diff options
Diffstat (limited to 'src/lib/libcrypto/engine/eng_aesni.c')
| -rw-r--r-- | src/lib/libcrypto/engine/eng_aesni.c | 563 |
1 files changed, 0 insertions, 563 deletions
diff --git a/src/lib/libcrypto/engine/eng_aesni.c b/src/lib/libcrypto/engine/eng_aesni.c deleted file mode 100644 index e08edcf346..0000000000 --- a/src/lib/libcrypto/engine/eng_aesni.c +++ /dev/null | |||
| @@ -1,563 +0,0 @@ | |||
| 1 | /* $OpenBSD: eng_aesni.c,v 1.14 2023/07/20 15:08:12 tb Exp $ */ | ||
| 2 | /* | ||
| 3 | * Support for Intel AES-NI instruction set | ||
| 4 | * Author: Huang Ying <ying.huang@intel.com> | ||
| 5 | * | ||
| 6 | * Intel AES-NI is a new set of Single Instruction Multiple Data | ||
| 7 | * (SIMD) instructions that are going to be introduced in the next | ||
| 8 | * generation of Intel processor, as of 2009. These instructions | ||
| 9 | * enable fast and secure data encryption and decryption, using the | ||
| 10 | * Advanced Encryption Standard (AES), defined by FIPS Publication | ||
| 11 | * number 197. The architecture introduces six instructions that | ||
| 12 | * offer full hardware support for AES. Four of them support high | ||
| 13 | * performance data encryption and decryption, and the other two | ||
| 14 | * instructions support the AES key expansion procedure. | ||
| 15 | * | ||
| 16 | * The white paper can be downloaded from: | ||
| 17 | * http://softwarecommunity.intel.com/isn/downloads/intelavx/AES-Instructions-Set_WP.pdf | ||
| 18 | * | ||
| 19 | * This file is based on engines/e_padlock.c | ||
| 20 | */ | ||
| 21 | |||
| 22 | /* ==================================================================== | ||
| 23 | * Copyright (c) 1999-2001 The OpenSSL Project. All rights reserved. | ||
| 24 | * | ||
| 25 | * Redistribution and use in source and binary forms, with or without | ||
| 26 | * modification, are permitted provided that the following conditions | ||
| 27 | * are met: | ||
| 28 | * | ||
| 29 | * 1. Redistributions of source code must retain the above copyright | ||
| 30 | * notice, this list of conditions and the following disclaimer. | ||
| 31 | * | ||
| 32 | * 2. Redistributions in binary form must reproduce the above copyright | ||
| 33 | * notice, this list of conditions and the following disclaimer in | ||
| 34 | * the documentation and/or other materials provided with the | ||
| 35 | * distribution. | ||
| 36 | * | ||
| 37 | * 3. All advertising materials mentioning features or use of this | ||
| 38 | * software must display the following acknowledgment: | ||
| 39 | * "This product includes software developed by the OpenSSL Project | ||
| 40 | * for use in the OpenSSL Toolkit. (http://www.OpenSSL.org/)" | ||
| 41 | * | ||
| 42 | * 4. The names "OpenSSL Toolkit" and "OpenSSL Project" must not be used to | ||
| 43 | * endorse or promote products derived from this software without | ||
| 44 | * prior written permission. For written permission, please contact | ||
| 45 | * licensing@OpenSSL.org. | ||
| 46 | * | ||
| 47 | * 5. Products derived from this software may not be called "OpenSSL" | ||
