diff options
Diffstat (limited to 'src/lib/libcrypto/engine/eng_rsax.c')
-rw-r--r-- | src/lib/libcrypto/engine/eng_rsax.c | 668 |
1 files changed, 668 insertions, 0 deletions
diff --git a/src/lib/libcrypto/engine/eng_rsax.c b/src/lib/libcrypto/engine/eng_rsax.c new file mode 100644 index 0000000000..96e63477ee --- /dev/null +++ b/src/lib/libcrypto/engine/eng_rsax.c | |||
@@ -0,0 +1,668 @@ | |||
1 | /* crypto/engine/eng_rsax.c */ | ||
2 | /* Copyright (c) 2010-2010 Intel Corp. | ||
3 | * Author: Vinodh.Gopal@intel.com | ||
4 | * Jim Guilford | ||
5 | * Erdinc.Ozturk@intel.com | ||
6 | * Maxim.Perminov@intel.com | ||
7 | * Ying.Huang@intel.com | ||
8 | * | ||
9 | * More information about algorithm used can be found at: | ||
10 | * http://www.cse.buffalo.edu/srds2009/escs2009_submission_Gopal.pdf | ||
11 | */ | ||
12 | /* ==================================================================== | ||
13 | * Copyright (c) 1999-2001 The OpenSSL Project. All rights reserved. | ||
14 | * | ||
15 | * Redistribution and use in source and binary forms, with or without | ||
16 | * modification, are permitted provided that the following conditions | ||
17 | * are met: | ||
18 | * | ||
19 | * 1. Redistributions of source code must retain the above copyright | ||
20 | * notice, this list of conditions and the following disclaimer. | ||
21 | * | ||
22 | * 2. Redistributions in binary form must reproduce the above copyright | ||
23 | * notice, this list of conditions and the following disclaimer in | ||
24 | * the documentation and/or other materials provided with the | ||
25 | * distribution. | ||
26 | * | ||
27 | * 3. All advertising materials mentioning features or use of this | ||
28 | * software must display the following acknowledgment: | ||
29 | * "This product includes software developed by the OpenSSL Project | ||
30 | * for use in the OpenSSL Toolkit. (http://www.OpenSSL.org/)" | ||
31 | * | ||
32 | * 4. The names "OpenSSL Toolkit" and "OpenSSL Project" must not be used to | ||
33 | * endorse or promote products derived from this software without | ||
34 | * prior written permission. For written permission, please contact | ||
35 | * licensing@OpenSSL.org. | ||
36 | * | ||
37 | * 5. Products derived from this software may not be called "OpenSSL" | ||
38 | * nor may "OpenSSL" appear in their names without prior written | ||
39 | * permission of the OpenSSL Project. | ||
40 | * | ||
41 | * 6. Redistributions of any form whatsoever must retain the following | ||
42 | * acknowledgment: | ||
43 | * "This product includes software developed by the OpenSSL Project | ||
44 | * for use in the OpenSSL Toolkit (http://www.OpenSSL.org/)" | ||
45 | * | ||
46 | * THIS SOFTWARE IS PROVIDED BY THE OpenSSL PROJECT ``AS IS'' AND ANY | ||
47 | * EXPRESSED OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE | ||
48 | * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR | ||
49 | * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE OpenSSL PROJECT OR | ||
