diff options
Diffstat (limited to 'src/lib/libcrypto/man/lh_new.3')
-rw-r--r-- | src/lib/libcrypto/man/lh_new.3 | 430 |
1 files changed, 430 insertions, 0 deletions
diff --git a/src/lib/libcrypto/man/lh_new.3 b/src/lib/libcrypto/man/lh_new.3 new file mode 100644 index 0000000000..2779cf9202 --- /dev/null +++ b/src/lib/libcrypto/man/lh_new.3 | |||
@@ -0,0 +1,430 @@ | |||
1 | .Dd $Mdocdate: November 12 2015 $ | ||
2 | .Dt LH_NEW 3 | ||
3 | .Os | ||
4 | .Sh NAME | ||
5 | .Nm lh_new , | ||
6 | .Nm lh_free , | ||
7 | .Nm lh_insert , | ||
8 | .Nm lh_delete , | ||
9 | .Nm lh_retrieve , | ||
10 | .Nm lh_doall , | ||
11 | .Nm lh_doall_arg , | ||
12 | .Nm lh_error | ||
13 | .Nd dynamic hash table | ||
14 | .Sh SYNOPSIS | ||
15 | .In openssl/lhash.h | ||
16 | .Fn DECLARE_LHASH_OF <type> | ||
17 | .Ft LHASH * | ||
18 | .Fn lh_<type>_new void | ||
19 | .Ft void | ||
20 | .Fo lh_<type>_free | ||
21 | .Fa "LHASH_OF(<type>) *table" | ||
22 | .Fc | ||
23 | .Ft <type> * | ||
24 | .Fo lh_<type>_insert | ||
25 | .Fa "LHASH_OF(<type>) *table" | ||
26 | .Fa "<type> *data" | ||
27 | .Fc | ||
28 | .Ft <type> * | ||
29 | .Fo lh_<type>_delete | ||
30 | .Fa "LHASH_OF(<type>) *table" | ||
31 | .Fa "<type> *data" | ||
32 | .Fc | ||
33 | .Ft <type> * | ||
34 | .Fo lh_<type>_retrieve | ||
35 | .Fa "LHASH_OF<type>) *table" | ||
36 | .Fa "<type> *data" | ||
37 | .Fc | ||
38 | .Ft void | ||
39 | .Fo lh_<type>_doall | ||
40 | .Fa "LHASH_OF(<type>) *table" | ||
41 | .Fa "LHASH_DOALL_FN_TYPE func" | ||
42 | .Fc | ||
43 | .Ft void | ||
44 | .Fo lh_<type>_doall_arg | ||
45 | .Fa "LHASH_OF(<type>) *table" | ||
46 | .Fa "LHASH_DOALL_ARG_FN_TYPE func" | ||
47 | .Fa "<type2>" | ||
48 | .Fa "<type2> *arg" | ||
49 | .Fc | ||
50 | .Ft int | ||
51 | .Fo lh_<type>_error | ||
52 | .Fa "LHASH_OF(<type>) *table" | ||
53 | .Fc | ||
54 | .Ft typedef int | ||
55 | .Fo (*LHASH_COMP_FN_TYPE) | ||
56 | .Fa "const void *" | ||
57 | .Fa "const void *" | ||
58 | .Fc | ||
59 | .Ft typedef unsigned long | ||
60 | .Fo (*LHASH_HASH_FN_TYPE) | ||
61 | .Fa "const void *" | ||
62 | .Fc | ||
63 | .Ft typedef void | ||
64 | .Fo (*LHASH_DOALL_FN_TYPE) | ||
65 | .Fa "const void *" | ||
66 | .Fc | ||
67 | .Ft typedef void | ||
68 | .Fo (*LHASH_DOALL_ARG_FN_TYPE) | ||
69 | .Fa "const void *" | ||
70 | .Fa "const void *" | ||
71 | .Fc | ||
72 | .Sh DESCRIPTION | ||
73 | This library implements type-checked dynamic hash tables. | ||
74 | The hash table entries can be arbitrary structures. | ||
75 | Usually they consist of key and value fields. | ||
76 | .Pp | ||
77 | .Fn lh_<type>_new | ||
78 | creates a new | ||
79 | .Vt LHASH_OF(<type>) | ||
80 | structure to store arbitrary data entries, and provides the hash and | ||
81 | compare callbacks to be used in organising the table's entries. | ||
82 | The hash callback takes a pointer to a table entry as its argument | ||
83 | and returns an unsigned long hash value for its key field. | ||
84 | The hash value is normally truncated to a power of 2, so make sure that | ||
85 | your hash function returns well mixed low order bits. | ||
86 | The compare callback takes two arguments (pointers to two hash table | ||
87 | entries), and returns 0 if their keys are equal, non-zero otherwise. | ||
88 | If your hash table will contain items of some particular type and the | ||
89 | hash and compare callbacks hash and compare these types, then the | ||
90 | .Fn DECLARE_LHASH_HASH_FN | ||
91 | and | ||
92 | .Fn IMPLEMENT_LHASH_COMP_FN | ||
93 | macros can be used to create callback wrappers of the prototypes | ||
94 | required by | ||
95 | .Fn lh_<type>_new . | ||
96 | These provide per-variable casts before calling the type-specific | ||
97 | callbacks written by the application author. | ||
