summaryrefslogtreecommitdiff
path: root/src/lib/libcrypto/jpake/jpake.c
diff options
context:
space:
mode:
Diffstat (limited to '')
-rw-r--r--src/lib/libcrypto/jpake/jpake.c483
1 files changed, 483 insertions, 0 deletions
diff --git a/src/lib/libcrypto/jpake/jpake.c b/src/lib/libcrypto/jpake/jpake.c
new file mode 100644
index 0000000000..577b7ef375
--- /dev/null
+++ b/src/lib/libcrypto/jpake/jpake.c
@@ -0,0 +1,483 @@
1#include "jpake.h"
2
3#include <openssl/crypto.h>
4#include <openssl/sha.h>
5#include <openssl/err.h>
6#include <memory.h>
7#include <assert.h>
8
9/*
10 * In the definition, (xa, xb, xc, xd) are Alice's (x1, x2, x3, x4) or
11 * Bob's (x3, x4, x1, x2). If you see what I mean.
12 */
13
14typedef struct
15 {
16 char *name; /* Must be unique */
17 char *peer_name;
18 BIGNUM *p;
19 BIGNUM *g;
20 BIGNUM *q;
21 BIGNUM *gxc; /* Alice's g^{x3} or Bob's g^{x1} */
22 BIGNUM *gxd; /* Alice's g^{x4} or Bob's g^{x2} */
23 } JPAKE_CTX_PUBLIC;
24
25struct JPAKE_CTX
26 {
27 JPAKE_CTX_PUBLIC p;
28 BIGNUM *secret; /* The shared secret */
29 BN_CTX *ctx;
30 BIGNUM *xa; /* Alice's x1 or Bob's x3 */
31 BIGNUM *xb; /* Alice's x2 or Bob's x4 */
32 BIGNUM *key; /* The calculated (shared) key */
33 };
34
35static void JPAKE_ZKP_init(JPAKE_ZKP *zkp)
36 {
37 zkp->gr = BN_new();
38 zkp->b = BN_new();
39 }
40
41static void JPAKE_ZKP_release(JPAKE_ZKP *zkp)
42 {
43 BN_free(zkp->b);
44 BN_free(zkp->gr);
45 }
46
47/* Two birds with one stone - make the global name as expected */
48#define JPAKE_STEP_PART_init JPAKE_STEP2_init
49#define JPAKE_STEP_PART_release JPAKE_STEP2_release
50
51void JPAKE_STEP_PART_init(JPAKE_STEP_PART *p)
52 {
53 p->gx = BN_new();
54 JPAKE_ZKP_init(&p->zkpx);
55 }
56
57void JPAKE_STEP_PART_release(JPAKE_STEP_PART *p)
58 {
59 JPAKE_ZKP_release(&p->zkpx);
60 BN_free(p->gx);
61 }
62
63void JPAKE_STEP1_init(JPAKE_STEP1 *s1)
64 {
65 JPAKE_STEP_PART_init(&s1->p1);
66 JPAKE_STEP_PART_init(&s1->p2);
67 }
68
69void JPAKE_STEP1_release(JPAKE_STEP1 *s1)
70 {
71 JPAKE_STEP_PART_release(&s1->p2);
72 JPAKE_STEP_PART_release(&s1->p1);
73 }
74
75static void JPAKE_CTX_init(JPAKE_CTX *ctx, const char *name,
76 const char *peer_name, const BIGNUM *p,
77 const BIGNUM *g, const BIGNUM *q,