| 48 | * nor may "OpenSSL" appear in their names without prior written | ||
| 49 | * permission of the OpenSSL Project. | ||
| 50 | * | ||
| 51 | * 6. Redistributions of any form whatsoever must retain the following | ||
| 52 | * acknowledgment: | ||
| 53 | * "This product includes software developed by the OpenSSL Project | ||
| 54 | * for use in the OpenSSL Toolkit (http://www.OpenSSL.org/)" | ||
| 55 | * | ||
| 56 | * THIS SOFTWARE IS PROVIDED BY THE OpenSSL PROJECT ``AS IS'' AND ANY | ||
| 57 | * EXPRESSED OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE | ||
| 58 | * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR | ||
| 59 | * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE OpenSSL PROJECT OR | ||
| 60 | * ITS CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, | ||
| 61 | * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT | ||
| 62 | * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; | ||
| 63 | * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) | ||
| 64 | * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, | ||
| 65 | * STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) | ||
| 66 | * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED | ||
| 67 | * OF THE POSSIBILITY OF SUCH DAMAGE. | ||
| 68 | * ==================================================================== | ||
| 69 | * | ||
| 70 | * This product includes cryptographic software written by Eric Young | ||
| 71 | * (eay@cryptsoft.com). This product includes software written by Tim | ||
| 72 | * Hudson (tjh@cryptsoft.com). | ||
| 73 | * | ||
| 74 | */ | ||
| 75 | |||
| 76 | #include <stdio.h> | ||
| 77 | |||
| 78 | #include <openssl/opensslconf.h> | ||
| 79 | |||
| 80 | #if !defined(OPENSSL_NO_HW) && !defined(OPENSSL_NO_HW_AES_NI) && !defined(OPENSSL_NO_AES) | ||
| 81 | |||
| 82 | #include <openssl/aes.h> | ||
| 83 | #include <openssl/engine.h> | ||
| 84 | #include <openssl/err.h> | ||
| 85 | #include <openssl/evp.h> | ||
| 86 | |||
| 87 | #include "evp_local.h" | ||
| 88 | |||
| 89 | /* AES-NI is available *ONLY* on some x86 CPUs. Not only that it | ||
| 90 | doesn't exist elsewhere, but it even can't be compiled on other | ||
| 91 | platforms! */ | ||
| 92 | #undef COMPILE_HW_AESNI | ||
| 93 | #if (defined(__x86_64) || defined(__x86_64__) || \ | ||
| 94 | defined(_M_AMD64) || defined(_M_X64) || \ | ||
| 95 | defined(OPENSSL_IA32_SSE2)) && !defined(OPENSSL_NO_ASM) && !defined(__i386__) | ||
| 96 | #define COMPILE_HW_AESNI | ||
| 97 | #include "x86_arch.h" | ||
| 98 | #endif | ||
| 99 | static ENGINE *ENGINE_aesni(void); | ||
| 100 | |||
| 101 | void ENGINE_load_aesni(void) | ||
| 102 | { | ||
| 103 | /* On non-x86 CPUs it just returns. */ | ||
| 104 | #ifdef COMPILE_HW_AESNI | ||
| 105 | ENGINE *toadd = ENGINE_aesni(); | ||
| 106 | if (toadd == NULL) | ||
| 107 | return; | ||
| 108 | ENGINE_add(toadd); | ||
| 109 | ENGINE_register_complete(toadd); | ||
| 110 | ENGINE_free(toadd); | ||
| 111 | ERR_clear_error(); | ||
| 112 | #endif | ||
| 113 | } | ||
| 114 | |||
| 115 | #ifdef COMPILE_HW_AESNI | ||