98 | These macros, as well as those used for the doall callbacks, are | ||
99 | defined as; | ||
100 | .Bd -literal -offset 2n | ||
101 | #define DECLARE_LHASH_HASH_FN(name, o_type) \e | ||
102 | unsigned long name##_LHASH_HASH(const void *); | ||
103 | #define IMPLEMENT_LHASH_HASH_FN(name, o_type) \e | ||
104 | unsigned long name##_LHASH_HASH(const void *arg) { \e | ||
105 | const o_type *a = arg; \e | ||
106 | return name##_hash(a); } | ||
107 | #define LHASH_HASH_FN(name) name##_LHASH_HASH | ||
108 | |||
109 | #define DECLARE_LHASH_COMP_FN(name, o_type) \e | ||
110 | int name##_LHASH_COMP(const void *, const void *); | ||
111 | #define IMPLEMENT_LHASH_COMP_FN(name, o_type) \e | ||
112 | int name##_LHASH_COMP(const void *arg1, const void *arg2) { \e | ||
113 | const o_type *a = arg1; \e | ||
114 | const o_type *b = arg2; \e | ||
115 | return name##_cmp(a,b); } | ||
116 | #define LHASH_COMP_FN(name) name##_LHASH_COMP | ||
117 | |||
118 | #define DECLARE_LHASH_DOALL_FN(name, o_type) \e | ||
119 | void name##_LHASH_DOALL(void *); | ||
120 | #define IMPLEMENT_LHASH_DOALL_FN(name, o_type) \e | ||
121 | void name##_LHASH_DOALL(void *arg) { \e | ||
122 | o_type *a = arg; \e | ||
123 | name##_doall(a); } | ||
124 | #define LHASH_DOALL_FN(name) name##_LHASH_DOALL | ||
125 | |||
126 | #define DECLARE_LHASH_DOALL_ARG_FN(name, o_type, a_type) \e | ||
127 | void name##_LHASH_DOALL_ARG(void *, void *); | ||
128 | #define IMPLEMENT_LHASH_DOALL_ARG_FN(name, o_type, a_type) \e | ||
129 | void name##_LHASH_DOALL_ARG(void *arg1, void *arg2) { \e | ||
130 | o_type *a = arg1; \e | ||
131 | a_type *b = arg2; \e | ||
132 | name##_doall_arg(a, b); } | ||
133 | #define LHASH_DOALL_ARG_FN(name) name##_LHASH_DOALL_ARG | ||
134 | .Ed | ||
135 | .Pp | ||
136 | An example of a hash table storing (pointers to) structures of type | ||
137 | \&'STUFF' could be defined as follows; | ||
138 | .Bd -literal -offset 2n | ||
139 | /* Calculate the hash value of 'tohash' (implemented elsewhere) */ | ||
140 | unsigned long STUFF_hash(const STUFF *tohash); | ||
141 | /* Order 'arg1' and 'arg2' (implemented elsewhere) */ | ||
142 | int stuff_cmp(const STUFF *arg1, const STUFF *arg2); | ||
143 | /* Create type-safe wrapper functions for use in the LHASH internals */ | ||
144 | static IMPLEMENT_LHASH_HASH_FN(stuff, STUFF); | ||
145 | static IMPLEMENT_LHASH_COMP_FN(stuff, STUFF); | ||
146 | /* ... */ | ||
147 | int main(int argc, char *argv[]) { | ||
148 | /* Create the new hash table using the hash/compare wrappers */ | ||
149 | LHASH_OF(STUFF) *hashtable = | ||
150 | lh_STUFF_new(LHASH_HASH_FN(STUFF_hash), | ||
151 | LHASH_COMP_FN(STUFF_cmp)); | ||
152 | /* ... */ | ||
153 | } | ||
154 | .Ed | ||
155 | .Pp | ||
156 | .Fn lh_<type>_free | ||
157 | frees the | ||
158 | .Vt LHASH_OF(<type>) | ||
159 | structure | ||
160 | .Fa table . | ||
161 | Allocated hash table entries will not be freed; consider using | ||
162 | .Fn lh_<type>_doall | ||
163 | to deallocate any remaining entries in the hash table (see below). | ||
164 | .Pp | ||
165 | .Fn lh_<type>_insert | ||
166 | inserts the structure pointed to by | ||
167 | .Fa data | ||
168 | into | ||
169 | .Fa table . | ||
170 | If there already is an entry with the same key, the old value is | ||
171 | replaced. | ||
172 | Note that | ||
173 | .Fn lh_<type>_insert | ||
174 | stores pointers, the data are not copied. | ||
175 | .Pp | ||
176 | .Fn lh_<type>_delete | ||
177 | deletes an entry from | ||
178 | .Fa table . | ||
179 | .Pp | ||
180 | .Fn lh_<type>_retrieve | ||
181 | looks up an entry in | ||
182 | .Fa table . | ||
183 | Normally, | ||
184 | .Fa data | ||
185 | is a structure with the key field(s) set; the function will return a | ||