78 const BIGNUM *secret)
79 {
80 ctx->p.name = OPENSSL_strdup(name);
81 ctx->p.peer_name = OPENSSL_strdup(peer_name);
82 ctx->p.p = BN_dup(p);
83 ctx->p.g = BN_dup(g);
84 ctx->p.q = BN_dup(q);
85 ctx->secret = BN_dup(secret);
86
87 ctx->p.gxc = BN_new();
88 ctx->p.gxd = BN_new();
89
90 ctx->xa = BN_new();
91 ctx->xb = BN_new();
92 ctx->key = BN_new();
93 ctx->ctx = BN_CTX_new();
94 }
95
96static void JPAKE_CTX_release(JPAKE_CTX *ctx)
97 {
98 BN_CTX_free(ctx->ctx);
99 BN_clear_free(ctx->key);
100 BN_clear_free(ctx->xb);
101 BN_clear_free(ctx->xa);
102
103 BN_free(ctx->p.gxd);
104 BN_free(ctx->p.gxc);
105
106 BN_clear_free(ctx->secret);
107 BN_free(ctx->p.q);
108 BN_free(ctx->p.g);
109 BN_free(ctx->p.p);
110 OPENSSL_free(ctx->p.peer_name);
111 OPENSSL_free(ctx->p.name);
112
113 memset(ctx, '\0', sizeof *ctx);
114 }
115
116JPAKE_CTX *JPAKE_CTX_new(const char *name, const char *peer_name,
117 const BIGNUM *p, const BIGNUM *g, const BIGNUM *q,
118 const BIGNUM *secret)
119 {
120 JPAKE_CTX *ctx = OPENSSL_malloc(sizeof *ctx);
121
122 JPAKE_CTX_init(ctx, name, peer_name, p, g, q, secret);
123
124 return ctx;
125 }
126
127void JPAKE_CTX_free(JPAKE_CTX *ctx)
128 {
129 JPAKE_CTX_release(ctx);
130 OPENSSL_free(ctx);
131 }
132
133static void hashlength(SHA_CTX *sha, size_t l)
134 {
135 unsigned char b[2];
136
137 assert(l <= 0xffff);
138 b[0] = l >> 8;
139 b[1] = l&0xff;
140 SHA1_Update(sha, b, 2);
141 }
142
143static void hashstring(SHA_CTX *sha, const char *string)
144 {
145 size_t l = strlen(string);
146
147 hashlength(sha, l);
148 SHA1_Update(sha, string, l);
149 }
150
151static void hashbn(SHA_CTX *sha, const BIGNUM *bn)
152 {
153 size_t l = BN_num_bytes(bn);
154 unsigned char *bin = OPENSSL_malloc(l);
155
156 hashlength(sha, l);
157 BN_bn2bin(bn, bin);
158 SHA1_Update(sha, bin, l);
159 OPENSSL_free(bin);
160 }
161
162/* h=hash(g, g^r, g^x, name) */
163static void zkp_hash(BIGNUM *h, const BIGNUM *zkpg, const JPAKE_STEP_PART *p,
164 const char *proof_name)
165 {
166 unsigned char md[SHA_DIGEST_LENGTH];
167 SHA_CTX sha;
168
169 /*
170 * XXX: hash should not allow moving of the boundaries - Java code
171 * is flawed in this respect. Length encoding seems simplest.
