diff options
Diffstat (limited to 'src/lib/libcrypto/ec')
| -rw-r--r-- | src/lib/libcrypto/ec/ec2_mult.c | 4 | ||||
| -rw-r--r-- | src/lib/libcrypto/ec/ec2_oct.c | 407 | ||||
| -rw-r--r-- | src/lib/libcrypto/ec/ec_ameth.c | 1 | ||||
| -rw-r--r-- | src/lib/libcrypto/ec/ec_asn1.c | 24 | ||||
| -rw-r--r-- | src/lib/libcrypto/ec/ec_curve.c | 197 | ||||
| -rw-r--r-- | src/lib/libcrypto/ec/ec_key.c | 102 | ||||
| -rw-r--r-- | src/lib/libcrypto/ec/ec_oct.c | 199 | ||||
| -rw-r--r-- | src/lib/libcrypto/ec/ec_pmeth.c | 1 | ||||
| -rw-r--r-- | src/lib/libcrypto/ec/eck_prn.c | 3 | ||||
| -rw-r--r-- | src/lib/libcrypto/ec/ecp_nistp224.c | 1658 | ||||
| -rw-r--r-- | src/lib/libcrypto/ec/ecp_nistp256.c | 2171 | ||||
| -rw-r--r-- | src/lib/libcrypto/ec/ecp_nistp521.c | 2025 | ||||
| -rw-r--r-- | src/lib/libcrypto/ec/ecp_nistputil.c | 197 | ||||
| -rw-r--r-- | src/lib/libcrypto/ec/ecp_oct.c | 433 |
14 files changed, 7337 insertions, 85 deletions
diff --git a/src/lib/libcrypto/ec/ec2_mult.c b/src/lib/libcrypto/ec/ec2_mult.c index e12b9b284a..26f4a783fc 100644 --- a/src/lib/libcrypto/ec/ec2_mult.c +++ b/src/lib/libcrypto/ec/ec2_mult.c | |||
| @@ -71,6 +71,8 @@ | |||
| 71 | 71 | ||
| 72 | #include "ec_lcl.h" | 72 | #include "ec_lcl.h" |
| 73 | 73 | ||
| 74 | #ifndef OPENSSL_NO_EC2M | ||
| 75 | |||
| 74 | 76 | ||
| 75 | /* Compute the x-coordinate x/z for the point 2*(x/z) in Montgomery projective | 77 | /* Compute the x-coordinate x/z for the point 2*(x/z) in Montgomery projective |
| 76 | * coordinates. | 78 | * coordinates. |
| @@ -384,3 +386,5 @@ int ec_GF2m_have_precompute_mult(const EC_GROUP *group) | |||
| 384 | { | 386 | { |
| 385 | return ec_wNAF_have_precompute_mult(group); | 387 | return ec_wNAF_have_precompute_mult(group); |
| 386 | } | 388 | } |
| 389 | |||
| 390 | #endif | ||
diff --git a/src/lib/libcrypto/ec/ec2_oct.c b/src/lib/libcrypto/ec/ec2_oct.c new file mode 100644 index 0000000000..f1d75e5ddf --- /dev/null +++ b/src/lib/libcrypto/ec/ec2_oct.c | |||
| @@ -0,0 +1,407 @@ | |||
| 1 | /* crypto/ec/ec2_oct.c */ | ||
| 2 | /* ==================================================================== | ||
| 3 | * Copyright 2002 Sun Microsystems, Inc. ALL RIGHTS RESERVED. | ||
| 4 | * | ||
| 5 | * The Elliptic Curve Public-Key Crypto Library (ECC Code) included | ||
| 6 | * herein is developed by SUN MICROSYSTEMS, INC., and is contributed | ||
| 7 | * to the OpenSSL project. | ||
| 8 | * | ||
| 9 | * The ECC Code is licensed pursuant to the OpenSSL open source | ||
| 10 | * license provided below. | ||
| 11 | * | ||
| 12 | * The software is originally written by Sheueling Chang Shantz and | ||
| 13 | * Douglas Stebila of Sun Microsystems Laboratories. | ||
| 14 | * | ||
| 15 | */ | ||
| 16 | /* ==================================================================== | ||
| 17 | * Copyright (c) 1998-2005 The OpenSSL Project. All rights reserved. | ||
| 18 | * | ||
| 19 | * Redistribution and use in source and binary forms, with or without | ||
| 20 | * modification, are permitted provided that the following conditions | ||
| 21 | * are met: | ||
| 22 | * | ||
| 23 | * 1. Redistributions of source code must retain the above copyright | ||
| 24 | * notice, this list of conditions and the following disclaimer. | ||
| 25 | * | ||
| 26 | * 2. Redistributions in binary form must reproduce the above copyright | ||
| 27 | * notice, this list of conditions and the following disclaimer in | ||
| 28 | * the documentation and/or other materials provided with the | ||
| 29 | * distribution. | ||
| 30 | * | ||
| 31 | * 3. All advertising materials mentioning features or use of this | ||
| 32 | * software must display the following acknowledgment: | ||
| 33 | * "This product includes software developed by the OpenSSL Project | ||
| 34 | * for use in the OpenSSL Toolkit. (http://www.openssl.org/)" | ||
| 35 | * | ||
| 36 | * 4. The names "OpenSSL Toolkit" and "OpenSSL Project" must not be used to | ||
| 37 | * endorse or promote products derived from this software without | ||
| 38 | * prior written permission. For written permission, please contact | ||
| 39 | * openssl-core@openssl.org. | ||
| 40 | * | ||
| 41 | * 5. Products derived from this software may not be called "OpenSSL" | ||
| 42 | * nor may "OpenSSL" appear in their names without prior written | ||
| 43 | * permission of the OpenSSL Project. | ||
| 44 | * | ||
| 45 | * 6. Redistributions of any form whatsoever must retain the following | ||
| 46 | * acknowledgment: | ||
| 47 | * "This product includes software developed by the OpenSSL Project | ||
| 48 | * for use in the OpenSSL Toolkit (http://www.openssl.org/)" | ||
| 49 | * | ||
| 50 | * THIS SOFTWARE IS PROVIDED BY THE OpenSSL PROJECT ``AS IS'' AND ANY | ||
| 51 | * EXPRESSED OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE | ||
| 52 | * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR | ||
| 53 | * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE OpenSSL PROJECT OR | ||
| 54 | * ITS CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, | ||
| 55 | * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT | ||
| 56 | * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; | ||
| 57 | * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) | ||
| 58 | * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, | ||
| 59 | * STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) | ||
| 60 | * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED | ||
| 61 | * OF THE POSSIBILITY OF SUCH DAMAGE. | ||
| 62 | * ==================================================================== | ||
| 63 | * | ||
| 64 | * This product includes cryptographic software written by Eric Young | ||
| 65 | * (eay@cryptsoft.com). This product includes software written by Tim | ||
| 66 | * Hudson (tjh@cryptsoft.com). | ||
| 67 | * | ||
| 68 | */ | ||
| 69 | |||
| 70 | #include <openssl/err.h> | ||
| 71 | |||
| 72 | #include "ec_lcl.h" | ||
| 73 | |||
| 74 | #ifndef OPENSSL_NO_EC2M | ||
| 75 | |||
| 76 | /* Calculates and sets the affine coordinates of an EC_POINT from the given | ||
| 77 | * compressed coordinates. Uses algorithm 2.3.4 of SEC 1. | ||
| 78 | * Note that the simple implementation only uses affine coordinates. | ||
| 79 | * | ||
| 80 | * The method is from the following publication: | ||
| 81 | * | ||
| 82 | * Harper, Menezes, Vanstone: | ||
| 83 | * "Public-Key Cryptosystems with Very Small Key Lengths", | ||
| 84 | * EUROCRYPT '92, Springer-Verlag LNCS 658, | ||
| 85 | * published February 1993 | ||
| 86 | * | ||
| 87 | * US Patents 6,141,420 and 6,618,483 (Vanstone, Mullin, Agnew) describe | ||
| 88 | * the same method, but claim no priority date earlier than July 29, 1994 | ||
| 89 | * (and additionally fail to cite the EUROCRYPT '92 publication as prior art). | ||
| 90 | */ | ||
| 91 | int ec_GF2m_simple_set_compressed_coordinates(const EC_GROUP *group, EC_POINT *point, | ||
| 92 | const BIGNUM *x_, int y_bit, BN_CTX *ctx) | ||
| 93 | { | ||
| 94 | BN_CTX *new_ctx = NULL; | ||
| 95 | BIGNUM *tmp, *x, *y, *z; | ||
| 96 | int ret = 0, z0; | ||
| 97 | |||
| 98 | /* clear error queue */ | ||
| 99 | ERR_clear_error(); | ||
| 100 | |||
| 101 | if (ctx == NULL) | ||
| 102 | { | ||
| 103 | ctx = new_ctx = BN_CTX_new(); | ||
| 104 | if (ctx == NULL) | ||
| 105 | return 0; | ||
| 106 | } | ||
| 107 | |||
| 108 | y_bit = (y_bit != 0) ? 1 : 0; | ||
| 109 | |||
| 110 | BN_CTX_start(ctx); | ||
| 111 | tmp = BN_CTX_get(ctx); | ||
| 112 | x = BN_CTX_get(ctx); | ||
| 113 | y = BN_CTX_get(ctx); | ||
| 114 | z = BN_CTX_get(ctx); | ||
| 115 | if (z == NULL) goto err; | ||
| 116 | |||
| 117 | if (!BN_GF2m_mod_arr(x, x_, group->poly)) goto err; | ||
| 118 | if (BN_is_zero(x)) | ||
| 119 | { | ||
| 120 | if (!BN_GF2m_mod_sqrt_arr(y, &group->b, group->poly, ctx)) goto err; | ||
| 121 | } | ||
| 122 | else | ||
| 123 | { | ||
| 124 | if (!group->meth->field_sqr(group, tmp, x, ctx)) goto err; | ||
| 125 | if (!group->meth->field_div(group, tmp, &group->b, tmp, ctx)) goto err; | ||
| 126 | if (!BN_GF2m_add(tmp, &group->a, tmp)) goto err; | ||
| 127 | if (!BN_GF2m_add(tmp, x, tmp)) goto err; | ||
| 128 | if (!BN_GF2m_mod_solve_quad_arr(z, tmp, group->poly, ctx)) | ||
| 129 | { | ||
| 130 | unsigned long err = ERR_peek_last_error(); | ||
| 131 | |||
| 132 | if (ERR_GET_LIB(err) == ERR_LIB_BN && ERR_GET_REASON(err) == BN_R_NO_SOLUTION) | ||
| 133 | { | ||
| 134 | ERR_clear_error(); | ||
| 135 | ECerr(EC_F_EC_GF2M_SIMPLE_SET_COMPRESSED_COORDINATES, EC_R_INVALID_COMPRESSED_POINT); | ||
| 136 | } | ||
| 137 | else | ||
| 138 | ECerr(EC_F_EC_GF2M_SIMPLE_SET_COMPRESSED_COORDINATES, ERR_R_BN_LIB); | ||
| 139 | goto err; | ||
| 140 | } | ||
| 141 | z0 = (BN_is_odd(z)) ? 1 : 0; | ||
| 142 | if (!group->meth->field_mul(group, y, x, z, ctx)) goto err; | ||
| 143 | if (z0 != y_bit) | ||
| 144 | { | ||
| 145 | if (!BN_GF2m_add(y, y, x)) goto err; | ||
| 146 | } | ||
| 147 | } | ||
| 148 | |||
| 149 | if (!EC_POINT_set_affine_coordinates_GF2m(group, point, x, y, ctx)) goto err; | ||
| 150 | |||
| 151 | ret = 1; | ||
| 152 | |||
| 153 | err: | ||
| 154 | BN_CTX_end(ctx); | ||
| 155 | if (new_ctx != NULL) | ||
| 156 | BN_CTX_free(new_ctx); | ||
| 157 | return ret; | ||
| 158 | } | ||
| 159 | |||
| 160 | |||
| 161 | /* Converts an EC_POINT to an octet string. | ||
| 162 | * If buf is NULL, the encoded length will be returned. | ||
| 163 | * If the length len of buf is smaller than required an error will be returned. | ||
| 164 | */ | ||
| 165 | size_t ec_GF2m_simple_point2oct(const EC_GROUP *group, const EC_POINT *point, point_conversion_form_t form, | ||
| 166 | unsigned char *buf, size_t len, BN_CTX *ctx) | ||
| 167 | { | ||
| 168 | size_t ret; | ||
| 169 | BN_CTX *new_ctx = NULL; | ||
| 170 | int used_ctx = 0; | ||
| 171 | BIGNUM *x, *y, *yxi; | ||
| 172 | size_t field_len, i, skip; | ||
| 173 | |||
| 174 | if ((form != POINT_CONVERSION_COMPRESSED) | ||
| 175 | && (form != POINT_CONVERSION_UNCOMPRESSED) | ||
| 176 | && (form != POINT_CONVERSION_HYBRID)) | ||
| 177 | { | ||
| 178 | ECerr(EC_F_EC_GF2M_SIMPLE_POINT2OCT, EC_R_INVALID_FORM); | ||
| 179 | goto err; | ||
| 180 | } | ||
| 181 | |||
| 182 | if (EC_POINT_is_at_infinity(group, point)) | ||
| 183 | { | ||
| 184 | /* encodes to a single 0 octet */ | ||
| 185 | if (buf != NULL) | ||
| 186 | { | ||
| 187 | if (len < 1) | ||
| 188 | { | ||
| 189 | ECerr(EC_F_EC_GF2M_SIMPLE_POINT2OCT, EC_R_BUFFER_TOO_SMALL); | ||
| 190 | return 0; | ||
| 191 | } | ||
| 192 | buf[0] = 0; | ||
| 193 | } | ||
| 194 | return 1; | ||
| 195 | } | ||
| 196 | |||
| 197 | |||
| 198 | /* ret := required output buffer length */ | ||
| 199 | field_len = (EC_GROUP_get_degree(group) + 7) / 8; | ||
| 200 | ret = (form == POINT_CONVERSION_COMPRESSED) ? 1 + field_len : 1 + 2*field_len; | ||
| 201 | |||
| 202 | /* if 'buf' is NULL, just return required length */ | ||
| 203 | if (buf != NULL) | ||
| 204 | { | ||
| 205 | if (len < ret) | ||
| 206 | { | ||
| 207 | ECerr(EC_F_EC_GF2M_SIMPLE_POINT2OCT, EC_R_BUFFER_TOO_SMALL); | ||
| 208 | goto err; | ||
| 209 | } | ||
| 210 | |||
| 211 | if (ctx == NULL) | ||
| 212 | { | ||
| 213 | ctx = new_ctx = BN_CTX_new(); | ||
| 214 | if (ctx == NULL) | ||
| 215 | return 0; | ||
| 216 | } | ||
| 217 | |||
| 218 | BN_CTX_start(ctx); | ||
| 219 | used_ctx = 1; | ||
| 220 | x = BN_CTX_get(ctx); | ||
| 221 | y = BN_CTX_get(ctx); | ||
| 222 | yxi = BN_CTX_get(ctx); | ||
| 223 | if (yxi == NULL) goto err; | ||
| 224 | |||
| 225 | if (!EC_POINT_get_affine_coordinates_GF2m(group, point, x, y, ctx)) goto err; | ||
| 226 | |||
| 227 | buf[0] = form; | ||
| 228 | if ((form != POINT_CONVERSION_UNCOMPRESSED) && !BN_is_zero(x)) | ||
| 229 | { | ||
| 230 | if (!group->meth->field_div(group, yxi, y, x, ctx)) goto err; | ||
| 231 | if (BN_is_odd(yxi)) buf[0]++; | ||
| 232 | } | ||
| 233 | |||
| 234 | i = 1; | ||
| 235 | |||
| 236 | skip = field_len - BN_num_bytes(x); | ||
| 237 | if (skip > field_len) | ||
| 238 | { | ||
| 239 | ECerr(EC_F_EC_GF2M_SIMPLE_POINT2OCT, ERR_R_INTERNAL_ERROR); | ||
| 240 | goto err; | ||
| 241 | } | ||
| 242 | while (skip > 0) | ||
| 243 | { | ||
| 244 | buf[i++] = 0; | ||
| 245 | skip--; | ||
| 246 | } | ||
| 247 | skip = BN_bn2bin(x, buf + i); | ||
| 248 | i += skip; | ||
| 249 | if (i != 1 + field_len) | ||
| 250 | { | ||
| 251 | ECerr(EC_F_EC_GF2M_SIMPLE_POINT2OCT, ERR_R_INTERNAL_ERROR); | ||
| 252 | goto err; | ||
| 253 | } | ||
| 254 | |||
| 255 | if (form == POINT_CONVERSION_UNCOMPRESSED || form == POINT_CONVERSION_HYBRID) | ||
| 256 | { | ||
| 257 | skip = field_len - BN_num_bytes(y); | ||
| 258 | if (skip > field_len) | ||
| 259 | { | ||
| 260 | ECerr(EC_F_EC_GF2M_SIMPLE_POINT2OCT, ERR_R_INTERNAL_ERROR); | ||
| 261 | goto err; | ||
| 262 | } | ||
| 263 | while (skip > 0) | ||
| 264 | { | ||
| 265 | buf[i++] = 0; | ||
| 266 | skip--; | ||
| 267 | } | ||
| 268 | skip = BN_bn2bin(y, buf + i); | ||
| 269 | i += skip; | ||
| 270 | } | ||
| 271 | |||
| 272 | if (i != ret) | ||
| 273 | { | ||
| 274 | ECerr(EC_F_EC_GF2M_SIMPLE_POINT2OCT, ERR_R_INTERNAL_ERROR); | ||
| 275 | goto err; | ||
| 276 | } | ||
| 277 | } | ||
| 278 | |||
| 279 | if (used_ctx) | ||
| 280 | BN_CTX_end(ctx); | ||
| 281 | if (new_ctx != NULL) | ||
| 282 | BN_CTX_free(new_ctx); | ||
| 283 | return ret; | ||
| 284 | |||
| 285 | err: | ||
| 286 | if (used_ctx) | ||
| 287 | BN_CTX_end(ctx); | ||
| 288 | if (new_ctx != NULL) | ||
| 289 | BN_CTX_free(new_ctx); | ||
| 290 | return 0; | ||
| 291 | } | ||
| 292 | |||
| 293 | |||
| 294 | /* Converts an octet string representation to an EC_POINT. | ||
| 295 | * Note that the simple implementation only uses affine coordinates. | ||
| 296 | */ | ||
| 297 | int ec_GF2m_simple_oct2point(const EC_GROUP *group, EC_POINT *point, | ||
| 298 | const unsigned char *buf, size_t len, BN_CTX *ctx) | ||
| 299 | { | ||
| 300 | point_conversion_form_t form; | ||
| 301 | int y_bit; | ||
| 302 | BN_CTX *new_ctx = NULL; | ||
| 303 | BIGNUM *x, *y, *yxi; | ||
| 304 | size_t field_len, enc_len; | ||
| 305 | int ret = 0; | ||
| 306 | |||
| 307 | if (len == 0) | ||
| 308 | { | ||
| 309 | ECerr(EC_F_EC_GF2M_SIMPLE_OCT2POINT, EC_R_BUFFER_TOO_SMALL); | ||
| 310 | return 0; | ||
| 311 | } | ||
| 312 | form = buf[0]; | ||
| 313 | y_bit = form & 1; | ||
| 314 | form = form & ~1U; | ||
| 315 | if ((form != 0) && (form != POINT_CONVERSION_COMPRESSED) | ||
| 316 | && (form != POINT_CONVERSION_UNCOMPRESSED) | ||
| 317 | && (form != POINT_CONVERSION_HYBRID)) | ||
| 318 | { | ||
| 319 | ECerr(EC_F_EC_GF2M_SIMPLE_OCT2POINT, EC_R_INVALID_ENCODING); | ||
| 320 | return 0; | ||
| 321 | } | ||
| 322 | if ((form == 0 || form == POINT_CONVERSION_UNCOMPRESSED) && y_bit) | ||
| 323 | { | ||
| 324 | ECerr(EC_F_EC_GF2M_SIMPLE_OCT2POINT, EC_R_INVALID_ENCODING); | ||
| 325 | return 0; | ||
| 326 | } | ||
| 327 | |||
| 328 | if (form == 0) | ||
| 329 | { | ||
| 330 | if (len != 1) | ||
| 331 | { | ||
| 332 | ECerr(EC_F_EC_GF2M_SIMPLE_OCT2POINT, EC_R_INVALID_ENCODING); | ||
| 333 | return 0; | ||
| 334 | } | ||
| 335 | |||
| 336 | return EC_POINT_set_to_infinity(group, point); | ||
| 337 | } | ||
| 338 | |||
| 339 | field_len = (EC_GROUP_get_degree(group) + 7) / 8; | ||
| 340 | enc_len = (form == POINT_CONVERSION_COMPRESSED) ? 1 + field_len : 1 + 2*field_len; | ||
| 341 | |||
| 342 | if (len != enc_len) | ||
| 343 | { | ||
| 344 | ECerr(EC_F_EC_GF2M_SIMPLE_OCT2POINT, EC_R_INVALID_ENCODING); | ||
| 345 | return 0; | ||
| 346 | } | ||
| 347 | |||
| 348 | if (ctx == NULL) | ||
| 349 | { | ||
| 350 | ctx = new_ctx = BN_CTX_new(); | ||
| 351 | if (ctx == NULL) | ||
| 352 | return 0; | ||
| 353 | } | ||
| 354 | |||
| 355 | BN_CTX_start(ctx); | ||
| 356 | x = BN_CTX_get(ctx); | ||
| 357 | y = BN_CTX_get(ctx); | ||
| 358 | yxi = BN_CTX_get(ctx); | ||
| 359 | if (yxi == NULL) goto err; | ||
| 360 | |||
| 361 | if (!BN_bin2bn(buf + 1, field_len, x)) goto err; | ||
| 362 | if (BN_ucmp(x, &group->field) >= 0) | ||
| 363 | { | ||
| 364 | ECerr(EC_F_EC_GF2M_SIMPLE_OCT2POINT, EC_R_INVALID_ENCODING); | ||
| 365 | goto err; | ||
| 366 | } | ||
| 367 | |||
| 368 | if (form == POINT_CONVERSION_COMPRESSED) | ||
| 369 | { | ||
| 370 | if (!EC_POINT_set_compressed_coordinates_GF2m(group, point, x, y_bit, ctx)) goto err; | ||
| 371 | } | ||
| 372 | else | ||
| 373 | { | ||
| 374 | if (!BN_bin2bn(buf + 1 + field_len, field_len, y)) goto err; | ||
| 375 | if (BN_ucmp(y, &group->field) >= 0) | ||
| 376 | { | ||
| 377 | ECerr(EC_F_EC_GF2M_SIMPLE_OCT2POINT, EC_R_INVALID_ENCODING); | ||
| 378 | goto err; | ||
| 379 | } | ||
| 380 | if (form == POINT_CONVERSION_HYBRID) | ||
| 381 | { | ||
| 382 | if (!group->meth->field_div(group, yxi, y, x, ctx)) goto err; | ||
| 383 | if (y_bit != BN_is_odd(yxi)) | ||
| 384 | { | ||
| 385 | ECerr(EC_F_EC_GF2M_SIMPLE_OCT2POINT, EC_R_INVALID_ENCODING); | ||
| 386 | goto err; | ||
| 387 | } | ||
| 388 | } | ||
| 389 | |||
| 390 | if (!EC_POINT_set_affine_coordinates_GF2m(group, point, x, y, ctx)) goto err; | ||
| 391 | } | ||
| 392 | |||
| 393 | if (!EC_POINT_is_on_curve(group, point, ctx)) /* test required by X9.62 */ | ||
| 394 | { | ||
| 395 | ECerr(EC_F_EC_GF2M_SIMPLE_OCT2POINT, EC_R_POINT_IS_NOT_ON_CURVE); | ||
| 396 | goto err; | ||
| 397 | } | ||
| 398 | |||
| 399 | ret = 1; | ||
| 400 | |||
| 401 | err: | ||
| 402 | BN_CTX_end(ctx); | ||
| 403 | if (new_ctx != NULL) | ||
| 404 | BN_CTX_free(new_ctx); | ||
| 405 | return ret; | ||
| 406 | } | ||
| 407 | #endif | ||
diff --git a/src/lib/libcrypto/ec/ec_ameth.c b/src/lib/libcrypto/ec/ec_ameth.c index c00f7d746c..83909c1853 100644 --- a/src/lib/libcrypto/ec/ec_ameth.c +++ b/src/lib/libcrypto/ec/ec_ameth.c | |||
| @@ -651,6 +651,7 @@ const EVP_PKEY_ASN1_METHOD eckey_asn1_meth = | |||
| 651 | ec_copy_parameters, | 651 | ec_copy_parameters, |
| 652 | ec_cmp_parameters, | 652 | ec_cmp_parameters, |
| 653 | eckey_param_print, | 653 | eckey_param_print, |
| 654 | 0, | ||
| 654 | 655 | ||
| 655 | int_ec_free, | 656 | int_ec_free, |
| 656 | ec_pkey_ctrl, | 657 | ec_pkey_ctrl, |
diff --git a/src/lib/libcrypto/ec/ec_asn1.c b/src/lib/libcrypto/ec/ec_asn1.c index ae55539859..175eec5342 100644 --- a/src/lib/libcrypto/ec/ec_asn1.c +++ b/src/lib/libcrypto/ec/ec_asn1.c | |||
| @@ -83,7 +83,7 @@ int EC_GROUP_get_basis_type(const EC_GROUP *group) | |||
| 83 | /* everything else is currently not supported */ | 83 | /* everything else is currently not supported */ |
| 84 | return 0; | 84 | return 0; |
| 85 | } | 85 | } |
| 86 | 86 | #ifndef OPENSSL_NO_EC2M | |
| 87 | int EC_GROUP_get_trinomial_basis(const EC_GROUP *group, unsigned int *k) | 87 | int EC_GROUP_get_trinomial_basis(const EC_GROUP *group, unsigned int *k) |
| 88 | { | 88 | { |
| 89 | if (group == NULL) | 89 | if (group == NULL) |
| @@ -101,7 +101,6 @@ int EC_GROUP_get_trinomial_basis(const EC_GROUP *group, unsigned int *k) | |||
| 101 | 101 | ||
| 102 | return 1; | 102 | return 1; |
| 103 | } | 103 | } |
| 104 | |||
| 105 | int EC_GROUP_get_pentanomial_basis(const EC_GROUP *group, unsigned int *k1, | 104 | int EC_GROUP_get_pentanomial_basis(const EC_GROUP *group, unsigned int *k1, |
| 106 | unsigned int *k2, unsigned int *k3) | 105 | unsigned int *k2, unsigned int *k3) |
| 107 | { | 106 | { |
| @@ -124,7 +123,7 @@ int EC_GROUP_get_pentanomial_basis(const EC_GROUP *group, unsigned int *k1, | |||
| 124 | 123 | ||
| 125 | return 1; | 124 | return 1; |
| 126 | } | 125 | } |
| 127 | 126 | #endif | |
| 128 | 127 | ||
| 129 | 128 | ||
| 130 | /* some structures needed for the asn1 encoding */ | 129 | /* some structures needed for the asn1 encoding */ |
| @@ -340,6 +339,12 @@ static int ec_asn1_group2fieldid(const EC_GROUP *group, X9_62_FIELDID *field) | |||
| 340 | } | 339 | } |
| 341 | } | 340 | } |
| 342 | else /* nid == NID_X9_62_characteristic_two_field */ | 341 | else /* nid == NID_X9_62_characteristic_two_field */ |
| 342 | #ifdef OPENSSL_NO_EC2M | ||
| 343 | { | ||
| 344 | ECerr(EC_F_EC_ASN1_GROUP2FIELDID, EC_R_GF2M_NOT_SUPPORTED); | ||
| 345 | goto err; | ||
| 346 | } | ||
| 347 | #else | ||
| 343 | { | 348 | { |
| 344 | int field_type; | 349 | int field_type; |
| 345 | X9_62_CHARACTERISTIC_TWO *char_two; | 350 | X9_62_CHARACTERISTIC_TWO *char_two; |
| @@ -419,6 +424,7 @@ static int ec_asn1_group2fieldid(const EC_GROUP *group, X9_62_FIELDID *field) | |||
| 419 | } | 424 | } |
| 420 | } | 425 | } |
| 421 | } | 426 | } |
| 427 | #endif | ||
| 422 | 428 | ||
| 423 | ok = 1; | 429 | ok = 1; |
| 424 | 430 | ||
| @@ -456,6 +462,7 @@ static int ec_asn1_group2curve(const EC_GROUP *group, X9_62_CURVE *curve) | |||
| 456 | goto err; | 462 | goto err; |
| 457 | } | 463 | } |
| 458 | } | 464 | } |
| 465 | #ifndef OPENSSL_NO_EC2M | ||
| 459 | else /* nid == NID_X9_62_characteristic_two_field */ | 466 | else /* nid == NID_X9_62_characteristic_two_field */ |
| 460 | { | 467 | { |
| 461 | if (!EC_GROUP_get_curve_GF2m(group, NULL, tmp_1, tmp_2, NULL)) | 468 | if (!EC_GROUP_get_curve_GF2m(group, NULL, tmp_1, tmp_2, NULL)) |
| @@ -464,7 +471,7 @@ static int ec_asn1_group2curve(const EC_GROUP *group, X9_62_CURVE *curve) | |||
| 464 | goto err; | 471 | goto err; |
| 465 | } | 472 | } |
| 466 | } | 473 | } |
| 467 | 474 | #endif | |
| 468 | len_1 = (size_t)BN_num_bytes(tmp_1); | 475 | len_1 = (size_t)BN_num_bytes(tmp_1); |
| 469 | len_2 = (size_t)BN_num_bytes(tmp_2); | 476 | len_2 = (size_t)BN_num_bytes(tmp_2); |
| 470 | 477 | ||
| @@ -775,8 +782,13 @@ static EC_GROUP *ec_asn1_parameters2group(const ECPARAMETERS *params) | |||
| 775 | 782 | ||
| 776 | /* get the field parameters */ | 783 | /* get the field parameters */ |
| 777 | tmp = OBJ_obj2nid(params->fieldID->fieldType); | 784 | tmp = OBJ_obj2nid(params->fieldID->fieldType); |
| 778 | |||
| 779 | if (tmp == NID_X9_62_characteristic_two_field) | 785 | if (tmp == NID_X9_62_characteristic_two_field) |
| 786 | #ifdef OPENSSL_NO_EC2M | ||
| 787 | { | ||
| 788 | ECerr(EC_F_EC_ASN1_PARAMETERS2GROUP, EC_R_GF2M_NOT_SUPPORTED); | ||
| 789 | goto err; | ||
| 790 | } | ||
| 791 | #else | ||
| 780 | { | 792 | { |
| 781 | X9_62_CHARACTERISTIC_TWO *char_two; | 793 | X9_62_CHARACTERISTIC_TWO *char_two; |
| 782 | 794 | ||
| @@ -862,6 +874,7 @@ static EC_GROUP *ec_asn1_parameters2group(const ECPARAMETERS *params) | |||
| 862 | /* create the EC_GROUP structure */ | 874 | /* create the EC_GROUP structure */ |
| 863 | ret = EC_GROUP_new_curve_GF2m(p, a, b, NULL); | 875 | ret = EC_GROUP_new_curve_GF2m(p, a, b, NULL); |
| 864 | } | 876 | } |
| 877 | #endif | ||
| 865 | else if (tmp == NID_X9_62_prime_field) | 878 | else if (tmp == NID_X9_62_prime_field) |
| 866 | { | 879 | { |
| 867 | /* we have a curve over a prime field */ | 880 | /* we have a curve over a prime field */ |
| @@ -1065,6 +1078,7 @@ EC_GROUP *d2i_ECPKParameters(EC_GROUP **a, const unsigned char **in, long len) | |||
| 1065 | if ((group = ec_asn1_pkparameters2group(params)) == NULL) | 1078 | if ((group = ec_asn1_pkparameters2group(params)) == NULL) |
| 1066 | { | 1079 | { |
| 1067 | ECerr(EC_F_D2I_ECPKPARAMETERS, EC_R_PKPARAMETERS2GROUP_FAILURE); | 1080 | ECerr(EC_F_D2I_ECPKPARAMETERS, EC_R_PKPARAMETERS2GROUP_FAILURE); |
| 1081 | ECPKPARAMETERS_free(params); | ||
| 1068 | return NULL; | 1082 | return NULL; |
| 1069 | } | 1083 | } |
| 1070 | 1084 | ||
diff --git a/src/lib/libcrypto/ec/ec_curve.c b/src/lib/libcrypto/ec/ec_curve.c index 23274e4031..c72fb2697c 100644 --- a/src/lib/libcrypto/ec/ec_curve.c +++ b/src/lib/libcrypto/ec/ec_curve.c | |||
| @@ -3,7 +3,7 @@ | |||
| 3 | * Written by Nils Larsch for the OpenSSL project. | 3 | * Written by Nils Larsch for the OpenSSL project. |
| 4 | */ | 4 | */ |
| 5 | /* ==================================================================== | 5 | /* ==================================================================== |
| 6 | * Copyright (c) 1998-2004 The OpenSSL Project. All rights reserved. | 6 | * Copyright (c) 1998-2010 The OpenSSL Project. All rights reserved. |
| 7 | * | 7 | * |
| 8 | * Redistribution and use in source and binary forms, with or without | 8 | * Redistribution and use in source and binary forms, with or without |
| 9 | * modification, are permitted provided that the following conditions | 9 | * modification, are permitted provided that the following conditions |
| @@ -72,6 +72,7 @@ | |||
| 72 | #include "ec_lcl.h" | 72 | #include "ec_lcl.h" |
| 73 | #include <openssl/err.h> | 73 | #include <openssl/err.h> |
| 74 | #include <openssl/obj_mac.h> | 74 | #include <openssl/obj_mac.h> |
| 75 | #include <openssl/opensslconf.h> | ||
| 75 | 76 | ||
| 76 | typedef struct { | 77 | typedef struct { |
| 77 | int field_type, /* either NID_X9_62_prime_field or | 78 | int field_type, /* either NID_X9_62_prime_field or |
| @@ -703,6 +704,8 @@ static const struct { EC_CURVE_DATA h; unsigned char data[0+28*6]; } | |||
| 703 | 0x13,0xDD,0x29,0x45,0x5C,0x5C,0x2A,0x3D } | 704 | 0x13,0xDD,0x29,0x45,0x5C,0x5C,0x2A,0x3D } |
| 704 | }; | 705 | }; |
| 705 | 706 | ||
| 707 | #ifndef OPENSSL_NO_EC2M | ||
| 708 | |||
| 706 | /* characteristic two curves */ | 709 | /* characteristic two curves */ |
| 707 | static const struct { EC_CURVE_DATA h; unsigned char data[20+15*6]; } | 710 | static const struct { EC_CURVE_DATA h; unsigned char data[20+15*6]; } |
| 708 | _EC_SECG_CHAR2_113R1 = { | 711 | _EC_SECG_CHAR2_113R1 = { |
| @@ -1300,7 +1303,7 @@ static const struct { EC_CURVE_DATA h; unsigned char data[20+21*6]; } | |||
| 1300 | { 0x53,0x81,0x4C,0x05,0x0D,0x44,0xD6,0x96,0xE6,0x76, /* seed */ | 1303 | { 0x53,0x81,0x4C,0x05,0x0D,0x44,0xD6,0x96,0xE6,0x76, /* seed */ |
| 1301 | 0x87,0x56,0x15,0x17,0x58,0x0C,0xA4,0xE2,0x9F,0xFD, | 1304 | 0x87,0x56,0x15,0x17,0x58,0x0C,0xA4,0xE2,0x9F,0xFD, |
| 1302 | 1305 | ||
| 1303 | 0x08,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00, /* p */ | 1306 | 0x08,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00, /* p */ |
| 1304 | 0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x01, | 1307 | 0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x01, |
| 1305 | 0x07, | 1308 | 0x07, |
| 1306 | 0x01,0x08,0xB3,0x9E,0x77,0xC4,0xB1,0x08,0xBE,0xD9, /* a */ | 1309 | 0x01,0x08,0xB3,0x9E,0x77,0xC4,0xB1,0x08,0xBE,0xD9, /* a */ |
| @@ -1817,103 +1820,128 @@ static const struct { EC_CURVE_DATA h; unsigned char data[0+24*6]; } | |||
| 1817 | 0xBA,0xFC,0xA7,0x5E } | 1820 | 0xBA,0xFC,0xA7,0x5E } |
| 1818 | }; | 1821 | }; |
| 1819 | 1822 | ||
| 1823 | #endif | ||
| 1824 | |||
| 1820 | typedef struct _ec_list_element_st { | 1825 | typedef struct _ec_list_element_st { |
| 1821 | int nid; | 1826 | int nid; |
| 1822 | const EC_CURVE_DATA *data; | 1827 | const EC_CURVE_DATA *data; |
| 1828 | const EC_METHOD *(*meth)(void); | ||
| 1823 | const char *comment; | 1829 | const char *comment; |
| 1824 | } ec_list_element; | 1830 | } ec_list_element; |
| 1825 | 1831 | ||
| 1826 | static const ec_list_element curve_list[] = { | 1832 | static const ec_list_element curve_list[] = { |
| 1827 | /* prime field curves */ | 1833 | /* prime field curves */ |
| 1828 | /* secg curves */ | 1834 | /* secg curves */ |
| 1829 | { NID_secp112r1, &_EC_SECG_PRIME_112R1.h, "SECG/WTLS curve over a 112 bit prime field"}, | 1835 | { NID_secp112r1, &_EC_SECG_PRIME_112R1.h, 0, "SECG/WTLS curve over a 112 bit prime field" }, |
| 1830 | { NID_secp112r2, &_EC_SECG_PRIME_112R2.h, "SECG curve over a 112 bit prime field"}, | 1836 | { NID_secp112r2, &_EC_SECG_PRIME_112R2.h, 0, "SECG curve over a 112 bit prime field" }, |
| 1831 | { NID_secp128r1, &_EC_SECG_PRIME_128R1.h, "SECG curve over a 128 bit prime field"}, | 1837 | { NID_secp128r1, &_EC_SECG_PRIME_128R1.h, 0, "SECG curve over a 128 bit prime field" }, |
| 1832 | { NID_secp128r2, &_EC_SECG_PRIME_128R2.h, "SECG curve over a 128 bit prime field"}, | 1838 | { NID_secp128r2, &_EC_SECG_PRIME_128R2.h, 0, "SECG curve over a 128 bit prime field" }, |
| 1833 | { NID_secp160k1, &_EC_SECG_PRIME_160K1.h, "SECG curve over a 160 bit prime field"}, | 1839 | { NID_secp160k1, &_EC_SECG_PRIME_160K1.h, 0, "SECG curve over a 160 bit prime field" }, |
| 1834 | { NID_secp160r1, &_EC_SECG_PRIME_160R1.h, "SECG curve over a 160 bit prime field"}, | 1840 | { NID_secp160r1, &_EC_SECG_PRIME_160R1.h, 0, "SECG curve over a 160 bit prime field" }, |
| 1835 | { NID_secp160r2, &_EC_SECG_PRIME_160R2.h, "SECG/WTLS curve over a 160 bit prime field"}, | 1841 | { NID_secp160r2, &_EC_SECG_PRIME_160R2.h, 0, "SECG/WTLS curve over a 160 bit prime field" }, |
| 1836 | /* SECG secp192r1 is the same as X9.62 prime192v1 and hence omitted */ | 1842 | /* SECG secp192r1 is the same as X9.62 prime192v1 and hence omitted */ |
| 1837 | { NID_secp192k1, &_EC_SECG_PRIME_192K1.h, "SECG curve over a 192 bit prime field"}, | 1843 | { NID_secp192k1, &_EC_SECG_PRIME_192K1.h, 0, "SECG curve over a 192 bit prime field" }, |
| 1838 | { NID_secp224k1, &_EC_SECG_PRIME_224K1.h, "SECG curve over a 224 bit prime field"}, | 1844 | { NID_secp224k1, &_EC_SECG_PRIME_224K1.h, 0, "SECG curve over a 224 bit prime field" }, |
| 1839 | { NID_secp224r1, &_EC_NIST_PRIME_224.h, "NIST/SECG curve over a 224 bit prime field"}, | 1845 | #ifndef OPENSSL_NO_EC_NISTP_64_GCC_128 |
| 1840 | { NID_secp256k1, &_EC_SECG_PRIME_256K1.h, "SECG curve over a 256 bit prime field"}, | 1846 | { NID_secp224r1, &_EC_NIST_PRIME_224.h, EC_GFp_nistp224_method, "NIST/SECG curve over a 224 bit prime field" }, |
| 1847 | #else | ||
| 1848 | { NID_secp224r1, &_EC_NIST_PRIME_224.h, 0, "NIST/SECG curve over a 224 bit prime field" }, | ||
| 1849 | #endif | ||
| 1850 | { NID_secp256k1, &_EC_SECG_PRIME_256K1.h, 0, "SECG curve over a 256 bit prime field" }, | ||
| 1841 | /* SECG secp256r1 is the same as X9.62 prime256v1 and hence omitted */ | 1851 | /* SECG secp256r1 is the same as X9.62 prime256v1 and hence omitted */ |
| 1842 | { NID_secp384r1, &_EC_NIST_PRIME_384.h, "NIST/SECG curve over a 384 bit prime field"}, | 1852 | { NID_secp384r1, &_EC_NIST_PRIME_384.h, 0, "NIST/SECG curve over a 384 bit prime field" }, |
| 1843 | { NID_secp521r1, &_EC_NIST_PRIME_521.h, "NIST/SECG curve over a 521 bit prime field"}, | 1853 | #ifndef OPENSSL_NO_EC_NISTP_64_GCC_128 |
| 1854 | { NID_secp521r1, &_EC_NIST_PRIME_521.h, EC_GFp_nistp521_method, "NIST/SECG curve over a 521 bit prime field" }, | ||
| 1855 | #else | ||
| 1856 | { NID_secp521r1, &_EC_NIST_PRIME_521.h, 0, "NIST/SECG curve over a 521 bit prime field" }, | ||
| 1857 | #endif | ||
| 1844 | /* X9.62 curves */ | 1858 | /* X9.62 curves */ |
| 1845 | { NID_X9_62_prime192v1, &_EC_NIST_PRIME_192.h, "NIST/X9.62/SECG curve over a 192 bit prime field"}, | 1859 | { NID_X9_62_prime192v1, &_EC_NIST_PRIME_192.h, 0, "NIST/X9.62/SECG curve over a 192 bit prime field" }, |
| 1846 | { NID_X9_62_prime192v2, &_EC_X9_62_PRIME_192V2.h, "X9.62 curve over a 192 bit prime field"}, | 1860 | { NID_X9_62_prime192v2, &_EC_X9_62_PRIME_192V2.h, 0, "X9.62 curve over a 192 bit prime field" }, |
| 1847 | { NID_X9_62_prime192v3, &_EC_X9_62_PRIME_192V3.h, "X9.62 curve over a 192 bit prime field"}, | 1861 | { NID_X9_62_prime192v3, &_EC_X9_62_PRIME_192V3.h, 0, "X9.62 curve over a 192 bit prime field" }, |
| 1848 | { NID_X9_62_prime239v1, &_EC_X9_62_PRIME_239V1.h, "X9.62 curve over a 239 bit prime field"}, | 1862 | { NID_X9_62_prime239v1, &_EC_X9_62_PRIME_239V1.h, 0, "X9.62 curve over a 239 bit prime field" }, |
| 1849 | { NID_X9_62_prime239v2, &_EC_X9_62_PRIME_239V2.h, "X9.62 curve over a 239 bit prime field"}, | 1863 | { NID_X9_62_prime239v2, &_EC_X9_62_PRIME_239V2.h, 0, "X9.62 curve over a 239 bit prime field" }, |
| 1850 | { NID_X9_62_prime239v3, &_EC_X9_62_PRIME_239V3.h, "X9.62 curve over a 239 bit prime field"}, | 1864 | { NID_X9_62_prime239v3, &_EC_X9_62_PRIME_239V3.h, 0, "X9.62 curve over a 239 bit prime field" }, |
| 1851 | { NID_X9_62_prime256v1, &_EC_X9_62_PRIME_256V1.h, "X9.62/SECG curve over a 256 bit prime field"}, | 1865 | #ifndef OPENSSL_NO_EC_NISTP_64_GCC_128 |
| 1866 | { NID_X9_62_prime256v1, &_EC_X9_62_PRIME_256V1.h, EC_GFp_nistp256_method, "X9.62/SECG curve over a 256 bit prime field" }, | ||
| 1867 | #else | ||
| 1868 | { NID_X9_62_prime256v1, &_EC_X9_62_PRIME_256V1.h, 0, "X9.62/SECG curve over a 256 bit prime field" }, | ||
| 1869 | #endif | ||
| 1870 | #ifndef OPENSSL_NO_EC2M | ||
| 1852 | /* characteristic two field curves */ | 1871 | /* characteristic two field curves */ |
| 1853 | /* NIST/SECG curves */ | 1872 | /* NIST/SECG curves */ |
| 1854 | { NID_sect113r1, &_EC_SECG_CHAR2_113R1.h, "SECG curve over a 113 bit binary field"}, | 1873 | { NID_sect113r1, &_EC_SECG_CHAR2_113R1.h, 0, "SECG curve over a 113 bit binary field" }, |
| 1855 | { NID_sect113r2, &_EC_SECG_CHAR2_113R2.h, "SECG curve over a 113 bit binary field"}, | 1874 | { NID_sect113r2, &_EC_SECG_CHAR2_113R2.h, 0, "SECG curve over a 113 bit binary field" }, |
| 1856 | { NID_sect131r1, &_EC_SECG_CHAR2_131R1.h, "SECG/WTLS curve over a 131 bit binary field"}, | 1875 | { NID_sect131r1, &_EC_SECG_CHAR2_131R1.h, 0, "SECG/WTLS curve over a 131 bit binary field" }, |
| 1857 | { NID_sect131r2, &_EC_SECG_CHAR2_131R2.h, "SECG curve over a 131 bit binary field"}, | 1876 | { NID_sect131r2, &_EC_SECG_CHAR2_131R2.h, 0, "SECG curve over a 131 bit binary field" }, |
| 1858 | { NID_sect163k1, &_EC_NIST_CHAR2_163K.h, "NIST/SECG/WTLS curve over a 163 bit binary field" }, | 1877 | { NID_sect163k1, &_EC_NIST_CHAR2_163K.h, 0, "NIST/SECG/WTLS curve over a 163 bit binary field" }, |
| 1859 | { NID_sect163r1, &_EC_SECG_CHAR2_163R1.h, "SECG curve over a 163 bit binary field"}, | 1878 | { NID_sect163r1, &_EC_SECG_CHAR2_163R1.h, 0, "SECG curve over a 163 bit binary field" }, |
| 1860 | { NID_sect163r2, &_EC_NIST_CHAR2_163B.h, "NIST/SECG curve over a 163 bit binary field" }, | 1879 | { NID_sect163r2, &_EC_NIST_CHAR2_163B.h, 0, "NIST/SECG curve over a 163 bit binary field" }, |
| 1861 | { NID_sect193r1, &_EC_SECG_CHAR2_193R1.h, "SECG curve over a 193 bit binary field"}, | 1880 | { NID_sect193r1, &_EC_SECG_CHAR2_193R1.h, 0, "SECG curve over a 193 bit binary field" }, |
| 1862 | { NID_sect193r2, &_EC_SECG_CHAR2_193R2.h, "SECG curve over a 193 bit binary field"}, | 1881 | { NID_sect193r2, &_EC_SECG_CHAR2_193R2.h, 0, "SECG curve over a 193 bit binary field" }, |
| 1863 | { NID_sect233k1, &_EC_NIST_CHAR2_233K.h, "NIST/SECG/WTLS curve over a 233 bit binary field" }, | 1882 | { NID_sect233k1, &_EC_NIST_CHAR2_233K.h, 0, "NIST/SECG/WTLS curve over a 233 bit binary field" }, |
| 1864 | { NID_sect233r1, &_EC_NIST_CHAR2_233B.h, "NIST/SECG/WTLS curve over a 233 bit binary field" }, | 1883 | { NID_sect233r1, &_EC_NIST_CHAR2_233B.h, 0, "NIST/SECG/WTLS curve over a 233 bit binary field" }, |
| 1865 | { NID_sect239k1, &_EC_SECG_CHAR2_239K1.h, "SECG curve over a 239 bit binary field"}, | 1884 | { NID_sect239k1, &_EC_SECG_CHAR2_239K1.h, 0, "SECG curve over a 239 bit binary field" }, |
| 1866 | { NID_sect283k1, &_EC_NIST_CHAR2_283K.h, "NIST/SECG curve over a 283 bit binary field" }, | 1885 | { NID_sect283k1, &_EC_NIST_CHAR2_283K.h, 0, "NIST/SECG curve over a 283 bit binary field" }, |
| 1867 | { NID_sect283r1, &_EC_NIST_CHAR2_283B.h, "NIST/SECG curve over a 283 bit binary field" }, | 1886 | { NID_sect283r1, &_EC_NIST_CHAR2_283B.h, 0, "NIST/SECG curve over a 283 bit binary field" }, |
| 1868 | { NID_sect409k1, &_EC_NIST_CHAR2_409K.h, "NIST/SECG curve over a 409 bit binary field" }, | 1887 | { NID_sect409k1, &_EC_NIST_CHAR2_409K.h, 0, "NIST/SECG curve over a 409 bit binary field" }, |
| 1869 | { NID_sect409r1, &_EC_NIST_CHAR2_409B.h, "NIST/SECG curve over a 409 bit binary field" }, | 1888 | { NID_sect409r1, &_EC_NIST_CHAR2_409B.h, 0, "NIST/SECG curve over a 409 bit binary field" }, |
| 1870 | { NID_sect571k1, &_EC_NIST_CHAR2_571K.h, "NIST/SECG curve over a 571 bit binary field" }, | 1889 | { NID_sect571k1, &_EC_NIST_CHAR2_571K.h, 0, "NIST/SECG curve over a 571 bit binary field" }, |
| 1871 | { NID_sect571r1, &_EC_NIST_CHAR2_571B.h, "NIST/SECG curve over a 571 bit binary field" }, | 1890 | { NID_sect571r1, &_EC_NIST_CHAR2_571B.h, 0, "NIST/SECG curve over a 571 bit binary field" }, |
| 1872 | /* X9.62 curves */ | 1891 | /* X9.62 curves */ |
| 1873 | { NID_X9_62_c2pnb163v1, &_EC_X9_62_CHAR2_163V1.h, "X9.62 curve over a 163 bit binary field"}, | 1892 | { NID_X9_62_c2pnb163v1, &_EC_X9_62_CHAR2_163V1.h, 0, "X9.62 curve over a 163 bit binary field" }, |
| 1874 | { NID_X9_62_c2pnb163v2, &_EC_X9_62_CHAR2_163V2.h, "X9.62 curve over a 163 bit binary field"}, | 1893 | { NID_X9_62_c2pnb163v2, &_EC_X9_62_CHAR2_163V2.h, 0, "X9.62 curve over a 163 bit binary field" }, |
| 1875 | { NID_X9_62_c2pnb163v3, &_EC_X9_62_CHAR2_163V3.h, "X9.62 curve over a 163 bit binary field"}, | 1894 | { NID_X9_62_c2pnb163v3, &_EC_X9_62_CHAR2_163V3.h, 0, "X9.62 curve over a 163 bit binary field" }, |
| 1876 | { NID_X9_62_c2pnb176v1, &_EC_X9_62_CHAR2_176V1.h, "X9.62 curve over a 176 bit binary field"}, | 1895 | { NID_X9_62_c2pnb176v1, &_EC_X9_62_CHAR2_176V1.h, 0, "X9.62 curve over a 176 bit binary field" }, |
| 1877 | { NID_X9_62_c2tnb191v1, &_EC_X9_62_CHAR2_191V1.h, "X9.62 curve over a 191 bit binary field"}, | 1896 | { NID_X9_62_c2tnb191v1, &_EC_X9_62_CHAR2_191V1.h, 0, "X9.62 curve over a 191 bit binary field" }, |
| 1878 | { NID_X9_62_c2tnb191v2, &_EC_X9_62_CHAR2_191V2.h, "X9.62 curve over a 191 bit binary field"}, | 1897 | { NID_X9_62_c2tnb191v2, &_EC_X9_62_CHAR2_191V2.h, 0, "X9.62 curve over a 191 bit binary field" }, |
| 1879 | { NID_X9_62_c2tnb191v3, &_EC_X9_62_CHAR2_191V3.h, "X9.62 curve over a 191 bit binary field"}, | 1898 | { NID_X9_62_c2tnb191v3, &_EC_X9_62_CHAR2_191V3.h, 0, "X9.62 curve over a 191 bit binary field" }, |
| 1880 | { NID_X9_62_c2pnb208w1, &_EC_X9_62_CHAR2_208W1.h, "X9.62 curve over a 208 bit binary field"}, | 1899 | { NID_X9_62_c2pnb208w1, &_EC_X9_62_CHAR2_208W1.h, 0, "X9.62 curve over a 208 bit binary field" }, |
| 1881 | { NID_X9_62_c2tnb239v1, &_EC_X9_62_CHAR2_239V1.h, "X9.62 curve over a 239 bit binary field"}, | 1900 | { NID_X9_62_c2tnb239v1, &_EC_X9_62_CHAR2_239V1.h, 0, "X9.62 curve over a 239 bit binary field" }, |
| 1882 | { NID_X9_62_c2tnb239v2, &_EC_X9_62_CHAR2_239V2.h, "X9.62 curve over a 239 bit binary field"}, | 1901 | { NID_X9_62_c2tnb239v2, &_EC_X9_62_CHAR2_239V2.h, 0, "X9.62 curve over a 239 bit binary field" }, |
| 1883 | { NID_X9_62_c2tnb239v3, &_EC_X9_62_CHAR2_239V3.h, "X9.62 curve over a 239 bit binary field"}, | 1902 | { NID_X9_62_c2tnb239v3, &_EC_X9_62_CHAR2_239V3.h, 0, "X9.62 curve over a 239 bit binary field" }, |
| 1884 | { NID_X9_62_c2pnb272w1, &_EC_X9_62_CHAR2_272W1.h, "X9.62 curve over a 272 bit binary field"}, | 1903 | { NID_X9_62_c2pnb272w1, &_EC_X9_62_CHAR2_272W1.h, 0, "X9.62 curve over a 272 bit binary field" }, |
| 1885 | { NID_X9_62_c2pnb304w1, &_EC_X9_62_CHAR2_304W1.h, "X9.62 curve over a 304 bit binary field"}, | 1904 | { NID_X9_62_c2pnb304w1, &_EC_X9_62_CHAR2_304W1.h, 0, "X9.62 curve over a 304 bit binary field" }, |
| 1886 | { NID_X9_62_c2tnb359v1, &_EC_X9_62_CHAR2_359V1.h, "X9.62 curve over a 359 bit binary field"}, | 1905 | { NID_X9_62_c2tnb359v1, &_EC_X9_62_CHAR2_359V1.h, 0, "X9.62 curve over a 359 bit binary field" }, |
| 1887 | { NID_X9_62_c2pnb368w1, &_EC_X9_62_CHAR2_368W1.h, "X9.62 curve over a 368 bit binary field"}, | 1906 | { NID_X9_62_c2pnb368w1, &_EC_X9_62_CHAR2_368W1.h, 0, "X9.62 curve over a 368 bit binary field" }, |
| 1888 | { NID_X9_62_c2tnb431r1, &_EC_X9_62_CHAR2_431R1.h, "X9.62 curve over a 431 bit binary field"}, | 1907 | { NID_X9_62_c2tnb431r1, &_EC_X9_62_CHAR2_431R1.h, 0, "X9.62 curve over a 431 bit binary field" }, |
| 1889 | /* the WAP/WTLS curves | 1908 | /* the WAP/WTLS curves |
| 1890 | * [unlike SECG, spec has its own OIDs for curves from X9.62] */ | 1909 | * [unlike SECG, spec has its own OIDs for curves from X9.62] */ |
| 1891 | { NID_wap_wsg_idm_ecid_wtls1, &_EC_WTLS_1.h, "WTLS curve over a 113 bit binary field"}, | 1910 | { NID_wap_wsg_idm_ecid_wtls1, &_EC_WTLS_1.h, 0, "WTLS curve over a 113 bit binary field" }, |
| 1892 | { NID_wap_wsg_idm_ecid_wtls3, &_EC_NIST_CHAR2_163K.h, "NIST/SECG/WTLS curve over a 163 bit binary field"}, | 1911 | { NID_wap_wsg_idm_ecid_wtls3, &_EC_NIST_CHAR2_163K.h, 0, "NIST/SECG/WTLS curve over a 163 bit binary field" }, |
| 1893 | { NID_wap_wsg_idm_ecid_wtls4, &_EC_SECG_CHAR2_113R1.h, "SECG curve over a 113 bit binary field"}, | 1912 | { NID_wap_wsg_idm_ecid_wtls4, &_EC_SECG_CHAR2_113R1.h, 0, "SECG curve over a 113 bit binary field" }, |
| 1894 | { NID_wap_wsg_idm_ecid_wtls5, &_EC_X9_62_CHAR2_163V1.h, "X9.62 curve over a 163 bit binary field"}, | 1913 | { NID_wap_wsg_idm_ecid_wtls5, &_EC_X9_62_CHAR2_163V1.h, 0, "X9.62 curve over a 163 bit binary field" }, |
| 1895 | { NID_wap_wsg_idm_ecid_wtls6, &_EC_SECG_PRIME_112R1.h, "SECG/WTLS curve over a 112 bit prime field"}, | 1914 | #endif |
| 1896 | { NID_wap_wsg_idm_ecid_wtls7, &_EC_SECG_PRIME_160R2.h, "SECG/WTLS curve over a 160 bit prime field"}, | 1915 | { NID_wap_wsg_idm_ecid_wtls6, &_EC_SECG_PRIME_112R1.h, 0, "SECG/WTLS curve over a 112 bit prime field" }, |
| 1897 | { NID_wap_wsg_idm_ecid_wtls8, &_EC_WTLS_8.h, "WTLS curve over a 112 bit prime field"}, | 1916 | { NID_wap_wsg_idm_ecid_wtls7, &_EC_SECG_PRIME_160R2.h, 0, "SECG/WTLS curve over a 160 bit prime field" }, |
| 1898 | { NID_wap_wsg_idm_ecid_wtls9, &_EC_WTLS_9.h, "WTLS curve over a 160 bit prime field" }, | 1917 | { NID_wap_wsg_idm_ecid_wtls8, &_EC_WTLS_8.h, 0, "WTLS curve over a 112 bit prime field" }, |
| 1899 | { NID_wap_wsg_idm_ecid_wtls10, &_EC_NIST_CHAR2_233K.h, "NIST/SECG/WTLS curve over a 233 bit binary field"}, | 1918 | { NID_wap_wsg_idm_ecid_wtls9, &_EC_WTLS_9.h, 0, "WTLS curve over a 160 bit prime field" }, |
| 1900 | { NID_wap_wsg_idm_ecid_wtls11, &_EC_NIST_CHAR2_233B.h, "NIST/SECG/WTLS curve over a 233 bit binary field"}, | 1919 | #ifndef OPENSSL_NO_EC2M |
| 1901 | { NID_wap_wsg_idm_ecid_wtls12, &_EC_WTLS_12.h, "WTLS curvs over a 224 bit prime field"}, | 1920 | { NID_wap_wsg_idm_ecid_wtls10, &_EC_NIST_CHAR2_233K.h, 0, "NIST/SECG/WTLS curve over a 233 bit binary field" }, |
| 1921 | { NID_wap_wsg_idm_ecid_wtls11, &_EC_NIST_CHAR2_233B.h, 0, "NIST/SECG/WTLS curve over a 233 bit binary field" }, | ||
| 1922 | #endif | ||
| 1923 | { NID_wap_wsg_idm_ecid_wtls12, &_EC_WTLS_12.h, 0, "WTLS curvs over a 224 bit prime field" }, | ||
| 1924 | #ifndef OPENSSL_NO_EC2M | ||
| 1902 | /* IPSec curves */ | 1925 | /* IPSec curves */ |
| 1903 | { NID_ipsec3, &_EC_IPSEC_155_ID3.h, "\n\tIPSec/IKE/Oakley curve #3 over a 155 bit binary field.\n""\tNot suitable for ECDSA.\n\tQuestionable extension field!"}, | 1926 | { NID_ipsec3, &_EC_IPSEC_155_ID3.h, 0, "\n\tIPSec/IKE/Oakley curve #3 over a 155 bit binary field.\n" |
| 1904 | { NID_ipsec4, &_EC_IPSEC_185_ID4.h, "\n\tIPSec/IKE/Oakley curve #4 over a 185 bit binary field.\n""\tNot suitable for ECDSA.\n\tQuestionable extension field!"}, | 1927 | "\tNot suitable for ECDSA.\n\tQuestionable extension field!" }, |