50 | * ITS CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, | ||
51 | * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT | ||
52 | * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; | ||
53 | * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) | ||
54 | * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, | ||
55 | * STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) | ||
56 | * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED | ||
57 | * OF THE POSSIBILITY OF SUCH DAMAGE. | ||
58 | * ==================================================================== | ||
59 | * | ||
60 | * This product includes cryptographic software written by Eric Young | ||
61 | * (eay@cryptsoft.com). This product includes software written by Tim | ||
62 | * Hudson (tjh@cryptsoft.com). | ||
63 | */ | ||
64 | |||
65 | #include <openssl/opensslconf.h> | ||
66 | |||
67 | #include <stdio.h> | ||
68 | #include <string.h> | ||
69 | #include <openssl/crypto.h> | ||
70 | #include <openssl/buffer.h> | ||
71 | #include <openssl/engine.h> | ||
72 | #ifndef OPENSSL_NO_RSA | ||
73 | #include <openssl/rsa.h> | ||
74 | #endif | ||
75 | #include <openssl/bn.h> | ||
76 | #include <openssl/err.h> | ||
77 | |||
78 | /* RSAX is available **ONLY* on x86_64 CPUs */ | ||
79 | #undef COMPILE_RSAX | ||
80 | |||
81 | #if (defined(__x86_64) || defined(__x86_64__) || \ | ||
82 | defined(_M_AMD64) || defined (_M_X64)) && !defined(OPENSSL_NO_ASM) | ||
83 | #define COMPILE_RSAX | ||
84 | static ENGINE *ENGINE_rsax (void); | ||
85 | #endif | ||
86 | |||
87 | void ENGINE_load_rsax (void) | ||
88 | { | ||
89 | /* On non-x86 CPUs it just returns. */ | ||
90 | #ifdef COMPILE_RSAX | ||
91 | ENGINE *toadd = ENGINE_rsax(); | ||
92 | if(!toadd) return; | ||
93 | ENGINE_add(toadd); | ||
94 | ENGINE_free(toadd); | ||
95 | ERR_clear_error(); | ||
96 | #endif | ||
97 | } | ||
98 | |||
99 | #ifdef COMPILE_RSAX | ||
100 | #define E_RSAX_LIB_NAME "rsax engine" | ||
101 | |||
102 | static int e_rsax_destroy(ENGINE *e); | ||
103 | static int e_rsax_init(ENGINE *e); | ||
104 | static int e_rsax_finish(ENGINE *e); | ||
105 | static int e_rsax_ctrl(ENGINE *e, int cmd, long i, void *p, void (*f)(void)); | ||
106 | |||
107 | #ifndef OPENSSL_NO_RSA | ||
108 | /* RSA stuff */ | ||
109 | static int e_rsax_rsa_mod_exp(BIGNUM *r, const BIGNUM *I, RSA *rsa, BN_CTX *ctx); | ||
110 | static int e_rsax_rsa_finish(RSA *r); | ||
111 | #endif | ||
112 | |||
113 | static const ENGINE_CMD_DEFN e_rsax_cmd_defns[] = { | ||
114 | {0, NULL, NULL, 0} | ||
115 | }; | ||
116 | |||
117 | #ifndef OPENSSL_NO_RSA | ||
118 | /* Our internal RSA_METHOD that we provide pointers to */ | ||
119 | static RSA_METHOD e_rsax_rsa = | ||
120 | { | ||
121 | "Intel RSA-X method", | ||
122 | NULL, | ||
123 | NULL, | ||
124 | NULL, | ||
125 | NULL, | ||
126 | e_rsax_rsa_mod_exp, | ||
127 | NULL, | ||
128 | NULL, | ||
129 | e_rsax_rsa_finish, | ||
130 | RSA_FLAG_CACHE_PUBLIC|RSA_FLAG_CACHE_PRIVATE, | ||
131 | NULL, | ||
132 | NULL, | ||