| 116 | int aesni_set_encrypt_key(const unsigned char *userKey, int bits, | ||
| 117 | AES_KEY *key); | ||
| 118 | int aesni_set_decrypt_key(const unsigned char *userKey, int bits, | ||
| 119 | AES_KEY *key); | ||
| 120 | |||
| 121 | void aesni_encrypt(const unsigned char *in, unsigned char *out, | ||
| 122 | const AES_KEY *key); | ||
| 123 | void aesni_decrypt(const unsigned char *in, unsigned char *out, | ||
| 124 | const AES_KEY *key); | ||
| 125 | |||
| 126 | void aesni_ecb_encrypt(const unsigned char *in, unsigned char *out, | ||
| 127 | size_t length, const AES_KEY *key, int enc); | ||
| 128 | void aesni_cbc_encrypt(const unsigned char *in, unsigned char *out, | ||
| 129 | size_t length, const AES_KEY *key, unsigned char *ivec, int enc); | ||
| 130 | |||
| 131 | /* Function for ENGINE detection and control */ | ||
| 132 | static int aesni_init(ENGINE *e); | ||
| 133 | |||
| 134 | /* Cipher Stuff */ | ||
| 135 | static int aesni_ciphers(ENGINE *e, const EVP_CIPHER **cipher, | ||
| 136 | const int **nids, int nid); | ||
| 137 | |||
| 138 | #define AESNI_MIN_ALIGN 16 | ||
| 139 | #define AESNI_ALIGN(x) \ | ||
| 140 | ((void *)(((unsigned long)(x)+AESNI_MIN_ALIGN-1)&~(AESNI_MIN_ALIGN-1))) | ||
| 141 | |||
| 142 | /* Engine names */ | ||
| 143 | static const char aesni_id[] = "aesni", | ||
| 144 | aesni_name[] = "Intel AES-NI engine", | ||
| 145 | no_aesni_name[] = "Intel AES-NI engine (no-aesni)"; | ||
| 146 | |||
| 147 | |||
| 148 | /* The input and output encrypted as though 128bit cfb mode is being | ||
| 149 | * used. The extra state information to record how much of the | ||
| 150 | * 128bit block we have used is contained in *num; | ||
| 151 | */ | ||
| 152 | static void | ||
| 153 | aesni_cfb128_encrypt(const unsigned char *in, unsigned char *out, | ||
| 154 | unsigned int len, const void *key, unsigned char ivec[16], int *num, | ||
| 155 | int enc) | ||
| 156 | { | ||
| 157 | unsigned int n; | ||
| 158 | size_t l = 0; | ||
| 159 | |||
| 160 | n = *num; | ||
| 161 | |||
| 162 | if (enc) { | ||
| 163 | #if !defined(OPENSSL_SMALL_FOOTPRINT) | ||
| 164 | if (16%sizeof(size_t) == 0) do { /* always true actually */ | ||
| 165 | while (n && len) { | ||
| 166 | *(out++) = ivec[n] ^= *(in++); | ||
| 167 | --len; | ||
| 168 | n = (n + 1) % 16; | ||
| 169 | } | ||
| 170 | while (len >= 16) { | ||
| 171 | aesni_encrypt(ivec, ivec, key); | ||
| 172 | for (n = 0; n < 16; n += sizeof(size_t)) { | ||
| 173 | *(size_t*)(out + n) = | ||
| 174 | *(size_t*)(ivec + n) ^= *(size_t*)(in + n); | ||
| 175 | } | ||
| 176 | len -= 16; | ||
| 177 | out += 16; | ||
| 178 | in += 16; | ||
| 179 | } | ||
| 180 | n = 0; | ||
| 181 | if (len) { | ||
| 182 | aesni_encrypt(ivec, ivec, key); | ||
| 183 | while (len--) { | ||
| 184 | out[n] = ivec[n] ^= in[n]; | ||
| 185 | ++n; | ||
| 186 | } | ||
| 187 | } | ||
| 188 | *num = n; | ||
| 189 | return; | ||
| 190 | } while (0); | ||
| 191 | /* the rest would be commonly eliminated by x86* compiler */ | ||
| 192 | #endif | ||
| 193 | while (l < len) { | ||
| 194 | if (n == 0) { | ||
