | ||
900 | felem_contract(felem out, const felem in) | ||
901 | { | ||
902 | limb is_p, is_greater, sign; | ||
903 | static const limb two58 = ((limb) 1) << 58; | ||
904 | |||
905 | felem_assign(out, in); | ||
906 | |||
907 | out[0] += out[8] >> 57; | ||
908 | out[8] &= bottom57bits; | ||
909 | /* out[8] < 2^57 */ | ||
910 | out[1] += out[0] >> 58; | ||
911 | out[0] &= bottom58bits; | ||
912 | out[2] += out[1] >> 58; | ||
913 | out[1] &= bottom58bits; | ||
914 | out[3] += out[2] >> 58; | ||
915 | out[2] &= bottom58bits; | ||
916 | out[4] += out[3] >> 58; | ||
917 | out[3] &= bottom58bits; | ||
918 | out[5] += out[4] >> 58; | ||
919 | out[4] &= bottom58bits; | ||
920 | out[6] += out[5] >> 58; | ||
921 | out[5] &= bottom58bits; | ||
922 | out[7] += out[6] >> 58; | ||
923 | out[6] &= bottom58bits; | ||
924 | out[8] += out[7] >> 58; | ||
925 | out[7] &= bottom58bits; | ||
926 | /* out[8] < 2^57 + 4 */ | ||
927 | |||
928 | /* | ||
929 | * If the value is greater than 2^521-1 then we have to subtract | ||
930 | * 2^521-1 out. See the comments in felem_is_zero regarding why we | ||
931 | * don't test for other multiples of the prime. | ||
932 | */ | ||
933 | |||
934 | /* | ||
935 | * First, if |out| is equal to 2^521-1, we subtract it out to get | ||
936 | * zero. | ||
937 | */ | ||
938 | |||
939 | is_p = out[0] ^ kPrime[0]; | ||
940 | is_p |= out[1] ^ kPrime[1]; | ||
941 | is_p |= out[2] ^ kPrime[2]; | ||
942 | is_p |= out[3] ^ kPrime[3]; | ||
943 | is_p |= out[4] ^ kPrime[4]; | ||
944 | is_p |= out[5] ^ kPrime[5]; | ||
945 | is_p |= out[6] ^ kPrime[6]; | ||
946 | is_p |= out[7] ^ kPrime[7]; | ||
947 | is_p |= out[8] ^ kPrime[8]; | ||
948 | |||
949 | is_p--; | ||
950 | is_p &= is_p << 32; | ||
951 | is_p &= is_p << 16; | ||
952 | is_p &= is_p << 8; | ||
953 | is_p &= is_p << 4; | ||
954 | is_p &= is_p << 2; | ||
955 | is_p &= is_p << 1; | ||
956 | is_p = ((s64) is_p) >> 63; | ||
957 | is_p = ~is_p; | ||
958 | |||
959 | /* is_p is 0 iff |out| == 2^521-1 and all ones otherwise */ | ||
960 | |||
961 | out[0] &= is_p; | ||
962 | out[1] &= is_p; | ||
963 | out[2] &= is_p; | ||
964 | out[3] &= is_p; | ||
965 | out[4] &= is_p; | ||
966 | out[5] &= is_p; | ||
967 | out[6] &= is_p; | ||
968 | out[7] &= is_p; | ||
969 | out[8] &= is_p; | ||
970 | |||
971 | /* | ||
972 | * In order to test that |out| >= 2^521-1 we need only test if out[8] | ||
973 | * >> 57 is greater than zero as (2^521-1) + x >= 2^522 | ||
974 | */ | ||
975 | is_greater = out[8] >> 57; | ||
976 | is_greater |= is_greater << 32; | ||
977 | is_greater |= is_greater << 16; | ||
978 | is_greater |= is_greater << 8; | ||
979 | is_greater |= is_greater << 4; | ||
980 | is_greater |= is_greater << 2; | ||
981 | is_greater |= is_greater << 1; | ||
982 | is_greater = ((s64) is_greater) >> 63; | ||
983 | |||
984 | out[0] -= kPrime[0] & is_greater; | ||
985 | out[1] -= kPrime[1] & is_greater; | ||
986 | out[2] -= kPrime[2] & is_greater; | ||
987 | out[3] -= kPrime[3] & is_greater; | ||
988 | out[4] -= kPrime[4] & is_greater; | ||
989 | out[5] -= kPrime[5] & is_greater; | ||
990 | out[6] -= kPrime[6] & is_greater; | ||
991 | out[7] -= kPrime[7] & is_greater; | ||
992 | out[8] -= kPrime[8] & is_greater; | ||
993 | |||
994 | /* Eliminate negative coefficients */ | ||
995 | sign = -(out[0] >> 63); | ||
996 | out[0] += (two58 & sign); | ||
997 | out[1] -= (1 & sign); | ||
998 | sign = -(out[1] >> 63); | ||
999 | out[1] += (two58 & sign); | ||
1000 | out[2] -= (1 & sign); | ||
1001 | sign = -(out[2] >> 63); | ||
1002 | out[2] += (two58 & sign); | ||
1003 | out[3] -= (1 & sign); | ||
1004 | sign = -(out[3] >> 63); | ||
1005 | out[3] += (two58 & sign); | ||
1006 | out[4] -= (1 & sign); | ||
1007 | sign = -(out[4] >> 63); | ||
1008 | out[4] += (two58 & sign); | ||
1009 | out[5] -= (1 & sign); | ||
1010 | sign = -(out[0] >> 63); | ||
1011 | out[5] += (two58 & sign); | ||
1012 | out[6] -= (1 & sign); | ||
1013 | sign = -(out[6] >> 63); | ||
1014 | out[6] += (two58 & sign); | ||
1015 | out[7] -= (1 & sign); | ||
1016 | sign = -(out[7] >> 63); | ||
1017 | out[7] += (two58 & sign); | ||
1018 | out[8] -= (1 & sign); | ||
1019 | sign = -(out[5] >> 63); | ||
1020 | out[5] += (two58 & sign); | ||
1021 | out[6] -= (1 & sign); | ||
1022 | sign = -(out[6] >> 63); | ||
1023 | out[6] += (two58 & sign); | ||
1024 | out[7] -= (1 & sign); | ||
1025 | sign = -(out[7] >> 63); | ||
1026 | out[7] += (two58 & sign); | ||
1027 | out[8] -= (1 & sign); | ||
1028 | } | ||
1029 | |||
1030 | /* Group operations | ||
1031 | * ---------------- | ||
1032 | * | ||
1033 | * Building on top of the field operations we have the operations on the | ||
1034 | * elliptic curve group itself. Points on the curve are represented in Jacobian | ||
1035 | * coordinates */ | ||
1036 | |||
1037 | /* point_double calcuates 2*(x_in, y_in, z_in) | ||
1038 | * | ||
1039 | * The method is taken from: | ||
1040 | * http://hyperelliptic.org/EFD/g1p/auto-shortw-jacobian-3.html#doubling-dbl-2001-b | ||
1041 | * | ||
1042 | * Outputs can equal corresponding inputs, i.e., x_out == x_in is allowed. | ||
1043 | * while x_out == y_in is not (maybe this works, but it's not tested). */ | ||
1044 | static void | ||
1045 | point_double(felem x_out, felem y_out, felem z_out, | ||
1046 | const felem x_in, const felem y_in, const felem z_in) | ||
1047 | { | ||
1048 | largefelem tmp, tmp2; | ||
1049 | felem delta, gamma, beta, alpha, ftmp, ftmp2; | ||
1050 | |||
1051 | felem_assign(ftmp, x_in); | ||
1052 | felem_assign(ftmp2, x_in); | ||
1053 | |||
1054 | /* delta = z^2 */ | ||
1055 | felem_square(tmp, z_in); | ||
1056 | felem_reduce(delta, tmp); /* delta[i] < 2^59 + 2^14 */ | ||
1057 | |||
1058 | /* gamma = y^2 */ | ||
1059 | felem_square(tmp, y_in); | ||
1060 | felem_reduce(gamma, tmp); /* gamma[i] < 2^59 + 2^14 */ | ||
1061 | |||
1062 | /* beta = x*gamma */ | ||
1063 | felem_mul(tmp, x_in, gamma); | ||
1064 | felem_reduce(beta, tmp);/* beta[i] < 2^59 + 2^14 */ | ||
1065 | |||
1066 | /* alpha = 3*(x-delta)*(x+delta) */ | ||
1067 | felem_diff64(ftmp, delta); | ||
1068 | /* ftmp[i] < 2^61 */ | ||
1069 | felem_sum64(ftmp2, delta); | ||
1070 | /* ftmp2[i] < 2^60 + 2^15 */ | ||
1071 | felem_scalar64(ftmp2, 3); | ||
1072 | /* ftmp2[i] < 3*2^60 + 3*2^15 */ | ||
1073 | felem_mul(tmp, ftmp, ftmp2); | ||
1074 | /* | ||
1075 | * tmp[i] < 17(3*2^121 + 3*2^76) = 61*2^121 + 61*2^76 < 64*2^121 + | ||
1076 | * 64*2^76 = 2^127 + 2^82 < 2^128 | ||
1077 | */ | ||
1078 | felem_reduce(alpha, tmp); | ||
1079 | |||
1080 | /* x' = alpha^2 - 8*beta */ | ||
1081 | felem_square(tmp, alpha); | ||
1082 | /* | ||
1083 | * tmp[i] < 17*2^120 < 2^125 | ||
1084 | */ | ||
1085 | felem_assign(ftmp, beta); | ||
1086 | felem_scalar64(ftmp, 8); | ||
1087 | /* ftmp[i] < 2^62 + 2^17 */ | ||
1088 | felem_diff_128_64(tmp, ftmp); | ||
1089 | /* tmp[i] < 2^125 + 2^63 + 2^62 + 2^17 */ | ||
1090 | felem_reduce(x_out, tmp); | ||
1091 | |||
1092 | /* z' = (y + z)^2 - gamma - delta */ | ||
1093 | felem_sum64(delta, gamma); | ||
1094 | /* delta[i] < 2^60 + 2^15 */ | ||
1095 | felem_assign(ftmp, y_in); | ||
1096 | felem_sum64(ftmp, z_in); | ||
1097 | /* ftmp[i] < 2^60 + 2^15 */ | ||
1098 | felem_square(tmp, ftmp); | ||
1099 | /* | ||
1100 | * tmp[i] < 17(2^122) < 2^127 | ||
1101 | */ | ||
1102 | felem_diff_128_64(tmp, delta); | ||
1103 | /* tmp[i] < 2^127 + 2^63 */ | ||
1104 | felem_reduce(z_out, tmp); | ||
1105 | |||
1106 | /* y' = alpha*(4*beta - x') - 8*gamma^2 */ | ||
1107 | felem_scalar64(beta, 4); | ||
1108 | /* beta[i] < 2^61 + 2^16 */ | ||
1109 | felem_diff64(beta, x_out); | ||
1110 | /* beta[i] < 2^61 + 2^60 + 2^16 */ | ||
1111 | felem_mul(tmp, alpha, beta); | ||
1112 | /* | ||
1113 | * tmp[i] < 17*((2^59 + 2^14)(2^61 + 2^60 + 2^16)) = 17*(2^120 + 2^75 | ||
1114 | * + 2^119 + 2^74 + 2^75 + 2^30) = 17*(2^120 + 2^119 + 2^76 + 2^74 + | ||
1115 | * 2^30) < 2^128 | ||
1116 | */ | ||
1117 | felem_square(tmp2, gamma); | ||
1118 | /* | ||
1119 | * tmp2[i] < 17*(2^59 + 2^14)^2 = 17*(2^118 + 2^74 + 2^28) | ||
1120 | */ | ||
1121 | felem_scalar128(tmp2, 8); | ||
1122 | /* | ||
1123 | * tmp2[i] < 8*17*(2^118 + 2^74 + 2^28) = 2^125 + 2^121 + 2^81 + 2^77 | ||
1124 | * + 2^35 + 2^31 < 2^126 | ||
1125 | */ | ||
1126 | felem_diff128(tmp, tmp2); | ||
1127 | /* | ||
1128 | * tmp[i] < 2^127 - 2^69 + 17(2^120 + 2^119 + 2^76 + 2^74 + 2^30) = | ||
1129 | * 2^127 + 2^124 + 2^122 + 2^120 + 2^118 + 2^80 + 2^78 + 2^76 + 2^74 | ||
1130 | * + 2^69 + 2^34 + 2^30 < 2^128 | ||
1131 | */ | ||
1132 | felem_reduce(y_out, tmp); | ||
1133 | } | ||
1134 | |||
1135 | /* copy_conditional copies in to out iff mask is all ones. */ | ||
1136 | static void | ||
1137 | copy_conditional(felem out, const felem in, limb mask) | ||
1138 | { | ||
1139 | unsigned i; | ||
1140 | for (i = 0; i < NLIMBS; ++i) { | ||
1141 | const limb tmp = mask & (in[i] ^ out[i]); | ||
1142 | out[i] ^= tmp; | ||
1143 | } | ||
1144 | } | ||
1145 | |||
1146 | /* point_add calcuates (x1, y1, z1) + (x2, y2, z2) | ||
1147 | * | ||
1148 | * The method is taken from | ||
1149 | * http://hyperelliptic.org/EFD/g1p/auto-shortw-jacobian-3.html#addition-add-2007-bl, | ||
1150 | * adapted for mixed addition (z2 = 1, or z2 = 0 for the point at infinity). | ||
1151 | * | ||
1152 | * This function includes a branch for checking whether the two input points | ||
1153 | * are equal (while not equal to the point at infinity). This case never | ||
1154 | * happens during single point multiplication, so there is no timing leak for | ||
1155 | * ECDH or ECDSA signing. */ | ||
1156 | static void | ||
1157 | point_add(felem x3, felem y3, felem z3, | ||
1158 | const felem x1, const felem y1, const felem z1, | ||
1159 | const int mixed, const felem x2, const felem y2, const felem z2) | ||
1160 | { | ||
1161 | felem ftmp, ftmp2, ftmp3, ftmp4, ftmp5, ftmp6, x_out, y_out, z_out; | ||
1162 | largefelem tmp, tmp2; | ||
1163 | limb x_equal, y_equal, z1_is_zero, z2_is_zero; | ||
1164 | |||
1165 | z1_is_zero = felem_is_zero(z1); | ||
1166 | z2_is_zero = felem_is_zero(z2); | ||
1167 | |||
1168 | /* ftmp = z1z1 = z1**2 */ | ||
1169 | felem_square(tmp, z1); | ||
1170 | felem_reduce(ftmp, tmp); | ||
1171 | |||
1172 | if (!mixed) { | ||
1173 | /* ftmp2 = z2z2 = z2**2 */ | ||
1174 | felem_square(tmp, z2); | ||
1175 | felem_reduce(ftmp2, tmp); | ||
1176 | |||
1177 | /* u1 = ftmp3 = x1*z2z2 */ | ||
1178 | felem_mul(tmp, x1, ftmp2); | ||
1179 | felem_reduce(ftmp3, tmp); | ||
1180 | |||
1181 | /* ftmp5 = z1 + z2 */ | ||
1182 | felem_assign(ftmp5, z1); | ||
1183 | felem_sum64(ftmp5, z2); | ||
1184 | /* ftmp5[i] < 2^61 */ | ||
1185 | |||
1186 | /* ftmp5 = (z1 + z2)**2 - z1z1 - z2z2 = 2*z1z2 */ | ||
1187 | felem_square(tmp, ftmp5); | ||
1188 | /* tmp[i] < 17*2^122 */ | ||
1189 | felem_diff_128_64(tmp, ftmp); | ||
1190 | /* tmp[i] < 17*2^122 + 2^63 */ | ||
1191 | felem_diff_128_64(tmp, ftmp2); | ||
1192 | /* tmp[i] < 17*2^122 + 2^64 */ | ||
1193 | felem_reduce(ftmp5, tmp); | ||
1194 | |||
1195 | /* ftmp2 = z2 * z2z2 */ | ||
1196 | felem_mul(tmp, ftmp2, z2); | ||
1197 | felem_reduce(ftmp2, tmp); | ||
1198 | |||
1199 | /* s1 = ftmp6 = y1 * z2**3 */ | ||
1200 | felem_mul(tmp, y1, ftmp2); | ||
1201 | felem_reduce(ftmp6, tmp); | ||
1202 | } else { | ||
1203 | /* We'll assume z2 = 1 (special case z2 = 0 is handled later) */ | ||
1204 | |||
1205 | /* u1 = ftmp3 = x1*z2z2 */ | ||
1206 | felem_assign(ftmp3, x1); | ||
1207 | |||
1208 | /* ftmp5 = 2*z1z2 */ | ||
1209 | felem_scalar(ftmp5, z1, 2); | ||
1210 | |||
1211 | /* s1 = ftmp6 = y1 * z2**3 */ | ||
1212 | felem_assign(ftmp6, y1); | ||
1213 | } | ||
1214 | |||
1215 | /* u2 = x2*z1z1 */ | ||
1216 | felem_mul(tmp, x2, ftmp); | ||
1217 | /* tmp[i] < 17*2^120 */ | ||
1218 | |||
1219 | /* h = ftmp4 = u2 - u1 */ | ||
1220 | felem_diff_128_64(tmp, ftmp3); | ||
1221 | /* tmp[i] < 17*2^120 + 2^63 */ | ||
1222 | felem_reduce(ftmp4, tmp); | ||
1223 | |||
1224 | x_equal = felem_is_zero(ftmp4); | ||
1225 | |||
1226 | /* z_out = ftmp5 * h */ | ||
1227 | felem_mul(tmp, ftmp5, ftmp4); | ||
1228 | felem_reduce(z_out, tmp); | ||
1229 | |||
1230 | /* ftmp = z1 * z1z1 */ | ||
1231 | felem_mul(tmp, ftmp, z1); | ||
1232 | felem_reduce(ftmp, tmp); | ||
1233 | |||
1234 | /* s2 = tmp = y2 * z1**3 */ | ||
1235 | felem_mul(tmp, y2, ftmp); | ||
1236 | /* tmp[i] < 17*2^120 */ | ||
1237 | |||
1238 | /* r = ftmp5 = (s2 - s1)*2 */ | ||
1239 | felem_diff_128_64(tmp, ftmp6); | ||
1240 | /* tmp[i] < 17*2^120 + 2^63 */ | ||
1241 | felem_reduce(ftmp5, tmp); | ||
1242 | y_equal = felem_is_zero(ftmp5); | ||
1243 | felem_scalar64(ftmp5, 2); | ||
1244 | /* ftmp5[i] < 2^61 */ | ||
1245 | |||
1246 | if (x_equal && y_equal && !z1_is_zero && !z2_is_zero) { | ||
1247 | point_double(x3, y3, z3, x1, y1, z1); | ||
1248 | return; | ||
1249 | } | ||
1250 | /* I = ftmp = (2h)**2 */ | ||
1251 | felem_assign(ftmp, ftmp4); | ||
1252 | felem_scalar64(ftmp, 2); | ||
1253 | /* ftmp[i] < 2^61 */ | ||
1254 | felem_square(tmp, ftmp); | ||
1255 | /* tmp[i] < 17*2^122 */ | ||
1256 | felem_reduce(ftmp, tmp); | ||
1257 | |||
1258 | /* J = ftmp2 = h * I */ | ||
1259 | felem_mul(tmp, ftmp4, ftmp); | ||
1260 | felem_reduce(ftmp2, tmp); | ||
1261 | |||
1262 | /* V = ftmp4 = U1 * I */ | ||
1263 | felem_mul(tmp, ftmp3, ftmp); | ||
1264 | felem_reduce(ftmp4, tmp); | ||
1265 | |||
1266 | /* x_out = r**2 - J - 2V */ | ||
1267 | felem_square(tmp, ftmp5); | ||
1268 | /* tmp[i] < 17*2^122 */ | ||
1269 | felem_diff_128_64(tmp, ftmp2); | ||
1270 | /* tmp[i] < 17*2^122 + 2^63 */ | ||
1271 | felem_assign(ftmp3, ftmp4); | ||
1272 | felem_scalar64(ftmp4, 2); | ||
1273 | /* ftmp4[i] < 2^61 */ | ||
1274 | felem_diff_128_64(tmp, ftmp4); | ||
1275 | /* tmp[i] < 17*2^122 + 2^64 */ | ||
1276 | felem_reduce(x_out, tmp); | ||
1277 | |||
1278 | /* y_out = r(V-x_out) - 2 * s1 * J */ | ||
1279 | felem_diff64(ftmp3, x_out); | ||
1280 | /* | ||
1281 | * ftmp3[i] < 2^60 + 2^60 = 2^61 | ||
1282 | */ | ||
1283 | felem_mul(tmp, ftmp5, ftmp3); | ||
1284 | /* tmp[i] < 17*2^122 */ | ||
1285 | felem_mul(tmp2, ftmp6, ftmp2); | ||
1286 | /* tmp2[i] < 17*2^120 */ | ||
1287 | felem_scalar128(tmp2, 2); | ||
1288 | /* tmp2[i] < 17*2^121 */ | ||
1289 | felem_diff128(tmp, tmp2); | ||
1290 | /* | ||
1291 | * tmp[i] < 2^127 - 2^69 + 17*2^122 = 2^126 - 2^122 - 2^6 - 2^2 - 1 < | ||
1292 | * 2^127 | ||
1293 | */ | ||
1294 | felem_reduce(y_out, tmp); | ||
1295 | |||
1296 | copy_conditional(x_out, x2, z1_is_zero); | ||
1297 | copy_conditional(x_out, x1, z2_is_zero); | ||
1298 | copy_conditional(y_out, y2, z1_is_zero); | ||
1299 | copy_conditional(y_out, y1, z2_is_zero); | ||
1300 | copy_conditional(z_out, z2, z1_is_zero); | ||
1301 | copy_conditional(z_out, z1, z2_is_zero); | ||
1302 | felem_assign(x3, x_out); | ||
1303 | felem_assign(y3, y_out); | ||
1304 | felem_assign(z3, z_out); | ||
1305 | } | ||
1306 | |||
1307 | /* Base point pre computation | ||
1308 | * -------------------------- | ||
1309 | * | ||
1310 | * Two different sorts of precomputed tables are used in the following code. | ||
1311 | * Each contain various points on the curve, where each point is three field | ||
1312 | * elements (x, y, z). | ||
1313 | * | ||
1314 | * For the base point table, z is usually 1 (0 for the point at infinity). | ||
1315 | * This table has 16 elements: | ||
1316 | * index | bits | point | ||
1317 | * ------+---------+------------------------------ | ||
1318 | * 0 | 0 0 0 0 | 0G | ||
1319 | * 1 | 0 0 0 1 | 1G | ||
1320 | * 2 | 0 0 1 0 | 2^130G | ||
1321 | * 3 | 0 0 1 1 | (2^130 + 1)G | ||
1322 | * 4 | 0 1 0 0 | 2^260G | ||
1323 | * 5 | 0 1 0 1 | (2^260 + 1)G | ||
1324 | * 6 | 0 1 1 0 | (2^260 + 2^130)G | ||
1325 | * 7 | 0 1 1 1 | (2^260 + 2^130 + 1)G | ||
1326 | * 8 | 1 0 0 0 | 2^390G | ||
1327 | * 9 | 1 0 0 1 | (2^390 + 1)G | ||
1328 | * 10 | 1 0 1 0 | (2^390 + 2^130)G | ||
1329 | * 11 | 1 0 1 1 | (2^390 + 2^130 + 1)G | ||
1330 | * 12 | 1 1 0 0 | (2^390 + 2^260)G | ||
1331 | * 13 | 1 1 0 1 | (2^390 + 2^260 + 1)G | ||
1332 | * 14 | 1 1 1 0 | (2^390 + 2^260 + 2^130)G | ||
1333 | * 15 | 1 1 1 1 | (2^390 + 2^260 + 2^130 + 1)G | ||
1334 | * | ||
1335 | * The reason for this is so that we can clock bits into four different | ||
1336 | * locations when doing simple scalar multiplies against the base point. | ||
1337 | * | ||
1338 | * Tables for other points have table[i] = iG for i in 0 .. 16. */ | ||
1339 | |||
1340 | /* gmul is the table of precomputed base points */ | ||
1341 | static const felem gmul[16][3] = | ||
1342 | {{{0, 0, 0, 0, 0, 0, 0, 0, 0}, | ||
1343 | {0, 0, 0, 0, 0, 0, 0, 0, 0}, | ||
1344 | {0, 0, 0, 0, 0, 0, 0, 0, 0}}, | ||
1345 | {{0x017e7e31c2e5bd66, 0x022cf0615a90a6fe, 0x00127a2ffa8de334, | ||
1346 | 0x01dfbf9d64a3f877, 0x006b4d3dbaa14b5e, 0x014fed487e0a2bd8, | ||
1347 | 0x015b4429c6481390, 0x03a73678fb2d988e, 0x00c6858e06b70404}, | ||
1348 | {0x00be94769fd16650, 0x031c21a89cb09022, 0x039013fad0761353, | ||
1349 | 0x02657bd099031542, 0x03273e662c97ee72, 0x01e6d11a05ebef45, | ||
1350 | 0x03d1bd998f544495, 0x03001172297ed0b1, 0x011839296a789a3b}, | ||
1351 | {1, 0, 0, 0, 0, 0, 0, 0, 0}}, | ||
1352 | {{0x0373faacbc875bae, 0x00f325023721c671, 0x00f666fd3dbde5ad, | ||
1353 | 0x01a6932363f88ea7, 0x01fc6d9e13f9c47b, 0x03bcbffc2bbf734e, | ||
1354 | 0x013ee3c3647f3a92, 0x029409fefe75d07d, 0x00ef9199963d85e5}, | ||
1355 | {0x011173743ad5b178, 0x02499c7c21bf7d46, 0x035beaeabb8b1a58, | ||
1356 | 0x00f989c4752ea0a3, 0x0101e1de48a9c1a3, 0x01a20076be28ba6c, | ||
1357 | 0x02f8052e5eb2de95, 0x01bfe8f82dea117c, 0x0160074d3c36ddb7}, | ||
1358 | {1, 0, 0, 0, 0, 0, 0, 0, 0}}, | ||
1359 | {{0x012f3fc373393b3b, 0x03d3d6172f1419fa, 0x02adc943c0b86873, | ||
1360 | 0x00d475584177952b, 0x012a4d1673750ee2, 0x00512517a0f13b0c, | ||
1361 | 0x02b184671a7b1734, 0x0315b84236f1a50a, 0x00a4afc472edbdb9}, | ||
1362 | {0x00152a7077f385c4, 0x03044007d8d1c2ee, 0x0065829d61d52b52, | ||
1363 | 0x00494ff6b6631d0d, 0x00a11d94d5f06bcf, 0x02d2f89474d9282e, | ||
1364 | 0x0241c5727c06eeb9, 0x0386928710fbdb9d, 0x01f883f727b0dfbe}, | ||
1365 | {1, 0, 0, 0, 0, 0, 0, 0, 0}}, | ||
1366 | {{0x019b0c3c9185544d, 0x006243a37c9d97db, 0x02ee3cbe030a2ad2, | ||
1367 | 0x00cfdd946bb51e0d, 0x0271c00932606b91, 0x03f817d1ec68c561, | ||
1368 | 0x03f37009806a369c, 0x03c1f30baf184fd5, 0x01091022d6d2f065}, | ||
1369 | {0x0292c583514c45ed, 0x0316fca51f9a286c, 0x00300af507c1489a, | ||
1370 | 0x0295f69008298cf1, 0x02c0ed8274943d7b, 0x016509b9b47a431e, | ||
1371 | 0x02bc9de9634868ce, 0x005b34929bffcb09, 0x000c1a0121681524}, | ||
1372 | {1, 0, 0, 0, 0, 0, 0, 0, 0}}, | ||
1373 | {{0x0286abc0292fb9f2, 0x02665eee9805b3f7, 0x01ed7455f17f26d6, | ||
1374 | 0x0346355b83175d13, 0x006284944cd0a097, 0x0191895bcdec5e51, | ||
1375 | 0x02e288370afda7d9, 0x03b22312bfefa67a, 0x01d104d3fc0613fe}, | ||
1376 | {0x0092421a12f7e47f, 0x0077a83fa373c501, 0x03bd25c5f696bd0d, | ||
1377 | 0x035c41e4d5459761, 0x01ca0d1742b24f53, 0x00aaab27863a509c, | ||
1378 | 0x018b6de47df73917, 0x025c0b771705cd01, 0x01fd51d566d760a7}, | ||
1379 | {1, 0, 0, 0, 0, 0, 0, 0, 0}}, | ||
1380 | {{0x01dd92ff6b0d1dbd, 0x039c5e2e8f8afa69, 0x0261ed13242c3b27, | ||
1381 | 0x0382c6e67026e6a0, 0x01d60b10be2089f9, 0x03c15f3dce86723f, | ||
1382 | 0x03c764a32d2a062d, 0x017307eac0fad056, 0x018207c0b96c5256}, | ||
1383 | {0x0196a16d60e13154, 0x03e6ce74c0267030, 0x00ddbf2b4e52a5aa, | ||
1384 | 0x012738241bbf31c8, 0x00ebe8dc04685a28, 0x024c2ad6d380d4a2, | ||
1385 | 0x035ee062a6e62d0e, 0x0029ed74af7d3a0f, 0x00eef32aec142ebd}, | ||
1386 | {1, 0, 0, 0, 0, 0, 0, 0, 0}}, | ||
1387 | {{0x00c31ec398993b39, 0x03a9f45bcda68253, 0x00ac733c24c70890, | ||
1388 | 0x00872b111401ff01, 0x01d178c23195eafb, 0x03bca2c816b87f74, | ||
1389 | 0x0261a9af46fbad7a, 0x0324b2a8dd3d28f9, 0x00918121d8f24e23}, | ||
1390 | {0x032bc8c1ca983cd7, 0x00d869dfb08fc8c6, 0x01693cb61fce1516, | ||
1391 | 0x012a5ea68f4e88a8, 0x010869cab88d7ae3, 0x009081ad277ceee1, | ||
1392 | 0x033a77166d064cdc, 0x03955235a1fb3a95, 0x01251a4a9b25b65e}, | ||
1393 | {1, 0, 0, 0, 0, 0, 0, 0, 0}}, | ||
1394 | {{0x00148a3a1b27f40b, 0x0123186df1b31fdc, 0x00026e7beaad34ce, | ||
1395 | 0x01db446ac1d3dbba, 0x0299c1a33437eaec, 0x024540610183cbb7, | ||
1396 | 0x0173bb0e9ce92e46, 0x02b937e43921214b, 0x01ab0436a9bf01b5}, | ||
1397 | {0x0383381640d46948, 0x008dacbf0e7f330f, 0x03602122bcc3f318, | ||
1398 | 0x01ee596b200620d6, 0x03bd0585fda430b3, 0x014aed77fd123a83, | ||
1399 | 0x005ace749e52f742, 0x0390fe041da2b842, 0x0189a8ceb3299242}, | ||
1400 | {1, 0, 0, 0, 0, 0, 0, 0, 0}}, | ||
1401 | {{0x012a19d6b3282473, 0x00c0915918b423ce, 0x023a954eb94405ae, | ||
1402 | 0x00529f692be26158, 0x0289fa1b6fa4b2aa, 0x0198ae4ceea346ef, | ||
1403 | 0x0047d8cdfbdedd49, 0x00cc8c8953f0f6b8, 0x001424abbff49203}, | ||
1404 | {0x0256732a1115a03a, 0x0351bc38665c6733, 0x03f7b950fb4a6447, | ||
1405 | 0x000afffa94c22155, 0x025763d0a4dab540, 0x000511e92d4fc283, | ||
1406 | 0x030a7e9eda0ee96c, 0x004c3cd93a28bf0a, 0x017edb3a8719217f}, | ||
1407 | {1, 0, 0, 0, 0, 0, 0, 0, 0}}, | ||
1408 | {{0x011de5675a88e673, 0x031d7d0f5e567fbe, 0x0016b2062c970ae5, | ||
1409 | 0x03f4a2be49d90aa7, 0x03cef0bd13822866, 0x03f0923dcf774a6c, | ||
1410 | 0x0284bebc4f322f72, 0x016ab2645302bb2c, 0x01793f95dace0e2a}, | ||
1411 | {0x010646e13527a28f, 0x01ca1babd59dc5e7, 0x01afedfd9a5595df, | ||
1412 | 0x01f15785212ea6b1, 0x0324e5d64f6ae3f4, 0x02d680f526d00645, | ||
1413 | 0x0127920fadf627a7, 0x03b383f75df4f684, 0x0089e0057e783b0a}, | ||
1414 | {1, 0, 0, 0, 0, 0, 0, 0, 0}}, | ||
1415 | {{0x00f334b9eb3c26c6, 0x0298fdaa98568dce, 0x01c2d24843a82292, | ||
1416 | 0x020bcb24fa1b0711, 0x02cbdb3d2b1875e6, 0x0014907598f89422, | ||
1417 | 0x03abe3aa43b26664, 0x02cbf47f720bc168, 0x0133b5e73014b79b}, | ||
1418 | {0x034aab5dab05779d, 0x00cdc5d71fee9abb, 0x0399f16bd4bd9d30, | ||
1419 | 0x03582fa592d82647, 0x02be1cdfb775b0e9, 0x0034f7cea32e94cb, | ||
1420 | 0x0335a7f08f56f286, 0x03b707e9565d1c8b, 0x0015c946ea5b614f}, | ||
1421 | {1, 0, 0, 0, 0, 0, 0, 0, 0}}, | ||
1422 | {{0x024676f6cff72255, 0x00d14625cac96378, 0x00532b6008bc3767, | ||
1423 | 0x01fc16721b985322, 0x023355ea1b091668, 0x029de7afdc0317c3, | ||
1424 | 0x02fc8a7ca2da037c, 0x02de1217d74a6f30, 0x013f7173175b73bf}, | ||
1425 | {0x0344913f441490b5, 0x0200f9e272b61eca, 0x0258a246b1dd55d2, | ||
1426 | 0x03753db9ea496f36, 0x025e02937a09c5ef, 0x030cbd3d14012692, | ||
1427 | 0x01793a67e70dc72a, 0x03ec1d37048a662e, 0x006550f700c32a8d}, | ||
1428 | {1, 0, 0, 0, 0, 0, 0, 0, 0}}, | ||
1429 | {{0x00d3f48a347eba27, 0x008e636649b61bd8, 0x00d3b93716778fb3, | ||
1430 | 0x004d1915757bd209, 0x019d5311a3da44e0, 0x016d1afcbbe6aade, | ||
1431 | 0x0241bf5f73265616, 0x0384672e5d50d39b, 0x005009fee522b684}, | ||
1432 | {0x029b4fab064435fe, 0x018868ee095bbb07, 0x01ea3d6936cc92b8, | ||
1433 | 0x000608b00f78a2f3, 0x02db911073d1c20f, 0x018205938470100a, | ||
1434 | 0x01f1e4964cbe6ff2, 0x021a19a29eed4663, 0x01414485f42afa81}, | ||
1435 | {1, 0, 0, 0, 0, 0, 0, 0, 0}}, | ||
1436 | {{0x01612b3a17f63e34, 0x03813992885428e6, 0x022b3c215b5a9608, | ||
1437 | 0x029b4057e19f2fcb, 0x0384059a587af7e6, 0x02d6400ace6fe610, | ||
1438 | 0x029354d896e8e331, 0x00c047ee6dfba65e, 0x0037720542e9d49d}, | ||
1439 | {0x02ce9eed7c5e9278, 0x0374ed703e79643b, 0x01316c54c4072006, | ||
1440 | 0x005aaa09054b2ee8, 0x002824000c840d57, 0x03d4eba24771ed86, | ||
1441 | 0x0189c50aabc3bdae, 0x0338c01541e15510, 0x00466d56e38eed42}, | ||
1442 | {1, 0, 0, 0, 0, 0, 0, 0, 0}}, | ||
1443 | {{0x007efd8330ad8bd6, 0x02465ed48047710b, 0x0034c6606b215e0c, | ||
1444 | 0x016ae30c53cbf839, 0x01fa17bd37161216, 0x018ead4e61ce8ab9, | ||
1445 | 0x005482ed5f5dee46, 0x037543755bba1d7f, 0x005e5ac7e70a9d0f}, | ||
1446 | {0x0117e1bb2fdcb2a2, 0x03deea36249f40c4, 0x028d09b4a6246cb7, | ||
1447 | 0x03524b8855bcf756, 0x023d7d109d5ceb58, 0x0178e43e3223ef9c, | ||
1448 | 0x0154536a0c6e966a, 0x037964d1286ee9fe, 0x0199bcd90e125055}, | ||
1449 | {1, 0, 0, 0, 0, 0, 0, 0, 0}}}; | ||
1450 | |||
1451 | /* select_point selects the |idx|th point from a precomputation table and | ||
1452 | * copies it to out. */ | ||
1453 | static void | ||
1454 | select_point(const limb idx, unsigned int size, const felem pre_comp[ /* size */ ][3], | ||
1455 | felem out[3]) | ||
1456 | { | ||
1457 | unsigned i, j; | ||
1458 | limb *outlimbs = &out[0][0]; | ||
1459 | memset(outlimbs, 0, 3 * sizeof(felem)); | ||
1460 | |||
1461 | for (i = 0; i < size; i++) { | ||
1462 | const limb *inlimbs = &pre_comp[i][0][0]; | ||
1463 | limb mask = i ^ idx; | ||
1464 | mask |= mask >> 4; | ||
1465 | mask |= mask >> 2; | ||
1466 | mask |= mask >> 1; | ||
1467 | mask &= 1; | ||
1468 | mask--; | ||
1469 | for (j = 0; j < NLIMBS * 3; j++) | ||
1470 | outlimbs[j] |= inlimbs[j] & mask; | ||
1471 | } | ||
1472 | } | ||
1473 | |||
1474 | /* get_bit returns the |i|th bit in |in| */ | ||
1475 | static char | ||
1476 | get_bit(const felem_bytearray in, int i) | ||
1477 | { | ||
1478 | if (i < 0) | ||
1479 | return 0; | ||
1480 | return (in[i >> 3] >> (i & 7)) & 1; | ||
1481 | } | ||
1482 | |||
1483 | /* Interleaved point multiplication using precomputed point multiples: | ||
1484 | * The small point multiples 0*P, 1*P, ..., 16*P are in pre_comp[], | ||
1485 | * the scalars in scalars[]. If g_scalar is non-NULL, we also add this multiple | ||
1486 | * of the generator, using certain (large) precomputed multiples in g_pre_comp. | ||
1487 | * Output point (X, Y, Z) is stored in x_out, y_out, z_out */ | ||
1488 | static void | ||
1489 | batch_mul(felem x_out, felem y_out, felem z_out, | ||
1490 | const felem_bytearray scalars[], const unsigned num_points, const u8 * g_scalar, | ||
1491 | const int mixed, const felem pre_comp[][17][3], const felem g_pre_comp[16][3]) | ||
1492 | { | ||
1493 | int i, skip; | ||
1494 | unsigned num, gen_mul = (g_scalar != NULL); | ||
1495 | felem nq[3], tmp[4]; | ||
1496 | limb bits; | ||
1497 | u8 sign, digit; | ||
1498 | |||
1499 | /* set nq to the point at infinity */ | ||
1500 | memset(nq, 0, 3 * sizeof(felem)); | ||
1501 | |||
1502 | /* | ||
1503 | * Loop over all scalars msb-to-lsb, interleaving additions of | ||
1504 | * multiples of the generator (last quarter of rounds) and additions | ||
1505 | * of other points multiples (every 5th round). | ||
1506 | */ | ||
1507 | skip = 1; /* save two point operations in the first | ||
1508 | * round */ | ||
1509 | for (i = (num_points ? 520 : 130); i >= 0; --i) { | ||
1510 | /* double */ | ||
1511 | if (!skip) | ||
1512 | point_double(nq[0], nq[1], nq[2], nq[0], nq[1], nq[2]); | ||
1513 | |||
1514 | /* add multiples of the generator */ | ||
1515 | if (gen_mul && (i <= 130)) { | ||
1516 | bits = get_bit(g_scalar, i + 390) << 3; | ||
1517 | if (i < 130) { | ||
1518 | bits |= get_bit(g_scalar, i + 260) << 2; | ||
1519 | bits |= get_bit(g_scalar, i + 130) << 1; | ||
1520 | bits |= get_bit(g_scalar, i); | ||
1521 | } | ||
1522 | /* select the point to add, in constant time */ | ||
1523 | select_point(bits, 16, g_pre_comp, tmp); | ||
1524 | if (!skip) { | ||
1525 | point_add(nq[0], nq[1], nq[2], | ||
1526 | nq[0], nq[1], nq[2], | ||
1527 | 1 /* mixed */ , tmp[0], tmp[1], tmp[2]); | ||
1528 | } else { | ||
1529 | memcpy(nq, tmp, 3 * sizeof(felem)); | ||
1530 | skip = 0; | ||
1531 | } | ||
1532 | } | ||
1533 | /* do other additions every 5 doublings */ | ||
1534 | if (num_points && (i % 5 == 0)) { | ||
1535 | /* loop over all scalars */ | ||
1536 | for (num = 0; num < num_points; ++num) { | ||
1537 | bits = get_bit(scalars[num], i + 4) << 5; | ||
1538 | bits |= get_bit(scalars[num], i + 3) << 4; | ||
1539 | bits |= get_bit(scalars[num], i + 2) << 3; | ||
1540 | bits |= get_bit(scalars[num], i + 1) << 2; | ||
1541 | bits |= get_bit(scalars[num], i) << 1; | ||
1542 | bits |= get_bit(scalars[num], i - 1); | ||
1543 | ec_GFp_nistp_recode_scalar_bits(&sign, &digit, bits); | ||
1544 | |||