133 | NULL | ||
134 | }; | ||
135 | #endif | ||
136 | |||
137 | /* Constants used when creating the ENGINE */ | ||
138 | static const char *engine_e_rsax_id = "rsax"; | ||
139 | static const char *engine_e_rsax_name = "RSAX engine support"; | ||
140 | |||
141 | /* This internal function is used by ENGINE_rsax() */ | ||
142 | static int bind_helper(ENGINE *e) | ||
143 | { | ||
144 | #ifndef OPENSSL_NO_RSA | ||
145 | const RSA_METHOD *meth1; | ||
146 | #endif | ||
147 | if(!ENGINE_set_id(e, engine_e_rsax_id) || | ||
148 | !ENGINE_set_name(e, engine_e_rsax_name) || | ||
149 | #ifndef OPENSSL_NO_RSA | ||
150 | !ENGINE_set_RSA(e, &e_rsax_rsa) || | ||
151 | #endif | ||
152 | !ENGINE_set_destroy_function(e, e_rsax_destroy) || | ||
153 | !ENGINE_set_init_function(e, e_rsax_init) || | ||
154 | !ENGINE_set_finish_function(e, e_rsax_finish) || | ||
155 | !ENGINE_set_ctrl_function(e, e_rsax_ctrl) || | ||
156 | !ENGINE_set_cmd_defns(e, e_rsax_cmd_defns)) | ||
157 | return 0; | ||
158 | |||
159 | #ifndef OPENSSL_NO_RSA | ||
160 | meth1 = RSA_PKCS1_SSLeay(); | ||
161 | e_rsax_rsa.rsa_pub_enc = meth1->rsa_pub_enc; | ||
162 | e_rsax_rsa.rsa_pub_dec = meth1->rsa_pub_dec; | ||
163 | e_rsax_rsa.rsa_priv_enc = meth1->rsa_priv_enc; | ||
164 | e_rsax_rsa.rsa_priv_dec = meth1->rsa_priv_dec; | ||
165 | e_rsax_rsa.bn_mod_exp = meth1->bn_mod_exp; | ||
166 | #endif | ||
167 | return 1; | ||
168 | } | ||
169 | |||
170 | static ENGINE *ENGINE_rsax(void) | ||
171 | { | ||
172 | ENGINE *ret = ENGINE_new(); | ||
173 | if(!ret) | ||
174 | return NULL; | ||
175 | if(!bind_helper(ret)) | ||
176 | { | ||
177 | ENGINE_free(ret); | ||
178 | return NULL; | ||
179 | } | ||
180 | return ret; | ||
181 | } | ||
182 | |||
183 | #ifndef OPENSSL_NO_RSA | ||
184 | /* Used to attach our own key-data to an RSA structure */ | ||
185 | static int rsax_ex_data_idx = -1; | ||
186 | #endif | ||
187 | |||
188 | static int e_rsax_destroy(ENGINE *e) | ||
189 | { | ||
190 | return 1; | ||
191 | } | ||
192 | |||
193 | /* (de)initialisation functions. */ | ||
194 | static int e_rsax_init(ENGINE *e) | ||
195 | { | ||
196 | #ifndef OPENSSL_NO_RSA | ||
197 | if (rsax_ex_data_idx == -1) | ||
198 | rsax_ex_data_idx = RSA_get_ex_new_index(0, | ||
199 | NULL, | ||
200 | NULL, NULL, NULL); | ||
201 | #endif | ||
202 | if (rsax_ex_data_idx == -1) | ||
203 | return 0; | ||
204 | return 1; | ||
205 | } | ||
206 | |||
207 | static int e_rsax_finish(ENGINE *e) | ||
208 | { | ||
209 | return 1; | ||
210 | } | ||
211 | |||
212 | static int e_rsax_ctrl(ENGINE *e, int cmd, long i, void *p, void (*f)(void)) | ||
213 | { | ||
214 | int to_return = 1; | ||
215 | |||
216 | switch(cmd) | ||
217 | { | ||
218 | /* The command isn't understood by this engine */ | ||
219 | default: | ||
220 | to_return = 0; | ||
221 | break; | ||
222 | } | ||
223 | |||
224 | return to_return; | ||
225 | } | ||
226 | |||
227 | |||
228 | #ifndef OPENSSL_NO_RSA | ||
229 | |||
230 | #ifdef _WIN32 | ||
231 | typedef unsigned __int64 UINT64; | ||
232 | #else | ||