| 195 | aesni_encrypt(ivec, ivec, key); | ||
| 196 | } | ||
| 197 | out[l] = ivec[n] ^= in[l]; | ||
| 198 | ++l; | ||
| 199 | n = (n + 1) % 16; | ||
| 200 | } | ||
| 201 | *num = n; | ||
| 202 | } else { | ||
| 203 | #if !defined(OPENSSL_SMALL_FOOTPRINT) | ||
| 204 | if (16%sizeof(size_t) == 0) do { /* always true actually */ | ||
| 205 | while (n && len) { | ||
| 206 | unsigned char c; | ||
| 207 | *(out++) = ivec[n] ^ (c = *(in++)); | ||
| 208 | ivec[n] = c; | ||
| 209 | --len; | ||
| 210 | n = (n + 1) % 16; | ||
| 211 | } | ||
| 212 | while (len >= 16) { | ||
| 213 | aesni_encrypt(ivec, ivec, key); | ||
| 214 | for (n = 0; n < 16; n += sizeof(size_t)) { | ||
| 215 | size_t t = *(size_t*)(in + n); | ||
| 216 | *(size_t*)(out + n) = *(size_t*)(ivec + n) ^ t; | ||
| 217 | *(size_t*)(ivec + n) = t; | ||
| 218 | } | ||
| 219 | len -= 16; | ||
| 220 | out += 16; | ||
| 221 | in += 16; | ||
| 222 | } | ||
| 223 | n = 0; | ||
| 224 | if (len) { | ||
| 225 | aesni_encrypt(ivec, ivec, key); | ||
| 226 | while (len--) { | ||
| 227 | unsigned char c; | ||
| 228 | out[n] = ivec[n] ^ (c = in[n]); | ||
| 229 | ivec[n] = c; | ||
| 230 | ++n; | ||
| 231 | } | ||
| 232 | } | ||
| 233 | *num = n; | ||
| 234 | return; | ||
| 235 | } while (0); | ||
| 236 | /* the rest would be commonly eliminated by x86* compiler */ | ||
| 237 | #endif | ||
| 238 | while (l < len) { | ||
| 239 | unsigned char c; | ||
| 240 | if (n == 0) { | ||
| 241 | aesni_encrypt(ivec, ivec, key); | ||
| 242 | } | ||
| 243 | out[l] = ivec[n] ^ (c = in[l]); | ||
| 244 | ivec[n] = c; | ||
| 245 | ++l; | ||
| 246 | n = (n + 1) % 16; | ||
| 247 | } | ||
| 248 | *num = n; | ||
| 249 | } | ||
| 250 | } | ||
| 251 | |||
| 252 | /* The input and output encrypted as though 128bit ofb mode is being | ||
| 253 | * used. The extra state information to record how much of the | ||
| 254 | * 128bit block we have used is contained in *num; | ||
| 255 | */ | ||
| 256 | static void | ||
| 257 | aesni_ofb128_encrypt(const unsigned char *in, unsigned char *out, | ||
| 258 | unsigned int len, const void *key, unsigned char ivec[16], int *num) | ||
| 259 | { | ||
| 260 | unsigned int n; | ||
| 261 | size_t l = 0; | ||
| 262 | |||
| 263 | n = *num; | ||
| 264 | |||
| 265 | #if !defined(OPENSSL_SMALL_FOOTPRINT) | ||
| 266 | if (16%sizeof(size_t) == 0) do { /* always true actually */ | ||
| 267 | while (n && len) { | ||
| 268 | *(out++) = *(in++) ^ ivec[n]; | ||
| 269 | --len; | ||
| 270 | n = (n + 1) % 16; | ||
| 271 | } | ||
| 272 | while (len >= 16) { | ||
| 273 | aesni_encrypt(ivec, ivec, key); | ||
| 274 | for (n = 0; n < 16; n += sizeof(size_t)) | ||
| 275 | *(size_t*)(out + n) = | ||
| 276 | *(size_t*)(in + n) ^ *(size_t*)(ivec + n); | ||
| 277 | len -= 16; | ||
| 278 | out += 16; | ||
| 279 | in += 16; | ||
| 280 | } | ||
| 281 | n = 0; | ||
| 282 | if (len) { | ||
| 283 | aesni_encrypt(ivec, ivec, key); | ||
| 284 | while (len--) { | ||
| 285 | out[n] = in[n] ^ ivec[n]; | ||
| 286 | ++n; | ||
| 287 | } | ||
| 288 | } | ||
| 289 | *num = n; | ||
| 290 | return; | ||
| 291 | } while (0); | ||