1545 | /* | ||
1546 | * select the point to add or subtract, in | ||
1547 | * constant time | ||
1548 | */ | ||
1549 | select_point(digit, 17, pre_comp[num], tmp); | ||
1550 | felem_neg(tmp[3], tmp[1]); /* (X, -Y, Z) is the | ||
1551 | * negative point */ | ||
1552 | copy_conditional(tmp[1], tmp[3], (-(limb) sign)); | ||
1553 | |||
1554 | if (!skip) { | ||
1555 | point_add(nq[0], nq[1], nq[2], | ||
1556 | nq[0], nq[1], nq[2], | ||
1557 | mixed, tmp[0], tmp[1], tmp[2]); | ||
1558 | } else { | ||
1559 | memcpy(nq, tmp, 3 * sizeof(felem)); | ||
1560 | skip = 0; | ||
1561 | } | ||
1562 | } | ||
1563 | } | ||
1564 | } | ||
1565 | felem_assign(x_out, nq[0]); | ||
1566 | felem_assign(y_out, nq[1]); | ||
1567 | felem_assign(z_out, nq[2]); | ||
1568 | } | ||
1569 | |||
1570 | |||
1571 | /* Precomputation for the group generator. */ | ||
1572 | typedef struct { | ||
1573 | felem g_pre_comp[16][3]; | ||
1574 | int references; | ||
1575 | } NISTP521_PRE_COMP; | ||
1576 | |||
1577 | const EC_METHOD * | ||
1578 | EC_GFp_nistp521_method(void) | ||
1579 | { | ||
1580 | static const EC_METHOD ret = { | ||
1581 | .flags = EC_FLAGS_DEFAULT_OCT, | ||
1582 | .field_type = NID_X9_62_prime_field, | ||
1583 | .group_init = ec_GFp_nistp521_group_init, | ||
1584 | .group_finish = ec_GFp_simple_group_finish, | ||
1585 | .group_clear_finish = ec_GFp_simple_group_clear_finish, | ||
1586 | .group_copy = ec_GFp_nist_group_copy, | ||
1587 | .group_set_curve = ec_GFp_nistp521_group_set_curve, | ||
1588 | .group_get_curve = ec_GFp_simple_group_get_curve, | ||
1589 | .group_get_degree = ec_GFp_simple_group_get_degree, | ||
1590 | .group_check_discriminant = | ||
1591 | ec_GFp_simple_group_check_discriminant, | ||
1592 | .point_init = ec_GFp_simple_point_init, | ||
1593 | .point_finish = ec_GFp_simple_point_finish, | ||
1594 | .point_clear_finish = ec_GFp_simple_point_clear_finish, | ||
1595 | .point_copy = ec_GFp_simple_point_copy, | ||
1596 | .point_set_to_infinity = ec_GFp_simple_point_set_to_infinity, | ||
1597 | .point_set_Jprojective_coordinates_GFp = | ||
1598 | ec_GFp_simple_set_Jprojective_coordinates_GFp, | ||
1599 | .point_get_Jprojective_coordinates_GFp = | ||
1600 | ec_GFp_simple_get_Jprojective_coordinates_GFp, | ||
1601 | .point_set_affine_coordinates = | ||
1602 | ec_GFp_simple_point_set_affine_coordinates, | ||
1603 | .point_get_affine_coordinates = | ||
1604 | ec_GFp_nistp521_point_get_affine_coordinates, | ||
1605 | .add = ec_GFp_simple_add, | ||
1606 | .dbl = ec_GFp_simple_dbl, | ||
1607 | .invert = ec_GFp_simple_invert, | ||
1608 | .is_at_infinity = ec_GFp_simple_is_at_infinity, | ||
1609 | .is_on_curve = ec_GFp_simple_is_on_curve, | ||
1610 | .point_cmp = ec_GFp_simple_cmp, | ||
1611 | .make_affine = ec_GFp_simple_make_affine, | ||
1612 | .points_make_affine = ec_GFp_simple_points_make_affine, | ||
1613 | .mul = ec_GFp_nistp521_points_mul, | ||
1614 | .precompute_mult = ec_GFp_nistp521_precompute_mult, | ||
1615 | .have_precompute_mult = ec_GFp_nistp521_have_precompute_mult, | ||
1616 | .field_mul = ec_GFp_nist_field_mul, | ||
1617 | .field_sqr = ec_GFp_nist_field_sqr | ||
1618 | }; | ||
1619 | |||
1620 | return &ret; | ||
1621 | } | ||
1622 | |||
1623 | |||
1624 | /******************************************************************************/ | ||
1625 | /* FUNCTIONS TO MANAGE PRECOMPUTATION | ||
1626 | */ | ||
1627 | |||
1628 | static NISTP521_PRE_COMP * | ||
1629 | nistp521_pre_comp_new() | ||
1630 | { | ||
1631 | NISTP521_PRE_COMP *ret = NULL; | ||
1632 | ret = malloc(sizeof(NISTP521_PRE_COMP)); | ||
1633 | if (!ret) { | ||
1634 | ECerr(EC_F_NISTP521_PRE_COMP_NEW, ERR_R_MALLOC_FAILURE); | ||
1635 | return ret; | ||
1636 | } | ||
1637 | memset(ret->g_pre_comp, 0, sizeof(ret->g_pre_comp)); | ||
1638 | ret->references = 1; | ||
1639 | return ret; | ||
1640 | } | ||
1641 | |||
1642 | static void * | ||
1643 | nistp521_pre_comp_dup(void *src_) | ||
1644 | { | ||
1645 | NISTP521_PRE_COMP *src = src_; | ||
1646 | |||
1647 | /* no need to actually copy, these objects never change! */ | ||
1648 | CRYPTO_add(&src->references, 1, CRYPTO_LOCK_EC_PRE_COMP); | ||
1649 | |||
1650 | return src_; | ||
1651 | } | ||
1652 | |||
1653 | static void | ||
1654 | nistp521_pre_comp_free(void *pre_) | ||
1655 | { | ||
1656 | int i; | ||
1657 | NISTP521_PRE_COMP *pre = pre_; | ||
1658 | |||
1659 | if (!pre) | ||
1660 | return; | ||
1661 | |||
1662 | i = CRYPTO_add(&pre->references, -1, CRYPTO_LOCK_EC_PRE_COMP); | ||
1663 | if (i > 0) | ||
1664 | return; | ||
1665 | |||
1666 | free(pre); | ||
1667 | } | ||
1668 | |||
1669 | static void | ||
1670 | nistp521_pre_comp_clear_free(void *pre_) | ||
1671 | { | ||
1672 | int i; | ||
1673 | NISTP521_PRE_COMP *pre = pre_; | ||
1674 | |||
1675 | if (!pre) | ||
1676 | return; | ||
1677 | |||
1678 | i = CRYPTO_add(&pre->references, -1, CRYPTO_LOCK_EC_PRE_COMP); | ||
1679 | if (i > 0) | ||
1680 | return; | ||
1681 | |||
1682 | explicit_bzero(pre, sizeof(*pre)); | ||
1683 | free(pre); | ||
1684 | } | ||
1685 | |||
1686 | /******************************************************************************/ | ||
1687 | /* OPENSSL EC_METHOD FUNCTIONS | ||
1688 | */ | ||
1689 | |||
1690 | int | ||
1691 | ec_GFp_nistp521_group_init(EC_GROUP * group) | ||
1692 | { | ||
1693 | int ret; | ||
1694 | ret = ec_GFp_simple_group_init(group); | ||
1695 | group->a_is_minus3 = 1; | ||
1696 | return ret; | ||
1697 | } | ||
1698 | |||
1699 | int | ||
1700 | ec_GFp_nistp521_group_set_curve(EC_GROUP * group, const BIGNUM * p, | ||
1701 | const BIGNUM * a, const BIGNUM * b, BN_CTX * ctx) | ||
1702 | { | ||
1703 | int ret = 0; | ||
1704 | BN_CTX *new_ctx = NULL; | ||
1705 | BIGNUM *curve_p, *curve_a, *curve_b; | ||
1706 | |||
1707 | if (ctx == NULL) | ||
1708 | if ((ctx = new_ctx = BN_CTX_new()) == NULL) | ||
1709 | return 0; | ||
1710 | BN_CTX_start(ctx); | ||
1711 | if (((curve_p = BN_CTX_get(ctx)) == NULL) || | ||
1712 | ((curve_a = BN_CTX_get(ctx)) == NULL) || | ||
1713 | ((curve_b = BN_CTX_get(ctx)) == NULL)) | ||
1714 | goto err; | ||
1715 | BN_bin2bn(nistp521_curve_params[0], sizeof(felem_bytearray), curve_p); | ||
1716 | BN_bin2bn(nistp521_curve_params[1], sizeof(felem_bytearray), curve_a); | ||
1717 | BN_bin2bn(nistp521_curve_params[2], sizeof(felem_bytearray), curve_b); | ||
1718 | if ((BN_cmp(curve_p, p)) || (BN_cmp(curve_a, a)) || | ||
1719 | (BN_cmp(curve_b, b))) { | ||
1720 | ECerr(EC_F_EC_GFP_NISTP521_GROUP_SET_CURVE, | ||
1721 | EC_R_WRONG_CURVE_PARAMETERS); | ||
1722 | goto err; | ||
1723 | } | ||
1724 | group->field_mod_func = BN_nist_mod_521; | ||
1725 | ret = ec_GFp_simple_group_set_curve(group, p, a, b, ctx); | ||
1726 | err: | ||
1727 | BN_CTX_end(ctx); | ||
1728 | BN_CTX_free(new_ctx); | ||
1729 | return ret; | ||
1730 | } | ||
1731 | |||
1732 | /* Takes the Jacobian coordinates (X, Y, Z) of a point and returns | ||
1733 | * (X', Y') = (X/Z^2, Y/Z^3) */ | ||
1734 | int | ||
1735 | ec_GFp_nistp521_point_get_affine_coordinates(const EC_GROUP * group, | ||
1736 | const EC_POINT * point, BIGNUM * x, BIGNUM * y, BN_CTX * ctx) | ||
1737 | { | ||
1738 | felem z1, z2, x_in, y_in, x_out, y_out; | ||
1739 | largefelem tmp; | ||
1740 | |||
1741 | if (EC_POINT_is_at_infinity(group, point) > 0) { | ||
1742 | ECerr(EC_F_EC_GFP_NISTP521_POINT_GET_AFFINE_COORDINATES, | ||
1743 | EC_R_POINT_AT_INFINITY); | ||
1744 | return 0; | ||
1745 | } | ||
1746 | if ((!BN_to_felem(x_in, &point->X)) || (!BN_to_felem(y_in, &point->Y)) || | ||
1747 | (!BN_to_felem(z1, &point->Z))) | ||
1748 | return 0; | ||
1749 | felem_inv(z2, z1); | ||
1750 | felem_square(tmp, z2); | ||
1751 | felem_reduce(z1, tmp); | ||
1752 | felem_mul(tmp, x_in, z1); | ||
1753 | felem_reduce(x_in, tmp); | ||
1754 | felem_contract(x_out, x_in); | ||
1755 | if (x != NULL) { | ||
1756 | if (!felem_to_BN(x, x_out)) { | ||
1757 | ECerr(EC_F_EC_GFP_NISTP521_POINT_GET_AFFINE_COORDINATES, ERR_R_BN_LIB); | ||
1758 | return 0; | ||
1759 | } | ||
1760 | } | ||
1761 | felem_mul(tmp, z1, z2); | ||
1762 | felem_reduce(z1, tmp); | ||
1763 | felem_mul(tmp, y_in, z1); | ||
1764 | felem_reduce(y_in, tmp); | ||
1765 | felem_contract(y_out, y_in); | ||
1766 | if (y != NULL) { | ||
1767 | if (!felem_to_BN(y, y_out)) { | ||
1768 | ECerr(EC_F_EC_GFP_NISTP521_POINT_GET_AFFINE_COORDINATES, ERR_R_BN_LIB); | ||
1769 | return 0; | ||
1770 | } | ||
1771 | } | ||
1772 | return 1; | ||
1773 | } | ||
1774 | |||
1775 | static void | ||
1776 | make_points_affine(size_t num, felem points[ /* num */ ][3], felem tmp_felems[ /* num+1 */ ]) | ||
1777 | { | ||
1778 | /* | ||
1779 | * Runs in constant time, unless an input is the point at infinity | ||
1780 | * (which normally shouldn't happen). | ||
1781 | */ | ||
1782 | ec_GFp_nistp_points_make_affine_internal( | ||
1783 | num, | ||
1784 | points, | ||
1785 | sizeof(felem), | ||
1786 | tmp_felems, | ||
1787 | (void (*) (void *)) felem_one, | ||
1788 | (int (*) (const void *)) felem_is_zero_int, | ||
1789 | (void (*) (void *, const void *)) felem_assign, | ||
1790 | (void (*) (void *, const void *)) felem_square_reduce, | ||
1791 | (void (*) (void *, const void *, const void *)) felem_mul_reduce, | ||
1792 | (void (*) (void *, const void *)) felem_inv, | ||
1793 | (void (*) (void *, const void *)) felem_contract); | ||
1794 | } | ||
1795 | |||
1796 | /* Computes scalar*generator + \sum scalars[i]*points[i], ignoring NULL values | ||
1797 | * Result is stored in r (r can equal one of the inputs). */ | ||
1798 | int | ||
1799 | ec_GFp_nistp521_points_mul(const EC_GROUP * group, EC_POINT * r, | ||
1800 | const BIGNUM * scalar, size_t num, const EC_POINT * points[], | ||
1801 | const BIGNUM * scalars[], BN_CTX * ctx) | ||
1802 | { | ||
1803 | int ret = 0; | ||
1804 | int j; | ||
1805 | int mixed = 0; | ||
1806 | BN_CTX *new_ctx = NULL; | ||
1807 | BIGNUM *x, *y, *z, *tmp_scalar; | ||
1808 | felem_bytearray g_secret; | ||
1809 | felem_bytearray *secrets = NULL; | ||
1810 | felem(*pre_comp)[17][3] = NULL; | ||
1811 | felem *tmp_felems = NULL; | ||
1812 | felem_bytearray tmp; | ||
1813 | unsigned i, num_bytes; | ||
1814 | int have_pre_comp = 0; | ||
1815 | size_t num_points = num; | ||
1816 | felem x_in, y_in, z_in, x_out, y_out, z_out; | ||
1817 | NISTP521_PRE_COMP *pre = NULL; | ||
1818 | felem(*g_pre_comp)[3] = NULL; | ||
1819 | EC_POINT *generator = NULL; | ||
1820 | const EC_POINT *p = NULL; | ||
1821 | const BIGNUM *p_scalar = NULL; | ||
1822 | |||
1823 | if (ctx == NULL) | ||
1824 | if ((ctx = new_ctx = BN_CTX_new()) == NULL) | ||
1825 | return 0; | ||
1826 | BN_CTX_start(ctx); | ||
1827 | if (((x = BN_CTX_get(ctx)) == NULL) || | ||
1828 | ((y = BN_CTX_get(ctx)) == NULL) || | ||
1829 | ((z = BN_CTX_get(ctx)) == NULL) || | ||
1830 | ((tmp_scalar = BN_CTX_get(ctx)) == NULL)) | ||
1831 | goto err; | ||
1832 | |||
1833 | if (scalar != NULL) { | ||
1834 | pre = EC_EX_DATA_get_data(group->extra_data, | ||
1835 | nistp521_pre_comp_dup, nistp521_pre_comp_free, | ||
1836 | nistp521_pre_comp_clear_free); | ||
1837 | if (pre) | ||
1838 | /* we have precomputation, try to use it */ | ||
1839 | g_pre_comp = &pre->g_pre_comp[0]; | ||
1840 | else | ||
1841 | /* try to use the standard precomputation */ | ||
1842 | g_pre_comp = (felem(*)[3]) gmul; | ||
1843 | generator = EC_POINT_new(group); | ||
1844 | if (generator == NULL) | ||
1845 | goto err; | ||
1846 | /* get the generator from precomputation */ | ||
1847 | if (!felem_to_BN(x, g_pre_comp[1][0]) || | ||
1848 | !felem_to_BN(y, g_pre_comp[1][1]) || | ||
1849 | !felem_to_BN(z, g_pre_comp[1][2])) { | ||
1850 | ECerr(EC_F_EC_GFP_NISTP521_POINTS_MUL, ERR_R_BN_LIB); | ||
1851 | goto err; | ||
1852 | } | ||
1853 | if (!EC_POINT_set_Jprojective_coordinates_GFp(group, | ||
1854 | generator, x, y, z, ctx)) | ||
1855 | goto err; | ||
1856 | if (0 == EC_POINT_cmp(group, generator, group->generator, ctx)) | ||
1857 | /* precomputation matches generator */ | ||
1858 | have_pre_comp = 1; | ||
1859 | else | ||
1860 | /* | ||
1861 | * we don't have valid precomputation: treat the | ||
1862 | * generator as a random point | ||
1863 | */ | ||
1864 | num_points++; | ||
1865 | } | ||
1866 | if (num_points > 0) { | ||
1867 | if (num_points >= 2) { | ||
1868 | /* | ||
1869 | * unless we precompute multiples for just one point, | ||
1870 | * converting those into affine form is time well | ||
1871 | * spent | ||
1872 | */ | ||
1873 | mixed = 1; | ||
1874 | } | ||
1875 | secrets = calloc(num_points, sizeof(felem_bytearray)); | ||
1876 | pre_comp = calloc(num_points, 17 * 3 * sizeof(felem)); | ||
1877 | if (mixed) { | ||
1878 | /* XXX should do more int overflow checking */ | ||
1879 | tmp_felems = reallocarray(NULL, | ||
1880 | (num_points * 17 + 1), sizeof(felem)); | ||
1881 | } | ||
1882 | if ((secrets == NULL) || (pre_comp == NULL) || (mixed && (tmp_felems == NULL))) { | ||
1883 | ECerr(EC_F_EC_GFP_NISTP521_POINTS_MUL, ERR_R_MALLOC_FAILURE); | ||
1884 | goto err; | ||
1885 | } | ||
1886 | /* | ||
1887 | * we treat NULL scalars as 0, and NULL points as points at | ||
1888 | * infinity, i.e., they contribute nothing to the linear | ||
1889 | * combination | ||
1890 | */ | ||
1891 | for (i = 0; i < num_points; ++i) { | ||
1892 | if (i == num) | ||
1893 | /* | ||
1894 | * we didn't have a valid precomputation, so | ||
1895 | * we pick the generator | ||
1896 | */ | ||
1897 | { | ||
1898 | p = EC_GROUP_get0_generator(group); | ||
1899 | p_scalar = scalar; | ||
1900 | } else | ||
1901 | /* the i^th point */ | ||
1902 | { | ||
1903 | p = points[i]; | ||
1904 | p_scalar = scalars[i]; | ||
1905 | } | ||
1906 | if ((p_scalar != NULL) && (p != NULL)) { | ||
1907 | /* reduce scalar to 0 <= scalar < 2^521 */ | ||
1908 | if ((BN_num_bits(p_scalar) > 521) || (BN_is_negative(p_scalar))) { | ||
1909 | /* | ||
1910 | * this is an unusual input, and we | ||
1911 | * don't guarantee constant-timeness | ||
1912 | */ | ||
1913 | if (!BN_nnmod(tmp_scalar, p_scalar, &group->order, ctx)) { | ||
1914 | ECerr(EC_F_EC_GFP_NISTP521_POINTS_MUL, ERR_R_BN_LIB); | ||
1915 | goto err; | ||
1916 | } | ||
1917 | num_bytes = BN_bn2bin(tmp_scalar, tmp); | ||
1918 | } else | ||
1919 | num_bytes = BN_bn2bin(p_scalar, tmp); | ||
1920 | flip_endian(secrets[i], tmp, num_bytes); | ||
1921 | /* precompute multiples */ | ||
1922 | if ((!BN_to_felem(x_out, &p->X)) || | ||
1923 | (!BN_to_felem(y_out, &p->Y)) || | ||
1924 | (!BN_to_felem(z_out, &p->Z))) | ||
1925 | goto err; | ||
1926 | memcpy(pre_comp[i][1][0], x_out, sizeof(felem)); | ||
1927 | memcpy(pre_comp[i][1][1], y_out, sizeof(felem)); | ||
1928 | memcpy(pre_comp[i][1][2], z_out, sizeof(felem)); | ||
1929 | for (j = 2; j <= 16; ++j) { | ||
1930 | if (j & 1) { | ||
1931 | point_add( | ||
1932 | pre_comp[i][j][0], pre_comp[i][j][1], pre_comp[i][j][2], | ||
1933 | pre_comp[i][1][0], pre_comp[i][1][1], pre_comp[i][1][2], | ||
1934 | 0, pre_comp[i][j - 1][0], pre_comp[i][j - 1][1], pre_comp[i][j - 1][2]); | ||
1935 | } else { | ||
1936 | point_double( | ||
1937 | pre_comp[i][j][0], pre_comp[i][j][1], pre_comp[i][j][2], | ||
1938 | pre_comp[i][j / 2][0], pre_comp[i][j / 2][1], pre_comp[i][j / 2][2]); | ||
1939 | } | ||
1940 | } | ||
1941 | } | ||
1942 | } | ||
1943 | if (mixed) | ||
1944 | make_points_affine(num_points * 17, pre_comp[0], tmp_felems); | ||
1945 | } | ||
1946 | /* the scalar for the generator */ | ||
1947 | if ((scalar != NULL) && (have_pre_comp)) { | ||
1948 | memset(g_secret, 0, sizeof(g_secret)); | ||
1949 | /* reduce scalar to 0 <= scalar < 2^521 */ | ||
1950 | if ((BN_num_bits(scalar) > 521) || (BN_is_negative(scalar))) { | ||
1951 | /* | ||
1952 | * this is an unusual input, and we don't guarantee | ||
1953 | * constant-timeness | ||
1954 | */ | ||
1955 | if (!BN_nnmod(tmp_scalar, scalar, &group->order, ctx)) { | ||
1956 | ECerr(EC_F_EC_GFP_NISTP521_POINTS_MUL, ERR_R_BN_LIB); | ||
1957 | goto err; | ||
1958 | } | ||
1959 | num_bytes = BN_bn2bin(tmp_scalar, tmp); | ||
1960 | } else | ||
1961 | num_bytes = BN_bn2bin(scalar, tmp); | ||
1962 | flip_endian(g_secret, tmp, num_bytes); | ||
1963 | /* do the multiplication with generator precomputation */ | ||
1964 | batch_mul(x_out, y_out, z_out, | ||
1965 | (const felem_bytearray(*)) secrets, num_points, | ||
1966 | g_secret, | ||
1967 | mixed, (const felem(*)[17][3]) pre_comp, | ||
1968 | (const felem(*)[3]) g_pre_comp); | ||
1969 | } else | ||
1970 | /* do the multiplication without generator precomputation */ | ||
1971 | batch_mul(x_out, y_out, z_out, | ||
1972 | (const felem_bytearray(*)) secrets, num_points, | ||
1973 | NULL, mixed, (const felem(*)[17][3]) pre_comp, NULL); | ||
1974 | /* reduce the output to its unique minimal representation */ | ||
1975 | felem_contract(x_in, x_out); | ||
1976 | felem_contract(y_in, y_out); | ||
1977 | felem_contract(z_in, z_out); | ||
1978 | if ((!felem_to_BN(x, x_in)) || (!felem_to_BN(y, y_in)) || | ||
1979 | (!felem_to_BN(z, z_in))) { | ||
1980 | ECerr(EC_F_EC_GFP_NISTP521_POINTS_MUL, ERR_R_BN_LIB); | ||
1981 | goto err; | ||
1982 | } | ||
1983 | ret = EC_POINT_set_Jprojective_coordinates_GFp(group, r, x, y, z, ctx); | ||
1984 | |||
1985 | err: | ||
1986 | BN_CTX_end(ctx); | ||
1987 | EC_POINT_free(generator); | ||
1988 | BN_CTX_free(new_ctx); | ||
1989 | free(secrets); | ||
1990 | free(pre_comp); | ||
1991 | free(tmp_felems); | ||
1992 | return ret; | ||
1993 | } | ||
1994 | |||
1995 | int | ||
1996 | ec_GFp_nistp521_precompute_mult(EC_GROUP * group, BN_CTX * ctx) | ||
1997 | { | ||
1998 | int ret = 0; | ||
1999 | NISTP521_PRE_COMP *pre = NULL; | ||
2000 | int i, j; | ||
2001 | BN_CTX *new_ctx = NULL; | ||
2002 | BIGNUM *x, *y; | ||
2003 | EC_POINT *generator = NULL; | ||
2004 | felem tmp_felems[16]; | ||
2005 | |||
2006 | /* throw away old precomputation */ | ||
2007 | EC_EX_DATA_free_data(&group->extra_data, nistp521_pre_comp_dup, | ||
2008 | nistp521_pre_comp_free, nistp521_pre_comp_clear_free); | ||
2009 | if (ctx == NULL) | ||
2010 | if ((ctx = new_ctx = BN_CTX_new()) == NULL) | ||
2011 | return 0; | ||
2012 | BN_CTX_start(ctx); | ||
2013 | if (((x = BN_CTX_get(ctx)) == NULL) || | ||
2014 | ((y = BN_CTX_get(ctx)) == NULL)) | ||
2015 | goto err; | ||
2016 | /* get the generator */ | ||
2017 | if (group->generator == NULL) | ||
2018 | goto err; | ||
2019 | generator = EC_POINT_new(group); | ||
2020 | if (generator == NULL) | ||
2021 | goto err; | ||
2022 | BN_bin2bn(nistp521_curve_params[3], sizeof(felem_bytearray), x); | ||
2023 | BN_bin2bn(nistp521_curve_params[4], sizeof(felem_bytearray), y); | ||
2024 | if (!EC_POINT_set_affine_coordinates_GFp(group, generator, x, y, ctx)) | ||
2025 | goto err; | ||
2026 | if ((pre = nistp521_pre_comp_new()) == NULL) | ||
2027 | goto err; | ||
2028 | /* if the generator is the standard one, use built-in precomputation */ | ||
2029 | if (0 == EC_POINT_cmp(group, generator, group->generator, ctx)) { | ||
2030 | memcpy(pre->g_pre_comp, gmul, sizeof(pre->g_pre_comp)); | ||
2031 | ret = 1; | ||
2032 | goto err; | ||
2033 | } | ||
2034 | if ((!BN_to_felem(pre->g_pre_comp[1][0], &group->generator->X)) || | ||
2035 | (!BN_to_felem(pre->g_pre_comp[1][1], &group->generator->Y)) || | ||
2036 | (!BN_to_felem(pre->g_pre_comp[1][2], &group->generator->Z))) | ||
2037 | goto err; | ||
2038 | /* compute 2^130*G, 2^260*G, 2^390*G */ | ||
2039 | for (i = 1; i <= 4; i <<= 1) { | ||
2040 | point_double(pre->g_pre_comp[2 * i][0], pre->g_pre_comp[2 * i][1], | ||
2041 | pre->g_pre_comp[2 * i][2], pre->g_pre_comp[i][0], | ||
2042 | pre->g_pre_comp[i][1], pre->g_pre_comp[i][2]); | ||
2043 | for (j = 0; j < 129; ++j) { | ||
2044 | point_double(pre->g_pre_comp[2 * i][0], | ||
2045 | pre->g_pre_comp[2 * i][1], | ||
2046 | pre->g_pre_comp[2 * i][2], | ||
2047 | pre->g_pre_comp[2 * i][0], | ||
2048 | pre->g_pre_comp[2 * i][1], | ||
2049 | pre->g_pre_comp[2 * i][2]); | ||
2050 | } | ||
2051 | } | ||
2052 | /* g_pre_comp[0] is the point at infinity */ | ||
2053 | memset(pre->g_pre_comp[0], 0, sizeof(pre->g_pre_comp[0])); | ||
2054 | /* the remaining multiples */ | ||
2055 | /* 2^130*G + 2^260*G */ | ||
2056 | point_add(pre->g_pre_comp[6][0], pre->g_pre_comp[6][1], | ||
2057 | pre->g_pre_comp[6][2], pre->g_pre_comp[4][0], | ||
2058 | pre->g_pre_comp[4][1], pre->g_pre_comp[4][2], | ||
2059 | 0, pre->g_pre_comp[2][0], pre->g_pre_comp[2][1], | ||
2060 | pre->g_pre_comp[2][2]); | ||
2061 | /* 2^130*G + 2^390*G */ | ||
2062 | point_add(pre->g_pre_comp[10][0], pre->g_pre_comp[10][1], | ||
2063 | pre->g_pre_comp[10][2], pre->g_pre_comp[8][0], | ||
2064 | pre->g_pre_comp[8][1], pre->g_pre_comp[8][2], | ||
2065 | 0, pre->g_pre_comp[2][0], pre->g_pre_comp[2][1], | ||
2066 | pre->g_pre_comp[2][2]); | ||
2067 | /* 2^260*G + 2^390*G */ | ||
2068 | point_add(pre->g_pre_comp[12][0], pre->g_pre_comp[12][1], | ||
2069 | pre->g_pre_comp[12][2], pre->g_pre_comp[8][0], | ||
2070 | pre->g_pre_comp[8][1], pre->g_pre_comp[8][2], | ||
2071 | 0, pre->g_pre_comp[4][0], pre->g_pre_comp[4][1], | ||
2072 | pre->g_pre_comp[4][2]); | ||
2073 | /* 2^130*G + 2^260*G + 2^390*G */ | ||
2074 | point_add(pre->g_pre_comp[14][0], pre->g_pre_comp[14][1], | ||
2075 | pre->g_pre_comp[14][2], pre->g_pre_comp[12][0], | ||
2076 | pre->g_pre_comp[12][1], pre->g_pre_comp[12][2], | ||
2077 | 0, pre->g_pre_comp[2][0], pre->g_pre_comp[2][1], | ||
2078 | pre->g_pre_comp[2][2]); | ||
2079 | for (i = 1; i < 8; ++i) { | ||
2080 | /* odd multiples: add G */ | ||
2081 | point_add(pre->g_pre_comp[2 * i + 1][0], pre->g_pre_comp[2 * i + 1][1], | ||
2082 | pre->g_pre_comp[2 * i + 1][2], pre->g_pre_comp[2 * i][0], | ||
2083 | pre->g_pre_comp[2 * i][1], pre->g_pre_comp[2 * i][2], | ||
2084 | 0, pre->g_pre_comp[1][0], pre->g_pre_comp[1][1], | ||
2085 | pre->g_pre_comp[1][2]); | ||
2086 | } | ||
2087 | make_points_affine(15, &(pre->g_pre_comp[1]), tmp_felems); | ||
2088 | |||
2089 | if (!EC_EX_DATA_set_data(&group->extra_data, pre, nistp521_pre_comp_dup, | ||
2090 | nistp521_pre_comp_free, nistp521_pre_comp_clear_free)) | ||
2091 | goto err; | ||
2092 | ret = 1; | ||
2093 | pre = NULL; | ||
2094 | err: | ||
2095 | BN_CTX_end(ctx); | ||
2096 | EC_POINT_free(generator); | ||
2097 | BN_CTX_free(new_ctx); | ||
2098 | nistp521_pre_comp_free(pre); | ||
2099 | return ret; | ||
2100 | } | ||
2101 | |||
2102 | int | ||
2103 | ec_GFp_nistp521_have_precompute_mult(const EC_GROUP * group) | ||
2104 | { | ||
2105 | if (EC_EX_DATA_get_data(group->extra_data, nistp521_pre_comp_dup, | ||
2106 | nistp521_pre_comp_free, nistp521_pre_comp_clear_free) | ||
2107 | != NULL) | ||
2108 | return 1; | ||
2109 | else | ||
2110 | return 0; | ||
2111 | } | ||
2112 | |||
2113 | #endif | ||
diff --git a/src/lib/libcrypto/ec/ecp_nistputil.c b/src/lib/libcrypto/ec/ecp_nistputil.c deleted file mode 100644 index ca55b49ba2..0000000000 --- a/src/lib/libcrypto/ec/ecp_nistputil.c +++ /dev/null | |||
@@ -1,209 +0,0 @@ | |||
1 | /* $OpenBSD: ecp_nistputil.c,v 1.6 2014/07/10 22:45:57 jsing Exp $ */ | ||
2 | /* | ||
3 | * Written by Bodo Moeller for the OpenSSL project. | ||
4 | */ | ||
5 | /* | ||
6 | * Copyright (c) 2011 Google Inc. | ||
7 | * | ||
8 | * Permission to use, copy, modify, and distribute this software for any | ||
9 | * purpose with or without fee is hereby granted, provided that the above | ||
10 | * copyright notice and this permission notice appear in all copies. | ||
11 | * | ||
12 | * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES | ||
13 | * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF | ||
14 | * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR | ||
15 | * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES | ||
16 | * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN | ||
17 | * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF | ||
18 | * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE. | ||
19 | */ | ||
20 | |||
21 | #include <stddef.h> | ||
22 | |||
23 | #include <openssl/opensslconf.h> | ||
24 | |||
25 | #ifndef OPENSSL_NO_EC_NISTP_64_GCC_128 | ||
26 | |||
27 | /* | ||
28 | * Common utility functions for ecp_nistp224.c, ecp_nistp256.c, ecp_nistp521.c. | ||
29 | */ | ||
30 | |||
31 | #include "ec_lcl.h" | ||
32 | |||
33 | /* Convert an array of points into affine coordinates. | ||
34 | * (If the point at infinity is found (Z = 0), it remains unchanged.) | ||
35 | * This function is essentially an equivalent to EC_POINTs_make_affine(), but | ||
36 | * works with the internal representation of points as used by ecp_nistp###.c | ||
37 | * rather than with (BIGNUM-based) EC_POINT data structures. | ||
38 | * | ||
39 | * point_array is the input/output buffer ('num' points in projective form, | ||
40 | * i.e. three coordinates each), based on an internal representation of | ||
41 | * field elements of size 'felem_size'. | ||
42 | * | ||
43 | * tmp_felems needs to point to a temporary array of 'num'+1 field elements | ||
44 | * for storage of intermediate values. | ||
45 | */ | ||
46 | void | ||
47 | ec_GFp_nistp_points_make_affine_internal(size_t num, void *point_array, | ||
48 | size_t felem_size, void *tmp_felems, | ||
49 | void (*felem_one) (void *out), | ||
50 | int (*felem_is_zero) (const void *in), | ||
51 | void (*felem_assign) (void *out, const void *in), | ||
52 | void (*felem_square) (void *out, const void *in), | ||
53 | void (*felem_mul) (void *out, const void *in1, const void *in2), | ||
54 | void (*felem_inv) (void *out, const void *in), | ||
55 | void (*felem_contract) (void *out, const void *in)) | ||
56 | { | ||
57 | int i = 0; | ||
58 | |||
59 | #define tmp_felem(I) (&((char *)tmp_felems)[(I) * felem_size]) | ||
60 | #define X(I) (&((char *)point_array)[3*(I) * felem_size]) | ||
61 | #define Y(I) (&((char *)point_array)[(3*(I) + 1) * felem_size]) | ||
62 | #define Z(I) (&((char *)point_array)[(3*(I) + 2) * felem_size]) | ||
63 | |||
64 | if (!felem_is_zero(Z(0))) | ||
65 | felem_assign(tmp_felem(0), Z(0)); | ||
66 | else | ||
67 | felem_one(tmp_felem(0)); | ||
68 | for (i = 1; i < (int) num; i++) { | ||
69 | if (!felem_is_zero(Z(i))) | ||
70 | felem_mul(tmp_felem(i), tmp_felem(i - 1), Z(i)); | ||
71 | else | ||
72 | felem_assign(tmp_felem(i), tmp_felem(i - 1)); | ||
73 | } | ||
74 | /* | ||
75 | * Now each tmp_felem(i) is the product of Z(0) .. Z(i), skipping any | ||
76 | * zero-valued factors: if Z(i) = 0, we essentially pretend that Z(i) | ||
77 | * = 1 | ||
78 | */ | ||
79 | |||
80 | felem_inv(tmp_felem(num - 1), tmp_felem(num - 1)); | ||
81 | for (i = num - 1; i >= 0; i--) { | ||
82 | if (i > 0) | ||
83 | /* | ||
84 | * tmp_felem(i-1) is the product of Z(0) .. Z(i-1), | ||
85 | * tmp_felem(i) is the inverse of the product of Z(0) | ||
86 | * .. Z(i) | ||
87 | */ | ||
88 | felem_mul(tmp_felem(num), tmp_felem(i - 1), tmp_felem(i)); /* 1/Z(i) */ | ||
89 | else | ||
90 | felem_assign(tmp_felem(num), tmp_felem(0)); /* 1/Z(0) */ | ||
91 | |||
92 | if (!felem_is_zero(Z(i))) { | ||
93 | if (i > 0) | ||
94 | /* | ||
95 | * For next iteration, replace tmp_felem(i-1) | ||
96 | * by its inverse | ||
97 | */ | ||
98 | felem_mul(tmp_felem(i - 1), tmp_felem(i), Z(i)); | ||
99 | |||
100 | /* | ||
101 | * Convert point (X, Y, Z) into affine form (X/(Z^2), | ||
102 | * Y/(Z^3), 1) | ||
103 | */ | ||
104 | felem_square(Z(i), tmp_felem(num)); /* 1/(Z^2) */ | ||
105 | felem_mul(X(i), X(i), Z(i)); /* X/(Z^2) */ | ||
106 | felem_mul(Z(i), Z(i), tmp_felem(num)); /* 1/(Z^3) */ | ||
107 | felem_mul(Y(i), Y(i), Z(i)); /* Y/(Z^3) */ | ||
108 | felem_contract(X(i), X(i)); | ||
109 | felem_contract(Y(i), Y(i)); | ||
110 | felem_one(Z(i)); | ||
111 | } else { | ||
112 | if (i > 0) | ||
113 | /* | ||
114 | * For next iteration, replace tmp_felem(i-1) | ||
115 | * by its inverse | ||
116 | */ | ||