233 | typedef unsigned long long UINT64; | ||
234 | #endif | ||
235 | typedef unsigned short UINT16; | ||
236 | |||
237 | /* Table t is interleaved in the following manner: | ||
238 | * The order in memory is t[0][0], t[0][1], ..., t[0][7], t[1][0], ... | ||
239 | * A particular 512-bit value is stored in t[][index] rather than the more | ||
240 | * normal t[index][]; i.e. the qwords of a particular entry in t are not | ||
241 | * adjacent in memory | ||
242 | */ | ||
243 | |||
244 | /* Init BIGNUM b from the interleaved UINT64 array */ | ||
245 | static int interleaved_array_to_bn_512(BIGNUM* b, UINT64 *array); | ||
246 | |||
247 | /* Extract array elements from BIGNUM b | ||
248 | * To set the whole array from b, call with n=8 | ||
249 | */ | ||
250 | static int bn_extract_to_array_512(const BIGNUM* b, unsigned int n, UINT64 *array); | ||
251 | |||
252 | struct mod_ctx_512 { | ||
253 | UINT64 t[8][8]; | ||
254 | UINT64 m[8]; | ||
255 | UINT64 m1[8]; /* 2^278 % m */ | ||
256 | UINT64 m2[8]; /* 2^640 % m */ | ||
257 | UINT64 k1[2]; /* (- 1/m) % 2^128 */ | ||
258 | }; | ||
259 | |||
260 | static int mod_exp_pre_compute_data_512(UINT64 *m, struct mod_ctx_512 *data); | ||
261 | |||
262 | void mod_exp_512(UINT64 *result, /* 512 bits, 8 qwords */ | ||
263 | UINT64 *g, /* 512 bits, 8 qwords */ | ||
264 | UINT64 *exp, /* 512 bits, 8 qwords */ | ||
265 | struct mod_ctx_512 *data); | ||
266 | |||
267 | typedef struct st_e_rsax_mod_ctx | ||
268 | { | ||
269 | UINT64 type; | ||
270 | union { | ||
271 | struct mod_ctx_512 b512; | ||
272 | } ctx; | ||
273 | |||
274 | } E_RSAX_MOD_CTX; | ||
275 | |||
276 | static E_RSAX_MOD_CTX *e_rsax_get_ctx(RSA *rsa, int idx, BIGNUM* m) | ||
277 | { | ||
278 | E_RSAX_MOD_CTX *hptr; | ||
279 | |||
280 | if (idx < 0 || idx > 2) | ||
281 | return NULL; | ||
282 | |||
283 | hptr = RSA_get_ex_data(rsa, rsax_ex_data_idx); | ||
284 | if (!hptr) { | ||
285 | hptr = OPENSSL_malloc(3*sizeof(E_RSAX_MOD_CTX)); | ||
286 | if (!hptr) return NULL; | ||
287 | hptr[2].type = hptr[1].type= hptr[0].type = 0; | ||
288 | RSA_set_ex_data(rsa, rsax_ex_data_idx, hptr); | ||
289 | } | ||
290 | |||
291 | if (hptr[idx].type == (UINT64)BN_num_bits(m)) | ||
292 | return hptr+idx; | ||
293 | |||
294 | if (BN_num_bits(m) == 512) { | ||
295 | UINT64 _m[8]; | ||
296 | bn_extract_to_array_512(m, 8, _m); | ||
297 | memset( &hptr[idx].ctx.b512, 0, sizeof(struct mod_ctx_512)); | ||
298 | mod_exp_pre_compute_data_512(_m, &hptr[idx].ctx.b512); | ||
299 | } | ||
300 | |||
301 | hptr[idx].type = BN_num_bits(m); | ||
302 | return hptr+idx; | ||
303 | } | ||
304 | |||
305 | static int e_rsax_rsa_finish(RSA *rsa) | ||
306 | { | ||
307 | E_RSAX_MOD_CTX *hptr = RSA_get_ex_data(rsa, rsax_ex_data_idx); | ||
308 | if(hptr) | ||
309 | { | ||
310 | OPENSSL_free(hptr); | ||
311 | RSA_set_ex_data(rsa, rsax_ex_data_idx, NULL); | ||
312 | } | ||
313 | if (rsa->_method_mod_n) | ||
314 | BN_MONT_CTX_free(rsa->_method_mod_n); | ||
315 | if (rsa->_method_mod_p) | ||