| 1928 | { NID_ipsec4, &_EC_IPSEC_185_ID4.h, 0, "\n\tIPSec/IKE/Oakley curve #4 over a 185 bit binary field.\n" | ||
| 1929 | "\tNot suitable for ECDSA.\n\tQuestionable extension field!" }, | ||
| 1930 | #endif | ||
| 1905 | }; | 1931 | }; |
| 1906 | 1932 | ||
| 1907 | #define curve_list_length (sizeof(curve_list)/sizeof(ec_list_element)) | 1933 | #define curve_list_length (sizeof(curve_list)/sizeof(ec_list_element)) |
| 1908 | 1934 | ||
| 1909 | static EC_GROUP *ec_group_new_from_data(const EC_CURVE_DATA *data) | 1935 | static EC_GROUP *ec_group_new_from_data(const ec_list_element curve) |
| 1910 | { | 1936 | { |
| 1911 | EC_GROUP *group=NULL; | 1937 | EC_GROUP *group=NULL; |
| 1912 | EC_POINT *P=NULL; | 1938 | EC_POINT *P=NULL; |
| 1913 | BN_CTX *ctx=NULL; | 1939 | BN_CTX *ctx=NULL; |
| 1914 | BIGNUM *p=NULL, *a=NULL, *b=NULL, *x=NULL, *y=NULL, *order=NULL; | 1940 | BIGNUM *p=NULL, *a=NULL, *b=NULL, *x=NULL, *y=NULL, *order=NULL; |
| 1915 | int ok=0; | 1941 | int ok=0; |
| 1916 | int seed_len,param_len; | 1942 | int seed_len,param_len; |
| 1943 | const EC_METHOD *meth; | ||
| 1944 | const EC_CURVE_DATA *data; | ||
| 1917 | const unsigned char *params; | 1945 | const unsigned char *params; |
| 1918 | 1946 | ||
| 1919 | if ((ctx = BN_CTX_new()) == NULL) | 1947 | if ((ctx = BN_CTX_new()) == NULL) |
| @@ -1922,10 +1950,11 @@ static EC_GROUP *ec_group_new_from_data(const EC_CURVE_DATA *data) | |||
| 1922 | goto err; | 1950 | goto err; |
| 1923 | } | 1951 | } |
| 1924 | 1952 | ||
| 1953 | data = curve.data; | ||
| 1925 | seed_len = data->seed_len; | 1954 | seed_len = data->seed_len; |
| 1926 | param_len = data->param_len; | 1955 | param_len = data->param_len; |
| 1927 | params = (const unsigned char *)(data+1); /* skip header */ | 1956 | params = (const unsigned char *)(data+1); /* skip header */ |
| 1928 | params += seed_len; /* skip seed */ | 1957 | params += seed_len; /* skip seed */ |
| 1929 | 1958 | ||
| 1930 | if (!(p = BN_bin2bn(params+0*param_len, param_len, NULL)) | 1959 | if (!(p = BN_bin2bn(params+0*param_len, param_len, NULL)) |
| 1931 | || !(a = BN_bin2bn(params+1*param_len, param_len, NULL)) | 1960 | || !(a = BN_bin2bn(params+1*param_len, param_len, NULL)) |
| @@ -1935,7 +1964,17 @@ static EC_GROUP *ec_group_new_from_data(const EC_CURVE_DATA *data) | |||
| 1935 | goto err; | 1964 | goto err; |
| 1936 | } | 1965 | } |
| 1937 | 1966 | ||
| 1938 | if (data->field_type == NID_X9_62_prime_field) | 1967 | if (curve.meth != 0) |
| 1968 | { | ||
| 1969 | meth = curve.meth(); | ||
| 1970 | if (((group = EC_GROUP_new(meth)) == NULL) || | ||
| 1971 | (!(group->meth->group_set_curve(group, p, a, b, ctx)))) | ||
| 1972 | { | ||
| 1973 | ECerr(EC_F_EC_GROUP_NEW_FROM_DATA, ERR_R_EC_LIB); | ||
| 1974 | goto err; | ||
| 1975 | } | ||
| 1976 | } | ||
| 1977 | else if (data->field_type == NID_X9_62_prime_field) | ||
| 1939 | { | 1978 | { |
| 1940 | if ((group = EC_GROUP_new_curve_GFp(p, a, b, ctx)) == NULL) | 1979 | if ((group = EC_GROUP_new_curve_GFp(p, a, b, ctx)) == NULL) |
| 1941 | { | 1980 | { |
| @@ -1943,6 +1982,7 @@ static EC_GROUP *ec_group_new_from_data(const EC_CURVE_DATA *data) | |||
| 1943 | goto err; | 1982 | goto err; |
| 1944 | } | 1983 | } |
| 1945 | } | 1984 | } |
| 1985 | #ifndef OPENSSL_NO_EC2M | ||
| 1946 | else /* field_type == NID_X9_62_characteristic_two_field */ | 1986 | else /* field_type == NID_X9_62_characteristic_two_field */ |
| 1947 | { | 1987 | { |
| 1948 | if ((group = EC_GROUP_new_curve_GF2m(p, a, b, ctx)) == NULL) | 1988 | if ((group = EC_GROUP_new_curve_GF2m(p, a, b, ctx)) == NULL) |
| @@ -1951,20 +1991,21 @@ static EC_GROUP *ec_group_new_from_data(const EC_CURVE_DATA *data) | |||
| 1951 | goto err; | 1991 | goto err; |
| 1952 | } | 1992 | } |
| 1953 | } | 1993 | } |
| 1994 | #endif | ||
| 1954 | 1995 | ||
| 1955 | if ((P = EC_POINT_new(group)) == NULL) | 1996 | if ((P = EC_POINT_new(group)) == NULL) |
| 1956 | { | 1997 | { |
| 1957 | ECerr(EC_F_EC_GROUP_NEW_FROM_DATA, ERR_R_EC_LIB); | 1998 | ECerr(EC_F_EC_GROUP_NEW_FROM_DATA, ERR_R_EC_LIB); |
| 1958 | goto err; | 1999 | goto err; |
| 1959 | } | 2000 | } |
| 1960 | 2001 | ||
| 1961 | if (!(x = BN_bin2bn(params+3*param_len, param_len, NULL)) | 2002 | if (!(x = BN_bin2bn(params+3*param_len, param_len, NULL)) |
| 1962 | || !(y = BN_bin2bn(params+4*param_len, param_len, NULL))) | 2003 | || !(y = BN_bin2bn(params+4*param_len, param_len, NULL))) |
| 1963 | { | 2004 | { |
| 1964 | ECerr(EC_F_EC_GROUP_NEW_FROM_DATA, ERR_R_BN_LIB); | 2005 | ECerr(EC_F_EC_GROUP_NEW_FROM_DATA, ERR_R_BN_LIB); |
| 1965 | goto err; | 2006 | goto err; |
| 1966 | } | 2007 | } |
| 1967 | if (!EC_POINT_set_affine_coordinates_GF2m(group, P, x, y, ctx)) | 2008 | if (!EC_POINT_set_affine_coordinates_GFp(group, P, x, y, ctx)) |
| 1968 | { | 2009 | { |
| 1969 | ECerr(EC_F_EC_GROUP_NEW_FROM_DATA, ERR_R_EC_LIB); | 2010 | ECerr(EC_F_EC_GROUP_NEW_FROM_DATA, ERR_R_EC_LIB); |
| 1970 | goto err; | 2011 | goto err; |
| @@ -2025,7 +2066,7 @@ EC_GROUP *EC_GROUP_new_by_curve_name(int nid) | |||
| 2025 | for (i=0; i<curve_list_length; i++) | 2066 | for (i=0; i<curve_list_length; i++) |
| 2026 | if (curve_list[i].nid == nid) | 2067 | if (curve_list[i].nid == nid) |
| 2027 | { | 2068 | { |
| 2028 | ret = ec_group_new_from_data(curve_list[i].data); | 2069 | ret = ec_group_new_from_data(curve_list[i]); |
| 2029 | break; | 2070 | break; |
| 2030 | } | 2071 | } |
| 2031 | 2072 | ||
diff --git a/src/lib/libcrypto/ec/ec_key.c b/src/lib/libcrypto/ec/ec_key.c index 522802c07a..bf9fd2dc2c 100644 --- a/src/lib/libcrypto/ec/ec_key.c +++ b/src/lib/libcrypto/ec/ec_key.c | |||
| @@ -64,7 +64,9 @@ | |||
| 64 | #include <string.h> | 64 | #include <string.h> |
| 65 | #include "ec_lcl.h" | 65 | #include "ec_lcl.h" |
| 66 | #include <openssl/err.h> | 66 | #include <openssl/err.h> |
| 67 | #include <string.h> | 67 | #ifdef OPENSSL_FIPS |
| 68 | #include <openssl/fips.h> | ||
| 69 | #endif | ||
| 68 | 70 | ||
| 69 | EC_KEY *EC_KEY_new(void) | 71 | EC_KEY *EC_KEY_new(void) |
| 70 | { | 72 | { |
| @@ -78,6 +80,7 @@ EC_KEY *EC_KEY_new(void) | |||
| 78 | } | 80 | } |
| 79 | 81 | ||
| 80 | ret->version = 1; | 82 | ret->version = 1; |
| 83 | ret->flags = 0; | ||
| 81 | ret->group = NULL; | 84 | ret->group = NULL; |
| 82 | ret->pub_key = NULL; | 85 | ret->pub_key = NULL; |
| 83 | ret->priv_key= NULL; | 86 | ret->priv_key= NULL; |
| @@ -197,6 +200,7 @@ EC_KEY *EC_KEY_copy(EC_KEY *dest, const EC_KEY *src) | |||
| 197 | dest->enc_flag = src->enc_flag; | 200 | dest->enc_flag = src->enc_flag; |
| 198 | dest->conv_form = src->conv_form; | 201 | dest->conv_form = src->conv_form; |
| 199 | dest->version = src->version; | 202 | dest->version = src->version; |
| 203 | dest->flags = src->flags; | ||
| 200 | 204 | ||
| 201 | return dest; | 205 | return dest; |
| 202 | } | 206 | } |
| @@ -237,6 +241,11 @@ int EC_KEY_generate_key(EC_KEY *eckey) | |||
| 237 | BIGNUM *priv_key = NULL, *order = NULL; | 241 | BIGNUM *priv_key = NULL, *order = NULL; |
| 238 | EC_POINT *pub_key = NULL; | 242 | EC_POINT *pub_key = NULL; |
| 239 | 243 | ||
| 244 | #ifdef OPENSSL_FIPS | ||
| 245 | if (FIPS_mode()) | ||
| 246 | return FIPS_ec_key_generate_key(eckey); | ||
| 247 | #endif | ||
| 248 | |||
| 240 | if (!eckey || !eckey->group) | 249 | if (!eckey || !eckey->group) |
| 241 | { | 250 | { |
| 242 | ECerr(EC_F_EC_KEY_GENERATE_KEY, ERR_R_PASSED_NULL_PARAMETER); | 251 | ECerr(EC_F_EC_KEY_GENERATE_KEY, ERR_R_PASSED_NULL_PARAMETER); |
| @@ -371,6 +380,82 @@ err: | |||
| 371 | return(ok); | 380 | return(ok); |
| 372 | } | 381 | } |
| 373 | 382 | ||
| 383 | int EC_KEY_set_public_key_affine_coordinates(EC_KEY *key, BIGNUM *x, BIGNUM *y) | ||
| 384 | { | ||
| 385 | BN_CTX *ctx = NULL; | ||
| 386 | BIGNUM *tx, *ty; | ||
| 387 | EC_POINT *point = NULL; | ||
| 388 | int ok = 0, tmp_nid, is_char_two = 0; | ||
| 389 | |||
| 390 | if (!key || !key->group || !x || !y) | ||
| 391 | { | ||
| 392 | ECerr(EC_F_EC_KEY_SET_PUBLIC_KEY_AFFINE_COORDINATES, | ||
| 393 | ERR_R_PASSED_NULL_PARAMETER); | ||
| 394 | return 0; | ||
| 395 | } | ||
| 396 | ctx = BN_CTX_new(); | ||
| 397 | if (!ctx) | ||
| 398 | goto err; | ||
| 399 | |||
| 400 | point = EC_POINT_new(key->group); | ||
| 401 | |||
| 402 | if (!point) | ||
| 403 | goto err; | ||
| 404 | |||
| 405 | tmp_nid = EC_METHOD_get_field_type(EC_GROUP_method_of(key->group)); | ||
| 406 | |||
| 407 | if (tmp_nid == NID_X9_62_characteristic_two_field) | ||
| 408 | is_char_two = 1; | ||
| 409 | |||
| 410 | tx = BN_CTX_get(ctx); | ||
| 411 | ty = BN_CTX_get(ctx); | ||
| 412 | #ifndef OPENSSL_NO_EC2M | ||
| 413 | if (is_char_two) | ||
| 414 | { | ||
| 415 | if (!EC_POINT_set_affine_coordinates_GF2m(key->group, point, | ||
| 416 | x, y, ctx)) | ||
| 417 | goto err; | ||
| 418 | if (!EC_POINT_get_affine_coordinates_GF2m(key->group, point, | ||
| 419 | tx, ty, ctx)) | ||
| 420 | goto err; | ||
| 421 | } | ||
| 422 | else | ||
| 423 | #endif | ||
| 424 | { | ||
| 425 | if (!EC_POINT_set_affine_coordinates_GFp(key->group, point, | ||
| 426 | x, y, ctx)) | ||
| 427 | goto err; | ||
| 428 | if (!EC_POINT_get_affine_coordinates_GFp(key->group, point, | ||
| 429 | tx, ty, ctx)) | ||
| 430 | goto err; | ||
| 431 | } | ||
| 432 | /* Check if retrieved coordinates match originals: if not values | ||
| 433 | * are out of range. | ||
| 434 | */ | ||
| 435 | if (BN_cmp(x, tx) || BN_cmp(y, ty)) | ||
| 436 | { | ||
| 437 | ECerr(EC_F_EC_KEY_SET_PUBLIC_KEY_AFFINE_COORDINATES, | ||
| 438 | EC_R_COORDINATES_OUT_OF_RANGE); | ||
| 439 | goto err; | ||
| 440 | } | ||
| 441 | |||
| 442 | if (!EC_KEY_set_public_key(key, point)) | ||
| 443 | goto err; | ||
| 444 | |||
| 445 | if (EC_KEY_check_key(key) == 0) | ||
| 446 | goto err; | ||
| 447 | |||
| 448 | ok = 1; | ||
| 449 | |||
| 450 | err: | ||
| 451 | if (ctx) | ||
| 452 | BN_CTX_free(ctx); | ||
| 453 | if (point) | ||
| 454 | EC_POINT_free(point); | ||
| 455 | return ok; | ||
| 456 | |||
| 457 | } | ||
| 458 | |||
| 374 | const EC_GROUP *EC_KEY_get0_group(const EC_KEY *key) | 459 | const EC_GROUP *EC_KEY_get0_group(const EC_KEY *key) |
| 375 | { | 460 | { |
| 376 | return key->group; | 461 | return key->group; |
| @@ -461,3 +546,18 @@ int EC_KEY_precompute_mult(EC_KEY *key, BN_CTX *ctx) | |||
| 461 | return 0; | 546 | return 0; |
| 462 | return EC_GROUP_precompute_mult(key->group, ctx); | 547 | return EC_GROUP_precompute_mult(key->group, ctx); |
| 463 | } | 548 | } |
| 549 | |||
| 550 | int EC_KEY_get_flags(const EC_KEY *key) | ||
| 551 | { | ||
| 552 | return key->flags; | ||
| 553 | } | ||
| 554 | |||
| 555 | void EC_KEY_set_flags(EC_KEY *key, int flags) | ||
| 556 | { | ||
| 557 | key->flags |= flags; | ||
| 558 | } | ||
| 559 | |||
| 560 | void EC_KEY_clear_flags(EC_KEY *key, int flags) | ||
| 561 | { | ||
| 562 | key->flags &= ~flags; | ||
| 563 | } | ||
diff --git a/src/lib/libcrypto/ec/ec_oct.c b/src/lib/libcrypto/ec/ec_oct.c new file mode 100644 index 0000000000..fd9db0798d --- /dev/null +++ b/src/lib/libcrypto/ec/ec_oct.c | |||
| @@ -0,0 +1,199 @@ | |||
| 1 | /* crypto/ec/ec_lib.c */ | ||
| 2 | /* | ||
| 3 | * Originally written by Bodo Moeller for the OpenSSL project. | ||
| 4 | */ | ||
| 5 | /* ==================================================================== | ||
| 6 | * Copyright (c) 1998-2003 The OpenSSL Project. All rights reserved. | ||
| 7 | * | ||
| 8 | * Redistribution and use in source and binary forms, with or without | ||
| 9 | * modification, are permitted provided that the following conditions | ||
| 10 | * are met: | ||
| 11 | * | ||
| 12 | * 1. Redistributions of source code must retain the above copyright | ||
| 13 | * notice, this list of conditions and the following disclaimer. | ||
| 14 | * | ||
| 15 | * 2. Redistributions in binary form must reproduce the above copyright | ||
| 16 | * notice, this list of conditions and the following disclaimer in | ||
| 17 | * the documentation and/or other materials provided with the | ||
| 18 | * distribution. | ||
| 19 | * | ||
| 20 | * 3. All advertising materials mentioning features or use of this | ||
| 21 | * software must display the following acknowledgment: | ||
| 22 | * "This product includes software developed by the OpenSSL Project | ||
| 23 | * for use in the OpenSSL Toolkit. (http://www.openssl.org/)" | ||
| 24 | * | ||
| 25 | * 4. The names "OpenSSL Toolkit" and "OpenSSL Project" must not be used to | ||
| 26 | * endorse or promote products derived from this software without | ||
| 27 | * prior written permission. For written permission, please contact | ||
| 28 | * openssl-core@openssl.org. | ||
| 29 | * | ||
| 30 | * 5. Products derived from this software may not be called "OpenSSL" | ||
| 31 | * nor may "OpenSSL" appear in their names without prior written | ||
| 32 | * permission of the OpenSSL Project. | ||
| 33 | * | ||
| 34 | * 6. Redistributions of any form whatsoever must retain the following | ||
| 35 | * acknowledgment: | ||
| 36 | * "This product includes software developed by the OpenSSL Project | ||
| 37 | * for use in the OpenSSL Toolkit (http://www.openssl.org/)" | ||
| 38 | * | ||
| 39 | * THIS SOFTWARE IS PROVIDED BY THE OpenSSL PROJECT ``AS IS'' AND ANY | ||
| 40 | * EXPRESSED OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE | ||
| 41 | * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR | ||
| 42 | * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE OpenSSL PROJECT OR | ||
| 43 | * ITS CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, | ||
| 44 | * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT | ||
| 45 | * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; | ||
| 46 | * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) | ||
| 47 | * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, | ||
| 48 | * STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) | ||
| 49 | * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED | ||
| 50 | * OF THE POSSIBILITY OF SUCH DAMAGE. | ||
| 51 | * ==================================================================== | ||
| 52 | * | ||
| 53 | * This product includes cryptographic software written by Eric Young | ||
| 54 | * (eay@cryptsoft.com). This product includes software written by Tim | ||
| 55 | * Hudson (tjh@cryptsoft.com). | ||
| 56 | * | ||
| 57 | */ | ||
| 58 | /* ==================================================================== | ||
| 59 | * Copyright 2002 Sun Microsystems, Inc. ALL RIGHTS RESERVED. | ||
| 60 | * Binary polynomial ECC support in OpenSSL originally developed by | ||
| 61 | * SUN MICROSYSTEMS, INC., and contributed to the OpenSSL project. | ||
| 62 | */ | ||
| 63 | |||
| 64 | #include <string.h> | ||
| 65 | |||
| 66 | #include <openssl/err.h> | ||
| 67 | #include <openssl/opensslv.h> | ||
| 68 | |||
| 69 | #include "ec_lcl.h" | ||
| 70 | |||
| 71 | int EC_POINT_set_compressed_coordinates_GFp(const EC_GROUP *group, EC_POINT *point, | ||
| 72 | const BIGNUM *x, int y_bit, BN_CTX *ctx) | ||
| 73 | { | ||
| 74 | if (group->meth->point_set_compressed_coordinates == 0 | ||
| 75 | && !(group->meth->flags & EC_FLAGS_DEFAULT_OCT)) | ||
| 76 | { | ||
| 77 | ECerr(EC_F_EC_POINT_SET_COMPRESSED_COORDINATES_GFP, ERR_R_SHOULD_NOT_HAVE_BEEN_CALLED); | ||
| 78 | return 0; | ||
| 79 | } | ||
| 80 | if (group->meth != point->meth) | ||
| 81 | { | ||
| 82 | ECerr(EC_F_EC_POINT_SET_COMPRESSED_COORDINATES_GFP, EC_R_INCOMPATIBLE_OBJECTS); | ||
| 83 | return 0; | ||
| 84 | } | ||
| 85 | if(group->meth->flags & EC_FLAGS_DEFAULT_OCT) | ||
| 86 | { | ||
| 87 | if (group->meth->field_type == NID_X9_62_prime_field) | ||
| 88 | return ec_GFp_simple_set_compressed_coordinates( | ||
| 89 | group, point, x, y_bit, ctx); | ||
| 90 | else | ||
| 91 | #ifdef OPENSSL_NO_EC2M | ||
| 92 | { | ||
| 93 | ECerr(EC_F_EC_POINT_SET_COMPRESSED_COORDINATES_GFP, EC_R_GF2M_NOT_SUPPORTED); | ||
| 94 | return 0; | ||
| 95 | } | ||
| 96 | #else | ||
| 97 | return ec_GF2m_simple_set_compressed_coordinates( | ||
| 98 | group, point, x, y_bit, ctx); | ||
| 99 | #endif | ||
| 100 | } | ||
| 101 | return group->meth->point_set_compressed_coordinates(group, point, x, y_bit, ctx); | ||
| 102 | } | ||
| 103 | |||
| 104 | #ifndef OPENSSL_NO_EC2M | ||
| 105 | int EC_POINT_set_compressed_coordinates_GF2m(const EC_GROUP *group, EC_POINT *point, | ||
| 106 | const BIGNUM *x, int y_bit, BN_CTX *ctx) | ||
| 107 | { | ||
| 108 | if (group->meth->point_set_compressed_coordinates == 0 | ||
| 109 | && !(group->meth->flags & EC_FLAGS_DEFAULT_OCT)) | ||
| 110 | { | ||
| 111 | ECerr(EC_F_EC_POINT_SET_COMPRESSED_COORDINATES_GF2M, ERR_R_SHOULD_NOT_HAVE_BEEN_CALLED); | ||
| 112 | return 0; | ||
| 113 | } | ||
| 114 | if (group->meth != point->meth) | ||
| 115 | { | ||
| 116 | ECerr(EC_F_EC_POINT_SET_COMPRESSED_COORDINATES_GF2M, EC_R_INCOMPATIBLE_OBJECTS); | ||
| 117 | return 0; | ||
| 118 | } | ||
| 119 | if(group->meth->flags & EC_FLAGS_DEFAULT_OCT) | ||
| 120 | { | ||
| 121 | if (group->meth->field_type == NID_X9_62_prime_field) | ||
| 122 | return ec_GFp_simple_set_compressed_coordinates( | ||
| 123 | group, point, x, y_bit, ctx); | ||
| 124 | else | ||
| 125 | return ec_GF2m_simple_set_compressed_coordinates( | ||
| 126 | group, point, x, y_bit, ctx); | ||
| 127 | } | ||
| 128 | return group->meth->point_set_compressed_coordinates(group, point, x, y_bit, ctx); | ||
| 129 | } | ||
| 130 | #endif | ||
| 131 | |||
| 132 | size_t EC_POINT_point2oct(const EC_GROUP *group, const EC_POINT *point, point_conversion_form_t form, | ||
| 133 | unsigned char *buf, size_t len, BN_CTX *ctx) | ||
| 134 | { | ||
| 135 | if (group->meth->point2oct == 0 | ||
| 136 | && !(group->meth->flags & EC_FLAGS_DEFAULT_OCT)) | ||
| 137 | { | ||
| 138 | ECerr(EC_F_EC_POINT_POINT2OCT, ERR_R_SHOULD_NOT_HAVE_BEEN_CALLED); | ||
| 139 | return 0; | ||
| 140 | } | ||
| 141 | if (group->meth != point->meth) | ||
| 142 | { | ||
| 143 | ECerr(EC_F_EC_POINT_POINT2OCT, EC_R_INCOMPATIBLE_OBJECTS); | ||
| 144 | return 0; | ||
| 145 | } | ||
| 146 | if(group->meth->flags & EC_FLAGS_DEFAULT_OCT) | ||
| 147 | { | ||
| 148 | if (group->meth->field_type == NID_X9_62_prime_field) | ||
| 149 | return ec_GFp_simple_point2oct(group, point, | ||
| 150 | form, buf, len, ctx); | ||
| 151 | else | ||
| 152 | #ifdef OPENSSL_NO_EC2M | ||
| 153 | { | ||
| 154 | ECerr(EC_F_EC_POINT_POINT2OCT, EC_R_GF2M_NOT_SUPPORTED); | ||
| 155 | return 0; | ||
| 156 | } | ||
| 157 | #else | ||
| 158 | return ec_GF2m_simple_point2oct(group, point, | ||
| 159 | form, buf, len, ctx); | ||
| 160 | #endif | ||
| 161 | } | ||
| 162 | |||
| 163 | return group->meth->point2oct(group, point, form, buf, len, ctx); | ||
| 164 | } | ||
| 165 | |||
| 166 | |||
| 167 | int EC_POINT_oct2point(const EC_GROUP *group, EC_POINT *point, | ||
| 168 | const unsigned char *buf, size_t len, BN_CTX *ctx) | ||
| 169 | { | ||
| 170 | if (group->meth->oct2point == 0 | ||
| 171 | && !(group->meth->flags & EC_FLAGS_DEFAULT_OCT)) | ||
| 172 | { | ||
| 173 | ECerr(EC_F_EC_POINT_OCT2POINT, ERR_R_SHOULD_NOT_HAVE_BEEN_CALLED); | ||
| 174 | return 0; | ||
| 175 | } | ||
| 176 | if (group->meth != point->meth) | ||
| 177 | { | ||
| 178 | ECerr(EC_F_EC_POINT_OCT2POINT, EC_R_INCOMPATIBLE_OBJECTS); | ||
| 179 | return 0; | ||
| 180 | } | ||
| 181 | if(group->meth->flags & EC_FLAGS_DEFAULT_OCT) | ||
| 182 | { | ||
| 183 | if (group->meth->field_type == NID_X9_62_prime_field) | ||
| 184 | return ec_GFp_simple_oct2point(group, point, | ||
| 185 | buf, len, ctx); | ||
| 186 | else | ||
| 187 | #ifdef OPENSSL_NO_EC2M | ||
| 188 | { | ||
| 189 | ECerr(EC_F_EC_POINT_OCT2POINT, EC_R_GF2M_NOT_SUPPORTED); | ||
| 190 | return 0; | ||
| 191 | } | ||
| 192 | #else | ||
| 193 | return ec_GF2m_simple_oct2point(group, point, | ||
| 194 | buf, len, ctx); | ||
| 195 | #endif | ||
| 196 | } | ||
| 197 | return group->meth->oct2point(group, point, buf, len, ctx); | ||
| 198 | } | ||
| 199 | |||
diff --git a/src/lib/libcrypto/ec/ec_pmeth.c b/src/lib/libcrypto/ec/ec_pmeth.c index f433076ca1..d1ed66c37e 100644 --- a/src/lib/libcrypto/ec/ec_pmeth.c +++ b/src/lib/libcrypto/ec/ec_pmeth.c | |||
| @@ -221,6 +221,7 @@ static int pkey_ec_ctrl(EVP_PKEY_CTX *ctx, int type, int p1, void *p2) | |||
| 221 | 221 | ||
| 222 | case EVP_PKEY_CTRL_MD: | 222 | case EVP_PKEY_CTRL_MD: |
| 223 | if (EVP_MD_type((const EVP_MD *)p2) != NID_sha1 && | 223 | if (EVP_MD_type((const EVP_MD *)p2) != NID_sha1 && |
| 224 | EVP_MD_type((const EVP_MD *)p2) != NID_ecdsa_with_SHA1 && | ||
| 224 | EVP_MD_type((const EVP_MD *)p2) != NID_sha224 && | 225 | EVP_MD_type((const EVP_MD *)p2) != NID_sha224 && |
| 225 | EVP_MD_type((const EVP_MD *)p2) != NID_sha256 && | 226 | EVP_MD_type((const EVP_MD *)p2) != NID_sha256 && |
| 226 | EVP_MD_type((const EVP_MD *)p2) != NID_sha384 && | 227 | EVP_MD_type((const EVP_MD *)p2) != NID_sha384 && |
diff --git a/src/lib/libcrypto/ec/eck_prn.c b/src/lib/libcrypto/ec/eck_prn.c index 7d3e175ae7..06de8f3959 100644 --- a/src/lib/libcrypto/ec/eck_prn.c +++ b/src/lib/libcrypto/ec/eck_prn.c | |||
| @@ -207,7 +207,7 @@ int ECPKParameters_print(BIO *bp, const EC_GROUP *x, int off) | |||
| 207 | reason = ERR_R_MALLOC_FAILURE; | 207 | reason = ERR_R_MALLOC_FAILURE; |
| 208 | goto err; | 208 | goto err; |
| 209 | } | 209 | } |
| 210 | 210 | #ifndef OPENSSL_NO_EC2M | |
| 211 | if (is_char_two) | 211 | if (is_char_two) |
| 212 | { | 212 | { |
| 213 | if (!EC_GROUP_get_curve_GF2m(x, p, a, b, ctx)) | 213 | if (!EC_GROUP_get_curve_GF2m(x, p, a, b, ctx)) |
| @@ -217,6 +217,7 @@ int ECPKParameters_print(BIO *bp, const EC_GROUP *x, int off) | |||
| 217 | } | 217 | } |
| 218 | } | 218 | } |
| 219 | else /* prime field */ | 219 | else /* prime field */ |
| 220 | #endif | ||
| 220 | { | 221 | { |
| 221 | if (!EC_GROUP_get_curve_GFp(x, p, a, b, ctx)) | 222 | if (!EC_GROUP_get_curve_GFp(x, p, a, b, ctx)) |
| 222 | { | 223 | { |
diff --git a/src/lib/libcrypto/ec/ecp_nistp224.c b/src/lib/libcrypto/ec/ecp_nistp224.c new file mode 100644 index 0000000000..b5ff56c252 --- /dev/null +++ b/src/lib/libcrypto/ec/ecp_nistp224.c | |||
| @@ -0,0 +1,1658 @@ | |||
| 1 | /* crypto/ec/ecp_nistp224.c */ | ||
| 2 | /* | ||
| 3 | * Written by Emilia Kasper (Google) for the OpenSSL project. | ||
| 4 | */ | ||
| 5 | /* Copyright 2011 Google Inc. | ||
| 6 | * | ||
| 7 | * Licensed under the Apache License, Version 2.0 (the "License"); | ||
| 8 | * | ||
| 9 | * you may not use this file except in compliance with the License. | ||
| 10 | * You may obtain a copy of the License at | ||
| 11 | * | ||
| 12 | * http://www.apache.org/licenses/LICENSE-2.0 | ||
| 13 | * | ||
| 14 | * Unless required by applicable law or agreed to in writing, software | ||
| 15 | * distributed under the License is distributed on an "AS IS" BASIS, | ||
| 16 | * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | ||
| 17 | * See the License for the specific language governing permissions and | ||
| 18 | * limitations under the License. | ||
| 19 | */ | ||
| 20 | |||
| 21 | /* | ||
| 22 | * A 64-bit implementation of the NIST P-224 elliptic curve point multiplication | ||
| 23 | * | ||
| 24 | * Inspired by Daniel J. Bernstein's public domain nistp224 implementation | ||
| 25 | * and Adam Langley's public domain 64-bit C implementation of curve25519 | ||
| 26 | */ | ||
| 27 | |||
| 28 | #include <openssl/opensslconf.h> | ||
| 29 | #ifndef OPENSSL_NO_EC_NISTP_64_GCC_128 | ||
| 30 | |||
| 31 | #ifndef OPENSSL_SYS_VMS | ||
| 32 | #include <stdint.h> | ||
| 33 | #else | ||
| 34 | #include <inttypes.h> | ||
| 35 | #endif | ||
| 36 | |||
| 37 | #include <string.h> | ||
| 38 | #include <openssl/err.h> | ||
| 39 | #include "ec_lcl.h" | ||
| 40 | |||
| 41 | #if defined(__GNUC__) && (__GNUC__ > 3 || (__GNUC__ == 3 && __GNUC_MINOR__ >= 1)) | ||
| 42 | /* even with gcc, the typedef won't work for 32-bit platforms */ | ||
| 43 | typedef __uint128_t uint128_t; /* nonstandard; implemented by gcc on 64-bit platforms */ | ||
| 44 | #else | ||
| 45 | #error "Need GCC 3.1 or later to define type uint128_t" | ||
| 46 | #endif | ||
| 47 | |||
| 48 | typedef uint8_t u8; | ||
| 49 | typedef uint64_t u64; | ||
| 50 | typedef int64_t s64; | ||
| 51 | |||
| 52 | |||
| 53 | /******************************************************************************/ | ||
| 54 | /* INTERNAL REPRESENTATION OF FIELD ELEMENTS | ||
| 55 | * | ||
| 56 | * Field elements are represented as a_0 + 2^56*a_1 + 2^112*a_2 + 2^168*a_3 | ||
| 57 | * using 64-bit coefficients called 'limbs', | ||
| 58 | * and sometimes (for multiplication results) as | ||
| 59 | * b_0 + 2^56*b_1 + 2^112*b_2 + 2^168*b_3 + 2^224*b_4 + 2^280*b_5 + 2^336*b_6 | ||
| 60 | * using 128-bit coefficients called 'widelimbs'. | ||
| 61 | * A 4-limb representation is an 'felem'; | ||
| 62 | * a 7-widelimb representation is a 'widefelem'. | ||
| 63 | * Even within felems, bits of adjacent limbs overlap, and we don't always | ||
| 64 | * reduce the representations: we ensure that inputs to each felem | ||
| 65 | * multiplication satisfy a_i < 2^60, so outputs satisfy b_i < 4*2^60*2^60, | ||
| 66 | * and fit into a 128-bit word without overflow. The coefficients are then | ||
| 67 | * again partially reduced to obtain an felem satisfying a_i < 2^57. | ||
| 68 | * We only reduce to the unique minimal representation at the end of the | ||
| 69 | * computation. | ||
| 70 | */ | ||
| 71 | |||
| 72 | typedef uint64_t limb; | ||
| 73 | typedef uint128_t widelimb; | ||
| 74 | |||
| 75 | typedef limb felem[4]; | ||
| 76 | typedef widelimb widefelem[7]; | ||
| 77 | |||
| 78 | /* Field element represented as a byte arrary. | ||
| 79 | * 28*8 = 224 bits is also the group order size for the elliptic curve, | ||
| 80 | * and we also use this type for scalars for point multiplication. | ||
| 81 | */ | ||
| 82 | typedef u8 felem_bytearray[28]; | ||
| 83 | |||
| 84 | static const felem_bytearray nistp224_curve_params[5] = { | ||
| 85 | {0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF, /* p */ | ||
| 86 | 0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0x00,0x00,0x00,0x00, | ||
| 87 | 0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x01}, | ||
| 88 | {0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF, /* a */ | ||
| 89 | 0xFF,0xFF,0xFF,0xFF,0xFF,0xFE,0xFF,0xFF,0xFF,0xFF, | ||
| 90 | 0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFE}, | ||
| 91 | {0xB4,0x05,0x0A,0x85,0x0C,0x04,0xB3,0xAB,0xF5,0x41, /* b */ | ||
| 92 | 0x32,0x56,0x50,0x44,0xB0,0xB7,0xD7,0xBF,0xD8,0xBA, | ||
| 93 | 0x27,0x0B,0x39,0x43,0x23,0x55,0xFF,0xB4}, | ||
| 94 | {0xB7,0x0E,0x0C,0xBD,0x6B,0xB4,0xBF,0x7F,0x32,0x13, /* x */ | ||
| 95 | 0x90,0xB9,0x4A,0x03,0xC1,0xD3,0x56,0xC2,0x11,0x22, | ||
| 96 | 0x34,0x32,0x80,0xD6,0x11,0x5C,0x1D,0x21}, | ||
| 97 | {0xbd,0x37,0x63,0x88,0xb5,0xf7,0x23,0xfb,0x4c,0x22, /* y */ | ||
| 98 | 0xdf,0xe6,0xcd,0x43,0x75,0xa0,0x5a,0x07,0x47,0x64, | ||
| 99 | 0x44,0xd5,0x81,0x99,0x85,0x00,0x7e,0x34} | ||
| 100 | }; | ||
| 101 | |||
| 102 | /* Precomputed multiples of the standard generator | ||
| 103 | * Points are given in coordinates (X, Y, Z) where Z normally is 1 | ||
| 104 | * (0 for the point at infinity). | ||
| 105 | * For each field element, slice a_0 is word 0, etc. | ||
| 106 | * | ||
| 107 | * The table has 2 * 16 elements, starting with the following: | ||
| 108 | * index | bits | point | ||
| 109 | * ------+---------+------------------------------ | ||
| 110 | * 0 | 0 0 0 0 | 0G | ||
| 111 | * 1 | 0 0 0 1 | 1G | ||
| 112 | * 2 | 0 0 1 0 | 2^56G | ||
| 113 | * 3 | 0 0 1 1 | (2^56 + 1)G | ||
| 114 | * 4 | 0 1 0 0 | 2^112G | ||
| 115 | * 5 | 0 1 0 1 | (2^112 + 1)G | ||
| 116 | * 6 | 0 1 1 0 | (2^112 + 2^56)G | ||
| 117 | * 7 | 0 1 1 1 | (2^112 + 2^56 + 1)G | ||
| 118 | * 8 | 1 0 0 0 | 2^168G | ||
| 119 | * 9 | 1 0 0 1 | (2^168 + 1)G | ||
| 120 | * 10 | 1 0 1 0 | (2^168 + 2^56)G | ||
| 121 | * 11 | 1 0 1 1 | (2^168 + 2^56 + 1)G | ||
| 122 | * 12 | 1 1 0 0 | (2^168 + 2^112)G | ||
| 123 | * 13 | 1 1 0 1 | (2^168 + 2^112 + 1)G | ||
| 124 | * 14 | 1 1 1 0 | (2^168 + 2^112 + 2^56)G | ||
| 125 | * 15 | 1 1 1 1 | (2^168 + 2^112 + 2^56 + 1)G | ||
| 126 | * followed by a copy of this with each element multiplied by 2^28. | ||
| 127 | * | ||
| 128 | * The reason for this is so that we can clock bits into four different | ||
| 129 | * locations when doing simple scalar multiplies against the base point, | ||
| 130 | * and then another four locations using the second 16 elements. | ||
| 131 | */ | ||
| 132 | static const felem gmul[2][16][3] = | ||
| 133 | {{{{0, 0, 0, 0}, | ||
| 134 | {0, 0, 0, 0}, | ||
| 135 | {0, 0, 0, 0}}, | ||
| 136 | {{0x3280d6115c1d21, 0xc1d356c2112234, 0x7f321390b94a03, 0xb70e0cbd6bb4bf}, | ||
| 137 | {0xd5819985007e34, 0x75a05a07476444, 0xfb4c22dfe6cd43, 0xbd376388b5f723}, | ||
| 138 | {1, 0, 0, 0}}, | ||
| 139 | {{0xfd9675666ebbe9, 0xbca7664d40ce5e, 0x2242df8d8a2a43, 0x1f49bbb0f99bc5}, | ||
| 140 | {0x29e0b892dc9c43, 0xece8608436e662, 0xdc858f185310d0, 0x9812dd4eb8d321}, | ||
| 141 | {1, 0, 0, 0}}, | ||
| 142 | {{0x6d3e678d5d8eb8, 0x559eed1cb362f1, 0x16e9a3bbce8a3f, 0xeedcccd8c2a748}, | ||
| 143 | {0xf19f90ed50266d, 0xabf2b4bf65f9df, 0x313865468fafec, 0x5cb379ba910a17}, | ||
| 144 | {1, 0, 0, 0}}, | ||
| 145 | {{0x0641966cab26e3, 0x91fb2991fab0a0, 0xefec27a4e13a0b, 0x0499aa8a5f8ebe}, | ||
| 146 | {0x7510407766af5d, 0x84d929610d5450, 0x81d77aae82f706, 0x6916f6d4338c5b}, | ||
| 147 | {1, 0, 0, 0}}, | ||
| 148 | {{0xea95ac3b1f15c6, 0x086000905e82d4, 0xdd323ae4d1c8b1, 0x932b56be7685a3}, | ||
| 149 | {0x9ef93dea25dbbf, 0x41665960f390f0, 0xfdec76dbe2a8a7, 0x523e80f019062a}, | ||
| 150 | {1, 0, 0, 0}}, | ||
| 151 | {{0x822fdd26732c73, 0xa01c83531b5d0f, 0x363f37347c1ba4, 0xc391b45c84725c}, | ||
| 152 | {0xbbd5e1b2d6ad24, 0xddfbcde19dfaec, 0xc393da7e222a7f, 0x1efb7890ede244}, | ||
| 153 | {1, 0, 0, 0}}, | ||
| 154 | {{0x4c9e90ca217da1, 0xd11beca79159bb, 0xff8d33c2c98b7c, 0x2610b39409f849}, | ||
| 155 | {0x44d1352ac64da0, 0xcdbb7b2c46b4fb, 0x966c079b753c89, 0xfe67e4e820b112}, | ||
| 156 | {1, 0, 0, 0}}, | ||
| 157 | {{0xe28cae2df5312d, 0xc71b61d16f5c6e, 0x79b7619a3e7c4c, 0x05c73240899b47}, | ||
| 158 | {0x9f7f6382c73e3a, 0x18615165c56bda, 0x641fab2116fd56, 0x72855882b08394}, | ||
| 159 | {1, 0, 0, 0}}, | ||
| 160 | {{0x0469182f161c09, 0x74a98ca8d00fb5, 0xb89da93489a3e0, 0x41c98768fb0c1d}, | ||
| 161 | {0xe5ea05fb32da81, 0x3dce9ffbca6855, 0x1cfe2d3fbf59e6, 0x0e5e03408738a7}, | ||
| 162 | {1, 0, 0, 0}}, | ||
| 163 | {{0xdab22b2333e87f, 0x4430137a5dd2f6, 0xe03ab9f738beb8, 0xcb0c5d0dc34f24}, | ||
| 164 | {0x764a7df0c8fda5, 0x185ba5c3fa2044, 0x9281d688bcbe50, 0xc40331df893881}, | ||
| 165 | {1, 0, 0, 0}}, | ||
| 166 | {{0xb89530796f0f60, 0xade92bd26909a3, 0x1a0c83fb4884da, 0x1765bf22a5a984}, | ||
| 167 | {0x772a9ee75db09e, 0x23bc6c67cec16f, 0x4c1edba8b14e2f, 0xe2a215d9611369}, | ||
| 168 | {1, 0, 0, 0}}, | ||
| 169 | {{0x571e509fb5efb3, 0xade88696410552, 0xc8ae85fada74fe, 0x6c7e4be83bbde3}, | ||
| 170 | {0xff9f51160f4652, 0xb47ce2495a6539, 0xa2946c53b582f4, 0x286d2db3ee9a60}, | ||
| 171 | {1, 0, 0, 0}}, | ||
| 172 | {{0x40bbd5081a44af, 0x0995183b13926c, 0xbcefba6f47f6d0, 0x215619e9cc0057}, | ||
| 173 | {0x8bc94d3b0df45e, 0xf11c54a3694f6f, 0x8631b93cdfe8b5, 0xe7e3f4b0982db9}, | ||
| 174 | {1, 0, 0, 0}}, | ||
| 175 | {{0xb17048ab3e1c7b, 0xac38f36ff8a1d8, 0x1c29819435d2c6, 0xc813132f4c07e9}, | ||
| 176 | {0x2891425503b11f, 0x08781030579fea, 0xf5426ba5cc9674, 0x1e28ebf18562bc}, | ||
| 177 | {1, 0, 0, 0}}, | ||
| 178 | {{0x9f31997cc864eb, 0x06cd91d28b5e4c, 0xff17036691a973, 0xf1aef351497c58}, | ||
| 179 | {0xdd1f2d600564ff, 0xdead073b1402db, 0x74a684435bd693, 0xeea7471f962558}, | ||
| 180 | {1, 0, 0, 0}}}, | ||
| 181 | {{{0, 0, 0, 0}, | ||
| 182 | {0, 0, 0, 0}, | ||
| 183 | {0, 0, 0, 0}}, | ||
| 184 | {{0x9665266dddf554, 0x9613d78b60ef2d, 0xce27a34cdba417, 0xd35ab74d6afc31}, | ||
| 185 | {0x85ccdd22deb15e, 0x2137e5783a6aab, 0xa141cffd8c93c6, 0x355a1830e90f2d}, | ||
| 186 | {1, 0, 0, 0}}, | ||
| 187 | {{0x1a494eadaade65, 0xd6da4da77fe53c, 0xe7992996abec86, 0x65c3553c6090e3}, | ||
| 188 | {0xfa610b1fb09346, 0xf1c6540b8a4aaf, 0xc51a13ccd3cbab, 0x02995b1b18c28a}, | ||
| 189 | {1, 0, 0, 0}}, | ||
| 190 | {{0x7874568e7295ef, 0x86b419fbe38d04, 0xdc0690a7550d9a, 0xd3966a44beac33}, | ||
| 191 | {0x2b7280ec29132f, 0xbeaa3b6a032df3, 0xdc7dd88ae41200, 0xd25e2513e3a100}, | ||
| 192 | {1, 0, 0, 0}}, | ||
| 193 | {{0x924857eb2efafd, 0xac2bce41223190, 0x8edaa1445553fc, 0x825800fd3562d5}, | ||
| 194 | {0x8d79148ea96621, 0x23a01c3dd9ed8d, 0xaf8b219f9416b5, 0xd8db0cc277daea}, | ||
| 195 | {1, 0, 0, 0}}, | ||
| 196 | {{0x76a9c3b1a700f0, 0xe9acd29bc7e691, 0x69212d1a6b0327, 0x6322e97fe154be}, | ||
| 197 | {0x469fc5465d62aa, 0x8d41ed18883b05, 0x1f8eae66c52b88, 0xe4fcbe9325be51}, | ||
| 198 | {1, 0, 0, 0}}, | ||
| 199 | {{0x825fdf583cac16, 0x020b857c7b023a, 0x683c17744b0165, 0x14ffd0a2daf2f1}, | ||
| 200 | {0x323b36184218f9, 0x4944ec4e3b47d4, 0xc15b3080841acf, 0x0bced4b01a28bb}, | ||
| 201 | {1, 0, 0, 0}}, | ||
| 202 | {{0x92ac22230df5c4, 0x52f33b4063eda8, 0xcb3f19870c0c93, 0x40064f2ba65233}, | ||
| 203 | {0xfe16f0924f8992, 0x012da25af5b517, 0x1a57bb24f723a6, 0x06f8bc76760def}, | ||
| 204 | {1, 0, 0, 0}}, | ||
| 205 | {{0x4a7084f7817cb9, 0xbcab0738ee9a78, 0x3ec11e11d9c326, 0xdc0fe90e0f1aae}, | ||
| 206 | {0xcf639ea5f98390, 0x5c350aa22ffb74, 0x9afae98a4047b7, 0x956ec2d617fc45}, | ||
| 207 | {1, 0, 0, 0}}, | ||
| 208 | {{0x4306d648c1be6a, 0x9247cd8bc9a462, 0xf5595e377d2f2e, 0xbd1c3caff1a52e}, | ||
| 209 | {0x045e14472409d0, 0x29f3e17078f773, 0x745a602b2d4f7d, 0x191837685cdfbb}, | ||
| 210 | {1, 0, 0, 0}}, | ||
| 211 | {{0x5b6ee254a8cb79, 0x4953433f5e7026, 0xe21faeb1d1def4, 0xc4c225785c09de}, | ||
| 212 | {0x307ce7bba1e518, 0x31b125b1036db8, 0x47e91868839e8f, 0xc765866e33b9f3}, | ||
| 213 | {1, 0, 0, 0}}, | ||
| 214 | {{0x3bfece24f96906, 0x4794da641e5093, 0xde5df64f95db26, 0x297ecd89714b05}, | ||
| 215 | {0x701bd3ebb2c3aa, 0x7073b4f53cb1d5, 0x13c5665658af16, 0x9895089d66fe58}, | ||
| 216 | {1, 0, 0, 0}}, | ||
| 217 | {{0x0fef05f78c4790, 0x2d773633b05d2e, 0x94229c3a951c94, 0xbbbd70df4911bb}, | ||
| 218 | {0xb2c6963d2c1168, 0x105f47a72b0d73, 0x9fdf6111614080, 0x7b7e94b39e67b0}, | ||
| 219 | {1, 0, 0, 0}}, | ||
| 220 | {{0xad1a7d6efbe2b3, 0xf012482c0da69d, 0x6b3bdf12438345, 0x40d7558d7aa4d9}, | ||
| 221 | {0x8a09fffb5c6d3d, 0x9a356e5d9ffd38, 0x5973f15f4f9b1c, 0xdcd5f59f63c3ea}, | ||
| 222 | {1, 0, 0, 0}}, | ||
| 223 | {{0xacf39f4c5ca7ab, 0x4c8071cc5fd737, 0xc64e3602cd1184, 0x0acd4644c9abba}, | ||
| 224 | {0x6c011a36d8bf6e, 0xfecd87ba24e32a, 0x19f6f56574fad8, 0x050b204ced9405}, | ||
| 225 | {1, 0, 0, 0}}, | ||
| 226 | {{0xed4f1cae7d9a96, 0x5ceef7ad94c40a, 0x778e4a3bf3ef9b, 0x7405783dc3b55e}, | ||
| 227 | {0x32477c61b6e8c6, 0xb46a97570f018b, 0x91176d0a7e95d1, 0x3df90fbc4c7d0e}, | ||
| 228 | {1, 0, 0, 0}}}}; | ||
| 229 | |||
| 230 | /* Precomputation for the group generator. */ | ||
| 231 | typedef struct { | ||
| 232 | felem g_pre_comp[2][16][3]; | ||
| 233 | int references; | ||
| 234 | } NISTP224_PRE_COMP; | ||
| 235 | |||
| 236 | const EC_METHOD *EC_GFp_nistp224_method(void) | ||
| 237 | { | ||
| 238 | static const EC_METHOD ret = { | ||
| 239 | EC_FLAGS_DEFAULT_OCT, | ||
| 240 | NID_X9_62_prime_field, | ||
| 241 | ec_GFp_nistp224_group_init, | ||
| 242 | ec_GFp_simple_group_finish, | ||
| 243 | ec_GFp_simple_group_clear_finish, | ||
| 244 | ec_GFp_nist_group_copy, | ||
| 245 | ec_GFp_nistp224_group_set_curve, | ||
| 246 | ec_GFp_simple_group_get_curve, | ||
| 247 | ec_GFp_simple_group_get_degree, | ||
| 248 | ec_GFp_simple_group_check_discriminant, | ||
| 249 | ec_GFp_simple_point_init, | ||
| 250 | ec_GFp_simple_point_finish, | ||
| 251 | ec_GFp_simple_point_clear_finish, | ||
| 252 | ec_GFp_simple_point_copy, | ||
| 253 | ec_GFp_simple_point_set_to_infinity, | ||
| 254 | ec_GFp_simple_set_Jprojective_coordinates_GFp, | ||
| 255 | ec_GFp_simple_get_Jprojective_coordinates_GFp, | ||
| 256 | ec_GFp_simple_point_set_affine_coordinates, | ||
| 257 | ec_GFp_nistp224_point_get_affine_coordinates, | ||
| 258 | 0 /* point_set_compressed_coordinates */, | ||
| 259 | 0 /* point2oct */, | ||
| 260 | 0 /* oct2point */, | ||
| 261 | ec_GFp_simple_add, | ||
| 262 | ec_GFp_simple_dbl, | ||
| 263 | ec_GFp_simple_invert, | ||
| 264 | ec_GFp_simple_is_at_infinity, | ||
| 265 | ec_GFp_simple_is_on_curve, | ||
| 266 | ec_GFp_simple_cmp, | ||
| 267 | ec_GFp_simple_make_affine, | ||
| 268 | ec_GFp_simple_points_make_affine, | ||
| 269 | ec_GFp_nistp224_points_mul, | ||
| 270 | ec_GFp_nistp224_precompute_mult, | ||
| 271 | ec_GFp_nistp224_have_precompute_mult, | ||
| 272 | ec_GFp_nist_field_mul, | ||
| 273 | ec_GFp_nist_field_sqr, | ||
| 274 | 0 /* field_div */, | ||
| 275 | 0 /* field_encode */, | ||
| 276 | 0 /* field_decode */, | ||
| 277 | 0 /* field_set_to_one */ }; | ||
| 278 | |||
| 279 | return &ret; | ||
| 280 | } | ||
| 281 | |||
| 282 | /* Helper functions to convert field elements to/from internal representation */ | ||
| 283 | static void bin28_to_felem(felem out, const u8 in[28]) | ||
| 284 | { | ||
| 285 | out[0] = *((const uint64_t *)(in)) & 0x00ffffffffffffff; | ||
| 286 | out[1] = (*((const uint64_t *)(in+7))) & 0x00ffffffffffffff; | ||
| 287 | out[2] = (*((const uint64_t *)(in+14))) & 0x00ffffffffffffff; | ||
| 288 | out[3] = (*((const uint64_t *)(in+21))) & 0x00ffffffffffffff; | ||
| 289 | } | ||
| 290 | |||
| 291 | static void felem_to_bin28(u8 out[28], const felem in) | ||
| 292 | { | ||
| 293 | unsigned i; | ||
| 294 | for (i = 0; i < 7; ++i) | ||
| 295 | { | ||
| 296 | out[i] = in[0]>>(8*i); | ||
| 297 | out[i+7] = in[1]>>(8*i); | ||
| 298 | out[i+14] = in[2]>>(8*i); | ||
| 299 | out[i+21] = in[3]>>(8*i); | ||
| 300 | } | ||
| 301 | } | ||
| 302 | |||
| 303 | /* To preserve endianness when using BN_bn2bin and BN_bin2bn */ | ||
| 304 | static void flip_endian(u8 *out, const u8 *in, unsigned len) | ||
| 305 | { | ||
| 306 | unsigned i; | ||
| 307 | for (i = 0; i < len; ++i) | ||
| 308 | out[i] = in[len-1-i]; | ||
| 309 | } | ||
| 310 | |||
| 311 | /* From OpenSSL BIGNUM to internal representation */ | ||
| 312 | static int BN_to_felem(felem out, const BIGNUM *bn) | ||
| 313 | { | ||
| 314 | felem_bytearray b_in; | ||
| 315 | felem_bytearray b_out; | ||
| 316 | unsigned num_bytes; | ||
| 317 | |||
| 318 | /* BN_bn2bin eats leading zeroes */ | ||
| 319 | memset(b_out, 0, sizeof b_out); | ||
| 320 | num_bytes = BN_num_bytes(bn); | ||
| 321 | if (num_bytes > sizeof b_out) | ||
| 322 | { | ||
| 323 | ECerr(EC_F_BN_TO_FELEM, EC_R_BIGNUM_OUT_OF_RANGE); | ||
| 324 | return 0; | ||
| 325 | } | ||
| 326 | if (BN_is_negative(bn)) | ||
| 327 | { | ||
| 328 | ECerr(EC_F_BN_TO_FELEM, EC_R_BIGNUM_OUT_OF_RANGE); | ||
| 329 | return 0; | ||
| 330 | } | ||
| 331 | num_bytes = BN_bn2bin(bn, b_in); | ||
| 332 | flip_endian(b_out, b_in, num_bytes); | ||
| 333 | bin28_to_felem(out, b_out); | ||
| 334 | return 1; | ||
| 335 | } | ||
| 336 | |||
| 337 | /* From internal representation to OpenSSL BIGNUM */ | ||
| 338 | static BIGNUM *felem_to_BN(BIGNUM *out, const felem in) | ||
| 339 | { | ||
| 340 | felem_bytearray b_in, b_out; | ||
| 341 | felem_to_bin28(b_in, in); | ||
| 342 | flip_endian(b_out, b_in, sizeof b_out); | ||
| 343 | return BN_bin2bn(b_out, sizeof b_out, out); | ||
| 344 | } | ||
| 345 | |||
| 346 | /******************************************************************************/ | ||
| 347 | /* FIELD OPERATIONS | ||
| 348 | * | ||
| 349 | * Field operations, using the internal representation of field elements. | ||
| 350 | * NB! These operations are specific to our point multiplication and cannot be | ||
| 351 | * expected to be correct in general - e.g., multiplication with a large scalar | ||
| 352 | * will cause an overflow. | ||
| 353 | * | ||
| 354 | */ | ||
| 355 | |||
| 356 | static void felem_one(felem out) | ||
| 357 | { | ||
| 358 | out[0] = 1; | ||
| 359 | out[1] = 0; | ||
| 360 | out[2] = 0; | ||
| 361 | out[3] = 0; | ||
| 362 | } | ||
| 363 | |||
| 364 | static void felem_assign(felem out, const felem in) | ||
| 365 | { | ||
| 366 | out[0] = in[0]; | ||
| 367 | out[1] = in[1]; | ||
| 368 | out[2] = in[2]; | ||
| 369 | out[3] = in[3]; | ||
| 370 | } | ||
| 371 | |||
| 372 | /* Sum two field elements: out += in */ | ||
| 373 | static void felem_sum(felem out, const felem in) | ||
| 374 | { | ||
| 375 | out[0] += in[0]; | ||
| 376 | out[1] += in[1]; | ||
| 377 | out[2] += in[2]; | ||
| 378 | out[3] += in[3]; | ||
| 379 | } | ||
| 380 | |||
| 381 | /* Get negative value: out = -in */ | ||
| 382 | /* Assumes in[i] < 2^57 */ | ||
| 383 | static void felem_neg(felem out, const felem in) | ||
| 384 | { | ||
| 385 | static const limb two58p2 = (((limb) 1) << 58) + (((limb) 1) << 2); | ||
| 386 | static const limb two58m2 = (((limb) 1) << 58) - (((limb) 1) << 2); | ||
| 387 | static const limb two58m42m2 = (((limb) 1) << 58) - | ||
| 388 | (((limb) 1) << 42) - (((limb) 1) << 2); | ||
| 389 | |||
| 390 | /* Set to 0 mod 2^224-2^96+1 to ensure out > in */ | ||
| 391 | out[0] = two58p2 - in[0]; | ||
| 392 | out[1] = two58m42m2 - in[1]; | ||
| 393 | out[2] = two58m2 - in[2]; | ||
| 394 | out[3] = two58m2 - in[3]; | ||
| 395 | } | ||
| 396 | |||
| 397 | /* Subtract field elements: out -= in */ | ||
| 398 | /* Assumes in[i] < 2^57 */ | ||
| 399 | static void felem_diff(felem out, const felem in) | ||
| 400 | { | ||
| 401 | static const limb two58p2 = (((limb) 1) << 58) + (((limb) 1) << 2); | ||
| 402 | static const limb two58m2 = (((limb) 1) << 58) - (((limb) 1) << 2); | ||
| 403 | static const limb two58m42m2 = (((limb) 1) << 58) - | ||
| 404 | (((limb) 1) << 42) - (((limb) 1) << 2); | ||
| 405 | |||
| 406 | /* Add 0 mod 2^224-2^96+1 to ensure out > in */ | ||
| 407 | out[0] += two58p2; | ||
| 408 | out[1] += two58m42m2; | ||
| 409 | out[2] += two58m2; | ||
| 410 | out[3] += two58m2; | ||
| 411 | |||
| 412 | out[0] -= in[0]; | ||
| 413 | out[1] -= in[1]; | ||
| 414 | out[2] -= in[2]; | ||
| 415 | out[3] -= in[3]; | ||
| 416 | } | ||
| 417 | |||
| 418 | /* Subtract in unreduced 128-bit mode: out -= in */ | ||
| 419 | /* Assumes in[i] < 2^119 */ | ||
| 420 | static void widefelem_diff(widefelem out, const widefelem in) | ||
| 421 | { | ||
| 422 | static const widelimb two120 = ((widelimb) 1) << 120; | ||
| 423 | static const widelimb two120m64 = (((widelimb) 1) << 120) - | ||
| 424 | (((widelimb) 1) << 64); | ||
| 425 | static const widelimb two120m104m64 = (((widelimb) 1) << 120) - | ||
| 426 | (((widelimb) 1) << 104) - (((widelimb) 1) << 64); | ||
| 427 | |||
| 428 | /* Add 0 mod 2^224-2^96+1 to ensure out > in */ | ||
| 429 | out[0] += two120; | ||
| 430 | out[1] += two120m64; | ||
| 431 | out[2] += two120m64; | ||
| 432 | out[3] += two120; | ||
| 433 | out[4] += two120m104m64; | ||
| 434 | out[5] += two120m64; | ||