117 | felem_assign(tmp_felem(i - 1), tmp_felem(i)); | ||
118 | } | ||
119 | } | ||
120 | } | ||
121 | |||
122 | /* | ||
123 | * This function looks at 5+1 scalar bits (5 current, 1 adjacent less | ||
124 | * significant bit), and recodes them into a signed digit for use in fast point | ||
125 | * multiplication: the use of signed rather than unsigned digits means that | ||
126 | * fewer points need to be precomputed, given that point inversion is easy | ||
127 | * (a precomputed point dP makes -dP available as well). | ||
128 | * | ||
129 | * BACKGROUND: | ||
130 | * | ||
131 | * Signed digits for multiplication were introduced by Booth ("A signed binary | ||
132 | * multiplication technique", Quart. Journ. Mech. and Applied Math., vol. IV, | ||
133 | * pt. 2 (1951), pp. 236-240), in that case for multiplication of integers. | ||
134 | * Booth's original encoding did not generally improve the density of nonzero | ||
135 | * digits over the binary representation, and was merely meant to simplify the | ||
136 | * handling of signed factors given in two's complement; but it has since been | ||
137 | * shown to be the basis of various signed-digit representations that do have | ||
138 | * further advantages, including the wNAF, using the following general approach: | ||
139 | * | ||
140 | * (1) Given a binary representation | ||
141 | * | ||
142 | * b_k ... b_2 b_1 b_0, | ||
143 | * | ||
144 | * of a nonnegative integer (b_k in {0, 1}), rewrite it in digits 0, 1, -1 | ||
145 | * by using bit-wise subtraction as follows: | ||
146 | * | ||
147 | * b_k b_(k-1) ... b_2 b_1 b_0 | ||
148 | * - b_k ... b_3 b_2 b_1 b_0 | ||
149 | * ------------------------------------- | ||
150 | * s_k b_(k-1) ... s_3 s_2 s_1 s_0 | ||
151 | * | ||
152 | * A left-shift followed by subtraction of the original value yields a new | ||
153 | * representation of the same value, using signed bits s_i = b_(i+1) - b_i. | ||
154 | * This representation from Booth's paper has since appeared in the | ||
155 | * literature under a variety of different names including "reversed binary | ||
156 | * form", "alternating greedy expansion", "mutual opposite form", and | ||
157 | * "sign-alternating {+-1}-representation". | ||
158 | * | ||
159 | * An interesting property is that among the nonzero bits, values 1 and -1 | ||
160 | * strictly alternate. | ||
161 | * | ||
162 | * (2) Various window schemes can be applied to the Booth representation of | ||
163 | * integers: for example, right-to-left sliding windows yield the wNAF | ||
164 | * (a signed-digit encoding independently discovered by various researchers | ||
165 | * in the 1990s), and left-to-right sliding windows yield a left-to-right | ||
166 | * equivalent of the wNAF (independently discovered by various researchers | ||
167 | * around 2004). | ||
168 | * | ||
169 | * To prevent leaking information through side channels in point multiplication, | ||
170 | * we need to recode the given integer into a regular pattern: sliding windows | ||
171 | * as in wNAFs won't do, we need their fixed-window equivalent -- which is a few | ||
172 | * decades older: we'll be using the so-called "modified Booth encoding" due to | ||
173 | * MacSorley ("High-speed arithmetic in binary computers", Proc. IRE, vol. 49 | ||
174 | * (1961), pp. 67-91), in a radix-2^5 setting. That is, we always combine five | ||
175 | * signed bits into a signed digit: | ||
176 | * | ||
177 | * s_(4j + 4) s_(4j + 3) s_(4j + 2) s_(4j + 1) s_(4j) | ||
178 | * | ||
179 | * The sign-alternating property implies that the resulting digit values are | ||
180 | * integers from -16 to 16. | ||
181 | * | ||
182 | * Of course, we don't actually need to compute the signed digits s_i as an | ||
183 | * intermediate step (that's just a nice way to see how this scheme relates | ||
184 | * to the wNAF): a direct computation obtains the recoded digit from the | ||
185 | * six bits b_(4j + 4) ... b_(4j - 1). | ||
186 | * | ||
187 | * This function takes those five bits as an integer (0 .. 63), writing the | ||
188 | * recoded digit to *sign (0 for positive, 1 for negative) and *digit (absolute | ||
189 | * value, in the range 0 .. 8). Note that this integer essentially provides the | ||
190 | * input bits "shifted to the left" by one position: for example, the input to | ||
191 | * compute the least significant recoded digit, given that there's no bit b_-1, | ||
192 | * has to be b_4 b_3 b_2 b_1 b_0 0. | ||
193 | * | ||
194 | */ | ||
195 | void | ||
196 | ec_GFp_nistp_recode_scalar_bits(unsigned char *sign, unsigned char *digit, unsigned char in) | ||
197 | { | ||
198 | unsigned char s, d; | ||
199 | |||
200 | s = ~((in >> 5) - 1); /* sets all bits to MSB(in), 'in' seen as | ||
201 | * 6-bit value */ | ||
202 | d = (1 << 6) - in - 1; | ||
203 | d = (d & s) | (in & ~s); | ||
204 | d = (d >> 1) + (d & 1); | ||
205 | |||
206 | *sign = s & 1; | ||
207 | *digit = d; | ||
208 | } | ||
209 | #endif | ||
diff --git a/src/lib/libcrypto/ec/ecp_oct.c b/src/lib/libcrypto/ec/ecp_oct.c deleted file mode 100644 index 994f0b08b1..0000000000 --- a/src/lib/libcrypto/ec/ecp_oct.c +++ /dev/null | |||
@@ -1,395 +0,0 @@ | |||
1 | /* $OpenBSD: ecp_oct.c,v 1.7 2015/02/09 15:49:22 jsing Exp $ */ | ||
2 | /* Includes code written by Lenka Fibikova <fibikova@exp-math.uni-essen.de> | ||
3 | * for the OpenSSL project. | ||
4 | * Includes code written by Bodo Moeller for the OpenSSL project. | ||
5 | */ | ||
6 | /* ==================================================================== | ||
7 | * Copyright (c) 1998-2002 The OpenSSL Project. All rights reserved. | ||
8 | * | ||
9 | * Redistribution and use in source and binary forms, with or without | ||
10 | * modification, are permitted provided that the following conditions | ||
11 | * are met: | ||
12 | * | ||
13 | * 1. Redistributions of source code must retain the above copyright | ||
14 | * notice, this list of conditions and the following disclaimer. | ||
15 | * | ||
16 | * 2. Redistributions in binary form must reproduce the above copyright | ||
17 | * notice, this list of conditions and the following disclaimer in | ||
18 | * the documentation and/or other materials provided with the | ||
19 | * distribution. | ||
20 | * | ||
21 | * 3. All advertising materials mentioning features or use of this | ||
22 | * software must display the following acknowledgment: | ||
23 | * "This product includes software developed by the OpenSSL Project | ||
24 | * for use in the OpenSSL Toolkit. (http://www.openssl.org/)" | ||
25 | * | ||
26 | * 4. The names "OpenSSL Toolkit" and "OpenSSL Project" must not be used to | ||
27 | * endorse or promote products derived from this software without | ||
28 | * prior written permission. For written permission, please contact | ||
29 | * openssl-core@openssl.org. | ||
30 | * | ||
31 | * 5. Products derived from this software may not be called "OpenSSL" | ||
32 | * nor may "OpenSSL" appear in their names without prior written | ||
33 | * permission of the OpenSSL Project. | ||
34 | * | ||
35 | * 6. Redistributions of any form whatsoever must retain the following | ||
36 | * acknowledgment: | ||
37 | * "This product includes software developed by the OpenSSL Project | ||
38 | * for use in the OpenSSL Toolkit (http://www.openssl.org/)" | ||
39 | * | ||
40 | * THIS SOFTWARE IS PROVIDED BY THE OpenSSL PROJECT ``AS IS'' AND ANY | ||
41 | * EXPRESSED OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE | ||
42 | * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR | ||
43 | * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE OpenSSL PROJECT OR | ||
44 | * ITS CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, | ||
45 | * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT | ||
46 | * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; | ||
47 | * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) | ||
48 | * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, | ||
49 | * STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) | ||
50 | * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED | ||
51 | * OF THE POSSIBILITY OF SUCH DAMAGE. | ||
52 | * ==================================================================== | ||
53 | * | ||
54 | * This product includes cryptographic software written by Eric Young | ||
55 | * (eay@cryptsoft.com). This product includes software written by Tim | ||
56 | * Hudson (tjh@cryptsoft.com). | ||
57 | * | ||
58 | */ | ||
59 | /* ==================================================================== | ||
60 | * Copyright 2002 Sun Microsystems, Inc. ALL RIGHTS RESERVED. | ||
61 | * Portions of this software developed by SUN MICROSYSTEMS, INC., | ||
62 | * and contributed to the OpenSSL project. | ||
63 | */ | ||
64 | |||
65 | #include <openssl/err.h> | ||
66 | |||
67 | #include "ec_lcl.h" | ||
68 | |||
69 | int | ||
70 | ec_GFp_simple_set_compressed_coordinates(const EC_GROUP * group, | ||
71 | EC_POINT * point, const BIGNUM * x_, int y_bit, BN_CTX * ctx) | ||
72 | { | ||
73 | BN_CTX *new_ctx = NULL; | ||
74 | BIGNUM *tmp1, *tmp2, *x, *y; | ||
75 | int ret = 0; | ||
76 | |||
77 | /* clear error queue */ | ||
78 | ERR_clear_error(); | ||
79 | |||
80 | if (ctx == NULL) { | ||
81 | ctx = new_ctx = BN_CTX_new(); | ||
82 | if (ctx == NULL) | ||
83 | return 0; | ||
84 | } | ||
85 | y_bit = (y_bit != 0); | ||
86 | |||
87 | BN_CTX_start(ctx); | ||
88 | if ((tmp1 = BN_CTX_get(ctx)) == NULL) | ||
89 | goto err; | ||
90 | if ((tmp2 = BN_CTX_get(ctx)) == NULL) | ||
91 | goto err; | ||
92 | if ((x = BN_CTX_get(ctx)) == NULL) | ||
93 | goto err; | ||
94 | if ((y = BN_CTX_get(ctx)) == NULL) | ||
95 | goto err; | ||
96 | |||
97 | /* | ||
98 | * Recover y. We have a Weierstrass equation y^2 = x^3 + a*x + b, so | ||
99 | * y is one of the square roots of x^3 + a*x + b. | ||
100 | */ | ||
101 | |||
102 | /* tmp1 := x^3 */ | ||
103 | if (!BN_nnmod(x, x_, &group->field, ctx)) | ||
104 | goto err; | ||
105 | if (group->meth->field_decode == 0) { | ||
106 | /* field_{sqr,mul} work on standard representation */ | ||
107 | if (!group->meth->field_sqr(group, tmp2, x_, ctx)) | ||
108 | goto err; | ||
109 | if (!group->meth->field_mul(group, tmp1, tmp2, x_, ctx)) | ||
110 | goto err; | ||
111 | } else { | ||
112 | if (!BN_mod_sqr(tmp2, x_, &group->field, ctx)) | ||
113 | goto err; | ||
114 | if (!BN_mod_mul(tmp1, tmp2, x_, &group->field, ctx)) | ||
115 | goto err; | ||
116 | } | ||
117 | |||
118 | /* tmp1 := tmp1 + a*x */ | ||
119 | if (group->a_is_minus3) { | ||
120 | if (!BN_mod_lshift1_quick(tmp2, x, &group->field)) | ||
121 | goto err; | ||
122 | if (!BN_mod_add_quick(tmp2, tmp2, x, &group->field)) | ||
123 | goto err; | ||
124 | if (!BN_mod_sub_quick(tmp1, tmp1, tmp2, &group->field)) | ||
125 | goto err; | ||
126 | } else { | ||
127 | if (group->meth->field_decode) { | ||
128 | if (!group->meth->field_decode(group, tmp2, &group->a, ctx)) | ||
129 | goto err; | ||
130 | if (!BN_mod_mul(tmp2, tmp2, x, &group->field, ctx)) | ||
131 | goto err; | ||
132 | } else { | ||
133 | /* field_mul works on standard representation */ | ||
134 | if (!group->meth->field_mul(group, tmp2, &group->a, x, ctx)) | ||
135 | goto err; | ||
136 | } | ||
137 | |||
138 | if (!BN_mod_add_quick(tmp1, tmp1, tmp2, &group->field)) | ||
139 | goto err; | ||
140 | } | ||
141 | |||
142 | /* tmp1 := tmp1 + b */ | ||
143 | if (group->meth->field_decode) { | ||
144 | if (!group->meth->field_decode(group, tmp2, &group->b, ctx)) | ||
145 | goto err; | ||
146 | if (!BN_mod_add_quick(tmp1, tmp1, tmp2, &group->field)) | ||
147 | goto err; | ||
148 | } else { | ||
149 | if (!BN_mod_add_quick(tmp1, tmp1, &group->b, &group->field)) | ||
150 | goto err; | ||
151 | } | ||
152 | |||
153 | if (!BN_mod_sqrt(y, tmp1, &group->field, ctx)) { | ||
154 | unsigned long err = ERR_peek_last_error(); | ||
155 | |||
156 | if (ERR_GET_LIB(err) == ERR_LIB_BN && ERR_GET_REASON(err) == BN_R_NOT_A_SQUARE) { | ||
157 | ERR_clear_error(); | ||
158 | ECerr(EC_F_EC_GFP_SIMPLE_SET_COMPRESSED_COORDINATES, EC_R_INVALID_COMPRESSED_POINT); | ||
159 | } else | ||
160 | ECerr(EC_F_EC_GFP_SIMPLE_SET_COMPRESSED_COORDINATES, ERR_R_BN_LIB); | ||
161 | goto err; | ||
162 | } | ||
163 | if (y_bit != BN_is_odd(y)) { | ||
164 | if (BN_is_zero(y)) { | ||
165 | int kron; | ||
166 | |||
167 | kron = BN_kronecker(x, &group->field, ctx); | ||
168 | if (kron == -2) | ||
169 | goto err; | ||
170 | |||
171 | if (kron == 1) | ||
172 | ECerr(EC_F_EC_GFP_SIMPLE_SET_COMPRESSED_COORDINATES, EC_R_INVALID_COMPRESSION_BIT); | ||
173 | else | ||
174 | /* | ||
175 | * BN_mod_sqrt() should have cought this | ||
176 | * error (not a square) | ||
177 | */ | ||
178 | ECerr(EC_F_EC_GFP_SIMPLE_SET_COMPRESSED_COORDINATES, EC_R_INVALID_COMPRESSED_POINT); | ||
179 | goto err; | ||
180 | } | ||
181 | if (!BN_usub(y, &group->field, y)) | ||
182 | goto err; | ||
183 | } | ||
184 | if (y_bit != BN_is_odd(y)) { | ||
185 | ECerr(EC_F_EC_GFP_SIMPLE_SET_COMPRESSED_COORDINATES, ERR_R_INTERNAL_ERROR); | ||
186 | goto err; | ||
187 | } | ||
188 | if (!EC_POINT_set_affine_coordinates_GFp(group, point, x, y, ctx)) | ||
189 | goto err; | ||
190 | |||
191 | ret = 1; | ||
192 | |||
193 | err: | ||
194 | BN_CTX_end(ctx); | ||
195 | BN_CTX_free(new_ctx); | ||
196 | return ret; | ||
197 | } | ||
198 | |||
199 | |||
200 | size_t | ||
201 | ec_GFp_simple_point2oct(const EC_GROUP * group, const EC_POINT * point, point_conversion_form_t form, | ||
202 | unsigned char *buf, size_t len, BN_CTX * ctx) | ||
203 | { | ||
204 | size_t ret; | ||
205 | BN_CTX *new_ctx = NULL; | ||
206 | int used_ctx = 0; | ||
207 | BIGNUM *x, *y; | ||
208 | size_t field_len, i, skip; | ||
209 | |||
210 | if ((form != POINT_CONVERSION_COMPRESSED) | ||
211 | && (form != POINT_CONVERSION_UNCOMPRESSED) | ||
212 | && (form != POINT_CONVERSION_HYBRID)) { | ||
213 | ECerr(EC_F_EC_GFP_SIMPLE_POINT2OCT, EC_R_INVALID_FORM); | ||
214 | goto err; | ||
215 | } | ||
216 | if (EC_POINT_is_at_infinity(group, point) > 0) { | ||
217 | /* encodes to a single 0 octet */ | ||
218 | if (buf != NULL) { | ||
219 | if (len < 1) { | ||
220 | ECerr(EC_F_EC_GFP_SIMPLE_POINT2OCT, EC_R_BUFFER_TOO_SMALL); | ||
221 | return 0; | ||
222 | } | ||
223 | buf[0] = 0; | ||
224 | } | ||
225 | return 1; | ||
226 | } | ||
227 | /* ret := required output buffer length */ | ||
228 | field_len = BN_num_bytes(&group->field); | ||
229 | ret = (form == POINT_CONVERSION_COMPRESSED) ? 1 + field_len : 1 + 2 * field_len; | ||
230 | |||
231 | /* if 'buf' is NULL, just return required length */ | ||
232 | if (buf != NULL) { | ||
233 | if (len < ret) { | ||
234 | ECerr(EC_F_EC_GFP_SIMPLE_POINT2OCT, EC_R_BUFFER_TOO_SMALL); | ||
235 | goto err; | ||
236 | } | ||
237 | if (ctx == NULL) { | ||
238 | ctx = new_ctx = BN_CTX_new(); | ||
239 | if (ctx == NULL) | ||
240 | return 0; | ||
241 | } | ||
242 | BN_CTX_start(ctx); | ||
243 | used_ctx = 1; | ||
244 | if ((x = BN_CTX_get(ctx)) == NULL) | ||
245 | goto err; | ||
246 | if ((y = BN_CTX_get(ctx)) == NULL) | ||
247 | goto err; | ||
248 | |||
249 | if (!EC_POINT_get_affine_coordinates_GFp(group, point, x, y, ctx)) | ||
250 | goto err; | ||
251 | |||
252 | if ((form == POINT_CONVERSION_COMPRESSED || form == POINT_CONVERSION_HYBRID) && BN_is_odd(y)) | ||
253 | buf[0] = form + 1; | ||
254 | else | ||
255 | buf[0] = form; | ||
256 | |||
257 | i = 1; | ||
258 | |||
259 | skip = field_len - BN_num_bytes(x); | ||
260 | if (skip > field_len) { | ||
261 | ECerr(EC_F_EC_GFP_SIMPLE_POINT2OCT, ERR_R_INTERNAL_ERROR); | ||
262 | goto err; | ||
263 | } | ||
264 | while (skip > 0) { | ||
265 | buf[i++] = 0; | ||
266 | skip--; | ||
267 | } | ||
268 | skip = BN_bn2bin(x, buf + i); | ||
269 | i += skip; | ||
270 | if (i != 1 + field_len) { | ||
271 | ECerr(EC_F_EC_GFP_SIMPLE_POINT2OCT, ERR_R_INTERNAL_ERROR); | ||
272 | goto err; | ||
273 | } | ||
274 | if (form == POINT_CONVERSION_UNCOMPRESSED || form == POINT_CONVERSION_HYBRID) { | ||
275 | skip = field_len - BN_num_bytes(y); | ||
276 | if (skip > field_len) { | ||
277 | ECerr(EC_F_EC_GFP_SIMPLE_POINT2OCT, ERR_R_INTERNAL_ERROR); | ||
278 | goto err; | ||
279 | } | ||
280 | while (skip > 0) { | ||
281 | buf[i++] = 0; | ||
282 | skip--; | ||
283 | } | ||
284 | skip = BN_bn2bin(y, buf + i); | ||
285 | i += skip; | ||
286 | } | ||
287 | if (i != ret) { | ||
288 | ECerr(EC_F_EC_GFP_SIMPLE_POINT2OCT, ERR_R_INTERNAL_ERROR); | ||
289 | goto err; | ||
290 | } | ||
291 | } | ||
292 | if (used_ctx) | ||
293 | BN_CTX_end(ctx); | ||
294 | BN_CTX_free(new_ctx); | ||
295 | return ret; | ||
296 | |||
297 | err: | ||
298 | if (used_ctx) | ||
299 | BN_CTX_end(ctx); | ||
300 | BN_CTX_free(new_ctx); | ||
301 | return 0; | ||
302 | } | ||
303 | |||
304 | |||
305 | int | ||
306 | ec_GFp_simple_oct2point(const EC_GROUP * group, EC_POINT * point, | ||
307 | const unsigned char *buf, size_t len, BN_CTX * ctx) | ||
308 | { | ||
309 | point_conversion_form_t form; | ||
310 | int y_bit; | ||
311 | BN_CTX *new_ctx = NULL; | ||
312 | BIGNUM *x, *y; | ||
313 | size_t field_len, enc_len; | ||
314 | int ret = 0; | ||
315 | |||
316 | if (len == 0) { | ||
317 | ECerr(EC_F_EC_GFP_SIMPLE_OCT2POINT, EC_R_BUFFER_TOO_SMALL); | ||
318 | return 0; | ||
319 | } | ||
320 | form = buf[0]; | ||
321 | y_bit = form & 1; | ||
322 | form = form & ~1U; | ||
323 | if ((form != 0) && (form != POINT_CONVERSION_COMPRESSED) | ||
324 | && (form != POINT_CONVERSION_UNCOMPRESSED) | ||
325 | && (form != POINT_CONVERSION_HYBRID)) { | ||
326 | ECerr(EC_F_EC_GFP_SIMPLE_OCT2POINT, EC_R_INVALID_ENCODING); | ||
327 | return 0; | ||
328 | } | ||
329 | if ((form == 0 || form == POINT_CONVERSION_UNCOMPRESSED) && y_bit) { | ||
330 | ECerr(EC_F_EC_GFP_SIMPLE_OCT2POINT, EC_R_INVALID_ENCODING); | ||
331 | return 0; | ||
332 | } | ||
333 | if (form == 0) { | ||
334 | if (len != 1) { | ||
335 | ECerr(EC_F_EC_GFP_SIMPLE_OCT2POINT, EC_R_INVALID_ENCODING); | ||
336 | return 0; | ||
337 | } | ||
338 | return EC_POINT_set_to_infinity(group, point); | ||
339 | } | ||
340 | field_len = BN_num_bytes(&group->field); | ||
341 | enc_len = (form == POINT_CONVERSION_COMPRESSED) ? 1 + field_len : 1 + 2 * field_len; | ||
342 | |||
343 | if (len != enc_len) { | ||
344 | ECerr(EC_F_EC_GFP_SIMPLE_OCT2POINT, EC_R_INVALID_ENCODING); | ||
345 | return 0; | ||
346 | } | ||
347 | if (ctx == NULL) { | ||
348 | ctx = new_ctx = BN_CTX_new(); | ||
349 | if (ctx == NULL) | ||
350 | return 0; | ||
351 | } | ||
352 | BN_CTX_start(ctx); | ||
353 | if ((x = BN_CTX_get(ctx)) == NULL) | ||
354 | goto err; | ||
355 | if ((y = BN_CTX_get(ctx)) == NULL) | ||
356 | goto err; | ||
357 | |||
358 | if (!BN_bin2bn(buf + 1, field_len, x)) | ||
359 | goto err; | ||
360 | if (BN_ucmp(x, &group->field) >= 0) { | ||
361 | ECerr(EC_F_EC_GFP_SIMPLE_OCT2POINT, EC_R_INVALID_ENCODING); | ||
362 | goto err; | ||
363 | } | ||
364 | if (form == POINT_CONVERSION_COMPRESSED) { | ||
365 | if (!EC_POINT_set_compressed_coordinates_GFp(group, point, x, y_bit, ctx)) | ||
366 | goto err; | ||
367 | } else { | ||
368 | if (!BN_bin2bn(buf + 1 + field_len, field_len, y)) | ||
369 | goto err; | ||
370 | if (BN_ucmp(y, &group->field) >= 0) { | ||
371 | ECerr(EC_F_EC_GFP_SIMPLE_OCT2POINT, EC_R_INVALID_ENCODING); | ||
372 | goto err; | ||
373 | } | ||
374 | if (form == POINT_CONVERSION_HYBRID) { | ||
375 | if (y_bit != BN_is_odd(y)) { | ||
376 | ECerr(EC_F_EC_GFP_SIMPLE_OCT2POINT, EC_R_INVALID_ENCODING); | ||
377 | goto err; | ||
378 | } | ||
379 | } | ||
380 | if (!EC_POINT_set_affine_coordinates_GFp(group, point, x, y, ctx)) | ||
381 | goto err; | ||
382 | } | ||
383 | |||
384 | /* test required by X9.62 */ | ||
385 | if (EC_POINT_is_on_curve(group, point, ctx) <= 0) { | ||
386 | ECerr(EC_F_EC_GFP_SIMPLE_OCT2POINT, EC_R_POINT_IS_NOT_ON_CURVE); | ||
387 | goto err; | ||
388 | } | ||
389 | ret = 1; | ||
390 | |||
391 | err: | ||
392 | BN_CTX_end(ctx); | ||
393 | BN_CTX_free(new_ctx); | ||
394 | return ret; | ||
395 | } | ||
diff --git a/src/lib/libcrypto/ec/ecp_smpl.c b/src/lib/libcrypto/ec/ecp_smpl.c deleted file mode 100644 index f6db4dc9b1..0000000000 --- a/src/lib/libcrypto/ec/ecp_smpl.c +++ /dev/null | |||
@@ -1,1410 +0,0 @@ | |||
1 | /* $OpenBSD: ecp_smpl.c,v 1.15 2015/02/09 15:49:22 jsing Exp $ */ | ||
2 | /* Includes code written by Lenka Fibikova <fibikova@exp-math.uni-essen.de> | ||
3 | * for the OpenSSL project. | ||
4 | * Includes code written by Bodo Moeller for the OpenSSL project. | ||
5 | */ | ||
6 | /* ==================================================================== | ||
7 | * Copyright (c) 1998-2002 The OpenSSL Project. All rights reserved. | ||
8 | * | ||
9 | * Redistribution and use in source and binary forms, with or without | ||
10 | * modification, are permitted provided that the following conditions | ||
11 | * are met: | ||
12 | * | ||
13 | * 1. Redistributions of source code must retain the above copyright | ||
14 | * notice, this list of conditions and the following disclaimer. | ||
15 | * | ||
16 | * 2. Redistributions in binary form must reproduce the above copyright | ||
17 | * notice, this list of conditions and the following disclaimer in | ||
18 | * the documentation and/or other materials provided with the | ||
19 | * distribution. | ||
20 | * | ||
21 | * 3. All advertising materials mentioning features or use of this | ||
22 | * software must display the following acknowledgment: | ||
23 | * "This product includes software developed by the OpenSSL Project | ||
24 | * for use in the OpenSSL Toolkit. (http://www.openssl.org/)" | ||
25 | * | ||
26 | * 4. The names "OpenSSL Toolkit" and "OpenSSL Project" must not be used to | ||
27 | * endorse or promote products derived from this software without | ||
28 | * prior written permission. For written permission, please contact | ||
29 | * openssl-core@openssl.org. | ||
30 | * | ||
31 | * 5. Products derived from this software may not be called "OpenSSL" | ||
32 | * nor may "OpenSSL" appear in their names without prior written | ||
33 | * permission of the OpenSSL Project. | ||
34 | * | ||
35 | * 6. Redistributions of any form whatsoever must retain the following | ||
36 | * acknowledgment: | ||
37 | * "This product includes software developed by the OpenSSL Project | ||
38 | * for use in the OpenSSL Toolkit (http://www.openssl.org/)" | ||
39 | * | ||
40 | * THIS SOFTWARE IS PROVIDED BY THE OpenSSL PROJECT ``AS IS'' AND ANY | ||
41 | * EXPRESSED OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE | ||
42 | * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR | ||
43 | * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE OpenSSL PROJECT OR | ||
44 | * ITS CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, | ||
45 | * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT | ||
46 | * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; | ||
47 | * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) | ||
48 | * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, | ||
49 | * STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) | ||
50 | * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED | ||
51 | * OF THE POSSIBILITY OF SUCH DAMAGE. | ||
52 | * ==================================================================== | ||
53 | * | ||
54 | * This product includes cryptographic software written by Eric Young | ||
55 | * (eay@cryptsoft.com). This product includes software written by Tim | ||
56 | * Hudson (tjh@cryptsoft.com). | ||
57 | * | ||
58 | */ | ||
59 | /* ==================================================================== | ||
60 | * Copyright 2002 Sun Microsystems, Inc. ALL RIGHTS RESERVED. | ||
61 | * Portions of this software developed by SUN MICROSYSTEMS, INC., | ||
62 | * and contributed to the OpenSSL project. | ||
63 | */ | ||
64 | |||
65 | #include <openssl/err.h> | ||
66 | |||
67 | #include "ec_lcl.h" | ||
68 | |||
69 | const EC_METHOD * | ||
70 | EC_GFp_simple_method(void) | ||
71 | { | ||
72 | static const EC_METHOD ret = { | ||
73 | .flags = EC_FLAGS_DEFAULT_OCT, | ||
74 | .field_type = NID_X9_62_prime_field, | ||
75 | .group_init = ec_GFp_simple_group_init, | ||
76 | .group_finish = ec_GFp_simple_group_finish, | ||
77 | .group_clear_finish = ec_GFp_simple_group_clear_finish, | ||
78 | .group_copy = ec_GFp_simple_group_copy, | ||
79 | .group_set_curve = ec_GFp_simple_group_set_curve, | ||
80 | .group_get_curve = ec_GFp_simple_group_get_curve, | ||
81 | .group_get_degree = ec_GFp_simple_group_get_degree, | ||
82 | .group_check_discriminant = | ||
83 | ec_GFp_simple_group_check_discriminant, | ||
84 | .point_init = ec_GFp_simple_point_init, | ||
85 | .point_finish = ec_GFp_simple_point_finish, | ||
86 | .point_clear_finish = ec_GFp_simple_point_clear_finish, | ||
87 | .point_copy = ec_GFp_simple_point_copy, | ||
88 | .point_set_to_infinity = ec_GFp_simple_point_set_to_infinity, | ||
89 | .point_set_Jprojective_coordinates_GFp = | ||
90 | ec_GFp_simple_set_Jprojective_coordinates_GFp, | ||
91 | .point_get_Jprojective_coordinates_GFp = | ||
92 | ec_GFp_simple_get_Jprojective_coordinates_GFp, | ||
93 | .point_set_affine_coordinates = | ||
94 | ec_GFp_simple_point_set_affine_coordinates, | ||
95 | .point_get_affine_coordinates = | ||
96 | ec_GFp_simple_point_get_affine_coordinates, | ||
97 | .add = ec_GFp_simple_add, | ||
98 | .dbl = ec_GFp_simple_dbl, | ||
99 | .invert = ec_GFp_simple_invert, | ||
100 | .is_at_infinity = ec_GFp_simple_is_at_infinity, | ||
101 | .is_on_curve = ec_GFp_simple_is_on_curve, | ||
102 | .point_cmp = ec_GFp_simple_cmp, | ||
103 | .make_affine = ec_GFp_simple_make_affine, | ||
104 | .points_make_affine = ec_GFp_simple_points_make_affine, | ||
105 | .field_mul = ec_GFp_simple_field_mul, | ||
106 | .field_sqr = ec_GFp_simple_field_sqr | ||
107 | }; | ||
108 | |||
109 | return &ret; | ||
110 | } | ||
111 | |||
112 | |||
113 | /* Most method functions in this file are designed to work with | ||
114 | * non-trivial representations of field elements if necessary | ||
115 | * (see ecp_mont.c): while standard modular addition and subtraction | ||
116 | * are used, the field_mul and field_sqr methods will be used for | ||
117 | * multiplication, and field_encode and field_decode (if defined) | ||
118 | * will be used for converting between representations. | ||
119 | |||
120 | * Functions ec_GFp_simple_points_make_affine() and | ||
121 | * ec_GFp_simple_point_get_affine_coordinates() specifically assume | ||
122 | * that if a non-trivial representation is used, it is a Montgomery | ||
123 | * representation (i.e. 'encoding' means multiplying by some factor R). | ||
124 | */ | ||
125 | |||
126 | |||
127 | int | ||
128 | ec_GFp_simple_group_init(EC_GROUP * group) | ||
129 | { | ||
130 | BN_init(&group->field); | ||
131 | BN_init(&group->a); | ||
132 | BN_init(&group->b); | ||
133 | group->a_is_minus3 = 0; | ||
134 | return 1; | ||
135 | } | ||
136 | |||
137 | |||
138 | void | ||
139 | ec_GFp_simple_group_finish(EC_GROUP * group) | ||
140 | { | ||
141 | BN_free(&group->field); | ||
142 | BN_free(&group->a); | ||
143 | BN_free(&group->b); | ||
144 | } | ||
145 | |||
146 | |||
147 | void | ||
148 | ec_GFp_simple_group_clear_finish(EC_GROUP * group) | ||
149 | { | ||
150 | BN_clear_free(&group->field); | ||
151 | BN_clear_free(&group->a); | ||
152 | BN_clear_free(&group->b); | ||
153 | } | ||
154 | |||
155 | |||
156 | int | ||
157 | ec_GFp_simple_group_copy(EC_GROUP * dest, const EC_GROUP * src) | ||
158 | { | ||
159 | if (!BN_copy(&dest->field, &src->field)) | ||
160 | return 0; | ||
161 | if (!BN_copy(&dest->a, &src->a)) | ||
162 | return 0; | ||
163 | if (!BN_copy(&dest->b, &src->b)) | ||
164 | return 0; | ||
165 | |||
166 | dest->a_is_minus3 = src->a_is_minus3; | ||