316 | BN_MONT_CTX_free(rsa->_method_mod_p); | ||
317 | if (rsa->_method_mod_q) | ||
318 | BN_MONT_CTX_free(rsa->_method_mod_q); | ||
319 | return 1; | ||
320 | } | ||
321 | |||
322 | |||
323 | static int e_rsax_bn_mod_exp(BIGNUM *r, const BIGNUM *g, const BIGNUM *e, | ||
324 | const BIGNUM *m, BN_CTX *ctx, BN_MONT_CTX *in_mont, E_RSAX_MOD_CTX* rsax_mod_ctx ) | ||
325 | { | ||
326 | if (rsax_mod_ctx && BN_get_flags(e, BN_FLG_CONSTTIME) != 0) { | ||
327 | if (BN_num_bits(m) == 512) { | ||
328 | UINT64 _r[8]; | ||
329 | UINT64 _g[8]; | ||
330 | UINT64 _e[8]; | ||
331 | |||
332 | /* Init the arrays from the BIGNUMs */ | ||
333 | bn_extract_to_array_512(g, 8, _g); | ||
334 | bn_extract_to_array_512(e, 8, _e); | ||
335 | |||
336 | mod_exp_512(_r, _g, _e, &rsax_mod_ctx->ctx.b512); | ||
337 | /* Return the result in the BIGNUM */ | ||
338 | interleaved_array_to_bn_512(r, _r); | ||
339 | return 1; | ||
340 | } | ||
341 | } | ||
342 | |||
343 | return BN_mod_exp_mont(r, g, e, m, ctx, in_mont); | ||
344 | } | ||
345 | |||
346 | /* Declares for the Intel CIAP 512-bit / CRT / 1024 bit RSA modular | ||
347 | * exponentiation routine precalculations and a structure to hold the | ||
348 | * necessary values. These files are meant to live in crypto/rsa/ in | ||
349 | * the target openssl. | ||
350 | */ | ||
351 | |||
352 | /* | ||
353 | * Local method: extracts a piece from a BIGNUM, to fit it into | ||
354 | * an array. Call with n=8 to extract an entire 512-bit BIGNUM | ||
355 | */ | ||
356 | static int bn_extract_to_array_512(const BIGNUM* b, unsigned int n, UINT64 *array) | ||
357 | { | ||
358 | int i; | ||
359 | UINT64 tmp; | ||
360 | unsigned char bn_buff[64]; | ||
361 | memset(bn_buff, 0, 64); | ||
362 | if (BN_num_bytes(b) > 64) { | ||
363 | printf ("Can't support this byte size\n"); | ||
364 | return 0; } | ||
365 | if (BN_num_bytes(b)!=0) { | ||
366 | if (!BN_bn2bin(b, bn_buff+(64-BN_num_bytes(b)))) { | ||
367 | printf ("Error's in bn2bin\n"); | ||
368 | /* We have to error, here */ | ||
369 | return 0; } } | ||
370 | while (n-- > 0) { | ||
371 | array[n] = 0; | ||
372 | for (i=7; i>=0; i--) { | ||
373 | tmp = bn_buff[63-(n*8+i)]; | ||
374 | array[n] |= tmp << (8*i); } } | ||
375 | return 1; | ||
376 | } | ||
377 | |||
378 | /* Init a 512-bit BIGNUM from the UINT64*_ (8 * 64) interleaved array */ | ||
379 | static int interleaved_array_to_bn_512(BIGNUM* b, UINT64 *array) | ||
380 | { | ||
381 | unsigned char tmp[64]; | ||
382 | int n=8; | ||
383 | int i; | ||
384 | while (n-- > 0) { | ||
385 | for (i = 7; i>=0; i--) { | ||
386 | tmp[63-(n*8+i)] = (unsigned char)(array[n]>>(8*i)); } } | ||
387 | BN_bin2bn(tmp, 64, b); | ||
388 | return 0; | ||
389 | } | ||
390 | |||
391 | |||
392 | /* The main 512bit precompute call */ | ||
393 | static int mod_exp_pre_compute_data_512(UINT64 *m, struct mod_ctx_512 *data) | ||
394 | { | ||
395 | BIGNUM two_768, two_640, two_128, two_512, tmp, _m, tmp2; | ||
396 | |||
397 | /* We need a BN_CTX for the modulo functions */ | ||