186 | pointer to a fully populated structure. | ||
187 | .Pp | ||
188 | .Fn lh_<type>_doall | ||
189 | will, for every entry in the hash table, call | ||
190 | .Fa func | ||
191 | with the data item as its parameter. | ||
192 | For | ||
193 | .Fn lh_<type>_doall | ||
194 | and | ||
195 | .Fn lh_<type>_doall_arg , | ||
196 | function pointer casting should be avoided in the callbacks (see | ||
197 | .Sx NOTES ) | ||
198 | \(em instead use the declare/implement macros to create type-checked | ||
199 | wrappers that cast variables prior to calling your type-specific | ||
200 | callbacks. | ||
201 | An example of this is illustrated here where the callback is used to | ||
202 | cleanup resources for items in the hash table prior to the hashtable | ||
203 | itself being deallocated: | ||
204 | .Bd -literal -offset 2n | ||
205 | /* Clean up resources belonging to 'a' (this is implemented elsewhere) */ | ||
206 | void STUFF_cleanup_doall(STUFF *a); | ||
207 | /* Implement a prototype-compatible wrapper for "STUFF_cleanup" */ | ||
208 | IMPLEMENT_LHASH_DOALL_FN(STUFF_cleanup, STUFF) | ||
209 | /* ... then later in the code ... */ | ||
210 | /* So to run "STUFF_cleanup" against all items in a hash table ... */ | ||
211 | lh_STUFF_doall(hashtable, LHASH_DOALL_FN(STUFF_cleanup)); | ||
212 | /* Then the hash table itself can be deallocated */ | ||
213 | lh_STUFF_free(hashtable); | ||
214 | .Ed | ||
215 | .Pp | ||
216 | When doing this, be careful if you delete entries from the hash table in | ||
217 | your callbacks: the table may decrease in size, moving the item that you | ||
218 | are currently on down lower in the hash table \(em this could cause some | ||
219 | entries to be skipped during the iteration. | ||
220 | The second best solution to this problem is to set hash->down_load=0 | ||
221 | before you start (which will stop the hash table ever decreasing in | ||
222 | size). | ||
223 | The best solution is probably to avoid deleting items from the hash | ||
224 | table inside a doall callback! | ||
225 | .Pp | ||
226 | .Fn lh_<type>_doall_arg | ||
227 | is the same as | ||
228 | .Fn lh_<type>_doall | ||
229 | except that | ||
230 | .Fa func | ||
231 | will be called with | ||
232 | .Fa arg | ||
233 | as the second argument and | ||
234 | .Fa func | ||
235 | should be of type | ||
236 | .Vt LHASH_DOALL_ARG_FN_TYPE | ||
237 | (a callback prototype that is passed both the table entry and an extra | ||
238 | argument). | ||
239 | As with | ||
240 | .Fn lh_<type>_doall , | ||
241 | you can instead choose to declare your callback with a prototype | ||
242 | matching the types you are dealing with and use the declare/implement | ||
243 | macros to create compatible wrappers that cast variables before calling | ||
244 | your type-specific callbacks. | ||
245 | An example of this is demonstrated here (printing all hash table entries | ||
246 | to a BIO that is provided by the caller): | ||
247 | .Bd -literal -offset 2n | ||
248 | /* Print item 'a' to 'output_bio' (this is implemented elsewhere) */ | ||
249 | void STUFF_print_doall_arg(const STUFF *a, BIO *output_bio); | ||
250 | /* Implement a prototype-compatible wrapper for "STUFF_print" */ | ||
251 | static IMPLEMENT_LHASH_DOALL_ARG_FN(STUFF, const STUFF, BIO) | ||
252 | /* ... then later in the code ... */ | ||
253 | /* Print out the entire hashtable to a particular BIO */ | ||
254 | lh_STUFF_doall_arg(hashtable, LHASH_DOALL_ARG_FN(STUFF_print), BIO, | ||
255 | logging_bio); | ||
256 | .Ed | ||
257 | .Pp | ||
258 | .Fn lh_<type>_error | ||
259 | can be used to determine if an error occurred in the last operation. | ||
260 | .Fn lh_<type>_error | ||
261 | is a macro. | ||