| 435 | out[6] += two120m64; | ||
| 436 | |||
| 437 | out[0] -= in[0]; | ||
| 438 | out[1] -= in[1]; | ||
| 439 | out[2] -= in[2]; | ||
| 440 | out[3] -= in[3]; | ||
| 441 | out[4] -= in[4]; | ||
| 442 | out[5] -= in[5]; | ||
| 443 | out[6] -= in[6]; | ||
| 444 | } | ||
| 445 | |||
| 446 | /* Subtract in mixed mode: out128 -= in64 */ | ||
| 447 | /* in[i] < 2^63 */ | ||
| 448 | static void felem_diff_128_64(widefelem out, const felem in) | ||
| 449 | { | ||
| 450 | static const widelimb two64p8 = (((widelimb) 1) << 64) + | ||
| 451 | (((widelimb) 1) << 8); | ||
| 452 | static const widelimb two64m8 = (((widelimb) 1) << 64) - | ||
| 453 | (((widelimb) 1) << 8); | ||
| 454 | static const widelimb two64m48m8 = (((widelimb) 1) << 64) - | ||
| 455 | (((widelimb) 1) << 48) - (((widelimb) 1) << 8); | ||
| 456 | |||
| 457 | /* Add 0 mod 2^224-2^96+1 to ensure out > in */ | ||
| 458 | out[0] += two64p8; | ||
| 459 | out[1] += two64m48m8; | ||
| 460 | out[2] += two64m8; | ||
| 461 | out[3] += two64m8; | ||
| 462 | |||
| 463 | out[0] -= in[0]; | ||
| 464 | out[1] -= in[1]; | ||
| 465 | out[2] -= in[2]; | ||
| 466 | out[3] -= in[3]; | ||
| 467 | } | ||
| 468 | |||
| 469 | /* Multiply a field element by a scalar: out = out * scalar | ||
| 470 | * The scalars we actually use are small, so results fit without overflow */ | ||
| 471 | static void felem_scalar(felem out, const limb scalar) | ||
| 472 | { | ||
| 473 | out[0] *= scalar; | ||
| 474 | out[1] *= scalar; | ||
| 475 | out[2] *= scalar; | ||
| 476 | out[3] *= scalar; | ||
| 477 | } | ||
| 478 | |||
| 479 | /* Multiply an unreduced field element by a scalar: out = out * scalar | ||
| 480 | * The scalars we actually use are small, so results fit without overflow */ | ||
| 481 | static void widefelem_scalar(widefelem out, const widelimb scalar) | ||
| 482 | { | ||
| 483 | out[0] *= scalar; | ||
| 484 | out[1] *= scalar; | ||
| 485 | out[2] *= scalar; | ||
| 486 | out[3] *= scalar; | ||
| 487 | out[4] *= scalar; | ||
| 488 | out[5] *= scalar; | ||
| 489 | out[6] *= scalar; | ||
| 490 | } | ||
| 491 | |||
| 492 | /* Square a field element: out = in^2 */ | ||
| 493 | static void felem_square(widefelem out, const felem in) | ||
| 494 | { | ||
| 495 | limb tmp0, tmp1, tmp2; | ||
| 496 | tmp0 = 2 * in[0]; tmp1 = 2 * in[1]; tmp2 = 2 * in[2]; | ||
| 497 | out[0] = ((widelimb) in[0]) * in[0]; | ||
| 498 | out[1] = ((widelimb) in[0]) * tmp1; | ||
| 499 | out[2] = ((widelimb) in[0]) * tmp2 + ((widelimb) in[1]) * in[1]; | ||
| 500 | out[3] = ((widelimb) in[3]) * tmp0 + | ||
| 501 | ((widelimb) in[1]) * tmp2; | ||
| 502 | out[4] = ((widelimb) in[3]) * tmp1 + ((widelimb) in[2]) * in[2]; | ||
| 503 | out[5] = ((widelimb) in[3]) * tmp2; | ||
| 504 | out[6] = ((widelimb) in[3]) * in[3]; | ||
| 505 | } | ||
| 506 | |||
| 507 | /* Multiply two field elements: out = in1 * in2 */ | ||
| 508 | static void felem_mul(widefelem out, const felem in1, const felem in2) | ||
| 509 | { | ||
| 510 | out[0] = ((widelimb) in1[0]) * in2[0]; | ||
| 511 | out[1] = ((widelimb) in1[0]) * in2[1] + ((widelimb) in1[1]) * in2[0]; | ||
| 512 | out[2] = ((widelimb) in1[0]) * in2[2] + ((widelimb) in1[1]) * in2[1] + | ||
| 513 | ((widelimb) in1[2]) * in2[0]; | ||
| 514 | out[3] = ((widelimb) in1[0]) * in2[3] + ((widelimb) in1[1]) * in2[2] + | ||
| 515 | ((widelimb) in1[2]) * in2[1] + ((widelimb) in1[3]) * in2[0]; | ||
| 516 | out[4] = ((widelimb) in1[1]) * in2[3] + ((widelimb) in1[2]) * in2[2] + | ||
| 517 | ((widelimb) in1[3]) * in2[1]; | ||
| 518 | out[5] = ((widelimb) in1[2]) * in2[3] + ((widelimb) in1[3]) * in2[2]; | ||
| 519 | out[6] = ((widelimb) in1[3]) * in2[3]; | ||
| 520 | } | ||
| 521 | |||
| 522 | /* Reduce seven 128-bit coefficients to four 64-bit coefficients. | ||
| 523 | * Requires in[i] < 2^126, | ||
| 524 | * ensures out[0] < 2^56, out[1] < 2^56, out[2] < 2^56, out[3] <= 2^56 + 2^16 */ | ||
| 525 | static void felem_reduce(felem out, const widefelem in) | ||
| 526 | { | ||
| 527 | static const widelimb two127p15 = (((widelimb) 1) << 127) + | ||
| 528 | (((widelimb) 1) << 15); | ||
| 529 | static const widelimb two127m71 = (((widelimb) 1) << 127) - | ||
| 530 | (((widelimb) 1) << 71); | ||
| 531 | static const widelimb two127m71m55 = (((widelimb) 1) << 127) - | ||
| 532 | (((widelimb) 1) << 71) - (((widelimb) 1) << 55); | ||
| 533 | widelimb output[5]; | ||
| 534 | |||
| 535 | /* Add 0 mod 2^224-2^96+1 to ensure all differences are positive */ | ||
| 536 | output[0] = in[0] + two127p15; | ||
| 537 | output[1] = in[1] + two127m71m55; | ||
| 538 | output[2] = in[2] + two127m71; | ||
| 539 | output[3] = in[3]; | ||
| 540 | output[4] = in[4]; | ||
| 541 | |||
| 542 | /* Eliminate in[4], in[5], in[6] */ | ||
| 543 | output[4] += in[6] >> 16; | ||
| 544 | output[3] += (in[6] & 0xffff) << 40; | ||
| 545 | output[2] -= in[6]; | ||
| 546 | |||
| 547 | output[3] += in[5] >> 16; | ||
| 548 | output[2] += (in[5] & 0xffff) << 40; | ||
| 549 | output[1] -= in[5]; | ||
| 550 | |||
| 551 | output[2] += output[4] >> 16; | ||
| 552 | output[1] += (output[4] & 0xffff) << 40; | ||
| 553 | output[0] -= output[4]; | ||
| 554 | |||
| 555 | /* Carry 2 -> 3 -> 4 */ | ||
| 556 | output[3] += output[2] >> 56; | ||
| 557 | output[2] &= 0x00ffffffffffffff; | ||
| 558 | |||
| 559 | output[4] = output[3] >> 56; | ||
| 560 | output[3] &= 0x00ffffffffffffff; | ||
| 561 | |||
| 562 | /* Now output[2] < 2^56, output[3] < 2^56, output[4] < 2^72 */ | ||
| 563 | |||
| 564 | /* Eliminate output[4] */ | ||
| 565 | output[2] += output[4] >> 16; | ||
| 566 | /* output[2] < 2^56 + 2^56 = 2^57 */ | ||
| 567 | output[1] += (output[4] & 0xffff) << 40; | ||
| 568 | output[0] -= output[4]; | ||
| 569 | |||
| 570 | /* Carry 0 -> 1 -> 2 -> 3 */ | ||
| 571 | output[1] += output[0] >> 56; | ||
| 572 | out[0] = output[0] & 0x00ffffffffffffff; | ||
| 573 | |||
| 574 | output[2] += output[1] >> 56; | ||
| 575 | /* output[2] < 2^57 + 2^72 */ | ||
| 576 | out[1] = output[1] & 0x00ffffffffffffff; | ||
| 577 | output[3] += output[2] >> 56; | ||
| 578 | /* output[3] <= 2^56 + 2^16 */ | ||
| 579 | out[2] = output[2] & 0x00ffffffffffffff; | ||
| 580 | |||
| 581 | /* out[0] < 2^56, out[1] < 2^56, out[2] < 2^56, | ||
| 582 | * out[3] <= 2^56 + 2^16 (due to final carry), | ||
| 583 | * so out < 2*p */ | ||
| 584 | out[3] = output[3]; | ||
| 585 | } | ||
| 586 | |||
| 587 | static void felem_square_reduce(felem out, const felem in) | ||
| 588 | { | ||
| 589 | widefelem tmp; | ||
| 590 | felem_square(tmp, in); | ||
| 591 | felem_reduce(out, tmp); | ||
| 592 | } | ||
| 593 | |||
| 594 | static void felem_mul_reduce(felem out, const felem in1, const felem in2) | ||
| 595 | { | ||
| 596 | widefelem tmp; | ||
| 597 | felem_mul(tmp, in1, in2); | ||
| 598 | felem_reduce(out, tmp); | ||
| 599 | } | ||
| 600 | |||
| 601 | /* Reduce to unique minimal representation. | ||
| 602 | * Requires 0 <= in < 2*p (always call felem_reduce first) */ | ||
| 603 | static void felem_contract(felem out, const felem in) | ||
| 604 | { | ||
| 605 | static const int64_t two56 = ((limb) 1) << 56; | ||
| 606 | /* 0 <= in < 2*p, p = 2^224 - 2^96 + 1 */ | ||
| 607 | /* if in > p , reduce in = in - 2^224 + 2^96 - 1 */ | ||
| 608 | int64_t tmp[4], a; | ||
| 609 | tmp[0] = in[0]; | ||
| 610 | tmp[1] = in[1]; | ||
| 611 | tmp[2] = in[2]; | ||
| 612 | tmp[3] = in[3]; | ||
| 613 | /* Case 1: a = 1 iff in >= 2^224 */ | ||
| 614 | a = (in[3] >> 56); | ||
| 615 | tmp[0] -= a; | ||
| 616 | tmp[1] += a << 40; | ||
| 617 | tmp[3] &= 0x00ffffffffffffff; | ||
| 618 | /* Case 2: a = 0 iff p <= in < 2^224, i.e., | ||
| 619 | * the high 128 bits are all 1 and the lower part is non-zero */ | ||
| 620 | a = ((in[3] & in[2] & (in[1] | 0x000000ffffffffff)) + 1) | | ||
| 621 | (((int64_t)(in[0] + (in[1] & 0x000000ffffffffff)) - 1) >> 63); | ||
| 622 | a &= 0x00ffffffffffffff; | ||
| 623 | /* turn a into an all-one mask (if a = 0) or an all-zero mask */ | ||
| 624 | a = (a - 1) >> 63; | ||
| 625 | /* subtract 2^224 - 2^96 + 1 if a is all-one*/ | ||
| 626 | tmp[3] &= a ^ 0xffffffffffffffff; | ||
| 627 | tmp[2] &= a ^ 0xffffffffffffffff; | ||
| 628 | tmp[1] &= (a ^ 0xffffffffffffffff) | 0x000000ffffffffff; | ||
| 629 | tmp[0] -= 1 & a; | ||
| 630 | |||
| 631 | /* eliminate negative coefficients: if tmp[0] is negative, tmp[1] must | ||
| 632 | * be non-zero, so we only need one step */ | ||
| 633 | a = tmp[0] >> 63; | ||
| 634 | tmp[0] += two56 & a; | ||
| 635 | tmp[1] -= 1 & a; | ||
| 636 | |||
| 637 | /* carry 1 -> 2 -> 3 */ | ||
| 638 | tmp[2] += tmp[1] >> 56; | ||
| 639 | tmp[1] &= 0x00ffffffffffffff; | ||
| 640 | |||
| 641 | tmp[3] += tmp[2] >> 56; | ||
| 642 | tmp[2] &= 0x00ffffffffffffff; | ||
| 643 | |||
| 644 | /* Now 0 <= out < p */ | ||
| 645 | out[0] = tmp[0]; | ||
| 646 | out[1] = tmp[1]; | ||
| 647 | out[2] = tmp[2]; | ||
| 648 | out[3] = tmp[3]; | ||
| 649 | } | ||
| 650 | |||
| 651 | /* Zero-check: returns 1 if input is 0, and 0 otherwise. | ||
| 652 | * We know that field elements are reduced to in < 2^225, | ||
| 653 | * so we only need to check three cases: 0, 2^224 - 2^96 + 1, | ||
| 654 | * and 2^225 - 2^97 + 2 */ | ||
| 655 | static limb felem_is_zero(const felem in) | ||
| 656 | { | ||
| 657 | limb zero, two224m96p1, two225m97p2; | ||
| 658 | |||
| 659 | zero = in[0] | in[1] | in[2] | in[3]; | ||
| 660 | zero = (((int64_t)(zero) - 1) >> 63) & 1; | ||
| 661 | two224m96p1 = (in[0] ^ 1) | (in[1] ^ 0x00ffff0000000000) | ||
| 662 | | (in[2] ^ 0x00ffffffffffffff) | (in[3] ^ 0x00ffffffffffffff); | ||
| 663 | two224m96p1 = (((int64_t)(two224m96p1) - 1) >> 63) & 1; | ||
| 664 | two225m97p2 = (in[0] ^ 2) | (in[1] ^ 0x00fffe0000000000) | ||
| 665 | | (in[2] ^ 0x00ffffffffffffff) | (in[3] ^ 0x01ffffffffffffff); | ||
| 666 | two225m97p2 = (((int64_t)(two225m97p2) - 1) >> 63) & 1; | ||
| 667 | return (zero | two224m96p1 | two225m97p2); | ||
| 668 | } | ||
| 669 | |||
| 670 | static limb felem_is_zero_int(const felem in) | ||
| 671 | { | ||
| 672 | return (int) (felem_is_zero(in) & ((limb)1)); | ||
| 673 | } | ||
| 674 | |||
| 675 | /* Invert a field element */ | ||
| 676 | /* Computation chain copied from djb's code */ | ||
| 677 | static void felem_inv(felem out, const felem in) | ||
| 678 | { | ||
| 679 | felem ftmp, ftmp2, ftmp3, ftmp4; | ||
| 680 | widefelem tmp; | ||
| 681 | unsigned i; | ||
| 682 | |||
| 683 | felem_square(tmp, in); felem_reduce(ftmp, tmp); /* 2 */ | ||
| 684 | felem_mul(tmp, in, ftmp); felem_reduce(ftmp, tmp); /* 2^2 - 1 */ | ||
| 685 | felem_square(tmp, ftmp); felem_reduce(ftmp, tmp); /* 2^3 - 2 */ | ||
| 686 | felem_mul(tmp, in, ftmp); felem_reduce(ftmp, tmp); /* 2^3 - 1 */ | ||
| 687 | felem_square(tmp, ftmp); felem_reduce(ftmp2, tmp); /* 2^4 - 2 */ | ||
| 688 | felem_square(tmp, ftmp2); felem_reduce(ftmp2, tmp); /* 2^5 - 4 */ | ||
| 689 | felem_square(tmp, ftmp2); felem_reduce(ftmp2, tmp); /* 2^6 - 8 */ | ||
| 690 | felem_mul(tmp, ftmp2, ftmp); felem_reduce(ftmp, tmp); /* 2^6 - 1 */ | ||
| 691 | felem_square(tmp, ftmp); felem_reduce(ftmp2, tmp); /* 2^7 - 2 */ | ||
| 692 | for (i = 0; i < 5; ++i) /* 2^12 - 2^6 */ | ||
| 693 | { | ||
| 694 | felem_square(tmp, ftmp2); felem_reduce(ftmp2, tmp); | ||
| 695 | } | ||
| 696 | felem_mul(tmp, ftmp2, ftmp); felem_reduce(ftmp2, tmp); /* 2^12 - 1 */ | ||
| 697 | felem_square(tmp, ftmp2); felem_reduce(ftmp3, tmp); /* 2^13 - 2 */ | ||
| 698 | for (i = 0; i < 11; ++i) /* 2^24 - 2^12 */ | ||
| 699 | { | ||
| 700 | felem_square(tmp, ftmp3); felem_reduce(ftmp3, tmp); | ||
| 701 | } | ||
| 702 | felem_mul(tmp, ftmp3, ftmp2); felem_reduce(ftmp2, tmp); /* 2^24 - 1 */ | ||
| 703 | felem_square(tmp, ftmp2); felem_reduce(ftmp3, tmp); /* 2^25 - 2 */ | ||
| 704 | for (i = 0; i < 23; ++i) /* 2^48 - 2^24 */ | ||
| 705 | { | ||
| 706 | felem_square(tmp, ftmp3); felem_reduce(ftmp3, tmp); | ||
| 707 | } | ||
| 708 | felem_mul(tmp, ftmp3, ftmp2); felem_reduce(ftmp3, tmp); /* 2^48 - 1 */ | ||
| 709 | felem_square(tmp, ftmp3); felem_reduce(ftmp4, tmp); /* 2^49 - 2 */ | ||
| 710 | for (i = 0; i < 47; ++i) /* 2^96 - 2^48 */ | ||
| 711 | { | ||
| 712 | felem_square(tmp, ftmp4); felem_reduce(ftmp4, tmp); | ||
| 713 | } | ||
| 714 | felem_mul(tmp, ftmp3, ftmp4); felem_reduce(ftmp3, tmp); /* 2^96 - 1 */ | ||
| 715 | felem_square(tmp, ftmp3); felem_reduce(ftmp4, tmp); /* 2^97 - 2 */ | ||
| 716 | for (i = 0; i < 23; ++i) /* 2^120 - 2^24 */ | ||
| 717 | { | ||
| 718 | felem_square(tmp, ftmp4); felem_reduce(ftmp4, tmp); | ||
| 719 | } | ||
| 720 | felem_mul(tmp, ftmp2, ftmp4); felem_reduce(ftmp2, tmp); /* 2^120 - 1 */ | ||
| 721 | for (i = 0; i < 6; ++i) /* 2^126 - 2^6 */ | ||
| 722 | { | ||
| 723 | felem_square(tmp, ftmp2); felem_reduce(ftmp2, tmp); | ||
| 724 | } | ||
| 725 | felem_mul(tmp, ftmp2, ftmp); felem_reduce(ftmp, tmp); /* 2^126 - 1 */ | ||
| 726 | felem_square(tmp, ftmp); felem_reduce(ftmp, tmp); /* 2^127 - 2 */ | ||
| 727 | felem_mul(tmp, ftmp, in); felem_reduce(ftmp, tmp); /* 2^127 - 1 */ | ||
| 728 | for (i = 0; i < 97; ++i) /* 2^224 - 2^97 */ | ||
| 729 | { | ||
| 730 | felem_square(tmp, ftmp); felem_reduce(ftmp, tmp); | ||
| 731 | } | ||
| 732 | felem_mul(tmp, ftmp, ftmp3); felem_reduce(out, tmp); /* 2^224 - 2^96 - 1 */ | ||
| 733 | } | ||
| 734 | |||
| 735 | /* Copy in constant time: | ||
| 736 | * if icopy == 1, copy in to out, | ||
| 737 | * if icopy == 0, copy out to itself. */ | ||
| 738 | static void | ||
| 739 | copy_conditional(felem out, const felem in, limb icopy) | ||
| 740 | { | ||
| 741 | unsigned i; | ||
| 742 | /* icopy is a (64-bit) 0 or 1, so copy is either all-zero or all-one */ | ||
| 743 | const limb copy = -icopy; | ||
| 744 | for (i = 0; i < 4; ++i) | ||
| 745 | { | ||
| 746 | const limb tmp = copy & (in[i] ^ out[i]); | ||
| 747 | out[i] ^= tmp; | ||
| 748 | } | ||
| 749 | } | ||
| 750 | |||
| 751 | /******************************************************************************/ | ||
| 752 | /* ELLIPTIC CURVE POINT OPERATIONS | ||
| 753 | * | ||
| 754 | * Points are represented in Jacobian projective coordinates: | ||
| 755 | * (X, Y, Z) corresponds to the affine point (X/Z^2, Y/Z^3), | ||
| 756 | * or to the point at infinity if Z == 0. | ||
| 757 | * | ||
| 758 | */ | ||
| 759 | |||
| 760 | /* Double an elliptic curve point: | ||
| 761 | * (X', Y', Z') = 2 * (X, Y, Z), where | ||
| 762 | * X' = (3 * (X - Z^2) * (X + Z^2))^2 - 8 * X * Y^2 | ||
| 763 | * Y' = 3 * (X - Z^2) * (X + Z^2) * (4 * X * Y^2 - X') - 8 * Y^2 | ||
| 764 | * Z' = (Y + Z)^2 - Y^2 - Z^2 = 2 * Y * Z | ||
| 765 | * Outputs can equal corresponding inputs, i.e., x_out == x_in is allowed, | ||
| 766 | * while x_out == y_in is not (maybe this works, but it's not tested). */ | ||
| 767 | static void | ||
| 768 | point_double(felem x_out, felem y_out, felem z_out, | ||
| 769 | const felem x_in, const felem y_in, const felem z_in) | ||
| 770 | { | ||
| 771 | widefelem tmp, tmp2; | ||
| 772 | felem delta, gamma, beta, alpha, ftmp, ftmp2; | ||
| 773 | |||
| 774 | felem_assign(ftmp, x_in); | ||
| 775 | felem_assign(ftmp2, x_in); | ||
| 776 | |||
| 777 | /* delta = z^2 */ | ||
| 778 | felem_square(tmp, z_in); | ||
| 779 | felem_reduce(delta, tmp); | ||
| 780 | |||
| 781 | /* gamma = y^2 */ | ||
| 782 | felem_square(tmp, y_in); | ||
| 783 | felem_reduce(gamma, tmp); | ||
| 784 | |||
| 785 | /* beta = x*gamma */ | ||
| 786 | felem_mul(tmp, x_in, gamma); | ||
| 787 | felem_reduce(beta, tmp); | ||
| 788 | |||
| 789 | /* alpha = 3*(x-delta)*(x+delta) */ | ||
| 790 | felem_diff(ftmp, delta); | ||
| 791 | /* ftmp[i] < 2^57 + 2^58 + 2 < 2^59 */ | ||
| 792 | felem_sum(ftmp2, delta); | ||
| 793 | /* ftmp2[i] < 2^57 + 2^57 = 2^58 */ | ||
| 794 | felem_scalar(ftmp2, 3); | ||
| 795 | /* ftmp2[i] < 3 * 2^58 < 2^60 */ | ||
| 796 | felem_mul(tmp, ftmp, ftmp2); | ||
| 797 | /* tmp[i] < 2^60 * 2^59 * 4 = 2^121 */ | ||
| 798 | felem_reduce(alpha, tmp); | ||
| 799 | |||
| 800 | /* x' = alpha^2 - 8*beta */ | ||
| 801 | felem_square(tmp, alpha); | ||
| 802 | /* tmp[i] < 4 * 2^57 * 2^57 = 2^116 */ | ||
| 803 | felem_assign(ftmp, beta); | ||
| 804 | felem_scalar(ftmp, 8); | ||
| 805 | /* ftmp[i] < 8 * 2^57 = 2^60 */ | ||
| 806 | felem_diff_128_64(tmp, ftmp); | ||
| 807 | /* tmp[i] < 2^116 + 2^64 + 8 < 2^117 */ | ||
| 808 | felem_reduce(x_out, tmp); | ||
| 809 | |||
| 810 | /* z' = (y + z)^2 - gamma - delta */ | ||
| 811 | felem_sum(delta, gamma); | ||
| 812 | /* delta[i] < 2^57 + 2^57 = 2^58 */ | ||
| 813 | felem_assign(ftmp, y_in); | ||
| 814 | felem_sum(ftmp, z_in); | ||
| 815 | /* ftmp[i] < 2^57 + 2^57 = 2^58 */ | ||
| 816 | felem_square(tmp, ftmp); | ||
| 817 | /* tmp[i] < 4 * 2^58 * 2^58 = 2^118 */ | ||
| 818 | felem_diff_128_64(tmp, delta); | ||
| 819 | /* tmp[i] < 2^118 + 2^64 + 8 < 2^119 */ | ||
| 820 | felem_reduce(z_out, tmp); | ||
| 821 | |||
| 822 | /* y' = alpha*(4*beta - x') - 8*gamma^2 */ | ||
| 823 | felem_scalar(beta, 4); | ||
| 824 | /* beta[i] < 4 * 2^57 = 2^59 */ | ||
| 825 | felem_diff(beta, x_out); | ||
| 826 | /* beta[i] < 2^59 + 2^58 + 2 < 2^60 */ | ||
| 827 | felem_mul(tmp, alpha, beta); | ||
| 828 | /* tmp[i] < 4 * 2^57 * 2^60 = 2^119 */ | ||
| 829 | felem_square(tmp2, gamma); | ||
| 830 | /* tmp2[i] < 4 * 2^57 * 2^57 = 2^116 */ | ||
| 831 | widefelem_scalar(tmp2, 8); | ||
| 832 | /* tmp2[i] < 8 * 2^116 = 2^119 */ | ||
| 833 | widefelem_diff(tmp, tmp2); | ||
| 834 | /* tmp[i] < 2^119 + 2^120 < 2^121 */ | ||
| 835 | felem_reduce(y_out, tmp); | ||
| 836 | } | ||
| 837 | |||
| 838 | /* Add two elliptic curve points: | ||
| 839 | * (X_1, Y_1, Z_1) + (X_2, Y_2, Z_2) = (X_3, Y_3, Z_3), where | ||
| 840 | * X_3 = (Z_1^3 * Y_2 - Z_2^3 * Y_1)^2 - (Z_1^2 * X_2 - Z_2^2 * X_1)^3 - | ||
| 841 | * 2 * Z_2^2 * X_1 * (Z_1^2 * X_2 - Z_2^2 * X_1)^2 | ||
| 842 | * Y_3 = (Z_1^3 * Y_2 - Z_2^3 * Y_1) * (Z_2^2 * X_1 * (Z_1^2 * X_2 - Z_2^2 * X_1)^2 - X_3) - | ||
| 843 | * Z_2^3 * Y_1 * (Z_1^2 * X_2 - Z_2^2 * X_1)^3 | ||
| 844 | * Z_3 = (Z_1^2 * X_2 - Z_2^2 * X_1) * (Z_1 * Z_2) | ||
| 845 | * | ||
| 846 | * This runs faster if 'mixed' is set, which requires Z_2 = 1 or Z_2 = 0. | ||
| 847 | */ | ||
| 848 | |||
| 849 | /* This function is not entirely constant-time: | ||
| 850 | * it includes a branch for checking whether the two input points are equal, | ||
| 851 | * (while not equal to the point at infinity). | ||
| 852 | * This case never happens during single point multiplication, | ||
| 853 | * so there is no timing leak for ECDH or ECDSA signing. */ | ||
| 854 | static void point_add(felem x3, felem y3, felem z3, | ||
| 855 | const felem x1, const felem y1, const felem z1, | ||
| 856 | const int mixed, const felem x2, const felem y2, const felem z2) | ||
| 857 | { | ||
| 858 | felem ftmp, ftmp2, ftmp3, ftmp4, ftmp5, x_out, y_out, z_out; | ||
| 859 | widefelem tmp, tmp2; | ||
| 860 | limb z1_is_zero, z2_is_zero, x_equal, y_equal; | ||
| 861 | |||
| 862 | if (!mixed) | ||
| 863 | { | ||
| 864 | /* ftmp2 = z2^2 */ | ||
| 865 | felem_square(tmp, z2); | ||
| 866 | felem_reduce(ftmp2, tmp); | ||
| 867 | |||
| 868 | /* ftmp4 = z2^3 */ | ||
| 869 | felem_mul(tmp, ftmp2, z2); | ||
| 870 | felem_reduce(ftmp4, tmp); | ||
| 871 | |||
| 872 | /* ftmp4 = z2^3*y1 */ | ||
| 873 | felem_mul(tmp2, ftmp4, y1); | ||
| 874 | felem_reduce(ftmp4, tmp2); | ||
| 875 | |||
| 876 | /* ftmp2 = z2^2*x1 */ | ||
| 877 | felem_mul(tmp2, ftmp2, x1); | ||
| 878 | felem_reduce(ftmp2, tmp2); | ||
| 879 | } | ||
| 880 | else | ||
| 881 | { | ||
| 882 | /* We'll assume z2 = 1 (special case z2 = 0 is handled later) */ | ||
| 883 | |||
| 884 | /* ftmp4 = z2^3*y1 */ | ||
| 885 | felem_assign(ftmp4, y1); | ||
| 886 | |||
| 887 | /* ftmp2 = z2^2*x1 */ | ||
| 888 | felem_assign(ftmp2, x1); | ||
| 889 | } | ||
| 890 | |||
| 891 | /* ftmp = z1^2 */ | ||
| 892 | felem_square(tmp, z1); | ||
| 893 | felem_reduce(ftmp, tmp); | ||
| 894 | |||
| 895 | /* ftmp3 = z1^3 */ | ||
| 896 | felem_mul(tmp, ftmp, z1); | ||
| 897 | felem_reduce(ftmp3, tmp); | ||
| 898 | |||
| 899 | /* tmp = z1^3*y2 */ | ||
| 900 | felem_mul(tmp, ftmp3, y2); | ||
| 901 | /* tmp[i] < 4 * 2^57 * 2^57 = 2^116 */ | ||
| 902 | |||
| 903 | /* ftmp3 = z1^3*y2 - z2^3*y1 */ | ||
| 904 | felem_diff_128_64(tmp, ftmp4); | ||
| 905 | /* tmp[i] < 2^116 + 2^64 + 8 < 2^117 */ | ||
| 906 | felem_reduce(ftmp3, tmp); | ||
| 907 | |||
| 908 | /* tmp = z1^2*x2 */ | ||
| 909 | felem_mul(tmp, ftmp, x2); | ||
| 910 | /* tmp[i] < 4 * 2^57 * 2^57 = 2^116 */ | ||
| 911 | |||
| 912 | /* ftmp = z1^2*x2 - z2^2*x1 */ | ||
| 913 | felem_diff_128_64(tmp, ftmp2); | ||
| 914 | /* tmp[i] < 2^116 + 2^64 + 8 < 2^117 */ | ||
| 915 | felem_reduce(ftmp, tmp); | ||
| 916 | |||
| 917 | /* the formulae are incorrect if the points are equal | ||
| 918 | * so we check for this and do doubling if this happens */ | ||
| 919 | x_equal = felem_is_zero(ftmp); | ||
| 920 | y_equal = felem_is_zero(ftmp3); | ||
| 921 | z1_is_zero = felem_is_zero(z1); | ||
| 922 | z2_is_zero = felem_is_zero(z2); | ||
| 923 | /* In affine coordinates, (X_1, Y_1) == (X_2, Y_2) */ | ||
| 924 | if (x_equal && y_equal && !z1_is_zero && !z2_is_zero) | ||
| 925 | { | ||
| 926 | point_double(x3, y3, z3, x1, y1, z1); | ||
| 927 | return; | ||
| 928 | } | ||
| 929 | |||
| 930 | /* ftmp5 = z1*z2 */ | ||
| 931 | if (!mixed) | ||
| 932 | { | ||
| 933 | felem_mul(tmp, z1, z2); | ||
| 934 | felem_reduce(ftmp5, tmp); | ||
| 935 | } | ||
| 936 | else | ||
| 937 | { | ||
| 938 | /* special case z2 = 0 is handled later */ | ||
| 939 | felem_assign(ftmp5, z1); | ||
| 940 | } | ||
| 941 | |||
| 942 | /* z_out = (z1^2*x2 - z2^2*x1)*(z1*z2) */ | ||
| 943 | felem_mul(tmp, ftmp, ftmp5); | ||
| 944 | felem_reduce(z_out, tmp); | ||
| 945 | |||
| 946 | /* ftmp = (z1^2*x2 - z2^2*x1)^2 */ | ||
| 947 | felem_assign(ftmp5, ftmp); | ||
| 948 | felem_square(tmp, ftmp); | ||
| 949 | felem_reduce(ftmp, tmp); | ||
| 950 | |||
| 951 | /* ftmp5 = (z1^2*x2 - z2^2*x1)^3 */ | ||
| 952 | felem_mul(tmp, ftmp, ftmp5); | ||
| 953 | felem_reduce(ftmp5, tmp); | ||
| 954 | |||
| 955 | /* ftmp2 = z2^2*x1*(z1^2*x2 - z2^2*x1)^2 */ | ||
| 956 | felem_mul(tmp, ftmp2, ftmp); | ||
| 957 | felem_reduce(ftmp2, tmp); | ||
| 958 | |||
| 959 | /* tmp = z2^3*y1*(z1^2*x2 - z2^2*x1)^3 */ | ||
| 960 | felem_mul(tmp, ftmp4, ftmp5); | ||
| 961 | /* tmp[i] < 4 * 2^57 * 2^57 = 2^116 */ | ||
| 962 | |||
| 963 | /* tmp2 = (z1^3*y2 - z2^3*y1)^2 */ | ||
| 964 | felem_square(tmp2, ftmp3); | ||
| 965 | /* tmp2[i] < 4 * 2^57 * 2^57 < 2^116 */ | ||
| 966 | |||
| 967 | /* tmp2 = (z1^3*y2 - z2^3*y1)^2 - (z1^2*x2 - z2^2*x1)^3 */ | ||
| 968 | felem_diff_128_64(tmp2, ftmp5); | ||
| 969 | /* tmp2[i] < 2^116 + 2^64 + 8 < 2^117 */ | ||
| 970 | |||
| 971 | /* ftmp5 = 2*z2^2*x1*(z1^2*x2 - z2^2*x1)^2 */ | ||
| 972 | felem_assign(ftmp5, ftmp2); | ||
| 973 | felem_scalar(ftmp5, 2); | ||
| 974 | /* ftmp5[i] < 2 * 2^57 = 2^58 */ | ||
| 975 | |||
| 976 | /* x_out = (z1^3*y2 - z2^3*y1)^2 - (z1^2*x2 - z2^2*x1)^3 - | ||
| 977 | 2*z2^2*x1*(z1^2*x2 - z2^2*x1)^2 */ | ||
| 978 | felem_diff_128_64(tmp2, ftmp5); | ||
| 979 | /* tmp2[i] < 2^117 + 2^64 + 8 < 2^118 */ | ||
| 980 | felem_reduce(x_out, tmp2); | ||
| 981 | |||
| 982 | /* ftmp2 = z2^2*x1*(z1^2*x2 - z2^2*x1)^2 - x_out */ | ||
| 983 | felem_diff(ftmp2, x_out); | ||
| 984 | /* ftmp2[i] < 2^57 + 2^58 + 2 < 2^59 */ | ||
| 985 | |||
| 986 | /* tmp2 = (z1^3*y2 - z2^3*y1)*(z2^2*x1*(z1^2*x2 - z2^2*x1)^2 - x_out) */ | ||
| 987 | felem_mul(tmp2, ftmp3, ftmp2); | ||
| 988 | /* tmp2[i] < 4 * 2^57 * 2^59 = 2^118 */ | ||
| 989 | |||
| 990 | /* y_out = (z1^3*y2 - z2^3*y1)*(z2^2*x1*(z1^2*x2 - z2^2*x1)^2 - x_out) - | ||
| 991 | z2^3*y1*(z1^2*x2 - z2^2*x1)^3 */ | ||
| 992 | widefelem_diff(tmp2, tmp); | ||
| 993 | /* tmp2[i] < 2^118 + 2^120 < 2^121 */ | ||
| 994 | felem_reduce(y_out, tmp2); | ||
| 995 | |||
| 996 | /* the result (x_out, y_out, z_out) is incorrect if one of the inputs is | ||
| 997 | * the point at infinity, so we need to check for this separately */ | ||
| 998 | |||
| 999 | /* if point 1 is at infinity, copy point 2 to output, and vice versa */ | ||
| 1000 | copy_conditional(x_out, x2, z1_is_zero); | ||
| 1001 | copy_conditional(x_out, x1, z2_is_zero); | ||
| 1002 | copy_conditional(y_out, y2, z1_is_zero); | ||
| 1003 | copy_conditional(y_out, y1, z2_is_zero); | ||
| 1004 | copy_conditional(z_out, z2, z1_is_zero); | ||
| 1005 | copy_conditional(z_out, z1, z2_is_zero); | ||
| 1006 | felem_assign(x3, x_out); | ||
| 1007 | felem_assign(y3, y_out); | ||
| 1008 | felem_assign(z3, z_out); | ||
| 1009 | } | ||
| 1010 | |||
| 1011 | /* select_point selects the |idx|th point from a precomputation table and | ||
| 1012 | * copies it to out. */ | ||
| 1013 | static void select_point(const u64 idx, unsigned int size, const felem pre_comp[/*size*/][3], felem out[3]) | ||
| 1014 | { | ||
| 1015 | unsigned i, j; | ||
| 1016 | limb *outlimbs = &out[0][0]; | ||
| 1017 | memset(outlimbs, 0, 3 * sizeof(felem)); | ||
| 1018 | |||
| 1019 | for (i = 0; i < size; i++) | ||
| 1020 | { | ||
| 1021 | const limb *inlimbs = &pre_comp[i][0][0]; | ||
| 1022 | u64 mask = i ^ idx; | ||
| 1023 | mask |= mask >> 4; | ||
| 1024 | mask |= mask >> 2; | ||
| 1025 | mask |= mask >> 1; | ||
| 1026 | mask &= 1; | ||
| 1027 | mask--; | ||
| 1028 | for (j = 0; j < 4 * 3; j++) | ||
| 1029 | outlimbs[j] |= inlimbs[j] & mask; | ||
| 1030 | } | ||
| 1031 | } | ||
| 1032 | |||
| 1033 | /* get_bit returns the |i|th bit in |in| */ | ||
| 1034 | static char get_bit(const felem_bytearray in, unsigned i) | ||
| 1035 | { | ||
| 1036 | if (i >= 224) | ||
| 1037 | return 0; | ||
| 1038 | return (in[i >> 3] >> (i & 7)) & 1; | ||
| 1039 | } | ||
| 1040 | |||
| 1041 | /* Interleaved point multiplication using precomputed point multiples: | ||
| 1042 | * The small point multiples 0*P, 1*P, ..., 16*P are in pre_comp[], | ||
| 1043 | * the scalars in scalars[]. If g_scalar is non-NULL, we also add this multiple | ||
| 1044 | * of the generator, using certain (large) precomputed multiples in g_pre_comp. | ||
| 1045 | * Output point (X, Y, Z) is stored in x_out, y_out, z_out */ | ||
| 1046 | static void batch_mul(felem x_out, felem y_out, felem z_out, | ||
| 1047 | const felem_bytearray scalars[], const unsigned num_points, const u8 *g_scalar, | ||
| 1048 | const int mixed, const felem pre_comp[][17][3], const felem g_pre_comp[2][16][3]) | ||
| 1049 | { | ||
| 1050 | int i, skip; | ||
| 1051 | unsigned num; | ||
| 1052 | unsigned gen_mul = (g_scalar != NULL); | ||
| 1053 | felem nq[3], tmp[4]; | ||
| 1054 | u64 bits; | ||
| 1055 | u8 sign, digit; | ||
| 1056 | |||
| 1057 | /* set nq to the point at infinity */ | ||
| 1058 | memset(nq, 0, 3 * sizeof(felem)); | ||
| 1059 | |||
| 1060 | /* Loop over all scalars msb-to-lsb, interleaving additions | ||
| 1061 | * of multiples of the generator (two in each of the last 28 rounds) | ||
| 1062 | * and additions of other points multiples (every 5th round). | ||
| 1063 | */ | ||
| 1064 | skip = 1; /* save two point operations in the first round */ | ||
| 1065 | for (i = (num_points ? 220 : 27); i >= 0; --i) | ||
| 1066 | { | ||
| 1067 | /* double */ | ||
| 1068 | if (!skip) | ||
| 1069 | point_double(nq[0], nq[1], nq[2], nq[0], nq[1], nq[2]); | ||
| 1070 | |||
| 1071 | /* add multiples of the generator */ | ||
| 1072 | if (gen_mul && (i <= 27)) | ||
| 1073 | { | ||
| 1074 | /* first, look 28 bits upwards */ | ||
| 1075 | bits = get_bit(g_scalar, i + 196) << 3; | ||
| 1076 | bits |= get_bit(g_scalar, i + 140) << 2; | ||
| 1077 | bits |= get_bit(g_scalar, i + 84) << 1; | ||
| 1078 | bits |= get_bit(g_scalar, i + 28); | ||
| 1079 | /* select the point to add, in constant time */ | ||
| 1080 | select_point(bits, 16, g_pre_comp[1], tmp); | ||
| 1081 | |||
| 1082 | if (!skip) | ||
| 1083 | { | ||
| 1084 | point_add(nq[0], nq[1], nq[2], | ||
| 1085 | nq[0], nq[1], nq[2], | ||
| 1086 | 1 /* mixed */, tmp[0], tmp[1], tmp[2]); | ||
| 1087 | } | ||
| 1088 | else | ||
| 1089 | { | ||
| 1090 | memcpy(nq, tmp, 3 * sizeof(felem)); | ||
| 1091 | skip = 0; | ||
| 1092 | } | ||
| 1093 | |||
| 1094 | /* second, look at the current position */ | ||
| 1095 | bits = get_bit(g_scalar, i + 168) << 3; | ||
| 1096 | bits |= get_bit(g_scalar, i + 112) << 2; | ||
| 1097 | bits |= get_bit(g_scalar, i + 56) << 1; | ||
| 1098 | bits |= get_bit(g_scalar, i); | ||
| 1099 | /* select the point to add, in constant time */ | ||
| 1100 | select_point(bits, 16, g_pre_comp[0], tmp); | ||
| 1101 | point_add(nq[0], nq[1], nq[2], | ||
| 1102 | nq[0], nq[1], nq[2], | ||
| 1103 | 1 /* mixed */, tmp[0], tmp[1], tmp[2]); | ||
| 1104 | } | ||
| 1105 | |||
| 1106 | /* do other additions every 5 doublings */ | ||
| 1107 | if (num_points && (i % 5 == 0)) | ||
| 1108 | { | ||
| 1109 | /* loop over all scalars */ | ||
| 1110 | for (num = 0; num < num_points; ++num) | ||
| 1111 | { | ||
| 1112 | bits = get_bit(scalars[num], i + 4) << 5; | ||
| 1113 | bits |= get_bit(scalars[num], i + 3) << 4; | ||
| 1114 | bits |= get_bit(scalars[num], i + 2) << 3; | ||
| 1115 | bits |= get_bit(scalars[num], i + 1) << 2; | ||
| 1116 | bits |= get_bit(scalars[num], i) << 1; | ||
| 1117 | bits |= get_bit(scalars[num], i - 1); | ||
| 1118 | ec_GFp_nistp_recode_scalar_bits(&sign, &digit, bits); | ||
| 1119 | |||
| 1120 | /* select the point to add or subtract */ | ||
| 1121 | select_point(digit, 17, pre_comp[num], tmp); | ||
| 1122 | felem_neg(tmp[3], tmp[1]); /* (X, -Y, Z) is the negative point */ | ||
| 1123 | copy_conditional(tmp[1], tmp[3], sign); | ||
| 1124 | |||
| 1125 | if (!skip) | ||
| 1126 | { | ||
| 1127 | point_add(nq[0], nq[1], nq[2], | ||
| 1128 | nq[0], nq[1], nq[2], | ||
| 1129 | mixed, tmp[0], tmp[1], tmp[2]); | ||
| 1130 | } | ||
| 1131 | else | ||
| 1132 | { | ||
| 1133 | memcpy(nq, tmp, 3 * sizeof(felem)); | ||
| 1134 | skip = 0; | ||
| 1135 | } | ||
| 1136 | } | ||
| 1137 | } | ||
| 1138 | } | ||
| 1139 | felem_assign(x_out, nq[0]); | ||
| 1140 | felem_assign(y_out, nq[1]); | ||
| 1141 | felem_assign(z_out, nq[2]); | ||
| 1142 | } | ||
| 1143 | |||
| 1144 | /******************************************************************************/ | ||
| 1145 | /* FUNCTIONS TO MANAGE PRECOMPUTATION | ||
| 1146 | */ | ||
| 1147 | |||
| 1148 | static NISTP224_PRE_COMP *nistp224_pre_comp_new() | ||
| 1149 | { | ||
| 1150 | NISTP224_PRE_COMP *ret = NULL; | ||
| 1151 | ret = (NISTP224_PRE_COMP *) OPENSSL_malloc(sizeof *ret); | ||
| 1152 | if (!ret) | ||
| 1153 | { | ||
| 1154 | ECerr(EC_F_NISTP224_PRE_COMP_NEW, ERR_R_MALLOC_FAILURE); | ||
| 1155 | return ret; | ||
| 1156 | } | ||
| 1157 | memset(ret->g_pre_comp, 0, sizeof(ret->g_pre_comp)); | ||
| 1158 | ret->references = 1; | ||
| 1159 | return ret; | ||
| 1160 | } | ||
| 1161 | |||
| 1162 | static void *nistp224_pre_comp_dup(void *src_) | ||
| 1163 | { | ||
| 1164 | NISTP224_PRE_COMP *src = src_; | ||
| 1165 | |||
| 1166 | /* no need to actually copy, these objects never change! */ | ||
| 1167 | CRYPTO_add(&src->references, 1, CRYPTO_LOCK_EC_PRE_COMP); | ||
| 1168 | |||
| 1169 | return src_; | ||
| 1170 | } | ||
| 1171 | |||
| 1172 | static void nistp224_pre_comp_free(void *pre_) | ||
| 1173 | { | ||
| 1174 | int i; | ||
| 1175 | NISTP224_PRE_COMP *pre = pre_; | ||
| 1176 | |||
| 1177 | if (!pre) | ||
| 1178 | return; | ||
| 1179 | |||
| 1180 | i = CRYPTO_add(&pre->references, -1, CRYPTO_LOCK_EC_PRE_COMP); | ||
| 1181 | if (i > 0) | ||
| 1182 | return; | ||
| 1183 | |||
| 1184 | OPENSSL_free(pre); | ||
| 1185 | } | ||
| 1186 | |||
| 1187 | static void nistp224_pre_comp_clear_free(void *pre_) | ||
| 1188 | { | ||
| 1189 | int i; | ||
| 1190 | NISTP224_PRE_COMP *pre = pre_; | ||
| 1191 | |||
| 1192 | if (!pre) | ||
| 1193 | return; | ||
| 1194 | |||
| 1195 | i = CRYPTO_add(&pre->references, -1, CRYPTO_LOCK_EC_PRE_COMP); | ||
| 1196 | if (i > 0) | ||
| 1197 | return; | ||
| 1198 | |||
| 1199 | OPENSSL_cleanse(pre, sizeof *pre); | ||
| 1200 | OPENSSL_free(pre); | ||
| 1201 | } | ||
| 1202 | |||
| 1203 | /******************************************************************************/ | ||
| 1204 | /* OPENSSL EC_METHOD FUNCTIONS | ||
| 1205 | */ | ||
| 1206 | |||
| 1207 | int ec_GFp_nistp224_group_init(EC_GROUP *group) | ||
| 1208 | { | ||
| 1209 | int ret; | ||
| 1210 | ret = ec_GFp_simple_group_init(group); | ||
| 1211 | group->a_is_minus3 = 1; | ||
| 1212 | return ret; | ||
| 1213 | } | ||
| 1214 | |||
| 1215 | int ec_GFp_nistp224_group_set_curve(EC_GROUP *group, const BIGNUM *p, | ||
| 1216 | const BIGNUM *a, const BIGNUM *b, BN_CTX *ctx) | ||
| 1217 | { | ||
| 1218 | int ret = 0; | ||
| 1219 | BN_CTX *new_ctx = NULL; | ||
| 1220 | BIGNUM *curve_p, *curve_a, *curve_b; | ||
| 1221 | |||
| 1222 | if (ctx == NULL) | ||
| 1223 | if ((ctx = new_ctx = BN_CTX_new()) == NULL) return 0; | ||
| 1224 | BN_CTX_start(ctx); | ||
| 1225 | if (((curve_p = BN_CTX_get(ctx)) == NULL) || | ||
| 1226 | ((curve_a = BN_CTX_get(ctx)) == NULL) || | ||
| 1227 | ((curve_b = BN_CTX_get(ctx)) == NULL)) goto err; | ||
| 1228 | BN_bin2bn(nistp224_curve_params[0], sizeof(felem_bytearray), curve_p); | ||
| 1229 | BN_bin2bn(nistp224_curve_params[1], sizeof(felem_bytearray), curve_a); | ||
| 1230 | BN_bin2bn(nistp224_curve_params[2], sizeof(felem_bytearray), curve_b); | ||
| 1231 | if ((BN_cmp(curve_p, p)) || (BN_cmp(curve_a, a)) || | ||
| 1232 | (BN_cmp(curve_b, b))) | ||
| 1233 | { | ||
| 1234 | ECerr(EC_F_EC_GFP_NISTP224_GROUP_SET_CURVE, | ||
| 1235 | EC_R_WRONG_CURVE_PARAMETERS); | ||
| 1236 | goto err; | ||
| 1237 | } | ||
| 1238 | group->field_mod_func = BN_nist_mod_224; | ||
| 1239 | ret = ec_GFp_simple_group_set_curve(group, p, a, b, ctx); | ||
| 1240 | err: | ||
| 1241 | BN_CTX_end(ctx); | ||
| 1242 | if (new_ctx != NULL) | ||
| 1243 | BN_CTX_free(new_ctx); | ||
| 1244 | return ret; | ||
| 1245 | } | ||
| 1246 | |||
| 1247 | /* Takes the Jacobian coordinates (X, Y, Z) of a point and returns | ||
| 1248 | * (X', Y') = (X/Z^2, Y/Z^3) */ | ||
| 1249 | int ec_GFp_nistp224_point_get_affine_coordinates(const EC_GROUP *group, | ||
| 1250 | const EC_POINT *point, BIGNUM *x, BIGNUM *y, BN_CTX *ctx) | ||
| 1251 | { | ||
| 1252 | felem z1, z2, x_in, y_in, x_out, y_out; | ||
| 1253 | widefelem tmp; | ||
| 1254 | |||
| 1255 | if (EC_POINT_is_at_infinity(group, point)) | ||
| 1256 | { | ||
| 1257 | ECerr(EC_F_EC_GFP_NISTP224_POINT_GET_AFFINE_COORDINATES, | ||
| 1258 | EC_R_POINT_AT_INFINITY); | ||
| 1259 | return 0; | ||
| 1260 | } | ||
| 1261 | if ((!BN_to_felem(x_in, &point->X)) || (!BN_to_felem(y_in, &point->Y)) || | ||
| 1262 | (!BN_to_felem(z1, &point->Z))) return 0; | ||
| 1263 | felem_inv(z2, z1); | ||
| 1264 | felem_square(tmp, z2); felem_reduce(z1, tmp); | ||
| 1265 | felem_mul(tmp, x_in, z1); felem_reduce(x_in, tmp); | ||
| 1266 | felem_contract(x_out, x_in); | ||
| 1267 | if (x != NULL) | ||
| 1268 | { | ||
| 1269 | if (!felem_to_BN(x, x_out)) { | ||
| 1270 | ECerr(EC_F_EC_GFP_NISTP224_POINT_GET_AFFINE_COORDINATES, | ||
| 1271 | ERR_R_BN_LIB); | ||
| 1272 | return 0; | ||
| 1273 | } | ||
| 1274 | } | ||
| 1275 | felem_mul(tmp, z1, z2); felem_reduce(z1, tmp); | ||
| 1276 | felem_mul(tmp, y_in, z1); felem_reduce(y_in, tmp); | ||
| 1277 | felem_contract(y_out, y_in); | ||
| 1278 | if (y != NULL) | ||
| 1279 | { | ||
| 1280 | if (!felem_to_BN(y, y_out)) { | ||
| 1281 | ECerr(EC_F_EC_GFP_NISTP224_POINT_GET_AFFINE_COORDINATES, | ||
| 1282 | ERR_R_BN_LIB); | ||
| 1283 | return 0; | ||
| 1284 | } | ||
| 1285 | } | ||
| 1286 | return 1; | ||
| 1287 | } | ||
| 1288 | |||
| 1289 | static void make_points_affine(size_t num, felem points[/*num*/][3], felem tmp_felems[/*num+1*/]) | ||
| 1290 | { | ||
| 1291 | /* Runs in constant time, unless an input is the point at infinity | ||
| 1292 | * (which normally shouldn't happen). */ | ||
| 1293 | ec_GFp_nistp_points_make_affine_internal( | ||
| 1294 | num, | ||
| 1295 | points, | ||
| 1296 | sizeof(felem), | ||
| 1297 | tmp_felems, | ||
| 1298 | (void (*)(void *)) felem_one, | ||
| 1299 | (int (*)(const void *)) felem_is_zero_int, | ||
| 1300 | (void (*)(void *, const void *)) felem_assign, | ||
| 1301 | (void (*)(void *, const void *)) felem_square_reduce, | ||
| 1302 | (void (*)(void *, const void *, const void *)) felem_mul_reduce, | ||
| 1303 | (void (*)(void *, const void *)) felem_inv, | ||
| 1304 | (void (*)(void *, const void *)) felem_contract); | ||
| 1305 | } | ||
| 1306 | |||
| 1307 | /* Computes scalar*generator + \sum scalars[i]*points[i], ignoring NULL values | ||
| 1308 | * Result is stored in r (r can equal one of the inputs). */ | ||
| 1309 | int ec_GFp_nistp224_points_mul(const EC_GROUP *group, EC_POINT *r, | ||
| 1310 | const BIGNUM *scalar, size_t num, const EC_POINT *points[], | ||
| 1311 | const BIGNUM *scalars[], BN_CTX *ctx) | ||
| 1312 | { | ||
| 1313 | int ret = 0; | ||
| 1314 | int j; | ||
| 1315 | unsigned i; | ||
| 1316 | int mixed = 0; | ||
| 1317 | BN_CTX *new_ctx = NULL; | ||
| 1318 | BIGNUM *x, *y, *z, *tmp_scalar; | ||
| 1319 | felem_bytearray g_secret; | ||
| 1320 | felem_bytearray *secrets = NULL; | ||
| 1321 | felem (*pre_comp)[17][3] = NULL; | ||
| 1322 | felem *tmp_felems = NULL; | ||
| 1323 | felem_bytearray tmp; | ||
| 1324 | unsigned num_bytes; | ||
| 1325 | int have_pre_comp = 0; | ||
| 1326 | size_t num_points = num; | ||
| 1327 | felem x_in, y_in, z_in, x_out, y_out, z_out; | ||
| 1328 | NISTP224_PRE_COMP *pre = NULL; | ||
| 1329 | const felem (*g_pre_comp)[16][3] = NULL; | ||
| 1330 | EC_POINT *generator = NULL; | ||
| 1331 | const EC_POINT *p = NULL; | ||
| 1332 | const BIGNUM *p_scalar = NULL; | ||
| 1333 | |||
| 1334 | if (ctx == NULL) | ||
| 1335 | if ((ctx = new_ctx = BN_CTX_new()) == NULL) return 0; | ||
| 1336 | BN_CTX_start(ctx); | ||
| 1337 | if (((x = BN_CTX_get(ctx)) == NULL) || | ||
| 1338 | ((y = BN_CTX_get(ctx)) == NULL) || | ||
| 1339 | ((z = BN_CTX_get(ctx)) == NULL) || | ||
| 1340 | ((tmp_scalar = BN_CTX_get(ctx)) == NULL)) | ||
| 1341 | goto err; | ||
| 1342 | |||
| 1343 | if (scalar != NULL) | ||
| 1344 | { | ||
| 1345 | pre = EC_EX_DATA_get_data(group->extra_data, | ||
| 1346 | nistp224_pre_comp_dup, nistp224_pre_comp_free, | ||
| 1347 | nistp224_pre_comp_clear_free); | ||
| 1348 | if (pre) | ||
| 1349 | /* we have precomputation, try to use it */ | ||
| 1350 | g_pre_comp = (const felem (*)[16][3]) pre->g_pre_comp; | ||
| 1351 | else | ||
| 1352 | /* try to use the standard precomputation */ | ||
| 1353 | g_pre_comp = &gmul[0]; | ||
| 1354 | generator = EC_POINT_new(group); | ||
| 1355 | if (generator == NULL) | ||
| 1356 | goto err; | ||
| 1357 | /* get the generator from precomputation */ | ||
| 1358 | if (!felem_to_BN(x, g_pre_comp[0][1][0]) || | ||
| 1359 | !felem_to_BN(y, g_pre_comp[0][1][1]) || | ||
| 1360 | !felem_to_BN(z, g_pre_comp[0][1][2])) | ||
| 1361 | { | ||
| 1362 | ECerr(EC_F_EC_GFP_NISTP224_POINTS_MUL, ERR_R_BN_LIB); | ||
| 1363 | goto err; | ||
| 1364 | } | ||
| 1365 | if (!EC_POINT_set_Jprojective_coordinates_GFp(group, | ||
| 1366 | generator, x, y, z, ctx)) | ||
| 1367 | goto err; | ||
| 1368 | if (0 == EC_POINT_cmp(group, generator, group->generator, ctx)) | ||
| 1369 | /* precomputation matches generator */ | ||
| 1370 | have_pre_comp = 1; | ||
| 1371 | else | ||
| 1372 | /* we don't have valid precomputation: | ||
| 1373 | * treat the generator as a random point */ | ||
| 1374 | num_points = num_points + 1; | ||
| 1375 | } | ||
| 1376 | |||
| 1377 | if (num_points > 0) | ||
| 1378 | { | ||
| 1379 | if (num_points >= 3) | ||
| 1380 | { | ||
| 1381 | /* unless we precompute multiples for just one or two points, | ||
| 1382 | * converting those into affine form is time well spent */ | ||
| 1383 | mixed = 1; | ||
| 1384 | } | ||
| 1385 | secrets = OPENSSL_malloc(num_points * sizeof(felem_bytearray)); | ||
| 1386 | pre_comp = OPENSSL_malloc(num_points * 17 * 3 * sizeof(felem)); | ||
| 1387 | if (mixed) | ||
| 1388 | tmp_felems = OPENSSL_malloc((num_points * 17 + 1) * sizeof(felem)); | ||
| 1389 | if ((secrets == NULL) || (pre_comp == NULL) || (mixed && (tmp_felems == NULL))) | ||
| 1390 | { | ||
| 1391 | ECerr(EC_F_EC_GFP_NISTP224_POINTS_MUL, ERR_R_MALLOC_FAILURE); | ||
| 1392 | goto err; | ||
| 1393 | } | ||
| 1394 | |||
| 1395 | /* we treat NULL scalars as 0, and NULL points as points at infinity, | ||
| 1396 | * i.e., they contribute nothing to the linear combination */ | ||
| 1397 | memset(secrets, 0, num_points * sizeof(felem_bytearray)); | ||
| 1398 | memset(pre_comp, 0, num_points * 17 * 3 * sizeof(felem)); | ||
| 1399 | for (i = 0; i < num_points; ++i) | ||
| 1400 | { | ||
| 1401 | if (i == num) | ||
| 1402 | /* the generator */ | ||
| 1403 | { | ||
| 1404 | p = EC_GROUP_get0_generator(group); | ||
| 1405 | p_scalar = scalar; | ||
| 1406 | } | ||
| 1407 | else | ||
| 1408 | /* the i^th point */ | ||
| 1409 | { | ||
| 1410 | p = points[i]; | ||
| 1411 | p_scalar = scalars[i]; | ||
| 1412 | } | ||
| 1413 | if ((p_scalar != NULL) && (p != NULL)) | ||
| 1414 | { | ||
| 1415 | /* reduce scalar to 0 <= scalar < 2^224 */ | ||
| 1416 | if ((BN_num_bits(p_scalar) > 224) || (BN_is_negative(p_scalar))) | ||
| 1417 | { | ||
| 1418 | /* this is an unusual input, and we don't guarantee | ||
| 1419 | * constant-timeness */ | ||
| 1420 | if (!BN_nnmod(tmp_scalar, p_scalar, &group->order, ctx)) | ||
| 1421 | { | ||
| 1422 | ECerr(EC_F_EC_GFP_NISTP224_POINTS_MUL, ERR_R_BN_LIB); | ||
| 1423 | goto err; | ||
| 1424 | } | ||
| 1425 | num_bytes = BN_bn2bin(tmp_scalar, tmp); | ||
| 1426 | } | ||
| 1427 | else | ||
| 1428 | num_bytes = BN_bn2bin(p_scalar, tmp); | ||
| 1429 | flip_endian(secrets[i], tmp, num_bytes); | ||
| 1430 | /* precompute multiples */ | ||
| 1431 | if ((!BN_to_felem(x_out, &p->X)) || | ||
| 1432 | (!BN_to_felem(y_out, &p->Y)) || | ||
| 1433 | (!BN_to_felem(z_out, &p->Z))) goto err; | ||
| 1434 | felem_assign(pre_comp[i][1][0], x_out); | ||
| 1435 | felem_assign(pre_comp[i][1][1], y_out); | ||
| 1436 | felem_assign(pre_comp[i][1][2], z_out); | ||
| 1437 | for (j = 2; j <= 16; ++j) | ||
| 1438 | { | ||
| 1439 | if (j & 1) | ||
| 1440 | { | ||
| 1441 | point_add( | ||
| 1442 | pre_comp[i][j][0], pre_comp[i][j][1], pre_comp[i][j][2], | ||
| 1443 | pre_comp[i][1][0], pre_comp[i][1][1], pre_comp[i][1][2], | ||
| 1444 | 0, pre_comp[i][j-1][0], pre_comp[i][j-1][1], pre_comp[i][j-1][2]); | ||
| 1445 | } | ||
| 1446 | else | ||
| 1447 | { | ||
| 1448 | point_double( | ||
| 1449 | pre_comp[i][j][0], pre_comp[i][j][1], pre_comp[i][j][2], | ||
| 1450 | pre_comp[i][j/2][0], pre_comp[i][j/2][1], pre_comp[i][j/2][2]); | ||
| 1451 | } | ||
| 1452 | } | ||
| 1453 | } | ||
| 1454 | } | ||
| 1455 | if (mixed) | ||
| 1456 | make_points_affine(num_points * 17, pre_comp[0], tmp_felems); | ||
| 1457 | } | ||
| 1458 | |||
| 1459 | /* the scalar for the generator */ | ||
| 1460 | if ((scalar != NULL) && (have_pre_comp)) | ||
| 1461 | { | ||
| 1462 | memset(g_secret, 0, sizeof g_secret); | ||