398 | BN_CTX* ctx; | ||
399 | /* Some tmps */ | ||
400 | UINT64 _t[8]; | ||
401 | int i, j, ret = 0; | ||
402 | |||
403 | /* Init _m with m */ | ||
404 | BN_init(&_m); | ||
405 | interleaved_array_to_bn_512(&_m, m); | ||
406 | memset(_t, 0, 64); | ||
407 | |||
408 | /* Inits */ | ||
409 | BN_init(&two_768); | ||
410 | BN_init(&two_640); | ||
411 | BN_init(&two_128); | ||
412 | BN_init(&two_512); | ||
413 | BN_init(&tmp); | ||
414 | BN_init(&tmp2); | ||
415 | |||
416 | /* Create our context */ | ||
417 | if ((ctx=BN_CTX_new()) == NULL) { goto err; } | ||
418 | BN_CTX_start(ctx); | ||
419 | |||
420 | /* | ||
421 | * For production, if you care, these only need to be set once, | ||
422 | * and may be made constants. | ||
423 | */ | ||
424 | BN_lshift(&two_768, BN_value_one(), 768); | ||
425 | BN_lshift(&two_640, BN_value_one(), 640); | ||
426 | BN_lshift(&two_128, BN_value_one(), 128); | ||
427 | BN_lshift(&two_512, BN_value_one(), 512); | ||
428 | |||
429 | if (0 == (m[7] & 0x8000000000000000)) { | ||
430 | exit(1); | ||
431 | } | ||
432 | if (0 == (m[0] & 0x1)) { /* Odd modulus required for Mont */ | ||
433 | exit(1); | ||
434 | } | ||
435 | |||
436 | /* Precompute m1 */ | ||
437 | BN_mod(&tmp, &two_768, &_m, ctx); | ||
438 | if (!bn_extract_to_array_512(&tmp, 8, &data->m1[0])) { | ||
439 | goto err; } | ||
440 | |||
441 | /* Precompute m2 */ | ||
442 | BN_mod(&tmp, &two_640, &_m, ctx); | ||
443 | if (!bn_extract_to_array_512(&tmp, 8, &data->m2[0])) { | ||
444 | goto err; | ||
445 | } | ||
446 | |||
447 | /* | ||
448 | * Precompute k1, a 128b number = ((-1)* m-1 ) mod 2128; k1 should | ||
449 | * be non-negative. | ||
450 | */ | ||
451 | BN_mod_inverse(&tmp, &_m, &two_128, ctx); | ||
452 | if (!BN_is_zero(&tmp)) { BN_sub(&tmp, &two_128, &tmp); } | ||
453 | if (!bn_extract_to_array_512(&tmp, 2, &data->k1[0])) { | ||
454 | goto err; } | ||
455 | |||
456 | /* Precompute t */ | ||
457 | for (i=0; i<8; i++) { | ||
458 | BN_zero(&tmp); | ||
459 | if (i & 1) { BN_add(&tmp, &two_512, &tmp); } | ||
460 | if (i & 2) { BN_add(&tmp, &two_512, &tmp); } | ||
461 | if (i & 4) { BN_add(&tmp, &two_640, &tmp); } | ||
462 | |||
463 | BN_nnmod(&tmp2, &tmp, &_m, ctx); | ||
464 | if (!bn_extract_to_array_512(&tmp2, 8, _t)) { | ||
465 | goto err; } | ||
466 | for (j=0; j<8; j++) data->t[j][i] = _t[j]; } | ||
467 | |||
468 | /* Precompute m */ | ||
469 | for (i=0; i<8; i++) { | ||
470 | data->m[i] = m[i]; } | ||
471 | |||
472 | ret = 1; | ||
473 | |||
474 | err: | ||
475 | /* Cleanup */ | ||
476 | if (ctx != NULL) { | ||
477 | BN_CTX_end(ctx); BN_CTX_free(ctx); } | ||
478 | BN_free(&two_768); | ||
479 | BN_free(&two_640); | ||
480 | BN_free(&two_128); | ||
481 | BN_free(&two_512); | ||
482 | BN_free(&tmp); | ||
483 | BN_free(&tmp2); | ||
484 | BN_free(&_m); | ||
485 | |||
486 | return ret; | ||
487 | } | ||
488 | |||
489 | |||
490 | static int e_rsax_rsa_mod_exp(BIGNUM *r0, const BIGNUM *I, RSA *rsa, BN_CTX *ctx) | ||
491 | { | ||
492 | BIGNUM *r1,*m1,*vrfy; | ||