167 | |||
168 | return 1; | ||
169 | } | ||
170 | |||
171 | |||
172 | int | ||
173 | ec_GFp_simple_group_set_curve(EC_GROUP * group, | ||
174 | const BIGNUM * p, const BIGNUM * a, const BIGNUM * b, BN_CTX * ctx) | ||
175 | { | ||
176 | int ret = 0; | ||
177 | BN_CTX *new_ctx = NULL; | ||
178 | BIGNUM *tmp_a; | ||
179 | |||
180 | /* p must be a prime > 3 */ | ||
181 | if (BN_num_bits(p) <= 2 || !BN_is_odd(p)) { | ||
182 | ECerr(EC_F_EC_GFP_SIMPLE_GROUP_SET_CURVE, EC_R_INVALID_FIELD); | ||
183 | return 0; | ||
184 | } | ||
185 | if (ctx == NULL) { | ||
186 | ctx = new_ctx = BN_CTX_new(); | ||
187 | if (ctx == NULL) | ||
188 | return 0; | ||
189 | } | ||
190 | BN_CTX_start(ctx); | ||
191 | if ((tmp_a = BN_CTX_get(ctx)) == NULL) | ||
192 | goto err; | ||
193 | |||
194 | /* group->field */ | ||
195 | if (!BN_copy(&group->field, p)) | ||
196 | goto err; | ||
197 | BN_set_negative(&group->field, 0); | ||
198 | |||
199 | /* group->a */ | ||
200 | if (!BN_nnmod(tmp_a, a, p, ctx)) | ||
201 | goto err; | ||
202 | if (group->meth->field_encode) { | ||
203 | if (!group->meth->field_encode(group, &group->a, tmp_a, ctx)) | ||
204 | goto err; | ||
205 | } else if (!BN_copy(&group->a, tmp_a)) | ||
206 | goto err; | ||
207 | |||
208 | /* group->b */ | ||
209 | if (!BN_nnmod(&group->b, b, p, ctx)) | ||
210 | goto err; | ||
211 | if (group->meth->field_encode) | ||
212 | if (!group->meth->field_encode(group, &group->b, &group->b, ctx)) | ||
213 | goto err; | ||
214 | |||
215 | /* group->a_is_minus3 */ | ||
216 | if (!BN_add_word(tmp_a, 3)) | ||
217 | goto err; | ||
218 | group->a_is_minus3 = (0 == BN_cmp(tmp_a, &group->field)); | ||
219 | |||
220 | ret = 1; | ||
221 | |||
222 | err: | ||
223 | BN_CTX_end(ctx); | ||
224 | BN_CTX_free(new_ctx); | ||
225 | return ret; | ||
226 | } | ||
227 | |||
228 | |||
229 | int | ||
230 | ec_GFp_simple_group_get_curve(const EC_GROUP * group, BIGNUM * p, BIGNUM * a, BIGNUM * b, BN_CTX * ctx) | ||
231 | { | ||
232 | int ret = 0; | ||
233 | BN_CTX *new_ctx = NULL; | ||
234 | |||
235 | if (p != NULL) { | ||
236 | if (!BN_copy(p, &group->field)) | ||
237 | return 0; | ||
238 | } | ||
239 | if (a != NULL || b != NULL) { | ||
240 | if (group->meth->field_decode) { | ||
241 | if (ctx == NULL) { | ||
242 | ctx = new_ctx = BN_CTX_new(); | ||
243 | if (ctx == NULL) | ||
244 | return 0; | ||
245 | } | ||
246 | if (a != NULL) { | ||
247 | if (!group->meth->field_decode(group, a, &group->a, ctx)) | ||
248 | goto err; | ||
249 | } | ||
250 | if (b != NULL) { | ||
251 | if (!group->meth->field_decode(group, b, &group->b, ctx)) | ||
252 | goto err; | ||
253 | } | ||
254 | } else { | ||
255 | if (a != NULL) { | ||
256 | if (!BN_copy(a, &group->a)) | ||
257 | goto err; | ||
258 | } | ||
259 | if (b != NULL) { | ||
260 | if (!BN_copy(b, &group->b)) | ||
261 | goto err; | ||
262 | } | ||
263 | } | ||
264 | } | ||
265 | ret = 1; | ||
266 | |||
267 | err: | ||
268 | BN_CTX_free(new_ctx); | ||
269 | return ret; | ||
270 | } | ||
271 | |||
272 | |||
273 | int | ||
274 | ec_GFp_simple_group_get_degree(const EC_GROUP * group) | ||
275 | { | ||
276 | return BN_num_bits(&group->field); | ||
277 | } | ||
278 | |||
279 | |||
280 | int | ||
281 | ec_GFp_simple_group_check_discriminant(const EC_GROUP * group, BN_CTX * ctx) | ||
282 | { | ||
283 | int ret = 0; | ||
284 | BIGNUM *a, *b, *order, *tmp_1, *tmp_2; | ||
285 | const BIGNUM *p = &group->field; | ||
286 | BN_CTX *new_ctx = NULL; | ||
287 | |||
288 | if (ctx == NULL) { | ||
289 | ctx = new_ctx = BN_CTX_new(); | ||
290 | if (ctx == NULL) { | ||
291 | ECerr(EC_F_EC_GFP_SIMPLE_GROUP_CHECK_DISCRIMINANT, ERR_R_MALLOC_FAILURE); | ||
292 | goto err; | ||
293 | } | ||
294 | } | ||
295 | BN_CTX_start(ctx); | ||
296 | if ((a = BN_CTX_get(ctx)) == NULL) | ||
297 | goto err; | ||
298 | if ((b = BN_CTX_get(ctx)) == NULL) | ||
299 | goto err; | ||
300 | if ((tmp_1 = BN_CTX_get(ctx)) == NULL) | ||
301 | goto err; | ||
302 | if ((tmp_2 = BN_CTX_get(ctx)) == NULL) | ||
303 | goto err; | ||
304 | if ((order = BN_CTX_get(ctx)) == NULL) | ||
305 | goto err; | ||
306 | |||
307 | if (group->meth->field_decode) { | ||
308 | if (!group->meth->field_decode(group, a, &group->a, ctx)) | ||
309 | goto err; | ||
310 | if (!group->meth->field_decode(group, b, &group->b, ctx)) | ||
311 | goto err; | ||
312 | } else { | ||
313 | if (!BN_copy(a, &group->a)) | ||
314 | goto err; | ||
315 | if (!BN_copy(b, &group->b)) | ||
316 | goto err; | ||
317 | } | ||
318 | |||
319 | /* | ||
320 | * check the discriminant: y^2 = x^3 + a*x + b is an elliptic curve | ||
321 | * <=> 4*a^3 + 27*b^2 != 0 (mod p) 0 =< a, b < p | ||
322 | */ | ||
323 | if (BN_is_zero(a)) { | ||
324 | if (BN_is_zero(b)) | ||
325 | goto err; | ||
326 | } else if (!BN_is_zero(b)) { | ||
327 | if (!BN_mod_sqr(tmp_1, a, p, ctx)) | ||
328 | goto err; | ||
329 | if (!BN_mod_mul(tmp_2, tmp_1, a, p, ctx)) | ||
330 | goto err; | ||
331 | if (!BN_lshift(tmp_1, tmp_2, 2)) | ||
332 | goto err; | ||
333 | /* tmp_1 = 4*a^3 */ | ||
334 | |||
335 | if (!BN_mod_sqr(tmp_2, b, p, ctx)) | ||
336 | goto err; | ||
337 | if (!BN_mul_word(tmp_2, 27)) | ||
338 | goto err; | ||
339 | /* tmp_2 = 27*b^2 */ | ||
340 | |||
341 | if (!BN_mod_add(a, tmp_1, tmp_2, p, ctx)) | ||
342 | goto err; | ||
343 | if (BN_is_zero(a)) | ||
344 | goto err; | ||
345 | } | ||
346 | ret = 1; | ||
347 | |||
348 | err: | ||
349 | if (ctx != NULL) | ||
350 | BN_CTX_end(ctx); | ||
351 | BN_CTX_free(new_ctx); | ||
352 | return ret; | ||
353 | } | ||
354 | |||
355 | |||
356 | int | ||
357 | ec_GFp_simple_point_init(EC_POINT * point) | ||
358 | { | ||
359 | BN_init(&point->X); | ||
360 | BN_init(&point->Y); | ||
361 | BN_init(&point->Z); | ||
362 | point->Z_is_one = 0; | ||
363 | |||
364 | return 1; | ||
365 | } | ||
366 | |||
367 | |||
368 | void | ||
369 | ec_GFp_simple_point_finish(EC_POINT * point) | ||
370 | { | ||
371 | BN_free(&point->X); | ||
372 | BN_free(&point->Y); | ||
373 | BN_free(&point->Z); | ||
374 | } | ||
375 | |||
376 | |||
377 | void | ||
378 | ec_GFp_simple_point_clear_finish(EC_POINT * point) | ||
379 | { | ||
380 | BN_clear_free(&point->X); | ||
381 | BN_clear_free(&point->Y); | ||
382 | BN_clear_free(&point->Z); | ||
383 | point->Z_is_one = 0; | ||
384 | } | ||
385 | |||
386 | |||
387 | int | ||
388 | ec_GFp_simple_point_copy(EC_POINT * dest, const EC_POINT * src) | ||
389 | { | ||
390 | if (!BN_copy(&dest->X, &src->X)) | ||
391 | return 0; | ||
392 | if (!BN_copy(&dest->Y, &src->Y)) | ||
393 | return 0; | ||
394 | if (!BN_copy(&dest->Z, &src->Z)) | ||
395 | return 0; | ||
396 | dest->Z_is_one = src->Z_is_one; | ||
397 | |||
398 | return 1; | ||
399 | } | ||
400 | |||
401 | |||
402 | int | ||
403 | ec_GFp_simple_point_set_to_infinity(const EC_GROUP * group, EC_POINT * point) | ||
404 | { | ||
405 | point->Z_is_one = 0; | ||
406 | BN_zero(&point->Z); | ||
407 | return 1; | ||
408 | } | ||
409 | |||
410 | |||
411 | int | ||
412 | ec_GFp_simple_set_Jprojective_coordinates_GFp(const EC_GROUP * group, EC_POINT * point, | ||
413 | const BIGNUM * x, const BIGNUM * y, const BIGNUM * z, BN_CTX * ctx) | ||
414 | { | ||
415 | BN_CTX *new_ctx = NULL; | ||
416 | int ret = 0; | ||
417 | |||
418 | if (ctx == NULL) { | ||
419 | ctx = new_ctx = BN_CTX_new(); | ||
420 | if (ctx == NULL) | ||
421 | return 0; | ||
422 | } | ||
423 | if (x != NULL) { | ||
424 | if (!BN_nnmod(&point->X, x, &group->field, ctx)) | ||
425 | goto err; | ||
426 | if (group->meth->field_encode) { | ||
427 | if (!group->meth->field_encode(group, &point->X, &point->X, ctx)) | ||
428 | goto err; | ||
429 | } | ||
430 | } | ||
431 | if (y != NULL) { | ||
432 | if (!BN_nnmod(&point->Y, y, &group->field, ctx)) | ||
433 | goto err; | ||
434 | if (group->meth->field_encode) { | ||
435 | if (!group->meth->field_encode(group, &point->Y, &point->Y, ctx)) | ||
436 | goto err; | ||
437 | } | ||
438 | } | ||
439 | if (z != NULL) { | ||
440 | int Z_is_one; | ||
441 | |||
442 | if (!BN_nnmod(&point->Z, z, &group->field, ctx)) | ||
443 | goto err; | ||
444 | Z_is_one = BN_is_one(&point->Z); | ||
445 | if (group->meth->field_encode) { | ||
446 | if (Z_is_one && (group->meth->field_set_to_one != 0)) { | ||
447 | if (!group->meth->field_set_to_one(group, &point->Z, ctx)) | ||
448 | goto err; | ||
449 | } else { | ||
450 | if (!group->meth->field_encode(group, &point->Z, &point->Z, ctx)) | ||
451 | goto err; | ||
452 | } | ||
453 | } | ||
454 | point->Z_is_one = Z_is_one; | ||
455 | } | ||
456 | ret = 1; | ||
457 | |||
458 | err: | ||
459 | BN_CTX_free(new_ctx); | ||
460 | return ret; | ||
461 | } | ||
462 | |||
463 | |||
464 | int | ||
465 | ec_GFp_simple_get_Jprojective_coordinates_GFp(const EC_GROUP * group, const EC_POINT * point, | ||
466 | BIGNUM * x, BIGNUM * y, BIGNUM * z, BN_CTX * ctx) | ||
467 | { | ||
468 | BN_CTX *new_ctx = NULL; | ||
469 | int ret = 0; | ||
470 | |||
471 | if (group->meth->field_decode != 0) { | ||
472 | if (ctx == NULL) { | ||
473 | ctx = new_ctx = BN_CTX_new(); | ||
474 | if (ctx == NULL) | ||
475 | return 0; | ||
476 | } | ||
477 | if (x != NULL) { | ||
478 | if (!group->meth->field_decode(group, x, &point->X, ctx)) | ||
479 | goto err; | ||
480 | } | ||
481 | if (y != NULL) { | ||
482 | if (!group->meth->field_decode(group, y, &point->Y, ctx)) | ||
483 | goto err; | ||
484 | } | ||
485 | if (z != NULL) { | ||
486 | if (!group->meth->field_decode(group, z, &point->Z, ctx)) | ||
487 | goto err; | ||
488 | } | ||
489 | } else { | ||
490 | if (x != NULL) { | ||
491 | if (!BN_copy(x, &point->X)) | ||
492 | goto err; | ||
493 | } | ||
494 | if (y != NULL) { | ||
495 | if (!BN_copy(y, &point->Y)) | ||
496 | goto err; | ||
497 | } | ||
498 | if (z != NULL) { | ||
499 | if (!BN_copy(z, &point->Z)) | ||
500 | goto err; | ||
501 | } | ||
502 | } | ||
503 | |||
504 | ret = 1; | ||
505 | |||
506 | err: | ||
507 | BN_CTX_free(new_ctx); | ||
508 | return ret; | ||
509 | } | ||
510 | |||
511 | |||
512 | int | ||
513 | ec_GFp_simple_point_set_affine_coordinates(const EC_GROUP * group, EC_POINT * point, | ||
514 | const BIGNUM * x, const BIGNUM * y, BN_CTX * ctx) | ||
515 | { | ||
516 | if (x == NULL || y == NULL) { | ||
517 | /* unlike for projective coordinates, we do not tolerate this */ | ||
518 | ECerr(EC_F_EC_GFP_SIMPLE_POINT_SET_AFFINE_COORDINATES, ERR_R_PASSED_NULL_PARAMETER); | ||
519 | return 0; | ||
520 | } | ||
521 | return EC_POINT_set_Jprojective_coordinates_GFp(group, point, x, y, BN_value_one(), ctx); | ||
522 | } | ||
523 | |||
524 | |||
525 | int | ||
526 | ec_GFp_simple_point_get_affine_coordinates(const EC_GROUP * group, const EC_POINT * point, | ||
527 | BIGNUM * x, BIGNUM * y, BN_CTX * ctx) | ||
528 | { | ||
529 | BN_CTX *new_ctx = NULL; | ||
530 | BIGNUM *Z, *Z_1, *Z_2, *Z_3; | ||
531 | const BIGNUM *Z_; | ||
532 | int ret = 0; | ||
533 | |||
534 | if (EC_POINT_is_at_infinity(group, point) > 0) { | ||
535 | ECerr(EC_F_EC_GFP_SIMPLE_POINT_GET_AFFINE_COORDINATES, EC_R_POINT_AT_INFINITY); | ||
536 | return 0; | ||
537 | } | ||
538 | if (ctx == NULL) { | ||
539 | ctx = new_ctx = BN_CTX_new(); | ||
540 | if (ctx == NULL) | ||
541 | return 0; | ||
542 | } | ||
543 | BN_CTX_start(ctx); | ||
544 | if ((Z = BN_CTX_get(ctx)) == NULL) | ||
545 | goto err; | ||
546 | if ((Z_1 = BN_CTX_get(ctx)) == NULL) | ||
547 | goto err; | ||
548 | if ((Z_2 = BN_CTX_get(ctx)) == NULL) | ||
549 | goto err; | ||
550 | if ((Z_3 = BN_CTX_get(ctx)) == NULL) | ||
551 | goto err; | ||
552 | |||
553 | /* transform (X, Y, Z) into (x, y) := (X/Z^2, Y/Z^3) */ | ||
554 | |||
555 | if (group->meth->field_decode) { | ||
556 | if (!group->meth->field_decode(group, Z, &point->Z, ctx)) | ||
557 | goto err; | ||
558 | Z_ = Z; | ||
559 | } else { | ||
560 | Z_ = &point->Z; | ||
561 | } | ||
562 | |||
563 | if (BN_is_one(Z_)) { | ||
564 | if (group->meth->field_decode) { | ||
565 | if (x != NULL) { | ||
566 | if (!group->meth->field_decode(group, x, &point->X, ctx)) | ||
567 | goto err; | ||
568 | } | ||
569 | if (y != NULL) { | ||
570 | if (!group->meth->field_decode(group, y, &point->Y, ctx)) | ||
571 | goto err; | ||
572 | } | ||
573 | } else { | ||
574 | if (x != NULL) { | ||
575 | if (!BN_copy(x, &point->X)) | ||
576 | goto err; | ||
577 | } | ||
578 | if (y != NULL) { | ||
579 | if (!BN_copy(y, &point->Y)) | ||
580 | goto err; | ||
581 | } | ||
582 | } | ||
583 | } else { | ||
584 | if (!BN_mod_inverse(Z_1, Z_, &group->field, ctx)) { | ||
585 | ECerr(EC_F_EC_GFP_SIMPLE_POINT_GET_AFFINE_COORDINATES, ERR_R_BN_LIB); | ||
586 | goto err; | ||
587 | } | ||
588 | if (group->meth->field_encode == 0) { | ||
589 | /* field_sqr works on standard representation */ | ||
590 | if (!group->meth->field_sqr(group, Z_2, Z_1, ctx)) | ||
591 | goto err; | ||
592 | } else { | ||
593 | if (!BN_mod_sqr(Z_2, Z_1, &group->field, ctx)) | ||
594 | goto err; | ||
595 | } | ||
596 | |||
597 | if (x != NULL) { | ||
598 | /* | ||
599 | * in the Montgomery case, field_mul will cancel out | ||
600 | * Montgomery factor in X: | ||
601 | */ | ||
602 | if (!group->meth->field_mul(group, x, &point->X, Z_2, ctx)) | ||
603 | goto err; | ||
604 | } | ||
605 | if (y != NULL) { | ||
606 | if (group->meth->field_encode == 0) { | ||
607 | /* field_mul works on standard representation */ | ||
608 | if (!group->meth->field_mul(group, Z_3, Z_2, Z_1, ctx)) | ||
609 | goto err; | ||
610 | } else { | ||
611 | if (!BN_mod_mul(Z_3, Z_2, Z_1, &group->field, ctx)) | ||
612 | goto err; | ||
613 | } | ||
614 | |||
615 | /* | ||
616 | * in the Montgomery case, field_mul will cancel out | ||
617 | * Montgomery factor in Y: | ||
618 | */ | ||
619 | if (!group->meth->field_mul(group, y, &point->Y, Z_3, ctx)) | ||
620 | goto err; | ||
621 | } | ||
622 | } | ||
623 | |||
624 | ret = 1; | ||
625 | |||
626 | err: | ||
627 | BN_CTX_end(ctx); | ||
628 | BN_CTX_free(new_ctx); | ||
629 | return ret; | ||
630 | } | ||
631 | |||
632 | int | ||
633 | ec_GFp_simple_add(const EC_GROUP * group, EC_POINT * r, const EC_POINT * a, const EC_POINT * b, BN_CTX * ctx) | ||
634 | { | ||
635 | int (*field_mul) (const EC_GROUP *, BIGNUM *, const BIGNUM *, const BIGNUM *, BN_CTX *); | ||
636 | int (*field_sqr) (const EC_GROUP *, BIGNUM *, const BIGNUM *, BN_CTX *); | ||
637 | const BIGNUM *p; | ||
638 | BN_CTX *new_ctx = NULL; | ||
639 | BIGNUM *n0, *n1, *n2, *n3, *n4, *n5, *n6; | ||
640 | int ret = 0; | ||
641 | |||
642 | if (a == b) | ||
643 | return EC_POINT_dbl(group, r, a, ctx); | ||
644 | if (EC_POINT_is_at_infinity(group, a) > 0) | ||
645 | return EC_POINT_copy(r, b); | ||
646 | if (EC_POINT_is_at_infinity(group, b) > 0) | ||
647 | return EC_POINT_copy(r, a); | ||
648 | |||
649 | field_mul = group->meth->field_mul; | ||
650 | field_sqr = group->meth->field_sqr; | ||
651 | p = &group->field; | ||
652 | |||
653 | if (ctx == NULL) { | ||
654 | ctx = new_ctx = BN_CTX_new(); | ||
655 | if (ctx == NULL) | ||
656 | return 0; | ||
657 | } | ||
658 | BN_CTX_start(ctx); | ||
659 | if ((n0 = BN_CTX_get(ctx)) == NULL) | ||
660 | goto end; | ||
661 | if ((n1 = BN_CTX_get(ctx)) == NULL) | ||
662 | goto end; | ||
663 | if ((n2 = BN_CTX_get(ctx)) == NULL) | ||
664 | goto end; | ||
665 | if ((n3 = BN_CTX_get(ctx)) == NULL) | ||
666 | goto end; | ||
667 | if ((n4 = BN_CTX_get(ctx)) == NULL) | ||
668 | goto end; | ||
669 | if ((n5 = BN_CTX_get(ctx)) == NULL) | ||
670 | goto end; | ||
671 | if ((n6 = BN_CTX_get(ctx)) == NULL) | ||
672 | goto end; | ||
673 | |||
674 | /* | ||
675 | * Note that in this function we must not read components of 'a' or | ||
676 | * 'b' once we have written the corresponding components of 'r'. ('r' | ||
677 | * might be one of 'a' or 'b'.) | ||
678 | */ | ||
679 | |||
680 | /* n1, n2 */ | ||
681 | if (b->Z_is_one) { | ||
682 | if (!BN_copy(n1, &a->X)) | ||
683 | goto end; | ||
684 | if (!BN_copy(n2, &a->Y)) | ||
685 | goto end; | ||
686 | /* n1 = X_a */ | ||
687 | /* n2 = Y_a */ | ||
688 | } else { | ||
689 | if (!field_sqr(group, n0, &b->Z, ctx)) | ||
690 | goto end; | ||
691 | if (!field_mul(group, n1, &a->X, n0, ctx)) | ||
692 | goto end; | ||
693 | /* n1 = X_a * Z_b^2 */ | ||
694 | |||
695 | if (!field_mul(group, n0, n0, &b->Z, ctx)) | ||
696 | goto end; | ||
697 | if (!field_mul(group, n2, &a->Y, n0, ctx)) | ||
698 | goto end; | ||
699 | /* n2 = Y_a * Z_b^3 */ | ||
700 | } | ||
701 | |||
702 | /* n3, n4 */ | ||
703 | if (a->Z_is_one) { | ||
704 | if (!BN_copy(n3, &b->X)) | ||
705 | goto end; | ||
706 | if (!BN_copy(n4, &b->Y)) | ||
707 | goto end; | ||
708 | /* n3 = X_b */ | ||
709 | /* n4 = Y_b */ | ||
710 | } else { | ||
711 | if (!field_sqr(group, n0, &a->Z, ctx)) | ||
712 | goto end; | ||
713 | if (!field_mul(group, n3, &b->X, n0, ctx)) | ||
714 | goto end; | ||
715 | /* n3 = X_b * Z_a^2 */ | ||
716 | |||
717 | if (!field_mul(group, n0, n0, &a->Z, ctx)) | ||
718 | goto end; | ||
719 | if (!field_mul(group, n4, &b->Y, n0, ctx)) | ||
720 | goto end; | ||
721 | /* n4 = Y_b * Z_a^3 */ | ||
722 | } | ||
723 | |||
724 | /* n5, n6 */ | ||
725 | if (!BN_mod_sub_quick(n5, n1, n3, p)) | ||
726 | goto end; | ||
727 | if (!BN_mod_sub_quick(n6, n2, n4, p)) | ||
728 | goto end; | ||
729 | /* n5 = n1 - n3 */ | ||
730 | /* n6 = n2 - n4 */ | ||
731 | |||
732 | if (BN_is_zero(n5)) { | ||
733 | if (BN_is_zero(n6)) { | ||
734 | /* a is the same point as b */ | ||
735 | BN_CTX_end(ctx); | ||
736 | ret = EC_POINT_dbl(group, r, a, ctx); | ||
737 | ctx = NULL; | ||
738 | goto end; | ||
739 | } else { | ||
740 | /* a is the inverse of b */ | ||
741 | BN_zero(&r->Z); | ||
742 | r->Z_is_one = 0; | ||
743 | ret = 1; | ||
744 | goto end; | ||
745 | } | ||
746 | } | ||
747 | /* 'n7', 'n8' */ | ||
748 | if (!BN_mod_add_quick(n1, n1, n3, p)) | ||
749 | goto end; | ||
750 | if (!BN_mod_add_quick(n2, n2, n4, p)) | ||
751 | goto end; | ||
752 | /* 'n7' = n1 + n3 */ | ||
753 | /* 'n8' = n2 + n4 */ | ||
754 | |||
755 | /* Z_r */ | ||
756 | if (a->Z_is_one && b->Z_is_one) { | ||
757 | if (!BN_copy(&r->Z, n5)) | ||
758 | goto end; | ||
759 | } else { | ||
760 | if (a->Z_is_one) { | ||
761 | if (!BN_copy(n0, &b->Z)) | ||
762 | goto end; | ||
763 | } else if (b->Z_is_one) { | ||
764 | if (!BN_copy(n0, &a->Z)) | ||
765 | goto end; | ||
766 | } else { | ||
767 | if (!field_mul(group, n0, &a->Z, &b->Z, ctx)) | ||
768 | goto end; | ||
769 | } | ||
770 | if (!field_mul(group, &r->Z, n0, n5, ctx)) | ||
771 | goto end; | ||
772 | } | ||
773 | r->Z_is_one = 0; | ||
774 | /* Z_r = Z_a * Z_b * n5 */ | ||
775 | |||
776 | /* X_r */ | ||
777 | if (!field_sqr(group, n0, n6, ctx)) | ||
778 | goto end; | ||
779 | if (!field_sqr(group, n4, n5, ctx)) | ||
780 | goto end; | ||
781 | if (!field_mul(group, n3, n1, n4, ctx)) | ||
782 | goto end; | ||
783 | if (!BN_mod_sub_quick(&r->X, n0, n3, p)) | ||
784 | goto end; | ||
785 | /* X_r = n6^2 - n5^2 * 'n7' */ | ||
786 | |||
787 | /* 'n9' */ | ||
788 | if (!BN_mod_lshift1_quick(n0, &r->X, p)) | ||
789 | goto end; | ||
790 | if (!BN_mod_sub_quick(n0, n3, n0, p)) | ||
791 | goto end; | ||
792 | /* n9 = n5^2 * 'n7' - 2 * X_r */ | ||
793 | |||
794 | /* Y_r */ | ||
795 | if (!field_mul(group, n0, n0, n6, ctx)) | ||
796 | goto end; | ||
797 | if (!field_mul(group, n5, n4, n5, ctx)) | ||
798 | goto end; /* now n5 is n5^3 */ | ||
799 | if (!field_mul(group, n1, n2, n5, ctx)) | ||
800 | goto end; | ||
801 | if (!BN_mod_sub_quick(n0, n0, n1, p)) | ||
802 | goto end; | ||
803 | if (BN_is_odd(n0)) | ||
804 | if (!BN_add(n0, n0, p)) | ||
805 | goto end; | ||
806 | /* now 0 <= n0 < 2*p, and n0 is even */ | ||
807 | if (!BN_rshift1(&r->Y, n0)) | ||
808 | goto end; | ||
809 | /* Y_r = (n6 * 'n9' - 'n8' * 'n5^3') / 2 */ | ||
810 | |||
811 | ret = 1; | ||
812 | |||
813 | end: | ||
814 | if (ctx) /* otherwise we already called BN_CTX_end */ | ||
815 | BN_CTX_end(ctx); | ||
816 | BN_CTX_free(new_ctx); | ||
817 | return ret; | ||
818 | } | ||
819 | |||
820 | |||
821 | int | ||
822 | ec_GFp_simple_dbl(const EC_GROUP * group, EC_POINT * r, const EC_POINT * a, BN_CTX * ctx) | ||
823 | { | ||
824 | int (*field_mul) (const EC_GROUP *, BIGNUM *, const BIGNUM *, const BIGNUM *, BN_CTX *); | ||
825 | int (*field_sqr) (const EC_GROUP *, BIGNUM *, const BIGNUM *, BN_CTX *); | ||
826 | const BIGNUM *p; | ||
827 | BN_CTX *new_ctx = NULL; | ||
828 | BIGNUM *n0, *n1, *n2, *n3; | ||
829 | int ret = 0; | ||
830 | |||
831 | if (EC_POINT_is_at_infinity(group, a) > 0) { | ||
832 | BN_zero(&r->Z); | ||
833 | r->Z_is_one = 0; | ||
834 | return 1; | ||
835 | } | ||
836 | field_mul = group->meth->field_mul; | ||
837 | field_sqr = group->meth->field_sqr; | ||
838 | p = &group->field; | ||
839 | |||
840 | if (ctx == NULL) { | ||
841 | ctx = new_ctx = BN_CTX_new(); | ||
842 | if (ctx == NULL) | ||
843 | return 0; | ||
844 | } | ||
845 | BN_CTX_start(ctx); | ||
846 | if ((n0 = BN_CTX_get(ctx)) == NULL) | ||
847 | goto err; | ||
848 | if ((n1 = BN_CTX_get(ctx)) == NULL) | ||
849 | goto err; | ||
850 | if ((n2 = BN_CTX_get(ctx)) == NULL) | ||
851 | goto err; | ||
852 | if ((n3 = BN_CTX_get(ctx)) == NULL) | ||
853 | goto err; | ||
854 | |||
855 | /* | ||
856 | * Note that in this function we must not read components of 'a' once | ||
857 | * we have written the corresponding components of 'r'. ('r' might | ||
858 | * the same as 'a'.) | ||
859 | */ | ||
860 | |||
861 | /* n1 */ | ||
862 | if (a->Z_is_one) { | ||
863 | if (!field_sqr(group, n0, &a->X, ctx)) | ||
864 | goto err; | ||
865 | if (!BN_mod_lshift1_quick(n1, n0, p)) | ||
866 | goto err; | ||
867 | if (!BN_mod_add_quick(n0, n0, n1, p)) | ||
868 | goto err; | ||
869 | if (!BN_mod_add_quick(n1, n0, &group->a, p)) | ||
870 | goto err; | ||
871 | /* n1 = 3 * X_a^2 + a_curve */ | ||
872 | } else if (group->a_is_minus3) { | ||
873 | if (!field_sqr(group, n1, &a->Z, ctx)) | ||
874 | goto err; | ||
875 | if (!BN_mod_add_quick(n0, &a->X, n1, p)) | ||
876 | goto err; | ||
877 | if (!BN_mod_sub_quick(n2, &a->X, n1, p)) | ||
878 | goto err; | ||
879 | if (!field_mul(group, n1, n0, n2, ctx)) | ||
880 | goto err; | ||
881 | if (!BN_mod_lshift1_quick(n0, n1, p)) | ||
882 | goto err; | ||
883 | if (!BN_mod_add_quick(n1, n0, n1, p)) | ||
884 | goto err; | ||
885 | /* | ||
886 | * n1 = 3 * (X_a + Z_a^2) * (X_a - Z_a^2) = 3 * X_a^2 - 3 * | ||
887 | * Z_a^4 | ||
888 | */ | ||
889 | } else { | ||
890 | if (!field_sqr(group, n0, &a->X, ctx)) | ||
891 | goto err; | ||
892 | if (!BN_mod_lshift1_quick(n1, n0, p)) | ||
893 | goto err; | ||
894 | if (!BN_mod_add_quick(n0, n0, n1, p)) | ||
895 | goto err; | ||
896 | if (!field_sqr(group, n1, &a->Z, ctx)) | ||
897 | goto err; | ||
898 | if (!field_sqr(group, n1, n1, ctx)) | ||
899 | goto err; | ||
900 | if (!field_mul(group, n1, n1, &group->a, ctx)) | ||
901 | goto err; | ||
902 | if (!BN_mod_add_quick(n1, n1, n0, p)) | ||
903 | goto err; | ||
904 | /* n1 = 3 * X_a^2 + a_curve * Z_a^4 */ | ||
905 | } | ||
906 | |||
907 | /* Z_r */ | ||
908 | if (a->Z_is_one) { | ||
909 | if (!BN_copy(n0, &a->Y)) | ||
910 | goto err; | ||
911 | } else { | ||
912 | if (!field_mul(group, n0, &a->Y, &a->Z, ctx)) | ||
913 | goto err; | ||
914 | } | ||
915 | if (!BN_mod_lshift1_quick(&r->Z, n0, p)) | ||
916 | goto err; | ||
917 | r->Z_is_one = 0; | ||
918 | /* Z_r = 2 * Y_a * Z_a */ | ||
919 | |||
920 | /* n2 */ | ||
921 | if (!field_sqr(group, n3, &a->Y, ctx)) | ||
922 | goto err; | ||
923 | if (!field_mul(group, n2, &a->X, n3, ctx)) | ||
924 | goto err; | ||
925 | if (!BN_mod_lshift_quick(n2, n2, 2, p)) | ||
926 | goto err; | ||
927 | /* n2 = 4 * X_a * Y_a^2 */ | ||
928 | |||
929 | /* X_r */ | ||
930 | if (!BN_mod_lshift1_quick(n0, n2, p)) | ||
931 | goto err; | ||
932 | if (!field_sqr(group, &r->X, n1, ctx)) | ||
933 | goto err; | ||
934 | if (!BN_mod_sub_quick(&r->X, &r->X, n0, p)) | ||
935 | goto err; | ||
936 | /* X_r = n1^2 - 2 * n2 */ | ||
937 | |||
938 | /* n3 */ | ||
939 | if (!field_sqr(group, n0, n3, ctx)) | ||
940 | goto err; | ||
941 | if (!BN_mod_lshift_quick(n3, n0, 3, p)) | ||
942 | goto err; | ||
943 | /* n3 = 8 * Y_a^4 */ | ||
944 | |||
945 | /* Y_r */ | ||
946 | if (!BN_mod_sub_quick(n0, n2, &r->X, p)) | ||
947 | goto err; | ||
948 | if (!field_mul(group, n0, n1, n0, ctx)) | ||
949 | goto err; | ||
950 | if (!BN_mod_sub_quick(&r->Y, n0, n3, p)) | ||
951 | goto err; | ||
952 | /* Y_r = n1 * (n2 - X_r) - n3 */ | ||
953 | |||
954 | ret = 1; | ||
955 | |||
956 | err: | ||
957 | BN_CTX_end(ctx); | ||
958 | BN_CTX_free(new_ctx); | ||
959 | return ret; | ||
960 | } | ||
961 | |||
962 | |||
963 | int | ||
964 | ec_GFp_simple_invert(const EC_GROUP * group, EC_POINT * point, BN_CTX * ctx) | ||
965 | { | ||
966 | if (EC_POINT_is_at_infinity(group, point) > 0 || BN_is_zero(&point->Y)) | ||
967 | /* point is its own inverse */ | ||
968 | return 1; | ||
969 | |||
970 | return BN_usub(&point->Y, &group->field, &point->Y); | ||
971 | } | ||
972 | |||
973 | |||
974 | int | ||
975 | ec_GFp_simple_is_at_infinity(const EC_GROUP * group, const EC_POINT * point) | ||
976 | { | ||
977 | return BN_is_zero(&point->Z); | ||
978 | } | ||
979 | |||
980 | |||
981 | int | ||
982 | ec_GFp_simple_is_on_curve(const EC_GROUP * group, const EC_POINT * point, BN_CTX * ctx) | ||
983 | { | ||
984 | int (*field_mul) (const EC_GROUP *, BIGNUM *, const BIGNUM *, const BIGNUM *, BN_CTX *); | ||
985 | int (*field_sqr) (const EC_GROUP *, BIGNUM *, const BIGNUM *, BN_CTX *); | ||
986 | const BIGNUM *p; | ||
987 | BN_CTX *new_ctx = NULL; | ||
988 | BIGNUM *rh, *tmp, *Z4, *Z6; | ||
989 | int ret = -1; | ||
990 | |||
991 | if (EC_POINT_is_at_infinity(group, point) > 0) | ||
992 | return 1; | ||
993 | |||
994 | field_mul = group->meth->field_mul; | ||
995 | field_sqr = group->meth->field_sqr; | ||
996 | p = &group->field; | ||
997 | |||
998 | if (ctx == NULL) { | ||
999 | ctx = new_ctx = BN_CTX_new(); | ||
1000 | if (ctx == NULL) | ||
1001 | return -1; | ||
1002 | } | ||
1003 | BN_CTX_start(ctx); | ||
1004 | if ((rh = BN_CTX_get(ctx)) == NULL) | ||
1005 | goto err; | ||
1006 | if ((tmp = BN_CTX_get(ctx)) == NULL) | ||
1007 | goto err; | ||
1008 | if ((Z4 = BN_CTX_get(ctx)) == NULL) | ||
1009 | goto err; | ||
1010 | if ((Z6 = BN_CTX_get(ctx)) == NULL) | ||
1011 | goto err; | ||
1012 | |||
1013 | /* | ||
1014 | * We have a curve defined by a Weierstrass equation y^2 = x^3 + a*x | ||
1015 | * + b. The point to consider is given in Jacobian projective | ||
1016 | * coordinates where (X, Y, Z) represents (x, y) = (X/Z^2, Y/Z^3). | ||
1017 | * Substituting this and multiplying by Z^6 transforms the above | ||
1018 | * equation into Y^2 = X^3 + a*X*Z^4 + b*Z^6. To test this, we add up | ||
1019 | * the right-hand side in 'rh'. | ||
1020 | */ | ||
1021 | |||
1022 | /* rh := X^2 */ | ||
1023 | if (!field_sqr(group, rh, &point->X, ctx)) | ||
1024 | goto err; | ||
1025 | |||
1026 | if (!point->Z_is_one) { | ||
1027 | if (!field_sqr(group, tmp, &point->Z, ctx)) | ||
1028 | goto err; | ||
1029 | if (!field_sqr(group, Z4, tmp, ctx)) | ||
1030 | goto err; | ||
1031 | if (!field_mul(group, Z6, Z4, tmp, ctx)) | ||
1032 | goto err; | ||
1033 | |||
1034 | /* rh := (rh + a*Z^4)*X */ | ||
1035 | if (group->a_is_minus3) { | ||
1036 | if (!BN_mod_lshift1_quick(tmp, Z4, p)) | ||
1037 | goto err; | ||
1038 | if (!BN_mod_add_quick(tmp, tmp, Z4, p)) | ||
1039 | goto err; | ||
1040 | if (!BN_mod_sub_quick(rh, rh, tmp, p)) | ||
1041 | goto err; | ||
1042 | if (!field_mul(group, rh, rh, &point->X, ctx)) | ||
1043 | goto err; | ||
1044 | } else { | ||
1045 | if (!field_mul(group, tmp, Z4, &group->a, ctx)) | ||
1046 | goto err; | ||
1047 | if (!BN_mod_add_quick(rh, rh, tmp, p)) | ||
1048 | goto err; | ||
1049 | if (!field_mul(group, rh, rh, &point->X, ctx)) | ||
1050 | goto err; | ||
1051 | } | ||
1052 | |||
1053 | /* rh := rh + b*Z^6 */ | ||
1054 | if (!field_mul(group, tmp, &group->b, Z6, ctx)) | ||