| 292 | /* the rest would be commonly eliminated by x86* compiler */ | ||
| 293 | #endif | ||
| 294 | while (l < len) { | ||
| 295 | if (n == 0) { | ||
| 296 | aesni_encrypt(ivec, ivec, key); | ||
| 297 | } | ||
| 298 | out[l] = in[l] ^ ivec[n]; | ||
| 299 | ++l; | ||
| 300 | n = (n + 1) % 16; | ||
| 301 | } | ||
| 302 | |||
| 303 | *num = n; | ||
| 304 | } | ||
| 305 | /* ===== Engine "management" functions ===== */ | ||
| 306 | |||
| 307 | /* Prepare the ENGINE structure for registration */ | ||
| 308 | static int | ||
| 309 | aesni_bind_helper(ENGINE *e) | ||
| 310 | { | ||
| 311 | int engage; | ||
| 312 | |||
| 313 | engage = (OPENSSL_cpu_caps() & CPUCAP_MASK_AESNI) != 0; | ||
| 314 | |||
| 315 | /* Register everything or return with an error */ | ||
| 316 | if (!ENGINE_set_id(e, aesni_id) || | ||
| 317 | !ENGINE_set_name(e, engage ? aesni_name : no_aesni_name) || | ||
| 318 | !ENGINE_set_init_function(e, aesni_init) || | ||
| 319 | (engage && !ENGINE_set_ciphers (e, aesni_ciphers))) | ||
| 320 | return 0; | ||
| 321 | |||
| 322 | /* Everything looks good */ | ||
| 323 | return 1; | ||
| 324 | } | ||
| 325 | |||
| 326 | /* Constructor */ | ||
| 327 | static ENGINE * | ||
| 328 | ENGINE_aesni(void) | ||
| 329 | { | ||
| 330 | ENGINE *eng = ENGINE_new(); | ||
| 331 | |||
| 332 | if (!eng) { | ||
| 333 | return NULL; | ||
| 334 | } | ||
| 335 | |||
| 336 | if (!aesni_bind_helper(eng)) { | ||
| 337 | ENGINE_free(eng); | ||
| 338 | return NULL; | ||
| 339 | } | ||
| 340 | |||
| 341 | return eng; | ||
| 342 | } | ||
| 343 | |||
| 344 | /* Check availability of the engine */ | ||
| 345 | static int | ||
| 346 | aesni_init(ENGINE *e) | ||
| 347 | { | ||
| 348 | return 1; | ||
| 349 | } | ||
| 350 | |||
| 351 | #if defined(NID_aes_128_cfb128) && ! defined (NID_aes_128_cfb) | ||
| 352 | #define NID_aes_128_cfb NID_aes_128_cfb128 | ||
| 353 | #endif | ||
| 354 | |||
| 355 | #if defined(NID_aes_128_ofb128) && ! defined (NID_aes_128_ofb) | ||
| 356 | #define NID_aes_128_ofb NID_aes_128_ofb128 | ||
| 357 | #endif | ||
| 358 | |||
| 359 | #if defined(NID_aes_192_cfb128) && ! defined (NID_aes_192_cfb) | ||
| 360 | #define NID_aes_192_cfb NID_aes_192_cfb128 | ||
| 361 | #endif | ||
| 362 | |||
| 363 | #if defined(NID_aes_192_ofb128) && ! defined (NID_aes_192_ofb) | ||
| 364 | #define NID_aes_192_ofb NID_aes_192_ofb128 | ||
| 365 | #endif | ||
| 366 | |||
| 367 | #if defined(NID_aes_256_cfb128) && ! defined (NID_aes_256_cfb) | ||
| 368 | #define NID_aes_256_cfb NID_aes_256_cfb128 | ||
| 369 | #endif | ||
| 370 | |||
| 371 | #if defined(NID_aes_256_ofb128) && ! defined (NID_aes_256_ofb) | ||
| 372 | #define NID_aes_256_ofb NID_aes_256_ofb128 | ||
| 373 | #endif | ||
| 374 | |||
| 375 | /* List of supported ciphers. */ | ||
| 376 | static int aesni_cipher_nids[] = { | ||
| 377 | NID_aes_128_ecb, | ||
| 378 | NID_aes_128_cbc, | ||
| 379 | NID_aes_128_cfb, | ||
| 380 | NID_aes_128_ofb, | ||
| 381 | |||
| 382 | NID_aes_192_ecb, | ||
| 383 | NID_aes_192_cbc, | ||
| 384 | NID_aes_192_cfb, | ||
| 385 | NID_aes_192_ofb, | ||
| 386 | |||