493 | BIGNUM local_dmp1,local_dmq1,local_c,local_r1; | ||
494 | BIGNUM *dmp1,*dmq1,*c,*pr1; | ||
495 | int ret=0; | ||
496 | |||
497 | BN_CTX_start(ctx); | ||
498 | r1 = BN_CTX_get(ctx); | ||
499 | m1 = BN_CTX_get(ctx); | ||
500 | vrfy = BN_CTX_get(ctx); | ||
501 | |||
502 | { | ||
503 | BIGNUM local_p, local_q; | ||
504 | BIGNUM *p = NULL, *q = NULL; | ||
505 | int error = 0; | ||
506 | |||
507 | /* Make sure BN_mod_inverse in Montgomery | ||
508 | * intialization uses the BN_FLG_CONSTTIME flag | ||
509 | * (unless RSA_FLAG_NO_CONSTTIME is set) | ||
510 | */ | ||
511 | if (!(rsa->flags & RSA_FLAG_NO_CONSTTIME)) | ||
512 | { | ||
513 | BN_init(&local_p); | ||
514 | p = &local_p; | ||
515 | BN_with_flags(p, rsa->p, BN_FLG_CONSTTIME); | ||
516 | |||
517 | BN_init(&local_q); | ||
518 | q = &local_q; | ||
519 | BN_with_flags(q, rsa->q, BN_FLG_CONSTTIME); | ||
520 | } | ||
521 | else | ||
522 | { | ||
523 | p = rsa->p; | ||
524 | q = rsa->q; | ||
525 | } | ||
526 | |||
527 | if (rsa->flags & RSA_FLAG_CACHE_PRIVATE) | ||
528 | { | ||
529 | if (!BN_MONT_CTX_set_locked(&rsa->_method_mod_p, CRYPTO_LOCK_RSA, p, ctx)) | ||
530 | error = 1; | ||
531 | if (!BN_MONT_CTX_set_locked(&rsa->_method_mod_q, CRYPTO_LOCK_RSA, q, ctx)) | ||
532 | error = 1; | ||
533 | } | ||
534 | |||
535 | /* clean up */ | ||
536 | if (!(rsa->flags & RSA_FLAG_NO_CONSTTIME)) | ||
537 | { | ||
538 | BN_free(&local_p); | ||
539 | BN_free(&local_q); | ||
540 | } | ||
541 | if ( error ) | ||
542 | goto err; | ||
543 | } | ||
544 | |||
545 | if (rsa->flags & RSA_FLAG_CACHE_PUBLIC) | ||
546 | if (!BN_MONT_CTX_set_locked(&rsa->_method_mod_n, CRYPTO_LOCK_RSA, rsa->n, ctx)) | ||
547 | goto err; | ||
548 | |||
549 | /* compute I mod q */ | ||
550 | if (!(rsa->flags & RSA_FLAG_NO_CONSTTIME)) | ||
551 | { | ||
552 | c = &local_c; | ||
553 | BN_with_flags(c, I, BN_FLG_CONSTTIME); | ||
554 | if (!BN_mod(r1,c,rsa->q,ctx)) goto err; | ||
555 | } | ||
556 | else | ||
557 | { | ||
558 | if (!BN_mod(r1,I,rsa->q,ctx)) goto err; | ||
559 | } | ||
560 | |||
561 | /* compute r1^dmq1 mod q */ | ||
562 | if (!(rsa->flags & RSA_FLAG_NO_CONSTTIME)) | ||
563 | { | ||
564 | dmq1 = &local_dmq1; | ||
565 | BN_with_flags(dmq1, rsa->dmq1, BN_FLG_CONSTTIME); | ||
566 | } | ||
567 | else | ||
568 | dmq1 = rsa->dmq1; | ||
569 | |||
570 | if (!e_rsax_bn_mod_exp(m1,r1,dmq1,rsa->q,ctx, | ||
571 | rsa->_method_mod_q, e_rsax_get_ctx(rsa, 0, rsa->q) )) goto err; | ||
572 | |||
573 | /* compute I mod p */ | ||
574 | if (!(rsa->flags & RSA_FLAG_NO_CONSTTIME)) | ||
575 | { | ||
576 | c = &local_c; | ||
577 | BN_with_flags(c, I, BN_FLG_CONSTTIME); | ||
578 | if (!BN_mod(r1,c,rsa->p,ctx)) goto err; | ||
579 | } | ||
580 | else | ||
581 | { | ||
582 | if (!BN_mod(r1,I,rsa->p,ctx)) goto err; | ||
583 | } | ||
584 | |||
585 | /* compute r1^dmp1 mod p */ | ||
586 | if (!(rsa->flags & RSA_FLAG_NO_CONSTTIME)) | ||
587 | { | ||
588 | dmp1 = &local_dmp1; | ||
589 | BN_with_flags(dmp1, rsa->dmp1, BN_FLG_CONSTTIME); | ||
590 | } | ||
591 | else | ||