1055 | goto err; | ||
1056 | if (!BN_mod_add_quick(rh, rh, tmp, p)) | ||
1057 | goto err; | ||
1058 | } else { | ||
1059 | /* point->Z_is_one */ | ||
1060 | |||
1061 | /* rh := (rh + a)*X */ | ||
1062 | if (!BN_mod_add_quick(rh, rh, &group->a, p)) | ||
1063 | goto err; | ||
1064 | if (!field_mul(group, rh, rh, &point->X, ctx)) | ||
1065 | goto err; | ||
1066 | /* rh := rh + b */ | ||
1067 | if (!BN_mod_add_quick(rh, rh, &group->b, p)) | ||
1068 | goto err; | ||
1069 | } | ||
1070 | |||
1071 | /* 'lh' := Y^2 */ | ||
1072 | if (!field_sqr(group, tmp, &point->Y, ctx)) | ||
1073 | goto err; | ||
1074 | |||
1075 | ret = (0 == BN_ucmp(tmp, rh)); | ||
1076 | |||
1077 | err: | ||
1078 | BN_CTX_end(ctx); | ||
1079 | BN_CTX_free(new_ctx); | ||
1080 | return ret; | ||
1081 | } | ||
1082 | |||
1083 | |||
1084 | int | ||
1085 | ec_GFp_simple_cmp(const EC_GROUP * group, const EC_POINT * a, const EC_POINT * b, BN_CTX * ctx) | ||
1086 | { | ||
1087 | /* | ||
1088 | * return values: -1 error 0 equal (in affine coordinates) 1 | ||
1089 | * not equal | ||
1090 | */ | ||
1091 | |||
1092 | int (*field_mul) (const EC_GROUP *, BIGNUM *, const BIGNUM *, const BIGNUM *, BN_CTX *); | ||
1093 | int (*field_sqr) (const EC_GROUP *, BIGNUM *, const BIGNUM *, BN_CTX *); | ||
1094 | BN_CTX *new_ctx = NULL; | ||
1095 | BIGNUM *tmp1, *tmp2, *Za23, *Zb23; | ||
1096 | const BIGNUM *tmp1_, *tmp2_; | ||
1097 | int ret = -1; | ||
1098 | |||
1099 | if (EC_POINT_is_at_infinity(group, a) > 0) { | ||
1100 | return EC_POINT_is_at_infinity(group, b) > 0 ? 0 : 1; | ||
1101 | } | ||
1102 | if (EC_POINT_is_at_infinity(group, b) > 0) | ||
1103 | return 1; | ||
1104 | |||
1105 | if (a->Z_is_one && b->Z_is_one) { | ||
1106 | return ((BN_cmp(&a->X, &b->X) == 0) && BN_cmp(&a->Y, &b->Y) == 0) ? 0 : 1; | ||
1107 | } | ||
1108 | field_mul = group->meth->field_mul; | ||
1109 | field_sqr = group->meth->field_sqr; | ||
1110 | |||
1111 | if (ctx == NULL) { | ||
1112 | ctx = new_ctx = BN_CTX_new(); | ||
1113 | if (ctx == NULL) | ||
1114 | return -1; | ||
1115 | } | ||
1116 | BN_CTX_start(ctx); | ||
1117 | if ((tmp1 = BN_CTX_get(ctx)) == NULL) | ||
1118 | goto end; | ||
1119 | if ((tmp2 = BN_CTX_get(ctx)) == NULL) | ||
1120 | goto end; | ||
1121 | if ((Za23 = BN_CTX_get(ctx)) == NULL) | ||
1122 | goto end; | ||
1123 | if ((Zb23 = BN_CTX_get(ctx)) == NULL) | ||
1124 | goto end; | ||
1125 | |||
1126 | /* | ||
1127 | * We have to decide whether (X_a/Z_a^2, Y_a/Z_a^3) = (X_b/Z_b^2, | ||
1128 | * Y_b/Z_b^3), or equivalently, whether (X_a*Z_b^2, Y_a*Z_b^3) = | ||
1129 | * (X_b*Z_a^2, Y_b*Z_a^3). | ||
1130 | */ | ||
1131 | |||
1132 | if (!b->Z_is_one) { | ||
1133 | if (!field_sqr(group, Zb23, &b->Z, ctx)) | ||
1134 | goto end; | ||
1135 | if (!field_mul(group, tmp1, &a->X, Zb23, ctx)) | ||
1136 | goto end; | ||
1137 | tmp1_ = tmp1; | ||
1138 | } else | ||
1139 | tmp1_ = &a->X; | ||
1140 | if (!a->Z_is_one) { | ||
1141 | if (!field_sqr(group, Za23, &a->Z, ctx)) | ||
1142 | goto end; | ||
1143 | if (!field_mul(group, tmp2, &b->X, Za23, ctx)) | ||
1144 | goto end; | ||
1145 | tmp2_ = tmp2; | ||
1146 | } else | ||
1147 | tmp2_ = &b->X; | ||
1148 | |||
1149 | /* compare X_a*Z_b^2 with X_b*Z_a^2 */ | ||
1150 | if (BN_cmp(tmp1_, tmp2_) != 0) { | ||
1151 | ret = 1; /* points differ */ | ||
1152 | goto end; | ||
1153 | } | ||
1154 | if (!b->Z_is_one) { | ||
1155 | if (!field_mul(group, Zb23, Zb23, &b->Z, ctx)) | ||
1156 | goto end; | ||
1157 | if (!field_mul(group, tmp1, &a->Y, Zb23, ctx)) | ||
1158 | goto end; | ||
1159 | /* tmp1_ = tmp1 */ | ||
1160 | } else | ||
1161 | tmp1_ = &a->Y; | ||
1162 | if (!a->Z_is_one) { | ||
1163 | if (!field_mul(group, Za23, Za23, &a->Z, ctx)) | ||
1164 | goto end; | ||
1165 | if (!field_mul(group, tmp2, &b->Y, Za23, ctx)) | ||
1166 | goto end; | ||
1167 | /* tmp2_ = tmp2 */ | ||
1168 | } else | ||
1169 | tmp2_ = &b->Y; | ||
1170 | |||
1171 | /* compare Y_a*Z_b^3 with Y_b*Z_a^3 */ | ||
1172 | if (BN_cmp(tmp1_, tmp2_) != 0) { | ||
1173 | ret = 1; /* points differ */ | ||
1174 | goto end; | ||
1175 | } | ||
1176 | /* points are equal */ | ||
1177 | ret = 0; | ||
1178 | |||
1179 | end: | ||
1180 | BN_CTX_end(ctx); | ||
1181 | BN_CTX_free(new_ctx); | ||
1182 | return ret; | ||
1183 | } | ||
1184 | |||
1185 | |||
1186 | int | ||
1187 | ec_GFp_simple_make_affine(const EC_GROUP * group, EC_POINT * point, BN_CTX * ctx) | ||
1188 | { | ||
1189 | BN_CTX *new_ctx = NULL; | ||
1190 | BIGNUM *x, *y; | ||
1191 | int ret = 0; | ||
1192 | |||
1193 | if (point->Z_is_one || EC_POINT_is_at_infinity(group, point) > 0) | ||
1194 | return 1; | ||
1195 | |||
1196 | if (ctx == NULL) { | ||
1197 | ctx = new_ctx = BN_CTX_new(); | ||
1198 | if (ctx == NULL) | ||
1199 | return 0; | ||
1200 | } | ||
1201 | BN_CTX_start(ctx); | ||
1202 | if ((x = BN_CTX_get(ctx)) == NULL) | ||
1203 | goto err; | ||
1204 | if ((y = BN_CTX_get(ctx)) == NULL) | ||
1205 | goto err; | ||
1206 | |||
1207 | if (!EC_POINT_get_affine_coordinates_GFp(group, point, x, y, ctx)) | ||
1208 | goto err; | ||
1209 | if (!EC_POINT_set_affine_coordinates_GFp(group, point, x, y, ctx)) | ||
1210 | goto err; | ||
1211 | if (!point->Z_is_one) { | ||
1212 | ECerr(EC_F_EC_GFP_SIMPLE_MAKE_AFFINE, ERR_R_INTERNAL_ERROR); | ||
1213 | goto err; | ||
1214 | } | ||
1215 | ret = 1; | ||
1216 | |||
1217 | err: | ||
1218 | BN_CTX_end(ctx); | ||
1219 | BN_CTX_free(new_ctx); | ||
1220 | return ret; | ||
1221 | } | ||
1222 | |||
1223 | |||
1224 | int | ||
1225 | ec_GFp_simple_points_make_affine(const EC_GROUP * group, size_t num, EC_POINT * points[], BN_CTX * ctx) | ||
1226 | { | ||
1227 | BN_CTX *new_ctx = NULL; | ||
1228 | BIGNUM *tmp0, *tmp1; | ||
1229 | size_t pow2 = 0; | ||
1230 | BIGNUM **heap = NULL; | ||
1231 | size_t i; | ||
1232 | int ret = 0; | ||
1233 | |||
1234 | if (num == 0) | ||
1235 | return 1; | ||
1236 | |||
1237 | if (ctx == NULL) { | ||
1238 | ctx = new_ctx = BN_CTX_new(); | ||
1239 | if (ctx == NULL) | ||
1240 | return 0; | ||
1241 | } | ||
1242 | BN_CTX_start(ctx); | ||
1243 | if ((tmp0 = BN_CTX_get(ctx)) == NULL) | ||
1244 | goto err; | ||
1245 | if ((tmp1 = BN_CTX_get(ctx)) == NULL) | ||
1246 | goto err; | ||
1247 | |||
1248 | /* | ||
1249 | * Before converting the individual points, compute inverses of all Z | ||
1250 | * values. Modular inversion is rather slow, but luckily we can do | ||
1251 | * with a single explicit inversion, plus about 3 multiplications per | ||
1252 | * input value. | ||
1253 | */ | ||
1254 | |||
1255 | pow2 = 1; | ||
1256 | while (num > pow2) | ||
1257 | pow2 <<= 1; | ||
1258 | /* | ||
1259 | * Now pow2 is the smallest power of 2 satifsying pow2 >= num. We | ||
1260 | * need twice that. | ||
1261 | */ | ||
1262 | pow2 <<= 1; | ||
1263 | |||
1264 | heap = reallocarray(NULL, pow2, sizeof heap[0]); | ||
1265 | if (heap == NULL) | ||
1266 | goto err; | ||
1267 | |||
1268 | /* | ||
1269 | * The array is used as a binary tree, exactly as in heapsort: | ||
1270 | * | ||
1271 | * heap[1] heap[2] heap[3] heap[4] heap[5] | ||
1272 | * heap[6] heap[7] heap[8]heap[9] heap[10]heap[11] | ||
1273 | * heap[12]heap[13] heap[14] heap[15] | ||
1274 | * | ||
1275 | * We put the Z's in the last line; then we set each other node to the | ||
1276 | * product of its two child-nodes (where empty or 0 entries are | ||
1277 | * treated as ones); then we invert heap[1]; then we invert each | ||
1278 | * other node by replacing it by the product of its parent (after | ||
1279 | * inversion) and its sibling (before inversion). | ||
1280 | */ | ||
1281 | heap[0] = NULL; | ||
1282 | for (i = pow2 / 2 - 1; i > 0; i--) | ||
1283 | heap[i] = NULL; | ||
1284 | for (i = 0; i < num; i++) | ||
1285 | heap[pow2 / 2 + i] = &points[i]->Z; | ||
1286 | for (i = pow2 / 2 + num; i < pow2; i++) | ||
1287 | heap[i] = NULL; | ||
1288 | |||
1289 | /* set each node to the product of its children */ | ||
1290 | for (i = pow2 / 2 - 1; i > 0; i--) { | ||
1291 | heap[i] = BN_new(); | ||
1292 | if (heap[i] == NULL) | ||
1293 | goto err; | ||
1294 | |||
1295 | if (heap[2 * i] != NULL) { | ||
1296 | if ((heap[2 * i + 1] == NULL) || BN_is_zero(heap[2 * i + 1])) { | ||
1297 | if (!BN_copy(heap[i], heap[2 * i])) | ||
1298 | goto err; | ||
1299 | } else { | ||
1300 | if (BN_is_zero(heap[2 * i])) { | ||
1301 | if (!BN_copy(heap[i], heap[2 * i + 1])) | ||
1302 | goto err; | ||
1303 | } else { | ||
1304 | if (!group->meth->field_mul(group, heap[i], | ||
1305 | heap[2 * i], heap[2 * i + 1], ctx)) | ||
1306 | goto err; | ||
1307 | } | ||
1308 | } | ||
1309 | } | ||
1310 | } | ||
1311 | |||
1312 | /* invert heap[1] */ | ||
1313 | if (!BN_is_zero(heap[1])) { | ||
1314 | if (!BN_mod_inverse(heap[1], heap[1], &group->field, ctx)) { | ||
1315 | ECerr(EC_F_EC_GFP_SIMPLE_POINTS_MAKE_AFFINE, ERR_R_BN_LIB); | ||
1316 | goto err; | ||
1317 | } | ||
1318 | } | ||
1319 | if (group->meth->field_encode != 0) { | ||
1320 | /* | ||
1321 | * in the Montgomery case, we just turned R*H (representing | ||
1322 | * H) into 1/(R*H), but we need R*(1/H) (representing | ||
1323 | * 1/H); i.e. we have need to multiply by the Montgomery | ||
1324 | * factor twice | ||
1325 | */ | ||
1326 | if (!group->meth->field_encode(group, heap[1], heap[1], ctx)) | ||
1327 | goto err; | ||
1328 | if (!group->meth->field_encode(group, heap[1], heap[1], ctx)) | ||
1329 | goto err; | ||
1330 | } | ||
1331 | /* set other heap[i]'s to their inverses */ | ||
1332 | for (i = 2; i < pow2 / 2 + num; i += 2) { | ||
1333 | /* i is even */ | ||
1334 | if ((heap[i + 1] != NULL) && !BN_is_zero(heap[i + 1])) { | ||
1335 | if (!group->meth->field_mul(group, tmp0, heap[i / 2], heap[i + 1], ctx)) | ||
1336 | goto err; | ||
1337 | if (!group->meth->field_mul(group, tmp1, heap[i / 2], heap[i], ctx)) | ||
1338 | goto err; | ||
1339 | if (!BN_copy(heap[i], tmp0)) | ||
1340 | goto err; | ||
1341 | if (!BN_copy(heap[i + 1], tmp1)) | ||
1342 | goto err; | ||
1343 | } else { | ||
1344 | if (!BN_copy(heap[i], heap[i / 2])) | ||
1345 | goto err; | ||
1346 | } | ||
1347 | } | ||
1348 | |||
1349 | /* | ||
1350 | * we have replaced all non-zero Z's by their inverses, now fix up | ||
1351 | * all the points | ||
1352 | */ | ||
1353 | for (i = 0; i < num; i++) { | ||
1354 | EC_POINT *p = points[i]; | ||
1355 | |||
1356 | if (!BN_is_zero(&p->Z)) { | ||
1357 | /* turn (X, Y, 1/Z) into (X/Z^2, Y/Z^3, 1) */ | ||
1358 | |||
1359 | if (!group->meth->field_sqr(group, tmp1, &p->Z, ctx)) | ||
1360 | goto err; | ||
1361 | if (!group->meth->field_mul(group, &p->X, &p->X, tmp1, ctx)) | ||
1362 | goto err; | ||
1363 | |||
1364 | if (!group->meth->field_mul(group, tmp1, tmp1, &p->Z, ctx)) | ||
1365 | goto err; | ||
1366 | if (!group->meth->field_mul(group, &p->Y, &p->Y, tmp1, ctx)) | ||
1367 | goto err; | ||
1368 | |||
1369 | if (group->meth->field_set_to_one != 0) { | ||
1370 | if (!group->meth->field_set_to_one(group, &p->Z, ctx)) | ||
1371 | goto err; | ||
1372 | } else { | ||
1373 | if (!BN_one(&p->Z)) | ||
1374 | goto err; | ||
1375 | } | ||
1376 | p->Z_is_one = 1; | ||
1377 | } | ||
1378 | } | ||
1379 | |||
1380 | ret = 1; | ||
1381 | |||
1382 | err: | ||
1383 | BN_CTX_end(ctx); | ||
1384 | BN_CTX_free(new_ctx); | ||
1385 | if (heap != NULL) { | ||
1386 | /* | ||
1387 | * heap[pow2/2] .. heap[pow2-1] have not been allocated | ||
1388 | * locally! | ||
1389 | */ | ||
1390 | for (i = pow2 / 2 - 1; i > 0; i--) { | ||
1391 | BN_clear_free(heap[i]); | ||
1392 | } | ||
1393 | free(heap); | ||
1394 | } | ||
1395 | return ret; | ||
1396 | } | ||
1397 | |||
1398 | |||
1399 | int | ||
1400 | ec_GFp_simple_field_mul(const EC_GROUP * group, BIGNUM * r, const BIGNUM * a, const BIGNUM * b, BN_CTX * ctx) | ||
1401 | { | ||
1402 | return BN_mod_mul(r, a, b, &group->field, ctx); | ||
1403 | } | ||
1404 | |||
1405 | |||
1406 | int | ||
1407 | ec_GFp_simple_field_sqr(const EC_GROUP * group, BIGNUM * r, const BIGNUM * a, BN_CTX * ctx) | ||
1408 | { | ||
1409 | return BN_mod_sqr(r, a, &group->field, ctx); | ||
1410 | } | ||
diff --git a/src/lib/libcrypto/ecdh/ecdh.h b/src/lib/libcrypto/ecdh/ecdh.h deleted file mode 100644 index ccc1312fd8..0000000000 --- a/src/lib/libcrypto/ecdh/ecdh.h +++ /dev/null | |||
@@ -1,128 +0,0 @@ | |||
1 | /* $OpenBSD: ecdh.h,v 1.5 2015/09/13 12:03:07 jsing Exp $ */ | ||
2 | /* ==================================================================== | ||
3 | * Copyright 2002 Sun Microsystems, Inc. ALL RIGHTS RESERVED. | ||
4 | * | ||
5 | * The Elliptic Curve Public-Key Crypto Library (ECC Code) included | ||
6 | * herein is developed by SUN MICROSYSTEMS, INC., and is contributed | ||
7 | * to the OpenSSL project. | ||
8 | * | ||
9 | * The ECC Code is licensed pursuant to the OpenSSL open source | ||
10 | * license provided below. | ||
11 | * | ||
12 | * The ECDH software is originally written by Douglas Stebila of | ||
13 | * Sun Microsystems Laboratories. | ||
14 | * | ||
15 | */ | ||
16 | /* ==================================================================== | ||
17 | * Copyright (c) 2000-2002 The OpenSSL Project. All rights reserved. | ||
18 | * | ||
19 | * Redistribution and use in source and binary forms, with or without | ||
20 | * modification, are permitted provided that the following conditions | ||
21 | * are met: | ||
22 | * | ||
23 | * 1. Redistributions of source code must retain the above copyright | ||
24 | * notice, this list of conditions and the following disclaimer. | ||
25 | * | ||
26 | * 2. Redistributions in binary form must reproduce the above copyright | ||
27 | * notice, this list of conditions and the following disclaimer in | ||
28 | * the documentation and/or other materials provided with the | ||
29 | * distribution. | ||
30 | * | ||
31 | * 3. All advertising materials mentioning features or use of this | ||
32 | * software must display the following acknowledgment: | ||
33 | * "This product includes software developed by the OpenSSL Project | ||
34 | * for use in the OpenSSL Toolkit. (http://www.OpenSSL.org/)" | ||
35 | * | ||
36 | * 4. The names "OpenSSL Toolkit" and "OpenSSL Project" must not be used to | ||
37 | * endorse or promote products derived from this software without | ||
38 | * prior written permission. For written permission, please contact | ||
39 | * licensing@OpenSSL.org. | ||
40 | * | ||
41 | * 5. Products derived from this software may not be called "OpenSSL" | ||
42 | * nor may "OpenSSL" appear in their names without prior written | ||
43 | * permission of the OpenSSL Project. | ||
44 | * | ||
45 | * 6. Redistributions of any form whatsoever must retain the following | ||
46 | * acknowledgment: | ||
47 | * "This product includes software developed by the OpenSSL Project | ||
48 | * for use in the OpenSSL Toolkit (http://www.OpenSSL.org/)" | ||
49 | * | ||
50 | * THIS SOFTWARE IS PROVIDED BY THE OpenSSL PROJECT ``AS IS'' AND ANY | ||
51 | * EXPRESSED OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE | ||
52 | * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR | ||
53 | * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE OpenSSL PROJECT OR | ||
54 | * ITS CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, | ||
55 | * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT | ||
56 | * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; | ||
57 | * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) | ||
58 | * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, | ||
59 | * STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) | ||
60 | * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED | ||
61 | * OF THE POSSIBILITY OF SUCH DAMAGE. | ||
62 | * ==================================================================== | ||
63 | * | ||
64 | * This product includes cryptographic software written by Eric Young | ||
65 | * (eay@cryptsoft.com). This product includes software written by Tim | ||
66 | * Hudson (tjh@cryptsoft.com). | ||
67 | * | ||
68 | */ | ||
69 | #ifndef HEADER_ECDH_H | ||
70 | #define HEADER_ECDH_H | ||
71 | |||
72 | #include <openssl/opensslconf.h> | ||
73 | |||
74 | #ifdef OPENSSL_NO_ECDH | ||
75 | #error ECDH is disabled. | ||
76 | #endif | ||
77 | |||
78 | #include <openssl/ec.h> | ||
79 | #include <openssl/ossl_typ.h> | ||
80 | #ifndef OPENSSL_NO_DEPRECATED | ||
81 | #include <openssl/bn.h> | ||
82 | #endif | ||
83 | |||
84 | #ifdef __cplusplus | ||
85 | extern "C" { | ||
86 | #endif | ||
87 | |||
88 | const ECDH_METHOD *ECDH_OpenSSL(void); | ||
89 | |||
90 | void ECDH_set_default_method(const ECDH_METHOD *); | ||
91 | const ECDH_METHOD *ECDH_get_default_method(void); | ||
92 | int ECDH_set_method(EC_KEY *, const ECDH_METHOD *); | ||
93 | |||
94 | int ECDH_size(const EC_KEY *ecdh); | ||
95 | int ECDH_compute_key(void *out, size_t outlen, const EC_POINT *pub_key, | ||
96 | EC_KEY *ecdh, | ||
97 | void *(*KDF)(const void *in, size_t inlen, void *out, size_t *outlen)); | ||
98 | |||
99 | int ECDH_get_ex_new_index(long argl, void *argp, CRYPTO_EX_new | ||
100 | *new_func, CRYPTO_EX_dup *dup_func, CRYPTO_EX_free *free_func); | ||
101 | int ECDH_set_ex_data(EC_KEY *d, int idx, void *arg); | ||
102 | void *ECDH_get_ex_data(EC_KEY *d, int idx); | ||
103 | |||
104 | |||
105 | /* BEGIN ERROR CODES */ | ||
106 | /* The following lines are auto generated by the script mkerr.pl. Any changes | ||
107 | * made after this point may be overwritten when the script is next run. | ||
108 | */ | ||
109 | void ERR_load_ECDH_strings(void); | ||
110 | |||
111 | /* Error codes for the ECDH functions. */ | ||
112 | |||
113 | /* Function codes. */ | ||
114 | #define ECDH_F_ECDH_CHECK 102 | ||
115 | #define ECDH_F_ECDH_COMPUTE_KEY 100 | ||
116 | #define ECDH_F_ECDH_DATA_NEW_METHOD 101 | ||
117 | |||
118 | /* Reason codes. */ | ||
119 | #define ECDH_R_KDF_FAILED 102 | ||
120 | #define ECDH_R_KEY_TRUNCATION 104 | ||
121 | #define ECDH_R_NON_FIPS_METHOD 103 | ||
122 | #define ECDH_R_NO_PRIVATE_VALUE 100 | ||
123 | #define ECDH_R_POINT_ARITHMETIC_FAILURE 101 | ||
124 | |||
125 | #ifdef __cplusplus | ||
126 | } | ||
127 | #endif | ||
128 | #endif | ||
diff --git a/src/lib/libcrypto/ecdh/ech_err.c b/src/lib/libcrypto/ecdh/ech_err.c deleted file mode 100644 index afe5ff3af8..0000000000 --- a/src/lib/libcrypto/ecdh/ech_err.c +++ /dev/null | |||
@@ -1,101 +0,0 @@ | |||
1 | /* $OpenBSD: ech_err.c,v 1.5 2015/09/13 11:49:44 jsing Exp $ */ | ||
2 | /* ==================================================================== | ||
3 | * Copyright (c) 1999-2011 The OpenSSL Project. All rights reserved. | ||
4 | * | ||
5 | * Redistribution and use in source and binary forms, with or without | ||
6 | * modification, are permitted provided that the following conditions | ||
7 | * are met: | ||
8 | * | ||
9 | * 1. Redistributions of source code must retain the above copyright | ||
10 | * notice, this list of conditions and the following disclaimer. | ||
11 | * | ||
12 | * 2. Redistributions in binary form must reproduce the above copyright | ||
13 | * notice, this list of conditions and the following disclaimer in | ||
14 | * the documentation and/or other materials provided with the | ||
15 | * distribution. | ||
16 | * | ||
17 | * 3. All advertising materials mentioning features or use of this | ||
18 | * software must display the following acknowledgment: | ||
19 | * "This product includes software developed by the OpenSSL Project | ||
20 | * for use in the OpenSSL Toolkit. (http://www.OpenSSL.org/)" | ||
21 | * | ||
22 | * 4. The names "OpenSSL Toolkit" and "OpenSSL Project" must not be used to | ||
23 | * endorse or promote products derived from this software without | ||
24 | * prior written permission. For written permission, please contact | ||
25 | * openssl-core@OpenSSL.org. | ||
26 | * | ||
27 | * 5. Products derived from this software may not be called "OpenSSL" | ||
28 | * nor may "OpenSSL" appear in their names without prior written | ||
29 | * permission of the OpenSSL Project. | ||
30 | * | ||
31 | * 6. Redistributions of any form whatsoever must retain the following | ||
32 | * acknowledgment: | ||
33 | * "This product includes software developed by the OpenSSL Project | ||
34 | * for use in the OpenSSL Toolkit (http://www.OpenSSL.org/)" | ||
35 | * | ||
36 | * THIS SOFTWARE IS PROVIDED BY THE OpenSSL PROJECT ``AS IS'' AND ANY | ||
37 | * EXPRESSED OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE | ||
38 | * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR | ||
39 | * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE OpenSSL PROJECT OR | ||
40 | * ITS CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, | ||
41 | * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT | ||
42 | * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; | ||
43 | * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) | ||
44 | * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, | ||
45 | * STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) | ||
46 | * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED | ||
47 | * OF THE POSSIBILITY OF SUCH DAMAGE. | ||
48 | * ==================================================================== | ||
49 | * | ||
50 | * This product includes cryptographic software written by Eric Young | ||
51 | * (eay@cryptsoft.com). This product includes software written by Tim | ||
52 | * Hudson (tjh@cryptsoft.com). | ||
53 | * | ||
54 | */ | ||
55 | |||
56 | /* NOTE: this file was auto generated by the mkerr.pl script: any changes | ||
57 | * made to it will be overwritten when the script next updates this file, | ||
58 | * only reason strings will be preserved. | ||
59 | */ | ||
60 | |||
61 | #include <stdio.h> | ||
62 | |||
63 | #include <openssl/opensslconf.h> | ||
64 | |||
65 | #include <openssl/err.h> | ||
66 | #include <openssl/ecdh.h> | ||
67 | |||
68 | /* BEGIN ERROR CODES */ | ||
69 | #ifndef OPENSSL_NO_ERR | ||
70 | |||
71 | #define ERR_FUNC(func) ERR_PACK(ERR_LIB_ECDH,func,0) | ||
72 | #define ERR_REASON(reason) ERR_PACK(ERR_LIB_ECDH,0,reason) | ||
73 | |||
74 | static ERR_STRING_DATA ECDH_str_functs[]= { | ||
75 | {ERR_FUNC(ECDH_F_ECDH_CHECK), "ECDH_CHECK"}, | ||
76 | {ERR_FUNC(ECDH_F_ECDH_COMPUTE_KEY), "ECDH_compute_key"}, | ||
77 | {ERR_FUNC(ECDH_F_ECDH_DATA_NEW_METHOD), "ECDH_DATA_new_method"}, | ||
78 | {0, NULL} | ||
79 | }; | ||
80 | |||
81 | static ERR_STRING_DATA ECDH_str_reasons[]= { | ||
82 | {ERR_REASON(ECDH_R_KDF_FAILED) , "KDF failed"}, | ||
83 | {ERR_REASON(ECDH_R_KEY_TRUNCATION), "key would be truncated"}, | ||
84 | {ERR_REASON(ECDH_R_NON_FIPS_METHOD) , "non fips method"}, | ||
85 | {ERR_REASON(ECDH_R_NO_PRIVATE_VALUE) , "no private value"}, | ||
86 | {ERR_REASON(ECDH_R_POINT_ARITHMETIC_FAILURE), "point arithmetic failure"}, | ||
87 | {0, NULL} | ||
88 | }; | ||
89 | |||
90 | #endif | ||
91 | |||
92 | void | ||
93 | ERR_load_ECDH_strings(void) | ||
94 | { | ||
95 | #ifndef OPENSSL_NO_ERR | ||
96 | if (ERR_func_error_string(ECDH_str_functs[0].error) == NULL) { | ||
97 | ERR_load_strings(0, ECDH_str_functs); | ||
98 | ERR_load_strings(0, ECDH_str_reasons); | ||
99 | } | ||
100 | #endif | ||
101 | } | ||
diff --git a/src/lib/libcrypto/ecdh/ech_key.c b/src/lib/libcrypto/ecdh/ech_key.c deleted file mode 100644 index 33ee244499..0000000000 --- a/src/lib/libcrypto/ecdh/ech_key.c +++ /dev/null | |||
@@ -1,226 +0,0 @@ | |||
1 | /* $OpenBSD: ech_key.c,v 1.6 2015/09/18 13:04:41 bcook Exp $ */ | ||
2 | /* ==================================================================== | ||
3 | * Copyright 2002 Sun Microsystems, Inc. ALL RIGHTS RESERVED. | ||
4 | * | ||
5 | * The Elliptic Curve Public-Key Crypto Library (ECC Code) included | ||
6 | * herein is developed by SUN MICROSYSTEMS, INC., and is contributed | ||
7 | * to the OpenSSL project. | ||
8 | * | ||
9 | * The ECC Code is licensed pursuant to the OpenSSL open source | ||
10 | * license provided below. | ||
11 | * | ||
12 | * The ECDH software is originally written by Douglas Stebila of | ||
13 | * Sun Microsystems Laboratories. | ||
14 | * | ||
15 | */ | ||
16 | /* ==================================================================== | ||
17 | * Copyright (c) 1998-2003 The OpenSSL Project. All rights reserved. | ||
18 | * | ||
19 | * Redistribution and use in source and binary forms, with or without | ||
20 | * modification, are permitted provided that the following conditions | ||
21 | * are met: | ||
22 | * | ||
23 | * 1. Redistributions of source code must retain the above copyright | ||
24 | * notice, this list of conditions and the following disclaimer. | ||
25 | * | ||
26 | * 2. Redistributions in binary form must reproduce the above copyright | ||
27 | * notice, this list of conditions and the following disclaimer in | ||
28 | * the documentation and/or other materials provided with the | ||
29 | * distribution. | ||
30 | * | ||
31 | * 3. All advertising materials mentioning features or use of this | ||
32 | * software must display the following acknowledgment: | ||
33 | * "This product includes software developed by the OpenSSL Project | ||
34 | * for use in the OpenSSL Toolkit. (http://www.OpenSSL.org/)" | ||
35 | * | ||
36 | * 4. The names "OpenSSL Toolkit" and "OpenSSL Project" must not be used to | ||
37 | * endorse or promote products derived from this software without | ||
38 | * prior written permission. For written permission, please contact | ||
39 | * openssl-core@OpenSSL.org. | ||
40 | * | ||
41 | * 5. Products derived from this software may not be called "OpenSSL" | ||
42 | * nor may "OpenSSL" appear in their names without prior written | ||
43 | * permission of the OpenSSL Project. | ||
44 | * | ||
45 | * 6. Redistributions of any form whatsoever must retain the following | ||
46 | * acknowledgment: | ||
47 | * "This product includes software developed by the OpenSSL Project | ||
48 | * for use in the OpenSSL Toolkit (http://www.OpenSSL.org/)" | ||
49 | * | ||
50 | * THIS SOFTWARE IS PROVIDED BY THE OpenSSL PROJECT ``AS IS'' AND ANY | ||
51 | * EXPRESSED OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE | ||
52 | * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR | ||
53 | * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE OpenSSL PROJECT OR | ||
54 | * ITS CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, | ||
55 | * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT | ||
56 | * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; | ||
57 | * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) | ||
58 | * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, | ||
59 | * STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) | ||
60 | * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED | ||
61 | * OF THE POSSIBILITY OF SUCH DAMAGE. | ||
62 | * ==================================================================== | ||
63 | * | ||
64 | * This product includes cryptographic software written by Eric Young | ||
65 | * (eay@cryptsoft.com). This product includes software written by Tim | ||
66 | * Hudson (tjh@cryptsoft.com). | ||
67 | * | ||
68 | */ | ||
69 | |||
70 | #include <limits.h> | ||
71 | #include <string.h> | ||
72 | |||
73 | #include <openssl/opensslconf.h> | ||
74 | |||
75 | #include <openssl/bn.h> | ||
76 | #include <openssl/err.h> | ||
77 | #include <openssl/obj_mac.h> | ||
78 | #include <openssl/sha.h> | ||
79 | |||
80 | #include "ech_locl.h" | ||
81 | |||
82 | static int ecdh_compute_key(void *out, size_t len, const EC_POINT *pub_key, | ||
83 | EC_KEY *ecdh, | ||
84 | void *(*KDF)(const void *in, size_t inlen, void *out, size_t *outlen)); | ||
85 | |||
86 | /* | ||
87 | * This implementation is based on the following primitives in the IEEE 1363 | ||
88 | * standard: | ||
89 | * - ECKAS-DH1 | ||
90 | * - ECSVDP-DH | ||