| 387 | NID_aes_256_ecb, | ||
| 388 | NID_aes_256_cbc, | ||
| 389 | NID_aes_256_cfb, | ||
| 390 | NID_aes_256_ofb, | ||
| 391 | }; | ||
| 392 | static int aesni_cipher_nids_num = | ||
| 393 | (sizeof(aesni_cipher_nids) / sizeof(aesni_cipher_nids[0])); | ||
| 394 | |||
| 395 | typedef struct { | ||
| 396 | AES_KEY ks; | ||
| 397 | unsigned int _pad1[3]; | ||
| 398 | } AESNI_KEY; | ||
| 399 | |||
| 400 | static int | ||
| 401 | aesni_init_key(EVP_CIPHER_CTX *ctx, const unsigned char *user_key, | ||
| 402 | const unsigned char *iv, int enc) | ||
| 403 | { | ||
| 404 | int ret; | ||
| 405 | AES_KEY *key = AESNI_ALIGN(ctx->cipher_data); | ||
| 406 | |||
| 407 | if ((ctx->cipher->flags & EVP_CIPH_MODE) == EVP_CIPH_CFB_MODE || | ||
| 408 | (ctx->cipher->flags & EVP_CIPH_MODE) == EVP_CIPH_OFB_MODE || | ||
| 409 | enc) | ||
| 410 | ret = aesni_set_encrypt_key(user_key, ctx->key_len * 8, key); | ||
| 411 | else | ||
| 412 | ret = aesni_set_decrypt_key(user_key, ctx->key_len * 8, key); | ||
| 413 | |||
| 414 | if (ret < 0) { | ||
| 415 | EVPerror(EVP_R_AES_KEY_SETUP_FAILED); | ||
| 416 | return 0; | ||
| 417 | } | ||
| 418 | |||
| 419 | return 1; | ||
| 420 | } | ||
| 421 | |||
| 422 | static int | ||
| 423 | aesni_cipher_ecb(EVP_CIPHER_CTX *ctx, unsigned char *out, | ||
| 424 | const unsigned char *in, size_t inl) | ||
| 425 | { | ||
| 426 | AES_KEY *key = AESNI_ALIGN(ctx->cipher_data); | ||
| 427 | |||
| 428 | aesni_ecb_encrypt(in, out, inl, key, ctx->encrypt); | ||
| 429 | return 1; | ||
| 430 | } | ||
| 431 | |||
| 432 | static int | ||
| 433 | aesni_cipher_cbc(EVP_CIPHER_CTX *ctx, unsigned char *out, | ||
| 434 | const unsigned char *in, size_t inl) | ||
| 435 | { | ||
| 436 | AES_KEY *key = AESNI_ALIGN(ctx->cipher_data); | ||
| 437 | |||
| 438 | aesni_cbc_encrypt(in, out, inl, key, ctx->iv, ctx->encrypt); | ||
| 439 | return 1; | ||
| 440 | } | ||
| 441 | |||
| 442 | static int | ||
| 443 | aesni_cipher_cfb(EVP_CIPHER_CTX *ctx, unsigned char *out, | ||
| 444 | const unsigned char *in, size_t inl) | ||
| 445 | { | ||
| 446 | AES_KEY *key = AESNI_ALIGN(ctx->cipher_data); | ||
| 447 | |||
| 448 | aesni_cfb128_encrypt(in, out, inl, key, ctx->iv, &ctx->num, | ||
| 449 | ctx->encrypt); | ||
| 450 | return 1; | ||
| 451 | } | ||
| 452 | |||
| 453 | static int | ||
| 454 | aesni_cipher_ofb(EVP_CIPHER_CTX *ctx, unsigned char *out, | ||
| 455 | const unsigned char *in, size_t inl) | ||
| 456 | { | ||
| 457 | AES_KEY *key = AESNI_ALIGN(ctx->cipher_data); | ||
| 458 | |||
| 459 | aesni_ofb128_encrypt(in, out, inl, key, ctx->iv, &ctx->num); | ||
| 460 | return 1; | ||
| 461 | } | ||
| 462 | |||
| 463 | #define AES_BLOCK_SIZE 16 | ||
| 464 | |||
| 465 | #define EVP_CIPHER_block_size_ECB AES_BLOCK_SIZE | ||
| 466 | #define EVP_CIPHER_block_size_CBC AES_BLOCK_SIZE | ||
| 467 | #define EVP_CIPHER_block_size_OFB 1 | ||
| 468 | #define EVP_CIPHER_block_size_CFB 1 | ||
| 469 | |||
| 470 | /* Declaring so many ciphers by hand would be a pain. | ||
| 471 | Instead introduce a bit of preprocessor magic :-) */ | ||
| 472 | #define DECLARE_AES_EVP(ksize,lmode,umode) \ | ||