| 1463 | /* reduce scalar to 0 <= scalar < 2^224 */ | ||
| 1464 | if ((BN_num_bits(scalar) > 224) || (BN_is_negative(scalar))) | ||
| 1465 | { | ||
| 1466 | /* this is an unusual input, and we don't guarantee | ||
| 1467 | * constant-timeness */ | ||
| 1468 | if (!BN_nnmod(tmp_scalar, scalar, &group->order, ctx)) | ||
| 1469 | { | ||
| 1470 | ECerr(EC_F_EC_GFP_NISTP224_POINTS_MUL, ERR_R_BN_LIB); | ||
| 1471 | goto err; | ||
| 1472 | } | ||
| 1473 | num_bytes = BN_bn2bin(tmp_scalar, tmp); | ||
| 1474 | } | ||
| 1475 | else | ||
| 1476 | num_bytes = BN_bn2bin(scalar, tmp); | ||
| 1477 | flip_endian(g_secret, tmp, num_bytes); | ||
| 1478 | /* do the multiplication with generator precomputation*/ | ||
| 1479 | batch_mul(x_out, y_out, z_out, | ||
| 1480 | (const felem_bytearray (*)) secrets, num_points, | ||
| 1481 | g_secret, | ||
| 1482 | mixed, (const felem (*)[17][3]) pre_comp, | ||
| 1483 | g_pre_comp); | ||
| 1484 | } | ||
| 1485 | else | ||
| 1486 | /* do the multiplication without generator precomputation */ | ||
| 1487 | batch_mul(x_out, y_out, z_out, | ||
| 1488 | (const felem_bytearray (*)) secrets, num_points, | ||
| 1489 | NULL, mixed, (const felem (*)[17][3]) pre_comp, NULL); | ||
| 1490 | /* reduce the output to its unique minimal representation */ | ||
| 1491 | felem_contract(x_in, x_out); | ||
| 1492 | felem_contract(y_in, y_out); | ||
| 1493 | felem_contract(z_in, z_out); | ||
| 1494 | if ((!felem_to_BN(x, x_in)) || (!felem_to_BN(y, y_in)) || | ||
| 1495 | (!felem_to_BN(z, z_in))) | ||
| 1496 | { | ||
| 1497 | ECerr(EC_F_EC_GFP_NISTP224_POINTS_MUL, ERR_R_BN_LIB); | ||
| 1498 | goto err; | ||
| 1499 | } | ||
| 1500 | ret = EC_POINT_set_Jprojective_coordinates_GFp(group, r, x, y, z, ctx); | ||
| 1501 | |||
| 1502 | err: | ||
| 1503 | BN_CTX_end(ctx); | ||
| 1504 | if (generator != NULL) | ||
| 1505 | EC_POINT_free(generator); | ||
| 1506 | if (new_ctx != NULL) | ||
| 1507 | BN_CTX_free(new_ctx); | ||
| 1508 | if (secrets != NULL) | ||
| 1509 | OPENSSL_free(secrets); | ||
| 1510 | if (pre_comp != NULL) | ||
| 1511 | OPENSSL_free(pre_comp); | ||
| 1512 | if (tmp_felems != NULL) | ||
| 1513 | OPENSSL_free(tmp_felems); | ||
| 1514 | return ret; | ||
| 1515 | } | ||
| 1516 | |||
| 1517 | int ec_GFp_nistp224_precompute_mult(EC_GROUP *group, BN_CTX *ctx) | ||
| 1518 | { | ||
| 1519 | int ret = 0; | ||
| 1520 | NISTP224_PRE_COMP *pre = NULL; | ||
| 1521 | int i, j; | ||
| 1522 | BN_CTX *new_ctx = NULL; | ||
| 1523 | BIGNUM *x, *y; | ||
| 1524 | EC_POINT *generator = NULL; | ||
| 1525 | felem tmp_felems[32]; | ||
| 1526 | |||
| 1527 | /* throw away old precomputation */ | ||
| 1528 | EC_EX_DATA_free_data(&group->extra_data, nistp224_pre_comp_dup, | ||
| 1529 | nistp224_pre_comp_free, nistp224_pre_comp_clear_free); | ||
| 1530 | if (ctx == NULL) | ||
| 1531 | if ((ctx = new_ctx = BN_CTX_new()) == NULL) return 0; | ||
| 1532 | BN_CTX_start(ctx); | ||
| 1533 | if (((x = BN_CTX_get(ctx)) == NULL) || | ||
| 1534 | ((y = BN_CTX_get(ctx)) == NULL)) | ||
| 1535 | goto err; | ||
| 1536 | /* get the generator */ | ||
| 1537 | if (group->generator == NULL) goto err; | ||
| 1538 | generator = EC_POINT_new(group); | ||
| 1539 | if (generator == NULL) | ||
| 1540 | goto err; | ||
| 1541 | BN_bin2bn(nistp224_curve_params[3], sizeof (felem_bytearray), x); | ||
| 1542 | BN_bin2bn(nistp224_curve_params[4], sizeof (felem_bytearray), y); | ||
| 1543 | if (!EC_POINT_set_affine_coordinates_GFp(group, generator, x, y, ctx)) | ||
| 1544 | goto err; | ||
| 1545 | if ((pre = nistp224_pre_comp_new()) == NULL) | ||
| 1546 | goto err; | ||
| 1547 | /* if the generator is the standard one, use built-in precomputation */ | ||
| 1548 | if (0 == EC_POINT_cmp(group, generator, group->generator, ctx)) | ||
| 1549 | { | ||
| 1550 | memcpy(pre->g_pre_comp, gmul, sizeof(pre->g_pre_comp)); | ||
| 1551 | ret = 1; | ||
| 1552 | goto err; | ||
| 1553 | } | ||
| 1554 | if ((!BN_to_felem(pre->g_pre_comp[0][1][0], &group->generator->X)) || | ||
| 1555 | (!BN_to_felem(pre->g_pre_comp[0][1][1], &group->generator->Y)) || | ||
| 1556 | (!BN_to_felem(pre->g_pre_comp[0][1][2], &group->generator->Z))) | ||
| 1557 | goto err; | ||
| 1558 | /* compute 2^56*G, 2^112*G, 2^168*G for the first table, | ||
| 1559 | * 2^28*G, 2^84*G, 2^140*G, 2^196*G for the second one | ||
| 1560 | */ | ||
| 1561 | for (i = 1; i <= 8; i <<= 1) | ||
| 1562 | { | ||
| 1563 | point_double( | ||
| 1564 | pre->g_pre_comp[1][i][0], pre->g_pre_comp[1][i][1], pre->g_pre_comp[1][i][2], | ||
| 1565 | pre->g_pre_comp[0][i][0], pre->g_pre_comp[0][i][1], pre->g_pre_comp[0][i][2]); | ||
| 1566 | for (j = 0; j < 27; ++j) | ||
| 1567 | { | ||
| 1568 | point_double( | ||
| 1569 | pre->g_pre_comp[1][i][0], pre->g_pre_comp[1][i][1], pre->g_pre_comp[1][i][2], | ||
| 1570 | pre->g_pre_comp[1][i][0], pre->g_pre_comp[1][i][1], pre->g_pre_comp[1][i][2]); | ||
| 1571 | } | ||
| 1572 | if (i == 8) | ||
| 1573 | break; | ||
| 1574 | point_double( | ||
| 1575 | pre->g_pre_comp[0][2*i][0], pre->g_pre_comp[0][2*i][1], pre->g_pre_comp[0][2*i][2], | ||
| 1576 | pre->g_pre_comp[1][i][0], pre->g_pre_comp[1][i][1], pre->g_pre_comp[1][i][2]); | ||
| 1577 | for (j = 0; j < 27; ++j) | ||
| 1578 | { | ||
| 1579 | point_double( | ||
| 1580 | pre->g_pre_comp[0][2*i][0], pre->g_pre_comp[0][2*i][1], pre->g_pre_comp[0][2*i][2], | ||
| 1581 | pre->g_pre_comp[0][2*i][0], pre->g_pre_comp[0][2*i][1], pre->g_pre_comp[0][2*i][2]); | ||
| 1582 | } | ||
| 1583 | } | ||
| 1584 | for (i = 0; i < 2; i++) | ||
| 1585 | { | ||
| 1586 | /* g_pre_comp[i][0] is the point at infinity */ | ||
| 1587 | memset(pre->g_pre_comp[i][0], 0, sizeof(pre->g_pre_comp[i][0])); | ||
| 1588 | /* the remaining multiples */ | ||
| 1589 | /* 2^56*G + 2^112*G resp. 2^84*G + 2^140*G */ | ||
| 1590 | point_add( | ||
| 1591 | pre->g_pre_comp[i][6][0], pre->g_pre_comp[i][6][1], | ||
| 1592 | pre->g_pre_comp[i][6][2], pre->g_pre_comp[i][4][0], | ||
| 1593 | pre->g_pre_comp[i][4][1], pre->g_pre_comp[i][4][2], | ||
| 1594 | 0, pre->g_pre_comp[i][2][0], pre->g_pre_comp[i][2][1], | ||
| 1595 | pre->g_pre_comp[i][2][2]); | ||
| 1596 | /* 2^56*G + 2^168*G resp. 2^84*G + 2^196*G */ | ||
| 1597 | point_add( | ||
| 1598 | pre->g_pre_comp[i][10][0], pre->g_pre_comp[i][10][1], | ||
| 1599 | pre->g_pre_comp[i][10][2], pre->g_pre_comp[i][8][0], | ||
| 1600 | pre->g_pre_comp[i][8][1], pre->g_pre_comp[i][8][2], | ||
| 1601 | 0, pre->g_pre_comp[i][2][0], pre->g_pre_comp[i][2][1], | ||
| 1602 | pre->g_pre_comp[i][2][2]); | ||
| 1603 | /* 2^112*G + 2^168*G resp. 2^140*G + 2^196*G */ | ||
| 1604 | point_add( | ||
| 1605 | pre->g_pre_comp[i][12][0], pre->g_pre_comp[i][12][1], | ||
| 1606 | pre->g_pre_comp[i][12][2], pre->g_pre_comp[i][8][0], | ||
| 1607 | pre->g_pre_comp[i][8][1], pre->g_pre_comp[i][8][2], | ||
| 1608 | 0, pre->g_pre_comp[i][4][0], pre->g_pre_comp[i][4][1], | ||
| 1609 | pre->g_pre_comp[i][4][2]); | ||
| 1610 | /* 2^56*G + 2^112*G + 2^168*G resp. 2^84*G + 2^140*G + 2^196*G */ | ||
| 1611 | point_add( | ||
| 1612 | pre->g_pre_comp[i][14][0], pre->g_pre_comp[i][14][1], | ||
| 1613 | pre->g_pre_comp[i][14][2], pre->g_pre_comp[i][12][0], | ||
| 1614 | pre->g_pre_comp[i][12][1], pre->g_pre_comp[i][12][2], | ||
| 1615 | 0, pre->g_pre_comp[i][2][0], pre->g_pre_comp[i][2][1], | ||
| 1616 | pre->g_pre_comp[i][2][2]); | ||
| 1617 | for (j = 1; j < 8; ++j) | ||
| 1618 | { | ||
| 1619 | /* odd multiples: add G resp. 2^28*G */ | ||
| 1620 | point_add( | ||
| 1621 | pre->g_pre_comp[i][2*j+1][0], pre->g_pre_comp[i][2*j+1][1], | ||
| 1622 | pre->g_pre_comp[i][2*j+1][2], pre->g_pre_comp[i][2*j][0], | ||
| 1623 | pre->g_pre_comp[i][2*j][1], pre->g_pre_comp[i][2*j][2], | ||
| 1624 | 0, pre->g_pre_comp[i][1][0], pre->g_pre_comp[i][1][1], | ||
| 1625 | pre->g_pre_comp[i][1][2]); | ||
| 1626 | } | ||
| 1627 | } | ||
| 1628 | make_points_affine(31, &(pre->g_pre_comp[0][1]), tmp_felems); | ||
| 1629 | |||
| 1630 | if (!EC_EX_DATA_set_data(&group->extra_data, pre, nistp224_pre_comp_dup, | ||
| 1631 | nistp224_pre_comp_free, nistp224_pre_comp_clear_free)) | ||
| 1632 | goto err; | ||
| 1633 | ret = 1; | ||
| 1634 | pre = NULL; | ||
| 1635 | err: | ||
| 1636 | BN_CTX_end(ctx); | ||
| 1637 | if (generator != NULL) | ||
| 1638 | EC_POINT_free(generator); | ||
| 1639 | if (new_ctx != NULL) | ||
| 1640 | BN_CTX_free(new_ctx); | ||
| 1641 | if (pre) | ||
| 1642 | nistp224_pre_comp_free(pre); | ||
| 1643 | return ret; | ||
| 1644 | } | ||
| 1645 | |||
| 1646 | int ec_GFp_nistp224_have_precompute_mult(const EC_GROUP *group) | ||
| 1647 | { | ||
| 1648 | if (EC_EX_DATA_get_data(group->extra_data, nistp224_pre_comp_dup, | ||
| 1649 | nistp224_pre_comp_free, nistp224_pre_comp_clear_free) | ||
| 1650 | != NULL) | ||
| 1651 | return 1; | ||
| 1652 | else | ||
| 1653 | return 0; | ||
| 1654 | } | ||
| 1655 | |||
| 1656 | #else | ||
| 1657 | static void *dummy=&dummy; | ||
| 1658 | #endif | ||
diff --git a/src/lib/libcrypto/ec/ecp_nistp256.c b/src/lib/libcrypto/ec/ecp_nistp256.c new file mode 100644 index 0000000000..4bc0f5dce0 --- /dev/null +++ b/src/lib/libcrypto/ec/ecp_nistp256.c | |||
| @@ -0,0 +1,2171 @@ | |||
| 1 | /* crypto/ec/ecp_nistp256.c */ | ||
| 2 | /* | ||
| 3 | * Written by Adam Langley (Google) for the OpenSSL project | ||
| 4 | */ | ||
| 5 | /* Copyright 2011 Google Inc. | ||
| 6 | * | ||
| 7 | * Licensed under the Apache License, Version 2.0 (the "License"); | ||
| 8 | * | ||
| 9 | * you may not use this file except in compliance with the License. | ||
| 10 | * You may obtain a copy of the License at | ||
| 11 | * | ||
| 12 | * http://www.apache.org/licenses/LICENSE-2.0 | ||
| 13 | * | ||
| 14 | * Unless required by applicable law or agreed to in writing, software | ||
| 15 | * distributed under the License is distributed on an "AS IS" BASIS, | ||
| 16 | * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | ||
| 17 | * See the License for the specific language governing permissions and | ||
| 18 | * limitations under the License. | ||
| 19 | */ | ||
| 20 | |||
| 21 | /* | ||
| 22 | * A 64-bit implementation of the NIST P-256 elliptic curve point multiplication | ||
| 23 | * | ||
| 24 | * OpenSSL integration was taken from Emilia Kasper's work in ecp_nistp224.c. | ||
| 25 | * Otherwise based on Emilia's P224 work, which was inspired by my curve25519 | ||
| 26 | * work which got its smarts from Daniel J. Bernstein's work on the same. | ||
| 27 | */ | ||
| 28 | |||
| 29 | #include <openssl/opensslconf.h> | ||
| 30 | #ifndef OPENSSL_NO_EC_NISTP_64_GCC_128 | ||
| 31 | |||
| 32 | #ifndef OPENSSL_SYS_VMS | ||
| 33 | #include <stdint.h> | ||
| 34 | #else | ||
| 35 | #include <inttypes.h> | ||
| 36 | #endif | ||
| 37 | |||
| 38 | #include <string.h> | ||
| 39 | #include <openssl/err.h> | ||
| 40 | #include "ec_lcl.h" | ||
| 41 | |||
| 42 | #if defined(__GNUC__) && (__GNUC__ > 3 || (__GNUC__ == 3 && __GNUC_MINOR__ >= 1)) | ||
| 43 | /* even with gcc, the typedef won't work for 32-bit platforms */ | ||
| 44 | typedef __uint128_t uint128_t; /* nonstandard; implemented by gcc on 64-bit platforms */ | ||
| 45 | typedef __int128_t int128_t; | ||
| 46 | #else | ||
| 47 | #error "Need GCC 3.1 or later to define type uint128_t" | ||
| 48 | #endif | ||
| 49 | |||
| 50 | typedef uint8_t u8; | ||
| 51 | typedef uint32_t u32; | ||
| 52 | typedef uint64_t u64; | ||
| 53 | typedef int64_t s64; | ||
| 54 | |||
| 55 | /* The underlying field. | ||
| 56 | * | ||
| 57 | * P256 operates over GF(2^256-2^224+2^192+2^96-1). We can serialise an element | ||
| 58 | * of this field into 32 bytes. We call this an felem_bytearray. */ | ||
| 59 | |||
| 60 | typedef u8 felem_bytearray[32]; | ||
| 61 | |||
| 62 | /* These are the parameters of P256, taken from FIPS 186-3, page 86. These | ||
| 63 | * values are big-endian. */ | ||
| 64 | static const felem_bytearray nistp256_curve_params[5] = { | ||
| 65 | {0xff, 0xff, 0xff, 0xff, 0x00, 0x00, 0x00, 0x01, /* p */ | ||
| 66 | 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, | ||
| 67 | 0x00, 0x00, 0x00, 0x00, 0xff, 0xff, 0xff, 0xff, | ||
| 68 | 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff}, | ||
| 69 | {0xff, 0xff, 0xff, 0xff, 0x00, 0x00, 0x00, 0x01, /* a = -3 */ | ||
| 70 | 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, | ||
| 71 | 0x00, 0x00, 0x00, 0x00, 0xff, 0xff, 0xff, 0xff, | ||
| 72 | 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xfc}, /* b */ | ||
| 73 | {0x5a, 0xc6, 0x35, 0xd8, 0xaa, 0x3a, 0x93, 0xe7, | ||
| 74 | 0xb3, 0xeb, 0xbd, 0x55, 0x76, 0x98, 0x86, 0xbc, | ||
| 75 | 0x65, 0x1d, 0x06, 0xb0, 0xcc, 0x53, 0xb0, 0xf6, | ||
| 76 | 0x3b, 0xce, 0x3c, 0x3e, 0x27, 0xd2, 0x60, 0x4b}, | ||
| 77 | {0x6b, 0x17, 0xd1, 0xf2, 0xe1, 0x2c, 0x42, 0x47, /* x */ | ||
| 78 | 0xf8, 0xbc, 0xe6, 0xe5, 0x63, 0xa4, 0x40, 0xf2, | ||
| 79 | 0x77, 0x03, 0x7d, 0x81, 0x2d, 0xeb, 0x33, 0xa0, | ||
| 80 | 0xf4, 0xa1, 0x39, 0x45, 0xd8, 0x98, 0xc2, 0x96}, | ||
| 81 | {0x4f, 0xe3, 0x42, 0xe2, 0xfe, 0x1a, 0x7f, 0x9b, /* y */ | ||
| 82 | 0x8e, 0xe7, 0xeb, 0x4a, 0x7c, 0x0f, 0x9e, 0x16, | ||
| 83 | 0x2b, 0xce, 0x33, 0x57, 0x6b, 0x31, 0x5e, 0xce, | ||
| 84 | 0xcb, 0xb6, 0x40, 0x68, 0x37, 0xbf, 0x51, 0xf5} | ||
| 85 | }; | ||
| 86 | |||
| 87 | /* The representation of field elements. | ||
| 88 | * ------------------------------------ | ||
| 89 | * | ||
| 90 | * We represent field elements with either four 128-bit values, eight 128-bit | ||
| 91 | * values, or four 64-bit values. The field element represented is: | ||
| 92 | * v[0]*2^0 + v[1]*2^64 + v[2]*2^128 + v[3]*2^192 (mod p) | ||
| 93 | * or: | ||
| 94 | * v[0]*2^0 + v[1]*2^64 + v[2]*2^128 + ... + v[8]*2^512 (mod p) | ||
| 95 | * | ||
| 96 | * 128-bit values are called 'limbs'. Since the limbs are spaced only 64 bits | ||
| 97 | * apart, but are 128-bits wide, the most significant bits of each limb overlap | ||
| 98 | * with the least significant bits of the next. | ||
| 99 | * | ||
| 100 | * A field element with four limbs is an 'felem'. One with eight limbs is a | ||
| 101 | * 'longfelem' | ||
| 102 | * | ||
| 103 | * A field element with four, 64-bit values is called a 'smallfelem'. Small | ||
| 104 | * values are used as intermediate values before multiplication. | ||
| 105 | */ | ||
| 106 | |||
| 107 | #define NLIMBS 4 | ||
| 108 | |||
| 109 | typedef uint128_t limb; | ||
| 110 | typedef limb felem[NLIMBS]; | ||
| 111 | typedef limb longfelem[NLIMBS * 2]; | ||
| 112 | typedef u64 smallfelem[NLIMBS]; | ||
| 113 | |||
| 114 | /* This is the value of the prime as four 64-bit words, little-endian. */ | ||
| 115 | static const u64 kPrime[4] = { 0xfffffffffffffffful, 0xffffffff, 0, 0xffffffff00000001ul }; | ||
| 116 | static const limb bottom32bits = 0xffffffff; | ||
| 117 | static const u64 bottom63bits = 0x7ffffffffffffffful; | ||
| 118 | |||
| 119 | /* bin32_to_felem takes a little-endian byte array and converts it into felem | ||
| 120 | * form. This assumes that the CPU is little-endian. */ | ||
| 121 | static void bin32_to_felem(felem out, const u8 in[32]) | ||
| 122 | { | ||
| 123 | out[0] = *((u64*) &in[0]); | ||
| 124 | out[1] = *((u64*) &in[8]); | ||
| 125 | out[2] = *((u64*) &in[16]); | ||
| 126 | out[3] = *((u64*) &in[24]); | ||
| 127 | } | ||
| 128 | |||
| 129 | /* smallfelem_to_bin32 takes a smallfelem and serialises into a little endian, | ||
| 130 | * 32 byte array. This assumes that the CPU is little-endian. */ | ||
| 131 | static void smallfelem_to_bin32(u8 out[32], const smallfelem in) | ||
| 132 | { | ||
| 133 | *((u64*) &out[0]) = in[0]; | ||
| 134 | *((u64*) &out[8]) = in[1]; | ||
| 135 | *((u64*) &out[16]) = in[2]; | ||
| 136 | *((u64*) &out[24]) = in[3]; | ||
| 137 | } | ||
| 138 | |||
| 139 | /* To preserve endianness when using BN_bn2bin and BN_bin2bn */ | ||
| 140 | static void flip_endian(u8 *out, const u8 *in, unsigned len) | ||
| 141 | { | ||
| 142 | unsigned i; | ||
| 143 | for (i = 0; i < len; ++i) | ||
| 144 | out[i] = in[len-1-i]; | ||
| 145 | } | ||
| 146 | |||
| 147 | /* BN_to_felem converts an OpenSSL BIGNUM into an felem */ | ||
| 148 | static int BN_to_felem(felem out, const BIGNUM *bn) | ||
| 149 | { | ||
| 150 | felem_bytearray b_in; | ||
| 151 | felem_bytearray b_out; | ||
| 152 | unsigned num_bytes; | ||
| 153 | |||
| 154 | /* BN_bn2bin eats leading zeroes */ | ||
| 155 | memset(b_out, 0, sizeof b_out); | ||
| 156 | num_bytes = BN_num_bytes(bn); | ||
| 157 | if (num_bytes > sizeof b_out) | ||
| 158 | { | ||
| 159 | ECerr(EC_F_BN_TO_FELEM, EC_R_BIGNUM_OUT_OF_RANGE); | ||
| 160 | return 0; | ||
| 161 | } | ||
| 162 | if (BN_is_negative(bn)) | ||
| 163 | { | ||
| 164 | ECerr(EC_F_BN_TO_FELEM, EC_R_BIGNUM_OUT_OF_RANGE); | ||
| 165 | return 0; | ||
| 166 | } | ||
| 167 | num_bytes = BN_bn2bin(bn, b_in); | ||
| 168 | flip_endian(b_out, b_in, num_bytes); | ||
| 169 | bin32_to_felem(out, b_out); | ||
| 170 | return 1; | ||
| 171 | } | ||
| 172 | |||
| 173 | /* felem_to_BN converts an felem into an OpenSSL BIGNUM */ | ||
| 174 | static BIGNUM *smallfelem_to_BN(BIGNUM *out, const smallfelem in) | ||
| 175 | { | ||
| 176 | felem_bytearray b_in, b_out; | ||
| 177 | smallfelem_to_bin32(b_in, in); | ||
| 178 | flip_endian(b_out, b_in, sizeof b_out); | ||
| 179 | return BN_bin2bn(b_out, sizeof b_out, out); | ||
| 180 | } | ||
| 181 | |||
| 182 | |||
| 183 | /* Field operations | ||
| 184 | * ---------------- */ | ||
| 185 | |||
| 186 | static void smallfelem_one(smallfelem out) | ||
| 187 | { | ||
| 188 | out[0] = 1; | ||
| 189 | out[1] = 0; | ||
| 190 | out[2] = 0; | ||
| 191 | out[3] = 0; | ||
| 192 | } | ||
| 193 | |||
| 194 | static void smallfelem_assign(smallfelem out, const smallfelem in) | ||
| 195 | { | ||
| 196 | out[0] = in[0]; | ||
| 197 | out[1] = in[1]; | ||
| 198 | out[2] = in[2]; | ||
| 199 | out[3] = in[3]; | ||
| 200 | } | ||
| 201 | |||
| 202 | static void felem_assign(felem out, const felem in) | ||
| 203 | { | ||
| 204 | out[0] = in[0]; | ||
| 205 | out[1] = in[1]; | ||
| 206 | out[2] = in[2]; | ||
| 207 | out[3] = in[3]; | ||
| 208 | } | ||
| 209 | |||
| 210 | /* felem_sum sets out = out + in. */ | ||
| 211 | static void felem_sum(felem out, const felem in) | ||
| 212 | { | ||
| 213 | out[0] += in[0]; | ||
| 214 | out[1] += in[1]; | ||
| 215 | out[2] += in[2]; | ||
| 216 | out[3] += in[3]; | ||
| 217 | } | ||
| 218 | |||
| 219 | /* felem_small_sum sets out = out + in. */ | ||
| 220 | static void felem_small_sum(felem out, const smallfelem in) | ||
| 221 | { | ||
| 222 | out[0] += in[0]; | ||
| 223 | out[1] += in[1]; | ||
| 224 | out[2] += in[2]; | ||
| 225 | out[3] += in[3]; | ||
| 226 | } | ||
| 227 | |||
| 228 | /* felem_scalar sets out = out * scalar */ | ||
| 229 | static void felem_scalar(felem out, const u64 scalar) | ||
| 230 | { | ||
| 231 | out[0] *= scalar; | ||
| 232 | out[1] *= scalar; | ||
| 233 | out[2] *= scalar; | ||
| 234 | out[3] *= scalar; | ||
| 235 | } | ||
| 236 | |||
| 237 | /* longfelem_scalar sets out = out * scalar */ | ||
| 238 | static void longfelem_scalar(longfelem out, const u64 scalar) | ||
| 239 | { | ||
| 240 | out[0] *= scalar; | ||
| 241 | out[1] *= scalar; | ||
| 242 | out[2] *= scalar; | ||
| 243 | out[3] *= scalar; | ||
| 244 | out[4] *= scalar; | ||
| 245 | out[5] *= scalar; | ||
| 246 | out[6] *= scalar; | ||
| 247 | out[7] *= scalar; | ||
| 248 | } | ||
| 249 | |||
| 250 | #define two105m41m9 (((limb)1) << 105) - (((limb)1) << 41) - (((limb)1) << 9) | ||
| 251 | #define two105 (((limb)1) << 105) | ||
| 252 | #define two105m41p9 (((limb)1) << 105) - (((limb)1) << 41) + (((limb)1) << 9) | ||
| 253 | |||
| 254 | /* zero105 is 0 mod p */ | ||
| 255 | static const felem zero105 = { two105m41m9, two105, two105m41p9, two105m41p9 }; | ||
| 256 | |||
| 257 | /* smallfelem_neg sets |out| to |-small| | ||
| 258 | * On exit: | ||
| 259 | * out[i] < out[i] + 2^105 | ||
| 260 | */ | ||
| 261 | static void smallfelem_neg(felem out, const smallfelem small) | ||
| 262 | { | ||
| 263 | /* In order to prevent underflow, we subtract from 0 mod p. */ | ||
| 264 | out[0] = zero105[0] - small[0]; | ||
| 265 | out[1] = zero105[1] - small[1]; | ||
| 266 | out[2] = zero105[2] - small[2]; | ||
| 267 | out[3] = zero105[3] - small[3]; | ||
| 268 | } | ||
| 269 | |||
| 270 | /* felem_diff subtracts |in| from |out| | ||
| 271 | * On entry: | ||
| 272 | * in[i] < 2^104 | ||
| 273 | * On exit: | ||
| 274 | * out[i] < out[i] + 2^105 | ||
| 275 | */ | ||
| 276 | static void felem_diff(felem out, const felem in) | ||
| 277 | { | ||
| 278 | /* In order to prevent underflow, we add 0 mod p before subtracting. */ | ||
| 279 | out[0] += zero105[0]; | ||
| 280 | out[1] += zero105[1]; | ||
| 281 | out[2] += zero105[2]; | ||
| 282 | out[3] += zero105[3]; | ||
| 283 | |||
| 284 | out[0] -= in[0]; | ||
| 285 | out[1] -= in[1]; | ||
| 286 | out[2] -= in[2]; | ||
| 287 | out[3] -= in[3]; | ||
| 288 | } | ||
| 289 | |||
| 290 | #define two107m43m11 (((limb)1) << 107) - (((limb)1) << 43) - (((limb)1) << 11) | ||
| 291 | #define two107 (((limb)1) << 107) | ||
| 292 | #define two107m43p11 (((limb)1) << 107) - (((limb)1) << 43) + (((limb)1) << 11) | ||
| 293 | |||
| 294 | /* zero107 is 0 mod p */ | ||
| 295 | static const felem zero107 = { two107m43m11, two107, two107m43p11, two107m43p11 }; | ||
| 296 | |||
| 297 | /* An alternative felem_diff for larger inputs |in| | ||
| 298 | * felem_diff_zero107 subtracts |in| from |out| | ||
| 299 | * On entry: | ||
| 300 | * in[i] < 2^106 | ||
| 301 | * On exit: | ||
| 302 | * out[i] < out[i] + 2^107 | ||
| 303 | */ | ||
| 304 | static void felem_diff_zero107(felem out, const felem in) | ||
| 305 | { | ||
| 306 | /* In order to prevent underflow, we add 0 mod p before subtracting. */ | ||
| 307 | out[0] += zero107[0]; | ||
| 308 | out[1] += zero107[1]; | ||
| 309 | out[2] += zero107[2]; | ||
| 310 | out[3] += zero107[3]; | ||
| 311 | |||
| 312 | out[0] -= in[0]; | ||
| 313 | out[1] -= in[1]; | ||
| 314 | out[2] -= in[2]; | ||
| 315 | out[3] -= in[3]; | ||
| 316 | } | ||
| 317 | |||
| 318 | /* longfelem_diff subtracts |in| from |out| | ||
| 319 | * On entry: | ||
| 320 | * in[i] < 7*2^67 | ||
| 321 | * On exit: | ||
| 322 | * out[i] < out[i] + 2^70 + 2^40 | ||
| 323 | */ | ||
| 324 | static void longfelem_diff(longfelem out, const longfelem in) | ||
| 325 | { | ||
| 326 | static const limb two70m8p6 = (((limb)1) << 70) - (((limb)1) << 8) + (((limb)1) << 6); | ||
| 327 | static const limb two70p40 = (((limb)1) << 70) + (((limb)1) << 40); | ||
| 328 | static const limb two70 = (((limb)1) << 70); | ||
| 329 | static const limb two70m40m38p6 = (((limb)1) << 70) - (((limb)1) << 40) - (((limb)1) << 38) + (((limb)1) << 6); | ||
| 330 | static const limb two70m6 = (((limb)1) << 70) - (((limb)1) << 6); | ||
| 331 | |||
| 332 | /* add 0 mod p to avoid underflow */ | ||
| 333 | out[0] += two70m8p6; | ||
| 334 | out[1] += two70p40; | ||
| 335 | out[2] += two70; | ||
| 336 | out[3] += two70m40m38p6; | ||
| 337 | out[4] += two70m6; | ||
| 338 | out[5] += two70m6; | ||
| 339 | out[6] += two70m6; | ||
| 340 | out[7] += two70m6; | ||
| 341 | |||
| 342 | /* in[i] < 7*2^67 < 2^70 - 2^40 - 2^38 + 2^6 */ | ||
| 343 | out[0] -= in[0]; | ||
| 344 | out[1] -= in[1]; | ||
| 345 | out[2] -= in[2]; | ||
| 346 | out[3] -= in[3]; | ||
| 347 | out[4] -= in[4]; | ||
| 348 | out[5] -= in[5]; | ||
| 349 | out[6] -= in[6]; | ||
| 350 | out[7] -= in[7]; | ||
| 351 | } | ||
| 352 | |||
| 353 | #define two64m0 (((limb)1) << 64) - 1 | ||
| 354 | #define two110p32m0 (((limb)1) << 110) + (((limb)1) << 32) - 1 | ||
| 355 | #define two64m46 (((limb)1) << 64) - (((limb)1) << 46) | ||
| 356 | #define two64m32 (((limb)1) << 64) - (((limb)1) << 32) | ||
| 357 | |||
| 358 | /* zero110 is 0 mod p */ | ||
| 359 | static const felem zero110 = { two64m0, two110p32m0, two64m46, two64m32 }; | ||
| 360 | |||
| 361 | /* felem_shrink converts an felem into a smallfelem. The result isn't quite | ||
| 362 | * minimal as the value may be greater than p. | ||
| 363 | * | ||
| 364 | * On entry: | ||
| 365 | * in[i] < 2^109 | ||
| 366 | * On exit: | ||
| 367 | * out[i] < 2^64 | ||
| 368 | */ | ||
| 369 | static void felem_shrink(smallfelem out, const felem in) | ||
| 370 | { | ||
| 371 | felem tmp; | ||
| 372 | u64 a, b, mask; | ||
| 373 | s64 high, low; | ||
| 374 | static const u64 kPrime3Test = 0x7fffffff00000001ul; /* 2^63 - 2^32 + 1 */ | ||
| 375 | |||
| 376 | /* Carry 2->3 */ | ||
| 377 | tmp[3] = zero110[3] + in[3] + ((u64) (in[2] >> 64)); | ||
| 378 | /* tmp[3] < 2^110 */ | ||
| 379 | |||
| 380 | tmp[2] = zero110[2] + (u64) in[2]; | ||
| 381 | tmp[0] = zero110[0] + in[0]; | ||
| 382 | tmp[1] = zero110[1] + in[1]; | ||
| 383 | /* tmp[0] < 2**110, tmp[1] < 2^111, tmp[2] < 2**65 */ | ||
| 384 | |||
| 385 | /* We perform two partial reductions where we eliminate the | ||
| 386 | * high-word of tmp[3]. We don't update the other words till the end. | ||
| 387 | */ | ||
| 388 | a = tmp[3] >> 64; /* a < 2^46 */ | ||
| 389 | tmp[3] = (u64) tmp[3]; | ||
| 390 | tmp[3] -= a; | ||
| 391 | tmp[3] += ((limb)a) << 32; | ||
| 392 | /* tmp[3] < 2^79 */ | ||
| 393 | |||
| 394 | b = a; | ||
| 395 | a = tmp[3] >> 64; /* a < 2^15 */ | ||
| 396 | b += a; /* b < 2^46 + 2^15 < 2^47 */ | ||
| 397 | tmp[3] = (u64) tmp[3]; | ||
| 398 | tmp[3] -= a; | ||
| 399 | tmp[3] += ((limb)a) << 32; | ||
| 400 | /* tmp[3] < 2^64 + 2^47 */ | ||
| 401 | |||
| 402 | /* This adjusts the other two words to complete the two partial | ||
| 403 | * reductions. */ | ||
| 404 | tmp[0] += b; | ||
| 405 | tmp[1] -= (((limb)b) << 32); | ||
| 406 | |||
| 407 | /* In order to make space in tmp[3] for the carry from 2 -> 3, we | ||
| 408 | * conditionally subtract kPrime if tmp[3] is large enough. */ | ||
| 409 | high = tmp[3] >> 64; | ||
| 410 | /* As tmp[3] < 2^65, high is either 1 or 0 */ | ||
| 411 | high <<= 63; | ||
| 412 | high >>= 63; | ||
| 413 | /* high is: | ||
| 414 | * all ones if the high word of tmp[3] is 1 | ||
| 415 | * all zeros if the high word of tmp[3] if 0 */ | ||
| 416 | low = tmp[3]; | ||
| 417 | mask = low >> 63; | ||
| 418 | /* mask is: | ||
| 419 | * all ones if the MSB of low is 1 | ||
| 420 | * all zeros if the MSB of low if 0 */ | ||
| 421 | low &= bottom63bits; | ||
| 422 | low -= kPrime3Test; | ||
| 423 | /* if low was greater than kPrime3Test then the MSB is zero */ | ||
| 424 | low = ~low; | ||
| 425 | low >>= 63; | ||
| 426 | /* low is: | ||
| 427 | * all ones if low was > kPrime3Test | ||
| 428 | * all zeros if low was <= kPrime3Test */ | ||
| 429 | mask = (mask & low) | high; | ||
| 430 | tmp[0] -= mask & kPrime[0]; | ||
| 431 | tmp[1] -= mask & kPrime[1]; | ||
| 432 | /* kPrime[2] is zero, so omitted */ | ||
| 433 | tmp[3] -= mask & kPrime[3]; | ||
| 434 | /* tmp[3] < 2**64 - 2**32 + 1 */ | ||
| 435 | |||
| 436 | tmp[1] += ((u64) (tmp[0] >> 64)); tmp[0] = (u64) tmp[0]; | ||
| 437 | tmp[2] += ((u64) (tmp[1] >> 64)); tmp[1] = (u64) tmp[1]; | ||
| 438 | tmp[3] += ((u64) (tmp[2] >> 64)); tmp[2] = (u64) tmp[2]; | ||
| 439 | /* tmp[i] < 2^64 */ | ||
| 440 | |||
| 441 | out[0] = tmp[0]; | ||
| 442 | out[1] = tmp[1]; | ||
| 443 | out[2] = tmp[2]; | ||
| 444 | out[3] = tmp[3]; | ||
| 445 | } | ||
| 446 | |||
| 447 | /* smallfelem_expand converts a smallfelem to an felem */ | ||
| 448 | static void smallfelem_expand(felem out, const smallfelem in) | ||
| 449 | { | ||
| 450 | out[0] = in[0]; | ||
| 451 | out[1] = in[1]; | ||
| 452 | out[2] = in[2]; | ||
| 453 | out[3] = in[3]; | ||
| 454 | } | ||
| 455 | |||
| 456 | /* smallfelem_square sets |out| = |small|^2 | ||
| 457 | * On entry: | ||
| 458 | * small[i] < 2^64 | ||
| 459 | * On exit: | ||
| 460 | * out[i] < 7 * 2^64 < 2^67 | ||
| 461 | */ | ||
| 462 | static void smallfelem_square(longfelem out, const smallfelem small) | ||
| 463 | { | ||
| 464 | limb a; | ||
| 465 | u64 high, low; | ||
| 466 | |||
| 467 | a = ((uint128_t) small[0]) * small[0]; | ||
| 468 | low = a; | ||
| 469 | high = a >> 64; | ||
| 470 | out[0] = low; | ||
| 471 | out[1] = high; | ||
| 472 | |||
| 473 | a = ((uint128_t) small[0]) * small[1]; | ||
| 474 | low = a; | ||
| 475 | high = a >> 64; | ||
| 476 | out[1] += low; | ||
| 477 | out[1] += low; | ||
| 478 | out[2] = high; | ||
| 479 | |||
| 480 | a = ((uint128_t) small[0]) * small[2]; | ||
| 481 | low = a; | ||
| 482 | high = a >> 64; | ||
| 483 | out[2] += low; | ||
| 484 | out[2] *= 2; | ||
| 485 | out[3] = high; | ||
| 486 | |||
| 487 | a = ((uint128_t) small[0]) * small[3]; | ||
| 488 | low = a; | ||
| 489 | high = a >> 64; | ||
| 490 | out[3] += low; | ||
| 491 | out[4] = high; | ||
| 492 | |||
| 493 | a = ((uint128_t) small[1]) * small[2]; | ||
| 494 | low = a; | ||
| 495 | high = a >> 64; | ||
| 496 | out[3] += low; | ||
| 497 | out[3] *= 2; | ||
| 498 | out[4] += high; | ||
| 499 | |||
| 500 | a = ((uint128_t) small[1]) * small[1]; | ||
| 501 | low = a; | ||
| 502 | high = a >> 64; | ||
| 503 | out[2] += low; | ||
| 504 | out[3] += high; | ||
| 505 | |||
| 506 | a = ((uint128_t) small[1]) * small[3]; | ||
| 507 | low = a; | ||
| 508 | high = a >> 64; | ||
| 509 | out[4] += low; | ||
| 510 | out[4] *= 2; | ||
| 511 | out[5] = high; | ||
| 512 | |||
| 513 | a = ((uint128_t) small[2]) * small[3]; | ||
| 514 | low = a; | ||
| 515 | high = a >> 64; | ||
| 516 | out[5] += low; | ||
| 517 | out[5] *= 2; | ||
| 518 | out[6] = high; | ||
| 519 | out[6] += high; | ||
| 520 | |||
| 521 | a = ((uint128_t) small[2]) * small[2]; | ||
| 522 | low = a; | ||
| 523 | high = a >> 64; | ||
| 524 | out[4] += low; | ||
| 525 | out[5] += high; | ||
| 526 | |||
| 527 | a = ((uint128_t) small[3]) * small[3]; | ||
| 528 | low = a; | ||
| 529 | high = a >> 64; | ||
| 530 | out[6] += low; | ||
| 531 | out[7] = high; | ||
| 532 | } | ||
| 533 | |||
| 534 | /* felem_square sets |out| = |in|^2 | ||
| 535 | * On entry: | ||
| 536 | * in[i] < 2^109 | ||
| 537 | * On exit: | ||
| 538 | * out[i] < 7 * 2^64 < 2^67 | ||
| 539 | */ | ||
| 540 | static void felem_square(longfelem out, const felem in) | ||
| 541 | { | ||
| 542 | u64 small[4]; | ||
| 543 | felem_shrink(small, in); | ||
| 544 | smallfelem_square(out, small); | ||
| 545 | } | ||
| 546 | |||
| 547 | /* smallfelem_mul sets |out| = |small1| * |small2| | ||
| 548 | * On entry: | ||
| 549 | * small1[i] < 2^64 | ||
| 550 | * small2[i] < 2^64 | ||
| 551 | * On exit: | ||
| 552 | * out[i] < 7 * 2^64 < 2^67 | ||
| 553 | */ | ||
| 554 | static void smallfelem_mul(longfelem out, const smallfelem small1, const smallfelem small2) | ||
| 555 | { | ||
| 556 | limb a; | ||
| 557 | u64 high, low; | ||
| 558 | |||
| 559 | a = ((uint128_t) small1[0]) * small2[0]; | ||
| 560 | low = a; | ||
| 561 | high = a >> 64; | ||
| 562 | out[0] = low; | ||
| 563 | out[1] = high; | ||
| 564 | |||
| 565 | |||
| 566 | a = ((uint128_t) small1[0]) * small2[1]; | ||
| 567 | low = a; | ||
| 568 | high = a >> 64; | ||
| 569 | out[1] += low; | ||
| 570 | out[2] = high; | ||
| 571 | |||
| 572 | a = ((uint128_t) small1[1]) * small2[0]; | ||
| 573 | low = a; | ||
| 574 | high = a >> 64; | ||
| 575 | out[1] += low; | ||
| 576 | out[2] += high; | ||
| 577 | |||
| 578 | |||
| 579 | a = ((uint128_t) small1[0]) * small2[2]; | ||
| 580 | low = a; | ||
| 581 | high = a >> 64; | ||
| 582 | out[2] += low; | ||
| 583 | out[3] = high; | ||
| 584 | |||
| 585 | a = ((uint128_t) small1[1]) * small2[1]; | ||
| 586 | low = a; | ||
| 587 | high = a >> 64; | ||
| 588 | out[2] += low; | ||
| 589 | out[3] += high; | ||
| 590 | |||
| 591 | a = ((uint128_t) small1[2]) * small2[0]; | ||
| 592 | low = a; | ||
| 593 | high = a >> 64; | ||
| 594 | out[2] += low; | ||
| 595 | out[3] += high; | ||
| 596 | |||
| 597 | |||
| 598 | a = ((uint128_t) small1[0]) * small2[3]; | ||
| 599 | low = a; | ||
| 600 | high = a >> 64; | ||
| 601 | out[3] += low; | ||
| 602 | out[4] = high; | ||
| 603 | |||
| 604 | a = ((uint128_t) small1[1]) * small2[2]; | ||
| 605 | low = a; | ||
| 606 | high = a >> 64; | ||
| 607 | out[3] += low; | ||
| 608 | out[4] += high; | ||
| 609 | |||
| 610 | a = ((uint128_t) small1[2]) * small2[1]; | ||
| 611 | low = a; | ||
| 612 | high = a >> 64; | ||
| 613 | out[3] += low; | ||
| 614 | out[4] += high; | ||
| 615 | |||
| 616 | a = ((uint128_t) small1[3]) * small2[0]; | ||
| 617 | low = a; | ||
| 618 | high = a >> 64; | ||
| 619 | out[3] += low; | ||
| 620 | out[4] += high; | ||
| 621 | |||
| 622 | |||
| 623 | a = ((uint128_t) small1[1]) * small2[3]; | ||
| 624 | low = a; | ||
| 625 | high = a >> 64; | ||
| 626 | out[4] += low; | ||
| 627 | out[5] = high; | ||
| 628 | |||
| 629 | a = ((uint128_t) small1[2]) * small2[2]; | ||
| 630 | low = a; | ||
| 631 | high = a >> 64; | ||
| 632 | out[4] += low; | ||
| 633 | out[5] += high; | ||
| 634 | |||
| 635 | a = ((uint128_t) small1[3]) * small2[1]; | ||
| 636 | low = a; | ||
| 637 | high = a >> 64; | ||
| 638 | out[4] += low; | ||
| 639 | out[5] += high; | ||
| 640 | |||
| 641 | |||
| 642 | a = ((uint128_t) small1[2]) * small2[3]; | ||
| 643 | low = a; | ||
| 644 | high = a >> 64; | ||
| 645 | out[5] += low; | ||
| 646 | out[6] = high; | ||
| 647 | |||
| 648 | a = ((uint128_t) small1[3]) * small2[2]; | ||
| 649 | low = a; | ||
| 650 | high = a >> 64; | ||
| 651 | out[5] += low; | ||
| 652 | out[6] += high; | ||
| 653 | |||
| 654 | |||
| 655 | a = ((uint128_t) small1[3]) * small2[3]; | ||
| 656 | low = a; | ||
| 657 | high = a >> 64; | ||
| 658 | out[6] += low; | ||
| 659 | out[7] = high; | ||
| 660 | } | ||
| 661 | |||
| 662 | /* felem_mul sets |out| = |in1| * |in2| | ||
| 663 | * On entry: | ||
| 664 | * in1[i] < 2^109 | ||
| 665 | * in2[i] < 2^109 | ||
| 666 | * On exit: | ||
| 667 | * out[i] < 7 * 2^64 < 2^67 | ||
| 668 | */ | ||
| 669 | static void felem_mul(longfelem out, const felem in1, const felem in2) | ||
| 670 | { | ||
| 671 | smallfelem small1, small2; | ||
| 672 | felem_shrink(small1, in1); | ||
| 673 | felem_shrink(small2, in2); | ||
| 674 | smallfelem_mul(out, small1, small2); | ||
| 675 | } | ||
| 676 | |||
| 677 | /* felem_small_mul sets |out| = |small1| * |in2| | ||
| 678 | * On entry: | ||
| 679 | * small1[i] < 2^64 | ||
| 680 | * in2[i] < 2^109 | ||
| 681 | * On exit: | ||
| 682 | * out[i] < 7 * 2^64 < 2^67 | ||
| 683 | */ | ||
| 684 | static void felem_small_mul(longfelem out, const smallfelem small1, const felem in2) | ||
| 685 | { | ||
| 686 | smallfelem small2; | ||
| 687 | felem_shrink(small2, in2); | ||
| 688 | smallfelem_mul(out, small1, small2); | ||
| 689 | } | ||
| 690 | |||
| 691 | #define two100m36m4 (((limb)1) << 100) - (((limb)1) << 36) - (((limb)1) << 4) | ||
| 692 | #define two100 (((limb)1) << 100) | ||
| 693 | #define two100m36p4 (((limb)1) << 100) - (((limb)1) << 36) + (((limb)1) << 4) | ||
| 694 | /* zero100 is 0 mod p */ | ||
| 695 | static const felem zero100 = { two100m36m4, two100, two100m36p4, two100m36p4 }; | ||
| 696 | |||
| 697 | /* Internal function for the different flavours of felem_reduce. | ||
| 698 | * felem_reduce_ reduces the higher coefficients in[4]-in[7]. | ||
| 699 | * On entry: | ||
| 700 | * out[0] >= in[6] + 2^32*in[6] + in[7] + 2^32*in[7] | ||
| 701 | * out[1] >= in[7] + 2^32*in[4] | ||
| 702 | * out[2] >= in[5] + 2^32*in[5] | ||
| 703 | * out[3] >= in[4] + 2^32*in[5] + 2^32*in[6] | ||
| 704 | * On exit: | ||
| 705 | * out[0] <= out[0] + in[4] + 2^32*in[5] | ||
| 706 | * out[1] <= out[1] + in[5] + 2^33*in[6] | ||
| 707 | * out[2] <= out[2] + in[7] + 2*in[6] + 2^33*in[7] | ||
| 708 | * out[3] <= out[3] + 2^32*in[4] + 3*in[7] | ||
| 709 | */ | ||
| 710 | static void felem_reduce_(felem out, const longfelem in) | ||
| 711 | { | ||
| 712 | int128_t c; | ||
| 713 | /* combine common terms from below */ | ||
| 714 | c = in[4] + (in[5] << 32); | ||
| 715 | out[0] += c; | ||
| 716 | out[3] -= c; | ||
| 717 | |||
| 718 | c = in[5] - in[7]; | ||
| 719 | out[1] += c; | ||
| 720 | out[2] -= c; | ||
| 721 | |||
| 722 | /* the remaining terms */ | ||
| 723 | /* 256: [(0,1),(96,-1),(192,-1),(224,1)] */ | ||
| 724 | out[1] -= (in[4] << 32); | ||
| 725 | out[3] += (in[4] << 32); | ||
| 726 | |||
| 727 | /* 320: [(32,1),(64,1),(128,-1),(160,-1),(224,-1)] */ | ||
| 728 | out[2] -= (in[5] << 32); | ||
| 729 | |||
| 730 | /* 384: [(0,-1),(32,-1),(96,2),(128,2),(224,-1)] */ | ||
| 731 | out[0] -= in[6]; | ||
| 732 | out[0] -= (in[6] << 32); | ||
| 733 | out[1] += (in[6] << 33); | ||
| 734 | out[2] += (in[6] * 2); | ||
| 735 | out[3] -= (in[6] << 32); | ||
| 736 | |||
| 737 | /* 448: [(0,-1),(32,-1),(64,-1),(128,1),(160,2),(192,3)] */ | ||
| 738 | out[0] -= in[7]; | ||
| 739 | out[0] -= (in[7] << 32); | ||
| 740 | out[2] += (in[7] << 33); | ||
| 741 | out[3] += (in[7] * 3); | ||
| 742 | } | ||
| 743 | |||
| 744 | /* felem_reduce converts a longfelem into an felem. | ||
| 745 | * To be called directly after felem_square or felem_mul. | ||
| 746 | * On entry: | ||
| 747 | * in[0] < 2^64, in[1] < 3*2^64, in[2] < 5*2^64, in[3] < 7*2^64 | ||
| 748 | * in[4] < 7*2^64, in[5] < 5*2^64, in[6] < 3*2^64, in[7] < 2*64 | ||
| 749 | * On exit: | ||
| 750 | * out[i] < 2^101 | ||
| 751 | */ | ||
| 752 | static void felem_reduce(felem out, const longfelem in) | ||
| 753 | { | ||
| 754 | out[0] = zero100[0] + in[0]; | ||
| 755 | out[1] = zero100[1] + in[1]; | ||
| 756 | out[2] = zero100[2] + in[2]; | ||
| 757 | out[3] = zero100[3] + in[3]; | ||
| 758 | |||
| 759 | felem_reduce_(out, in); | ||
| 760 | |||
| 761 | /* out[0] > 2^100 - 2^36 - 2^4 - 3*2^64 - 3*2^96 - 2^64 - 2^96 > 0 | ||
| 762 | * out[1] > 2^100 - 2^64 - 7*2^96 > 0 | ||
| 763 | * out[2] > 2^100 - 2^36 + 2^4 - 5*2^64 - 5*2^96 > 0 | ||
| 764 | * out[3] > 2^100 - 2^36 + 2^4 - 7*2^64 - 5*2^96 - 3*2^96 > 0 | ||
| 765 | * | ||
| 766 | * out[0] < 2^100 + 2^64 + 7*2^64 + 5*2^96 < 2^101 | ||
| 767 | * out[1] < 2^100 + 3*2^64 + 5*2^64 + 3*2^97 < 2^101 | ||
| 768 | * out[2] < 2^100 + 5*2^64 + 2^64 + 3*2^65 + 2^97 < 2^101 | ||
| 769 | * out[3] < 2^100 + 7*2^64 + 7*2^96 + 3*2^64 < 2^101 | ||
| 770 | */ | ||
| 771 | } | ||
| 772 | |||
| 773 | /* felem_reduce_zero105 converts a larger longfelem into an felem. | ||
| 774 | * On entry: | ||
| 775 | * in[0] < 2^71 | ||
| 776 | * On exit: | ||
| 777 | * out[i] < 2^106 | ||
| 778 | */ | ||
| 779 | static void felem_reduce_zero105(felem out, const longfelem in) | ||
| 780 | { | ||
| 781 | out[0] = zero105[0] + in[0]; | ||
| 782 | out[1] = zero105[1] + in[1]; | ||
| 783 | out[2] = zero105[2] + in[2]; | ||
| 784 | out[3] = zero105[3] + in[3]; | ||
| 785 | |||
| 786 | felem_reduce_(out, in); | ||
| 787 | |||
| 788 | /* out[0] > 2^105 - 2^41 - 2^9 - 2^71 - 2^103 - 2^71 - 2^103 > 0 | ||
| 789 | * out[1] > 2^105 - 2^71 - 2^103 > 0 | ||
| 790 | * out[2] > 2^105 - 2^41 + 2^9 - 2^71 - 2^103 > 0 | ||
| 791 | * out[3] > 2^105 - 2^41 + 2^9 - 2^71 - 2^103 - 2^103 > 0 | ||
| 792 | * | ||
| 793 | * out[0] < 2^105 + 2^71 + 2^71 + 2^103 < 2^106 | ||
| 794 | * out[1] < 2^105 + 2^71 + 2^71 + 2^103 < 2^106 | ||
| 795 | * out[2] < 2^105 + 2^71 + 2^71 + 2^71 + 2^103 < 2^106 | ||
| 796 | * out[3] < 2^105 + 2^71 + 2^103 + 2^71 < 2^106 | ||
| 797 | */ | ||
| 798 | } | ||
| 799 | |||
| 800 | /* subtract_u64 sets *result = *result - v and *carry to one if the subtraction | ||
| 801 | * underflowed. */ | ||
| 802 | static void subtract_u64(u64* result, u64* carry, u64 v) | ||
| 803 | { | ||
| 804 | uint128_t r = *result; | ||
| 805 | r -= v; | ||
| 806 | *carry = (r >> 64) & 1; | ||
| 807 | *result = (u64) r; | ||
| 808 | } | ||
| 809 | |||
| 810 | /* felem_contract converts |in| to its unique, minimal representation. | ||
| 811 | * On entry: | ||
| 812 | * in[i] < 2^109 | ||
| 813 | */ | ||
| 814 | static void felem_contract(smallfelem out, const felem in) | ||
| 815 | { | ||
| 816 | unsigned i; | ||
| 817 | u64 all_equal_so_far = 0, result = 0, carry; | ||
| 818 | |||
| 819 | felem_shrink(out, in); | ||
| 820 | /* small is minimal except that the value might be > p */ | ||
| 821 | |||
| 822 | all_equal_so_far--; | ||
| 823 | /* We are doing a constant time test if out >= kPrime. We need to | ||
| 824 | * compare each u64, from most-significant to least significant. For | ||
| 825 | * each one, if all words so far have been equal (m is all ones) then a | ||
| 826 | * non-equal result is the answer. Otherwise we continue. */ | ||
| 827 | for (i = 3; i < 4; i--) | ||
| 828 | { | ||
| 829 | u64 equal; | ||
| 830 | uint128_t a = ((uint128_t) kPrime[i]) - out[i]; | ||
| 831 | /* if out[i] > kPrime[i] then a will underflow and the high | ||
| 832 | * 64-bits will all be set. */ | ||
| 833 | result |= all_equal_so_far & ((u64) (a >> 64)); | ||
| 834 | |||
| 835 | /* if kPrime[i] == out[i] then |equal| will be all zeros and | ||
| 836 | * the decrement will make it all ones. */ | ||
| 837 | equal = kPrime[i] ^ out[i]; | ||
| 838 | equal--; | ||
| 839 | equal &= equal << 32; | ||
| 840 | equal &= equal << 16; | ||
| 841 | equal &= equal << 8; | ||
| 842 | equal &= equal << 4; | ||
| 843 | equal &= equal << 2; | ||
| 844 | equal &= equal << 1; | ||
| 845 | equal = ((s64) equal) >> 63; | ||
| 846 | |||
| 847 | all_equal_so_far &= equal; | ||
| 848 | } | ||
| 849 | |||
| 850 | /* if all_equal_so_far is still all ones then the two values are equal | ||
| 851 | * and so out >= kPrime is true. */ | ||
| 852 | result |= all_equal_so_far; | ||
| 853 | |||
| 854 | /* if out >= kPrime then we subtract kPrime. */ | ||
| 855 | subtract_u64(&out[0], &carry, result & kPrime[0]); | ||
| 856 | subtract_u64(&out[1], &carry, carry); | ||
| 857 | subtract_u64(&out[2], &carry, carry); | ||
| 858 | subtract_u64(&out[3], &carry, carry); | ||
| 859 | |||
| 860 | subtract_u64(&out[1], &carry, result & kPrime[1]); | ||
| 861 | subtract_u64(&out[2], &carry, carry); | ||
| 862 | subtract_u64(&out[3], &carry, carry); | ||
| 863 | |||
| 864 | subtract_u64(&out[2], &carry, result & kPrime[2]); | ||
| 865 | subtract_u64(&out[3], &carry, carry); | ||
| 866 | |||
| 867 | subtract_u64(&out[3], &carry, result & kPrime[3]); | ||
| 868 | } | ||
| 869 | |||
| 870 | static void smallfelem_square_contract(smallfelem out, const smallfelem in) | ||
| 871 | { | ||
| 872 | longfelem longtmp; | ||
| 873 | felem tmp; | ||
| 874 | |||
| 875 | smallfelem_square(longtmp, in); | ||
| 876 | felem_reduce(tmp, longtmp); | ||
| 877 | felem_contract(out, tmp); | ||
| 878 | } | ||
| 879 | |||
| 880 | static void smallfelem_mul_contract(smallfelem out, const smallfelem in1, const smallfelem in2) | ||
| 881 | { | ||
| 882 | longfelem longtmp; | ||
| 883 | felem tmp; | ||
| 884 | |||
| 885 | smallfelem_mul(longtmp, in1, in2); | ||
| 886 | felem_reduce(tmp, longtmp); | ||
| 887 | felem_contract(out, tmp); | ||
| 888 | } | ||
| 889 | |||
| 890 | /* felem_is_zero returns a limb with all bits set if |in| == 0 (mod p) and 0 | ||
| 891 | * otherwise. | ||
| 892 | * On entry: | ||
| 893 | * small[i] < 2^64 | ||
| 894 | */ | ||