172 */
173 SHA1_Init(&sha);
174 hashbn(&sha, zkpg);
175 assert(!BN_is_zero(p->zkpx.gr));
176 hashbn(&sha, p->zkpx.gr);
177 hashbn(&sha, p->gx);
178 hashstring(&sha, proof_name);
179 SHA1_Final(md, &sha);
180 BN_bin2bn(md, SHA_DIGEST_LENGTH, h);
181 }
182
183/*
184 * Prove knowledge of x
185 * Note that p->gx has already been calculated
186 */
187static void generate_zkp(JPAKE_STEP_PART *p, const BIGNUM *x,
188 const BIGNUM *zkpg, JPAKE_CTX *ctx)
189 {
190 BIGNUM *r = BN_new();
191 BIGNUM *h = BN_new();
192 BIGNUM *t = BN_new();
193
194 /*
195 * r in [0,q)
196 * XXX: Java chooses r in [0, 2^160) - i.e. distribution not uniform
197 */
198 BN_rand_range(r, ctx->p.q);
199 /* g^r */
200 BN_mod_exp(p->zkpx.gr, zkpg, r, ctx->p.p, ctx->ctx);
201
202 /* h=hash... */
203 zkp_hash(h, zkpg, p, ctx->p.name);
204
205 /* b = r - x*h */
206 BN_mod_mul(t, x, h, ctx->p.q, ctx->ctx);
207 BN_mod_sub(p->zkpx.b, r, t, ctx->p.q, ctx->ctx);
208
209 /* cleanup */
210 BN_free(t);
211 BN_free(h);
212 BN_free(r);
213 }
214
215static int verify_zkp(const JPAKE_STEP_PART *p, const BIGNUM *zkpg,
216 JPAKE_CTX *ctx)
217 {
218 BIGNUM *h = BN_new();
219 BIGNUM *t1 = BN_new();
220 BIGNUM *t2 = BN_new();
221 BIGNUM *t3 = BN_new();
222 int ret = 0;
223
224 zkp_hash(h, zkpg, p, ctx->p.peer_name);
225
226 /* t1 = g^b */
227 BN_mod_exp(t1, zkpg, p->zkpx.b, ctx->p.p, ctx->ctx);
228 /* t2 = (g^x)^h = g^{hx} */
229 BN_mod_exp(t2, p->gx, h, ctx->p.p, ctx->ctx);
230 /* t3 = t1 * t2 = g^{hx} * g^b = g^{hx+b} = g^r (allegedly) */
231 BN_mod_mul(t3, t1, t2, ctx->p.p, ctx->ctx);
232
233 /* verify t3 == g^r */
234 if(BN_cmp(t3, p->zkpx.gr) == 0)
235 ret = 1;
236 else
237 JPAKEerr(JPAKE_F_VERIFY_ZKP, JPAKE_R_ZKP_VERIFY_FAILED);
238
239 /* cleanup */
240 BN_free(t3);
241 BN_free(t2);
242 BN_free(t1);
243 BN_free(h);
244
245 return ret;
246 }
247
248static void generate_step_part(JPAKE_STEP_PART *p, const BIGNUM *x,
249 const BIGNUM *g, JPAKE_CTX *ctx)
250 {
251 BN_mod_exp(p->gx, g, x, ctx->p.p, ctx->ctx);
252 generate_zkp(p, x, g, ctx);
253 }
254
255/* Generate each party's random numbers. xa is in [0, q), xb is in [1, q). */
256static void genrand(JPAKE_CTX *ctx)
257 {
258 BIGNUM *qm1;
259
260 /* xa in [0, q) */
261 BN_rand_range(ctx->xa, ctx->p.q);
262
263 /* q-1 */
264 qm1 = BN_new();
265 BN_copy(qm1, ctx->p.q);
266 BN_sub_word(qm1, 1);
267
268 /* ... and xb in [0, q-1) */
269 BN_rand_range(ctx->xb, qm1);
270 /* [1, q) */
271 BN_add_word(ctx->xb, 1);
272
273 /* cleanup */
274 BN_free(qm1);
275 }
276
277int JPAKE_STEP1_generate(JPAKE_STEP1 *send, JPAKE_CTX *ctx)