592 | dmp1 = rsa->dmp1; | ||
593 | |||
594 | if (!e_rsax_bn_mod_exp(r0,r1,dmp1,rsa->p,ctx, | ||
595 | rsa->_method_mod_p, e_rsax_get_ctx(rsa, 1, rsa->p) )) goto err; | ||
596 | |||
597 | if (!BN_sub(r0,r0,m1)) goto err; | ||
598 | /* This will help stop the size of r0 increasing, which does | ||
599 | * affect the multiply if it optimised for a power of 2 size */ | ||
600 | if (BN_is_negative(r0)) | ||
601 | if (!BN_add(r0,r0,rsa->p)) goto err; | ||
602 | |||
603 | if (!BN_mul(r1,r0,rsa->iqmp,ctx)) goto err; | ||
604 | |||
605 | /* Turn BN_FLG_CONSTTIME flag on before division operation */ | ||
606 | if (!(rsa->flags & RSA_FLAG_NO_CONSTTIME)) | ||
607 | { | ||
608 | pr1 = &local_r1; | ||
609 | BN_with_flags(pr1, r1, BN_FLG_CONSTTIME); | ||
610 | } | ||
611 | else | ||
612 | pr1 = r1; | ||
613 | if (!BN_mod(r0,pr1,rsa->p,ctx)) goto err; | ||
614 | |||
615 | /* If p < q it is occasionally possible for the correction of | ||
616 | * adding 'p' if r0 is negative above to leave the result still | ||
617 | * negative. This can break the private key operations: the following | ||
618 | * second correction should *always* correct this rare occurrence. | ||
619 | * This will *never* happen with OpenSSL generated keys because | ||
620 | * they ensure p > q [steve] | ||
621 | */ | ||
622 | if (BN_is_negative(r0)) | ||
623 | if (!BN_add(r0,r0,rsa->p)) goto err; | ||
624 | if (!BN_mul(r1,r0,rsa->q,ctx)) goto err; | ||
625 | if (!BN_add(r0,r1,m1)) goto err; | ||
626 | |||
627 | if (rsa->e && rsa->n) | ||
628 | { | ||
629 | if (!e_rsax_bn_mod_exp(vrfy,r0,rsa->e,rsa->n,ctx,rsa->_method_mod_n, e_rsax_get_ctx(rsa, 2, rsa->n) )) | ||
630 | goto err; | ||
631 | |||
632 | /* If 'I' was greater than (or equal to) rsa->n, the operation | ||
633 | * will be equivalent to using 'I mod n'. However, the result of | ||
634 | * the verify will *always* be less than 'n' so we don't check | ||
635 | * for absolute equality, just congruency. */ | ||
636 | if (!BN_sub(vrfy, vrfy, I)) goto err; | ||
637 | if (!BN_mod(vrfy, vrfy, rsa->n, ctx)) goto err; | ||
638 | if (BN_is_negative(vrfy)) | ||
639 | if (!BN_add(vrfy, vrfy, rsa->n)) goto err; | ||
640 | if (!BN_is_zero(vrfy)) | ||
641 | { | ||
642 | /* 'I' and 'vrfy' aren't congruent mod n. Don't leak | ||
643 | * miscalculated CRT output, just do a raw (slower) | ||
644 | * mod_exp and return that instead. */ | ||
645 | |||
646 | BIGNUM local_d; | ||
647 | BIGNUM *d = NULL; | ||
648 | |||
649 | if (!(rsa->flags & RSA_FLAG_NO_CONSTTIME)) | ||
650 | { | ||
651 | d = &local_d; | ||
652 | BN_with_flags(d, rsa->d, BN_FLG_CONSTTIME); | ||
653 | } | ||
654 | else | ||
655 | d = rsa->d; | ||
656 | if (!e_rsax_bn_mod_exp(r0,I,d,rsa->n,ctx, | ||
657 | rsa->_method_mod_n, e_rsax_get_ctx(rsa, 2, rsa->n) )) goto err; | ||
658 | } | ||
659 | } | ||
660 | ret=1; | ||
661 | |||
662 | err: | ||
663 | BN_CTX_end(ctx); | ||
664 | |||
665 | return ret; | ||
666 | } | ||
667 | #endif /* !OPENSSL_NO_RSA */ | ||
668 | #endif /* !COMPILE_RSAX */ | ||