| 895 | static limb smallfelem_is_zero(const smallfelem small) | ||
| 896 | { | ||
| 897 | limb result; | ||
| 898 | u64 is_p; | ||
| 899 | |||
| 900 | u64 is_zero = small[0] | small[1] | small[2] | small[3]; | ||
| 901 | is_zero--; | ||
| 902 | is_zero &= is_zero << 32; | ||
| 903 | is_zero &= is_zero << 16; | ||
| 904 | is_zero &= is_zero << 8; | ||
| 905 | is_zero &= is_zero << 4; | ||
| 906 | is_zero &= is_zero << 2; | ||
| 907 | is_zero &= is_zero << 1; | ||
| 908 | is_zero = ((s64) is_zero) >> 63; | ||
| 909 | |||
| 910 | is_p = (small[0] ^ kPrime[0]) | | ||
| 911 | (small[1] ^ kPrime[1]) | | ||
| 912 | (small[2] ^ kPrime[2]) | | ||
| 913 | (small[3] ^ kPrime[3]); | ||
| 914 | is_p--; | ||
| 915 | is_p &= is_p << 32; | ||
| 916 | is_p &= is_p << 16; | ||
| 917 | is_p &= is_p << 8; | ||
| 918 | is_p &= is_p << 4; | ||
| 919 | is_p &= is_p << 2; | ||
| 920 | is_p &= is_p << 1; | ||
| 921 | is_p = ((s64) is_p) >> 63; | ||
| 922 | |||
| 923 | is_zero |= is_p; | ||
| 924 | |||
| 925 | result = is_zero; | ||
| 926 | result |= ((limb) is_zero) << 64; | ||
| 927 | return result; | ||
| 928 | } | ||
| 929 | |||
| 930 | static int smallfelem_is_zero_int(const smallfelem small) | ||
| 931 | { | ||
| 932 | return (int) (smallfelem_is_zero(small) & ((limb)1)); | ||
| 933 | } | ||
| 934 | |||
| 935 | /* felem_inv calculates |out| = |in|^{-1} | ||
| 936 | * | ||
| 937 | * Based on Fermat's Little Theorem: | ||
| 938 | * a^p = a (mod p) | ||
| 939 | * a^{p-1} = 1 (mod p) | ||
| 940 | * a^{p-2} = a^{-1} (mod p) | ||
| 941 | */ | ||
| 942 | static void felem_inv(felem out, const felem in) | ||
| 943 | { | ||
| 944 | felem ftmp, ftmp2; | ||
| 945 | /* each e_I will hold |in|^{2^I - 1} */ | ||
| 946 | felem e2, e4, e8, e16, e32, e64; | ||
| 947 | longfelem tmp; | ||
| 948 | unsigned i; | ||
| 949 | |||
| 950 | felem_square(tmp, in); felem_reduce(ftmp, tmp); /* 2^1 */ | ||
| 951 | felem_mul(tmp, in, ftmp); felem_reduce(ftmp, tmp); /* 2^2 - 2^0 */ | ||
| 952 | felem_assign(e2, ftmp); | ||
| 953 | felem_square(tmp, ftmp); felem_reduce(ftmp, tmp); /* 2^3 - 2^1 */ | ||
| 954 | felem_square(tmp, ftmp); felem_reduce(ftmp, tmp); /* 2^4 - 2^2 */ | ||
| 955 | felem_mul(tmp, ftmp, e2); felem_reduce(ftmp, tmp); /* 2^4 - 2^0 */ | ||
| 956 | felem_assign(e4, ftmp); | ||
| 957 | felem_square(tmp, ftmp); felem_reduce(ftmp, tmp); /* 2^5 - 2^1 */ | ||
| 958 | felem_square(tmp, ftmp); felem_reduce(ftmp, tmp); /* 2^6 - 2^2 */ | ||
| 959 | felem_square(tmp, ftmp); felem_reduce(ftmp, tmp); /* 2^7 - 2^3 */ | ||
| 960 | felem_square(tmp, ftmp); felem_reduce(ftmp, tmp); /* 2^8 - 2^4 */ | ||
| 961 | felem_mul(tmp, ftmp, e4); felem_reduce(ftmp, tmp); /* 2^8 - 2^0 */ | ||
| 962 | felem_assign(e8, ftmp); | ||
| 963 | for (i = 0; i < 8; i++) { | ||
| 964 | felem_square(tmp, ftmp); felem_reduce(ftmp, tmp); | ||
| 965 | } /* 2^16 - 2^8 */ | ||
| 966 | felem_mul(tmp, ftmp, e8); felem_reduce(ftmp, tmp); /* 2^16 - 2^0 */ | ||
| 967 | felem_assign(e16, ftmp); | ||
| 968 | for (i = 0; i < 16; i++) { | ||
| 969 | felem_square(tmp, ftmp); felem_reduce(ftmp, tmp); | ||
| 970 | } /* 2^32 - 2^16 */ | ||
| 971 | felem_mul(tmp, ftmp, e16); felem_reduce(ftmp, tmp); /* 2^32 - 2^0 */ | ||
| 972 | felem_assign(e32, ftmp); | ||
| 973 | for (i = 0; i < 32; i++) { | ||
| 974 | felem_square(tmp, ftmp); felem_reduce(ftmp, tmp); | ||
| 975 | } /* 2^64 - 2^32 */ | ||
| 976 | felem_assign(e64, ftmp); | ||
| 977 | felem_mul(tmp, ftmp, in); felem_reduce(ftmp, tmp); /* 2^64 - 2^32 + 2^0 */ | ||
| 978 | for (i = 0; i < 192; i++) { | ||
| 979 | felem_square(tmp, ftmp); felem_reduce(ftmp, tmp); | ||
| 980 | } /* 2^256 - 2^224 + 2^192 */ | ||
| 981 | |||
| 982 | felem_mul(tmp, e64, e32); felem_reduce(ftmp2, tmp); /* 2^64 - 2^0 */ | ||
| 983 | for (i = 0; i < 16; i++) { | ||
| 984 | felem_square(tmp, ftmp2); felem_reduce(ftmp2, tmp); | ||
| 985 | } /* 2^80 - 2^16 */ | ||
| 986 | felem_mul(tmp, ftmp2, e16); felem_reduce(ftmp2, tmp); /* 2^80 - 2^0 */ | ||
| 987 | for (i = 0; i < 8; i++) { | ||
| 988 | felem_square(tmp, ftmp2); felem_reduce(ftmp2, tmp); | ||
| 989 | } /* 2^88 - 2^8 */ | ||
| 990 | felem_mul(tmp, ftmp2, e8); felem_reduce(ftmp2, tmp); /* 2^88 - 2^0 */ | ||
| 991 | for (i = 0; i < 4; i++) { | ||
| 992 | felem_square(tmp, ftmp2); felem_reduce(ftmp2, tmp); | ||
| 993 | } /* 2^92 - 2^4 */ | ||
| 994 | felem_mul(tmp, ftmp2, e4); felem_reduce(ftmp2, tmp); /* 2^92 - 2^0 */ | ||
| 995 | felem_square(tmp, ftmp2); felem_reduce(ftmp2, tmp); /* 2^93 - 2^1 */ | ||
| 996 | felem_square(tmp, ftmp2); felem_reduce(ftmp2, tmp); /* 2^94 - 2^2 */ | ||
| 997 | felem_mul(tmp, ftmp2, e2); felem_reduce(ftmp2, tmp); /* 2^94 - 2^0 */ | ||
| 998 | felem_square(tmp, ftmp2); felem_reduce(ftmp2, tmp); /* 2^95 - 2^1 */ | ||
| 999 | felem_square(tmp, ftmp2); felem_reduce(ftmp2, tmp); /* 2^96 - 2^2 */ | ||
| 1000 | felem_mul(tmp, ftmp2, in); felem_reduce(ftmp2, tmp); /* 2^96 - 3 */ | ||
| 1001 | |||
| 1002 | felem_mul(tmp, ftmp2, ftmp); felem_reduce(out, tmp); /* 2^256 - 2^224 + 2^192 + 2^96 - 3 */ | ||
| 1003 | } | ||
| 1004 | |||
| 1005 | static void smallfelem_inv_contract(smallfelem out, const smallfelem in) | ||
| 1006 | { | ||
| 1007 | felem tmp; | ||
| 1008 | |||
| 1009 | smallfelem_expand(tmp, in); | ||
| 1010 | felem_inv(tmp, tmp); | ||
| 1011 | felem_contract(out, tmp); | ||
| 1012 | } | ||
| 1013 | |||
| 1014 | /* Group operations | ||
| 1015 | * ---------------- | ||
| 1016 | * | ||
| 1017 | * Building on top of the field operations we have the operations on the | ||
| 1018 | * elliptic curve group itself. Points on the curve are represented in Jacobian | ||
| 1019 | * coordinates */ | ||
| 1020 | |||
| 1021 | /* point_double calculates 2*(x_in, y_in, z_in) | ||
| 1022 | * | ||
| 1023 | * The method is taken from: | ||
| 1024 | * http://hyperelliptic.org/EFD/g1p/auto-shortw-jacobian-3.html#doubling-dbl-2001-b | ||
| 1025 | * | ||
| 1026 | * Outputs can equal corresponding inputs, i.e., x_out == x_in is allowed. | ||
| 1027 | * while x_out == y_in is not (maybe this works, but it's not tested). */ | ||
| 1028 | static void | ||
| 1029 | point_double(felem x_out, felem y_out, felem z_out, | ||
| 1030 | const felem x_in, const felem y_in, const felem z_in) | ||
| 1031 | { | ||
| 1032 | longfelem tmp, tmp2; | ||
| 1033 | felem delta, gamma, beta, alpha, ftmp, ftmp2; | ||
| 1034 | smallfelem small1, small2; | ||
| 1035 | |||
| 1036 | felem_assign(ftmp, x_in); | ||
| 1037 | /* ftmp[i] < 2^106 */ | ||
| 1038 | felem_assign(ftmp2, x_in); | ||
| 1039 | /* ftmp2[i] < 2^106 */ | ||
| 1040 | |||
| 1041 | /* delta = z^2 */ | ||
| 1042 | felem_square(tmp, z_in); | ||
| 1043 | felem_reduce(delta, tmp); | ||
| 1044 | /* delta[i] < 2^101 */ | ||
| 1045 | |||
| 1046 | /* gamma = y^2 */ | ||
| 1047 | felem_square(tmp, y_in); | ||
| 1048 | felem_reduce(gamma, tmp); | ||
| 1049 | /* gamma[i] < 2^101 */ | ||
| 1050 | felem_shrink(small1, gamma); | ||
| 1051 | |||
| 1052 | /* beta = x*gamma */ | ||
| 1053 | felem_small_mul(tmp, small1, x_in); | ||
| 1054 | felem_reduce(beta, tmp); | ||
| 1055 | /* beta[i] < 2^101 */ | ||
| 1056 | |||
| 1057 | /* alpha = 3*(x-delta)*(x+delta) */ | ||
| 1058 | felem_diff(ftmp, delta); | ||
| 1059 | /* ftmp[i] < 2^105 + 2^106 < 2^107 */ | ||
| 1060 | felem_sum(ftmp2, delta); | ||
| 1061 | /* ftmp2[i] < 2^105 + 2^106 < 2^107 */ | ||
| 1062 | felem_scalar(ftmp2, 3); | ||
| 1063 | /* ftmp2[i] < 3 * 2^107 < 2^109 */ | ||
| 1064 | felem_mul(tmp, ftmp, ftmp2); | ||
| 1065 | felem_reduce(alpha, tmp); | ||
| 1066 | /* alpha[i] < 2^101 */ | ||
| 1067 | felem_shrink(small2, alpha); | ||
| 1068 | |||
| 1069 | /* x' = alpha^2 - 8*beta */ | ||
| 1070 | smallfelem_square(tmp, small2); | ||
| 1071 | felem_reduce(x_out, tmp); | ||
| 1072 | felem_assign(ftmp, beta); | ||
| 1073 | felem_scalar(ftmp, 8); | ||
| 1074 | /* ftmp[i] < 8 * 2^101 = 2^104 */ | ||
| 1075 | felem_diff(x_out, ftmp); | ||
| 1076 | /* x_out[i] < 2^105 + 2^101 < 2^106 */ | ||
| 1077 | |||
| 1078 | /* z' = (y + z)^2 - gamma - delta */ | ||
| 1079 | felem_sum(delta, gamma); | ||
| 1080 | /* delta[i] < 2^101 + 2^101 = 2^102 */ | ||
| 1081 | felem_assign(ftmp, y_in); | ||
| 1082 | felem_sum(ftmp, z_in); | ||
| 1083 | /* ftmp[i] < 2^106 + 2^106 = 2^107 */ | ||
| 1084 | felem_square(tmp, ftmp); | ||
| 1085 | felem_reduce(z_out, tmp); | ||
| 1086 | felem_diff(z_out, delta); | ||
| 1087 | /* z_out[i] < 2^105 + 2^101 < 2^106 */ | ||
| 1088 | |||
| 1089 | /* y' = alpha*(4*beta - x') - 8*gamma^2 */ | ||
| 1090 | felem_scalar(beta, 4); | ||
| 1091 | /* beta[i] < 4 * 2^101 = 2^103 */ | ||
| 1092 | felem_diff_zero107(beta, x_out); | ||
| 1093 | /* beta[i] < 2^107 + 2^103 < 2^108 */ | ||
| 1094 | felem_small_mul(tmp, small2, beta); | ||
| 1095 | /* tmp[i] < 7 * 2^64 < 2^67 */ | ||
| 1096 | smallfelem_square(tmp2, small1); | ||
| 1097 | /* tmp2[i] < 7 * 2^64 */ | ||
| 1098 | longfelem_scalar(tmp2, 8); | ||
| 1099 | /* tmp2[i] < 8 * 7 * 2^64 = 7 * 2^67 */ | ||
| 1100 | longfelem_diff(tmp, tmp2); | ||
| 1101 | /* tmp[i] < 2^67 + 2^70 + 2^40 < 2^71 */ | ||
| 1102 | felem_reduce_zero105(y_out, tmp); | ||
| 1103 | /* y_out[i] < 2^106 */ | ||
| 1104 | } | ||
| 1105 | |||
| 1106 | /* point_double_small is the same as point_double, except that it operates on | ||
| 1107 | * smallfelems */ | ||
| 1108 | static void | ||
| 1109 | point_double_small(smallfelem x_out, smallfelem y_out, smallfelem z_out, | ||
| 1110 | const smallfelem x_in, const smallfelem y_in, const smallfelem z_in) | ||
| 1111 | { | ||
| 1112 | felem felem_x_out, felem_y_out, felem_z_out; | ||
| 1113 | felem felem_x_in, felem_y_in, felem_z_in; | ||
| 1114 | |||
| 1115 | smallfelem_expand(felem_x_in, x_in); | ||
| 1116 | smallfelem_expand(felem_y_in, y_in); | ||
| 1117 | smallfelem_expand(felem_z_in, z_in); | ||
| 1118 | point_double(felem_x_out, felem_y_out, felem_z_out, | ||
| 1119 | felem_x_in, felem_y_in, felem_z_in); | ||
| 1120 | felem_shrink(x_out, felem_x_out); | ||
| 1121 | felem_shrink(y_out, felem_y_out); | ||
| 1122 | felem_shrink(z_out, felem_z_out); | ||
| 1123 | } | ||
| 1124 | |||
| 1125 | /* copy_conditional copies in to out iff mask is all ones. */ | ||
| 1126 | static void | ||
| 1127 | copy_conditional(felem out, const felem in, limb mask) | ||
| 1128 | { | ||
| 1129 | unsigned i; | ||
| 1130 | for (i = 0; i < NLIMBS; ++i) | ||
| 1131 | { | ||
| 1132 | const limb tmp = mask & (in[i] ^ out[i]); | ||
| 1133 | out[i] ^= tmp; | ||
| 1134 | } | ||
| 1135 | } | ||
| 1136 | |||
| 1137 | /* copy_small_conditional copies in to out iff mask is all ones. */ | ||
| 1138 | static void | ||
| 1139 | copy_small_conditional(felem out, const smallfelem in, limb mask) | ||
| 1140 | { | ||
| 1141 | unsigned i; | ||
| 1142 | const u64 mask64 = mask; | ||
| 1143 | for (i = 0; i < NLIMBS; ++i) | ||
| 1144 | { | ||
| 1145 | out[i] = ((limb) (in[i] & mask64)) | (out[i] & ~mask); | ||
| 1146 | } | ||
| 1147 | } | ||
| 1148 | |||
| 1149 | /* point_add calcuates (x1, y1, z1) + (x2, y2, z2) | ||
| 1150 | * | ||
| 1151 | * The method is taken from: | ||
| 1152 | * http://hyperelliptic.org/EFD/g1p/auto-shortw-jacobian-3.html#addition-add-2007-bl, | ||
| 1153 | * adapted for mixed addition (z2 = 1, or z2 = 0 for the point at infinity). | ||
| 1154 | * | ||
| 1155 | * This function includes a branch for checking whether the two input points | ||
| 1156 | * are equal, (while not equal to the point at infinity). This case never | ||
| 1157 | * happens during single point multiplication, so there is no timing leak for | ||
| 1158 | * ECDH or ECDSA signing. */ | ||
| 1159 | static void point_add(felem x3, felem y3, felem z3, | ||
| 1160 | const felem x1, const felem y1, const felem z1, | ||
| 1161 | const int mixed, const smallfelem x2, const smallfelem y2, const smallfelem z2) | ||
| 1162 | { | ||
| 1163 | felem ftmp, ftmp2, ftmp3, ftmp4, ftmp5, ftmp6, x_out, y_out, z_out; | ||
| 1164 | longfelem tmp, tmp2; | ||
| 1165 | smallfelem small1, small2, small3, small4, small5; | ||
| 1166 | limb x_equal, y_equal, z1_is_zero, z2_is_zero; | ||
| 1167 | |||
| 1168 | felem_shrink(small3, z1); | ||
| 1169 | |||
| 1170 | z1_is_zero = smallfelem_is_zero(small3); | ||
| 1171 | z2_is_zero = smallfelem_is_zero(z2); | ||
| 1172 | |||
| 1173 | /* ftmp = z1z1 = z1**2 */ | ||
| 1174 | smallfelem_square(tmp, small3); | ||
| 1175 | felem_reduce(ftmp, tmp); | ||
| 1176 | /* ftmp[i] < 2^101 */ | ||
| 1177 | felem_shrink(small1, ftmp); | ||
| 1178 | |||
| 1179 | if(!mixed) | ||
| 1180 | { | ||
| 1181 | /* ftmp2 = z2z2 = z2**2 */ | ||
| 1182 | smallfelem_square(tmp, z2); | ||
| 1183 | felem_reduce(ftmp2, tmp); | ||
| 1184 | /* ftmp2[i] < 2^101 */ | ||
| 1185 | felem_shrink(small2, ftmp2); | ||
| 1186 | |||
| 1187 | felem_shrink(small5, x1); | ||
| 1188 | |||
| 1189 | /* u1 = ftmp3 = x1*z2z2 */ | ||
| 1190 | smallfelem_mul(tmp, small5, small2); | ||
| 1191 | felem_reduce(ftmp3, tmp); | ||
| 1192 | /* ftmp3[i] < 2^101 */ | ||
| 1193 | |||
| 1194 | /* ftmp5 = z1 + z2 */ | ||
| 1195 | felem_assign(ftmp5, z1); | ||
| 1196 | felem_small_sum(ftmp5, z2); | ||
| 1197 | /* ftmp5[i] < 2^107 */ | ||
| 1198 | |||
| 1199 | /* ftmp5 = (z1 + z2)**2 - (z1z1 + z2z2) = 2z1z2 */ | ||
| 1200 | felem_square(tmp, ftmp5); | ||
| 1201 | felem_reduce(ftmp5, tmp); | ||
| 1202 | /* ftmp2 = z2z2 + z1z1 */ | ||
| 1203 | felem_sum(ftmp2, ftmp); | ||
| 1204 | /* ftmp2[i] < 2^101 + 2^101 = 2^102 */ | ||
| 1205 | felem_diff(ftmp5, ftmp2); | ||
| 1206 | /* ftmp5[i] < 2^105 + 2^101 < 2^106 */ | ||
| 1207 | |||
| 1208 | /* ftmp2 = z2 * z2z2 */ | ||
| 1209 | smallfelem_mul(tmp, small2, z2); | ||
| 1210 | felem_reduce(ftmp2, tmp); | ||
| 1211 | |||
| 1212 | /* s1 = ftmp2 = y1 * z2**3 */ | ||
| 1213 | felem_mul(tmp, y1, ftmp2); | ||
| 1214 | felem_reduce(ftmp6, tmp); | ||
| 1215 | /* ftmp6[i] < 2^101 */ | ||
| 1216 | } | ||
| 1217 | else | ||
| 1218 | { | ||
| 1219 | /* We'll assume z2 = 1 (special case z2 = 0 is handled later) */ | ||
| 1220 | |||
| 1221 | /* u1 = ftmp3 = x1*z2z2 */ | ||
| 1222 | felem_assign(ftmp3, x1); | ||
| 1223 | /* ftmp3[i] < 2^106 */ | ||
| 1224 | |||
| 1225 | /* ftmp5 = 2z1z2 */ | ||
| 1226 | felem_assign(ftmp5, z1); | ||
| 1227 | felem_scalar(ftmp5, 2); | ||
| 1228 | /* ftmp5[i] < 2*2^106 = 2^107 */ | ||
| 1229 | |||
| 1230 | /* s1 = ftmp2 = y1 * z2**3 */ | ||
| 1231 | felem_assign(ftmp6, y1); | ||
| 1232 | /* ftmp6[i] < 2^106 */ | ||
| 1233 | } | ||
| 1234 | |||
| 1235 | /* u2 = x2*z1z1 */ | ||
| 1236 | smallfelem_mul(tmp, x2, small1); | ||
| 1237 | felem_reduce(ftmp4, tmp); | ||
| 1238 | |||
| 1239 | /* h = ftmp4 = u2 - u1 */ | ||
| 1240 | felem_diff_zero107(ftmp4, ftmp3); | ||
| 1241 | /* ftmp4[i] < 2^107 + 2^101 < 2^108 */ | ||
| 1242 | felem_shrink(small4, ftmp4); | ||
| 1243 | |||
| 1244 | x_equal = smallfelem_is_zero(small4); | ||
| 1245 | |||
| 1246 | /* z_out = ftmp5 * h */ | ||
| 1247 | felem_small_mul(tmp, small4, ftmp5); | ||
| 1248 | felem_reduce(z_out, tmp); | ||
| 1249 | /* z_out[i] < 2^101 */ | ||
| 1250 | |||
| 1251 | /* ftmp = z1 * z1z1 */ | ||
| 1252 | smallfelem_mul(tmp, small1, small3); | ||
| 1253 | felem_reduce(ftmp, tmp); | ||
| 1254 | |||
| 1255 | /* s2 = tmp = y2 * z1**3 */ | ||
| 1256 | felem_small_mul(tmp, y2, ftmp); | ||
| 1257 | felem_reduce(ftmp5, tmp); | ||
| 1258 | |||
| 1259 | /* r = ftmp5 = (s2 - s1)*2 */ | ||
| 1260 | felem_diff_zero107(ftmp5, ftmp6); | ||
| 1261 | /* ftmp5[i] < 2^107 + 2^107 = 2^108*/ | ||
| 1262 | felem_scalar(ftmp5, 2); | ||
| 1263 | /* ftmp5[i] < 2^109 */ | ||
| 1264 | felem_shrink(small1, ftmp5); | ||
| 1265 | y_equal = smallfelem_is_zero(small1); | ||
| 1266 | |||
| 1267 | if (x_equal && y_equal && !z1_is_zero && !z2_is_zero) | ||
| 1268 | { | ||
| 1269 | point_double(x3, y3, z3, x1, y1, z1); | ||
| 1270 | return; | ||
| 1271 | } | ||
| 1272 | |||
| 1273 | /* I = ftmp = (2h)**2 */ | ||
| 1274 | felem_assign(ftmp, ftmp4); | ||
| 1275 | felem_scalar(ftmp, 2); | ||
| 1276 | /* ftmp[i] < 2*2^108 = 2^109 */ | ||
| 1277 | felem_square(tmp, ftmp); | ||
| 1278 | felem_reduce(ftmp, tmp); | ||
| 1279 | |||
| 1280 | /* J = ftmp2 = h * I */ | ||
| 1281 | felem_mul(tmp, ftmp4, ftmp); | ||
| 1282 | felem_reduce(ftmp2, tmp); | ||
| 1283 | |||
| 1284 | /* V = ftmp4 = U1 * I */ | ||
| 1285 | felem_mul(tmp, ftmp3, ftmp); | ||
| 1286 | felem_reduce(ftmp4, tmp); | ||
| 1287 | |||
| 1288 | /* x_out = r**2 - J - 2V */ | ||
| 1289 | smallfelem_square(tmp, small1); | ||
| 1290 | felem_reduce(x_out, tmp); | ||
| 1291 | felem_assign(ftmp3, ftmp4); | ||
| 1292 | felem_scalar(ftmp4, 2); | ||
| 1293 | felem_sum(ftmp4, ftmp2); | ||
| 1294 | /* ftmp4[i] < 2*2^101 + 2^101 < 2^103 */ | ||
| 1295 | felem_diff(x_out, ftmp4); | ||
| 1296 | /* x_out[i] < 2^105 + 2^101 */ | ||
| 1297 | |||
| 1298 | /* y_out = r(V-x_out) - 2 * s1 * J */ | ||
| 1299 | felem_diff_zero107(ftmp3, x_out); | ||
| 1300 | /* ftmp3[i] < 2^107 + 2^101 < 2^108 */ | ||
| 1301 | felem_small_mul(tmp, small1, ftmp3); | ||
| 1302 | felem_mul(tmp2, ftmp6, ftmp2); | ||
| 1303 | longfelem_scalar(tmp2, 2); | ||
| 1304 | /* tmp2[i] < 2*2^67 = 2^68 */ | ||
| 1305 | longfelem_diff(tmp, tmp2); | ||
| 1306 | /* tmp[i] < 2^67 + 2^70 + 2^40 < 2^71 */ | ||
| 1307 | felem_reduce_zero105(y_out, tmp); | ||
| 1308 | /* y_out[i] < 2^106 */ | ||
| 1309 | |||
| 1310 | copy_small_conditional(x_out, x2, z1_is_zero); | ||
| 1311 | copy_conditional(x_out, x1, z2_is_zero); | ||
| 1312 | copy_small_conditional(y_out, y2, z1_is_zero); | ||
| 1313 | copy_conditional(y_out, y1, z2_is_zero); | ||
| 1314 | copy_small_conditional(z_out, z2, z1_is_zero); | ||
| 1315 | copy_conditional(z_out, z1, z2_is_zero); | ||
| 1316 | felem_assign(x3, x_out); | ||
| 1317 | felem_assign(y3, y_out); | ||
| 1318 | felem_assign(z3, z_out); | ||
| 1319 | } | ||
| 1320 | |||
| 1321 | /* point_add_small is the same as point_add, except that it operates on | ||
| 1322 | * smallfelems */ | ||
| 1323 | static void point_add_small(smallfelem x3, smallfelem y3, smallfelem z3, | ||
| 1324 | smallfelem x1, smallfelem y1, smallfelem z1, | ||
| 1325 | smallfelem x2, smallfelem y2, smallfelem z2) | ||
| 1326 | { | ||
| 1327 | felem felem_x3, felem_y3, felem_z3; | ||
| 1328 | felem felem_x1, felem_y1, felem_z1; | ||
| 1329 | smallfelem_expand(felem_x1, x1); | ||
| 1330 | smallfelem_expand(felem_y1, y1); | ||
| 1331 | smallfelem_expand(felem_z1, z1); | ||
| 1332 | point_add(felem_x3, felem_y3, felem_z3, felem_x1, felem_y1, felem_z1, 0, x2, y2, z2); | ||
| 1333 | felem_shrink(x3, felem_x3); | ||
| 1334 | felem_shrink(y3, felem_y3); | ||
| 1335 | felem_shrink(z3, felem_z3); | ||
| 1336 | } | ||
| 1337 | |||
| 1338 | /* Base point pre computation | ||
| 1339 | * -------------------------- | ||
| 1340 | * | ||
| 1341 | * Two different sorts of precomputed tables are used in the following code. | ||
| 1342 | * Each contain various points on the curve, where each point is three field | ||
| 1343 | * elements (x, y, z). | ||
| 1344 | * | ||
| 1345 | * For the base point table, z is usually 1 (0 for the point at infinity). | ||
| 1346 | * This table has 2 * 16 elements, starting with the following: | ||
| 1347 | * index | bits | point | ||
| 1348 | * ------+---------+------------------------------ | ||
| 1349 | * 0 | 0 0 0 0 | 0G | ||
| 1350 | * 1 | 0 0 0 1 | 1G | ||
| 1351 | * 2 | 0 0 1 0 | 2^64G | ||
| 1352 | * 3 | 0 0 1 1 | (2^64 + 1)G | ||
| 1353 | * 4 | 0 1 0 0 | 2^128G | ||
| 1354 | * 5 | 0 1 0 1 | (2^128 + 1)G | ||
| 1355 | * 6 | 0 1 1 0 | (2^128 + 2^64)G | ||
| 1356 | * 7 | 0 1 1 1 | (2^128 + 2^64 + 1)G | ||
| 1357 | * 8 | 1 0 0 0 | 2^192G | ||
| 1358 | * 9 | 1 0 0 1 | (2^192 + 1)G | ||
| 1359 | * 10 | 1 0 1 0 | (2^192 + 2^64)G | ||
| 1360 | * 11 | 1 0 1 1 | (2^192 + 2^64 + 1)G | ||
| 1361 | * 12 | 1 1 0 0 | (2^192 + 2^128)G | ||
| 1362 | * 13 | 1 1 0 1 | (2^192 + 2^128 + 1)G | ||
| 1363 | * 14 | 1 1 1 0 | (2^192 + 2^128 + 2^64)G | ||
| 1364 | * 15 | 1 1 1 1 | (2^192 + 2^128 + 2^64 + 1)G | ||
| 1365 | * followed by a copy of this with each element multiplied by 2^32. | ||
| 1366 | * | ||
| 1367 | * The reason for this is so that we can clock bits into four different | ||
| 1368 | * locations when doing simple scalar multiplies against the base point, | ||
| 1369 | * and then another four locations using the second 16 elements. | ||
| 1370 | * | ||
| 1371 | * Tables for other points have table[i] = iG for i in 0 .. 16. */ | ||
| 1372 | |||
| 1373 | /* gmul is the table of precomputed base points */ | ||
| 1374 | static const smallfelem gmul[2][16][3] = | ||
| 1375 | {{{{0, 0, 0, 0}, | ||
| 1376 | {0, 0, 0, 0}, | ||
| 1377 | {0, 0, 0, 0}}, | ||
| 1378 | {{0xf4a13945d898c296, 0x77037d812deb33a0, 0xf8bce6e563a440f2, 0x6b17d1f2e12c4247}, | ||
| 1379 | {0xcbb6406837bf51f5, 0x2bce33576b315ece, 0x8ee7eb4a7c0f9e16, 0x4fe342e2fe1a7f9b}, | ||
| 1380 | {1, 0, 0, 0}}, | ||
| 1381 | {{0x90e75cb48e14db63, 0x29493baaad651f7e, 0x8492592e326e25de, 0x0fa822bc2811aaa5}, | ||
| 1382 | {0xe41124545f462ee7, 0x34b1a65050fe82f5, 0x6f4ad4bcb3df188b, 0xbff44ae8f5dba80d}, | ||
| 1383 | {1, 0, 0, 0}}, | ||
| 1384 | {{0x93391ce2097992af, 0xe96c98fd0d35f1fa, 0xb257c0de95e02789, 0x300a4bbc89d6726f}, | ||
| 1385 | {0xaa54a291c08127a0, 0x5bb1eeada9d806a5, 0x7f1ddb25ff1e3c6f, 0x72aac7e0d09b4644}, | ||
| 1386 | {1, 0, 0, 0}}, | ||
| 1387 | {{0x57c84fc9d789bd85, 0xfc35ff7dc297eac3, 0xfb982fd588c6766e, 0x447d739beedb5e67}, | ||
| 1388 | {0x0c7e33c972e25b32, 0x3d349b95a7fae500, 0xe12e9d953a4aaff7, 0x2d4825ab834131ee}, | ||
| 1389 | {1, 0, 0, 0}}, | ||
| 1390 | {{0x13949c932a1d367f, 0xef7fbd2b1a0a11b7, 0xddc6068bb91dfc60, 0xef9519328a9c72ff}, | ||
| 1391 | {0x196035a77376d8a8, 0x23183b0895ca1740, 0xc1ee9807022c219c, 0x611e9fc37dbb2c9b}, | ||
| 1392 | {1, 0, 0, 0}}, | ||
| 1393 | {{0xcae2b1920b57f4bc, 0x2936df5ec6c9bc36, 0x7dea6482e11238bf, 0x550663797b51f5d8}, | ||
| 1394 | {0x44ffe216348a964c, 0x9fb3d576dbdefbe1, 0x0afa40018d9d50e5, 0x157164848aecb851}, | ||
| 1395 | {1, 0, 0, 0}}, | ||
| 1396 | {{0xe48ecafffc5cde01, 0x7ccd84e70d715f26, 0xa2e8f483f43e4391, 0xeb5d7745b21141ea}, | ||
| 1397 | {0xcac917e2731a3479, 0x85f22cfe2844b645, 0x0990e6a158006cee, 0xeafd72ebdbecc17b}, | ||
| 1398 | {1, 0, 0, 0}}, | ||
| 1399 | {{0x6cf20ffb313728be, 0x96439591a3c6b94a, 0x2736ff8344315fc5, 0xa6d39677a7849276}, | ||
| 1400 | {0xf2bab833c357f5f4, 0x824a920c2284059b, 0x66b8babd2d27ecdf, 0x674f84749b0b8816}, | ||
| 1401 | {1, 0, 0, 0}}, | ||
| 1402 | {{0x2df48c04677c8a3e, 0x74e02f080203a56b, 0x31855f7db8c7fedb, 0x4e769e7672c9ddad}, | ||
| 1403 | {0xa4c36165b824bbb0, 0xfb9ae16f3b9122a5, 0x1ec0057206947281, 0x42b99082de830663}, | ||
| 1404 | {1, 0, 0, 0}}, | ||
| 1405 | {{0x6ef95150dda868b9, 0xd1f89e799c0ce131, 0x7fdc1ca008a1c478, 0x78878ef61c6ce04d}, | ||
| 1406 | {0x9c62b9121fe0d976, 0x6ace570ebde08d4f, 0xde53142c12309def, 0xb6cb3f5d7b72c321}, | ||
| 1407 | {1, 0, 0, 0}}, | ||
| 1408 | {{0x7f991ed2c31a3573, 0x5b82dd5bd54fb496, 0x595c5220812ffcae, 0x0c88bc4d716b1287}, | ||
| 1409 | {0x3a57bf635f48aca8, 0x7c8181f4df2564f3, 0x18d1b5b39c04e6aa, 0xdd5ddea3f3901dc6}, | ||
| 1410 | {1, 0, 0, 0}}, | ||
| 1411 | {{0xe96a79fb3e72ad0c, 0x43a0a28c42ba792f, 0xefe0a423083e49f3, 0x68f344af6b317466}, | ||
| 1412 | {0xcdfe17db3fb24d4a, 0x668bfc2271f5c626, 0x604ed93c24d67ff3, 0x31b9c405f8540a20}, | ||
| 1413 | {1, 0, 0, 0}}, | ||
| 1414 | {{0xd36b4789a2582e7f, 0x0d1a10144ec39c28, 0x663c62c3edbad7a0, 0x4052bf4b6f461db9}, | ||
| 1415 | {0x235a27c3188d25eb, 0xe724f33999bfcc5b, 0x862be6bd71d70cc8, 0xfecf4d5190b0fc61}, | ||
| 1416 | {1, 0, 0, 0}}, | ||
| 1417 | {{0x74346c10a1d4cfac, 0xafdf5cc08526a7a4, 0x123202a8f62bff7a, 0x1eddbae2c802e41a}, | ||
| 1418 | {0x8fa0af2dd603f844, 0x36e06b7e4c701917, 0x0c45f45273db33a0, 0x43104d86560ebcfc}, | ||
| 1419 | {1, 0, 0, 0}}, | ||
| 1420 | {{0x9615b5110d1d78e5, 0x66b0de3225c4744b, 0x0a4a46fb6aaf363a, 0xb48e26b484f7a21c}, | ||
| 1421 | {0x06ebb0f621a01b2d, 0xc004e4048b7b0f98, 0x64131bcdfed6f668, 0xfac015404d4d3dab}, | ||
| 1422 | {1, 0, 0, 0}}}, | ||
| 1423 | {{{0, 0, 0, 0}, | ||
| 1424 | {0, 0, 0, 0}, | ||
| 1425 | {0, 0, 0, 0}}, | ||
| 1426 | {{0x3a5a9e22185a5943, 0x1ab919365c65dfb6, 0x21656b32262c71da, 0x7fe36b40af22af89}, | ||
| 1427 | {0xd50d152c699ca101, 0x74b3d5867b8af212, 0x9f09f40407dca6f1, 0xe697d45825b63624}, | ||
| 1428 | {1, 0, 0, 0}}, | ||
| 1429 | {{0xa84aa9397512218e, 0xe9a521b074ca0141, 0x57880b3a18a2e902, 0x4a5b506612a677a6}, | ||
| 1430 | {0x0beada7a4c4f3840, 0x626db15419e26d9d, 0xc42604fbe1627d40, 0xeb13461ceac089f1}, | ||
| 1431 | {1, 0, 0, 0}}, | ||
| 1432 | {{0xf9faed0927a43281, 0x5e52c4144103ecbc, 0xc342967aa815c857, 0x0781b8291c6a220a}, | ||
| 1433 | {0x5a8343ceeac55f80, 0x88f80eeee54a05e3, 0x97b2a14f12916434, 0x690cde8df0151593}, | ||
| 1434 | {1, 0, 0, 0}}, | ||
| 1435 | {{0xaee9c75df7f82f2a, 0x9e4c35874afdf43a, 0xf5622df437371326, 0x8a535f566ec73617}, | ||
| 1436 | {0xc5f9a0ac223094b7, 0xcde533864c8c7669, 0x37e02819085a92bf, 0x0455c08468b08bd7}, | ||
| 1437 | {1, 0, 0, 0}}, | ||
| 1438 | {{0x0c0a6e2c9477b5d9, 0xf9a4bf62876dc444, 0x5050a949b6cdc279, 0x06bada7ab77f8276}, | ||
| 1439 | {0xc8b4aed1ea48dac9, 0xdebd8a4b7ea1070f, 0x427d49101366eb70, 0x5b476dfd0e6cb18a}, | ||
| 1440 | {1, 0, 0, 0}}, | ||
| 1441 | {{0x7c5c3e44278c340a, 0x4d54606812d66f3b, 0x29a751b1ae23c5d8, 0x3e29864e8a2ec908}, | ||
| 1442 | {0x142d2a6626dbb850, 0xad1744c4765bd780, 0x1f150e68e322d1ed, 0x239b90ea3dc31e7e}, | ||
| 1443 | {1, 0, 0, 0}}, | ||
| 1444 | {{0x78c416527a53322a, 0x305dde6709776f8e, 0xdbcab759f8862ed4, 0x820f4dd949f72ff7}, | ||
| 1445 | {0x6cc544a62b5debd4, 0x75be5d937b4e8cc4, 0x1b481b1b215c14d3, 0x140406ec783a05ec}, | ||
| 1446 | {1, 0, 0, 0}}, | ||
| 1447 | {{0x6a703f10e895df07, 0xfd75f3fa01876bd8, 0xeb5b06e70ce08ffe, 0x68f6b8542783dfee}, | ||
| 1448 | {0x90c76f8a78712655, 0xcf5293d2f310bf7f, 0xfbc8044dfda45028, 0xcbe1feba92e40ce6}, | ||
| 1449 | {1, 0, 0, 0}}, | ||
| 1450 | {{0xe998ceea4396e4c1, 0xfc82ef0b6acea274, 0x230f729f2250e927, 0xd0b2f94d2f420109}, | ||
| 1451 | {0x4305adddb38d4966, 0x10b838f8624c3b45, 0x7db2636658954e7a, 0x971459828b0719e5}, | ||
| 1452 | {1, 0, 0, 0}}, | ||
| 1453 | {{0x4bd6b72623369fc9, 0x57f2929e53d0b876, 0xc2d5cba4f2340687, 0x961610004a866aba}, | ||
| 1454 | {0x49997bcd2e407a5e, 0x69ab197d92ddcb24, 0x2cf1f2438fe5131c, 0x7acb9fadcee75e44}, | ||
| 1455 | {1, 0, 0, 0}}, | ||
| 1456 | {{0x254e839423d2d4c0, 0xf57f0c917aea685b, 0xa60d880f6f75aaea, 0x24eb9acca333bf5b}, | ||
| 1457 | {0xe3de4ccb1cda5dea, 0xfeef9341c51a6b4f, 0x743125f88bac4c4d, 0x69f891c5acd079cc}, | ||
| 1458 | {1, 0, 0, 0}}, | ||
| 1459 | {{0xeee44b35702476b5, 0x7ed031a0e45c2258, 0xb422d1e7bd6f8514, 0xe51f547c5972a107}, | ||
| 1460 | {0xa25bcd6fc9cf343d, 0x8ca922ee097c184e, 0xa62f98b3a9fe9a06, 0x1c309a2b25bb1387}, | ||
| 1461 | {1, 0, 0, 0}}, | ||
| 1462 | {{0x9295dbeb1967c459, 0xb00148833472c98e, 0xc504977708011828, 0x20b87b8aa2c4e503}, | ||
| 1463 | {0x3063175de057c277, 0x1bd539338fe582dd, 0x0d11adef5f69a044, 0xf5c6fa49919776be}, | ||
| 1464 | {1, 0, 0, 0}}, | ||
| 1465 | {{0x8c944e760fd59e11, 0x3876cba1102fad5f, 0xa454c3fad83faa56, 0x1ed7d1b9332010b9}, | ||
| 1466 | {0xa1011a270024b889, 0x05e4d0dcac0cd344, 0x52b520f0eb6a2a24, 0x3a2b03f03217257a}, | ||
| 1467 | {1, 0, 0, 0}}, | ||
| 1468 | {{0xf20fc2afdf1d043d, 0xf330240db58d5a62, 0xfc7d229ca0058c3b, 0x15fee545c78dd9f6}, | ||
| 1469 | {0x501e82885bc98cda, 0x41ef80e5d046ac04, 0x557d9f49461210fb, 0x4ab5b6b2b8753f81}, | ||
| 1470 | {1, 0, 0, 0}}}}; | ||
| 1471 | |||
| 1472 | /* select_point selects the |idx|th point from a precomputation table and | ||
| 1473 | * copies it to out. */ | ||
| 1474 | static void select_point(const u64 idx, unsigned int size, const smallfelem pre_comp[16][3], smallfelem out[3]) | ||
| 1475 | { | ||
| 1476 | unsigned i, j; | ||
| 1477 | u64 *outlimbs = &out[0][0]; | ||
| 1478 | memset(outlimbs, 0, 3 * sizeof(smallfelem)); | ||
| 1479 | |||
| 1480 | for (i = 0; i < size; i++) | ||
| 1481 | { | ||
| 1482 | const u64 *inlimbs = (u64*) &pre_comp[i][0][0]; | ||
| 1483 | u64 mask = i ^ idx; | ||
| 1484 | mask |= mask >> 4; | ||
| 1485 | mask |= mask >> 2; | ||
| 1486 | mask |= mask >> 1; | ||
| 1487 | mask &= 1; | ||
| 1488 | mask--; | ||
| 1489 | for (j = 0; j < NLIMBS * 3; j++) | ||
| 1490 | outlimbs[j] |= inlimbs[j] & mask; | ||
| 1491 | } | ||
| 1492 | } | ||
| 1493 | |||
| 1494 | /* get_bit returns the |i|th bit in |in| */ | ||
| 1495 | static char get_bit(const felem_bytearray in, int i) | ||
| 1496 | { | ||
| 1497 | if ((i < 0) || (i >= 256)) | ||
| 1498 | return 0; | ||
| 1499 | return (in[i >> 3] >> (i & 7)) & 1; | ||
| 1500 | } | ||
| 1501 | |||
| 1502 | /* Interleaved point multiplication using precomputed point multiples: | ||
| 1503 | * The small point multiples 0*P, 1*P, ..., 17*P are in pre_comp[], | ||
| 1504 | * the scalars in scalars[]. If g_scalar is non-NULL, we also add this multiple | ||
| 1505 | * of the generator, using certain (large) precomputed multiples in g_pre_comp. | ||
| 1506 | * Output point (X, Y, Z) is stored in x_out, y_out, z_out */ | ||
| 1507 | static void batch_mul(felem x_out, felem y_out, felem z_out, | ||
| 1508 | const felem_bytearray scalars[], const unsigned num_points, const u8 *g_scalar, | ||
| 1509 | const int mixed, const smallfelem pre_comp[][17][3], const smallfelem g_pre_comp[2][16][3]) | ||
| 1510 | { | ||
| 1511 | int i, skip; | ||
| 1512 | unsigned num, gen_mul = (g_scalar != NULL); | ||
| 1513 | felem nq[3], ftmp; | ||
| 1514 | smallfelem tmp[3]; | ||
| 1515 | u64 bits; | ||
| 1516 | u8 sign, digit; | ||
| 1517 | |||
| 1518 | /* set nq to the point at infinity */ | ||
| 1519 | memset(nq, 0, 3 * sizeof(felem)); | ||
| 1520 | |||
| 1521 | /* Loop over all scalars msb-to-lsb, interleaving additions | ||
| 1522 | * of multiples of the generator (two in each of the last 32 rounds) | ||
| 1523 | * and additions of other points multiples (every 5th round). | ||
| 1524 | */ | ||
| 1525 | skip = 1; /* save two point operations in the first round */ | ||
| 1526 | for (i = (num_points ? 255 : 31); i >= 0; --i) | ||
| 1527 | { | ||
| 1528 | /* double */ | ||
| 1529 | if (!skip) | ||
| 1530 | point_double(nq[0], nq[1], nq[2], nq[0], nq[1], nq[2]); | ||
| 1531 | |||
| 1532 | /* add multiples of the generator */ | ||
| 1533 | if (gen_mul && (i <= 31)) | ||
| 1534 | { | ||
| 1535 | /* first, look 32 bits upwards */ | ||
| 1536 | bits = get_bit(g_scalar, i + 224) << 3; | ||
| 1537 | bits |= get_bit(g_scalar, i + 160) << 2; | ||
| 1538 | bits |= get_bit(g_scalar, i + 96) << 1; | ||
| 1539 | bits |= get_bit(g_scalar, i + 32); | ||
| 1540 | /* select the point to add, in constant time */ | ||
| 1541 | select_point(bits, 16, g_pre_comp[1], tmp); | ||
| 1542 | |||
| 1543 | if (!skip) | ||
| 1544 | { | ||
| 1545 | point_add(nq[0], nq[1], nq[2], | ||
| 1546 | nq[0], nq[1], nq[2], | ||
| 1547 | 1 /* mixed */, tmp[0], tmp[1], tmp[2]); | ||
| 1548 | } | ||
| 1549 | else | ||
| 1550 | { | ||
| 1551 | smallfelem_expand(nq[0], tmp[0]); | ||
| 1552 | smallfelem_expand(nq[1], tmp[1]); | ||
| 1553 | smallfelem_expand(nq[2], tmp[2]); | ||
| 1554 | skip = 0; | ||
| 1555 | } | ||
| 1556 | |||
| 1557 | /* second, look at the current position */ | ||
| 1558 | bits = get_bit(g_scalar, i + 192) << 3; | ||
| 1559 | bits |= get_bit(g_scalar, i + 128) << 2; | ||
| 1560 | bits |= get_bit(g_scalar, i + 64) << 1; | ||
| 1561 | bits |= get_bit(g_scalar, i); | ||
| 1562 | /* select the point to add, in constant time */ | ||
| 1563 | select_point(bits, 16, g_pre_comp[0], tmp); | ||
| 1564 | point_add(nq[0], nq[1], nq[2], | ||
| 1565 | nq[0], nq[1], nq[2], | ||
| 1566 | 1 /* mixed */, tmp[0], tmp[1], tmp[2]); | ||
| 1567 | } | ||
| 1568 | |||
| 1569 | /* do other additions every 5 doublings */ | ||
| 1570 | if (num_points && (i % 5 == 0)) | ||
| 1571 | { | ||
| 1572 | /* loop over all scalars */ | ||
| 1573 | for (num = 0; num < num_points; ++num) | ||
| 1574 | { | ||
| 1575 | bits = get_bit(scalars[num], i + 4) << 5; | ||
| 1576 | bits |= get_bit(scalars[num], i + 3) << 4; | ||
| 1577 | bits |= get_bit(scalars[num], i + 2) << 3; | ||
| 1578 | bits |= get_bit(scalars[num], i + 1) << 2; | ||
| 1579 | bits |= get_bit(scalars[num], i) << 1; | ||
| 1580 | bits |= get_bit(scalars[num], i - 1); | ||
| 1581 | ec_GFp_nistp_recode_scalar_bits(&sign, &digit, bits); | ||
| 1582 | |||
| 1583 | /* select the point to add or subtract, in constant time */ | ||
| 1584 | select_point(digit, 17, pre_comp[num], tmp); | ||
| 1585 | smallfelem_neg(ftmp, tmp[1]); /* (X, -Y, Z) is the negative point */ | ||
| 1586 | copy_small_conditional(ftmp, tmp[1], (((limb) sign) - 1)); | ||
| 1587 | felem_contract(tmp[1], ftmp); | ||
| 1588 | |||
| 1589 | if (!skip) | ||
| 1590 | { | ||
| 1591 | point_add(nq[0], nq[1], nq[2], | ||
| 1592 | nq[0], nq[1], nq[2], | ||
| 1593 | mixed, tmp[0], tmp[1], tmp[2]); | ||
| 1594 | } | ||
| 1595 | else | ||
| 1596 | { | ||
| 1597 | smallfelem_expand(nq[0], tmp[0]); | ||
| 1598 | smallfelem_expand(nq[1], tmp[1]); | ||
| 1599 | smallfelem_expand(nq[2], tmp[2]); | ||
| 1600 | skip = 0; | ||
| 1601 | } | ||
| 1602 | } | ||
| 1603 | } | ||
| 1604 | } | ||
| 1605 | felem_assign(x_out, nq[0]); | ||
| 1606 | felem_assign(y_out, nq[1]); | ||
| 1607 | felem_assign(z_out, nq[2]); | ||
| 1608 | } | ||
| 1609 | |||
| 1610 | /* Precomputation for the group generator. */ | ||
| 1611 | typedef struct { | ||
| 1612 | smallfelem g_pre_comp[2][16][3]; | ||
| 1613 | int references; | ||
| 1614 | } NISTP256_PRE_COMP; | ||
| 1615 | |||
| 1616 | const EC_METHOD *EC_GFp_nistp256_method(void) | ||
| 1617 | { | ||
| 1618 | static const EC_METHOD ret = { | ||
| 1619 | EC_FLAGS_DEFAULT_OCT, | ||
| 1620 | NID_X9_62_prime_field, | ||
| 1621 | ec_GFp_nistp256_group_init, | ||
| 1622 | ec_GFp_simple_group_finish, | ||
| 1623 | ec_GFp_simple_group_clear_finish, | ||
| 1624 | ec_GFp_nist_group_copy, | ||
| 1625 | ec_GFp_nistp256_group_set_curve, | ||
| 1626 | ec_GFp_simple_group_get_curve, | ||
| 1627 | ec_GFp_simple_group_get_degree, | ||
| 1628 | ec_GFp_simple_group_check_discriminant, | ||
| 1629 | ec_GFp_simple_point_init, | ||
| 1630 | ec_GFp_simple_point_finish, | ||
| 1631 | ec_GFp_simple_point_clear_finish, | ||
| 1632 | ec_GFp_simple_point_copy, | ||
| 1633 | ec_GFp_simple_point_set_to_infinity, | ||
| 1634 | ec_GFp_simple_set_Jprojective_coordinates_GFp, | ||
| 1635 | ec_GFp_simple_get_Jprojective_coordinates_GFp, | ||
| 1636 | ec_GFp_simple_point_set_affine_coordinates, | ||
| 1637 | ec_GFp_nistp256_point_get_affine_coordinates, | ||
| 1638 | 0 /* point_set_compressed_coordinates */, | ||
| 1639 | 0 /* point2oct */, | ||
| 1640 | 0 /* oct2point */, | ||
| 1641 | ec_GFp_simple_add, | ||
| 1642 | ec_GFp_simple_dbl, | ||
| 1643 | ec_GFp_simple_invert, | ||
| 1644 | ec_GFp_simple_is_at_infinity, | ||
| 1645 | ec_GFp_simple_is_on_curve, | ||
| 1646 | ec_GFp_simple_cmp, | ||
| 1647 | ec_GFp_simple_make_affine, | ||
| 1648 | ec_GFp_simple_points_make_affine, | ||
| 1649 | ec_GFp_nistp256_points_mul, | ||
| 1650 | ec_GFp_nistp256_precompute_mult, | ||
| 1651 | ec_GFp_nistp256_have_precompute_mult, | ||
| 1652 | ec_GFp_nist_field_mul, | ||
| 1653 | ec_GFp_nist_field_sqr, | ||
| 1654 | 0 /* field_div */, | ||
| 1655 | 0 /* field_encode */, | ||
| 1656 | 0 /* field_decode */, | ||
| 1657 | 0 /* field_set_to_one */ }; | ||
| 1658 | |||
| 1659 | return &ret; | ||
| 1660 | } | ||
| 1661 | |||
| 1662 | /******************************************************************************/ | ||
| 1663 | /* FUNCTIONS TO MANAGE PRECOMPUTATION | ||
| 1664 | */ | ||
| 1665 | |||
| 1666 | static NISTP256_PRE_COMP *nistp256_pre_comp_new() | ||
| 1667 | { | ||
| 1668 | NISTP256_PRE_COMP *ret = NULL; | ||
| 1669 | ret = (NISTP256_PRE_COMP *) OPENSSL_malloc(sizeof *ret); | ||
| 1670 | if (!ret) | ||
| 1671 | { | ||
| 1672 | ECerr(EC_F_NISTP256_PRE_COMP_NEW, ERR_R_MALLOC_FAILURE); | ||
| 1673 | return ret; | ||
| 1674 | } | ||
| 1675 | memset(ret->g_pre_comp, 0, sizeof(ret->g_pre_comp)); | ||
| 1676 | ret->references = 1; | ||
| 1677 | return ret; | ||
| 1678 | } | ||
| 1679 | |||
| 1680 | static void *nistp256_pre_comp_dup(void *src_) | ||
| 1681 | { | ||
| 1682 | NISTP256_PRE_COMP *src = src_; | ||
| 1683 | |||
| 1684 | /* no need to actually copy, these objects never change! */ | ||
| 1685 | CRYPTO_add(&src->references, 1, CRYPTO_LOCK_EC_PRE_COMP); | ||
| 1686 | |||
| 1687 | return src_; | ||
| 1688 | } | ||
| 1689 | |||
| 1690 | static void nistp256_pre_comp_free(void *pre_) | ||
| 1691 | { | ||
| 1692 | int i; | ||
| 1693 | NISTP256_PRE_COMP *pre = pre_; | ||
| 1694 | |||
| 1695 | if (!pre) | ||
| 1696 | return; | ||
| 1697 | |||
| 1698 | i = CRYPTO_add(&pre->references, -1, CRYPTO_LOCK_EC_PRE_COMP); | ||
| 1699 | if (i > 0) | ||
| 1700 | return; | ||
| 1701 | |||
| 1702 | OPENSSL_free(pre); | ||
| 1703 | } | ||
| 1704 | |||
| 1705 | static void nistp256_pre_comp_clear_free(void *pre_) | ||
| 1706 | { | ||
| 1707 | int i; | ||
| 1708 | NISTP256_PRE_COMP *pre = pre_; | ||
| 1709 | |||
| 1710 | if (!pre) | ||
| 1711 | return; | ||
| 1712 | |||
| 1713 | i = CRYPTO_add(&pre->references, -1, CRYPTO_LOCK_EC_PRE_COMP); | ||
| 1714 | if (i > 0) | ||
| 1715 | return; | ||
| 1716 | |||
| 1717 | OPENSSL_cleanse(pre, sizeof *pre); | ||
| 1718 | OPENSSL_free(pre); | ||
| 1719 | } | ||
| 1720 | |||
| 1721 | /******************************************************************************/ | ||
| 1722 | /* OPENSSL EC_METHOD FUNCTIONS | ||
| 1723 | */ | ||
| 1724 | |||
| 1725 | int ec_GFp_nistp256_group_init(EC_GROUP *group) | ||
| 1726 | { | ||
| 1727 | int ret; | ||
| 1728 | ret = ec_GFp_simple_group_init(group); | ||
| 1729 | group->a_is_minus3 = 1; | ||
| 1730 | return ret; | ||
| 1731 | } | ||
| 1732 | |||
| 1733 | int ec_GFp_nistp256_group_set_curve(EC_GROUP *group, const BIGNUM *p, | ||
| 1734 | const BIGNUM *a, const BIGNUM *b, BN_CTX *ctx) | ||
| 1735 | { | ||
| 1736 | int ret = 0; | ||
| 1737 | BN_CTX *new_ctx = NULL; | ||
| 1738 | BIGNUM *curve_p, *curve_a, *curve_b; | ||
| 1739 | |||
| 1740 | if (ctx == NULL) | ||
| 1741 | if ((ctx = new_ctx = BN_CTX_new()) == NULL) return 0; | ||
| 1742 | BN_CTX_start(ctx); | ||
| 1743 | if (((curve_p = BN_CTX_get(ctx)) == NULL) || | ||
| 1744 | ((curve_a = BN_CTX_get(ctx)) == NULL) || | ||
| 1745 | ((curve_b = BN_CTX_get(ctx)) == NULL)) goto err; | ||
| 1746 | BN_bin2bn(nistp256_curve_params[0], sizeof(felem_bytearray), curve_p); | ||
| 1747 | BN_bin2bn(nistp256_curve_params[1], sizeof(felem_bytearray), curve_a); | ||
| 1748 | BN_bin2bn(nistp256_curve_params[2], sizeof(felem_bytearray), curve_b); | ||
| 1749 | if ((BN_cmp(curve_p, p)) || (BN_cmp(curve_a, a)) || | ||
| 1750 | (BN_cmp(curve_b, b))) | ||
| 1751 | { | ||
| 1752 | ECerr(EC_F_EC_GFP_NISTP256_GROUP_SET_CURVE, | ||
| 1753 | EC_R_WRONG_CURVE_PARAMETERS); | ||
| 1754 | goto err; | ||
| 1755 | } | ||
| 1756 | group->field_mod_func = BN_nist_mod_256; | ||
| 1757 | ret = ec_GFp_simple_group_set_curve(group, p, a, b, ctx); | ||
| 1758 | err: | ||
| 1759 | BN_CTX_end(ctx); | ||
| 1760 | if (new_ctx != NULL) | ||
| 1761 | BN_CTX_free(new_ctx); | ||
| 1762 | return ret; | ||
| 1763 | } | ||
| 1764 | |||
| 1765 | /* Takes the Jacobian coordinates (X, Y, Z) of a point and returns | ||
| 1766 | * (X', Y') = (X/Z^2, Y/Z^3) */ | ||
| 1767 | int ec_GFp_nistp256_point_get_affine_coordinates(const EC_GROUP *group, | ||
| 1768 | const EC_POINT *point, BIGNUM *x, BIGNUM *y, BN_CTX *ctx) | ||
| 1769 | { | ||
| 1770 | felem z1, z2, x_in, y_in; | ||
| 1771 | smallfelem x_out, y_out; | ||
| 1772 | longfelem tmp; | ||
| 1773 | |||
| 1774 | if (EC_POINT_is_at_infinity(group, point)) | ||
| 1775 | { | ||
| 1776 | ECerr(EC_F_EC_GFP_NISTP256_POINT_GET_AFFINE_COORDINATES, | ||
| 1777 | EC_R_POINT_AT_INFINITY); | ||
| 1778 | return 0; | ||
| 1779 | } | ||
| 1780 | if ((!BN_to_felem(x_in, &point->X)) || (!BN_to_felem(y_in, &point->Y)) || | ||
| 1781 | (!BN_to_felem(z1, &point->Z))) return 0; | ||
| 1782 | felem_inv(z2, z1); | ||
| 1783 | felem_square(tmp, z2); felem_reduce(z1, tmp); | ||
| 1784 | felem_mul(tmp, x_in, z1); felem_reduce(x_in, tmp); | ||
| 1785 | felem_contract(x_out, x_in); | ||
| 1786 | if (x != NULL) | ||
| 1787 | { | ||
| 1788 | if (!smallfelem_to_BN(x, x_out)) { | ||
| 1789 | ECerr(EC_F_EC_GFP_NISTP256_POINT_GET_AFFINE_COORDINATES, | ||
| 1790 | ERR_R_BN_LIB); | ||
| 1791 | return 0; | ||
| 1792 | } | ||
| 1793 | } | ||
| 1794 | felem_mul(tmp, z1, z2); felem_reduce(z1, tmp); | ||
| 1795 | felem_mul(tmp, y_in, z1); felem_reduce(y_in, tmp); | ||
| 1796 | felem_contract(y_out, y_in); | ||
| 1797 | if (y != NULL) | ||
| 1798 | { | ||
| 1799 | if (!smallfelem_to_BN(y, y_out)) | ||
| 1800 | { | ||
| 1801 | ECerr(EC_F_EC_GFP_NISTP256_POINT_GET_AFFINE_COORDINATES, | ||
| 1802 | ERR_R_BN_LIB); | ||
| 1803 | return 0; | ||
| 1804 | } | ||
| 1805 | } | ||
| 1806 | return 1; | ||
| 1807 | } | ||
| 1808 | |||
| 1809 | static void make_points_affine(size_t num, smallfelem points[/* num */][3], smallfelem tmp_smallfelems[/* num+1 */]) | ||
| 1810 | { | ||
| 1811 | /* Runs in constant time, unless an input is the point at infinity | ||
| 1812 | * (which normally shouldn't happen). */ | ||
| 1813 | ec_GFp_nistp_points_make_affine_internal( | ||
| 1814 | num, | ||
| 1815 | points, | ||
| 1816 | sizeof(smallfelem), | ||
| 1817 | tmp_smallfelems, | ||
| 1818 | (void (*)(void *)) smallfelem_one, | ||
| 1819 | (int (*)(const void *)) smallfelem_is_zero_int, | ||
| 1820 | (void (*)(void *, const void *)) smallfelem_assign, | ||
| 1821 | (void (*)(void *, const void *)) smallfelem_square_contract, | ||
| 1822 | (void (*)(void *, const void *, const void *)) smallfelem_mul_contract, | ||
| 1823 | (void (*)(void *, const void *)) smallfelem_inv_contract, | ||
| 1824 | (void (*)(void *, const void *)) smallfelem_assign /* nothing to contract */); | ||
| 1825 | } | ||
| 1826 | |||
| 1827 | /* Computes scalar*generator + \sum scalars[i]*points[i], ignoring NULL values | ||
| 1828 | * Result is stored in r (r can equal one of the inputs). */ | ||
| 1829 | int ec_GFp_nistp256_points_mul(const EC_GROUP *group, EC_POINT *r, | ||
| 1830 | const BIGNUM *scalar, size_t num, const EC_POINT *points[], | ||
| 1831 | const BIGNUM *scalars[], BN_CTX *ctx) | ||
| 1832 | { | ||
| 1833 | int ret = 0; | ||
| 1834 | int j; | ||
| 1835 | int mixed = 0; | ||
| 1836 | BN_CTX *new_ctx = NULL; | ||
| 1837 | BIGNUM *x, *y, *z, *tmp_scalar; | ||
| 1838 | felem_bytearray g_secret; | ||
| 1839 | felem_bytearray *secrets = NULL; | ||
| 1840 | smallfelem (*pre_comp)[17][3] = NULL; | ||
| 1841 | smallfelem *tmp_smallfelems = NULL; | ||
| 1842 | felem_bytearray tmp; | ||
| 1843 | unsigned i, num_bytes; | ||
| 1844 | int have_pre_comp = 0; | ||
| 1845 | size_t num_points = num; | ||
| 1846 | smallfelem x_in, y_in, z_in; | ||
| 1847 | felem x_out, y_out, z_out; | ||
| 1848 | NISTP256_PRE_COMP *pre = NULL; | ||
| 1849 | const smallfelem (*g_pre_comp)[16][3] = NULL; | ||