278 {
279 genrand(ctx);
280 generate_step_part(&send->p1, ctx->xa, ctx->p.g, ctx);
281 generate_step_part(&send->p2, ctx->xb, ctx->p.g, ctx);
282
283 return 1;
284 }
285
286int JPAKE_STEP1_process(JPAKE_CTX *ctx, const JPAKE_STEP1 *received)
287 {
288 /* verify their ZKP(xc) */
289 if(!verify_zkp(&received->p1, ctx->p.g, ctx))
290 {
291 JPAKEerr(JPAKE_F_JPAKE_STEP1_PROCESS, JPAKE_R_VERIFY_X3_FAILED);
292 return 0;
293 }
294
295 /* verify their ZKP(xd) */
296 if(!verify_zkp(&received->p2, ctx->p.g, ctx))
297 {
298 JPAKEerr(JPAKE_F_JPAKE_STEP1_PROCESS, JPAKE_R_VERIFY_X4_FAILED);
299 return 0;
300 }
301
302 /* g^xd != 1 */
303 if(BN_is_one(received->p2.gx))
304 {
305 JPAKEerr(JPAKE_F_JPAKE_STEP1_PROCESS, JPAKE_R_G_TO_THE_X4_IS_ONE);
306 return 0;
307 }
308
309 /* Save the bits we need for later */
310 BN_copy(ctx->p.gxc, received->p1.gx);
311 BN_copy(ctx->p.gxd, received->p2.gx);
312
313 return 1;
314 }
315
316
317int JPAKE_STEP2_generate(JPAKE_STEP2 *send, JPAKE_CTX *ctx)
318 {
319 BIGNUM *t1 = BN_new();
320 BIGNUM *t2 = BN_new();
321
322 /*
323 * X = g^{(xa + xc + xd) * xb * s}
324 * t1 = g^xa
325 */
326 BN_mod_exp(t1, ctx->p.g, ctx->xa, ctx->p.p, ctx->ctx);
327 /* t2 = t1 * g^{xc} = g^{xa} * g^{xc} = g^{xa + xc} */
328 BN_mod_mul(t2, t1, ctx->p.gxc, ctx->p.p, ctx->ctx);
329 /* t1 = t2 * g^{xd} = g^{xa + xc + xd} */
330 BN_mod_mul(t1, t2, ctx->p.gxd, ctx->p.p, ctx->ctx);
331 /* t2 = xb * s */
332 BN_mod_mul(t2, ctx->xb, ctx->secret, ctx->p.q, ctx->ctx);
333
334 /*
335 * ZKP(xb * s)
336 * XXX: this is kinda funky, because we're using
337 *
338 * g' = g^{xa + xc + xd}
339 *
340 * as the generator, which means X is g'^{xb * s}
341 * X = t1^{t2} = t1^{xb * s} = g^{(xa + xc + xd) * xb * s}
342 */
343 generate_step_part(send, t2, t1, ctx);
344
345 /* cleanup */
346 BN_free(t1);
347 BN_free(t2);
348
349 return 1;
350 }
351
352/* gx = g^{xc + xa + xb} * xd * s */
353static int compute_key(JPAKE_CTX *ctx, const BIGNUM *gx)
354 {
355 BIGNUM *t1 = BN_new();
356 BIGNUM *t2 = BN_new();
357 BIGNUM *t3 = BN_new();
358
359 /*
360 * K = (gx/g^{xb * xd * s})^{xb}
361 * = (g^{(xc + xa + xb) * xd * s - xb * xd *s})^{xb}
362 * = (g^{(xa + xc) * xd * s})^{xb}
363 * = g^{(xa + xc) * xb * xd * s}
364 * [which is the same regardless of who calculates it]
365 */
366
367 /* t1 = (g^{xd})^{xb} = g^{xb * xd} */
368 BN_mod_exp(t1, ctx->p.gxd, ctx->xb, ctx->p.p, ctx->ctx);
369 /* t2 = -s = q-s */
370 BN_sub(t2, ctx->p.q, ctx->secret);
371 /* t3 = t1^t2 = g^{-xb * xd * s} */
372 BN_mod_exp(t3, t1, t2, ctx->p.p, ctx->ctx);