91 | * Finally an optional KDF is applied. | ||
92 | */ | ||
93 | static int | ||
94 | ecdh_compute_key(void *out, size_t outlen, const EC_POINT *pub_key, | ||
95 | EC_KEY *ecdh, | ||
96 | void *(*KDF)(const void *in, size_t inlen, void *out, size_t *outlen)) | ||
97 | { | ||
98 | BN_CTX *ctx; | ||
99 | EC_POINT *tmp = NULL; | ||
100 | BIGNUM *x = NULL, *y = NULL; | ||
101 | const BIGNUM *priv_key; | ||
102 | const EC_GROUP* group; | ||
103 | int ret = -1; | ||
104 | size_t buflen, len; | ||
105 | unsigned char *buf = NULL; | ||
106 | |||
107 | if (outlen > INT_MAX) { | ||
108 | /* Sort of, anyway. */ | ||
109 | ECDHerr(ECDH_F_ECDH_COMPUTE_KEY, ERR_R_MALLOC_FAILURE); | ||
110 | return -1; | ||
111 | } | ||
112 | |||
113 | if ((ctx = BN_CTX_new()) == NULL) | ||
114 | goto err; | ||
115 | BN_CTX_start(ctx); | ||
116 | if ((x = BN_CTX_get(ctx)) == NULL) | ||
117 | goto err; | ||
118 | if ((y = BN_CTX_get(ctx)) == NULL) | ||
119 | goto err; | ||
120 | |||
121 | priv_key = EC_KEY_get0_private_key(ecdh); | ||
122 | if (priv_key == NULL) { | ||
123 | ECDHerr(ECDH_F_ECDH_COMPUTE_KEY, ECDH_R_NO_PRIVATE_VALUE); | ||
124 | goto err; | ||
125 | } | ||
126 | |||
127 | group = EC_KEY_get0_group(ecdh); | ||
128 | if ((tmp = EC_POINT_new(group)) == NULL) { | ||
129 | ECDHerr(ECDH_F_ECDH_COMPUTE_KEY, ERR_R_MALLOC_FAILURE); | ||
130 | goto err; | ||
131 | } | ||
132 | |||
133 | if (!EC_POINT_mul(group, tmp, NULL, pub_key, priv_key, ctx)) { | ||
134 | ECDHerr(ECDH_F_ECDH_COMPUTE_KEY, | ||
135 | ECDH_R_POINT_ARITHMETIC_FAILURE); | ||
136 | goto err; | ||
137 | } | ||
138 | |||
139 | if (EC_METHOD_get_field_type(EC_GROUP_method_of(group)) == | ||
140 | NID_X9_62_prime_field) { | ||
141 | if (!EC_POINT_get_affine_coordinates_GFp(group, tmp, x, y, | ||
142 | ctx)) { | ||
143 | ECDHerr(ECDH_F_ECDH_COMPUTE_KEY, | ||
144 | ECDH_R_POINT_ARITHMETIC_FAILURE); | ||
145 | goto err; | ||
146 | } | ||
147 | } | ||
148 | #ifndef OPENSSL_NO_EC2M | ||
149 | else { | ||
150 | if (!EC_POINT_get_affine_coordinates_GF2m(group, tmp, x, y, | ||
151 | ctx)) { | ||
152 | ECDHerr(ECDH_F_ECDH_COMPUTE_KEY, | ||
153 | ECDH_R_POINT_ARITHMETIC_FAILURE); | ||
154 | goto err; | ||
155 | } | ||
156 | } | ||
157 | #endif | ||
158 | |||
159 | buflen = ECDH_size(ecdh); | ||
160 | len = BN_num_bytes(x); | ||
161 | if (len > buflen) { | ||
162 | ECDHerr(ECDH_F_ECDH_COMPUTE_KEY, ERR_R_INTERNAL_ERROR); | ||
163 | goto err; | ||
164 | } | ||
165 | if (KDF == NULL && outlen < buflen) { | ||
166 | /* The resulting key would be truncated. */ | ||
167 | ECDHerr(ECDH_F_ECDH_COMPUTE_KEY, ECDH_R_KEY_TRUNCATION); | ||
168 | goto err; | ||
169 | } | ||
170 | if ((buf = malloc(buflen)) == NULL) { | ||
171 | ECDHerr(ECDH_F_ECDH_COMPUTE_KEY, ERR_R_MALLOC_FAILURE); | ||
172 | goto err; | ||
173 | } | ||
174 | |||
175 | memset(buf, 0, buflen - len); | ||
176 | if (len != (size_t)BN_bn2bin(x, buf + buflen - len)) { | ||
177 | ECDHerr(ECDH_F_ECDH_COMPUTE_KEY, ERR_R_BN_LIB); | ||
178 | goto err; | ||
179 | } | ||
180 | |||
181 | if (KDF != NULL) { | ||
182 | if (KDF(buf, buflen, out, &outlen) == NULL) { | ||
183 | ECDHerr(ECDH_F_ECDH_COMPUTE_KEY, ECDH_R_KDF_FAILED); | ||
184 | goto err; | ||
185 | } | ||
186 | ret = outlen; | ||
187 | } else { | ||
188 | /* No KDF, just copy out the key and zero the rest. */ | ||
189 | if (outlen > buflen) { | ||
190 | memset((void *)((uintptr_t)out + buflen), 0, outlen - buflen); | ||
191 | outlen = buflen; | ||
192 | } | ||
193 | memcpy(out, buf, outlen); | ||
194 | ret = outlen; | ||
195 | } | ||
196 | |||
197 | err: | ||
198 | EC_POINT_free(tmp); | ||
199 | if (ctx) | ||
200 | BN_CTX_end(ctx); | ||
201 | BN_CTX_free(ctx); | ||
202 | free(buf); | ||
203 | return (ret); | ||
204 | } | ||
205 | |||
206 | static ECDH_METHOD openssl_ecdh_meth = { | ||
207 | .name = "OpenSSL ECDH method", | ||
208 | .compute_key = ecdh_compute_key | ||
209 | }; | ||
210 | |||
211 | const ECDH_METHOD * | ||
212 | ECDH_OpenSSL(void) | ||
213 | { | ||
214 | return &openssl_ecdh_meth; | ||
215 | } | ||
216 | |||
217 | int | ||
218 | ECDH_compute_key(void *out, size_t outlen, const EC_POINT *pub_key, | ||
219 | EC_KEY *eckey, | ||
220 | void *(*KDF)(const void *in, size_t inlen, void *out, size_t *outlen)) | ||
221 | { | ||
222 | ECDH_DATA *ecdh = ecdh_check(eckey); | ||
223 | if (ecdh == NULL) | ||
224 | return 0; | ||
225 | return ecdh->meth->compute_key(out, outlen, pub_key, eckey, KDF); | ||
226 | } | ||
diff --git a/src/lib/libcrypto/ecdh/ech_lib.c b/src/lib/libcrypto/ecdh/ech_lib.c deleted file mode 100644 index bb70d2d95f..0000000000 --- a/src/lib/libcrypto/ecdh/ech_lib.c +++ /dev/null | |||
@@ -1,247 +0,0 @@ | |||
1 | /* $OpenBSD: ech_lib.c,v 1.11 2015/09/13 12:03:07 jsing Exp $ */ | ||
2 | /* ==================================================================== | ||
3 | * Copyright 2002 Sun Microsystems, Inc. ALL RIGHTS RESERVED. | ||
4 | * | ||
5 | * The Elliptic Curve Public-Key Crypto Library (ECC Code) included | ||
6 | * herein is developed by SUN MICROSYSTEMS, INC., and is contributed | ||
7 | * to the OpenSSL project. | ||
8 | * | ||
9 | * The ECC Code is licensed pursuant to the OpenSSL open source | ||
10 | * license provided below. | ||
11 | * | ||
12 | * The ECDH software is originally written by Douglas Stebila of | ||
13 | * Sun Microsystems Laboratories. | ||
14 | * | ||
15 | */ | ||
16 | /* ==================================================================== | ||
17 | * Copyright (c) 1998-2003 The OpenSSL Project. All rights reserved. | ||
18 | * | ||
19 | * Redistribution and use in source and binary forms, with or without | ||
20 | * modification, are permitted provided that the following conditions | ||
21 | * are met: | ||
22 | * | ||
23 | * 1. Redistributions of source code must retain the above copyright | ||
24 | * notice, this list of conditions and the following disclaimer. | ||
25 | * | ||
26 | * 2. Redistributions in binary form must reproduce the above copyright | ||
27 | * notice, this list of conditions and the following disclaimer in | ||
28 | * the documentation and/or other materials provided with the | ||
29 | * distribution. | ||
30 | * | ||
31 | * 3. All advertising materials mentioning features or use of this | ||
32 | * software must display the following acknowledgment: | ||
33 | * "This product includes software developed by the OpenSSL Project | ||
34 | * for use in the OpenSSL Toolkit. (http://www.OpenSSL.org/)" | ||
35 | * | ||
36 | * 4. The names "OpenSSL Toolkit" and "OpenSSL Project" must not be used to | ||
37 | * endorse or promote products derived from this software without | ||
38 | * prior written permission. For written permission, please contact | ||
39 | * openssl-core@OpenSSL.org. | ||
40 | * | ||
41 | * 5. Products derived from this software may not be called "OpenSSL" | ||
42 | * nor may "OpenSSL" appear in their names without prior written | ||
43 | * permission of the OpenSSL Project. | ||
44 | * | ||
45 | * 6. Redistributions of any form whatsoever must retain the following | ||
46 | * acknowledgment: | ||
47 | * "This product includes software developed by the OpenSSL Project | ||
48 | * for use in the OpenSSL Toolkit (http://www.OpenSSL.org/)" | ||
49 | * | ||
50 | * THIS SOFTWARE IS PROVIDED BY THE OpenSSL PROJECT ``AS IS'' AND ANY | ||
51 | * EXPRESSED OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE | ||
52 | * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR | ||
53 | * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE OpenSSL PROJECT OR | ||
54 | * ITS CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, | ||
55 | * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT | ||
56 | * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; | ||
57 | * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) | ||
58 | * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, | ||
59 | * STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) | ||
60 | * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED | ||
61 | * OF THE POSSIBILITY OF SUCH DAMAGE. | ||
62 | * ==================================================================== | ||
63 | * | ||
64 | * This product includes cryptographic software written by Eric Young | ||
65 | * (eay@cryptsoft.com). This product includes software written by Tim | ||
66 | * Hudson (tjh@cryptsoft.com). | ||
67 | * | ||
68 | */ | ||
69 | |||
70 | #include <string.h> | ||
71 | |||
72 | #include <openssl/opensslconf.h> | ||
73 | |||
74 | #include "ech_locl.h" | ||
75 | #ifndef OPENSSL_NO_ENGINE | ||
76 | #include <openssl/engine.h> | ||
77 | #endif | ||
78 | #include <openssl/err.h> | ||
79 | |||
80 | static const ECDH_METHOD *default_ECDH_method = NULL; | ||
81 | |||
82 | static void *ecdh_data_new(void); | ||
83 | static void *ecdh_data_dup(void *); | ||
84 | static void ecdh_data_free(void *); | ||
85 | |||
86 | void | ||
87 | ECDH_set_default_method(const ECDH_METHOD *meth) | ||
88 | { | ||
89 | default_ECDH_method = meth; | ||
90 | } | ||
91 | |||
92 | const ECDH_METHOD * | ||
93 | ECDH_get_default_method(void) | ||
94 | { | ||
95 | if (!default_ECDH_method) { | ||
96 | default_ECDH_method = ECDH_OpenSSL(); | ||
97 | } | ||
98 | return default_ECDH_method; | ||
99 | } | ||
100 | |||
101 | int | ||
102 | ECDH_set_method(EC_KEY *eckey, const ECDH_METHOD *meth) | ||
103 | { | ||
104 | ECDH_DATA *ecdh; | ||
105 | |||
106 | ecdh = ecdh_check(eckey); | ||
107 | |||
108 | if (ecdh == NULL) | ||
109 | return 0; | ||
110 | |||
111 | #ifndef OPENSSL_NO_ENGINE | ||
112 | if (ecdh->engine) { | ||
113 | ENGINE_finish(ecdh->engine); | ||
114 | ecdh->engine = NULL; | ||
115 | } | ||
116 | #endif | ||
117 | ecdh->meth = meth; | ||
118 | return 1; | ||
119 | } | ||
120 | |||
121 | static ECDH_DATA * | ||
122 | ECDH_DATA_new_method(ENGINE *engine) | ||
123 | { | ||
124 | ECDH_DATA *ret; | ||
125 | |||
126 | ret = malloc(sizeof(ECDH_DATA)); | ||
127 | if (ret == NULL) { | ||
128 | ECDHerr(ECDH_F_ECDH_DATA_NEW_METHOD, ERR_R_MALLOC_FAILURE); | ||
129 | return (NULL); | ||
130 | } | ||
131 | |||
132 | ret->init = NULL; | ||
133 | |||
134 | ret->meth = ECDH_get_default_method(); | ||
135 | ret->engine = engine; | ||
136 | #ifndef OPENSSL_NO_ENGINE | ||
137 | if (!ret->engine) | ||
138 | ret->engine = ENGINE_get_default_ECDH(); | ||
139 | if (ret->engine) { | ||
140 | ret->meth = ENGINE_get_ECDH(ret->engine); | ||
141 | if (!ret->meth) { | ||
142 | ECDHerr(ECDH_F_ECDH_DATA_NEW_METHOD, ERR_R_ENGINE_LIB); | ||
143 | ENGINE_finish(ret->engine); | ||
144 | free(ret); | ||
145 | return NULL; | ||
146 | } | ||
147 | } | ||
148 | #endif | ||
149 | |||
150 | ret->flags = ret->meth->flags; | ||
151 | CRYPTO_new_ex_data(CRYPTO_EX_INDEX_ECDH, ret, &ret->ex_data); | ||
152 | return (ret); | ||
153 | } | ||
154 | |||
155 | static void * | ||
156 | ecdh_data_new(void) | ||
157 | { | ||
158 | return (void *)ECDH_DATA_new_method(NULL); | ||
159 | } | ||
160 | |||
161 | static void * | ||
162 | ecdh_data_dup(void *data) | ||
163 | { | ||
164 | ECDH_DATA *r = (ECDH_DATA *)data; | ||
165 | |||
166 | /* XXX: dummy operation */ | ||
167 | if (r == NULL) | ||
168 | return NULL; | ||
169 | |||
170 | return (void *)ecdh_data_new(); | ||
171 | } | ||
172 | |||
173 | void | ||
174 | ecdh_data_free(void *data) | ||
175 | { | ||
176 | ECDH_DATA *r = (ECDH_DATA *)data; | ||
177 | |||
178 | #ifndef OPENSSL_NO_ENGINE | ||
179 | if (r->engine) | ||
180 | ENGINE_finish(r->engine); | ||
181 | #endif | ||
182 | |||
183 | CRYPTO_free_ex_data(CRYPTO_EX_INDEX_ECDH, r, &r->ex_data); | ||
184 | |||
185 | explicit_bzero((void *)r, sizeof(ECDH_DATA)); | ||
186 | |||
187 | free(r); | ||
188 | } | ||
189 | |||
190 | ECDH_DATA * | ||
191 | ecdh_check(EC_KEY *key) | ||
192 | { | ||
193 | ECDH_DATA *ecdh_data; | ||
194 | |||
195 | void *data = EC_KEY_get_key_method_data(key, ecdh_data_dup, | ||
196 | ecdh_data_free, ecdh_data_free); | ||
197 | if (data == NULL) { | ||
198 | ecdh_data = (ECDH_DATA *)ecdh_data_new(); | ||
199 | if (ecdh_data == NULL) | ||
200 | return NULL; | ||
201 | data = EC_KEY_insert_key_method_data(key, (void *)ecdh_data, | ||
202 | ecdh_data_dup, ecdh_data_free, ecdh_data_free); | ||
203 | if (data != NULL) { | ||
204 | /* Another thread raced us to install the key_method | ||
205 | * data and won. */ | ||
206 | ecdh_data_free(ecdh_data); | ||
207 | ecdh_data = (ECDH_DATA *)data; | ||
208 | } | ||
209 | } else | ||
210 | ecdh_data = (ECDH_DATA *)data; | ||
211 | |||
212 | return ecdh_data; | ||
213 | } | ||
214 | |||
215 | int | ||
216 | ECDH_get_ex_new_index(long argl, void *argp, CRYPTO_EX_new *new_func, | ||
217 | CRYPTO_EX_dup *dup_func, CRYPTO_EX_free *free_func) | ||
218 | { | ||
219 | return CRYPTO_get_ex_new_index(CRYPTO_EX_INDEX_ECDH, argl, argp, | ||
220 | new_func, dup_func, free_func); | ||
221 | } | ||
222 | |||
223 | int | ||
224 | ECDH_set_ex_data(EC_KEY *d, int idx, void *arg) | ||
225 | { | ||
226 | ECDH_DATA *ecdh; | ||
227 | ecdh = ecdh_check(d); | ||
228 | if (ecdh == NULL) | ||
229 | return 0; | ||
230 | return (CRYPTO_set_ex_data(&ecdh->ex_data, idx, arg)); | ||
231 | } | ||
232 | |||
233 | void * | ||
234 | ECDH_get_ex_data(EC_KEY *d, int idx) | ||
235 | { | ||
236 | ECDH_DATA *ecdh; | ||
237 | ecdh = ecdh_check(d); | ||
238 | if (ecdh == NULL) | ||
239 | return NULL; | ||
240 | return (CRYPTO_get_ex_data(&ecdh->ex_data, idx)); | ||
241 | } | ||
242 | |||
243 | int | ||
244 | ECDH_size(const EC_KEY *d) | ||
245 | { | ||
246 | return ((EC_GROUP_get_degree(EC_KEY_get0_group(d)) + 7) / 8); | ||
247 | } | ||
diff --git a/src/lib/libcrypto/ecdh/ech_locl.h b/src/lib/libcrypto/ecdh/ech_locl.h deleted file mode 100644 index 8338007393..0000000000 --- a/src/lib/libcrypto/ecdh/ech_locl.h +++ /dev/null | |||
@@ -1,97 +0,0 @@ | |||
1 | /* $OpenBSD: ech_locl.h,v 1.4 2015/09/13 10:46:20 jsing Exp $ */ | ||
2 | /* ==================================================================== | ||
3 | * Copyright (c) 2000-2005 The OpenSSL Project. All rights reserved. | ||
4 | * | ||
5 | * Redistribution and use in source and binary forms, with or without | ||
6 | * modification, are permitted provided that the following conditions | ||
7 | * are met: | ||
8 | * | ||
9 | * 1. Redistributions of source code must retain the above copyright | ||
10 | * notice, this list of conditions and the following disclaimer. | ||
11 | * | ||
12 | * 2. Redistributions in binary form must reproduce the above copyright | ||
13 | * notice, this list of conditions and the following disclaimer in | ||
14 | * the documentation and/or other materials provided with the | ||
15 | * distribution. | ||
16 | * | ||
17 | * 3. All advertising materials mentioning features or use of this | ||
18 | * software must display the following acknowledgment: | ||
19 | * "This product includes software developed by the OpenSSL Project | ||
20 | * for use in the OpenSSL Toolkit. (http://www.OpenSSL.org/)" | ||
21 | * | ||
22 | * 4. The names "OpenSSL Toolkit" and "OpenSSL Project" must not be used to | ||
23 | * endorse or promote products derived from this software without | ||
24 | * prior written permission. For written permission, please contact | ||
25 | * licensing@OpenSSL.org. | ||
26 | * | ||
27 | * 5. Products derived from this software may not be called "OpenSSL" | ||
28 | * nor may "OpenSSL" appear in their names without prior written | ||
29 | * permission of the OpenSSL Project. | ||
30 | * | ||
31 | * 6. Redistributions of any form whatsoever must retain the following | ||
32 | * acknowledgment: | ||
33 | * "This product includes software developed by the OpenSSL Project | ||
34 | * for use in the OpenSSL Toolkit (http://www.OpenSSL.org/)" | ||
35 | * | ||
36 | * THIS SOFTWARE IS PROVIDED BY THE OpenSSL PROJECT ``AS IS'' AND ANY | ||
37 | * EXPRESSED OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE | ||
38 | * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR | ||
39 | * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE OpenSSL PROJECT OR | ||
40 | * ITS CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, | ||
41 | * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT | ||
42 | * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; | ||
43 | * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) | ||
44 | * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, | ||
45 | * STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) | ||
46 | * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED | ||
47 | * OF THE POSSIBILITY OF SUCH DAMAGE. | ||
48 | * ==================================================================== | ||
49 | * | ||
50 | * This product includes cryptographic software written by Eric Young | ||
51 | * (eay@cryptsoft.com). This product includes software written by Tim | ||
52 | * Hudson (tjh@cryptsoft.com). | ||
53 | * | ||
54 | */ | ||
55 | |||
56 | #ifndef HEADER_ECH_LOCL_H | ||
57 | #define HEADER_ECH_LOCL_H | ||
58 | |||
59 | #include <openssl/ecdh.h> | ||
60 | |||
61 | #ifdef __cplusplus | ||
62 | extern "C" { | ||
63 | #endif | ||
64 | |||
65 | struct ecdh_method { | ||
66 | const char *name; | ||
67 | int (*compute_key)(void *key, size_t outlen, const EC_POINT *pub_key, EC_KEY *ecdh, | ||
68 | void *(*KDF)(const void *in, size_t inlen, void *out, size_t *outlen)); | ||
69 | int flags; | ||
70 | char *app_data; | ||
71 | }; | ||
72 | |||
73 | /* If this flag is set the ECDH method is FIPS compliant and can be used | ||
74 | * in FIPS mode. This is set in the validated module method. If an | ||
75 | * application sets this flag in its own methods it is its responsibility | ||
76 | * to ensure the result is compliant. | ||
77 | */ | ||
78 | |||
79 | #define ECDH_FLAG_FIPS_METHOD 0x1 | ||
80 | |||
81 | typedef struct ecdh_data_st { | ||
82 | /* EC_KEY_METH_DATA part */ | ||
83 | int (*init)(EC_KEY *); | ||
84 | /* method specific part */ | ||
85 | ENGINE *engine; | ||
86 | int flags; | ||
87 | const ECDH_METHOD *meth; | ||
88 | CRYPTO_EX_DATA ex_data; | ||
89 | } ECDH_DATA; | ||
90 | |||
91 | ECDH_DATA *ecdh_check(EC_KEY *); | ||
92 | |||
93 | #ifdef __cplusplus | ||
94 | } | ||
95 | #endif | ||
96 | |||
97 | #endif /* HEADER_ECH_LOCL_H */ | ||
diff --git a/src/lib/libcrypto/ecdsa/ecdsa.h b/src/lib/libcrypto/ecdsa/ecdsa.h deleted file mode 100644 index 530ab265bb..0000000000 --- a/src/lib/libcrypto/ecdsa/ecdsa.h +++ /dev/null | |||
@@ -1,286 +0,0 @@ | |||
1 | /* $OpenBSD: ecdsa.h,v 1.4 2015/02/08 13:35:06 jsing Exp $ */ | ||
2 | /** | ||
3 | * \file crypto/ecdsa/ecdsa.h Include file for the OpenSSL ECDSA functions | ||
4 | * \author Written by Nils Larsch for the OpenSSL project | ||
5 | */ | ||
6 | /* ==================================================================== | ||
7 | * Copyright (c) 2000-2005 The OpenSSL Project. All rights reserved. | ||
8 | * | ||
9 | * Redistribution and use in source and binary forms, with or without | ||
10 | * modification, are permitted provided that the following conditions | ||
11 | * are met: | ||
12 | * | ||
13 | * 1. Redistributions of source code must retain the above copyright | ||
14 | * notice, this list of conditions and the following disclaimer. | ||
15 | * | ||
16 | * 2. Redistributions in binary form must reproduce the above copyright | ||
17 | * notice, this list of conditions and the following disclaimer in | ||
18 | * the documentation and/or other materials provided with the | ||
19 | * distribution. | ||
20 | * | ||
21 | * 3. All advertising materials mentioning features or use of this | ||
22 | * software must display the following acknowledgment: | ||
23 | * "This product includes software developed by the OpenSSL Project | ||
24 | * for use in the OpenSSL Toolkit. (http://www.OpenSSL.org/)" | ||
25 | * | ||
26 | * 4. The names "OpenSSL Toolkit" and "OpenSSL Project" must not be used to | ||
27 | * endorse or promote products derived from this software without | ||
28 | * prior written permission. For written permission, please contact | ||
29 | * licensing@OpenSSL.org. | ||
30 | * | ||
31 | * 5. Products derived from this software may not be called "OpenSSL" | ||
32 | * nor may "OpenSSL" appear in their names without prior written | ||
33 | * permission of the OpenSSL Project. | ||
34 | * | ||
35 | * 6. Redistributions of any form whatsoever must retain the following | ||
36 | * acknowledgment: | ||
37 | * "This product includes software developed by the OpenSSL Project | ||
38 | * for use in the OpenSSL Toolkit (http://www.OpenSSL.org/)" | ||
39 | * | ||
40 | * THIS SOFTWARE IS PROVIDED BY THE OpenSSL PROJECT ``AS IS'' AND ANY | ||
41 | * EXPRESSED OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE | ||
42 | * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR | ||
43 | * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE OpenSSL PROJECT OR | ||
44 | * ITS CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, | ||
45 | * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT | ||
46 | * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; | ||
47 | * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) | ||
48 | * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, | ||
49 | * STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) | ||
50 | * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED | ||
51 | * OF THE POSSIBILITY OF SUCH DAMAGE. | ||
52 | * ==================================================================== | ||
53 | * | ||
54 | * This product includes cryptographic software written by Eric Young | ||
55 | * (eay@cryptsoft.com). This product includes software written by Tim | ||
56 | * Hudson (tjh@cryptsoft.com). | ||
57 | * | ||
58 | */ | ||
59 | #ifndef HEADER_ECDSA_H | ||
60 | #define HEADER_ECDSA_H | ||
61 | |||
62 | #include <openssl/opensslconf.h> | ||
63 | |||
64 | #ifdef OPENSSL_NO_ECDSA | ||
65 | #error ECDSA is disabled. | ||
66 | #endif | ||
67 | |||
68 | #include <openssl/ec.h> | ||
69 | #include <openssl/ossl_typ.h> | ||
70 | #ifndef OPENSSL_NO_DEPRECATED | ||
71 | #include <openssl/bn.h> | ||
72 | #endif | ||
73 | |||
74 | #ifdef __cplusplus | ||
75 | extern "C" { | ||
76 | #endif | ||
77 | |||
78 | typedef struct ECDSA_SIG_st ECDSA_SIG; | ||
79 | |||
80 | struct ecdsa_method { | ||
81 | const char *name; | ||
82 | ECDSA_SIG *(*ecdsa_do_sign)(const unsigned char *dgst, int dgst_len, | ||
83 | const BIGNUM *inv, const BIGNUM *rp, EC_KEY *eckey); | ||
84 | int (*ecdsa_sign_setup)(EC_KEY *eckey, BN_CTX *ctx, BIGNUM **kinv, | ||
85 | BIGNUM **r); | ||
86 | int (*ecdsa_do_verify)(const unsigned char *dgst, int dgst_len, | ||
87 | const ECDSA_SIG *sig, EC_KEY *eckey); | ||
88 | #if 0 | ||
89 | int (*init)(EC_KEY *eckey); | ||
90 | int (*finish)(EC_KEY *eckey); | ||
91 | #endif | ||
92 | int flags; | ||
93 | char *app_data; | ||
94 | }; | ||
95 | |||
96 | /* If this flag is set the ECDSA method is FIPS compliant and can be used | ||
97 | * in FIPS mode. This is set in the validated module method. If an | ||
98 | * application sets this flag in its own methods it is its responsibility | ||
99 | * to ensure the result is compliant. | ||
100 | */ | ||
101 | |||
102 | #define ECDSA_FLAG_FIPS_METHOD 0x1 | ||
103 | |||
104 | struct ECDSA_SIG_st { | ||
105 | BIGNUM *r; | ||
106 | BIGNUM *s; | ||
107 | }; | ||
108 | |||
109 | /** Allocates and initialize a ECDSA_SIG structure | ||
110 | * \return pointer to a ECDSA_SIG structure or NULL if an error occurred | ||
111 | */ | ||
112 | ECDSA_SIG *ECDSA_SIG_new(void); | ||
113 | |||
114 | /** frees a ECDSA_SIG structure | ||
115 | * \param sig pointer to the ECDSA_SIG structure | ||
116 | */ | ||
117 | void ECDSA_SIG_free(ECDSA_SIG *sig); | ||
118 | |||
119 | /** DER encode content of ECDSA_SIG object (note: this function modifies *pp | ||
120 | * (*pp += length of the DER encoded signature)). | ||
121 | * \param sig pointer to the ECDSA_SIG object | ||
122 | * \param pp pointer to a unsigned char pointer for the output or NULL | ||
123 | * \return the length of the DER encoded ECDSA_SIG object or 0 | ||
124 | */ | ||
125 | int i2d_ECDSA_SIG(const ECDSA_SIG *sig, unsigned char **pp); | ||
126 | |||
127 | /** Decodes a DER encoded ECDSA signature (note: this function changes *pp | ||
128 | * (*pp += len)). | ||
129 | * \param sig pointer to ECDSA_SIG pointer (may be NULL) | ||
130 | * \param pp memory buffer with the DER encoded signature | ||
131 | * \param len length of the buffer | ||
132 | * \return pointer to the decoded ECDSA_SIG structure (or NULL) | ||
133 | */ | ||
134 | ECDSA_SIG *d2i_ECDSA_SIG(ECDSA_SIG **sig, const unsigned char **pp, long len); | ||
135 | |||
136 | /** Computes the ECDSA signature of the given hash value using | ||
137 | * the supplied private key and returns the created signature. | ||
138 | * \param dgst pointer to the hash value | ||
139 | * \param dgst_len length of the hash value | ||
140 | * \param eckey EC_KEY object containing a private EC key | ||
141 | * \return pointer to a ECDSA_SIG structure or NULL if an error occurred | ||
142 | */ | ||
143 | ECDSA_SIG *ECDSA_do_sign(const unsigned char *dgst, int dgst_len, | ||
144 | EC_KEY *eckey); | ||
145 | |||
146 | /** Computes ECDSA signature of a given hash value using the supplied | ||
147 | * private key (note: sig must point to ECDSA_size(eckey) bytes of memory). | ||
148 | * \param dgst pointer to the hash value to sign | ||
149 | * \param dgstlen length of the hash value | ||
150 | * \param kinv BIGNUM with a pre-computed inverse k (optional) | ||
151 | * \param rp BIGNUM with a pre-computed rp value (optioanl), | ||
152 | * see ECDSA_sign_setup | ||
153 | * \param eckey EC_KEY object containing a private EC key | ||
154 | * \return pointer to a ECDSA_SIG structure or NULL if an error occurred | ||
155 | */ | ||
156 | ECDSA_SIG *ECDSA_do_sign_ex(const unsigned char *dgst, int dgstlen, | ||
157 | const BIGNUM *kinv, const BIGNUM *rp, EC_KEY *eckey); | ||
158 | |||
159 | /** Verifies that the supplied signature is a valid ECDSA | ||
160 | * signature of the supplied hash value using the supplied public key. | ||
161 | * \param dgst pointer to the hash value | ||
162 | * \param dgst_len length of the hash value | ||
163 | * \param sig ECDSA_SIG structure | ||
164 | * \param eckey EC_KEY object containing a public EC key | ||
165 | * \return 1 if the signature is valid, 0 if the signature is invalid | ||
166 | * and -1 on error | ||
167 | */ | ||
168 | int ECDSA_do_verify(const unsigned char *dgst, int dgst_len, | ||
169 | const ECDSA_SIG *sig, EC_KEY* eckey); | ||
170 | |||
171 | const ECDSA_METHOD *ECDSA_OpenSSL(void); | ||
172 | |||
173 | /** Sets the default ECDSA method | ||
174 | * \param meth new default ECDSA_METHOD | ||
175 | */ | ||
176 | void ECDSA_set_default_method(const ECDSA_METHOD *meth); | ||
177 | |||
178 | /** Returns the default ECDSA method | ||
179 | * \return pointer to ECDSA_METHOD structure containing the default method | ||
180 | */ | ||
181 | const ECDSA_METHOD *ECDSA_get_default_method(void); | ||
182 | |||
183 | /** Sets method to be used for the ECDSA operations | ||
184 | * \param eckey EC_KEY object | ||
185 | * \param meth new method | ||
186 | * \return 1 on success and 0 otherwise | ||
187 | */ | ||
188 | int ECDSA_set_method(EC_KEY *eckey, const ECDSA_METHOD *meth); | ||
189 | |||
190 | /** Returns the maximum length of the DER encoded signature | ||
191 | * \param eckey EC_KEY object | ||
192 | * \return numbers of bytes required for the DER encoded signature | ||
193 | */ | ||
194 | int ECDSA_size(const EC_KEY *eckey); | ||
195 | |||
196 | /** Precompute parts of the signing operation | ||
197 | * \param eckey EC_KEY object containing a private EC key | ||