| 1850 | EC_POINT *generator = NULL; | ||
| 1851 | const EC_POINT *p = NULL; | ||
| 1852 | const BIGNUM *p_scalar = NULL; | ||
| 1853 | |||
| 1854 | if (ctx == NULL) | ||
| 1855 | if ((ctx = new_ctx = BN_CTX_new()) == NULL) return 0; | ||
| 1856 | BN_CTX_start(ctx); | ||
| 1857 | if (((x = BN_CTX_get(ctx)) == NULL) || | ||
| 1858 | ((y = BN_CTX_get(ctx)) == NULL) || | ||
| 1859 | ((z = BN_CTX_get(ctx)) == NULL) || | ||
| 1860 | ((tmp_scalar = BN_CTX_get(ctx)) == NULL)) | ||
| 1861 | goto err; | ||
| 1862 | |||
| 1863 | if (scalar != NULL) | ||
| 1864 | { | ||
| 1865 | pre = EC_EX_DATA_get_data(group->extra_data, | ||
| 1866 | nistp256_pre_comp_dup, nistp256_pre_comp_free, | ||
| 1867 | nistp256_pre_comp_clear_free); | ||
| 1868 | if (pre) | ||
| 1869 | /* we have precomputation, try to use it */ | ||
| 1870 | g_pre_comp = (const smallfelem (*)[16][3]) pre->g_pre_comp; | ||
| 1871 | else | ||
| 1872 | /* try to use the standard precomputation */ | ||
| 1873 | g_pre_comp = &gmul[0]; | ||
| 1874 | generator = EC_POINT_new(group); | ||
| 1875 | if (generator == NULL) | ||
| 1876 | goto err; | ||
| 1877 | /* get the generator from precomputation */ | ||
| 1878 | if (!smallfelem_to_BN(x, g_pre_comp[0][1][0]) || | ||
| 1879 | !smallfelem_to_BN(y, g_pre_comp[0][1][1]) || | ||
| 1880 | !smallfelem_to_BN(z, g_pre_comp[0][1][2])) | ||
| 1881 | { | ||
| 1882 | ECerr(EC_F_EC_GFP_NISTP256_POINTS_MUL, ERR_R_BN_LIB); | ||
| 1883 | goto err; | ||
| 1884 | } | ||
| 1885 | if (!EC_POINT_set_Jprojective_coordinates_GFp(group, | ||
| 1886 | generator, x, y, z, ctx)) | ||
| 1887 | goto err; | ||
| 1888 | if (0 == EC_POINT_cmp(group, generator, group->generator, ctx)) | ||
| 1889 | /* precomputation matches generator */ | ||
| 1890 | have_pre_comp = 1; | ||
| 1891 | else | ||
| 1892 | /* we don't have valid precomputation: | ||
| 1893 | * treat the generator as a random point */ | ||
| 1894 | num_points++; | ||
| 1895 | } | ||
| 1896 | if (num_points > 0) | ||
| 1897 | { | ||
| 1898 | if (num_points >= 3) | ||
| 1899 | { | ||
| 1900 | /* unless we precompute multiples for just one or two points, | ||
| 1901 | * converting those into affine form is time well spent */ | ||
| 1902 | mixed = 1; | ||
| 1903 | } | ||
| 1904 | secrets = OPENSSL_malloc(num_points * sizeof(felem_bytearray)); | ||
| 1905 | pre_comp = OPENSSL_malloc(num_points * 17 * 3 * sizeof(smallfelem)); | ||
| 1906 | if (mixed) | ||
| 1907 | tmp_smallfelems = OPENSSL_malloc((num_points * 17 + 1) * sizeof(smallfelem)); | ||
| 1908 | if ((secrets == NULL) || (pre_comp == NULL) || (mixed && (tmp_smallfelems == NULL))) | ||
| 1909 | { | ||
| 1910 | ECerr(EC_F_EC_GFP_NISTP256_POINTS_MUL, ERR_R_MALLOC_FAILURE); | ||
| 1911 | goto err; | ||
| 1912 | } | ||
| 1913 | |||
| 1914 | /* we treat NULL scalars as 0, and NULL points as points at infinity, | ||
| 1915 | * i.e., they contribute nothing to the linear combination */ | ||
| 1916 | memset(secrets, 0, num_points * sizeof(felem_bytearray)); | ||
| 1917 | memset(pre_comp, 0, num_points * 17 * 3 * sizeof(smallfelem)); | ||
| 1918 | for (i = 0; i < num_points; ++i) | ||
| 1919 | { | ||
| 1920 | if (i == num) | ||
| 1921 | /* we didn't have a valid precomputation, so we pick | ||
| 1922 | * the generator */ | ||
| 1923 | { | ||
| 1924 | p = EC_GROUP_get0_generator(group); | ||
| 1925 | p_scalar = scalar; | ||
| 1926 | } | ||
| 1927 | else | ||
| 1928 | /* the i^th point */ | ||
| 1929 | { | ||
| 1930 | p = points[i]; | ||
| 1931 | p_scalar = scalars[i]; | ||
| 1932 | } | ||
| 1933 | if ((p_scalar != NULL) && (p != NULL)) | ||
| 1934 | { | ||
| 1935 | /* reduce scalar to 0 <= scalar < 2^256 */ | ||
| 1936 | if ((BN_num_bits(p_scalar) > 256) || (BN_is_negative(p_scalar))) | ||
| 1937 | { | ||
| 1938 | /* this is an unusual input, and we don't guarantee | ||
| 1939 | * constant-timeness */ | ||
| 1940 | if (!BN_nnmod(tmp_scalar, p_scalar, &group->order, ctx)) | ||
| 1941 | { | ||
| 1942 | ECerr(EC_F_EC_GFP_NISTP256_POINTS_MUL, ERR_R_BN_LIB); | ||
| 1943 | goto err; | ||
| 1944 | } | ||
| 1945 | num_bytes = BN_bn2bin(tmp_scalar, tmp); | ||
| 1946 | } | ||
| 1947 | else | ||
| 1948 | num_bytes = BN_bn2bin(p_scalar, tmp); | ||
| 1949 | flip_endian(secrets[i], tmp, num_bytes); | ||
| 1950 | /* precompute multiples */ | ||
| 1951 | if ((!BN_to_felem(x_out, &p->X)) || | ||
| 1952 | (!BN_to_felem(y_out, &p->Y)) || | ||
| 1953 | (!BN_to_felem(z_out, &p->Z))) goto err; | ||
| 1954 | felem_shrink(pre_comp[i][1][0], x_out); | ||
| 1955 | felem_shrink(pre_comp[i][1][1], y_out); | ||
| 1956 | felem_shrink(pre_comp[i][1][2], z_out); | ||
| 1957 | for (j = 2; j <= 16; ++j) | ||
| 1958 | { | ||
| 1959 | if (j & 1) | ||
| 1960 | { | ||
| 1961 | point_add_small( | ||
| 1962 | pre_comp[i][j][0], pre_comp[i][j][1], pre_comp[i][j][2], | ||
| 1963 | pre_comp[i][1][0], pre_comp[i][1][1], pre_comp[i][1][2], | ||
| 1964 | pre_comp[i][j-1][0], pre_comp[i][j-1][1], pre_comp[i][j-1][2]); | ||
| 1965 | } | ||
| 1966 | else | ||
| 1967 | { | ||
| 1968 | point_double_small( | ||
| 1969 | pre_comp[i][j][0], pre_comp[i][j][1], pre_comp[i][j][2], | ||
| 1970 | pre_comp[i][j/2][0], pre_comp[i][j/2][1], pre_comp[i][j/2][2]); | ||
| 1971 | } | ||
| 1972 | } | ||
| 1973 | } | ||
| 1974 | } | ||
| 1975 | if (mixed) | ||
| 1976 | make_points_affine(num_points * 17, pre_comp[0], tmp_smallfelems); | ||
| 1977 | } | ||
| 1978 | |||
| 1979 | /* the scalar for the generator */ | ||
| 1980 | if ((scalar != NULL) && (have_pre_comp)) | ||
| 1981 | { | ||
| 1982 | memset(g_secret, 0, sizeof(g_secret)); | ||
| 1983 | /* reduce scalar to 0 <= scalar < 2^256 */ | ||
| 1984 | if ((BN_num_bits(scalar) > 256) || (BN_is_negative(scalar))) | ||
| 1985 | { | ||
| 1986 | /* this is an unusual input, and we don't guarantee | ||
| 1987 | * constant-timeness */ | ||
| 1988 | if (!BN_nnmod(tmp_scalar, scalar, &group->order, ctx)) | ||
| 1989 | { | ||
| 1990 | ECerr(EC_F_EC_GFP_NISTP256_POINTS_MUL, ERR_R_BN_LIB); | ||
| 1991 | goto err; | ||
| 1992 | } | ||
| 1993 | num_bytes = BN_bn2bin(tmp_scalar, tmp); | ||
| 1994 | } | ||
| 1995 | else | ||
| 1996 | num_bytes = BN_bn2bin(scalar, tmp); | ||
| 1997 | flip_endian(g_secret, tmp, num_bytes); | ||
| 1998 | /* do the multiplication with generator precomputation*/ | ||
| 1999 | batch_mul(x_out, y_out, z_out, | ||
| 2000 | (const felem_bytearray (*)) secrets, num_points, | ||
| 2001 | g_secret, | ||
| 2002 | mixed, (const smallfelem (*)[17][3]) pre_comp, | ||
| 2003 | g_pre_comp); | ||
| 2004 | } | ||
| 2005 | else | ||
| 2006 | /* do the multiplication without generator precomputation */ | ||
| 2007 | batch_mul(x_out, y_out, z_out, | ||
| 2008 | (const felem_bytearray (*)) secrets, num_points, | ||
| 2009 | NULL, mixed, (const smallfelem (*)[17][3]) pre_comp, NULL); | ||
| 2010 | /* reduce the output to its unique minimal representation */ | ||
| 2011 | felem_contract(x_in, x_out); | ||
| 2012 | felem_contract(y_in, y_out); | ||
| 2013 | felem_contract(z_in, z_out); | ||
| 2014 | if ((!smallfelem_to_BN(x, x_in)) || (!smallfelem_to_BN(y, y_in)) || | ||
| 2015 | (!smallfelem_to_BN(z, z_in))) | ||
| 2016 | { | ||
| 2017 | ECerr(EC_F_EC_GFP_NISTP256_POINTS_MUL, ERR_R_BN_LIB); | ||
| 2018 | goto err; | ||
| 2019 | } | ||
| 2020 | ret = EC_POINT_set_Jprojective_coordinates_GFp(group, r, x, y, z, ctx); | ||
| 2021 | |||
| 2022 | err: | ||
| 2023 | BN_CTX_end(ctx); | ||
| 2024 | if (generator != NULL) | ||
| 2025 | EC_POINT_free(generator); | ||
| 2026 | if (new_ctx != NULL) | ||
| 2027 | BN_CTX_free(new_ctx); | ||
| 2028 | if (secrets != NULL) | ||
| 2029 | OPENSSL_free(secrets); | ||
| 2030 | if (pre_comp != NULL) | ||
| 2031 | OPENSSL_free(pre_comp); | ||
| 2032 | if (tmp_smallfelems != NULL) | ||
| 2033 | OPENSSL_free(tmp_smallfelems); | ||
| 2034 | return ret; | ||
| 2035 | } | ||
| 2036 | |||
| 2037 | int ec_GFp_nistp256_precompute_mult(EC_GROUP *group, BN_CTX *ctx) | ||
| 2038 | { | ||
| 2039 | int ret = 0; | ||
| 2040 | NISTP256_PRE_COMP *pre = NULL; | ||
| 2041 | int i, j; | ||
| 2042 | BN_CTX *new_ctx = NULL; | ||
| 2043 | BIGNUM *x, *y; | ||
| 2044 | EC_POINT *generator = NULL; | ||
| 2045 | smallfelem tmp_smallfelems[32]; | ||
| 2046 | felem x_tmp, y_tmp, z_tmp; | ||
| 2047 | |||
| 2048 | /* throw away old precomputation */ | ||
| 2049 | EC_EX_DATA_free_data(&group->extra_data, nistp256_pre_comp_dup, | ||
| 2050 | nistp256_pre_comp_free, nistp256_pre_comp_clear_free); | ||
| 2051 | if (ctx == NULL) | ||
| 2052 | if ((ctx = new_ctx = BN_CTX_new()) == NULL) return 0; | ||
| 2053 | BN_CTX_start(ctx); | ||
| 2054 | if (((x = BN_CTX_get(ctx)) == NULL) || | ||
| 2055 | ((y = BN_CTX_get(ctx)) == NULL)) | ||
| 2056 | goto err; | ||
| 2057 | /* get the generator */ | ||
| 2058 | if (group->generator == NULL) goto err; | ||
| 2059 | generator = EC_POINT_new(group); | ||
| 2060 | if (generator == NULL) | ||
| 2061 | goto err; | ||
| 2062 | BN_bin2bn(nistp256_curve_params[3], sizeof (felem_bytearray), x); | ||
| 2063 | BN_bin2bn(nistp256_curve_params[4], sizeof (felem_bytearray), y); | ||
| 2064 | if (!EC_POINT_set_affine_coordinates_GFp(group, generator, x, y, ctx)) | ||
| 2065 | goto err; | ||
| 2066 | if ((pre = nistp256_pre_comp_new()) == NULL) | ||
| 2067 | goto err; | ||
| 2068 | /* if the generator is the standard one, use built-in precomputation */ | ||
| 2069 | if (0 == EC_POINT_cmp(group, generator, group->generator, ctx)) | ||
| 2070 | { | ||
| 2071 | memcpy(pre->g_pre_comp, gmul, sizeof(pre->g_pre_comp)); | ||
| 2072 | ret = 1; | ||
| 2073 | goto err; | ||
| 2074 | } | ||
| 2075 | if ((!BN_to_felem(x_tmp, &group->generator->X)) || | ||
| 2076 | (!BN_to_felem(y_tmp, &group->generator->Y)) || | ||
| 2077 | (!BN_to_felem(z_tmp, &group->generator->Z))) | ||
| 2078 | goto err; | ||
| 2079 | felem_shrink(pre->g_pre_comp[0][1][0], x_tmp); | ||
| 2080 | felem_shrink(pre->g_pre_comp[0][1][1], y_tmp); | ||
| 2081 | felem_shrink(pre->g_pre_comp[0][1][2], z_tmp); | ||
| 2082 | /* compute 2^64*G, 2^128*G, 2^192*G for the first table, | ||
| 2083 | * 2^32*G, 2^96*G, 2^160*G, 2^224*G for the second one | ||
| 2084 | */ | ||
| 2085 | for (i = 1; i <= 8; i <<= 1) | ||
| 2086 | { | ||
| 2087 | point_double_small( | ||
| 2088 | pre->g_pre_comp[1][i][0], pre->g_pre_comp[1][i][1], pre->g_pre_comp[1][i][2], | ||
| 2089 | pre->g_pre_comp[0][i][0], pre->g_pre_comp[0][i][1], pre->g_pre_comp[0][i][2]); | ||
| 2090 | for (j = 0; j < 31; ++j) | ||
| 2091 | { | ||
| 2092 | point_double_small( | ||
| 2093 | pre->g_pre_comp[1][i][0], pre->g_pre_comp[1][i][1], pre->g_pre_comp[1][i][2], | ||
| 2094 | pre->g_pre_comp[1][i][0], pre->g_pre_comp[1][i][1], pre->g_pre_comp[1][i][2]); | ||
| 2095 | } | ||
| 2096 | if (i == 8) | ||
| 2097 | break; | ||
| 2098 | point_double_small( | ||
| 2099 | pre->g_pre_comp[0][2*i][0], pre->g_pre_comp[0][2*i][1], pre->g_pre_comp[0][2*i][2], | ||
| 2100 | pre->g_pre_comp[1][i][0], pre->g_pre_comp[1][i][1], pre->g_pre_comp[1][i][2]); | ||
| 2101 | for (j = 0; j < 31; ++j) | ||
| 2102 | { | ||
| 2103 | point_double_small( | ||
| 2104 | pre->g_pre_comp[0][2*i][0], pre->g_pre_comp[0][2*i][1], pre->g_pre_comp[0][2*i][2], | ||
| 2105 | pre->g_pre_comp[0][2*i][0], pre->g_pre_comp[0][2*i][1], pre->g_pre_comp[0][2*i][2]); | ||
| 2106 | } | ||
| 2107 | } | ||
| 2108 | for (i = 0; i < 2; i++) | ||
| 2109 | { | ||
| 2110 | /* g_pre_comp[i][0] is the point at infinity */ | ||
| 2111 | memset(pre->g_pre_comp[i][0], 0, sizeof(pre->g_pre_comp[i][0])); | ||
| 2112 | /* the remaining multiples */ | ||
| 2113 | /* 2^64*G + 2^128*G resp. 2^96*G + 2^160*G */ | ||
| 2114 | point_add_small( | ||
| 2115 | pre->g_pre_comp[i][6][0], pre->g_pre_comp[i][6][1], pre->g_pre_comp[i][6][2], | ||
| 2116 | pre->g_pre_comp[i][4][0], pre->g_pre_comp[i][4][1], pre->g_pre_comp[i][4][2], | ||
| 2117 | pre->g_pre_comp[i][2][0], pre->g_pre_comp[i][2][1], pre->g_pre_comp[i][2][2]); | ||
| 2118 | /* 2^64*G + 2^192*G resp. 2^96*G + 2^224*G */ | ||
| 2119 | point_add_small( | ||
| 2120 | pre->g_pre_comp[i][10][0], pre->g_pre_comp[i][10][1], pre->g_pre_comp[i][10][2], | ||
| 2121 | pre->g_pre_comp[i][8][0], pre->g_pre_comp[i][8][1], pre->g_pre_comp[i][8][2], | ||
| 2122 | pre->g_pre_comp[i][2][0], pre->g_pre_comp[i][2][1], pre->g_pre_comp[i][2][2]); | ||
| 2123 | /* 2^128*G + 2^192*G resp. 2^160*G + 2^224*G */ | ||
| 2124 | point_add_small( | ||
| 2125 | pre->g_pre_comp[i][12][0], pre->g_pre_comp[i][12][1], pre->g_pre_comp[i][12][2], | ||
| 2126 | pre->g_pre_comp[i][8][0], pre->g_pre_comp[i][8][1], pre->g_pre_comp[i][8][2], | ||
| 2127 | pre->g_pre_comp[i][4][0], pre->g_pre_comp[i][4][1], pre->g_pre_comp[i][4][2]); | ||
| 2128 | /* 2^64*G + 2^128*G + 2^192*G resp. 2^96*G + 2^160*G + 2^224*G */ | ||
| 2129 | point_add_small( | ||
| 2130 | pre->g_pre_comp[i][14][0], pre->g_pre_comp[i][14][1], pre->g_pre_comp[i][14][2], | ||
| 2131 | pre->g_pre_comp[i][12][0], pre->g_pre_comp[i][12][1], pre->g_pre_comp[i][12][2], | ||
| 2132 | pre->g_pre_comp[i][2][0], pre->g_pre_comp[i][2][1], pre->g_pre_comp[i][2][2]); | ||
| 2133 | for (j = 1; j < 8; ++j) | ||
| 2134 | { | ||
| 2135 | /* odd multiples: add G resp. 2^32*G */ | ||
| 2136 | point_add_small( | ||
| 2137 | pre->g_pre_comp[i][2*j+1][0], pre->g_pre_comp[i][2*j+1][1], pre->g_pre_comp[i][2*j+1][2], | ||
| 2138 | pre->g_pre_comp[i][2*j][0], pre->g_pre_comp[i][2*j][1], pre->g_pre_comp[i][2*j][2], | ||
| 2139 | pre->g_pre_comp[i][1][0], pre->g_pre_comp[i][1][1], pre->g_pre_comp[i][1][2]); | ||
| 2140 | } | ||
| 2141 | } | ||
| 2142 | make_points_affine(31, &(pre->g_pre_comp[0][1]), tmp_smallfelems); | ||
| 2143 | |||
| 2144 | if (!EC_EX_DATA_set_data(&group->extra_data, pre, nistp256_pre_comp_dup, | ||
| 2145 | nistp256_pre_comp_free, nistp256_pre_comp_clear_free)) | ||
| 2146 | goto err; | ||
| 2147 | ret = 1; | ||
| 2148 | pre = NULL; | ||
| 2149 | err: | ||
| 2150 | BN_CTX_end(ctx); | ||
| 2151 | if (generator != NULL) | ||
| 2152 | EC_POINT_free(generator); | ||
| 2153 | if (new_ctx != NULL) | ||
| 2154 | BN_CTX_free(new_ctx); | ||
| 2155 | if (pre) | ||
| 2156 | nistp256_pre_comp_free(pre); | ||
| 2157 | return ret; | ||
| 2158 | } | ||
| 2159 | |||
| 2160 | int ec_GFp_nistp256_have_precompute_mult(const EC_GROUP *group) | ||
| 2161 | { | ||
| 2162 | if (EC_EX_DATA_get_data(group->extra_data, nistp256_pre_comp_dup, | ||
| 2163 | nistp256_pre_comp_free, nistp256_pre_comp_clear_free) | ||
| 2164 | != NULL) | ||
| 2165 | return 1; | ||
| 2166 | else | ||
| 2167 | return 0; | ||
| 2168 | } | ||
| 2169 | #else | ||
| 2170 | static void *dummy=&dummy; | ||
| 2171 | #endif | ||
diff --git a/src/lib/libcrypto/ec/ecp_nistp521.c b/src/lib/libcrypto/ec/ecp_nistp521.c new file mode 100644 index 0000000000..178b655f7f --- /dev/null +++ b/src/lib/libcrypto/ec/ecp_nistp521.c | |||
| @@ -0,0 +1,2025 @@ | |||
| 1 | /* crypto/ec/ecp_nistp521.c */ | ||
| 2 | /* | ||
| 3 | * Written by Adam Langley (Google) for the OpenSSL project | ||
| 4 | */ | ||
| 5 | /* Copyright 2011 Google Inc. | ||
| 6 | * | ||
| 7 | * Licensed under the Apache License, Version 2.0 (the "License"); | ||
| 8 | * | ||
| 9 | * you may not use this file except in compliance with the License. | ||
| 10 | * You may obtain a copy of the License at | ||
| 11 | * | ||
| 12 | * http://www.apache.org/licenses/LICENSE-2.0 | ||
| 13 | * | ||
| 14 | * Unless required by applicable law or agreed to in writing, software | ||
| 15 | * distributed under the License is distributed on an "AS IS" BASIS, | ||
| 16 | * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | ||
| 17 | * See the License for the specific language governing permissions and | ||
| 18 | * limitations under the License. | ||
| 19 | */ | ||
| 20 | |||
| 21 | /* | ||
| 22 | * A 64-bit implementation of the NIST P-521 elliptic curve point multiplication | ||
| 23 | * | ||
| 24 | * OpenSSL integration was taken from Emilia Kasper's work in ecp_nistp224.c. | ||
| 25 | * Otherwise based on Emilia's P224 work, which was inspired by my curve25519 | ||
| 26 | * work which got its smarts from Daniel J. Bernstein's work on the same. | ||
| 27 | */ | ||
| 28 | |||
| 29 | #include <openssl/opensslconf.h> | ||
| 30 | #ifndef OPENSSL_NO_EC_NISTP_64_GCC_128 | ||
| 31 | |||
| 32 | #ifndef OPENSSL_SYS_VMS | ||
| 33 | #include <stdint.h> | ||
| 34 | #else | ||
| 35 | #include <inttypes.h> | ||
| 36 | #endif | ||
| 37 | |||
| 38 | #include <string.h> | ||
| 39 | #include <openssl/err.h> | ||
| 40 | #include "ec_lcl.h" | ||
| 41 | |||
| 42 | #if defined(__GNUC__) && (__GNUC__ > 3 || (__GNUC__ == 3 && __GNUC_MINOR__ >= 1)) | ||
| 43 | /* even with gcc, the typedef won't work for 32-bit platforms */ | ||
| 44 | typedef __uint128_t uint128_t; /* nonstandard; implemented by gcc on 64-bit platforms */ | ||
| 45 | #else | ||
| 46 | #error "Need GCC 3.1 or later to define type uint128_t" | ||
| 47 | #endif | ||
| 48 | |||
| 49 | typedef uint8_t u8; | ||
| 50 | typedef uint64_t u64; | ||
| 51 | typedef int64_t s64; | ||
| 52 | |||
| 53 | /* The underlying field. | ||
| 54 | * | ||
| 55 | * P521 operates over GF(2^521-1). We can serialise an element of this field | ||
| 56 | * into 66 bytes where the most significant byte contains only a single bit. We | ||
| 57 | * call this an felem_bytearray. */ | ||
| 58 | |||
| 59 | typedef u8 felem_bytearray[66]; | ||
| 60 | |||
| 61 | /* These are the parameters of P521, taken from FIPS 186-3, section D.1.2.5. | ||
| 62 | * These values are big-endian. */ | ||
| 63 | static const felem_bytearray nistp521_curve_params[5] = | ||
| 64 | { | ||
| 65 | {0x01, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, /* p */ | ||
| 66 | 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, | ||
| 67 | 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, | ||
| 68 | 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, | ||
| 69 | 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, | ||
| 70 | 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, | ||
| 71 | 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, | ||
| 72 | 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, | ||
| 73 | 0xff, 0xff}, | ||
| 74 | {0x01, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, /* a = -3 */ | ||
| 75 | 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, | ||
| 76 | 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, | ||
| 77 | 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, | ||
| 78 | 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, | ||
| 79 | 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, | ||
| 80 | 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, | ||
| 81 | 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, | ||
| 82 | 0xff, 0xfc}, | ||
| 83 | {0x00, 0x51, 0x95, 0x3e, 0xb9, 0x61, 0x8e, 0x1c, /* b */ | ||
| 84 | 0x9a, 0x1f, 0x92, 0x9a, 0x21, 0xa0, 0xb6, 0x85, | ||
| 85 | 0x40, 0xee, 0xa2, 0xda, 0x72, 0x5b, 0x99, 0xb3, | ||
| 86 | 0x15, 0xf3, 0xb8, 0xb4, 0x89, 0x91, 0x8e, 0xf1, | ||
| 87 | 0x09, 0xe1, 0x56, 0x19, 0x39, 0x51, 0xec, 0x7e, | ||
| 88 | 0x93, 0x7b, 0x16, 0x52, 0xc0, 0xbd, 0x3b, 0xb1, | ||
| 89 | 0xbf, 0x07, 0x35, 0x73, 0xdf, 0x88, 0x3d, 0x2c, | ||
| 90 | 0x34, 0xf1, 0xef, 0x45, 0x1f, 0xd4, 0x6b, 0x50, | ||
| 91 | 0x3f, 0x00}, | ||
| 92 | {0x00, 0xc6, 0x85, 0x8e, 0x06, 0xb7, 0x04, 0x04, /* x */ | ||
| 93 | 0xe9, 0xcd, 0x9e, 0x3e, 0xcb, 0x66, 0x23, 0x95, | ||
| 94 | 0xb4, 0x42, 0x9c, 0x64, 0x81, 0x39, 0x05, 0x3f, | ||
| 95 | 0xb5, 0x21, 0xf8, 0x28, 0xaf, 0x60, 0x6b, 0x4d, | ||
| 96 | 0x3d, 0xba, 0xa1, 0x4b, 0x5e, 0x77, 0xef, 0xe7, | ||
| 97 | 0x59, 0x28, 0xfe, 0x1d, 0xc1, 0x27, 0xa2, 0xff, | ||
| 98 | 0xa8, 0xde, 0x33, 0x48, 0xb3, 0xc1, 0x85, 0x6a, | ||
| 99 | 0x42, 0x9b, 0xf9, 0x7e, 0x7e, 0x31, 0xc2, 0xe5, | ||
| 100 | 0xbd, 0x66}, | ||
| 101 | {0x01, 0x18, 0x39, 0x29, 0x6a, 0x78, 0x9a, 0x3b, /* y */ | ||
| 102 | 0xc0, 0x04, 0x5c, 0x8a, 0x5f, 0xb4, 0x2c, 0x7d, | ||
| 103 | 0x1b, 0xd9, 0x98, 0xf5, 0x44, 0x49, 0x57, 0x9b, | ||
| 104 | 0x44, 0x68, 0x17, 0xaf, 0xbd, 0x17, 0x27, 0x3e, | ||
| 105 | 0x66, 0x2c, 0x97, 0xee, 0x72, 0x99, 0x5e, 0xf4, | ||
| 106 | 0x26, 0x40, 0xc5, 0x50, 0xb9, 0x01, 0x3f, 0xad, | ||
| 107 | 0x07, 0x61, 0x35, 0x3c, 0x70, 0x86, 0xa2, 0x72, | ||
| 108 | 0xc2, 0x40, 0x88, 0xbe, 0x94, 0x76, 0x9f, 0xd1, | ||
| 109 | 0x66, 0x50} | ||
| 110 | }; | ||
| 111 | |||
| 112 | /* The representation of field elements. | ||
| 113 | * ------------------------------------ | ||
| 114 | * | ||
| 115 | * We represent field elements with nine values. These values are either 64 or | ||
| 116 | * 128 bits and the field element represented is: | ||
| 117 | * v[0]*2^0 + v[1]*2^58 + v[2]*2^116 + ... + v[8]*2^464 (mod p) | ||
| 118 | * Each of the nine values is called a 'limb'. Since the limbs are spaced only | ||
| 119 | * 58 bits apart, but are greater than 58 bits in length, the most significant | ||
| 120 | * bits of each limb overlap with the least significant bits of the next. | ||
| 121 | * | ||
| 122 | * A field element with 64-bit limbs is an 'felem'. One with 128-bit limbs is a | ||
| 123 | * 'largefelem' */ | ||
| 124 | |||
| 125 | #define NLIMBS 9 | ||
| 126 | |||
| 127 | typedef uint64_t limb; | ||
| 128 | typedef limb felem[NLIMBS]; | ||
| 129 | typedef uint128_t largefelem[NLIMBS]; | ||
| 130 | |||
| 131 | static const limb bottom57bits = 0x1ffffffffffffff; | ||
| 132 | static const limb bottom58bits = 0x3ffffffffffffff; | ||
| 133 | |||
| 134 | /* bin66_to_felem takes a little-endian byte array and converts it into felem | ||
| 135 | * form. This assumes that the CPU is little-endian. */ | ||
| 136 | static void bin66_to_felem(felem out, const u8 in[66]) | ||
| 137 | { | ||
| 138 | out[0] = (*((limb*) &in[0])) & bottom58bits; | ||
| 139 | out[1] = (*((limb*) &in[7]) >> 2) & bottom58bits; | ||
| 140 | out[2] = (*((limb*) &in[14]) >> 4) & bottom58bits; | ||
| 141 | out[3] = (*((limb*) &in[21]) >> 6) & bottom58bits; | ||
| 142 | out[4] = (*((limb*) &in[29])) & bottom58bits; | ||
| 143 | out[5] = (*((limb*) &in[36]) >> 2) & bottom58bits; | ||
| 144 | out[6] = (*((limb*) &in[43]) >> 4) & bottom58bits; | ||
| 145 | out[7] = (*((limb*) &in[50]) >> 6) & bottom58bits; | ||
| 146 | out[8] = (*((limb*) &in[58])) & bottom57bits; | ||
| 147 | } | ||
| 148 | |||
| 149 | /* felem_to_bin66 takes an felem and serialises into a little endian, 66 byte | ||
| 150 | * array. This assumes that the CPU is little-endian. */ | ||
| 151 | static void felem_to_bin66(u8 out[66], const felem in) | ||
| 152 | { | ||
| 153 | memset(out, 0, 66); | ||
| 154 | (*((limb*) &out[0])) = in[0]; | ||
| 155 | (*((limb*) &out[7])) |= in[1] << 2; | ||
| 156 | (*((limb*) &out[14])) |= in[2] << 4; | ||
| 157 | (*((limb*) &out[21])) |= in[3] << 6; | ||
| 158 | (*((limb*) &out[29])) = in[4]; | ||
| 159 | (*((limb*) &out[36])) |= in[5] << 2; | ||
| 160 | (*((limb*) &out[43])) |= in[6] << 4; | ||
| 161 | (*((limb*) &out[50])) |= in[7] << 6; | ||
| 162 | (*((limb*) &out[58])) = in[8]; | ||
| 163 | } | ||
| 164 | |||
| 165 | /* To preserve endianness when using BN_bn2bin and BN_bin2bn */ | ||
| 166 | static void flip_endian(u8 *out, const u8 *in, unsigned len) | ||
| 167 | { | ||
| 168 | unsigned i; | ||
| 169 | for (i = 0; i < len; ++i) | ||
| 170 | out[i] = in[len-1-i]; | ||
| 171 | } | ||
| 172 | |||
| 173 | /* BN_to_felem converts an OpenSSL BIGNUM into an felem */ | ||
| 174 | static int BN_to_felem(felem out, const BIGNUM *bn) | ||
| 175 | { | ||
| 176 | felem_bytearray b_in; | ||
| 177 | felem_bytearray b_out; | ||
| 178 | unsigned num_bytes; | ||
| 179 | |||
| 180 | /* BN_bn2bin eats leading zeroes */ | ||
| 181 | memset(b_out, 0, sizeof b_out); | ||
| 182 | num_bytes = BN_num_bytes(bn); | ||
| 183 | if (num_bytes > sizeof b_out) | ||
| 184 | { | ||
| 185 | ECerr(EC_F_BN_TO_FELEM, EC_R_BIGNUM_OUT_OF_RANGE); | ||
| 186 | return 0; | ||
| 187 | } | ||
| 188 | if (BN_is_negative(bn)) | ||
| 189 | { | ||
| 190 | ECerr(EC_F_BN_TO_FELEM, EC_R_BIGNUM_OUT_OF_RANGE); | ||
| 191 | return 0; | ||
| 192 | } | ||
| 193 | num_bytes = BN_bn2bin(bn, b_in); | ||
| 194 | flip_endian(b_out, b_in, num_bytes); | ||
| 195 | bin66_to_felem(out, b_out); | ||
| 196 | return 1; | ||
| 197 | } | ||
| 198 | |||
| 199 | /* felem_to_BN converts an felem into an OpenSSL BIGNUM */ | ||
| 200 | static BIGNUM *felem_to_BN(BIGNUM *out, const felem in) | ||
| 201 | { | ||
| 202 | felem_bytearray b_in, b_out; | ||
| 203 | felem_to_bin66(b_in, in); | ||
| 204 | flip_endian(b_out, b_in, sizeof b_out); | ||
| 205 | return BN_bin2bn(b_out, sizeof b_out, out); | ||
| 206 | } | ||
| 207 | |||
| 208 | |||
| 209 | /* Field operations | ||
| 210 | * ---------------- */ | ||
| 211 | |||
| 212 | static void felem_one(felem out) | ||
| 213 | { | ||
| 214 | out[0] = 1; | ||
| 215 | out[1] = 0; | ||
| 216 | out[2] = 0; | ||
| 217 | out[3] = 0; | ||
| 218 | out[4] = 0; | ||
| 219 | out[5] = 0; | ||
| 220 | out[6] = 0; | ||
| 221 | out[7] = 0; | ||
| 222 | out[8] = 0; | ||
| 223 | } | ||
| 224 | |||
| 225 | static void felem_assign(felem out, const felem in) | ||
| 226 | { | ||
| 227 | out[0] = in[0]; | ||
| 228 | out[1] = in[1]; | ||
| 229 | out[2] = in[2]; | ||
| 230 | out[3] = in[3]; | ||
| 231 | out[4] = in[4]; | ||
| 232 | out[5] = in[5]; | ||
| 233 | out[6] = in[6]; | ||
| 234 | out[7] = in[7]; | ||
| 235 | out[8] = in[8]; | ||
| 236 | } | ||
| 237 | |||
| 238 | /* felem_sum64 sets out = out + in. */ | ||
| 239 | static void felem_sum64(felem out, const felem in) | ||
| 240 | { | ||
| 241 | out[0] += in[0]; | ||
| 242 | out[1] += in[1]; | ||
| 243 | out[2] += in[2]; | ||
| 244 | out[3] += in[3]; | ||
| 245 | out[4] += in[4]; | ||
| 246 | out[5] += in[5]; | ||
| 247 | out[6] += in[6]; | ||
| 248 | out[7] += in[7]; | ||
| 249 | out[8] += in[8]; | ||
| 250 | } | ||
| 251 | |||
| 252 | /* felem_scalar sets out = in * scalar */ | ||
| 253 | static void felem_scalar(felem out, const felem in, limb scalar) | ||
| 254 | { | ||
| 255 | out[0] = in[0] * scalar; | ||
| 256 | out[1] = in[1] * scalar; | ||
| 257 | out[2] = in[2] * scalar; | ||
| 258 | out[3] = in[3] * scalar; | ||
| 259 | out[4] = in[4] * scalar; | ||
| 260 | out[5] = in[5] * scalar; | ||
| 261 | out[6] = in[6] * scalar; | ||
| 262 | out[7] = in[7] * scalar; | ||
| 263 | out[8] = in[8] * scalar; | ||
| 264 | } | ||
| 265 | |||
| 266 | /* felem_scalar64 sets out = out * scalar */ | ||
| 267 | static void felem_scalar64(felem out, limb scalar) | ||
| 268 | { | ||
| 269 | out[0] *= scalar; | ||
| 270 | out[1] *= scalar; | ||
| 271 | out[2] *= scalar; | ||
| 272 | out[3] *= scalar; | ||
| 273 | out[4] *= scalar; | ||
| 274 | out[5] *= scalar; | ||
| 275 | out[6] *= scalar; | ||
| 276 | out[7] *= scalar; | ||
| 277 | out[8] *= scalar; | ||
| 278 | } | ||
| 279 | |||
| 280 | /* felem_scalar128 sets out = out * scalar */ | ||
| 281 | static void felem_scalar128(largefelem out, limb scalar) | ||
| 282 | { | ||
| 283 | out[0] *= scalar; | ||
| 284 | out[1] *= scalar; | ||
| 285 | out[2] *= scalar; | ||
| 286 | out[3] *= scalar; | ||
| 287 | out[4] *= scalar; | ||
| 288 | out[5] *= scalar; | ||
| 289 | out[6] *= scalar; | ||
| 290 | out[7] *= scalar; | ||
| 291 | out[8] *= scalar; | ||
| 292 | } | ||
| 293 | |||
| 294 | /* felem_neg sets |out| to |-in| | ||
| 295 | * On entry: | ||
| 296 | * in[i] < 2^59 + 2^14 | ||
| 297 | * On exit: | ||
| 298 | * out[i] < 2^62 | ||
| 299 | */ | ||
| 300 | static void felem_neg(felem out, const felem in) | ||
| 301 | { | ||
| 302 | /* In order to prevent underflow, we subtract from 0 mod p. */ | ||
| 303 | static const limb two62m3 = (((limb)1) << 62) - (((limb)1) << 5); | ||
| 304 | static const limb two62m2 = (((limb)1) << 62) - (((limb)1) << 4); | ||
| 305 | |||
| 306 | out[0] = two62m3 - in[0]; | ||
| 307 | out[1] = two62m2 - in[1]; | ||
| 308 | out[2] = two62m2 - in[2]; | ||
| 309 | out[3] = two62m2 - in[3]; | ||
| 310 | out[4] = two62m2 - in[4]; | ||
| 311 | out[5] = two62m2 - in[5]; | ||
| 312 | out[6] = two62m2 - in[6]; | ||
| 313 | out[7] = two62m2 - in[7]; | ||
| 314 | out[8] = two62m2 - in[8]; | ||
| 315 | } | ||
| 316 | |||
| 317 | /* felem_diff64 subtracts |in| from |out| | ||
| 318 | * On entry: | ||
| 319 | * in[i] < 2^59 + 2^14 | ||
| 320 | * On exit: | ||
| 321 | * out[i] < out[i] + 2^62 | ||
| 322 | */ | ||
| 323 | static void felem_diff64(felem out, const felem in) | ||
| 324 | { | ||
| 325 | /* In order to prevent underflow, we add 0 mod p before subtracting. */ | ||
| 326 | static const limb two62m3 = (((limb)1) << 62) - (((limb)1) << 5); | ||
| 327 | static const limb two62m2 = (((limb)1) << 62) - (((limb)1) << 4); | ||
| 328 | |||
| 329 | out[0] += two62m3 - in[0]; | ||
| 330 | out[1] += two62m2 - in[1]; | ||
| 331 | out[2] += two62m2 - in[2]; | ||
| 332 | out[3] += two62m2 - in[3]; | ||
| 333 | out[4] += two62m2 - in[4]; | ||
| 334 | out[5] += two62m2 - in[5]; | ||
| 335 | out[6] += two62m2 - in[6]; | ||
| 336 | out[7] += two62m2 - in[7]; | ||
| 337 | out[8] += two62m2 - in[8]; | ||
| 338 | } | ||
| 339 | |||
| 340 | /* felem_diff_128_64 subtracts |in| from |out| | ||
| 341 | * On entry: | ||
| 342 | * in[i] < 2^62 + 2^17 | ||
| 343 | * On exit: | ||
| 344 | * out[i] < out[i] + 2^63 | ||
| 345 | */ | ||
| 346 | static void felem_diff_128_64(largefelem out, const felem in) | ||
| 347 | { | ||
| 348 | /* In order to prevent underflow, we add 0 mod p before subtracting. */ | ||
| 349 | static const limb two63m6 = (((limb)1) << 62) - (((limb)1) << 5); | ||
| 350 | static const limb two63m5 = (((limb)1) << 62) - (((limb)1) << 4); | ||
| 351 | |||
| 352 | out[0] += two63m6 - in[0]; | ||
| 353 | out[1] += two63m5 - in[1]; | ||
| 354 | out[2] += two63m5 - in[2]; | ||
| 355 | out[3] += two63m5 - in[3]; | ||
| 356 | out[4] += two63m5 - in[4]; | ||
| 357 | out[5] += two63m5 - in[5]; | ||
| 358 | out[6] += two63m5 - in[6]; | ||
| 359 | out[7] += two63m5 - in[7]; | ||
| 360 | out[8] += two63m5 - in[8]; | ||
| 361 | } | ||
| 362 | |||
| 363 | /* felem_diff_128_64 subtracts |in| from |out| | ||
| 364 | * On entry: | ||
| 365 | * in[i] < 2^126 | ||
| 366 | * On exit: | ||
| 367 | * out[i] < out[i] + 2^127 - 2^69 | ||
| 368 | */ | ||
| 369 | static void felem_diff128(largefelem out, const largefelem in) | ||
| 370 | { | ||
| 371 | /* In order to prevent underflow, we add 0 mod p before subtracting. */ | ||
| 372 | static const uint128_t two127m70 = (((uint128_t)1) << 127) - (((uint128_t)1) << 70); | ||
| 373 | static const uint128_t two127m69 = (((uint128_t)1) << 127) - (((uint128_t)1) << 69); | ||
| 374 | |||
| 375 | out[0] += (two127m70 - in[0]); | ||
| 376 | out[1] += (two127m69 - in[1]); | ||
| 377 | out[2] += (two127m69 - in[2]); | ||
| 378 | out[3] += (two127m69 - in[3]); | ||
| 379 | out[4] += (two127m69 - in[4]); | ||
| 380 | out[5] += (two127m69 - in[5]); | ||
| 381 | out[6] += (two127m69 - in[6]); | ||
| 382 | out[7] += (two127m69 - in[7]); | ||
| 383 | out[8] += (two127m69 - in[8]); | ||
| 384 | } | ||
| 385 | |||
| 386 | /* felem_square sets |out| = |in|^2 | ||
| 387 | * On entry: | ||
| 388 | * in[i] < 2^62 | ||
| 389 | * On exit: | ||
| 390 | * out[i] < 17 * max(in[i]) * max(in[i]) | ||
| 391 | */ | ||
| 392 | static void felem_square(largefelem out, const felem in) | ||
| 393 | { | ||
| 394 | felem inx2, inx4; | ||
| 395 | felem_scalar(inx2, in, 2); | ||
| 396 | felem_scalar(inx4, in, 4); | ||
| 397 | |||
| 398 | /* We have many cases were we want to do | ||
| 399 | * in[x] * in[y] + | ||
| 400 | * in[y] * in[x] | ||
| 401 | * This is obviously just | ||
| 402 | * 2 * in[x] * in[y] | ||
| 403 | * However, rather than do the doubling on the 128 bit result, we | ||
| 404 | * double one of the inputs to the multiplication by reading from | ||
| 405 | * |inx2| */ | ||
| 406 | |||
| 407 | out[0] = ((uint128_t) in[0]) * in[0]; | ||
| 408 | out[1] = ((uint128_t) in[0]) * inx2[1]; | ||
| 409 | out[2] = ((uint128_t) in[0]) * inx2[2] + | ||
| 410 | ((uint128_t) in[1]) * in[1]; | ||
| 411 | out[3] = ((uint128_t) in[0]) * inx2[3] + | ||
| 412 | ((uint128_t) in[1]) * inx2[2]; | ||
| 413 | out[4] = ((uint128_t) in[0]) * inx2[4] + | ||
| 414 | ((uint128_t) in[1]) * inx2[3] + | ||
| 415 | ((uint128_t) in[2]) * in[2]; | ||
| 416 | out[5] = ((uint128_t) in[0]) * inx2[5] + | ||
| 417 | ((uint128_t) in[1]) * inx2[4] + | ||
| 418 | ((uint128_t) in[2]) * inx2[3]; | ||
| 419 | out[6] = ((uint128_t) in[0]) * inx2[6] + | ||
| 420 | ((uint128_t) in[1]) * inx2[5] + | ||
| 421 | ((uint128_t) in[2]) * inx2[4] + | ||
| 422 | ((uint128_t) in[3]) * in[3]; | ||
| 423 | out[7] = ((uint128_t) in[0]) * inx2[7] + | ||
| 424 | ((uint128_t) in[1]) * inx2[6] + | ||
| 425 | ((uint128_t) in[2]) * inx2[5] + | ||
| 426 | ((uint128_t) in[3]) * inx2[4]; | ||
| 427 | out[8] = ((uint128_t) in[0]) * inx2[8] + | ||
| 428 | ((uint128_t) in[1]) * inx2[7] + | ||
| 429 | ((uint128_t) in[2]) * inx2[6] + | ||
| 430 | ((uint128_t) in[3]) * inx2[5] + | ||
| 431 | ((uint128_t) in[4]) * in[4]; | ||
| 432 | |||
| 433 | /* The remaining limbs fall above 2^521, with the first falling at | ||
| 434 | * 2^522. They correspond to locations one bit up from the limbs | ||
| 435 | * produced above so we would have to multiply by two to align them. | ||
| 436 | * Again, rather than operate on the 128-bit result, we double one of | ||
| 437 | * the inputs to the multiplication. If we want to double for both this | ||
| 438 | * reason, and the reason above, then we end up multiplying by four. */ | ||
| 439 | |||
| 440 | /* 9 */ | ||
| 441 | out[0] += ((uint128_t) in[1]) * inx4[8] + | ||
| 442 | ((uint128_t) in[2]) * inx4[7] + | ||
| 443 | ((uint128_t) in[3]) * inx4[6] + | ||
| 444 | ((uint128_t) in[4]) * inx4[5]; | ||
| 445 | |||
| 446 | /* 10 */ | ||
| 447 | out[1] += ((uint128_t) in[2]) * inx4[8] + | ||
| 448 | ((uint128_t) in[3]) * inx4[7] + | ||
| 449 | ((uint128_t) in[4]) * inx4[6] + | ||
| 450 | ((uint128_t) in[5]) * inx2[5]; | ||
| 451 | |||
| 452 | /* 11 */ | ||
| 453 | out[2] += ((uint128_t) in[3]) * inx4[8] + | ||
| 454 | ((uint128_t) in[4]) * inx4[7] + | ||
| 455 | ((uint128_t) in[5]) * inx4[6]; | ||
| 456 | |||
| 457 | /* 12 */ | ||
| 458 | out[3] += ((uint128_t) in[4]) * inx4[8] + | ||
| 459 | ((uint128_t) in[5]) * inx4[7] + | ||
| 460 | ((uint128_t) in[6]) * inx2[6]; | ||
| 461 | |||
| 462 | /* 13 */ | ||
| 463 | out[4] += ((uint128_t) in[5]) * inx4[8] + | ||
| 464 | ((uint128_t) in[6]) * inx4[7]; | ||
| 465 | |||
| 466 | /* 14 */ | ||
| 467 | out[5] += ((uint128_t) in[6]) * inx4[8] + | ||
| 468 | ((uint128_t) in[7]) * inx2[7]; | ||
| 469 | |||
| 470 | /* 15 */ | ||
| 471 | out[6] += ((uint128_t) in[7]) * inx4[8]; | ||
| 472 | |||
| 473 | /* 16 */ | ||
| 474 | out[7] += ((uint128_t) in[8]) * inx2[8]; | ||
| 475 | } | ||
| 476 | |||
| 477 | /* felem_mul sets |out| = |in1| * |in2| | ||
| 478 | * On entry: | ||
| 479 | * in1[i] < 2^64 | ||
| 480 | * in2[i] < 2^63 | ||
| 481 | * On exit: | ||
| 482 | * out[i] < 17 * max(in1[i]) * max(in2[i]) | ||
| 483 | */ | ||
| 484 | static void felem_mul(largefelem out, const felem in1, const felem in2) | ||
| 485 | { | ||
| 486 | felem in2x2; | ||
| 487 | felem_scalar(in2x2, in2, 2); | ||
| 488 | |||
| 489 | out[0] = ((uint128_t) in1[0]) * in2[0]; | ||
| 490 | |||
| 491 | out[1] = ((uint128_t) in1[0]) * in2[1] + | ||
| 492 | ((uint128_t) in1[1]) * in2[0]; | ||
| 493 | |||
| 494 | out[2] = ((uint128_t) in1[0]) * in2[2] + | ||
| 495 | ((uint128_t) in1[1]) * in2[1] + | ||
| 496 | ((uint128_t) in1[2]) * in2[0]; | ||
| 497 | |||
| 498 | out[3] = ((uint128_t) in1[0]) * in2[3] + | ||
| 499 | ((uint128_t) in1[1]) * in2[2] + | ||
| 500 | ((uint128_t) in1[2]) * in2[1] + | ||
| 501 | ((uint128_t) in1[3]) * in2[0]; | ||
| 502 | |||
| 503 | out[4] = ((uint128_t) in1[0]) * in2[4] + | ||
| 504 | ((uint128_t) in1[1]) * in2[3] + | ||
| 505 | ((uint128_t) in1[2]) * in2[2] + | ||
| 506 | ((uint128_t) in1[3]) * in2[1] + | ||
| 507 | ((uint128_t) in1[4]) * in2[0]; | ||
| 508 | |||
| 509 | out[5] = ((uint128_t) in1[0]) * in2[5] + | ||
| 510 | ((uint128_t) in1[1]) * in2[4] + | ||
| 511 | ((uint128_t) in1[2]) * in2[3] + | ||
| 512 | ((uint128_t) in1[3]) * in2[2] + | ||
| 513 | ((uint128_t) in1[4]) * in2[1] + | ||
| 514 | ((uint128_t) in1[5]) * in2[0]; | ||
| 515 | |||
| 516 | out[6] = ((uint128_t) in1[0]) * in2[6] + | ||
| 517 | ((uint128_t) in1[1]) * in2[5] + | ||
| 518 | ((uint128_t) in1[2]) * in2[4] + | ||
| 519 | ((uint128_t) in1[3]) * in2[3] + | ||
| 520 | ((uint128_t) in1[4]) * in2[2] + | ||
| 521 | ((uint128_t) in1[5]) * in2[1] + | ||
| 522 | ((uint128_t) in1[6]) * in2[0]; | ||
| 523 | |||
| 524 | out[7] = ((uint128_t) in1[0]) * in2[7] + | ||
| 525 | ((uint128_t) in1[1]) * in2[6] + | ||
| 526 | ((uint128_t) in1[2]) * in2[5] + | ||
| 527 | ((uint128_t) in1[3]) * in2[4] + | ||
| 528 | ((uint128_t) in1[4]) * in2[3] + | ||
| 529 | ((uint128_t) in1[5]) * in2[2] + | ||
| 530 | ((uint128_t) in1[6]) * in2[1] + | ||
| 531 | ((uint128_t) in1[7]) * in2[0]; | ||
| 532 | |||
| 533 | out[8] = ((uint128_t) in1[0]) * in2[8] + | ||
| 534 | ((uint128_t) in1[1]) * in2[7] + | ||
| 535 | ((uint128_t) in1[2]) * in2[6] + | ||
| 536 | ((uint128_t) in1[3]) * in2[5] + | ||
| 537 | ((uint128_t) in1[4]) * in2[4] + | ||
| 538 | ((uint128_t) in1[5]) * in2[3] + | ||
| 539 | ((uint128_t) in1[6]) * in2[2] + | ||
| 540 | ((uint128_t) in1[7]) * in2[1] + | ||
| 541 | ((uint128_t) in1[8]) * in2[0]; | ||
| 542 | |||
| 543 | /* See comment in felem_square about the use of in2x2 here */ | ||
| 544 | |||
| 545 | out[0] += ((uint128_t) in1[1]) * in2x2[8] + | ||
| 546 | ((uint128_t) in1[2]) * in2x2[7] + | ||
| 547 | ((uint128_t) in1[3]) * in2x2[6] + | ||
| 548 | ((uint128_t) in1[4]) * in2x2[5] + | ||
| 549 | ((uint128_t) in1[5]) * in2x2[4] + | ||
| 550 | ((uint128_t) in1[6]) * in2x2[3] + | ||
| 551 | ((uint128_t) in1[7]) * in2x2[2] + | ||
| 552 | ((uint128_t) in1[8]) * in2x2[1]; | ||
| 553 | |||
| 554 | out[1] += ((uint128_t) in1[2]) * in2x2[8] + | ||
| 555 | ((uint128_t) in1[3]) * in2x2[7] + | ||
| 556 | ((uint128_t) in1[4]) * in2x2[6] + | ||
| 557 | ((uint128_t) in1[5]) * in2x2[5] + | ||
| 558 | ((uint128_t) in1[6]) * in2x2[4] + | ||
| 559 | ((uint128_t) in1[7]) * in2x2[3] + | ||
| 560 | ((uint128_t) in1[8]) * in2x2[2]; | ||
| 561 | |||
| 562 | out[2] += ((uint128_t) in1[3]) * in2x2[8] + | ||
| 563 | ((uint128_t) in1[4]) * in2x2[7] + | ||
| 564 | ((uint128_t) in1[5]) * in2x2[6] + | ||
| 565 | ((uint128_t) in1[6]) * in2x2[5] + | ||
| 566 | ((uint128_t) in1[7]) * in2x2[4] + | ||
| 567 | ((uint128_t) in1[8]) * in2x2[3]; | ||
| 568 | |||
| 569 | out[3] += ((uint128_t) in1[4]) * in2x2[8] + | ||
| 570 | ((uint128_t) in1[5]) * in2x2[7] + | ||
| 571 | ((uint128_t) in1[6]) * in2x2[6] + | ||
| 572 | ((uint128_t) in1[7]) * in2x2[5] + | ||
| 573 | ((uint128_t) in1[8]) * in2x2[4]; | ||
| 574 | |||
| 575 | out[4] += ((uint128_t) in1[5]) * in2x2[8] + | ||
| 576 | ((uint128_t) in1[6]) * in2x2[7] + | ||
| 577 | ((uint128_t) in1[7]) * in2x2[6] + | ||
| 578 | ((uint128_t) in1[8]) * in2x2[5]; | ||
| 579 | |||
| 580 | out[5] += ((uint128_t) in1[6]) * in2x2[8] + | ||
| 581 | ((uint128_t) in1[7]) * in2x2[7] + | ||
| 582 | ((uint128_t) in1[8]) * in2x2[6]; | ||
| 583 | |||
| 584 | out[6] += ((uint128_t) in1[7]) * in2x2[8] + | ||
| 585 | ((uint128_t) in1[8]) * in2x2[7]; | ||
| 586 | |||
| 587 | out[7] += ((uint128_t) in1[8]) * in2x2[8]; | ||
| 588 | } | ||
| 589 | |||
| 590 | static const limb bottom52bits = 0xfffffffffffff; | ||
| 591 | |||
| 592 | /* felem_reduce converts a largefelem to an felem. | ||
| 593 | * On entry: | ||
| 594 | * in[i] < 2^128 | ||
| 595 | * On exit: | ||
| 596 | * out[i] < 2^59 + 2^14 | ||
| 597 | */ | ||
| 598 | static void felem_reduce(felem out, const largefelem in) | ||
| 599 | { | ||
| 600 | u64 overflow1, overflow2; | ||
| 601 | |||
| 602 | out[0] = ((limb) in[0]) & bottom58bits; | ||
| 603 | out[1] = ((limb) in[1]) & bottom58bits; | ||
| 604 | out[2] = ((limb) in[2]) & bottom58bits; | ||
| 605 | out[3] = ((limb) in[3]) & bottom58bits; | ||
| 606 | out[4] = ((limb) in[4]) & bottom58bits; | ||
| 607 | out[5] = ((limb) in[5]) & bottom58bits; | ||
| 608 | out[6] = ((limb) in[6]) & bottom58bits; | ||
| 609 | out[7] = ((limb) in[7]) & bottom58bits; | ||
| 610 | out[8] = ((limb) in[8]) & bottom58bits; | ||
| 611 | |||
| 612 | /* out[i] < 2^58 */ | ||
| 613 | |||
| 614 | out[1] += ((limb) in[0]) >> 58; | ||
| 615 | out[1] += (((limb) (in[0] >> 64)) & bottom52bits) << 6; | ||
| 616 | /* out[1] < 2^58 + 2^6 + 2^58 | ||
| 617 | * = 2^59 + 2^6 */ | ||
| 618 | out[2] += ((limb) (in[0] >> 64)) >> 52; | ||
| 619 | |||
| 620 | out[2] += ((limb) in[1]) >> 58; | ||
| 621 | out[2] += (((limb) (in[1] >> 64)) & bottom52bits) << 6; | ||
| 622 | out[3] += ((limb) (in[1] >> 64)) >> 52; | ||
| 623 | |||
| 624 | out[3] += ((limb) in[2]) >> 58; | ||
| 625 | out[3] += (((limb) (in[2] >> 64)) & bottom52bits) << 6; | ||
| 626 | out[4] += ((limb) (in[2] >> 64)) >> 52; | ||
| 627 | |||
| 628 | out[4] += ((limb) in[3]) >> 58; | ||
| 629 | out[4] += (((limb) (in[3] >> 64)) & bottom52bits) << 6; | ||
| 630 | out[5] += ((limb) (in[3] >> 64)) >> 52; | ||
| 631 | |||
| 632 | out[5] += ((limb) in[4]) >> 58; | ||
| 633 | out[5] += (((limb) (in[4] >> 64)) & bottom52bits) << 6; | ||
| 634 | out[6] += ((limb) (in[4] >> 64)) >> 52; | ||
| 635 | |||
| 636 | out[6] += ((limb) in[5]) >> 58; | ||
| 637 | out[6] += (((limb) (in[5] >> 64)) & bottom52bits) << 6; | ||
| 638 | out[7] += ((limb) (in[5] >> 64)) >> 52; | ||
| 639 | |||
| 640 | out[7] += ((limb) in[6]) >> 58; | ||
| 641 | out[7] += (((limb) (in[6] >> 64)) & bottom52bits) << 6; | ||
| 642 | out[8] += ((limb) (in[6] >> 64)) >> 52; | ||
| 643 | |||
| 644 | out[8] += ((limb) in[7]) >> 58; | ||
| 645 | out[8] += (((limb) (in[7] >> 64)) & bottom52bits) << 6; | ||
| 646 | /* out[x > 1] < 2^58 + 2^6 + 2^58 + 2^12 | ||
| 647 | * < 2^59 + 2^13 */ | ||
| 648 | overflow1 = ((limb) (in[7] >> 64)) >> 52; | ||
| 649 | |||
| 650 | overflow1 += ((limb) in[8]) >> 58; | ||
| 651 | overflow1 += (((limb) (in[8] >> 64)) & bottom52bits) << 6; | ||
| 652 | overflow2 = ((limb) (in[8] >> 64)) >> 52; | ||
| 653 | |||
| 654 | overflow1 <<= 1; /* overflow1 < 2^13 + 2^7 + 2^59 */ | ||
| 655 | overflow2 <<= 1; /* overflow2 < 2^13 */ | ||
| 656 | |||
| 657 | out[0] += overflow1; /* out[0] < 2^60 */ | ||
| 658 | out[1] += overflow2; /* out[1] < 2^59 + 2^6 + 2^13 */ | ||
| 659 | |||
| 660 | out[1] += out[0] >> 58; out[0] &= bottom58bits; | ||
| 661 | /* out[0] < 2^58 | ||
| 662 | * out[1] < 2^59 + 2^6 + 2^13 + 2^2 | ||
| 663 | * < 2^59 + 2^14 */ | ||
| 664 | } | ||
| 665 | |||
| 666 | static void felem_square_reduce(felem out, const felem in) | ||
| 667 | { | ||
| 668 | largefelem tmp; | ||
| 669 | felem_square(tmp, in); | ||
| 670 | felem_reduce(out, tmp); | ||
| 671 | } | ||
| 672 | |||
| 673 | static void felem_mul_reduce(felem out, const felem in1, const felem in2) | ||
| 674 | { | ||
| 675 | largefelem tmp; | ||