| 473 | static const EVP_CIPHER aesni_##ksize##_##lmode = { \ | ||
| 474 | NID_aes_##ksize##_##lmode, \ | ||
| 475 | EVP_CIPHER_block_size_##umode, \ | ||
| 476 | ksize / 8, \ | ||
| 477 | AES_BLOCK_SIZE, \ | ||
| 478 | 0 | EVP_CIPH_##umode##_MODE, \ | ||
| 479 | aesni_init_key, \ | ||
| 480 | aesni_cipher_##lmode, \ | ||
| 481 | NULL, \ | ||
| 482 | sizeof(AESNI_KEY), \ | ||
| 483 | EVP_CIPHER_set_asn1_iv, \ | ||
| 484 | EVP_CIPHER_get_asn1_iv, \ | ||
| 485 | NULL, \ | ||
| 486 | NULL \ | ||
| 487 | } | ||
| 488 | |||
| 489 | DECLARE_AES_EVP(128, ecb, ECB); | ||
| 490 | DECLARE_AES_EVP(128, cbc, CBC); | ||
| 491 | DECLARE_AES_EVP(128, cfb, CFB); | ||
| 492 | DECLARE_AES_EVP(128, ofb, OFB); | ||
| 493 | |||
| 494 | DECLARE_AES_EVP(192, ecb, ECB); | ||
| 495 | DECLARE_AES_EVP(192, cbc, CBC); | ||
| 496 | DECLARE_AES_EVP(192, cfb, CFB); | ||
| 497 | DECLARE_AES_EVP(192, ofb, OFB); | ||
| 498 | |||
| 499 | DECLARE_AES_EVP(256, ecb, ECB); | ||
| 500 | DECLARE_AES_EVP(256, cbc, CBC); | ||
| 501 | DECLARE_AES_EVP(256, cfb, CFB); | ||
| 502 | DECLARE_AES_EVP(256, ofb, OFB); | ||
| 503 | |||
| 504 | static int | ||
| 505 | aesni_ciphers(ENGINE *e, const EVP_CIPHER **cipher, const int **nids, int nid) | ||
| 506 | { | ||
| 507 | /* No specific cipher => return a list of supported nids ... */ | ||
| 508 | if (!cipher) { | ||
| 509 | *nids = aesni_cipher_nids; | ||
| 510 | return aesni_cipher_nids_num; | ||
| 511 | } | ||
| 512 | |||
| 513 | /* ... or the requested "cipher" otherwise */ | ||
| 514 | switch (nid) { | ||
| 515 | case NID_aes_128_ecb: | ||
| 516 | *cipher = &aesni_128_ecb; | ||
| 517 | break; | ||
| 518 | case NID_aes_128_cbc: | ||
| 519 | *cipher = &aesni_128_cbc; | ||
| 520 | break; | ||
| 521 | case NID_aes_128_cfb: | ||
| 522 | *cipher = &aesni_128_cfb; | ||
| 523 | break; | ||
| 524 | case NID_aes_128_ofb: | ||
| 525 | *cipher = &aesni_128_ofb; | ||
| 526 | break; | ||
| 527 | |||
| 528 | case NID_aes_192_ecb: | ||
| 529 | *cipher = &aesni_192_ecb; | ||
| 530 | break; | ||
| 531 | case NID_aes_192_cbc: | ||
| 532 | *cipher = &aesni_192_cbc; | ||
| 533 | break; | ||
| 534 | case NID_aes_192_cfb: | ||
| 535 | *cipher = &aesni_192_cfb; | ||
| 536 | break; | ||
| 537 | case NID_aes_192_ofb: | ||
| 538 | *cipher = &aesni_192_ofb; | ||
| 539 | break; | ||
| 540 | |||
| 541 | case NID_aes_256_ecb: | ||
| 542 | *cipher = &aesni_256_ecb; | ||
| 543 | break; | ||
| 544 | case NID_aes_256_cbc: | ||
| 545 | *cipher = &aesni_256_cbc; | ||
| 546 | break; | ||
| 547 | case NID_aes_256_cfb: | ||
| 548 | *cipher = &aesni_256_cfb; | ||
| 549 | break; | ||
| 550 | case NID_aes_256_ofb: | ||
| 551 | *cipher = &aesni_256_ofb; | ||
| 552 | break; | ||
| 553 | |||
| 554 | default: | ||
| 555 | /* Sorry, we don't support this NID */ | ||
| 556 | *cipher = NULL; | ||
| 557 | return 0; | ||
| 558 | } | ||
| 559 | return 1; | ||
| 560 | } | ||
| 561 | |||
| 562 | #endif /* COMPILE_HW_AESNI */ | ||
| 563 | #endif /* !defined(OPENSSL_NO_HW) && !defined(OPENSSL_NO_HW_AESNI) && !defined(OPENSSL_NO_AES) */ | ||