198 | * \param ctx BN_CTX object (optional) | ||
199 | * \param kinv BIGNUM pointer for the inverse of k | ||
200 | * \param rp BIGNUM pointer for x coordinate of k * generator | ||
201 | * \return 1 on success and 0 otherwise | ||
202 | */ | ||
203 | int ECDSA_sign_setup(EC_KEY *eckey, BN_CTX *ctx, BIGNUM **kinv, | ||
204 | BIGNUM **rp); | ||
205 | |||
206 | /** Computes ECDSA signature of a given hash value using the supplied | ||
207 | * private key (note: sig must point to ECDSA_size(eckey) bytes of memory). | ||
208 | * \param type this parameter is ignored | ||
209 | * \param dgst pointer to the hash value to sign | ||
210 | * \param dgstlen length of the hash value | ||
211 | * \param sig memory for the DER encoded created signature | ||
212 | * \param siglen pointer to the length of the returned signature | ||
213 | * \param eckey EC_KEY object containing a private EC key | ||
214 | * \return 1 on success and 0 otherwise | ||
215 | */ | ||
216 | int ECDSA_sign(int type, const unsigned char *dgst, int dgstlen, | ||
217 | unsigned char *sig, unsigned int *siglen, EC_KEY *eckey); | ||
218 | |||
219 | |||
220 | /** Computes ECDSA signature of a given hash value using the supplied | ||
221 | * private key (note: sig must point to ECDSA_size(eckey) bytes of memory). | ||
222 | * \param type this parameter is ignored | ||
223 | * \param dgst pointer to the hash value to sign | ||
224 | * \param dgstlen length of the hash value | ||
225 | * \param sig buffer to hold the DER encoded signature | ||
226 | * \param siglen pointer to the length of the returned signature | ||
227 | * \param kinv BIGNUM with a pre-computed inverse k (optional) | ||
228 | * \param rp BIGNUM with a pre-computed rp value (optioanl), | ||
229 | * see ECDSA_sign_setup | ||
230 | * \param eckey EC_KEY object containing a private EC key | ||
231 | * \return 1 on success and 0 otherwise | ||
232 | */ | ||
233 | int ECDSA_sign_ex(int type, const unsigned char *dgst, int dgstlen, | ||
234 | unsigned char *sig, unsigned int *siglen, const BIGNUM *kinv, | ||
235 | const BIGNUM *rp, EC_KEY *eckey); | ||
236 | |||
237 | /** Verifies that the given signature is valid ECDSA signature | ||
238 | * of the supplied hash value using the specified public key. | ||
239 | * \param type this parameter is ignored | ||
240 | * \param dgst pointer to the hash value | ||
241 | * \param dgstlen length of the hash value | ||
242 | * \param sig pointer to the DER encoded signature | ||
243 | * \param siglen length of the DER encoded signature | ||
244 | * \param eckey EC_KEY object containing a public EC key | ||
245 | * \return 1 if the signature is valid, 0 if the signature is invalid | ||
246 | * and -1 on error | ||
247 | */ | ||
248 | int ECDSA_verify(int type, const unsigned char *dgst, int dgstlen, | ||
249 | const unsigned char *sig, int siglen, EC_KEY *eckey); | ||
250 | |||
251 | /* the standard ex_data functions */ | ||
252 | int ECDSA_get_ex_new_index(long argl, void *argp, CRYPTO_EX_new *new_func, | ||
253 | CRYPTO_EX_dup *dup_func, CRYPTO_EX_free *free_func); | ||
254 | int ECDSA_set_ex_data(EC_KEY *d, int idx, void *arg); | ||
255 | void *ECDSA_get_ex_data(EC_KEY *d, int idx); | ||
256 | |||
257 | |||
258 | /* BEGIN ERROR CODES */ | ||
259 | /* The following lines are auto generated by the script mkerr.pl. Any changes | ||
260 | * made after this point may be overwritten when the script is next run. | ||
261 | */ | ||
262 | void ERR_load_ECDSA_strings(void); | ||
263 | |||
264 | /* Error codes for the ECDSA functions. */ | ||
265 | |||
266 | /* Function codes. */ | ||
267 | #define ECDSA_F_ECDSA_CHECK 104 | ||
268 | #define ECDSA_F_ECDSA_DATA_NEW_METHOD 100 | ||
269 | #define ECDSA_F_ECDSA_DO_SIGN 101 | ||
270 | #define ECDSA_F_ECDSA_DO_VERIFY 102 | ||
271 | #define ECDSA_F_ECDSA_SIGN_SETUP 103 | ||
272 | |||
273 | /* Reason codes. */ | ||
274 | #define ECDSA_R_BAD_SIGNATURE 100 | ||
275 | #define ECDSA_R_DATA_TOO_LARGE_FOR_KEY_SIZE 101 | ||
276 | #define ECDSA_R_ERR_EC_LIB 102 | ||
277 | #define ECDSA_R_MISSING_PARAMETERS 103 | ||
278 | #define ECDSA_R_NEED_NEW_SETUP_VALUES 106 | ||
279 | #define ECDSA_R_NON_FIPS_METHOD 107 | ||
280 | #define ECDSA_R_RANDOM_NUMBER_GENERATION_FAILED 104 | ||
281 | #define ECDSA_R_SIGNATURE_MALLOC_FAILED 105 | ||
282 | |||
283 | #ifdef __cplusplus | ||
284 | } | ||
285 | #endif | ||
286 | #endif | ||
diff --git a/src/lib/libcrypto/ecdsa/ecs_asn1.c b/src/lib/libcrypto/ecdsa/ecs_asn1.c deleted file mode 100644 index 725fe44a36..0000000000 --- a/src/lib/libcrypto/ecdsa/ecs_asn1.c +++ /dev/null | |||
@@ -1,115 +0,0 @@ | |||
1 | /* $OpenBSD: ecs_asn1.c,v 1.8 2015/10/16 15:15:39 jsing Exp $ */ | ||
2 | /* ==================================================================== | ||
3 | * Copyright (c) 2000-2002 The OpenSSL Project. All rights reserved. | ||
4 | * | ||
5 | * Redistribution and use in source and binary forms, with or without | ||
6 | * modification, are permitted provided that the following conditions | ||
7 | * are met: | ||
8 | * | ||
9 | * 1. Redistributions of source code must retain the above copyright | ||
10 | * notice, this list of conditions and the following disclaimer. | ||
11 | * | ||
12 | * 2. Redistributions in binary form must reproduce the above copyright | ||
13 | * notice, this list of conditions and the following disclaimer in | ||
14 | * the documentation and/or other materials provided with the | ||
15 | * distribution. | ||
16 | * | ||
17 | * 3. All advertising materials mentioning features or use of this | ||
18 | * software must display the following acknowledgment: | ||
19 | * "This product includes software developed by the OpenSSL Project | ||
20 | * for use in the OpenSSL Toolkit. (http://www.OpenSSL.org/)" | ||
21 | * | ||
22 | * 4. The names "OpenSSL Toolkit" and "OpenSSL Project" must not be used to | ||
23 | * endorse or promote products derived from this software without | ||
24 | * prior written permission. For written permission, please contact | ||
25 | * licensing@OpenSSL.org. | ||
26 | * | ||
27 | * 5. Products derived from this software may not be called "OpenSSL" | ||
28 | * nor may "OpenSSL" appear in their names without prior written | ||
29 | * permission of the OpenSSL Project. | ||
30 | * | ||
31 | * 6. Redistributions of any form whatsoever must retain the following | ||
32 | * acknowledgment: | ||
33 | * "This product includes software developed by the OpenSSL Project | ||
34 | * for use in the OpenSSL Toolkit (http://www.OpenSSL.org/)" | ||
35 | * | ||
36 | * THIS SOFTWARE IS PROVIDED BY THE OpenSSL PROJECT ``AS IS'' AND ANY | ||
37 | * EXPRESSED OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE | ||
38 | * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR | ||
39 | * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE OpenSSL PROJECT OR | ||
40 | * ITS CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, | ||
41 | * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT | ||
42 | * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; | ||
43 | * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) | ||
44 | * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, | ||
45 | * STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) | ||
46 | * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED | ||
47 | * OF THE POSSIBILITY OF SUCH DAMAGE. | ||
48 | * ==================================================================== | ||
49 | * | ||
50 | * This product includes cryptographic software written by Eric Young | ||
51 | * (eay@cryptsoft.com). This product includes software written by Tim | ||
52 | * Hudson (tjh@cryptsoft.com). | ||
53 | * | ||
54 | */ | ||
55 | |||
56 | #include "ecs_locl.h" | ||
57 | #include <openssl/err.h> | ||
58 | #include <openssl/asn1t.h> | ||
59 | |||
60 | static const ASN1_TEMPLATE ECDSA_SIG_seq_tt[] = { | ||
61 | { | ||
62 | .flags = 0, | ||
63 | .tag = 0, | ||
64 | .offset = offsetof(ECDSA_SIG, r), | ||
65 | .field_name = "r", | ||
66 | .item = &CBIGNUM_it, | ||
67 | }, | ||
68 | { | ||
69 | .flags = 0, | ||
70 | .tag = 0, | ||
71 | .offset = offsetof(ECDSA_SIG, s), | ||
72 | .field_name = "s", | ||
73 | .item = &CBIGNUM_it, | ||
74 | }, | ||
75 | }; | ||
76 | |||
77 | const ASN1_ITEM ECDSA_SIG_it = { | ||
78 | .itype = ASN1_ITYPE_SEQUENCE, | ||
79 | .utype = V_ASN1_SEQUENCE, | ||
80 | .templates = ECDSA_SIG_seq_tt, | ||
81 | .tcount = sizeof(ECDSA_SIG_seq_tt) / sizeof(ASN1_TEMPLATE), | ||
82 | .funcs = NULL, | ||
83 | .size = sizeof(ECDSA_SIG), | ||
84 | .sname = "ECDSA_SIG", | ||
85 | }; | ||
86 | |||
87 | ECDSA_SIG *ECDSA_SIG_new(void); | ||
88 | void ECDSA_SIG_free(ECDSA_SIG *a); | ||
89 | ECDSA_SIG *d2i_ECDSA_SIG(ECDSA_SIG **a, const unsigned char **in, long len); | ||
90 | int i2d_ECDSA_SIG(const ECDSA_SIG *a, unsigned char **out); | ||
91 | |||
92 | ECDSA_SIG * | ||
93 | d2i_ECDSA_SIG(ECDSA_SIG **a, const unsigned char **in, long len) | ||
94 | { | ||
95 | return (ECDSA_SIG *)ASN1_item_d2i((ASN1_VALUE **)a, in, len, | ||
96 | &ECDSA_SIG_it); | ||
97 | } | ||
98 | |||
99 | int | ||
100 | i2d_ECDSA_SIG(const ECDSA_SIG *a, unsigned char **out) | ||
101 | { | ||
102 | return ASN1_item_i2d((ASN1_VALUE *)a, out, &ECDSA_SIG_it); | ||
103 | } | ||
104 | |||
105 | ECDSA_SIG * | ||
106 | ECDSA_SIG_new(void) | ||
107 | { | ||
108 | return (ECDSA_SIG *)ASN1_item_new(&ECDSA_SIG_it); | ||
109 | } | ||
110 | |||
111 | void | ||
112 | ECDSA_SIG_free(ECDSA_SIG *a) | ||
113 | { | ||
114 | ASN1_item_free((ASN1_VALUE *)a, &ECDSA_SIG_it); | ||
115 | } | ||
diff --git a/src/lib/libcrypto/ecdsa/ecs_err.c b/src/lib/libcrypto/ecdsa/ecs_err.c deleted file mode 100644 index 26efc135e3..0000000000 --- a/src/lib/libcrypto/ecdsa/ecs_err.c +++ /dev/null | |||
@@ -1,106 +0,0 @@ | |||
1 | /* $OpenBSD: ecs_err.c,v 1.4 2015/02/08 13:35:07 jsing Exp $ */ | ||
2 | /* ==================================================================== | ||
3 | * Copyright (c) 1999-2011 The OpenSSL Project. All rights reserved. | ||
4 | * | ||
5 | * Redistribution and use in source and binary forms, with or without | ||
6 | * modification, are permitted provided that the following conditions | ||
7 | * are met: | ||
8 | * | ||
9 | * 1. Redistributions of source code must retain the above copyright | ||
10 | * notice, this list of conditions and the following disclaimer. | ||
11 | * | ||
12 | * 2. Redistributions in binary form must reproduce the above copyright | ||
13 | * notice, this list of conditions and the following disclaimer in | ||
14 | * the documentation and/or other materials provided with the | ||
15 | * distribution. | ||
16 | * | ||
17 | * 3. All advertising materials mentioning features or use of this | ||
18 | * software must display the following acknowledgment: | ||
19 | * "This product includes software developed by the OpenSSL Project | ||
20 | * for use in the OpenSSL Toolkit. (http://www.OpenSSL.org/)" | ||
21 | * | ||
22 | * 4. The names "OpenSSL Toolkit" and "OpenSSL Project" must not be used to | ||
23 | * endorse or promote products derived from this software without | ||
24 | * prior written permission. For written permission, please contact | ||
25 | * openssl-core@OpenSSL.org. | ||
26 | * | ||
27 | * 5. Products derived from this software may not be called "OpenSSL" | ||
28 | * nor may "OpenSSL" appear in their names without prior written | ||
29 | * permission of the OpenSSL Project. | ||
30 | * | ||
31 | * 6. Redistributions of any form whatsoever must retain the following | ||
32 | * acknowledgment: | ||
33 | * "This product includes software developed by the OpenSSL Project | ||
34 | * for use in the OpenSSL Toolkit (http://www.OpenSSL.org/)" | ||
35 | * | ||
36 | * THIS SOFTWARE IS PROVIDED BY THE OpenSSL PROJECT ``AS IS'' AND ANY | ||
37 | * EXPRESSED OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE | ||
38 | * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR | ||
39 | * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE OpenSSL PROJECT OR | ||
40 | * ITS CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, | ||
41 | * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT | ||
42 | * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; | ||
43 | * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) | ||
44 | * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, | ||
45 | * STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) | ||
46 | * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED | ||
47 | * OF THE POSSIBILITY OF SUCH DAMAGE. | ||
48 | * ==================================================================== | ||
49 | * | ||
50 | * This product includes cryptographic software written by Eric Young | ||
51 | * (eay@cryptsoft.com). This product includes software written by Tim | ||
52 | * Hudson (tjh@cryptsoft.com). | ||
53 | * | ||
54 | */ | ||
55 | |||
56 | /* NOTE: this file was auto generated by the mkerr.pl script: any changes | ||
57 | * made to it will be overwritten when the script next updates this file, | ||
58 | * only reason strings will be preserved. | ||
59 | */ | ||
60 | |||
61 | #include <stdio.h> | ||
62 | |||
63 | #include <openssl/opensslconf.h> | ||
64 | |||
65 | #include <openssl/err.h> | ||
66 | #include <openssl/ecdsa.h> | ||
67 | |||
68 | /* BEGIN ERROR CODES */ | ||
69 | #ifndef OPENSSL_NO_ERR | ||
70 | |||
71 | #define ERR_FUNC(func) ERR_PACK(ERR_LIB_ECDSA,func,0) | ||
72 | #define ERR_REASON(reason) ERR_PACK(ERR_LIB_ECDSA,0,reason) | ||
73 | |||
74 | static ERR_STRING_DATA ECDSA_str_functs[]= { | ||
75 | {ERR_FUNC(ECDSA_F_ECDSA_CHECK), "ECDSA_CHECK"}, | ||
76 | {ERR_FUNC(ECDSA_F_ECDSA_DATA_NEW_METHOD), "ECDSA_DATA_NEW_METHOD"}, | ||
77 | {ERR_FUNC(ECDSA_F_ECDSA_DO_SIGN), "ECDSA_do_sign"}, | ||
78 | {ERR_FUNC(ECDSA_F_ECDSA_DO_VERIFY), "ECDSA_do_verify"}, | ||
79 | {ERR_FUNC(ECDSA_F_ECDSA_SIGN_SETUP), "ECDSA_sign_setup"}, | ||
80 | {0, NULL} | ||
81 | }; | ||
82 | |||
83 | static ERR_STRING_DATA ECDSA_str_reasons[]= { | ||
84 | {ERR_REASON(ECDSA_R_BAD_SIGNATURE) , "bad signature"}, | ||
85 | {ERR_REASON(ECDSA_R_DATA_TOO_LARGE_FOR_KEY_SIZE), "data too large for key size"}, | ||
86 | {ERR_REASON(ECDSA_R_ERR_EC_LIB) , "err ec lib"}, | ||
87 | {ERR_REASON(ECDSA_R_MISSING_PARAMETERS) , "missing parameters"}, | ||
88 | {ERR_REASON(ECDSA_R_NEED_NEW_SETUP_VALUES), "need new setup values"}, | ||
89 | {ERR_REASON(ECDSA_R_NON_FIPS_METHOD) , "non fips method"}, | ||
90 | {ERR_REASON(ECDSA_R_RANDOM_NUMBER_GENERATION_FAILED), "random number generation failed"}, | ||
91 | {ERR_REASON(ECDSA_R_SIGNATURE_MALLOC_FAILED), "signature malloc failed"}, | ||
92 | {0, NULL} | ||
93 | }; | ||
94 | |||
95 | #endif | ||
96 | |||
97 | void | ||
98 | ERR_load_ECDSA_strings(void) | ||
99 | { | ||
100 | #ifndef OPENSSL_NO_ERR | ||
101 | if (ERR_func_error_string(ECDSA_str_functs[0].error) == NULL) { | ||
102 | ERR_load_strings(0, ECDSA_str_functs); | ||
103 | ERR_load_strings(0, ECDSA_str_reasons); | ||
104 | } | ||
105 | #endif | ||
106 | } | ||
diff --git a/src/lib/libcrypto/ecdsa/ecs_lib.c b/src/lib/libcrypto/ecdsa/ecs_lib.c deleted file mode 100644 index 1ba788b4f0..0000000000 --- a/src/lib/libcrypto/ecdsa/ecs_lib.c +++ /dev/null | |||
@@ -1,264 +0,0 @@ | |||
1 | /* $OpenBSD: ecs_lib.c,v 1.10 2015/09/10 15:56:25 jsing Exp $ */ | ||
2 | /* ==================================================================== | ||
3 | * Copyright (c) 1998-2005 The OpenSSL Project. All rights reserved. | ||
4 | * | ||
5 | * Redistribution and use in source and binary forms, with or without | ||
6 | * modification, are permitted provided that the following conditions | ||
7 | * are met: | ||
8 | * | ||
9 | * 1. Redistributions of source code must retain the above copyright | ||
10 | * notice, this list of conditions and the following disclaimer. | ||
11 | * | ||
12 | * 2. Redistributions in binary form must reproduce the above copyright | ||
13 | * notice, this list of conditions and the following disclaimer in | ||
14 | * the documentation and/or other materials provided with the | ||
15 | * distribution. | ||
16 | * | ||
17 | * 3. All advertising materials mentioning features or use of this | ||
18 | * software must display the following acknowledgment: | ||
19 | * "This product includes software developed by the OpenSSL Project | ||
20 | * for use in the OpenSSL Toolkit. (http://www.OpenSSL.org/)" | ||
21 | * | ||
22 | * 4. The names "OpenSSL Toolkit" and "OpenSSL Project" must not be used to | ||
23 | * endorse or promote products derived from this software without | ||
24 | * prior written permission. For written permission, please contact | ||
25 | * openssl-core@OpenSSL.org. | ||
26 | * | ||
27 | * 5. Products derived from this software may not be called "OpenSSL" | ||
28 | * nor may "OpenSSL" appear in their names without prior written | ||
29 | * permission of the OpenSSL Project. | ||
30 | * | ||
31 | * 6. Redistributions of any form whatsoever must retain the following | ||
32 | * acknowledgment: | ||
33 | * "This product includes software developed by the OpenSSL Project | ||
34 | * for use in the OpenSSL Toolkit (http://www.OpenSSL.org/)" | ||
35 | * | ||
36 | * THIS SOFTWARE IS PROVIDED BY THE OpenSSL PROJECT ``AS IS'' AND ANY | ||
37 | * EXPRESSED OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE | ||
38 | * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR | ||
39 | * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE OpenSSL PROJECT OR | ||
40 | * ITS CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, | ||
41 | * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT | ||
42 | * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; | ||
43 | * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) | ||
44 | * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, | ||
45 | * STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) | ||
46 | * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED | ||
47 | * OF THE POSSIBILITY OF SUCH DAMAGE. | ||
48 | * ==================================================================== | ||
49 | * | ||
50 | * This product includes cryptographic software written by Eric Young | ||
51 | * (eay@cryptsoft.com). This product includes software written by Tim | ||
52 | * Hudson (tjh@cryptsoft.com). | ||
53 | * | ||
54 | */ | ||
55 | |||
56 | #include <string.h> | ||
57 | |||
58 | #include <openssl/opensslconf.h> | ||
59 | |||
60 | #include "ecs_locl.h" | ||
61 | #ifndef OPENSSL_NO_ENGINE | ||
62 | #include <openssl/engine.h> | ||
63 | #endif | ||
64 | #include <openssl/err.h> | ||
65 | #include <openssl/bn.h> | ||
66 | |||
67 | static const ECDSA_METHOD *default_ECDSA_method = NULL; | ||
68 | |||
69 | static void *ecdsa_data_new(void); | ||
70 | static void *ecdsa_data_dup(void *); | ||
71 | static void ecdsa_data_free(void *); | ||
72 | |||
73 | void | ||
74 | ECDSA_set_default_method(const ECDSA_METHOD *meth) | ||
75 | { | ||
76 | default_ECDSA_method = meth; | ||
77 | } | ||
78 | |||
79 | const ECDSA_METHOD * | ||
80 | ECDSA_get_default_method(void) | ||
81 | { | ||
82 | if (!default_ECDSA_method) { | ||
83 | default_ECDSA_method = ECDSA_OpenSSL(); | ||
84 | } | ||
85 | return default_ECDSA_method; | ||
86 | } | ||
87 | |||
88 | int | ||
89 | ECDSA_set_method(EC_KEY *eckey, const ECDSA_METHOD *meth) | ||
90 | { | ||
91 | ECDSA_DATA *ecdsa; | ||
92 | |||
93 | ecdsa = ecdsa_check(eckey); | ||
94 | |||
95 | if (ecdsa == NULL) | ||
96 | return 0; | ||
97 | |||
98 | #ifndef OPENSSL_NO_ENGINE | ||
99 | if (ecdsa->engine) { | ||
100 | ENGINE_finish(ecdsa->engine); | ||
101 | ecdsa->engine = NULL; | ||
102 | } | ||
103 | #endif | ||
104 | ecdsa->meth = meth; | ||
105 | |||
106 | return 1; | ||
107 | } | ||
108 | |||
109 | static ECDSA_DATA * | ||
110 | ECDSA_DATA_new_method(ENGINE *engine) | ||
111 | { | ||
112 | ECDSA_DATA *ret; | ||
113 | |||
114 | ret = malloc(sizeof(ECDSA_DATA)); | ||
115 | if (ret == NULL) { | ||
116 | ECDSAerr(ECDSA_F_ECDSA_DATA_NEW_METHOD, ERR_R_MALLOC_FAILURE); | ||
117 | return (NULL); | ||
118 | } | ||
119 | |||
120 | ret->init = NULL; | ||
121 | |||
122 | ret->meth = ECDSA_get_default_method(); | ||
123 | ret->engine = engine; | ||
124 | #ifndef OPENSSL_NO_ENGINE | ||
125 | if (!ret->engine) | ||
126 | ret->engine = ENGINE_get_default_ECDSA(); | ||
127 | if (ret->engine) { | ||
128 | ret->meth = ENGINE_get_ECDSA(ret->engine); | ||
129 | if (!ret->meth) { | ||
130 | ECDSAerr(ECDSA_F_ECDSA_DATA_NEW_METHOD, | ||
131 | ERR_R_ENGINE_LIB); | ||
132 | ENGINE_finish(ret->engine); | ||
133 | free(ret); | ||
134 | return NULL; | ||
135 | } | ||
136 | } | ||
137 | #endif | ||
138 | |||
139 | ret->flags = ret->meth->flags; | ||
140 | CRYPTO_new_ex_data(CRYPTO_EX_INDEX_ECDSA, ret, &ret->ex_data); | ||
141 | return (ret); | ||
142 | } | ||
143 | |||
144 | static void * | ||
145 | ecdsa_data_new(void) | ||
146 | { | ||
147 | return (void *)ECDSA_DATA_new_method(NULL); | ||
148 | } | ||
149 | |||
150 | static void * | ||
151 | ecdsa_data_dup(void *data) | ||
152 | { | ||
153 | ECDSA_DATA *r = (ECDSA_DATA *)data; | ||
154 | |||
155 | /* XXX: dummy operation */ | ||
156 | if (r == NULL) | ||
157 | return NULL; | ||
158 | |||
159 | return ecdsa_data_new(); | ||
160 | } | ||
161 | |||
162 | static void | ||
163 | ecdsa_data_free(void *data) | ||
164 | { | ||
165 | ECDSA_DATA *r = (ECDSA_DATA *)data; | ||
166 | |||
167 | #ifndef OPENSSL_NO_ENGINE | ||
168 | if (r->engine) | ||
169 | ENGINE_finish(r->engine); | ||
170 | #endif | ||
171 | CRYPTO_free_ex_data(CRYPTO_EX_INDEX_ECDSA, r, &r->ex_data); | ||
172 | |||
173 | explicit_bzero((void *)r, sizeof(ECDSA_DATA)); | ||
174 | |||
175 | free(r); | ||
176 | } | ||
177 | |||
178 | ECDSA_DATA * | ||
179 | ecdsa_check(EC_KEY *key) | ||
180 | { | ||
181 | ECDSA_DATA *ecdsa_data; | ||
182 | |||
183 | void *data = EC_KEY_get_key_method_data(key, ecdsa_data_dup, | ||
184 | ecdsa_data_free, ecdsa_data_free); | ||
185 | if (data == NULL) { | ||
186 | ecdsa_data = (ECDSA_DATA *)ecdsa_data_new(); | ||
187 | if (ecdsa_data == NULL) | ||
188 | return NULL; | ||
189 | data = EC_KEY_insert_key_method_data(key, (void *)ecdsa_data, | ||
190 | ecdsa_data_dup, ecdsa_data_free, ecdsa_data_free); | ||
191 | if (data != NULL) { | ||
192 | /* Another thread raced us to install the key_method | ||
193 | * data and won. */ | ||
194 | ecdsa_data_free(ecdsa_data); | ||
195 | ecdsa_data = (ECDSA_DATA *)data; | ||
196 | } | ||
197 | } else | ||
198 | ecdsa_data = (ECDSA_DATA *)data; | ||
199 | |||
200 | return ecdsa_data; | ||
201 | } | ||
202 | |||
203 | int | ||
204 | ECDSA_size(const EC_KEY *r) | ||
205 | { | ||
206 | int ret, i; | ||
207 | ASN1_INTEGER bs; | ||
208 | BIGNUM *order = NULL; | ||
209 | unsigned char buf[4]; | ||
210 | const EC_GROUP *group; | ||
211 | |||
212 | if (r == NULL) | ||
213 | return 0; | ||
214 | group = EC_KEY_get0_group(r); | ||
215 | if (group == NULL) | ||
216 | return 0; | ||
217 | |||
218 | if ((order = BN_new()) == NULL) | ||
219 | return 0; | ||
220 | if (!EC_GROUP_get_order(group, order, NULL)) { | ||
221 | BN_clear_free(order); | ||
222 | return 0; | ||
223 | } | ||
224 | i = BN_num_bits(order); | ||
225 | bs.length = (i + 7) / 8; | ||
226 | bs.data = buf; | ||
227 | bs.type = V_ASN1_INTEGER; | ||
228 | /* If the top bit is set the asn1 encoding is 1 larger. */ | ||
229 | buf[0] = 0xff; | ||
230 | |||
231 | i = i2d_ASN1_INTEGER(&bs, NULL); | ||
232 | i += i; /* r and s */ | ||
233 | ret = ASN1_object_size(1, i, V_ASN1_SEQUENCE); | ||
234 | BN_clear_free(order); | ||
235 | return (ret); | ||
236 | } | ||
237 | |||
238 | int | ||
239 | ECDSA_get_ex_new_index(long argl, void *argp, CRYPTO_EX_new *new_func, | ||
240 | CRYPTO_EX_dup *dup_func, CRYPTO_EX_free *free_func) | ||
241 | { | ||
242 | return CRYPTO_get_ex_new_index(CRYPTO_EX_INDEX_ECDSA, argl, argp, | ||
243 | new_func, dup_func, free_func); | ||
244 | } | ||
245 | |||
246 | int | ||
247 | ECDSA_set_ex_data(EC_KEY *d, int idx, void *arg) | ||
248 | { | ||
249 | ECDSA_DATA *ecdsa; | ||
250 | ecdsa = ecdsa_check(d); | ||
251 | if (ecdsa == NULL) | ||
252 | return 0; | ||
253 | return (CRYPTO_set_ex_data(&ecdsa->ex_data, idx, arg)); | ||
254 | } | ||
255 | |||
256 | void * | ||
257 | ECDSA_get_ex_data(EC_KEY *d, int idx) | ||
258 | { | ||
259 | ECDSA_DATA *ecdsa; | ||
260 | ecdsa = ecdsa_check(d); | ||
261 | if (ecdsa == NULL) | ||
262 | return NULL; | ||
263 | return (CRYPTO_get_ex_data(&ecdsa->ex_data, idx)); | ||
264 | } | ||
diff --git a/src/lib/libcrypto/ecdsa/ecs_locl.h b/src/lib/libcrypto/ecdsa/ecs_locl.h deleted file mode 100644 index 24d866ae64..0000000000 --- a/src/lib/libcrypto/ecdsa/ecs_locl.h +++ /dev/null | |||
@@ -1,90 +0,0 @@ | |||
1 | /* $OpenBSD: ecs_locl.h,v 1.4 2015/02/08 13:35:07 jsing Exp $ */ | ||
2 | /* | ||
3 | * Written by Nils Larsch for the OpenSSL project | ||
4 | */ | ||
5 | /* ==================================================================== | ||
6 | * Copyright (c) 2000-2005 The OpenSSL Project. All rights reserved. | ||
7 | * | ||
8 | * Redistribution and use in source and binary forms, with or without | ||
9 | * modification, are permitted provided that the following conditions | ||
10 | * are met: | ||
11 | * | ||
12 | * 1. Redistributions of source code must retain the above copyright | ||
13 | * notice, this list of conditions and the following disclaimer. | ||
14 | * | ||
15 | * 2. Redistributions in binary form must reproduce the above copyright | ||
16 | * notice, this list of conditions and the following disclaimer in | ||
17 | * the documentation and/or other materials provided with the | ||
18 | * distribution. | ||
19 | * | ||
20 | * 3. All advertising materials mentioning features or use of this | ||
21 | * software must display the following acknowledgment: | ||
22 | * "This product includes software developed by the OpenSSL Project | ||
23 | * for use in the OpenSSL Toolkit. (http://www.OpenSSL.org/)" | ||
24 | * | ||
25 | * 4. The names "OpenSSL Toolkit" and "OpenSSL Project" must not be used to | ||
26 | * endorse or promote products derived from this software without | ||
27 | * prior written permission. For written permission, please contact | ||
28 | * licensing@OpenSSL.org. | ||
29 | * | ||
30 | * 5. Products derived from this software may not be called "OpenSSL" | ||
31 | * nor may "OpenSSL" appear in their names without prior written | ||
32 | * permission of the OpenSSL Project. | ||
33 | * | ||
34 | * 6. Redistributions of any form whatsoever must retain the following | ||
35 | * acknowledgment: | ||
36 | * "This product includes software developed by the OpenSSL Project | ||
37 | * for use in the OpenSSL Toolkit (http://www.OpenSSL.org/)" | ||
38 | * | ||
39 | * THIS SOFTWARE IS PROVIDED BY THE OpenSSL PROJECT ``AS IS'' AND ANY | ||
40 | * EXPRESSED OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE | ||
41 | * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR | ||
42 | * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE OpenSSL PROJECT OR | ||
43 | * ITS CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, | ||
44 | * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT | ||
45 | * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; | ||
46 | * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) | ||
47 | * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, | ||
48 | * STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) | ||
49 | * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED | ||
50 | * OF THE POSSIBILITY OF SUCH DAMAGE. | ||
51 | * ==================================================================== | ||
52 | * | ||
53 | * This product includes cryptographic software written by Eric Young | ||