| 676 | felem_mul(tmp, in1, in2); | ||
| 677 | felem_reduce(out, tmp); | ||
| 678 | } | ||
| 679 | |||
| 680 | /* felem_inv calculates |out| = |in|^{-1} | ||
| 681 | * | ||
| 682 | * Based on Fermat's Little Theorem: | ||
| 683 | * a^p = a (mod p) | ||
| 684 | * a^{p-1} = 1 (mod p) | ||
| 685 | * a^{p-2} = a^{-1} (mod p) | ||
| 686 | */ | ||
| 687 | static void felem_inv(felem out, const felem in) | ||
| 688 | { | ||
| 689 | felem ftmp, ftmp2, ftmp3, ftmp4; | ||
| 690 | largefelem tmp; | ||
| 691 | unsigned i; | ||
| 692 | |||
| 693 | felem_square(tmp, in); felem_reduce(ftmp, tmp); /* 2^1 */ | ||
| 694 | felem_mul(tmp, in, ftmp); felem_reduce(ftmp, tmp); /* 2^2 - 2^0 */ | ||
| 695 | felem_assign(ftmp2, ftmp); | ||
| 696 | felem_square(tmp, ftmp); felem_reduce(ftmp, tmp); /* 2^3 - 2^1 */ | ||
| 697 | felem_mul(tmp, in, ftmp); felem_reduce(ftmp, tmp); /* 2^3 - 2^0 */ | ||
| 698 | felem_square(tmp, ftmp); felem_reduce(ftmp, tmp); /* 2^4 - 2^1 */ | ||
| 699 | |||
| 700 | felem_square(tmp, ftmp2); felem_reduce(ftmp3, tmp); /* 2^3 - 2^1 */ | ||
| 701 | felem_square(tmp, ftmp3); felem_reduce(ftmp3, tmp); /* 2^4 - 2^2 */ | ||
| 702 | felem_mul(tmp, ftmp3, ftmp2); felem_reduce(ftmp3, tmp); /* 2^4 - 2^0 */ | ||
| 703 | |||
| 704 | felem_assign(ftmp2, ftmp3); | ||
| 705 | felem_square(tmp, ftmp3); felem_reduce(ftmp3, tmp); /* 2^5 - 2^1 */ | ||
| 706 | felem_square(tmp, ftmp3); felem_reduce(ftmp3, tmp); /* 2^6 - 2^2 */ | ||
| 707 | felem_square(tmp, ftmp3); felem_reduce(ftmp3, tmp); /* 2^7 - 2^3 */ | ||
| 708 | felem_square(tmp, ftmp3); felem_reduce(ftmp3, tmp); /* 2^8 - 2^4 */ | ||
| 709 | felem_assign(ftmp4, ftmp3); | ||
| 710 | felem_mul(tmp, ftmp3, ftmp); felem_reduce(ftmp4, tmp); /* 2^8 - 2^1 */ | ||
| 711 | felem_square(tmp, ftmp4); felem_reduce(ftmp4, tmp); /* 2^9 - 2^2 */ | ||
| 712 | felem_mul(tmp, ftmp3, ftmp2); felem_reduce(ftmp3, tmp); /* 2^8 - 2^0 */ | ||
| 713 | felem_assign(ftmp2, ftmp3); | ||
| 714 | |||
| 715 | for (i = 0; i < 8; i++) | ||
| 716 | { | ||
| 717 | felem_square(tmp, ftmp3); felem_reduce(ftmp3, tmp); /* 2^16 - 2^8 */ | ||
| 718 | } | ||
| 719 | felem_mul(tmp, ftmp3, ftmp2); felem_reduce(ftmp3, tmp); /* 2^16 - 2^0 */ | ||
| 720 | felem_assign(ftmp2, ftmp3); | ||
| 721 | |||
| 722 | for (i = 0; i < 16; i++) | ||
| 723 | { | ||
| 724 | felem_square(tmp, ftmp3); felem_reduce(ftmp3, tmp); /* 2^32 - 2^16 */ | ||
| 725 | } | ||
| 726 | felem_mul(tmp, ftmp3, ftmp2); felem_reduce(ftmp3, tmp); /* 2^32 - 2^0 */ | ||
| 727 | felem_assign(ftmp2, ftmp3); | ||
| 728 | |||
| 729 | for (i = 0; i < 32; i++) | ||
| 730 | { | ||
| 731 | felem_square(tmp, ftmp3); felem_reduce(ftmp3, tmp); /* 2^64 - 2^32 */ | ||
| 732 | } | ||
| 733 | felem_mul(tmp, ftmp3, ftmp2); felem_reduce(ftmp3, tmp); /* 2^64 - 2^0 */ | ||
| 734 | felem_assign(ftmp2, ftmp3); | ||
| 735 | |||
| 736 | for (i = 0; i < 64; i++) | ||
| 737 | { | ||
| 738 | felem_square(tmp, ftmp3); felem_reduce(ftmp3, tmp); /* 2^128 - 2^64 */ | ||
| 739 | } | ||
| 740 | felem_mul(tmp, ftmp3, ftmp2); felem_reduce(ftmp3, tmp); /* 2^128 - 2^0 */ | ||
| 741 | felem_assign(ftmp2, ftmp3); | ||
| 742 | |||
| 743 | for (i = 0; i < 128; i++) | ||
| 744 | { | ||
| 745 | felem_square(tmp, ftmp3); felem_reduce(ftmp3, tmp); /* 2^256 - 2^128 */ | ||
| 746 | } | ||
| 747 | felem_mul(tmp, ftmp3, ftmp2); felem_reduce(ftmp3, tmp); /* 2^256 - 2^0 */ | ||
| 748 | felem_assign(ftmp2, ftmp3); | ||
| 749 | |||
| 750 | for (i = 0; i < 256; i++) | ||
| 751 | { | ||
| 752 | felem_square(tmp, ftmp3); felem_reduce(ftmp3, tmp); /* 2^512 - 2^256 */ | ||
| 753 | } | ||
| 754 | felem_mul(tmp, ftmp3, ftmp2); felem_reduce(ftmp3, tmp); /* 2^512 - 2^0 */ | ||
| 755 | |||
| 756 | for (i = 0; i < 9; i++) | ||
| 757 | { | ||
| 758 | felem_square(tmp, ftmp3); felem_reduce(ftmp3, tmp); /* 2^521 - 2^9 */ | ||
| 759 | } | ||
| 760 | felem_mul(tmp, ftmp3, ftmp4); felem_reduce(ftmp3, tmp); /* 2^512 - 2^2 */ | ||
| 761 | felem_mul(tmp, ftmp3, in); felem_reduce(out, tmp); /* 2^512 - 3 */ | ||
| 762 | } | ||
| 763 | |||
| 764 | /* This is 2^521-1, expressed as an felem */ | ||
| 765 | static const felem kPrime = | ||
| 766 | { | ||
| 767 | 0x03ffffffffffffff, 0x03ffffffffffffff, 0x03ffffffffffffff, | ||
| 768 | 0x03ffffffffffffff, 0x03ffffffffffffff, 0x03ffffffffffffff, | ||
| 769 | 0x03ffffffffffffff, 0x03ffffffffffffff, 0x01ffffffffffffff | ||
| 770 | }; | ||
| 771 | |||
| 772 | /* felem_is_zero returns a limb with all bits set if |in| == 0 (mod p) and 0 | ||
| 773 | * otherwise. | ||
| 774 | * On entry: | ||
| 775 | * in[i] < 2^59 + 2^14 | ||
| 776 | */ | ||
| 777 | static limb felem_is_zero(const felem in) | ||
| 778 | { | ||
| 779 | felem ftmp; | ||
| 780 | limb is_zero, is_p; | ||
| 781 | felem_assign(ftmp, in); | ||
| 782 | |||
| 783 | ftmp[0] += ftmp[8] >> 57; ftmp[8] &= bottom57bits; | ||
| 784 | /* ftmp[8] < 2^57 */ | ||
| 785 | ftmp[1] += ftmp[0] >> 58; ftmp[0] &= bottom58bits; | ||
| 786 | ftmp[2] += ftmp[1] >> 58; ftmp[1] &= bottom58bits; | ||
| 787 | ftmp[3] += ftmp[2] >> 58; ftmp[2] &= bottom58bits; | ||
| 788 | ftmp[4] += ftmp[3] >> 58; ftmp[3] &= bottom58bits; | ||
| 789 | ftmp[5] += ftmp[4] >> 58; ftmp[4] &= bottom58bits; | ||
| 790 | ftmp[6] += ftmp[5] >> 58; ftmp[5] &= bottom58bits; | ||
| 791 | ftmp[7] += ftmp[6] >> 58; ftmp[6] &= bottom58bits; | ||
| 792 | ftmp[8] += ftmp[7] >> 58; ftmp[7] &= bottom58bits; | ||
| 793 | /* ftmp[8] < 2^57 + 4 */ | ||
| 794 | |||
| 795 | /* The ninth limb of 2*(2^521-1) is 0x03ffffffffffffff, which is | ||
| 796 | * greater than our bound for ftmp[8]. Therefore we only have to check | ||
| 797 | * if the zero is zero or 2^521-1. */ | ||
| 798 | |||
| 799 | is_zero = 0; | ||
| 800 | is_zero |= ftmp[0]; | ||
| 801 | is_zero |= ftmp[1]; | ||
| 802 | is_zero |= ftmp[2]; | ||
| 803 | is_zero |= ftmp[3]; | ||
| 804 | is_zero |= ftmp[4]; | ||
| 805 | is_zero |= ftmp[5]; | ||
| 806 | is_zero |= ftmp[6]; | ||
| 807 | is_zero |= ftmp[7]; | ||
| 808 | is_zero |= ftmp[8]; | ||
| 809 | |||
| 810 | is_zero--; | ||
| 811 | /* We know that ftmp[i] < 2^63, therefore the only way that the top bit | ||
| 812 | * can be set is if is_zero was 0 before the decrement. */ | ||
| 813 | is_zero = ((s64) is_zero) >> 63; | ||
| 814 | |||
| 815 | is_p = ftmp[0] ^ kPrime[0]; | ||
| 816 | is_p |= ftmp[1] ^ kPrime[1]; | ||
| 817 | is_p |= ftmp[2] ^ kPrime[2]; | ||
| 818 | is_p |= ftmp[3] ^ kPrime[3]; | ||
| 819 | is_p |= ftmp[4] ^ kPrime[4]; | ||
| 820 | is_p |= ftmp[5] ^ kPrime[5]; | ||
| 821 | is_p |= ftmp[6] ^ kPrime[6]; | ||
| 822 | is_p |= ftmp[7] ^ kPrime[7]; | ||
| 823 | is_p |= ftmp[8] ^ kPrime[8]; | ||
| 824 | |||
| 825 | is_p--; | ||
| 826 | is_p = ((s64) is_p) >> 63; | ||
| 827 | |||
| 828 | is_zero |= is_p; | ||
| 829 | return is_zero; | ||
| 830 | } | ||
| 831 | |||
| 832 | static int felem_is_zero_int(const felem in) | ||
| 833 | { | ||
| 834 | return (int) (felem_is_zero(in) & ((limb)1)); | ||
| 835 | } | ||
| 836 | |||
| 837 | /* felem_contract converts |in| to its unique, minimal representation. | ||
| 838 | * On entry: | ||
| 839 | * in[i] < 2^59 + 2^14 | ||
| 840 | */ | ||
| 841 | static void felem_contract(felem out, const felem in) | ||
| 842 | { | ||
| 843 | limb is_p, is_greater, sign; | ||
| 844 | static const limb two58 = ((limb)1) << 58; | ||
| 845 | |||
| 846 | felem_assign(out, in); | ||
| 847 | |||
| 848 | out[0] += out[8] >> 57; out[8] &= bottom57bits; | ||
| 849 | /* out[8] < 2^57 */ | ||
| 850 | out[1] += out[0] >> 58; out[0] &= bottom58bits; | ||
| 851 | out[2] += out[1] >> 58; out[1] &= bottom58bits; | ||
| 852 | out[3] += out[2] >> 58; out[2] &= bottom58bits; | ||
| 853 | out[4] += out[3] >> 58; out[3] &= bottom58bits; | ||
| 854 | out[5] += out[4] >> 58; out[4] &= bottom58bits; | ||
| 855 | out[6] += out[5] >> 58; out[5] &= bottom58bits; | ||
| 856 | out[7] += out[6] >> 58; out[6] &= bottom58bits; | ||
| 857 | out[8] += out[7] >> 58; out[7] &= bottom58bits; | ||
| 858 | /* out[8] < 2^57 + 4 */ | ||
| 859 | |||
| 860 | /* If the value is greater than 2^521-1 then we have to subtract | ||
| 861 | * 2^521-1 out. See the comments in felem_is_zero regarding why we | ||
| 862 | * don't test for other multiples of the prime. */ | ||
| 863 | |||
| 864 | /* First, if |out| is equal to 2^521-1, we subtract it out to get zero. */ | ||
| 865 | |||
| 866 | is_p = out[0] ^ kPrime[0]; | ||
| 867 | is_p |= out[1] ^ kPrime[1]; | ||
| 868 | is_p |= out[2] ^ kPrime[2]; | ||
| 869 | is_p |= out[3] ^ kPrime[3]; | ||
| 870 | is_p |= out[4] ^ kPrime[4]; | ||
| 871 | is_p |= out[5] ^ kPrime[5]; | ||
| 872 | is_p |= out[6] ^ kPrime[6]; | ||
| 873 | is_p |= out[7] ^ kPrime[7]; | ||
| 874 | is_p |= out[8] ^ kPrime[8]; | ||
| 875 | |||
| 876 | is_p--; | ||
| 877 | is_p &= is_p << 32; | ||
| 878 | is_p &= is_p << 16; | ||
| 879 | is_p &= is_p << 8; | ||
| 880 | is_p &= is_p << 4; | ||
| 881 | is_p &= is_p << 2; | ||
| 882 | is_p &= is_p << 1; | ||
| 883 | is_p = ((s64) is_p) >> 63; | ||
| 884 | is_p = ~is_p; | ||
| 885 | |||
| 886 | /* is_p is 0 iff |out| == 2^521-1 and all ones otherwise */ | ||
| 887 | |||
| 888 | out[0] &= is_p; | ||
| 889 | out[1] &= is_p; | ||
| 890 | out[2] &= is_p; | ||
| 891 | out[3] &= is_p; | ||
| 892 | out[4] &= is_p; | ||
| 893 | out[5] &= is_p; | ||
| 894 | out[6] &= is_p; | ||
| 895 | out[7] &= is_p; | ||
| 896 | out[8] &= is_p; | ||
| 897 | |||
| 898 | /* In order to test that |out| >= 2^521-1 we need only test if out[8] | ||
| 899 | * >> 57 is greater than zero as (2^521-1) + x >= 2^522 */ | ||
| 900 | is_greater = out[8] >> 57; | ||
| 901 | is_greater |= is_greater << 32; | ||
| 902 | is_greater |= is_greater << 16; | ||
| 903 | is_greater |= is_greater << 8; | ||
| 904 | is_greater |= is_greater << 4; | ||
| 905 | is_greater |= is_greater << 2; | ||
| 906 | is_greater |= is_greater << 1; | ||
| 907 | is_greater = ((s64) is_greater) >> 63; | ||
| 908 | |||
| 909 | out[0] -= kPrime[0] & is_greater; | ||
| 910 | out[1] -= kPrime[1] & is_greater; | ||
| 911 | out[2] -= kPrime[2] & is_greater; | ||
| 912 | out[3] -= kPrime[3] & is_greater; | ||
| 913 | out[4] -= kPrime[4] & is_greater; | ||
| 914 | out[5] -= kPrime[5] & is_greater; | ||
| 915 | out[6] -= kPrime[6] & is_greater; | ||
| 916 | out[7] -= kPrime[7] & is_greater; | ||
| 917 | out[8] -= kPrime[8] & is_greater; | ||
| 918 | |||
| 919 | /* Eliminate negative coefficients */ | ||
| 920 | sign = -(out[0] >> 63); out[0] += (two58 & sign); out[1] -= (1 & sign); | ||
| 921 | sign = -(out[1] >> 63); out[1] += (two58 & sign); out[2] -= (1 & sign); | ||
| 922 | sign = -(out[2] >> 63); out[2] += (two58 & sign); out[3] -= (1 & sign); | ||
| 923 | sign = -(out[3] >> 63); out[3] += (two58 & sign); out[4] -= (1 & sign); | ||
| 924 | sign = -(out[4] >> 63); out[4] += (two58 & sign); out[5] -= (1 & sign); | ||
| 925 | sign = -(out[0] >> 63); out[5] += (two58 & sign); out[6] -= (1 & sign); | ||
| 926 | sign = -(out[6] >> 63); out[6] += (two58 & sign); out[7] -= (1 & sign); | ||
| 927 | sign = -(out[7] >> 63); out[7] += (two58 & sign); out[8] -= (1 & sign); | ||
| 928 | sign = -(out[5] >> 63); out[5] += (two58 & sign); out[6] -= (1 & sign); | ||
| 929 | sign = -(out[6] >> 63); out[6] += (two58 & sign); out[7] -= (1 & sign); | ||
| 930 | sign = -(out[7] >> 63); out[7] += (two58 & sign); out[8] -= (1 & sign); | ||
| 931 | } | ||
| 932 | |||
| 933 | /* Group operations | ||
| 934 | * ---------------- | ||
| 935 | * | ||
| 936 | * Building on top of the field operations we have the operations on the | ||
| 937 | * elliptic curve group itself. Points on the curve are represented in Jacobian | ||
| 938 | * coordinates */ | ||
| 939 | |||
| 940 | /* point_double calcuates 2*(x_in, y_in, z_in) | ||
| 941 | * | ||
| 942 | * The method is taken from: | ||
| 943 | * http://hyperelliptic.org/EFD/g1p/auto-shortw-jacobian-3.html#doubling-dbl-2001-b | ||
| 944 | * | ||
| 945 | * Outputs can equal corresponding inputs, i.e., x_out == x_in is allowed. | ||
| 946 | * while x_out == y_in is not (maybe this works, but it's not tested). */ | ||
| 947 | static void | ||
| 948 | point_double(felem x_out, felem y_out, felem z_out, | ||
| 949 | const felem x_in, const felem y_in, const felem z_in) | ||
| 950 | { | ||
| 951 | largefelem tmp, tmp2; | ||
| 952 | felem delta, gamma, beta, alpha, ftmp, ftmp2; | ||
| 953 | |||
| 954 | felem_assign(ftmp, x_in); | ||
| 955 | felem_assign(ftmp2, x_in); | ||
| 956 | |||
| 957 | /* delta = z^2 */ | ||
| 958 | felem_square(tmp, z_in); | ||
| 959 | felem_reduce(delta, tmp); /* delta[i] < 2^59 + 2^14 */ | ||
| 960 | |||
| 961 | /* gamma = y^2 */ | ||
| 962 | felem_square(tmp, y_in); | ||
| 963 | felem_reduce(gamma, tmp); /* gamma[i] < 2^59 + 2^14 */ | ||
| 964 | |||
| 965 | /* beta = x*gamma */ | ||
| 966 | felem_mul(tmp, x_in, gamma); | ||
| 967 | felem_reduce(beta, tmp); /* beta[i] < 2^59 + 2^14 */ | ||
| 968 | |||
| 969 | /* alpha = 3*(x-delta)*(x+delta) */ | ||
| 970 | felem_diff64(ftmp, delta); | ||
| 971 | /* ftmp[i] < 2^61 */ | ||
| 972 | felem_sum64(ftmp2, delta); | ||
| 973 | /* ftmp2[i] < 2^60 + 2^15 */ | ||
| 974 | felem_scalar64(ftmp2, 3); | ||
| 975 | /* ftmp2[i] < 3*2^60 + 3*2^15 */ | ||
| 976 | felem_mul(tmp, ftmp, ftmp2); | ||
| 977 | /* tmp[i] < 17(3*2^121 + 3*2^76) | ||
| 978 | * = 61*2^121 + 61*2^76 | ||
| 979 | * < 64*2^121 + 64*2^76 | ||
| 980 | * = 2^127 + 2^82 | ||
| 981 | * < 2^128 */ | ||
| 982 | felem_reduce(alpha, tmp); | ||
| 983 | |||
| 984 | /* x' = alpha^2 - 8*beta */ | ||
| 985 | felem_square(tmp, alpha); | ||
| 986 | /* tmp[i] < 17*2^120 | ||
| 987 | * < 2^125 */ | ||
| 988 | felem_assign(ftmp, beta); | ||
| 989 | felem_scalar64(ftmp, 8); | ||
| 990 | /* ftmp[i] < 2^62 + 2^17 */ | ||
| 991 | felem_diff_128_64(tmp, ftmp); | ||
| 992 | /* tmp[i] < 2^125 + 2^63 + 2^62 + 2^17 */ | ||
| 993 | felem_reduce(x_out, tmp); | ||
| 994 | |||
| 995 | /* z' = (y + z)^2 - gamma - delta */ | ||
| 996 | felem_sum64(delta, gamma); | ||
| 997 | /* delta[i] < 2^60 + 2^15 */ | ||
| 998 | felem_assign(ftmp, y_in); | ||
| 999 | felem_sum64(ftmp, z_in); | ||
| 1000 | /* ftmp[i] < 2^60 + 2^15 */ | ||
| 1001 | felem_square(tmp, ftmp); | ||
| 1002 | /* tmp[i] < 17(2^122) | ||
| 1003 | * < 2^127 */ | ||
| 1004 | felem_diff_128_64(tmp, delta); | ||
| 1005 | /* tmp[i] < 2^127 + 2^63 */ | ||
| 1006 | felem_reduce(z_out, tmp); | ||
| 1007 | |||
| 1008 | /* y' = alpha*(4*beta - x') - 8*gamma^2 */ | ||
| 1009 | felem_scalar64(beta, 4); | ||
| 1010 | /* beta[i] < 2^61 + 2^16 */ | ||
| 1011 | felem_diff64(beta, x_out); | ||
| 1012 | /* beta[i] < 2^61 + 2^60 + 2^16 */ | ||
| 1013 | felem_mul(tmp, alpha, beta); | ||
| 1014 | /* tmp[i] < 17*((2^59 + 2^14)(2^61 + 2^60 + 2^16)) | ||
| 1015 | * = 17*(2^120 + 2^75 + 2^119 + 2^74 + 2^75 + 2^30) | ||
| 1016 | * = 17*(2^120 + 2^119 + 2^76 + 2^74 + 2^30) | ||
| 1017 | * < 2^128 */ | ||
| 1018 | felem_square(tmp2, gamma); | ||
| 1019 | /* tmp2[i] < 17*(2^59 + 2^14)^2 | ||
| 1020 | * = 17*(2^118 + 2^74 + 2^28) */ | ||
| 1021 | felem_scalar128(tmp2, 8); | ||
| 1022 | /* tmp2[i] < 8*17*(2^118 + 2^74 + 2^28) | ||
| 1023 | * = 2^125 + 2^121 + 2^81 + 2^77 + 2^35 + 2^31 | ||
| 1024 | * < 2^126 */ | ||
| 1025 | felem_diff128(tmp, tmp2); | ||
| 1026 | /* tmp[i] < 2^127 - 2^69 + 17(2^120 + 2^119 + 2^76 + 2^74 + 2^30) | ||
| 1027 | * = 2^127 + 2^124 + 2^122 + 2^120 + 2^118 + 2^80 + 2^78 + 2^76 + | ||
| 1028 | * 2^74 + 2^69 + 2^34 + 2^30 | ||
| 1029 | * < 2^128 */ | ||
| 1030 | felem_reduce(y_out, tmp); | ||
| 1031 | } | ||
| 1032 | |||
| 1033 | /* copy_conditional copies in to out iff mask is all ones. */ | ||
| 1034 | static void | ||
| 1035 | copy_conditional(felem out, const felem in, limb mask) | ||
| 1036 | { | ||
| 1037 | unsigned i; | ||
| 1038 | for (i = 0; i < NLIMBS; ++i) | ||
| 1039 | { | ||
| 1040 | const limb tmp = mask & (in[i] ^ out[i]); | ||
| 1041 | out[i] ^= tmp; | ||
| 1042 | } | ||
| 1043 | } | ||
| 1044 | |||
| 1045 | /* point_add calcuates (x1, y1, z1) + (x2, y2, z2) | ||
| 1046 | * | ||
| 1047 | * The method is taken from | ||
| 1048 | * http://hyperelliptic.org/EFD/g1p/auto-shortw-jacobian-3.html#addition-add-2007-bl, | ||
| 1049 | * adapted for mixed addition (z2 = 1, or z2 = 0 for the point at infinity). | ||
| 1050 | * | ||
| 1051 | * This function includes a branch for checking whether the two input points | ||
| 1052 | * are equal (while not equal to the point at infinity). This case never | ||
| 1053 | * happens during single point multiplication, so there is no timing leak for | ||
| 1054 | * ECDH or ECDSA signing. */ | ||
| 1055 | static void point_add(felem x3, felem y3, felem z3, | ||
| 1056 | const felem x1, const felem y1, const felem z1, | ||
| 1057 | const int mixed, const felem x2, const felem y2, const felem z2) | ||
| 1058 | { | ||
| 1059 | felem ftmp, ftmp2, ftmp3, ftmp4, ftmp5, ftmp6, x_out, y_out, z_out; | ||
| 1060 | largefelem tmp, tmp2; | ||
| 1061 | limb x_equal, y_equal, z1_is_zero, z2_is_zero; | ||
| 1062 | |||
| 1063 | z1_is_zero = felem_is_zero(z1); | ||
| 1064 | z2_is_zero = felem_is_zero(z2); | ||
| 1065 | |||
| 1066 | /* ftmp = z1z1 = z1**2 */ | ||
| 1067 | felem_square(tmp, z1); | ||
| 1068 | felem_reduce(ftmp, tmp); | ||
| 1069 | |||
| 1070 | if (!mixed) | ||
| 1071 | { | ||
| 1072 | /* ftmp2 = z2z2 = z2**2 */ | ||
| 1073 | felem_square(tmp, z2); | ||
| 1074 | felem_reduce(ftmp2, tmp); | ||
| 1075 | |||
| 1076 | /* u1 = ftmp3 = x1*z2z2 */ | ||
| 1077 | felem_mul(tmp, x1, ftmp2); | ||
| 1078 | felem_reduce(ftmp3, tmp); | ||
| 1079 | |||
| 1080 | /* ftmp5 = z1 + z2 */ | ||
| 1081 | felem_assign(ftmp5, z1); | ||
| 1082 | felem_sum64(ftmp5, z2); | ||
| 1083 | /* ftmp5[i] < 2^61 */ | ||
| 1084 | |||
| 1085 | /* ftmp5 = (z1 + z2)**2 - z1z1 - z2z2 = 2*z1z2 */ | ||
| 1086 | felem_square(tmp, ftmp5); | ||
| 1087 | /* tmp[i] < 17*2^122 */ | ||
| 1088 | felem_diff_128_64(tmp, ftmp); | ||
| 1089 | /* tmp[i] < 17*2^122 + 2^63 */ | ||
| 1090 | felem_diff_128_64(tmp, ftmp2); | ||
| 1091 | /* tmp[i] < 17*2^122 + 2^64 */ | ||
| 1092 | felem_reduce(ftmp5, tmp); | ||
| 1093 | |||
| 1094 | /* ftmp2 = z2 * z2z2 */ | ||
| 1095 | felem_mul(tmp, ftmp2, z2); | ||
| 1096 | felem_reduce(ftmp2, tmp); | ||
| 1097 | |||
| 1098 | /* s1 = ftmp6 = y1 * z2**3 */ | ||
| 1099 | felem_mul(tmp, y1, ftmp2); | ||
| 1100 | felem_reduce(ftmp6, tmp); | ||
| 1101 | } | ||
| 1102 | else | ||
| 1103 | { | ||
| 1104 | /* We'll assume z2 = 1 (special case z2 = 0 is handled later) */ | ||
| 1105 | |||
| 1106 | /* u1 = ftmp3 = x1*z2z2 */ | ||
| 1107 | felem_assign(ftmp3, x1); | ||
| 1108 | |||
| 1109 | /* ftmp5 = 2*z1z2 */ | ||
| 1110 | felem_scalar(ftmp5, z1, 2); | ||
| 1111 | |||
| 1112 | /* s1 = ftmp6 = y1 * z2**3 */ | ||
| 1113 | felem_assign(ftmp6, y1); | ||
| 1114 | } | ||
| 1115 | |||
| 1116 | /* u2 = x2*z1z1 */ | ||
| 1117 | felem_mul(tmp, x2, ftmp); | ||
| 1118 | /* tmp[i] < 17*2^120 */ | ||
| 1119 | |||
| 1120 | /* h = ftmp4 = u2 - u1 */ | ||
| 1121 | felem_diff_128_64(tmp, ftmp3); | ||
| 1122 | /* tmp[i] < 17*2^120 + 2^63 */ | ||
| 1123 | felem_reduce(ftmp4, tmp); | ||
| 1124 | |||
| 1125 | x_equal = felem_is_zero(ftmp4); | ||
| 1126 | |||
| 1127 | /* z_out = ftmp5 * h */ | ||
| 1128 | felem_mul(tmp, ftmp5, ftmp4); | ||
| 1129 | felem_reduce(z_out, tmp); | ||
| 1130 | |||
| 1131 | /* ftmp = z1 * z1z1 */ | ||
| 1132 | felem_mul(tmp, ftmp, z1); | ||
| 1133 | felem_reduce(ftmp, tmp); | ||
| 1134 | |||
| 1135 | /* s2 = tmp = y2 * z1**3 */ | ||
| 1136 | felem_mul(tmp, y2, ftmp); | ||
| 1137 | /* tmp[i] < 17*2^120 */ | ||
| 1138 | |||
| 1139 | /* r = ftmp5 = (s2 - s1)*2 */ | ||
| 1140 | felem_diff_128_64(tmp, ftmp6); | ||
| 1141 | /* tmp[i] < 17*2^120 + 2^63 */ | ||
| 1142 | felem_reduce(ftmp5, tmp); | ||
| 1143 | y_equal = felem_is_zero(ftmp5); | ||
| 1144 | felem_scalar64(ftmp5, 2); | ||
| 1145 | /* ftmp5[i] < 2^61 */ | ||
| 1146 | |||
| 1147 | if (x_equal && y_equal && !z1_is_zero && !z2_is_zero) | ||
| 1148 | { | ||
| 1149 | point_double(x3, y3, z3, x1, y1, z1); | ||
| 1150 | return; | ||
| 1151 | } | ||
| 1152 | |||
| 1153 | /* I = ftmp = (2h)**2 */ | ||
| 1154 | felem_assign(ftmp, ftmp4); | ||
| 1155 | felem_scalar64(ftmp, 2); | ||
| 1156 | /* ftmp[i] < 2^61 */ | ||
| 1157 | felem_square(tmp, ftmp); | ||
| 1158 | /* tmp[i] < 17*2^122 */ | ||
| 1159 | felem_reduce(ftmp, tmp); | ||
| 1160 | |||
| 1161 | /* J = ftmp2 = h * I */ | ||
| 1162 | felem_mul(tmp, ftmp4, ftmp); | ||
| 1163 | felem_reduce(ftmp2, tmp); | ||
| 1164 | |||
| 1165 | /* V = ftmp4 = U1 * I */ | ||
| 1166 | felem_mul(tmp, ftmp3, ftmp); | ||
| 1167 | felem_reduce(ftmp4, tmp); | ||
| 1168 | |||
| 1169 | /* x_out = r**2 - J - 2V */ | ||
| 1170 | felem_square(tmp, ftmp5); | ||
| 1171 | /* tmp[i] < 17*2^122 */ | ||
| 1172 | felem_diff_128_64(tmp, ftmp2); | ||
| 1173 | /* tmp[i] < 17*2^122 + 2^63 */ | ||
| 1174 | felem_assign(ftmp3, ftmp4); | ||
| 1175 | felem_scalar64(ftmp4, 2); | ||
| 1176 | /* ftmp4[i] < 2^61 */ | ||
| 1177 | felem_diff_128_64(tmp, ftmp4); | ||
| 1178 | /* tmp[i] < 17*2^122 + 2^64 */ | ||
| 1179 | felem_reduce(x_out, tmp); | ||
| 1180 | |||
| 1181 | /* y_out = r(V-x_out) - 2 * s1 * J */ | ||
| 1182 | felem_diff64(ftmp3, x_out); | ||
| 1183 | /* ftmp3[i] < 2^60 + 2^60 | ||
| 1184 | * = 2^61 */ | ||
| 1185 | felem_mul(tmp, ftmp5, ftmp3); | ||
| 1186 | /* tmp[i] < 17*2^122 */ | ||
| 1187 | felem_mul(tmp2, ftmp6, ftmp2); | ||
| 1188 | /* tmp2[i] < 17*2^120 */ | ||
| 1189 | felem_scalar128(tmp2, 2); | ||
| 1190 | /* tmp2[i] < 17*2^121 */ | ||
| 1191 | felem_diff128(tmp, tmp2); | ||
| 1192 | /* tmp[i] < 2^127 - 2^69 + 17*2^122 | ||
| 1193 | * = 2^126 - 2^122 - 2^6 - 2^2 - 1 | ||
| 1194 | * < 2^127 */ | ||
| 1195 | felem_reduce(y_out, tmp); | ||
| 1196 | |||
| 1197 | copy_conditional(x_out, x2, z1_is_zero); | ||
| 1198 | copy_conditional(x_out, x1, z2_is_zero); | ||
| 1199 | copy_conditional(y_out, y2, z1_is_zero); | ||
| 1200 | copy_conditional(y_out, y1, z2_is_zero); | ||
| 1201 | copy_conditional(z_out, z2, z1_is_zero); | ||
| 1202 | copy_conditional(z_out, z1, z2_is_zero); | ||
| 1203 | felem_assign(x3, x_out); | ||
| 1204 | felem_assign(y3, y_out); | ||
| 1205 | felem_assign(z3, z_out); | ||
| 1206 | } | ||
| 1207 | |||
| 1208 | /* Base point pre computation | ||
| 1209 | * -------------------------- | ||
| 1210 | * | ||
| 1211 | * Two different sorts of precomputed tables are used in the following code. | ||
| 1212 | * Each contain various points on the curve, where each point is three field | ||
| 1213 | * elements (x, y, z). | ||
| 1214 | * | ||
| 1215 | * For the base point table, z is usually 1 (0 for the point at infinity). | ||
| 1216 | * This table has 16 elements: | ||
| 1217 | * index | bits | point | ||
| 1218 | * ------+---------+------------------------------ | ||
| 1219 | * 0 | 0 0 0 0 | 0G | ||
| 1220 | * 1 | 0 0 0 1 | 1G | ||
| 1221 | * 2 | 0 0 1 0 | 2^130G | ||
| 1222 | * 3 | 0 0 1 1 | (2^130 + 1)G | ||
| 1223 | * 4 | 0 1 0 0 | 2^260G | ||
| 1224 | * 5 | 0 1 0 1 | (2^260 + 1)G | ||
| 1225 | * 6 | 0 1 1 0 | (2^260 + 2^130)G | ||
| 1226 | * 7 | 0 1 1 1 | (2^260 + 2^130 + 1)G | ||
| 1227 | * 8 | 1 0 0 0 | 2^390G | ||
| 1228 | * 9 | 1 0 0 1 | (2^390 + 1)G | ||
| 1229 | * 10 | 1 0 1 0 | (2^390 + 2^130)G | ||
| 1230 | * 11 | 1 0 1 1 | (2^390 + 2^130 + 1)G | ||
| 1231 | * 12 | 1 1 0 0 | (2^390 + 2^260)G | ||
| 1232 | * 13 | 1 1 0 1 | (2^390 + 2^260 + 1)G | ||
| 1233 | * 14 | 1 1 1 0 | (2^390 + 2^260 + 2^130)G | ||
| 1234 | * 15 | 1 1 1 1 | (2^390 + 2^260 + 2^130 + 1)G | ||
| 1235 | * | ||
| 1236 | * The reason for this is so that we can clock bits into four different | ||
| 1237 | * locations when doing simple scalar multiplies against the base point. | ||
| 1238 | * | ||
| 1239 | * Tables for other points have table[i] = iG for i in 0 .. 16. */ | ||
| 1240 | |||
| 1241 | /* gmul is the table of precomputed base points */ | ||
| 1242 | static const felem gmul[16][3] = | ||
| 1243 | {{{0, 0, 0, 0, 0, 0, 0, 0, 0}, | ||
| 1244 | {0, 0, 0, 0, 0, 0, 0, 0, 0}, | ||
| 1245 | {0, 0, 0, 0, 0, 0, 0, 0, 0}}, | ||
| 1246 | {{0x017e7e31c2e5bd66, 0x022cf0615a90a6fe, 0x00127a2ffa8de334, | ||
| 1247 | 0x01dfbf9d64a3f877, 0x006b4d3dbaa14b5e, 0x014fed487e0a2bd8, | ||
| 1248 | 0x015b4429c6481390, 0x03a73678fb2d988e, 0x00c6858e06b70404}, | ||
| 1249 | {0x00be94769fd16650, 0x031c21a89cb09022, 0x039013fad0761353, | ||
| 1250 | 0x02657bd099031542, 0x03273e662c97ee72, 0x01e6d11a05ebef45, | ||
| 1251 | 0x03d1bd998f544495, 0x03001172297ed0b1, 0x011839296a789a3b}, | ||
| 1252 | {1, 0, 0, 0, 0, 0, 0, 0, 0}}, | ||
| 1253 | {{0x0373faacbc875bae, 0x00f325023721c671, 0x00f666fd3dbde5ad, | ||
| 1254 | 0x01a6932363f88ea7, 0x01fc6d9e13f9c47b, 0x03bcbffc2bbf734e, | ||
| 1255 | 0x013ee3c3647f3a92, 0x029409fefe75d07d, 0x00ef9199963d85e5}, | ||
| 1256 | {0x011173743ad5b178, 0x02499c7c21bf7d46, 0x035beaeabb8b1a58, | ||
| 1257 | 0x00f989c4752ea0a3, 0x0101e1de48a9c1a3, 0x01a20076be28ba6c, | ||
| 1258 | 0x02f8052e5eb2de95, 0x01bfe8f82dea117c, 0x0160074d3c36ddb7}, | ||
| 1259 | {1, 0, 0, 0, 0, 0, 0, 0, 0}}, | ||
| 1260 | {{0x012f3fc373393b3b, 0x03d3d6172f1419fa, 0x02adc943c0b86873, | ||
| 1261 | 0x00d475584177952b, 0x012a4d1673750ee2, 0x00512517a0f13b0c, | ||
| 1262 | 0x02b184671a7b1734, 0x0315b84236f1a50a, 0x00a4afc472edbdb9}, | ||
| 1263 | {0x00152a7077f385c4, 0x03044007d8d1c2ee, 0x0065829d61d52b52, | ||
| 1264 | 0x00494ff6b6631d0d, 0x00a11d94d5f06bcf, 0x02d2f89474d9282e, | ||
| 1265 | 0x0241c5727c06eeb9, 0x0386928710fbdb9d, 0x01f883f727b0dfbe}, | ||
| 1266 | {1, 0, 0, 0, 0, 0, 0, 0, 0}}, | ||
| 1267 | {{0x019b0c3c9185544d, 0x006243a37c9d97db, 0x02ee3cbe030a2ad2, | ||
| 1268 | 0x00cfdd946bb51e0d, 0x0271c00932606b91, 0x03f817d1ec68c561, | ||
| 1269 | 0x03f37009806a369c, 0x03c1f30baf184fd5, 0x01091022d6d2f065}, | ||
| 1270 | {0x0292c583514c45ed, 0x0316fca51f9a286c, 0x00300af507c1489a, | ||
| 1271 | 0x0295f69008298cf1, 0x02c0ed8274943d7b, 0x016509b9b47a431e, | ||
| 1272 | 0x02bc9de9634868ce, 0x005b34929bffcb09, 0x000c1a0121681524}, | ||
| 1273 | {1, 0, 0, 0, 0, 0, 0, 0, 0}}, | ||
| 1274 | {{0x0286abc0292fb9f2, 0x02665eee9805b3f7, 0x01ed7455f17f26d6, | ||
| 1275 | 0x0346355b83175d13, 0x006284944cd0a097, 0x0191895bcdec5e51, | ||
| 1276 | 0x02e288370afda7d9, 0x03b22312bfefa67a, 0x01d104d3fc0613fe}, | ||
| 1277 | {0x0092421a12f7e47f, 0x0077a83fa373c501, 0x03bd25c5f696bd0d, | ||
| 1278 | 0x035c41e4d5459761, 0x01ca0d1742b24f53, 0x00aaab27863a509c, | ||
| 1279 | 0x018b6de47df73917, 0x025c0b771705cd01, 0x01fd51d566d760a7}, | ||
| 1280 | {1, 0, 0, 0, 0, 0, 0, 0, 0}}, | ||
| 1281 | {{0x01dd92ff6b0d1dbd, 0x039c5e2e8f8afa69, 0x0261ed13242c3b27, | ||
| 1282 | 0x0382c6e67026e6a0, 0x01d60b10be2089f9, 0x03c15f3dce86723f, | ||
| 1283 | 0x03c764a32d2a062d, 0x017307eac0fad056, 0x018207c0b96c5256}, | ||
| 1284 | {0x0196a16d60e13154, 0x03e6ce74c0267030, 0x00ddbf2b4e52a5aa, | ||
| 1285 | 0x012738241bbf31c8, 0x00ebe8dc04685a28, 0x024c2ad6d380d4a2, | ||
| 1286 | 0x035ee062a6e62d0e, 0x0029ed74af7d3a0f, 0x00eef32aec142ebd}, | ||
| 1287 | {1, 0, 0, 0, 0, 0, 0, 0, 0}}, | ||
| 1288 | {{0x00c31ec398993b39, 0x03a9f45bcda68253, 0x00ac733c24c70890, | ||
| 1289 | 0x00872b111401ff01, 0x01d178c23195eafb, 0x03bca2c816b87f74, | ||
| 1290 | 0x0261a9af46fbad7a, 0x0324b2a8dd3d28f9, 0x00918121d8f24e23}, | ||
| 1291 | {0x032bc8c1ca983cd7, 0x00d869dfb08fc8c6, 0x01693cb61fce1516, | ||
| 1292 | 0x012a5ea68f4e88a8, 0x010869cab88d7ae3, 0x009081ad277ceee1, | ||
| 1293 | 0x033a77166d064cdc, 0x03955235a1fb3a95, 0x01251a4a9b25b65e}, | ||
| 1294 | {1, 0, 0, 0, 0, 0, 0, 0, 0}}, | ||
| 1295 | {{0x00148a3a1b27f40b, 0x0123186df1b31fdc, 0x00026e7beaad34ce, | ||
| 1296 | 0x01db446ac1d3dbba, 0x0299c1a33437eaec, 0x024540610183cbb7, | ||
| 1297 | 0x0173bb0e9ce92e46, 0x02b937e43921214b, 0x01ab0436a9bf01b5}, | ||
| 1298 | {0x0383381640d46948, 0x008dacbf0e7f330f, 0x03602122bcc3f318, | ||
| 1299 | 0x01ee596b200620d6, 0x03bd0585fda430b3, 0x014aed77fd123a83, | ||
| 1300 | 0x005ace749e52f742, 0x0390fe041da2b842, 0x0189a8ceb3299242}, | ||
| 1301 | {1, 0, 0, 0, 0, 0, 0, 0, 0}}, | ||
| 1302 | {{0x012a19d6b3282473, 0x00c0915918b423ce, 0x023a954eb94405ae, | ||
| 1303 | 0x00529f692be26158, 0x0289fa1b6fa4b2aa, 0x0198ae4ceea346ef, | ||
| 1304 | 0x0047d8cdfbdedd49, 0x00cc8c8953f0f6b8, 0x001424abbff49203}, | ||
| 1305 | {0x0256732a1115a03a, 0x0351bc38665c6733, 0x03f7b950fb4a6447, | ||
| 1306 | 0x000afffa94c22155, 0x025763d0a4dab540, 0x000511e92d4fc283, | ||
| 1307 | 0x030a7e9eda0ee96c, 0x004c3cd93a28bf0a, 0x017edb3a8719217f}, | ||
| 1308 | {1, 0, 0, 0, 0, 0, 0, 0, 0}}, | ||
| 1309 | {{0x011de5675a88e673, 0x031d7d0f5e567fbe, 0x0016b2062c970ae5, | ||
| 1310 | 0x03f4a2be49d90aa7, 0x03cef0bd13822866, 0x03f0923dcf774a6c, | ||
| 1311 | 0x0284bebc4f322f72, 0x016ab2645302bb2c, 0x01793f95dace0e2a}, | ||
| 1312 | {0x010646e13527a28f, 0x01ca1babd59dc5e7, 0x01afedfd9a5595df, | ||
| 1313 | 0x01f15785212ea6b1, 0x0324e5d64f6ae3f4, 0x02d680f526d00645, | ||
| 1314 | 0x0127920fadf627a7, 0x03b383f75df4f684, 0x0089e0057e783b0a}, | ||
| 1315 | {1, 0, 0, 0, 0, 0, 0, 0, 0}}, | ||
| 1316 | {{0x00f334b9eb3c26c6, 0x0298fdaa98568dce, 0x01c2d24843a82292, | ||
| 1317 | 0x020bcb24fa1b0711, 0x02cbdb3d2b1875e6, 0x0014907598f89422, | ||
| 1318 | 0x03abe3aa43b26664, 0x02cbf47f720bc168, 0x0133b5e73014b79b}, | ||
| 1319 | {0x034aab5dab05779d, 0x00cdc5d71fee9abb, 0x0399f16bd4bd9d30, | ||
| 1320 | 0x03582fa592d82647, 0x02be1cdfb775b0e9, 0x0034f7cea32e94cb, | ||
| 1321 | 0x0335a7f08f56f286, 0x03b707e9565d1c8b, 0x0015c946ea5b614f}, | ||
| 1322 | {1, 0, 0, 0, 0, 0, 0, 0, 0}}, | ||
| 1323 | {{0x024676f6cff72255, 0x00d14625cac96378, 0x00532b6008bc3767, | ||
| 1324 | 0x01fc16721b985322, 0x023355ea1b091668, 0x029de7afdc0317c3, | ||
| 1325 | 0x02fc8a7ca2da037c, 0x02de1217d74a6f30, 0x013f7173175b73bf}, | ||
| 1326 | {0x0344913f441490b5, 0x0200f9e272b61eca, 0x0258a246b1dd55d2, | ||
| 1327 | 0x03753db9ea496f36, 0x025e02937a09c5ef, 0x030cbd3d14012692, | ||
| 1328 | 0x01793a67e70dc72a, 0x03ec1d37048a662e, 0x006550f700c32a8d}, | ||
| 1329 | {1, 0, 0, 0, 0, 0, 0, 0, 0}}, | ||
| 1330 | {{0x00d3f48a347eba27, 0x008e636649b61bd8, 0x00d3b93716778fb3, | ||
| 1331 | 0x004d1915757bd209, 0x019d5311a3da44e0, 0x016d1afcbbe6aade, | ||
| 1332 | 0x0241bf5f73265616, 0x0384672e5d50d39b, 0x005009fee522b684}, | ||
| 1333 | {0x029b4fab064435fe, 0x018868ee095bbb07, 0x01ea3d6936cc92b8, | ||
| 1334 | 0x000608b00f78a2f3, 0x02db911073d1c20f, 0x018205938470100a, | ||
| 1335 | 0x01f1e4964cbe6ff2, 0x021a19a29eed4663, 0x01414485f42afa81}, | ||
| 1336 | {1, 0, 0, 0, 0, 0, 0, 0, 0}}, | ||
| 1337 | {{0x01612b3a17f63e34, 0x03813992885428e6, 0x022b3c215b5a9608, | ||
| 1338 | 0x029b4057e19f2fcb, 0x0384059a587af7e6, 0x02d6400ace6fe610, | ||
| 1339 | 0x029354d896e8e331, 0x00c047ee6dfba65e, 0x0037720542e9d49d}, | ||
| 1340 | {0x02ce9eed7c5e9278, 0x0374ed703e79643b, 0x01316c54c4072006, | ||
| 1341 | 0x005aaa09054b2ee8, 0x002824000c840d57, 0x03d4eba24771ed86, | ||
| 1342 | 0x0189c50aabc3bdae, 0x0338c01541e15510, 0x00466d56e38eed42}, | ||
| 1343 | {1, 0, 0, 0, 0, 0, 0, 0, 0}}, | ||
| 1344 | {{0x007efd8330ad8bd6, 0x02465ed48047710b, 0x0034c6606b215e0c, | ||
| 1345 | 0x016ae30c53cbf839, 0x01fa17bd37161216, 0x018ead4e61ce8ab9, | ||
| 1346 | 0x005482ed5f5dee46, 0x037543755bba1d7f, 0x005e5ac7e70a9d0f}, | ||
| 1347 | {0x0117e1bb2fdcb2a2, 0x03deea36249f40c4, 0x028d09b4a6246cb7, | ||
| 1348 | 0x03524b8855bcf756, 0x023d7d109d5ceb58, 0x0178e43e3223ef9c, | ||
| 1349 | 0x0154536a0c6e966a, 0x037964d1286ee9fe, 0x0199bcd90e125055}, | ||
| 1350 | {1, 0, 0, 0, 0, 0, 0, 0, 0}}}; | ||
| 1351 | |||
| 1352 | /* select_point selects the |idx|th point from a precomputation table and | ||
| 1353 | * copies it to out. */ | ||
| 1354 | static void select_point(const limb idx, unsigned int size, const felem pre_comp[/* size */][3], | ||
| 1355 | felem out[3]) | ||
| 1356 | { | ||
| 1357 | unsigned i, j; | ||
| 1358 | limb *outlimbs = &out[0][0]; | ||
| 1359 | memset(outlimbs, 0, 3 * sizeof(felem)); | ||
| 1360 | |||
| 1361 | for (i = 0; i < size; i++) | ||
| 1362 | { | ||
| 1363 | const limb *inlimbs = &pre_comp[i][0][0]; | ||
| 1364 | limb mask = i ^ idx; | ||
| 1365 | mask |= mask >> 4; | ||
| 1366 | mask |= mask >> 2; | ||
| 1367 | mask |= mask >> 1; | ||
| 1368 | mask &= 1; | ||
| 1369 | mask--; | ||
| 1370 | for (j = 0; j < NLIMBS * 3; j++) | ||
| 1371 | outlimbs[j] |= inlimbs[j] & mask; | ||
| 1372 | } | ||
| 1373 | } | ||
| 1374 | |||
| 1375 | /* get_bit returns the |i|th bit in |in| */ | ||
| 1376 | static char get_bit(const felem_bytearray in, int i) | ||
| 1377 | { | ||
| 1378 | if (i < 0) | ||
| 1379 | return 0; | ||
| 1380 | return (in[i >> 3] >> (i & 7)) & 1; | ||
| 1381 | } | ||
| 1382 | |||
| 1383 | /* Interleaved point multiplication using precomputed point multiples: | ||
| 1384 | * The small point multiples 0*P, 1*P, ..., 16*P are in pre_comp[], | ||
| 1385 | * the scalars in scalars[]. If g_scalar is non-NULL, we also add this multiple | ||
| 1386 | * of the generator, using certain (large) precomputed multiples in g_pre_comp. | ||
| 1387 | * Output point (X, Y, Z) is stored in x_out, y_out, z_out */ | ||
| 1388 | static void batch_mul(felem x_out, felem y_out, felem z_out, | ||
| 1389 | const felem_bytearray scalars[], const unsigned num_points, const u8 *g_scalar, | ||
| 1390 | const int mixed, const felem pre_comp[][17][3], const felem g_pre_comp[16][3]) | ||
| 1391 | { | ||
| 1392 | int i, skip; | ||
| 1393 | unsigned num, gen_mul = (g_scalar != NULL); | ||
| 1394 | felem nq[3], tmp[4]; | ||
| 1395 | limb bits; | ||
| 1396 | u8 sign, digit; | ||
| 1397 | |||
| 1398 | /* set nq to the point at infinity */ | ||
| 1399 | memset(nq, 0, 3 * sizeof(felem)); | ||
| 1400 | |||
| 1401 | /* Loop over all scalars msb-to-lsb, interleaving additions | ||
| 1402 | * of multiples of the generator (last quarter of rounds) | ||
| 1403 | * and additions of other points multiples (every 5th round). | ||
| 1404 | */ | ||
| 1405 | skip = 1; /* save two point operations in the first round */ | ||
| 1406 | for (i = (num_points ? 520 : 130); i >= 0; --i) | ||
| 1407 | { | ||
| 1408 | /* double */ | ||
| 1409 | if (!skip) | ||
| 1410 | point_double(nq[0], nq[1], nq[2], nq[0], nq[1], nq[2]); | ||
| 1411 | |||
| 1412 | /* add multiples of the generator */ | ||
| 1413 | if (gen_mul && (i <= 130)) | ||
| 1414 | { | ||
| 1415 | bits = get_bit(g_scalar, i + 390) << 3; | ||
| 1416 | if (i < 130) | ||
| 1417 | { | ||
| 1418 | bits |= get_bit(g_scalar, i + 260) << 2; | ||
| 1419 | bits |= get_bit(g_scalar, i + 130) << 1; | ||
| 1420 | bits |= get_bit(g_scalar, i); | ||
| 1421 | } | ||
| 1422 | /* select the point to add, in constant time */ | ||
| 1423 | select_point(bits, 16, g_pre_comp, tmp); | ||
| 1424 | if (!skip) | ||
| 1425 | { | ||
| 1426 | point_add(nq[0], nq[1], nq[2], | ||
| 1427 | nq[0], nq[1], nq[2], | ||
| 1428 | 1 /* mixed */, tmp[0], tmp[1], tmp[2]); | ||
| 1429 | } | ||
| 1430 | else | ||
| 1431 | { | ||
| 1432 | memcpy(nq, tmp, 3 * sizeof(felem)); | ||
| 1433 | skip = 0; | ||
| 1434 | } | ||
| 1435 | } | ||
| 1436 | |||
| 1437 | /* do other additions every 5 doublings */ | ||
| 1438 | if (num_points && (i % 5 == 0)) | ||
| 1439 | { | ||
| 1440 | /* loop over all scalars */ | ||
| 1441 | for (num = 0; num < num_points; ++num) | ||
| 1442 | { | ||
| 1443 | bits = get_bit(scalars[num], i + 4) << 5; | ||
| 1444 | bits |= get_bit(scalars[num], i + 3) << 4; | ||
| 1445 | bits |= get_bit(scalars[num], i + 2) << 3; | ||
| 1446 | bits |= get_bit(scalars[num], i + 1) << 2; | ||
| 1447 | bits |= get_bit(scalars[num], i) << 1; | ||
| 1448 | bits |= get_bit(scalars[num], i - 1); | ||
| 1449 | ec_GFp_nistp_recode_scalar_bits(&sign, &digit, bits); | ||
| 1450 | |||
| 1451 | /* select the point to add or subtract, in constant time */ | ||
| 1452 | select_point(digit, 17, pre_comp[num], tmp); | ||
| 1453 | felem_neg(tmp[3], tmp[1]); /* (X, -Y, Z) is the negative point */ | ||
| 1454 | copy_conditional(tmp[1], tmp[3], (-(limb) sign)); | ||
| 1455 | |||
| 1456 | if (!skip) | ||
| 1457 | { | ||
| 1458 | point_add(nq[0], nq[1], nq[2], | ||
| 1459 | nq[0], nq[1], nq[2], | ||
| 1460 | mixed, tmp[0], tmp[1], tmp[2]); | ||
| 1461 | } | ||
| 1462 | else | ||
| 1463 | { | ||
| 1464 | memcpy(nq, tmp, 3 * sizeof(felem)); | ||
| 1465 | skip = 0; | ||
| 1466 | } | ||
| 1467 | } | ||
| 1468 | } | ||
| 1469 | } | ||
| 1470 | felem_assign(x_out, nq[0]); | ||
| 1471 | felem_assign(y_out, nq[1]); | ||
| 1472 | felem_assign(z_out, nq[2]); | ||
| 1473 | } | ||
| 1474 | |||
| 1475 | |||
| 1476 | /* Precomputation for the group generator. */ | ||
| 1477 | typedef struct { | ||
| 1478 | felem g_pre_comp[16][3]; | ||
| 1479 | int references; | ||
| 1480 | } NISTP521_PRE_COMP; | ||
| 1481 | |||
| 1482 | const EC_METHOD *EC_GFp_nistp521_method(void) | ||
| 1483 | { | ||
| 1484 | static const EC_METHOD ret = { | ||
| 1485 | EC_FLAGS_DEFAULT_OCT, | ||
| 1486 | NID_X9_62_prime_field, | ||
| 1487 | ec_GFp_nistp521_group_init, | ||
| 1488 | ec_GFp_simple_group_finish, | ||
| 1489 | ec_GFp_simple_group_clear_finish, | ||
| 1490 | ec_GFp_nist_group_copy, | ||
| 1491 | ec_GFp_nistp521_group_set_curve, | ||
| 1492 | ec_GFp_simple_group_get_curve, | ||
| 1493 | ec_GFp_simple_group_get_degree, | ||
| 1494 | ec_GFp_simple_group_check_discriminant, | ||
| 1495 | ec_GFp_simple_point_init, | ||
| 1496 | ec_GFp_simple_point_finish, | ||
| 1497 | ec_GFp_simple_point_clear_finish, | ||
| 1498 | ec_GFp_simple_point_copy, | ||
| 1499 | ec_GFp_simple_point_set_to_infinity, | ||
| 1500 | ec_GFp_simple_set_Jprojective_coordinates_GFp, | ||
| 1501 | ec_GFp_simple_get_Jprojective_coordinates_GFp, | ||
| 1502 | ec_GFp_simple_point_set_affine_coordinates, | ||
| 1503 | ec_GFp_nistp521_point_get_affine_coordinates, | ||
| 1504 | 0 /* point_set_compressed_coordinates */, | ||
| 1505 | 0 /* point2oct */, | ||
| 1506 | 0 /* oct2point */, | ||
| 1507 | ec_GFp_simple_add, | ||
| 1508 | ec_GFp_simple_dbl, | ||
| 1509 | ec_GFp_simple_invert, | ||
| 1510 | ec_GFp_simple_is_at_infinity, | ||
| 1511 | ec_GFp_simple_is_on_curve, | ||
| 1512 | ec_GFp_simple_cmp, | ||
| 1513 | ec_GFp_simple_make_affine, | ||
| 1514 | ec_GFp_simple_points_make_affine, | ||
| 1515 | ec_GFp_nistp521_points_mul, | ||
| 1516 | ec_GFp_nistp521_precompute_mult, | ||
| 1517 | ec_GFp_nistp521_have_precompute_mult, | ||
| 1518 | ec_GFp_nist_field_mul, | ||
| 1519 | ec_GFp_nist_field_sqr, | ||
| 1520 | 0 /* field_div */, | ||
| 1521 | 0 /* field_encode */, | ||
| 1522 | 0 /* field_decode */, | ||
| 1523 | 0 /* field_set_to_one */ }; | ||
| 1524 | |||
| 1525 | return &ret; | ||
| 1526 | } | ||
| 1527 | |||
| 1528 | |||
| 1529 | /******************************************************************************/ | ||
| 1530 | /* FUNCTIONS TO MANAGE PRECOMPUTATION | ||
| 1531 | */ | ||
| 1532 | |||
| 1533 | static NISTP521_PRE_COMP *nistp521_pre_comp_new() | ||
| 1534 | { | ||
| 1535 | NISTP521_PRE_COMP *ret = NULL; | ||
| 1536 | ret = (NISTP521_PRE_COMP *)OPENSSL_malloc(sizeof(NISTP521_PRE_COMP)); | ||
| 1537 | if (!ret) | ||
| 1538 | { | ||
| 1539 | ECerr(EC_F_NISTP521_PRE_COMP_NEW, ERR_R_MALLOC_FAILURE); | ||
| 1540 | return ret; | ||
| 1541 | } | ||
| 1542 | memset(ret->g_pre_comp, 0, sizeof(ret->g_pre_comp)); | ||
| 1543 | ret->references = 1; | ||
| 1544 | return ret; | ||
| 1545 | } | ||
| 1546 | |||
| 1547 | static void *nistp521_pre_comp_dup(void *src_) | ||
| 1548 | { | ||
| 1549 | NISTP521_PRE_COMP *src = src_; | ||
| 1550 | |||
| 1551 | /* no need to actually copy, these objects never change! */ | ||
| 1552 | CRYPTO_add(&src->references, 1, CRYPTO_LOCK_EC_PRE_COMP); | ||
| 1553 | |||
| 1554 | return src_; | ||
| 1555 | } | ||
| 1556 | |||
| 1557 | static void nistp521_pre_comp_free(void *pre_) | ||
| 1558 | { | ||
| 1559 | int i; | ||
| 1560 | NISTP521_PRE_COMP *pre = pre_; | ||
| 1561 | |||
| 1562 | if (!pre) | ||
| 1563 | return; | ||
| 1564 | |||
| 1565 | i = CRYPTO_add(&pre->references, -1, CRYPTO_LOCK_EC_PRE_COMP); | ||
| 1566 | if (i > 0) | ||
| 1567 | return; | ||
| 1568 | |||
| 1569 | OPENSSL_free(pre); | ||
| 1570 | } | ||
| 1571 | |||
| 1572 | static void nistp521_pre_comp_clear_free(void *pre_) | ||
| 1573 | { | ||
| 1574 | int i; | ||
| 1575 | NISTP521_PRE_COMP *pre = pre_; | ||
| 1576 | |||
| 1577 | if (!pre) | ||
| 1578 | return; | ||
| 1579 | |||
| 1580 | i = CRYPTO_add(&pre->references, -1, CRYPTO_LOCK_EC_PRE_COMP); | ||
| 1581 | if (i > 0) | ||
| 1582 | return; | ||
| 1583 | |||
| 1584 | OPENSSL_cleanse(pre, sizeof(*pre)); | ||
| 1585 | OPENSSL_free(pre); | ||
| 1586 | } | ||
| 1587 | |||
| 1588 | /******************************************************************************/ | ||
| 1589 | /* OPENSSL EC_METHOD FUNCTIONS | ||
| 1590 | */ | ||
| 1591 | |||
| 1592 | int ec_GFp_nistp521_group_init(EC_GROUP *group) | ||
| 1593 | { | ||
| 1594 | int ret; | ||
| 1595 | ret = ec_GFp_simple_group_init(group); | ||
| 1596 | group->a_is_minus3 = 1; | ||
| 1597 | return ret; | ||
| 1598 | } | ||
| 1599 | |||
| 1600 | int ec_GFp_nistp521_group_set_curve(EC_GROUP *group, const BIGNUM *p, | ||
| 1601 | const BIGNUM *a, const BIGNUM *b, BN_CTX *ctx) | ||
| 1602 | { | ||
| 1603 | int ret = 0; | ||
| 1604 | BN_CTX *new_ctx = NULL; | ||
| 1605 | BIGNUM *curve_p, *curve_a, *curve_b; | ||
| 1606 | |||
| 1607 | if (ctx == NULL) | ||
| 1608 | if ((ctx = new_ctx = BN_CTX_new()) == NULL) return 0; | ||
| 1609 | BN_CTX_start(ctx); | ||
| 1610 | if (((curve_p = BN_CTX_get(ctx)) == NULL) || | ||
| 1611 | ((curve_a = BN_CTX_get(ctx)) == NULL) || | ||
| 1612 | ((curve_b = BN_CTX_get(ctx)) == NULL)) goto err; | ||
| 1613 | BN_bin2bn(nistp521_curve_params[0], sizeof(felem_bytearray), curve_p); | ||
| 1614 | BN_bin2bn(nistp521_curve_params[1], sizeof(felem_bytearray), curve_a); | ||
| 1615 | BN_bin2bn(nistp521_curve_params[2], sizeof(felem_bytearray), curve_b); | ||
| 1616 | if ((BN_cmp(curve_p, p)) || (BN_cmp(curve_a, a)) || | ||
| 1617 | (BN_cmp(curve_b, b))) | ||
| 1618 | { | ||
| 1619 | ECerr(EC_F_EC_GFP_NISTP521_GROUP_SET_CURVE, | ||
| 1620 | EC_R_WRONG_CURVE_PARAMETERS); | ||
| 1621 | goto err; | ||
| 1622 | } | ||
| 1623 | group->field_mod_func = BN_nist_mod_521; | ||
| 1624 | ret = ec_GFp_simple_group_set_curve(group, p, a, b, ctx); | ||
| 1625 | err: | ||
| 1626 | BN_CTX_end(ctx); | ||
| 1627 | if (new_ctx != NULL) | ||
| 1628 | BN_CTX_free(new_ctx); | ||
| 1629 | return ret; | ||
| 1630 | } | ||
| 1631 | |||
| 1632 | /* Takes the Jacobian coordinates (X, Y, Z) of a point and returns | ||
| 1633 | * (X', Y') = (X/Z^2, Y/Z^3) */ | ||
| 1634 | int ec_GFp_nistp521_point_get_affine_coordinates(const EC_GROUP *group, | ||
| 1635 | const EC_POINT *point, BIGNUM *x, BIGNUM *y, BN_CTX *ctx) | ||
| 1636 | { | ||
| 1637 | felem z1, z2, x_in, y_in, x_out, y_out; | ||
| 1638 | largefelem tmp; | ||
| 1639 | |||
| 1640 | if (EC_POINT_is_at_infinity(group, point)) | ||
| 1641 | { | ||
| 1642 | ECerr(EC_F_EC_GFP_NISTP521_POINT_GET_AFFINE_COORDINATES, | ||