373 /* t1 = gx * t3 = X/g^{xb * xd * s} */
374 BN_mod_mul(t1, gx, t3, ctx->p.p, ctx->ctx);
375 /* K = t1^{xb} */
376 BN_mod_exp(ctx->key, t1, ctx->xb, ctx->p.p, ctx->ctx);
377
378 /* cleanup */
379 BN_free(t3);
380 BN_free(t2);
381 BN_free(t1);
382
383 return 1;
384 }
385
386int JPAKE_STEP2_process(JPAKE_CTX *ctx, const JPAKE_STEP2 *received)
387 {
388 BIGNUM *t1 = BN_new();
389 BIGNUM *t2 = BN_new();
390 int ret = 0;
391
392 /*
393 * g' = g^{xc + xa + xb} [from our POV]
394 * t1 = xa + xb
395 */
396 BN_mod_add(t1, ctx->xa, ctx->xb, ctx->p.q, ctx->ctx);
397 /* t2 = g^{t1} = g^{xa+xb} */
398 BN_mod_exp(t2, ctx->p.g, t1, ctx->p.p, ctx->ctx);
399 /* t1 = g^{xc} * t2 = g^{xc + xa + xb} */
400 BN_mod_mul(t1, ctx->p.gxc, t2, ctx->p.p, ctx->ctx);
401
402 if(verify_zkp(received, t1, ctx))
403 ret = 1;
404 else
405 JPAKEerr(JPAKE_F_JPAKE_STEP2_PROCESS, JPAKE_R_VERIFY_B_FAILED);
406
407 compute_key(ctx, received->gx);
408
409 /* cleanup */
410 BN_free(t2);
411 BN_free(t1);
412
413 return ret;
414 }
415
416static void quickhashbn(unsigned char *md, const BIGNUM *bn)
417 {
418 SHA_CTX sha;
419
420 SHA1_Init(&sha);
421 hashbn(&sha, bn);
422 SHA1_Final(md, &sha);
423 }
424
425void JPAKE_STEP3A_init(JPAKE_STEP3A *s3a)
426 {}
427
428int JPAKE_STEP3A_generate(JPAKE_STEP3A *send, JPAKE_CTX *ctx)
429 {
430 quickhashbn(send->hhk, ctx->key);
431 SHA1(send->hhk, sizeof send->hhk, send->hhk);
432
433 return 1;
434 }
435
436int JPAKE_STEP3A_process(JPAKE_CTX *ctx, const JPAKE_STEP3A *received)
437 {
438 unsigned char hhk[SHA_DIGEST_LENGTH];
439
440 quickhashbn(hhk, ctx->key);
441 SHA1(hhk, sizeof hhk, hhk);
442 if(memcmp(hhk, received->hhk, sizeof hhk))
443 {
444 JPAKEerr(JPAKE_F_JPAKE_STEP3A_PROCESS, JPAKE_R_HASH_OF_HASH_OF_KEY_MISMATCH);
445 return 0;
446 }
447 return 1;
448 }
449
450void JPAKE_STEP3A_release(JPAKE_STEP3A *s3a)
451 {}
452
453void JPAKE_STEP3B_init(JPAKE_STEP3B *s3b)
454 {}
455
456int JPAKE_STEP3B_generate(JPAKE_STEP3B *send, JPAKE_CTX *ctx)
457 {
458 quickhashbn(send->hk, ctx->key);
459
460 return 1;
461 }
462
463int JPAKE_STEP3B_process(JPAKE_CTX *ctx, const JPAKE_STEP3B *received)
464 {
465 unsigned char hk[SHA_DIGEST_LENGTH];
466
467 quickhashbn(hk, ctx->key);
468 if(memcmp(hk, received->hk, sizeof hk))
469 {
470 JPAKEerr(JPAKE_F_JPAKE_STEP3B_PROCESS, JPAKE_R_HASH_OF_KEY_MISMATCH);
471 return 0;
472 }
473 return 1;
474 }
475
476void JPAKE_STEP3B_release(JPAKE_STEP3B *s3b)
477 {}
478
479const BIGNUM *JPAKE_get_shared_key(JPAKE_CTX *ctx)
480 {
481 return ctx->key;
482 }
483