54 | * (eay@cryptsoft.com). This product includes software written by Tim | ||
55 | * Hudson (tjh@cryptsoft.com). | ||
56 | * | ||
57 | */ | ||
58 | |||
59 | #ifndef HEADER_ECS_LOCL_H | ||
60 | #define HEADER_ECS_LOCL_H | ||
61 | |||
62 | #include <openssl/ecdsa.h> | ||
63 | |||
64 | #ifdef __cplusplus | ||
65 | extern "C" { | ||
66 | #endif | ||
67 | |||
68 | typedef struct ecdsa_data_st { | ||
69 | /* EC_KEY_METH_DATA part */ | ||
70 | int (*init)(EC_KEY *); | ||
71 | /* method (ECDSA) specific part */ | ||
72 | ENGINE *engine; | ||
73 | int flags; | ||
74 | const ECDSA_METHOD *meth; | ||
75 | CRYPTO_EX_DATA ex_data; | ||
76 | } ECDSA_DATA; | ||
77 | |||
78 | /** ecdsa_check | ||
79 | * checks whether ECKEY->meth_data is a pointer to a ECDSA_DATA structure | ||
80 | * and if not it removes the old meth_data and creates a ECDSA_DATA structure. | ||
81 | * \param eckey pointer to a EC_KEY object | ||
82 | * \return pointer to a ECDSA_DATA structure | ||
83 | */ | ||
84 | ECDSA_DATA *ecdsa_check(EC_KEY *eckey); | ||
85 | |||
86 | #ifdef __cplusplus | ||
87 | } | ||
88 | #endif | ||
89 | |||
90 | #endif /* HEADER_ECS_LOCL_H */ | ||
diff --git a/src/lib/libcrypto/ecdsa/ecs_ossl.c b/src/lib/libcrypto/ecdsa/ecs_ossl.c deleted file mode 100644 index 31102138c0..0000000000 --- a/src/lib/libcrypto/ecdsa/ecs_ossl.c +++ /dev/null | |||
@@ -1,430 +0,0 @@ | |||
1 | /* $OpenBSD: ecs_ossl.c,v 1.6 2015/02/08 13:35:07 jsing Exp $ */ | ||
2 | /* | ||
3 | * Written by Nils Larsch for the OpenSSL project | ||
4 | */ | ||
5 | /* ==================================================================== | ||
6 | * Copyright (c) 1998-2004 The OpenSSL Project. All rights reserved. | ||
7 | * | ||
8 | * Redistribution and use in source and binary forms, with or without | ||
9 | * modification, are permitted provided that the following conditions | ||
10 | * are met: | ||
11 | * | ||
12 | * 1. Redistributions of source code must retain the above copyright | ||
13 | * notice, this list of conditions and the following disclaimer. | ||
14 | * | ||
15 | * 2. Redistributions in binary form must reproduce the above copyright | ||
16 | * notice, this list of conditions and the following disclaimer in | ||
17 | * the documentation and/or other materials provided with the | ||
18 | * distribution. | ||
19 | * | ||
20 | * 3. All advertising materials mentioning features or use of this | ||
21 | * software must display the following acknowledgment: | ||
22 | * "This product includes software developed by the OpenSSL Project | ||
23 | * for use in the OpenSSL Toolkit. (http://www.OpenSSL.org/)" | ||
24 | * | ||
25 | * 4. The names "OpenSSL Toolkit" and "OpenSSL Project" must not be used to | ||
26 | * endorse or promote products derived from this software without | ||
27 | * prior written permission. For written permission, please contact | ||
28 | * openssl-core@OpenSSL.org. | ||
29 | * | ||
30 | * 5. Products derived from this software may not be called "OpenSSL" | ||
31 | * nor may "OpenSSL" appear in their names without prior written | ||
32 | * permission of the OpenSSL Project. | ||
33 | * | ||
34 | * 6. Redistributions of any form whatsoever must retain the following | ||
35 | * acknowledgment: | ||
36 | * "This product includes software developed by the OpenSSL Project | ||
37 | * for use in the OpenSSL Toolkit (http://www.OpenSSL.org/)" | ||
38 | * | ||
39 | * THIS SOFTWARE IS PROVIDED BY THE OpenSSL PROJECT ``AS IS'' AND ANY | ||
40 | * EXPRESSED OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE | ||
41 | * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR | ||
42 | * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE OpenSSL PROJECT OR | ||
43 | * ITS CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, | ||
44 | * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT | ||
45 | * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; | ||
46 | * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) | ||
47 | * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, | ||
48 | * STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) | ||
49 | * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED | ||
50 | * OF THE POSSIBILITY OF SUCH DAMAGE. | ||
51 | * ==================================================================== | ||
52 | * | ||
53 | * This product includes cryptographic software written by Eric Young | ||
54 | * (eay@cryptsoft.com). This product includes software written by Tim | ||
55 | * Hudson (tjh@cryptsoft.com). | ||
56 | * | ||
57 | */ | ||
58 | |||
59 | #include <openssl/opensslconf.h> | ||
60 | |||
61 | #include "ecs_locl.h" | ||
62 | #include <openssl/err.h> | ||
63 | #include <openssl/obj_mac.h> | ||
64 | #include <openssl/bn.h> | ||
65 | |||
66 | static ECDSA_SIG *ecdsa_do_sign(const unsigned char *dgst, int dlen, | ||
67 | const BIGNUM *, const BIGNUM *, EC_KEY *eckey); | ||
68 | static int ecdsa_sign_setup(EC_KEY *eckey, BN_CTX *ctx_in, BIGNUM **kinvp, | ||
69 | BIGNUM **rp); | ||
70 | static int ecdsa_do_verify(const unsigned char *dgst, int dgst_len, | ||
71 | const ECDSA_SIG *sig, EC_KEY *eckey); | ||
72 | |||
73 | static ECDSA_METHOD openssl_ecdsa_meth = { | ||
74 | .name = "OpenSSL ECDSA method", | ||
75 | .ecdsa_do_sign = ecdsa_do_sign, | ||
76 | .ecdsa_sign_setup = ecdsa_sign_setup, | ||
77 | .ecdsa_do_verify = ecdsa_do_verify | ||
78 | }; | ||
79 | |||
80 | const ECDSA_METHOD * | ||
81 | ECDSA_OpenSSL(void) | ||
82 | { | ||
83 | return &openssl_ecdsa_meth; | ||
84 | } | ||
85 | |||
86 | static int | ||
87 | ecdsa_sign_setup(EC_KEY *eckey, BN_CTX *ctx_in, BIGNUM **kinvp, BIGNUM **rp) | ||
88 | { | ||
89 | BN_CTX *ctx = NULL; | ||
90 | BIGNUM *k = NULL, *r = NULL, *order = NULL, *X = NULL; | ||
91 | EC_POINT *tmp_point = NULL; | ||
92 | const EC_GROUP *group; | ||
93 | int ret = 0; | ||
94 | |||
95 | if (eckey == NULL || (group = EC_KEY_get0_group(eckey)) == NULL) { | ||
96 | ECDSAerr(ECDSA_F_ECDSA_SIGN_SETUP, ERR_R_PASSED_NULL_PARAMETER); | ||
97 | return 0; | ||
98 | } | ||
99 | |||
100 | if (ctx_in == NULL) { | ||
101 | if ((ctx = BN_CTX_new()) == NULL) { | ||
102 | ECDSAerr(ECDSA_F_ECDSA_SIGN_SETUP, | ||
103 | ERR_R_MALLOC_FAILURE); | ||
104 | return 0; | ||
105 | } | ||
106 | } else | ||
107 | ctx = ctx_in; | ||
108 | |||
109 | k = BN_new(); /* this value is later returned in *kinvp */ | ||
110 | r = BN_new(); /* this value is later returned in *rp */ | ||
111 | order = BN_new(); | ||
112 | X = BN_new(); | ||
113 | if (!k || !r || !order || !X) { | ||
114 | ECDSAerr(ECDSA_F_ECDSA_SIGN_SETUP, ERR_R_MALLOC_FAILURE); | ||
115 | goto err; | ||
116 | } | ||
117 | if ((tmp_point = EC_POINT_new(group)) == NULL) { | ||
118 | ECDSAerr(ECDSA_F_ECDSA_SIGN_SETUP, ERR_R_EC_LIB); | ||
119 | goto err; | ||
120 | } | ||
121 | if (!EC_GROUP_get_order(group, order, ctx)) { | ||
122 | ECDSAerr(ECDSA_F_ECDSA_SIGN_SETUP, ERR_R_EC_LIB); | ||
123 | goto err; | ||
124 | } | ||
125 | |||
126 | do { | ||
127 | /* get random k */ | ||
128 | do | ||
129 | if (!BN_rand_range(k, order)) { | ||
130 | ECDSAerr(ECDSA_F_ECDSA_SIGN_SETUP, | ||
131 | ECDSA_R_RANDOM_NUMBER_GENERATION_FAILED); | ||
132 | goto err; | ||
133 | } | ||
134 | while (BN_is_zero(k)); | ||
135 | |||
136 | /* We do not want timing information to leak the length of k, | ||
137 | * so we compute G*k using an equivalent scalar of fixed | ||
138 | * bit-length. */ | ||
139 | if (!BN_add(k, k, order)) | ||
140 | goto err; | ||
141 | if (BN_num_bits(k) <= BN_num_bits(order)) | ||
142 | if (!BN_add(k, k, order)) | ||
143 | goto err; | ||
144 | |||
145 | /* compute r the x-coordinate of generator * k */ | ||
146 | if (!EC_POINT_mul(group, tmp_point, k, NULL, NULL, ctx)) { | ||
147 | ECDSAerr(ECDSA_F_ECDSA_SIGN_SETUP, ERR_R_EC_LIB); | ||
148 | goto err; | ||
149 | } | ||
150 | if (EC_METHOD_get_field_type(EC_GROUP_method_of(group)) == | ||
151 | NID_X9_62_prime_field) { | ||
152 | if (!EC_POINT_get_affine_coordinates_GFp(group, | ||
153 | tmp_point, X, NULL, ctx)) { | ||
154 | ECDSAerr(ECDSA_F_ECDSA_SIGN_SETUP, | ||
155 | ERR_R_EC_LIB); | ||
156 | goto err; | ||
157 | } | ||
158 | } | ||
159 | #ifndef OPENSSL_NO_EC2M | ||
160 | else /* NID_X9_62_characteristic_two_field */ | ||
161 | { | ||
162 | if (!EC_POINT_get_affine_coordinates_GF2m(group, | ||
163 | tmp_point, X, NULL, ctx)) { | ||
164 | ECDSAerr(ECDSA_F_ECDSA_SIGN_SETUP, | ||
165 | ERR_R_EC_LIB); | ||
166 | goto err; | ||
167 | } | ||
168 | } | ||
169 | #endif | ||
170 | if (!BN_nnmod(r, X, order, ctx)) { | ||
171 | ECDSAerr(ECDSA_F_ECDSA_SIGN_SETUP, ERR_R_BN_LIB); | ||
172 | goto err; | ||
173 | } | ||
174 | } while (BN_is_zero(r)); | ||
175 | |||
176 | /* compute the inverse of k */ | ||
177 | if (!BN_mod_inverse(k, k, order, ctx)) { | ||
178 | ECDSAerr(ECDSA_F_ECDSA_SIGN_SETUP, ERR_R_BN_LIB); | ||
179 | goto err; | ||
180 | } | ||
181 | /* clear old values if necessary */ | ||
182 | BN_clear_free(*rp); | ||
183 | BN_clear_free(*kinvp); | ||
184 | /* save the pre-computed values */ | ||
185 | *rp = r; | ||
186 | *kinvp = k; | ||
187 | ret = 1; | ||
188 | |||
189 | err: | ||
190 | if (!ret) { | ||
191 | BN_clear_free(k); | ||
192 | BN_clear_free(r); | ||
193 | } | ||
194 | if (ctx_in == NULL) | ||
195 | BN_CTX_free(ctx); | ||
196 | BN_free(order); | ||
197 | EC_POINT_free(tmp_point); | ||
198 | BN_clear_free(X); | ||
199 | return (ret); | ||
200 | } | ||
201 | |||
202 | |||
203 | static ECDSA_SIG * | ||
204 | ecdsa_do_sign(const unsigned char *dgst, int dgst_len, | ||
205 | const BIGNUM *in_kinv, const BIGNUM *in_r, EC_KEY *eckey) | ||
206 | { | ||
207 | int ok = 0, i; | ||
208 | BIGNUM *kinv = NULL, *s, *m = NULL, *tmp = NULL, *order = NULL; | ||
209 | const BIGNUM *ckinv; | ||
210 | BN_CTX *ctx = NULL; | ||
211 | const EC_GROUP *group; | ||
212 | ECDSA_SIG *ret; | ||
213 | ECDSA_DATA *ecdsa; | ||
214 | const BIGNUM *priv_key; | ||
215 | |||
216 | ecdsa = ecdsa_check(eckey); | ||
217 | group = EC_KEY_get0_group(eckey); | ||
218 | priv_key = EC_KEY_get0_private_key(eckey); | ||
219 | |||
220 | if (group == NULL || priv_key == NULL || ecdsa == NULL) { | ||
221 | ECDSAerr(ECDSA_F_ECDSA_DO_SIGN, ERR_R_PASSED_NULL_PARAMETER); | ||
222 | return NULL; | ||
223 | } | ||
224 | |||
225 | ret = ECDSA_SIG_new(); | ||
226 | if (!ret) { | ||
227 | ECDSAerr(ECDSA_F_ECDSA_DO_SIGN, ERR_R_MALLOC_FAILURE); | ||
228 | return NULL; | ||
229 | } | ||
230 | s = ret->s; | ||
231 | |||
232 | if ((ctx = BN_CTX_new()) == NULL || (order = BN_new()) == NULL || | ||
233 | (tmp = BN_new()) == NULL || (m = BN_new()) == NULL) { | ||
234 | ECDSAerr(ECDSA_F_ECDSA_DO_SIGN, ERR_R_MALLOC_FAILURE); | ||
235 | goto err; | ||
236 | } | ||
237 | |||
238 | if (!EC_GROUP_get_order(group, order, ctx)) { | ||
239 | ECDSAerr(ECDSA_F_ECDSA_DO_SIGN, ERR_R_EC_LIB); | ||
240 | goto err; | ||
241 | } | ||
242 | i = BN_num_bits(order); | ||
243 | /* Need to truncate digest if it is too long: first truncate whole | ||
244 | * bytes. | ||
245 | */ | ||
246 | if (8 * dgst_len > i) | ||
247 | dgst_len = (i + 7)/8; | ||
248 | if (!BN_bin2bn(dgst, dgst_len, m)) { | ||
249 | ECDSAerr(ECDSA_F_ECDSA_DO_SIGN, ERR_R_BN_LIB); | ||
250 | goto err; | ||
251 | } | ||
252 | /* If still too long truncate remaining bits with a shift */ | ||
253 | if ((8 * dgst_len > i) && !BN_rshift(m, m, 8 - (i & 0x7))) { | ||
254 | ECDSAerr(ECDSA_F_ECDSA_DO_SIGN, ERR_R_BN_LIB); | ||
255 | goto err; | ||
256 | } | ||
257 | do { | ||
258 | if (in_kinv == NULL || in_r == NULL) { | ||
259 | if (!ECDSA_sign_setup(eckey, ctx, &kinv, &ret->r)) { | ||
260 | ECDSAerr(ECDSA_F_ECDSA_DO_SIGN, | ||
261 | ERR_R_ECDSA_LIB); | ||
262 | goto err; | ||
263 | } | ||
264 | ckinv = kinv; | ||
265 | } else { | ||
266 | ckinv = in_kinv; | ||
267 | if (BN_copy(ret->r, in_r) == NULL) { | ||
268 | ECDSAerr(ECDSA_F_ECDSA_DO_SIGN, | ||
269 | ERR_R_MALLOC_FAILURE); | ||
270 | goto err; | ||
271 | } | ||
272 | } | ||
273 | |||
274 | if (!BN_mod_mul(tmp, priv_key, ret->r, order, ctx)) { | ||
275 | ECDSAerr(ECDSA_F_ECDSA_DO_SIGN, ERR_R_BN_LIB); | ||
276 | goto err; | ||
277 | } | ||
278 | if (!BN_mod_add_quick(s, tmp, m, order)) { | ||
279 | ECDSAerr(ECDSA_F_ECDSA_DO_SIGN, ERR_R_BN_LIB); | ||
280 | goto err; | ||
281 | } | ||
282 | if (!BN_mod_mul(s, s, ckinv, order, ctx)) { | ||
283 | ECDSAerr(ECDSA_F_ECDSA_DO_SIGN, ERR_R_BN_LIB); | ||
284 | goto err; | ||
285 | } | ||
286 | if (BN_is_zero(s)) { | ||
287 | /* if kinv and r have been supplied by the caller | ||
288 | * don't to generate new kinv and r values */ | ||
289 | if (in_kinv != NULL && in_r != NULL) { | ||
290 | ECDSAerr(ECDSA_F_ECDSA_DO_SIGN, | ||
291 | ECDSA_R_NEED_NEW_SETUP_VALUES); | ||
292 | goto err; | ||
293 | } | ||
294 | } else | ||
295 | /* s != 0 => we have a valid signature */ | ||
296 | break; | ||
297 | } while (1); | ||
298 | |||
299 | ok = 1; | ||
300 | |||
301 | err: | ||
302 | if (!ok) { | ||
303 | ECDSA_SIG_free(ret); | ||
304 | ret = NULL; | ||
305 | } | ||
306 | BN_CTX_free(ctx); | ||
307 | BN_clear_free(m); | ||
308 | BN_clear_free(tmp); | ||
309 | BN_free(order); | ||
310 | BN_clear_free(kinv); | ||
311 | return ret; | ||
312 | } | ||
313 | |||
314 | static int | ||
315 | ecdsa_do_verify(const unsigned char *dgst, int dgst_len, const ECDSA_SIG *sig, | ||
316 | EC_KEY *eckey) | ||
317 | { | ||
318 | int ret = -1, i; | ||
319 | BN_CTX *ctx; | ||
320 | BIGNUM *order, *u1, *u2, *m, *X; | ||
321 | EC_POINT *point = NULL; | ||
322 | const EC_GROUP *group; | ||
323 | const EC_POINT *pub_key; | ||
324 | |||
325 | /* check input values */ | ||
326 | if (eckey == NULL || (group = EC_KEY_get0_group(eckey)) == NULL || | ||
327 | (pub_key = EC_KEY_get0_public_key(eckey)) == NULL || sig == NULL) { | ||
328 | ECDSAerr(ECDSA_F_ECDSA_DO_VERIFY, ECDSA_R_MISSING_PARAMETERS); | ||
329 | return -1; | ||
330 | } | ||
331 | |||
332 | ctx = BN_CTX_new(); | ||
333 | if (!ctx) { | ||
334 | ECDSAerr(ECDSA_F_ECDSA_DO_VERIFY, ERR_R_MALLOC_FAILURE); | ||
335 | return -1; | ||
336 | } | ||
337 | BN_CTX_start(ctx); | ||
338 | order = BN_CTX_get(ctx); | ||
339 | u1 = BN_CTX_get(ctx); | ||
340 | u2 = BN_CTX_get(ctx); | ||
341 | m = BN_CTX_get(ctx); | ||
342 | X = BN_CTX_get(ctx); | ||
343 | if (!X) { | ||
344 | ECDSAerr(ECDSA_F_ECDSA_DO_VERIFY, ERR_R_BN_LIB); | ||
345 | goto err; | ||
346 | } | ||
347 | |||
348 | if (!EC_GROUP_get_order(group, order, ctx)) { | ||
349 | ECDSAerr(ECDSA_F_ECDSA_DO_VERIFY, ERR_R_EC_LIB); | ||
350 | goto err; | ||
351 | } | ||
352 | |||
353 | if (BN_is_zero(sig->r) || BN_is_negative(sig->r) || | ||
354 | BN_ucmp(sig->r, order) >= 0 || BN_is_zero(sig->s) || | ||
355 | BN_is_negative(sig->s) || BN_ucmp(sig->s, order) >= 0) { | ||
356 | ECDSAerr(ECDSA_F_ECDSA_DO_VERIFY, ECDSA_R_BAD_SIGNATURE); | ||
357 | ret = 0; /* signature is invalid */ | ||
358 | goto err; | ||
359 | } | ||
360 | /* calculate tmp1 = inv(S) mod order */ | ||
361 | if (!BN_mod_inverse(u2, sig->s, order, ctx)) { | ||
362 | ECDSAerr(ECDSA_F_ECDSA_DO_VERIFY, ERR_R_BN_LIB); | ||
363 | goto err; | ||
364 | } | ||
365 | /* digest -> m */ | ||
366 | i = BN_num_bits(order); | ||
367 | /* Need to truncate digest if it is too long: first truncate whole | ||
368 | * bytes. | ||
369 | */ | ||
370 | if (8 * dgst_len > i) | ||
371 | dgst_len = (i + 7)/8; | ||
372 | if (!BN_bin2bn(dgst, dgst_len, m)) { | ||
373 | ECDSAerr(ECDSA_F_ECDSA_DO_VERIFY, ERR_R_BN_LIB); | ||
374 | goto err; | ||
375 | } | ||
376 | /* If still too long truncate remaining bits with a shift */ | ||
377 | if ((8 * dgst_len > i) && !BN_rshift(m, m, 8 - (i & 0x7))) { | ||
378 | ECDSAerr(ECDSA_F_ECDSA_DO_VERIFY, ERR_R_BN_LIB); | ||
379 | goto err; | ||
380 | } | ||
381 | /* u1 = m * tmp mod order */ | ||
382 | if (!BN_mod_mul(u1, m, u2, order, ctx)) { | ||
383 | ECDSAerr(ECDSA_F_ECDSA_DO_VERIFY, ERR_R_BN_LIB); | ||
384 | goto err; | ||
385 | } | ||
386 | /* u2 = r * w mod q */ | ||
387 | if (!BN_mod_mul(u2, sig->r, u2, order, ctx)) { | ||
388 | ECDSAerr(ECDSA_F_ECDSA_DO_VERIFY, ERR_R_BN_LIB); | ||
389 | goto err; | ||
390 | } | ||
391 | |||
392 | if ((point = EC_POINT_new(group)) == NULL) { | ||
393 | ECDSAerr(ECDSA_F_ECDSA_DO_VERIFY, ERR_R_MALLOC_FAILURE); | ||
394 | goto err; | ||
395 | } | ||
396 | if (!EC_POINT_mul(group, point, u1, pub_key, u2, ctx)) { | ||
397 | ECDSAerr(ECDSA_F_ECDSA_DO_VERIFY, ERR_R_EC_LIB); | ||
398 | goto err; | ||
399 | } | ||
400 | if (EC_METHOD_get_field_type(EC_GROUP_method_of(group)) == | ||
401 | NID_X9_62_prime_field) { | ||
402 | if (!EC_POINT_get_affine_coordinates_GFp(group, | ||
403 | point, X, NULL, ctx)) { | ||
404 | ECDSAerr(ECDSA_F_ECDSA_DO_VERIFY, ERR_R_EC_LIB); | ||
405 | goto err; | ||
406 | } | ||
407 | } | ||
408 | #ifndef OPENSSL_NO_EC2M | ||
409 | else /* NID_X9_62_characteristic_two_field */ | ||
410 | { | ||
411 | if (!EC_POINT_get_affine_coordinates_GF2m(group, | ||
412 | point, X, NULL, ctx)) { | ||
413 | ECDSAerr(ECDSA_F_ECDSA_DO_VERIFY, ERR_R_EC_LIB); | ||
414 | goto err; | ||
415 | } | ||
416 | } | ||
417 | #endif | ||
418 | if (!BN_nnmod(u1, X, order, ctx)) { | ||
419 | ECDSAerr(ECDSA_F_ECDSA_DO_VERIFY, ERR_R_BN_LIB); | ||
420 | goto err; | ||
421 | } | ||
422 | /* if the signature is correct u1 is equal to sig->r */ | ||
423 | ret = (BN_ucmp(u1, sig->r) == 0); | ||
424 | |||
425 | err: | ||
426 | BN_CTX_end(ctx); | ||
427 | BN_CTX_free(ctx); | ||
428 | EC_POINT_free(point); | ||
429 | return ret; | ||
430 | } | ||
diff --git a/src/lib/libcrypto/ecdsa/ecs_sign.c b/src/lib/libcrypto/ecdsa/ecs_sign.c deleted file mode 100644 index 029a0cb562..0000000000 --- a/src/lib/libcrypto/ecdsa/ecs_sign.c +++ /dev/null | |||
@@ -1,111 +0,0 @@ | |||
1 | /* $OpenBSD: ecs_sign.c,v 1.6 2015/02/08 13:35:07 jsing Exp $ */ | ||
2 | /* ==================================================================== | ||
3 | * Copyright (c) 1998-2002 The OpenSSL Project. All rights reserved. | ||
4 | * | ||
5 | * Redistribution and use in source and binary forms, with or without | ||
6 | * modification, are permitted provided that the following conditions | ||
7 | * are met: | ||
8 | * | ||
9 | * 1. Redistributions of source code must retain the above copyright | ||
10 | * notice, this list of conditions and the following disclaimer. | ||
11 | * | ||
12 | * 2. Redistributions in binary form must reproduce the above copyright | ||
13 | * notice, this list of conditions and the following disclaimer in | ||
14 | * the documentation and/or other materials provided with the | ||
15 | * distribution. | ||
16 | * | ||
17 | * 3. All advertising materials mentioning features or use of this | ||
18 | * software must display the following acknowledgment: | ||
19 | * "This product includes software developed by the OpenSSL Project | ||
20 | * for use in the OpenSSL Toolkit. (http://www.OpenSSL.org/)" | ||
21 | * | ||
22 | * 4. The names "OpenSSL Toolkit" and "OpenSSL Project" must not be used to | ||
23 | * endorse or promote products derived from this software without | ||
24 | * prior written permission. For written permission, please contact | ||
25 | * openssl-core@OpenSSL.org. | ||
26 | * | ||
27 | * 5. Products derived from this software may not be called "OpenSSL" | ||
28 | * nor may "OpenSSL" appear in their names without prior written | ||
29 | * permission of the OpenSSL Project. | ||
30 | * | ||
31 | * 6. Redistributions of any form whatsoever must retain the following | ||
32 | * acknowledgment: | ||
33 | * "This product includes software developed by the OpenSSL Project | ||
34 | * for use in the OpenSSL Toolkit (http://www.OpenSSL.org/)" | ||
35 | * | ||
36 | * THIS SOFTWARE IS PROVIDED BY THE OpenSSL PROJECT ``AS IS'' AND ANY | ||
37 | * EXPRESSED OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE | ||
38 | * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR | ||
39 | * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE OpenSSL PROJECT OR | ||
40 | * ITS CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, | ||
41 | * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT | ||
42 | * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; | ||
43 | * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) | ||
44 | * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, | ||
45 | * STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) | ||
46 | * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED | ||
47 | * OF THE POSSIBILITY OF SUCH DAMAGE. | ||
48 | * ==================================================================== | ||
49 | * | ||
50 | * This product includes cryptographic software written by Eric Young | ||
51 | * (eay@cryptsoft.com). This product includes software written by Tim | ||
52 | * Hudson (tjh@cryptsoft.com). | ||
53 | * | ||
54 | */ | ||
55 | |||
56 | #include <openssl/opensslconf.h> | ||
57 | |||
58 | #include "ecs_locl.h" | ||
59 | #ifndef OPENSSL_NO_ENGINE | ||
60 | #include <openssl/engine.h> | ||
61 | #endif | ||
62 | |||
63 | ECDSA_SIG * | ||
64 | ECDSA_do_sign(const unsigned char *dgst, int dlen, EC_KEY *eckey) | ||
65 | { | ||
66 | return ECDSA_do_sign_ex(dgst, dlen, NULL, NULL, eckey); | ||
67 | } | ||
68 | |||
69 | ECDSA_SIG * | ||
70 | ECDSA_do_sign_ex(const unsigned char *dgst, int dlen, const BIGNUM *kinv, | ||
71 | const BIGNUM *rp, EC_KEY *eckey) | ||
72 | { | ||
73 | ECDSA_DATA *ecdsa = ecdsa_check(eckey); | ||
74 | |||
75 | if (ecdsa == NULL) | ||
76 | return NULL; | ||
77 | return ecdsa->meth->ecdsa_do_sign(dgst, dlen, kinv, rp, eckey); | ||
78 | } | ||
79 | |||
80 | int | ||
81 | ECDSA_sign(int type, const unsigned char *dgst, int dlen, unsigned char *sig, | ||
82 | unsigned int *siglen, EC_KEY *eckey) | ||
83 | { | ||
84 | return ECDSA_sign_ex(type, dgst, dlen, sig, siglen, NULL, NULL, eckey); | ||
85 | } | ||
86 | |||
87 | int | ||
88 | ECDSA_sign_ex(int type, const unsigned char *dgst, int dlen, unsigned char *sig, | ||
89 | unsigned int *siglen, const BIGNUM *kinv, const BIGNUM *r, EC_KEY *eckey) | ||
90 | { | ||
91 | ECDSA_SIG *s; | ||
92 | |||
93 | s = ECDSA_do_sign_ex(dgst, dlen, kinv, r, eckey); | ||
94 | if (s == NULL) { | ||
95 | *siglen = 0; | ||
96 | return 0; | ||
97 | } | ||
98 | *siglen = i2d_ECDSA_SIG(s, &sig); | ||
99 | ECDSA_SIG_free(s); | ||
100 | return 1; | ||
101 | } | ||
102 | |||
103 | int | ||
104 | ECDSA_sign_setup(EC_KEY *eckey, BN_CTX *ctx_in, BIGNUM **kinvp, BIGNUM **rp) | ||
105 | { | ||
106 | ECDSA_DATA *ecdsa = ecdsa_check(eckey); | ||
107 | |||
108 | if (ecdsa == NULL) | ||
109 | return 0; | ||
110 | return ecdsa->meth->ecdsa_sign_setup(eckey, ctx_in, kinvp, rp); | ||
111 | } | ||
diff --git a/src/lib/libcrypto/ecdsa/ecs_vrf.c b/src/lib/libcrypto/ecdsa/ecs_vrf.c deleted file mode 100644 index a4b627ace6..0000000000 --- a/src/lib/libcrypto/ecdsa/ecs_vrf.c +++ /dev/null | |||
@@ -1,116 +0,0 @@ | |||
1 | /* $OpenBSD: ecs_vrf.c,v 1.5 2015/02/08 13:35:07 jsing Exp $ */ | ||
2 | /* | ||
3 | * Written by Nils Larsch for the OpenSSL project | ||
4 | */ | ||
5 | /* ==================================================================== | ||
6 | * Copyright (c) 1998-2002 The OpenSSL Project. All rights reserved. | ||
7 | * | ||
8 | * Redistribution and use in source and binary forms, with or without | ||
9 | * modification, are permitted provided that the following conditions | ||
10 | * are met: | ||
11 | * | ||
12 | * 1. Redistributions of source code must retain the above copyright | ||
13 | * notice, this list of conditions and the following disclaimer. | ||
14 | * | ||
15 | * 2. Redistributions in binary form must reproduce the above copyright | ||
16 | * notice, this list of conditions and the following disclaimer in | ||
17 | * the documentation and/or other materials provided with the | ||
18 | * distribution. | ||
19 | * | ||
20 | * 3. All advertising materials mentioning features or use of this | ||
21 | * software must display the following acknowledgment: | ||
22 | * "This product includes software developed by the OpenSSL Project | ||
23 | * for use in the OpenSSL Toolkit. (http://www.OpenSSL.org/)" | ||
24 | * | ||
25 | * 4. The names "OpenSSL Toolkit" and "OpenSSL Project" must not be used to | ||
26 | * endorse or promote products derived from this software without | ||
27 | * prior written permission. For written permission, please contact | ||
28 | * openssl-core@OpenSSL.org. | ||
29 | * | ||
30 | * 5. Products derived from this software may not be called "OpenSSL" | ||
31 | * nor may "OpenSSL" appear in their names without prior written | ||
32 | * permission of the OpenSSL Project. | ||
33 | * | ||
34 | * 6. Redistributions of any form whatsoever must retain the following | ||
35 | * acknowledgment: | ||
36 | * "This product includes software developed by the OpenSSL Project | ||
37 | * for use in the OpenSSL Toolkit (http://www.OpenSSL.org/)" | ||
38 | * | ||
39 | * THIS SOFTWARE IS PROVIDED BY THE OpenSSL PROJECT ``AS IS'' AND ANY | ||
40 | * EXPRESSED OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE | ||
41 | * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR | ||
42 | * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE OpenSSL PROJECT OR | ||
43 | * ITS CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, | ||
44 | * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT | ||
45 | * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; | ||
46 | * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) | ||
47 | * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, | ||
48 | * STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) | ||
49 | * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED | ||
50 | * OF THE POSSIBILITY OF SUCH DAMAGE. | ||
51 | * ==================================================================== | ||
52 | * | ||
53 | * This product includes cryptographic software written by Eric Young | ||
54 | * (eay@cryptsoft.com). This product includes software written by Tim | ||
55 | * Hudson (tjh@cryptsoft.com). | ||
56 | * | ||
57 | */ | ||
58 | |||
59 | #include <string.h> | ||
60 | #include <openssl/opensslconf.h> | ||
61 | |||
62 | #include "ecs_locl.h" | ||
63 | #ifndef OPENSSL_NO_ENGINE | ||
64 | #include <openssl/engine.h> | ||
65 | #endif | ||
66 | |||
67 | /* returns | ||
68 | * 1: correct signature | ||
69 | * 0: incorrect signature | ||
70 | * -1: error | ||
71 | */ | ||
72 | int | ||
73 | ECDSA_do_verify(const unsigned char *dgst, int dgst_len, const ECDSA_SIG *sig, | ||
74 | EC_KEY *eckey) | ||
75 | { | ||
76 | ECDSA_DATA *ecdsa = ecdsa_check(eckey); | ||
77 | |||
78 | if (ecdsa == NULL) | ||
79 | return 0; | ||
80 | return ecdsa->meth->ecdsa_do_verify(dgst, dgst_len, sig, eckey); | ||
81 | } | ||
82 | |||
83 | /* returns | ||
84 | * 1: correct signature | ||
85 | * 0: incorrect signature | ||
86 | * -1: error | ||
87 | */ | ||
88 | int | ||
89 | ECDSA_verify(int type, const unsigned char *dgst, int dgst_len, | ||
90 | const unsigned char *sigbuf, int sig_len, EC_KEY *eckey) | ||
91 | { | ||
92 | ECDSA_SIG *s; | ||
93 | unsigned char *der = NULL; | ||
94 | const unsigned char *p = sigbuf; | ||
95 | int derlen = -1; | ||
96 | int ret = -1; | ||
97 | |||
98 | s = ECDSA_SIG_new(); | ||
99 | if (s == NULL) | ||
100 | return (ret); | ||
101 | if (d2i_ECDSA_SIG(&s, &p, sig_len) == NULL) | ||
102 | goto err; | ||
103 | /* Ensure signature uses DER and doesn't have trailing garbage */ | ||
104 | derlen = i2d_ECDSA_SIG(s, &der); | ||
105 | if (derlen != sig_len || memcmp(sigbuf, der, derlen)) | ||
106 | goto err; | ||
107 | ret = ECDSA_do_verify(dgst, dgst_len, s, eckey); | ||
108 | |||
109 | err: | ||
110 | if (derlen > 0) { | ||
111 | explicit_bzero(der, derlen); | ||
112 | free(der); | ||
113 | } | ||
114 | ECDSA_SIG_free(s); | ||
115 | return (ret); | ||
116 | } | ||