| 1643 | EC_R_POINT_AT_INFINITY); | ||
| 1644 | return 0; | ||
| 1645 | } | ||
| 1646 | if ((!BN_to_felem(x_in, &point->X)) || (!BN_to_felem(y_in, &point->Y)) || | ||
| 1647 | (!BN_to_felem(z1, &point->Z))) return 0; | ||
| 1648 | felem_inv(z2, z1); | ||
| 1649 | felem_square(tmp, z2); felem_reduce(z1, tmp); | ||
| 1650 | felem_mul(tmp, x_in, z1); felem_reduce(x_in, tmp); | ||
| 1651 | felem_contract(x_out, x_in); | ||
| 1652 | if (x != NULL) | ||
| 1653 | { | ||
| 1654 | if (!felem_to_BN(x, x_out)) | ||
| 1655 | { | ||
| 1656 | ECerr(EC_F_EC_GFP_NISTP521_POINT_GET_AFFINE_COORDINATES, ERR_R_BN_LIB); | ||
| 1657 | return 0; | ||
| 1658 | } | ||
| 1659 | } | ||
| 1660 | felem_mul(tmp, z1, z2); felem_reduce(z1, tmp); | ||
| 1661 | felem_mul(tmp, y_in, z1); felem_reduce(y_in, tmp); | ||
| 1662 | felem_contract(y_out, y_in); | ||
| 1663 | if (y != NULL) | ||
| 1664 | { | ||
| 1665 | if (!felem_to_BN(y, y_out)) | ||
| 1666 | { | ||
| 1667 | ECerr(EC_F_EC_GFP_NISTP521_POINT_GET_AFFINE_COORDINATES, ERR_R_BN_LIB); | ||
| 1668 | return 0; | ||
| 1669 | } | ||
| 1670 | } | ||
| 1671 | return 1; | ||
| 1672 | } | ||
| 1673 | |||
| 1674 | static void make_points_affine(size_t num, felem points[/* num */][3], felem tmp_felems[/* num+1 */]) | ||
| 1675 | { | ||
| 1676 | /* Runs in constant time, unless an input is the point at infinity | ||
| 1677 | * (which normally shouldn't happen). */ | ||
| 1678 | ec_GFp_nistp_points_make_affine_internal( | ||
| 1679 | num, | ||
| 1680 | points, | ||
| 1681 | sizeof(felem), | ||
| 1682 | tmp_felems, | ||
| 1683 | (void (*)(void *)) felem_one, | ||
| 1684 | (int (*)(const void *)) felem_is_zero_int, | ||
| 1685 | (void (*)(void *, const void *)) felem_assign, | ||
| 1686 | (void (*)(void *, const void *)) felem_square_reduce, | ||
| 1687 | (void (*)(void *, const void *, const void *)) felem_mul_reduce, | ||
| 1688 | (void (*)(void *, const void *)) felem_inv, | ||
| 1689 | (void (*)(void *, const void *)) felem_contract); | ||
| 1690 | } | ||
| 1691 | |||
| 1692 | /* Computes scalar*generator + \sum scalars[i]*points[i], ignoring NULL values | ||
| 1693 | * Result is stored in r (r can equal one of the inputs). */ | ||
| 1694 | int ec_GFp_nistp521_points_mul(const EC_GROUP *group, EC_POINT *r, | ||
| 1695 | const BIGNUM *scalar, size_t num, const EC_POINT *points[], | ||
| 1696 | const BIGNUM *scalars[], BN_CTX *ctx) | ||
| 1697 | { | ||
| 1698 | int ret = 0; | ||
| 1699 | int j; | ||
| 1700 | int mixed = 0; | ||
| 1701 | BN_CTX *new_ctx = NULL; | ||
| 1702 | BIGNUM *x, *y, *z, *tmp_scalar; | ||
| 1703 | felem_bytearray g_secret; | ||
| 1704 | felem_bytearray *secrets = NULL; | ||
| 1705 | felem (*pre_comp)[17][3] = NULL; | ||
| 1706 | felem *tmp_felems = NULL; | ||
| 1707 | felem_bytearray tmp; | ||
| 1708 | unsigned i, num_bytes; | ||
| 1709 | int have_pre_comp = 0; | ||
| 1710 | size_t num_points = num; | ||
| 1711 | felem x_in, y_in, z_in, x_out, y_out, z_out; | ||
| 1712 | NISTP521_PRE_COMP *pre = NULL; | ||
| 1713 | felem (*g_pre_comp)[3] = NULL; | ||
| 1714 | EC_POINT *generator = NULL; | ||
| 1715 | const EC_POINT *p = NULL; | ||
| 1716 | const BIGNUM *p_scalar = NULL; | ||
| 1717 | |||
| 1718 | if (ctx == NULL) | ||
| 1719 | if ((ctx = new_ctx = BN_CTX_new()) == NULL) return 0; | ||
| 1720 | BN_CTX_start(ctx); | ||
| 1721 | if (((x = BN_CTX_get(ctx)) == NULL) || | ||
| 1722 | ((y = BN_CTX_get(ctx)) == NULL) || | ||
| 1723 | ((z = BN_CTX_get(ctx)) == NULL) || | ||
| 1724 | ((tmp_scalar = BN_CTX_get(ctx)) == NULL)) | ||
| 1725 | goto err; | ||
| 1726 | |||
| 1727 | if (scalar != NULL) | ||
| 1728 | { | ||
| 1729 | pre = EC_EX_DATA_get_data(group->extra_data, | ||
| 1730 | nistp521_pre_comp_dup, nistp521_pre_comp_free, | ||
| 1731 | nistp521_pre_comp_clear_free); | ||
| 1732 | if (pre) | ||
| 1733 | /* we have precomputation, try to use it */ | ||
| 1734 | g_pre_comp = &pre->g_pre_comp[0]; | ||
| 1735 | else | ||
| 1736 | /* try to use the standard precomputation */ | ||
| 1737 | g_pre_comp = (felem (*)[3]) gmul; | ||
| 1738 | generator = EC_POINT_new(group); | ||
| 1739 | if (generator == NULL) | ||
| 1740 | goto err; | ||
| 1741 | /* get the generator from precomputation */ | ||
| 1742 | if (!felem_to_BN(x, g_pre_comp[1][0]) || | ||
| 1743 | !felem_to_BN(y, g_pre_comp[1][1]) || | ||
| 1744 | !felem_to_BN(z, g_pre_comp[1][2])) | ||
| 1745 | { | ||
| 1746 | ECerr(EC_F_EC_GFP_NISTP521_POINTS_MUL, ERR_R_BN_LIB); | ||
| 1747 | goto err; | ||
| 1748 | } | ||
| 1749 | if (!EC_POINT_set_Jprojective_coordinates_GFp(group, | ||
| 1750 | generator, x, y, z, ctx)) | ||
| 1751 | goto err; | ||
| 1752 | if (0 == EC_POINT_cmp(group, generator, group->generator, ctx)) | ||
| 1753 | /* precomputation matches generator */ | ||
| 1754 | have_pre_comp = 1; | ||
| 1755 | else | ||
| 1756 | /* we don't have valid precomputation: | ||
| 1757 | * treat the generator as a random point */ | ||
| 1758 | num_points++; | ||
| 1759 | } | ||
| 1760 | |||
| 1761 | if (num_points > 0) | ||
| 1762 | { | ||
| 1763 | if (num_points >= 2) | ||
| 1764 | { | ||
| 1765 | /* unless we precompute multiples for just one point, | ||
| 1766 | * converting those into affine form is time well spent */ | ||
| 1767 | mixed = 1; | ||
| 1768 | } | ||
| 1769 | secrets = OPENSSL_malloc(num_points * sizeof(felem_bytearray)); | ||
| 1770 | pre_comp = OPENSSL_malloc(num_points * 17 * 3 * sizeof(felem)); | ||
| 1771 | if (mixed) | ||
| 1772 | tmp_felems = OPENSSL_malloc((num_points * 17 + 1) * sizeof(felem)); | ||
| 1773 | if ((secrets == NULL) || (pre_comp == NULL) || (mixed && (tmp_felems == NULL))) | ||
| 1774 | { | ||
| 1775 | ECerr(EC_F_EC_GFP_NISTP521_POINTS_MUL, ERR_R_MALLOC_FAILURE); | ||
| 1776 | goto err; | ||
| 1777 | } | ||
| 1778 | |||
| 1779 | /* we treat NULL scalars as 0, and NULL points as points at infinity, | ||
| 1780 | * i.e., they contribute nothing to the linear combination */ | ||
| 1781 | memset(secrets, 0, num_points * sizeof(felem_bytearray)); | ||
| 1782 | memset(pre_comp, 0, num_points * 17 * 3 * sizeof(felem)); | ||
| 1783 | for (i = 0; i < num_points; ++i) | ||
| 1784 | { | ||
| 1785 | if (i == num) | ||
| 1786 | /* we didn't have a valid precomputation, so we pick | ||
| 1787 | * the generator */ | ||
| 1788 | { | ||
| 1789 | p = EC_GROUP_get0_generator(group); | ||
| 1790 | p_scalar = scalar; | ||
| 1791 | } | ||
| 1792 | else | ||
| 1793 | /* the i^th point */ | ||
| 1794 | { | ||
| 1795 | p = points[i]; | ||
| 1796 | p_scalar = scalars[i]; | ||
| 1797 | } | ||
| 1798 | if ((p_scalar != NULL) && (p != NULL)) | ||
| 1799 | { | ||
| 1800 | /* reduce scalar to 0 <= scalar < 2^521 */ | ||
| 1801 | if ((BN_num_bits(p_scalar) > 521) || (BN_is_negative(p_scalar))) | ||
| 1802 | { | ||
| 1803 | /* this is an unusual input, and we don't guarantee | ||
| 1804 | * constant-timeness */ | ||
| 1805 | if (!BN_nnmod(tmp_scalar, p_scalar, &group->order, ctx)) | ||
| 1806 | { | ||
| 1807 | ECerr(EC_F_EC_GFP_NISTP521_POINTS_MUL, ERR_R_BN_LIB); | ||
| 1808 | goto err; | ||
| 1809 | } | ||
| 1810 | num_bytes = BN_bn2bin(tmp_scalar, tmp); | ||
| 1811 | } | ||
| 1812 | else | ||
| 1813 | num_bytes = BN_bn2bin(p_scalar, tmp); | ||
| 1814 | flip_endian(secrets[i], tmp, num_bytes); | ||
| 1815 | /* precompute multiples */ | ||
| 1816 | if ((!BN_to_felem(x_out, &p->X)) || | ||
| 1817 | (!BN_to_felem(y_out, &p->Y)) || | ||
| 1818 | (!BN_to_felem(z_out, &p->Z))) goto err; | ||
| 1819 | memcpy(pre_comp[i][1][0], x_out, sizeof(felem)); | ||
| 1820 | memcpy(pre_comp[i][1][1], y_out, sizeof(felem)); | ||
| 1821 | memcpy(pre_comp[i][1][2], z_out, sizeof(felem)); | ||
| 1822 | for (j = 2; j <= 16; ++j) | ||
| 1823 | { | ||
| 1824 | if (j & 1) | ||
| 1825 | { | ||
| 1826 | point_add( | ||
| 1827 | pre_comp[i][j][0], pre_comp[i][j][1], pre_comp[i][j][2], | ||
| 1828 | pre_comp[i][1][0], pre_comp[i][1][1], pre_comp[i][1][2], | ||
| 1829 | 0, pre_comp[i][j-1][0], pre_comp[i][j-1][1], pre_comp[i][j-1][2]); | ||
| 1830 | } | ||
| 1831 | else | ||
| 1832 | { | ||
| 1833 | point_double( | ||
| 1834 | pre_comp[i][j][0], pre_comp[i][j][1], pre_comp[i][j][2], | ||
| 1835 | pre_comp[i][j/2][0], pre_comp[i][j/2][1], pre_comp[i][j/2][2]); | ||
| 1836 | } | ||
| 1837 | } | ||
| 1838 | } | ||
| 1839 | } | ||
| 1840 | if (mixed) | ||
| 1841 | make_points_affine(num_points * 17, pre_comp[0], tmp_felems); | ||
| 1842 | } | ||
| 1843 | |||
| 1844 | /* the scalar for the generator */ | ||
| 1845 | if ((scalar != NULL) && (have_pre_comp)) | ||
| 1846 | { | ||
| 1847 | memset(g_secret, 0, sizeof(g_secret)); | ||
| 1848 | /* reduce scalar to 0 <= scalar < 2^521 */ | ||
| 1849 | if ((BN_num_bits(scalar) > 521) || (BN_is_negative(scalar))) | ||
| 1850 | { | ||
| 1851 | /* this is an unusual input, and we don't guarantee | ||
| 1852 | * constant-timeness */ | ||
| 1853 | if (!BN_nnmod(tmp_scalar, scalar, &group->order, ctx)) | ||
| 1854 | { | ||
| 1855 | ECerr(EC_F_EC_GFP_NISTP521_POINTS_MUL, ERR_R_BN_LIB); | ||
| 1856 | goto err; | ||
| 1857 | } | ||
| 1858 | num_bytes = BN_bn2bin(tmp_scalar, tmp); | ||
| 1859 | } | ||
| 1860 | else | ||
| 1861 | num_bytes = BN_bn2bin(scalar, tmp); | ||
| 1862 | flip_endian(g_secret, tmp, num_bytes); | ||
| 1863 | /* do the multiplication with generator precomputation*/ | ||
| 1864 | batch_mul(x_out, y_out, z_out, | ||
| 1865 | (const felem_bytearray (*)) secrets, num_points, | ||
| 1866 | g_secret, | ||
| 1867 | mixed, (const felem (*)[17][3]) pre_comp, | ||
| 1868 | (const felem (*)[3]) g_pre_comp); | ||
| 1869 | } | ||
| 1870 | else | ||
| 1871 | /* do the multiplication without generator precomputation */ | ||
| 1872 | batch_mul(x_out, y_out, z_out, | ||
| 1873 | (const felem_bytearray (*)) secrets, num_points, | ||
| 1874 | NULL, mixed, (const felem (*)[17][3]) pre_comp, NULL); | ||
| 1875 | /* reduce the output to its unique minimal representation */ | ||
| 1876 | felem_contract(x_in, x_out); | ||
| 1877 | felem_contract(y_in, y_out); | ||
| 1878 | felem_contract(z_in, z_out); | ||
| 1879 | if ((!felem_to_BN(x, x_in)) || (!felem_to_BN(y, y_in)) || | ||
| 1880 | (!felem_to_BN(z, z_in))) | ||
| 1881 | { | ||
| 1882 | ECerr(EC_F_EC_GFP_NISTP521_POINTS_MUL, ERR_R_BN_LIB); | ||
| 1883 | goto err; | ||
| 1884 | } | ||
| 1885 | ret = EC_POINT_set_Jprojective_coordinates_GFp(group, r, x, y, z, ctx); | ||
| 1886 | |||
| 1887 | err: | ||
| 1888 | BN_CTX_end(ctx); | ||
| 1889 | if (generator != NULL) | ||
| 1890 | EC_POINT_free(generator); | ||
| 1891 | if (new_ctx != NULL) | ||
| 1892 | BN_CTX_free(new_ctx); | ||
| 1893 | if (secrets != NULL) | ||
| 1894 | OPENSSL_free(secrets); | ||
| 1895 | if (pre_comp != NULL) | ||
| 1896 | OPENSSL_free(pre_comp); | ||
| 1897 | if (tmp_felems != NULL) | ||
| 1898 | OPENSSL_free(tmp_felems); | ||
| 1899 | return ret; | ||
| 1900 | } | ||
| 1901 | |||
| 1902 | int ec_GFp_nistp521_precompute_mult(EC_GROUP *group, BN_CTX *ctx) | ||
| 1903 | { | ||
| 1904 | int ret = 0; | ||
| 1905 | NISTP521_PRE_COMP *pre = NULL; | ||
| 1906 | int i, j; | ||
| 1907 | BN_CTX *new_ctx = NULL; | ||
| 1908 | BIGNUM *x, *y; | ||
| 1909 | EC_POINT *generator = NULL; | ||
| 1910 | felem tmp_felems[16]; | ||
| 1911 | |||
| 1912 | /* throw away old precomputation */ | ||
| 1913 | EC_EX_DATA_free_data(&group->extra_data, nistp521_pre_comp_dup, | ||
| 1914 | nistp521_pre_comp_free, nistp521_pre_comp_clear_free); | ||
| 1915 | if (ctx == NULL) | ||
| 1916 | if ((ctx = new_ctx = BN_CTX_new()) == NULL) return 0; | ||
| 1917 | BN_CTX_start(ctx); | ||
| 1918 | if (((x = BN_CTX_get(ctx)) == NULL) || | ||
| 1919 | ((y = BN_CTX_get(ctx)) == NULL)) | ||
| 1920 | goto err; | ||
| 1921 | /* get the generator */ | ||
| 1922 | if (group->generator == NULL) goto err; | ||
| 1923 | generator = EC_POINT_new(group); | ||
| 1924 | if (generator == NULL) | ||
| 1925 | goto err; | ||
| 1926 | BN_bin2bn(nistp521_curve_params[3], sizeof (felem_bytearray), x); | ||
| 1927 | BN_bin2bn(nistp521_curve_params[4], sizeof (felem_bytearray), y); | ||
| 1928 | if (!EC_POINT_set_affine_coordinates_GFp(group, generator, x, y, ctx)) | ||
| 1929 | goto err; | ||
| 1930 | if ((pre = nistp521_pre_comp_new()) == NULL) | ||
| 1931 | goto err; | ||
| 1932 | /* if the generator is the standard one, use built-in precomputation */ | ||
| 1933 | if (0 == EC_POINT_cmp(group, generator, group->generator, ctx)) | ||
| 1934 | { | ||
| 1935 | memcpy(pre->g_pre_comp, gmul, sizeof(pre->g_pre_comp)); | ||
| 1936 | ret = 1; | ||
| 1937 | goto err; | ||
| 1938 | } | ||
| 1939 | if ((!BN_to_felem(pre->g_pre_comp[1][0], &group->generator->X)) || | ||
| 1940 | (!BN_to_felem(pre->g_pre_comp[1][1], &group->generator->Y)) || | ||
| 1941 | (!BN_to_felem(pre->g_pre_comp[1][2], &group->generator->Z))) | ||
| 1942 | goto err; | ||
| 1943 | /* compute 2^130*G, 2^260*G, 2^390*G */ | ||
| 1944 | for (i = 1; i <= 4; i <<= 1) | ||
| 1945 | { | ||
| 1946 | point_double(pre->g_pre_comp[2*i][0], pre->g_pre_comp[2*i][1], | ||
| 1947 | pre->g_pre_comp[2*i][2], pre->g_pre_comp[i][0], | ||
| 1948 | pre->g_pre_comp[i][1], pre->g_pre_comp[i][2]); | ||
| 1949 | for (j = 0; j < 129; ++j) | ||
| 1950 | { | ||
| 1951 | point_double(pre->g_pre_comp[2*i][0], | ||
| 1952 | pre->g_pre_comp[2*i][1], | ||
| 1953 | pre->g_pre_comp[2*i][2], | ||
| 1954 | pre->g_pre_comp[2*i][0], | ||
| 1955 | pre->g_pre_comp[2*i][1], | ||
| 1956 | pre->g_pre_comp[2*i][2]); | ||
| 1957 | } | ||
| 1958 | } | ||
| 1959 | /* g_pre_comp[0] is the point at infinity */ | ||
| 1960 | memset(pre->g_pre_comp[0], 0, sizeof(pre->g_pre_comp[0])); | ||
| 1961 | /* the remaining multiples */ | ||
| 1962 | /* 2^130*G + 2^260*G */ | ||
| 1963 | point_add(pre->g_pre_comp[6][0], pre->g_pre_comp[6][1], | ||
| 1964 | pre->g_pre_comp[6][2], pre->g_pre_comp[4][0], | ||
| 1965 | pre->g_pre_comp[4][1], pre->g_pre_comp[4][2], | ||
| 1966 | 0, pre->g_pre_comp[2][0], pre->g_pre_comp[2][1], | ||
| 1967 | pre->g_pre_comp[2][2]); | ||
| 1968 | /* 2^130*G + 2^390*G */ | ||
| 1969 | point_add(pre->g_pre_comp[10][0], pre->g_pre_comp[10][1], | ||
| 1970 | pre->g_pre_comp[10][2], pre->g_pre_comp[8][0], | ||
| 1971 | pre->g_pre_comp[8][1], pre->g_pre_comp[8][2], | ||
| 1972 | 0, pre->g_pre_comp[2][0], pre->g_pre_comp[2][1], | ||
| 1973 | pre->g_pre_comp[2][2]); | ||
| 1974 | /* 2^260*G + 2^390*G */ | ||
| 1975 | point_add(pre->g_pre_comp[12][0], pre->g_pre_comp[12][1], | ||
| 1976 | pre->g_pre_comp[12][2], pre->g_pre_comp[8][0], | ||
| 1977 | pre->g_pre_comp[8][1], pre->g_pre_comp[8][2], | ||
| 1978 | 0, pre->g_pre_comp[4][0], pre->g_pre_comp[4][1], | ||
| 1979 | pre->g_pre_comp[4][2]); | ||
| 1980 | /* 2^130*G + 2^260*G + 2^390*G */ | ||
| 1981 | point_add(pre->g_pre_comp[14][0], pre->g_pre_comp[14][1], | ||
| 1982 | pre->g_pre_comp[14][2], pre->g_pre_comp[12][0], | ||
| 1983 | pre->g_pre_comp[12][1], pre->g_pre_comp[12][2], | ||
| 1984 | 0, pre->g_pre_comp[2][0], pre->g_pre_comp[2][1], | ||
| 1985 | pre->g_pre_comp[2][2]); | ||
| 1986 | for (i = 1; i < 8; ++i) | ||
| 1987 | { | ||
| 1988 | /* odd multiples: add G */ | ||
| 1989 | point_add(pre->g_pre_comp[2*i+1][0], pre->g_pre_comp[2*i+1][1], | ||
| 1990 | pre->g_pre_comp[2*i+1][2], pre->g_pre_comp[2*i][0], | ||
| 1991 | pre->g_pre_comp[2*i][1], pre->g_pre_comp[2*i][2], | ||
| 1992 | 0, pre->g_pre_comp[1][0], pre->g_pre_comp[1][1], | ||
| 1993 | pre->g_pre_comp[1][2]); | ||
| 1994 | } | ||
| 1995 | make_points_affine(15, &(pre->g_pre_comp[1]), tmp_felems); | ||
| 1996 | |||
| 1997 | if (!EC_EX_DATA_set_data(&group->extra_data, pre, nistp521_pre_comp_dup, | ||
| 1998 | nistp521_pre_comp_free, nistp521_pre_comp_clear_free)) | ||
| 1999 | goto err; | ||
| 2000 | ret = 1; | ||
| 2001 | pre = NULL; | ||
| 2002 | err: | ||
| 2003 | BN_CTX_end(ctx); | ||
| 2004 | if (generator != NULL) | ||
| 2005 | EC_POINT_free(generator); | ||
| 2006 | if (new_ctx != NULL) | ||
| 2007 | BN_CTX_free(new_ctx); | ||
| 2008 | if (pre) | ||
| 2009 | nistp521_pre_comp_free(pre); | ||
| 2010 | return ret; | ||
| 2011 | } | ||
| 2012 | |||
| 2013 | int ec_GFp_nistp521_have_precompute_mult(const EC_GROUP *group) | ||
| 2014 | { | ||
| 2015 | if (EC_EX_DATA_get_data(group->extra_data, nistp521_pre_comp_dup, | ||
| 2016 | nistp521_pre_comp_free, nistp521_pre_comp_clear_free) | ||
| 2017 | != NULL) | ||
| 2018 | return 1; | ||
| 2019 | else | ||
| 2020 | return 0; | ||
| 2021 | } | ||
| 2022 | |||
| 2023 | #else | ||
| 2024 | static void *dummy=&dummy; | ||
| 2025 | #endif | ||
diff --git a/src/lib/libcrypto/ec/ecp_nistputil.c b/src/lib/libcrypto/ec/ecp_nistputil.c new file mode 100644 index 0000000000..c8140c807f --- /dev/null +++ b/src/lib/libcrypto/ec/ecp_nistputil.c | |||
| @@ -0,0 +1,197 @@ | |||
| 1 | /* crypto/ec/ecp_nistputil.c */ | ||
| 2 | /* | ||
| 3 | * Written by Bodo Moeller for the OpenSSL project. | ||
| 4 | */ | ||
| 5 | /* Copyright 2011 Google Inc. | ||
| 6 | * | ||
| 7 | * Licensed under the Apache License, Version 2.0 (the "License"); | ||
| 8 | * | ||
| 9 | * you may not use this file except in compliance with the License. | ||
| 10 | * You may obtain a copy of the License at | ||
| 11 | * | ||
| 12 | * http://www.apache.org/licenses/LICENSE-2.0 | ||
| 13 | * | ||
| 14 | * Unless required by applicable law or agreed to in writing, software | ||
| 15 | * distributed under the License is distributed on an "AS IS" BASIS, | ||
| 16 | * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | ||
| 17 | * See the License for the specific language governing permissions and | ||
| 18 | * limitations under the License. | ||
| 19 | */ | ||
| 20 | |||
| 21 | #include <openssl/opensslconf.h> | ||
| 22 | #ifndef OPENSSL_NO_EC_NISTP_64_GCC_128 | ||
| 23 | |||
| 24 | /* | ||
| 25 | * Common utility functions for ecp_nistp224.c, ecp_nistp256.c, ecp_nistp521.c. | ||
| 26 | */ | ||
| 27 | |||
| 28 | #include <stddef.h> | ||
| 29 | #include "ec_lcl.h" | ||
| 30 | |||
| 31 | /* Convert an array of points into affine coordinates. | ||
| 32 | * (If the point at infinity is found (Z = 0), it remains unchanged.) | ||
| 33 | * This function is essentially an equivalent to EC_POINTs_make_affine(), but | ||
| 34 | * works with the internal representation of points as used by ecp_nistp###.c | ||
| 35 | * rather than with (BIGNUM-based) EC_POINT data structures. | ||
| 36 | * | ||
| 37 | * point_array is the input/output buffer ('num' points in projective form, | ||
| 38 | * i.e. three coordinates each), based on an internal representation of | ||
| 39 | * field elements of size 'felem_size'. | ||
| 40 | * | ||
| 41 | * tmp_felems needs to point to a temporary array of 'num'+1 field elements | ||
| 42 | * for storage of intermediate values. | ||
| 43 | */ | ||
| 44 | void ec_GFp_nistp_points_make_affine_internal(size_t num, void *point_array, | ||
| 45 | size_t felem_size, void *tmp_felems, | ||
| 46 | void (*felem_one)(void *out), | ||
| 47 | int (*felem_is_zero)(const void *in), | ||
| 48 | void (*felem_assign)(void *out, const void *in), | ||
| 49 | void (*felem_square)(void *out, const void *in), | ||
| 50 | void (*felem_mul)(void *out, const void *in1, const void *in2), | ||
| 51 | void (*felem_inv)(void *out, const void *in), | ||
| 52 | void (*felem_contract)(void *out, const void *in)) | ||
| 53 | { | ||
| 54 | int i = 0; | ||
| 55 | |||
| 56 | #define tmp_felem(I) (&((char *)tmp_felems)[(I) * felem_size]) | ||
| 57 | #define X(I) (&((char *)point_array)[3*(I) * felem_size]) | ||
| 58 | #define Y(I) (&((char *)point_array)[(3*(I) + 1) * felem_size]) | ||
| 59 | #define Z(I) (&((char *)point_array)[(3*(I) + 2) * felem_size]) | ||
| 60 | |||
| 61 | if (!felem_is_zero(Z(0))) | ||
| 62 | felem_assign(tmp_felem(0), Z(0)); | ||
| 63 | else | ||
| 64 | felem_one(tmp_felem(0)); | ||
| 65 | for (i = 1; i < (int)num; i++) | ||
| 66 | { | ||
| 67 | if (!felem_is_zero(Z(i))) | ||
| 68 | felem_mul(tmp_felem(i), tmp_felem(i-1), Z(i)); | ||
| 69 | else | ||
| 70 | felem_assign(tmp_felem(i), tmp_felem(i-1)); | ||
| 71 | } | ||
| 72 | /* Now each tmp_felem(i) is the product of Z(0) .. Z(i), skipping any zero-valued factors: | ||
| 73 | * if Z(i) = 0, we essentially pretend that Z(i) = 1 */ | ||
| 74 | |||
| 75 | felem_inv(tmp_felem(num-1), tmp_felem(num-1)); | ||
| 76 | for (i = num - 1; i >= 0; i--) | ||
| 77 | { | ||
| 78 | if (i > 0) | ||
| 79 | /* tmp_felem(i-1) is the product of Z(0) .. Z(i-1), | ||
| 80 | * tmp_felem(i) is the inverse of the product of Z(0) .. Z(i) | ||
| 81 | */ | ||
| 82 | felem_mul(tmp_felem(num), tmp_felem(i-1), tmp_felem(i)); /* 1/Z(i) */ | ||
| 83 | else | ||
| 84 | felem_assign(tmp_felem(num), tmp_felem(0)); /* 1/Z(0) */ | ||
| 85 | |||
| 86 | if (!felem_is_zero(Z(i))) | ||
| 87 | { | ||
| 88 | if (i > 0) | ||
| 89 | /* For next iteration, replace tmp_felem(i-1) by its inverse */ | ||
| 90 | felem_mul(tmp_felem(i-1), tmp_felem(i), Z(i)); | ||
| 91 | |||
| 92 | /* Convert point (X, Y, Z) into affine form (X/(Z^2), Y/(Z^3), 1) */ | ||
| 93 | felem_square(Z(i), tmp_felem(num)); /* 1/(Z^2) */ | ||
| 94 | felem_mul(X(i), X(i), Z(i)); /* X/(Z^2) */ | ||
| 95 | felem_mul(Z(i), Z(i), tmp_felem(num)); /* 1/(Z^3) */ | ||
| 96 | felem_mul(Y(i), Y(i), Z(i)); /* Y/(Z^3) */ | ||
| 97 | felem_contract(X(i), X(i)); | ||
| 98 | felem_contract(Y(i), Y(i)); | ||
| 99 | felem_one(Z(i)); | ||
| 100 | } | ||
| 101 | else | ||
| 102 | { | ||
| 103 | if (i > 0) | ||
| 104 | /* For next iteration, replace tmp_felem(i-1) by its inverse */ | ||
| 105 | felem_assign(tmp_felem(i-1), tmp_felem(i)); | ||
| 106 | } | ||
| 107 | } | ||
| 108 | } | ||
| 109 | |||
| 110 | /* | ||
| 111 | * This function looks at 5+1 scalar bits (5 current, 1 adjacent less | ||
| 112 | * significant bit), and recodes them into a signed digit for use in fast point | ||
| 113 | * multiplication: the use of signed rather than unsigned digits means that | ||
| 114 | * fewer points need to be precomputed, given that point inversion is easy | ||
| 115 | * (a precomputed point dP makes -dP available as well). | ||
| 116 | * | ||
| 117 | * BACKGROUND: | ||
| 118 | * | ||
| 119 | * Signed digits for multiplication were introduced by Booth ("A signed binary | ||
| 120 | * multiplication technique", Quart. Journ. Mech. and Applied Math., vol. IV, | ||
| 121 | * pt. 2 (1951), pp. 236-240), in that case for multiplication of integers. | ||
| 122 | * Booth's original encoding did not generally improve the density of nonzero | ||
| 123 | * digits over the binary representation, and was merely meant to simplify the | ||
| 124 | * handling of signed factors given in two's complement; but it has since been | ||
| 125 | * shown to be the basis of various signed-digit representations that do have | ||
| 126 | * further advantages, including the wNAF, using the following general approach: | ||
| 127 | * | ||
| 128 | * (1) Given a binary representation | ||
| 129 | * | ||
| 130 | * b_k ... b_2 b_1 b_0, | ||
| 131 | * | ||
| 132 | * of a nonnegative integer (b_k in {0, 1}), rewrite it in digits 0, 1, -1 | ||
| 133 | * by using bit-wise subtraction as follows: | ||
| 134 | * | ||
| 135 | * b_k b_(k-1) ... b_2 b_1 b_0 | ||
| 136 | * - b_k ... b_3 b_2 b_1 b_0 | ||
| 137 | * ------------------------------------- | ||
| 138 | * s_k b_(k-1) ... s_3 s_2 s_1 s_0 | ||
| 139 | * | ||
| 140 | * A left-shift followed by subtraction of the original value yields a new | ||
| 141 | * representation of the same value, using signed bits s_i = b_(i+1) - b_i. | ||
| 142 | * This representation from Booth's paper has since appeared in the | ||
| 143 | * literature under a variety of different names including "reversed binary | ||
| 144 | * form", "alternating greedy expansion", "mutual opposite form", and | ||
| 145 | * "sign-alternating {+-1}-representation". | ||
| 146 | * | ||
| 147 | * An interesting property is that among the nonzero bits, values 1 and -1 | ||
| 148 | * strictly alternate. | ||
| 149 | * | ||
| 150 | * (2) Various window schemes can be applied to the Booth representation of | ||
| 151 | * integers: for example, right-to-left sliding windows yield the wNAF | ||
| 152 | * (a signed-digit encoding independently discovered by various researchers | ||
| 153 | * in the 1990s), and left-to-right sliding windows yield a left-to-right | ||
| 154 | * equivalent of the wNAF (independently discovered by various researchers | ||
| 155 | * around 2004). | ||
| 156 | * | ||
| 157 | * To prevent leaking information through side channels in point multiplication, | ||
| 158 | * we need to recode the given integer into a regular pattern: sliding windows | ||
| 159 | * as in wNAFs won't do, we need their fixed-window equivalent -- which is a few | ||
| 160 | * decades older: we'll be using the so-called "modified Booth encoding" due to | ||
| 161 | * MacSorley ("High-speed arithmetic in binary computers", Proc. IRE, vol. 49 | ||
| 162 | * (1961), pp. 67-91), in a radix-2^5 setting. That is, we always combine five | ||
| 163 | * signed bits into a signed digit: | ||
| 164 | * | ||
| 165 | * s_(4j + 4) s_(4j + 3) s_(4j + 2) s_(4j + 1) s_(4j) | ||
| 166 | * | ||
| 167 | * The sign-alternating property implies that the resulting digit values are | ||
| 168 | * integers from -16 to 16. | ||
| 169 | * | ||
| 170 | * Of course, we don't actually need to compute the signed digits s_i as an | ||
| 171 | * intermediate step (that's just a nice way to see how this scheme relates | ||
| 172 | * to the wNAF): a direct computation obtains the recoded digit from the | ||
| 173 | * six bits b_(4j + 4) ... b_(4j - 1). | ||
| 174 | * | ||
| 175 | * This function takes those five bits as an integer (0 .. 63), writing the | ||
| 176 | * recoded digit to *sign (0 for positive, 1 for negative) and *digit (absolute | ||
| 177 | * value, in the range 0 .. 8). Note that this integer essentially provides the | ||
| 178 | * input bits "shifted to the left" by one position: for example, the input to | ||
| 179 | * compute the least significant recoded digit, given that there's no bit b_-1, | ||
| 180 | * has to be b_4 b_3 b_2 b_1 b_0 0. | ||
| 181 | * | ||
| 182 | */ | ||
| 183 | void ec_GFp_nistp_recode_scalar_bits(unsigned char *sign, unsigned char *digit, unsigned char in) | ||
| 184 | { | ||
| 185 | unsigned char s, d; | ||
| 186 | |||
| 187 | s = ~((in >> 5) - 1); /* sets all bits to MSB(in), 'in' seen as 6-bit value */ | ||
| 188 | d = (1 << 6) - in - 1; | ||
| 189 | d = (d & s) | (in & ~s); | ||
| 190 | d = (d >> 1) + (d & 1); | ||
| 191 | |||
| 192 | *sign = s & 1; | ||
| 193 | *digit = d; | ||
| 194 | } | ||
| 195 | #else | ||
| 196 | static void *dummy=&dummy; | ||
| 197 | #endif | ||
diff --git a/src/lib/libcrypto/ec/ecp_oct.c b/src/lib/libcrypto/ec/ecp_oct.c new file mode 100644 index 0000000000..374a0ee731 --- /dev/null +++ b/src/lib/libcrypto/ec/ecp_oct.c | |||
| @@ -0,0 +1,433 @@ | |||
| 1 | /* crypto/ec/ecp_oct.c */ | ||
| 2 | /* Includes code written by Lenka Fibikova <fibikova@exp-math.uni-essen.de> | ||
| 3 | * for the OpenSSL project. | ||
| 4 | * Includes code written by Bodo Moeller for the OpenSSL project. | ||
| 5 | */ | ||
| 6 | /* ==================================================================== | ||
| 7 | * Copyright (c) 1998-2002 The OpenSSL Project. All rights reserved. | ||
| 8 | * | ||
| 9 | * Redistribution and use in source and binary forms, with or without | ||
| 10 | * modification, are permitted provided that the following conditions | ||
| 11 | * are met: | ||
| 12 | * | ||
| 13 | * 1. Redistributions of source code must retain the above copyright | ||
| 14 | * notice, this list of conditions and the following disclaimer. | ||
| 15 | * | ||
| 16 | * 2. Redistributions in binary form must reproduce the above copyright | ||
| 17 | * notice, this list of conditions and the following disclaimer in | ||
| 18 | * the documentation and/or other materials provided with the | ||
| 19 | * distribution. | ||
| 20 | * | ||
| 21 | * 3. All advertising materials mentioning features or use of this | ||
| 22 | * software must display the following acknowledgment: | ||
| 23 | * "This product includes software developed by the OpenSSL Project | ||
| 24 | * for use in the OpenSSL Toolkit. (http://www.openssl.org/)" | ||
| 25 | * | ||
| 26 | * 4. The names "OpenSSL Toolkit" and "OpenSSL Project" must not be used to | ||
| 27 | * endorse or promote products derived from this software without | ||
| 28 | * prior written permission. For written permission, please contact | ||
| 29 | * openssl-core@openssl.org. | ||
| 30 | * | ||
| 31 | * 5. Products derived from this software may not be called "OpenSSL" | ||
| 32 | * nor may "OpenSSL" appear in their names without prior written | ||
| 33 | * permission of the OpenSSL Project. | ||
| 34 | * | ||
| 35 | * 6. Redistributions of any form whatsoever must retain the following | ||
| 36 | * acknowledgment: | ||
| 37 | * "This product includes software developed by the OpenSSL Project | ||
| 38 | * for use in the OpenSSL Toolkit (http://www.openssl.org/)" | ||
| 39 | * | ||
| 40 | * THIS SOFTWARE IS PROVIDED BY THE OpenSSL PROJECT ``AS IS'' AND ANY | ||
| 41 | * EXPRESSED OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE | ||
| 42 | * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR | ||
| 43 | * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE OpenSSL PROJECT OR | ||
| 44 | * ITS CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, | ||
| 45 | * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT | ||
| 46 | * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; | ||
| 47 | * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) | ||
| 48 | * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, | ||
| 49 | * STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) | ||
| 50 | * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED | ||
| 51 | * OF THE POSSIBILITY OF SUCH DAMAGE. | ||
| 52 | * ==================================================================== | ||
| 53 | * | ||
| 54 | * This product includes cryptographic software written by Eric Young | ||
| 55 | * (eay@cryptsoft.com). This product includes software written by Tim | ||
| 56 | * Hudson (tjh@cryptsoft.com). | ||
| 57 | * | ||
| 58 | */ | ||
| 59 | /* ==================================================================== | ||
| 60 | * Copyright 2002 Sun Microsystems, Inc. ALL RIGHTS RESERVED. | ||
| 61 | * Portions of this software developed by SUN MICROSYSTEMS, INC., | ||
| 62 | * and contributed to the OpenSSL project. | ||
| 63 | */ | ||
| 64 | |||
| 65 | #include <openssl/err.h> | ||
| 66 | #include <openssl/symhacks.h> | ||
| 67 | |||
| 68 | #include "ec_lcl.h" | ||
| 69 | |||
| 70 | int ec_GFp_simple_set_compressed_coordinates(const EC_GROUP *group, EC_POINT *point, | ||
| 71 | const BIGNUM *x_, int y_bit, BN_CTX *ctx) | ||
| 72 | { | ||
| 73 | BN_CTX *new_ctx = NULL; | ||
| 74 | BIGNUM *tmp1, *tmp2, *x, *y; | ||
| 75 | int ret = 0; | ||
| 76 | |||
| 77 | /* clear error queue*/ | ||
| 78 | ERR_clear_error(); | ||
| 79 | |||
| 80 | if (ctx == NULL) | ||
| 81 | { | ||
| 82 | ctx = new_ctx = BN_CTX_new(); | ||
| 83 | if (ctx == NULL) | ||
| 84 | return 0; | ||
| 85 | } | ||
| 86 | |||
| 87 | y_bit = (y_bit != 0); | ||
| 88 | |||
| 89 | BN_CTX_start(ctx); | ||
| 90 | tmp1 = BN_CTX_get(ctx); | ||
| 91 | tmp2 = BN_CTX_get(ctx); | ||
| 92 | x = BN_CTX_get(ctx); | ||
| 93 | y = BN_CTX_get(ctx); | ||
| 94 | if (y == NULL) goto err; | ||
| 95 | |||
| 96 | /* Recover y. We have a Weierstrass equation | ||
| 97 | * y^2 = x^3 + a*x + b, | ||
| 98 | * so y is one of the square roots of x^3 + a*x + b. | ||
| 99 | */ | ||
| 100 | |||
| 101 | /* tmp1 := x^3 */ | ||
| 102 | if (!BN_nnmod(x, x_, &group->field,ctx)) goto err; | ||
| 103 | if (group->meth->field_decode == 0) | ||
| 104 | { | ||
| 105 | /* field_{sqr,mul} work on standard representation */ | ||
| 106 | if (!group->meth->field_sqr(group, tmp2, x_, ctx)) goto err; | ||
| 107 | if (!group->meth->field_mul(group, tmp1, tmp2, x_, ctx)) goto err; | ||
| 108 | } | ||
| 109 | else | ||
| 110 | { | ||
| 111 | if (!BN_mod_sqr(tmp2, x_, &group->field, ctx)) goto err; | ||
| 112 | if (!BN_mod_mul(tmp1, tmp2, x_, &group->field, ctx)) goto err; | ||
| 113 | } | ||
| 114 | |||
| 115 | /* tmp1 := tmp1 + a*x */ | ||
| 116 | if (group->a_is_minus3) | ||
| 117 | { | ||
| 118 | if (!BN_mod_lshift1_quick(tmp2, x, &group->field)) goto err; | ||
| 119 | if (!BN_mod_add_quick(tmp2, tmp2, x, &group->field)) goto err; | ||
| 120 | if (!BN_mod_sub_quick(tmp1, tmp1, tmp2, &group->field)) goto err; | ||
| 121 | } | ||
| 122 | else | ||
| 123 | { | ||
| 124 | if (group->meth->field_decode) | ||
| 125 | { | ||
| 126 | if (!group->meth->field_decode(group, tmp2, &group->a, ctx)) goto err; | ||
| 127 | if (!BN_mod_mul(tmp2, tmp2, x, &group->field, ctx)) goto err; | ||
| 128 | } | ||
| 129 | else | ||
| 130 | { | ||
| 131 | /* field_mul works on standard representation */ | ||
| 132 | if (!group->meth->field_mul(group, tmp2, &group->a, x, ctx)) goto err; | ||
| 133 | } | ||
| 134 | |||
| 135 | if (!BN_mod_add_quick(tmp1, tmp1, tmp2, &group->field)) goto err; | ||
| 136 | } | ||
| 137 | |||
| 138 | /* tmp1 := tmp1 + b */ | ||
| 139 | if (group->meth->field_decode) | ||
| 140 | { | ||
| 141 | if (!group->meth->field_decode(group, tmp2, &group->b, ctx)) goto err; | ||
| 142 | if (!BN_mod_add_quick(tmp1, tmp1, tmp2, &group->field)) goto err; | ||
| 143 | } | ||
| 144 | else | ||
| 145 | { | ||
| 146 | if (!BN_mod_add_quick(tmp1, tmp1, &group->b, &group->field)) goto err; | ||
| 147 | } | ||
| 148 | |||
| 149 | if (!BN_mod_sqrt(y, tmp1, &group->field, ctx)) | ||
| 150 | { | ||
| 151 | unsigned long err = ERR_peek_last_error(); | ||
| 152 | |||
| 153 | if (ERR_GET_LIB(err) == ERR_LIB_BN && ERR_GET_REASON(err) == BN_R_NOT_A_SQUARE) | ||
| 154 | { | ||
| 155 | ERR_clear_error(); | ||
| 156 | ECerr(EC_F_EC_GFP_SIMPLE_SET_COMPRESSED_COORDINATES, EC_R_INVALID_COMPRESSED_POINT); | ||
| 157 | } | ||
| 158 | else | ||
| 159 | ECerr(EC_F_EC_GFP_SIMPLE_SET_COMPRESSED_COORDINATES, ERR_R_BN_LIB); | ||
| 160 | goto err; | ||
| 161 | } | ||
| 162 | |||
| 163 | if (y_bit != BN_is_odd(y)) | ||
| 164 | { | ||
| 165 | if (BN_is_zero(y)) | ||
| 166 | { | ||
| 167 | int kron; | ||
| 168 | |||
| 169 | kron = BN_kronecker(x, &group->field, ctx); | ||
| 170 | if (kron == -2) goto err; | ||
| 171 | |||
| 172 | if (kron == 1) | ||
| 173 | ECerr(EC_F_EC_GFP_SIMPLE_SET_COMPRESSED_COORDINATES, EC_R_INVALID_COMPRESSION_BIT); | ||
| 174 | else | ||
| 175 | /* BN_mod_sqrt() should have cought this error (not a square) */ | ||
| 176 | ECerr(EC_F_EC_GFP_SIMPLE_SET_COMPRESSED_COORDINATES, EC_R_INVALID_COMPRESSED_POINT); | ||
| 177 | goto err; | ||
| 178 | } | ||
| 179 | if (!BN_usub(y, &group->field, y)) goto err; | ||
| 180 | } | ||
| 181 | if (y_bit != BN_is_odd(y)) | ||
| 182 | { | ||
| 183 | ECerr(EC_F_EC_GFP_SIMPLE_SET_COMPRESSED_COORDINATES, ERR_R_INTERNAL_ERROR); | ||
| 184 | goto err; | ||
| 185 | } | ||
| 186 | |||
| 187 | if (!EC_POINT_set_affine_coordinates_GFp(group, point, x, y, ctx)) goto err; | ||
| 188 | |||
| 189 | ret = 1; | ||
| 190 | |||
| 191 | err: | ||
| 192 | BN_CTX_end(ctx); | ||
| 193 | if (new_ctx != NULL) | ||
| 194 | BN_CTX_free(new_ctx); | ||
| 195 | return ret; | ||
| 196 | } | ||
| 197 | |||
| 198 | |||
| 199 | size_t ec_GFp_simple_point2oct(const EC_GROUP *group, const EC_POINT *point, point_conversion_form_t form, | ||
| 200 | unsigned char *buf, size_t len, BN_CTX *ctx) | ||
| 201 | { | ||
| 202 | size_t ret; | ||
| 203 | BN_CTX *new_ctx = NULL; | ||
| 204 | int used_ctx = 0; | ||
| 205 | BIGNUM *x, *y; | ||
| 206 | size_t field_len, i, skip; | ||
| 207 | |||
| 208 | if ((form != POINT_CONVERSION_COMPRESSED) | ||
| 209 | && (form != POINT_CONVERSION_UNCOMPRESSED) | ||
| 210 | && (form != POINT_CONVERSION_HYBRID)) | ||
| 211 | { | ||
| 212 | ECerr(EC_F_EC_GFP_SIMPLE_POINT2OCT, EC_R_INVALID_FORM); | ||
| 213 | goto err; | ||
| 214 | } | ||
| 215 | |||
| 216 | if (EC_POINT_is_at_infinity(group, point)) | ||
| 217 | { | ||
| 218 | /* encodes to a single 0 octet */ | ||
| 219 | if (buf != NULL) | ||
| 220 | { | ||
| 221 | if (len < 1) | ||
| 222 | { | ||
| 223 | ECerr(EC_F_EC_GFP_SIMPLE_POINT2OCT, EC_R_BUFFER_TOO_SMALL); | ||
| 224 | return 0; | ||
| 225 | } | ||
| 226 | buf[0] = 0; | ||
| 227 | } | ||
| 228 | return 1; | ||
| 229 | } | ||
| 230 | |||
| 231 | |||
| 232 | /* ret := required output buffer length */ | ||
| 233 | field_len = BN_num_bytes(&group->field); | ||
| 234 | ret = (form == POINT_CONVERSION_COMPRESSED) ? 1 + field_len : 1 + 2*field_len; | ||
| 235 | |||
| 236 | /* if 'buf' is NULL, just return required length */ | ||
| 237 | if (buf != NULL) | ||
| 238 | { | ||
| 239 | if (len < ret) | ||
| 240 | { | ||
| 241 | ECerr(EC_F_EC_GFP_SIMPLE_POINT2OCT, EC_R_BUFFER_TOO_SMALL); | ||
| 242 | goto err; | ||
| 243 | } | ||
| 244 | |||
| 245 | if (ctx == NULL) | ||
| 246 | { | ||
| 247 | ctx = new_ctx = BN_CTX_new(); | ||
| 248 | if (ctx == NULL) | ||
| 249 | return 0; | ||
| 250 | } | ||
| 251 | |||
| 252 | BN_CTX_start(ctx); | ||
| 253 | used_ctx = 1; | ||
| 254 | x = BN_CTX_get(ctx); | ||
| 255 | y = BN_CTX_get(ctx); | ||
| 256 | if (y == NULL) goto err; | ||
| 257 | |||
| 258 | if (!EC_POINT_get_affine_coordinates_GFp(group, point, x, y, ctx)) goto err; | ||
| 259 | |||
| 260 | if ((form == POINT_CONVERSION_COMPRESSED || form == POINT_CONVERSION_HYBRID) && BN_is_odd(y)) | ||
| 261 | buf[0] = form + 1; | ||
| 262 | else | ||
| 263 | buf[0] = form; | ||
| 264 | |||
| 265 | i = 1; | ||
| 266 | |||
| 267 | skip = field_len - BN_num_bytes(x); | ||
| 268 | if (skip > field_len) | ||
| 269 | { | ||
| 270 | ECerr(EC_F_EC_GFP_SIMPLE_POINT2OCT, ERR_R_INTERNAL_ERROR); | ||
| 271 | goto err; | ||
| 272 | } | ||
| 273 | while (skip > 0) | ||
| 274 | { | ||
| 275 | buf[i++] = 0; | ||
| 276 | skip--; | ||
| 277 | } | ||
| 278 | skip = BN_bn2bin(x, buf + i); | ||
| 279 | i += skip; | ||
| 280 | if (i != 1 + field_len) | ||
| 281 | { | ||
| 282 | ECerr(EC_F_EC_GFP_SIMPLE_POINT2OCT, ERR_R_INTERNAL_ERROR); | ||
| 283 | goto err; | ||
| 284 | } | ||
| 285 | |||
| 286 | if (form == POINT_CONVERSION_UNCOMPRESSED || form == POINT_CONVERSION_HYBRID) | ||
| 287 | { | ||
| 288 | skip = field_len - BN_num_bytes(y); | ||
| 289 | if (skip > field_len) | ||
| 290 | { | ||
| 291 | ECerr(EC_F_EC_GFP_SIMPLE_POINT2OCT, ERR_R_INTERNAL_ERROR); | ||
| 292 | goto err; | ||
| 293 | } | ||
| 294 | while (skip > 0) | ||
| 295 | { | ||
| 296 | buf[i++] = 0; | ||
| 297 | skip--; | ||
| 298 | } | ||
| 299 | skip = BN_bn2bin(y, buf + i); | ||
| 300 | i += skip; | ||
| 301 | } | ||
| 302 | |||
| 303 | if (i != ret) | ||
| 304 | { | ||
| 305 | ECerr(EC_F_EC_GFP_SIMPLE_POINT2OCT, ERR_R_INTERNAL_ERROR); | ||
| 306 | goto err; | ||
| 307 | } | ||
| 308 | } | ||
| 309 | |||
| 310 | if (used_ctx) | ||
| 311 | BN_CTX_end(ctx); | ||
| 312 | if (new_ctx != NULL) | ||
| 313 | BN_CTX_free(new_ctx); | ||
| 314 | return ret; | ||
| 315 | |||
| 316 | err: | ||
| 317 | if (used_ctx) | ||
| 318 | BN_CTX_end(ctx); | ||
| 319 | if (new_ctx != NULL) | ||
| 320 | BN_CTX_free(new_ctx); | ||
| 321 | return 0; | ||
| 322 | } | ||
| 323 | |||
| 324 | |||
| 325 | int ec_GFp_simple_oct2point(const EC_GROUP *group, EC_POINT *point, | ||
| 326 | const unsigned char *buf, size_t len, BN_CTX *ctx) | ||
| 327 | { | ||
| 328 | point_conversion_form_t form; | ||
| 329 | int y_bit; | ||
| 330 | BN_CTX *new_ctx = NULL; | ||
| 331 | BIGNUM *x, *y; | ||
| 332 | size_t field_len, enc_len; | ||
| 333 | int ret = 0; | ||
| 334 | |||
| 335 | if (len == 0) | ||
| 336 | { | ||
| 337 | ECerr(EC_F_EC_GFP_SIMPLE_OCT2POINT, EC_R_BUFFER_TOO_SMALL); | ||
| 338 | return 0; | ||
| 339 | } | ||
| 340 | form = buf[0]; | ||
| 341 | y_bit = form & 1; | ||
| 342 | form = form & ~1U; | ||
| 343 | if ((form != 0) && (form != POINT_CONVERSION_COMPRESSED) | ||
| 344 | && (form != POINT_CONVERSION_UNCOMPRESSED) | ||
| 345 | && (form != POINT_CONVERSION_HYBRID)) | ||
| 346 | { | ||
| 347 | ECerr(EC_F_EC_GFP_SIMPLE_OCT2POINT, EC_R_INVALID_ENCODING); | ||
| 348 | return 0; | ||
| 349 | } | ||
| 350 | if ((form == 0 || form == POINT_CONVERSION_UNCOMPRESSED) && y_bit) | ||
| 351 | { | ||
| 352 | ECerr(EC_F_EC_GFP_SIMPLE_OCT2POINT, EC_R_INVALID_ENCODING); | ||
| 353 | return 0; | ||
| 354 | } | ||
| 355 | |||
| 356 | if (form == 0) | ||
| 357 | { | ||
| 358 | if (len != 1) | ||
| 359 | { | ||
| 360 | ECerr(EC_F_EC_GFP_SIMPLE_OCT2POINT, EC_R_INVALID_ENCODING); | ||
| 361 | return 0; | ||
| 362 | } | ||
| 363 | |||
| 364 | return EC_POINT_set_to_infinity(group, point); | ||
| 365 | } | ||
| 366 | |||
| 367 | field_len = BN_num_bytes(&group->field); | ||
| 368 | enc_len = (form == POINT_CONVERSION_COMPRESSED) ? 1 + field_len : 1 + 2*field_len; | ||
| 369 | |||
| 370 | if (len != enc_len) | ||
| 371 | { | ||
| 372 | ECerr(EC_F_EC_GFP_SIMPLE_OCT2POINT, EC_R_INVALID_ENCODING); | ||
| 373 | return 0; | ||
| 374 | } | ||
| 375 | |||
| 376 | if (ctx == NULL) | ||
| 377 | { | ||
| 378 | ctx = new_ctx = BN_CTX_new(); | ||
| 379 | if (ctx == NULL) | ||
| 380 | return 0; | ||
| 381 | } | ||
| 382 | |||
| 383 | BN_CTX_start(ctx); | ||
| 384 | x = BN_CTX_get(ctx); | ||
| 385 | y = BN_CTX_get(ctx); | ||
| 386 | if (y == NULL) goto err; | ||
| 387 | |||
| 388 | if (!BN_bin2bn(buf + 1, field_len, x)) goto err; | ||
| 389 | if (BN_ucmp(x, &group->field) >= 0) | ||
| 390 | { | ||
| 391 | ECerr(EC_F_EC_GFP_SIMPLE_OCT2POINT, EC_R_INVALID_ENCODING); | ||
| 392 | goto err; | ||
| 393 | } | ||
| 394 | |||
| 395 | if (form == POINT_CONVERSION_COMPRESSED) | ||
| 396 | { | ||
| 397 | if (!EC_POINT_set_compressed_coordinates_GFp(group, point, x, y_bit, ctx)) goto err; | ||
| 398 | } | ||
| 399 | else | ||
| 400 | { | ||
| 401 | if (!BN_bin2bn(buf + 1 + field_len, field_len, y)) goto err; | ||
| 402 | if (BN_ucmp(y, &group->field) >= 0) | ||
| 403 | { | ||
| 404 | ECerr(EC_F_EC_GFP_SIMPLE_OCT2POINT, EC_R_INVALID_ENCODING); | ||
| 405 | goto err; | ||
| 406 | } | ||
| 407 | if (form == POINT_CONVERSION_HYBRID) | ||
| 408 | { | ||
| 409 | if (y_bit != BN_is_odd(y)) | ||
| 410 | { | ||
| 411 | ECerr(EC_F_EC_GFP_SIMPLE_OCT2POINT, EC_R_INVALID_ENCODING); | ||
| 412 | goto err; | ||
| 413 | } | ||
| 414 | } | ||
| 415 | |||
| 416 | if (!EC_POINT_set_affine_coordinates_GFp(group, point, x, y, ctx)) goto err; | ||
| 417 | } | ||
| 418 | |||
| 419 | if (!EC_POINT_is_on_curve(group, point, ctx)) /* test required by X9.62 */ | ||
| 420 | { | ||
| 421 | ECerr(EC_F_EC_GFP_SIMPLE_OCT2POINT, EC_R_POINT_IS_NOT_ON_CURVE); | ||
| 422 | goto err; | ||
| 423 | } | ||
| 424 | |||
| 425 | ret = 1; | ||
| 426 | |||
| 427 | err: | ||
| 428 | BN_CTX_end(ctx); | ||
| 429 | if (new_ctx != NULL) | ||
| 430 | BN_CTX_free(new_ctx); | ||
| 431 | return ret; | ||
| 432 | } | ||
| 433 | |||