262 | .Sh RETURN VALUES | ||
263 | .Fn lh_<type>_new | ||
264 | returns | ||
265 | .Dv NULL | ||
266 | on error, otherwise a pointer to the new | ||
267 | .Vt LHASH | ||
268 | structure. | ||
269 | .Pp | ||
270 | When a hash table entry is replaced, | ||
271 | .Fn lh_<type>_insert | ||
272 | returns the value being replaced. | ||
273 | .Dv NULL | ||
274 | is returned on normal operation and on error. | ||
275 | .Pp | ||
276 | .Fn lh_<type>_delete | ||
277 | returns the entry being deleted. | ||
278 | .Dv NULL | ||
279 | is returned if there is no such value in the hash table. | ||
280 | .Pp | ||
281 | .Fn lh_<type>_retrieve | ||
282 | returns the hash table entry if it has been found, or | ||
283 | .Dv NULL | ||
284 | otherwise. | ||
285 | .Pp | ||
286 | .Fn lh_<type>_error | ||
287 | returns 1 if an error occurred in the last operation, or 0 otherwise. | ||
288 | .Pp | ||
289 | .Fn lh_<type>_free , | ||
290 | .Fn lh_<type>_doall , | ||
291 | and | ||
292 | .Fn lh_<type>_doall_arg | ||
293 | return no values. | ||
294 | .Sh NOTES | ||
295 | The various LHASH macros and callback types exist to make it possible to | ||
296 | write type-checked code without resorting to function-prototype casting | ||
297 | \(em an evil that makes application code much harder to audit/verify and | ||
298 | also opens the window of opportunity for stack corruption and other | ||
299 | hard-to-find bugs. | ||
300 | It also, apparently, violates ANSI-C. | ||
301 | .Pp | ||
302 | The LHASH code regards table entries as constant data. | ||
303 | As such, it internally represents | ||
304 | .Fn lh_<type>_insert Ap ed | ||
305 | items with a | ||
306 | .Vt const void * | ||
307 | pointer type. | ||
308 | This is why callbacks such as those used by | ||
309 | .Fn lh_<type>_doall | ||
310 | and | ||
311 | .Fn lh_<type>_doall_arg | ||
312 | declare their prototypes with "const", even for the parameters that pass | ||
313 | back the table items' data pointers \(em for consistency, user-provided | ||
314 | data is "const" at all times as far as the LHASH code is concerned. | ||
315 | However, as callers are themselves providing these pointers, they can | ||
316 | choose whether they too should be treating all such parameters as | ||
317 | constant. | ||
318 | .Pp | ||
319 | As an example, a hash table may be maintained by code that, for | ||
320 | reasons of encapsulation, has only "const" access to the data being | ||
321 | indexed in the hash table (i.e. it is returned as "const" from | ||
322 | elsewhere in their code) \(em in this case the LHASH prototypes are | ||
323 | appropriate as-is. | ||
324 | Conversely, if the caller is responsible for the life-time of the data | ||
325 | in question, then they may well wish to make modifications to table item | ||
326 | passed back in the | ||
327 | .Fn lh_<type>_doall | ||
328 | or | ||
329 | .Fn lh_<type>_doall_arg | ||
330 | callbacks (see the "STUFF_cleanup" example above). | ||
331 | If so, the caller can either cast the "const" away (if they're providing | ||
332 | the raw callbacks themselves) or use the macros to declare/implement the | ||
333 | wrapper functions without "const" types. | ||
334 | .Pp | ||
335 | Callers that only have "const" access to data they are indexing in a | ||
336 | table, yet declare callbacks without constant types (or cast the "const" | ||
337 | away themselves), are therefore creating their own risks/bugs without | ||
338 | being encouraged to do so by the API. | ||
339 | On a related note, those auditing code should pay special attention | ||
340 | to any instances of DECLARE/IMPLEMENT_LHASH_DOALL_[ARG_]_FN macros | ||
341 | that provide types without any "const" qualifiers. | ||
342 | .Sh INTERNALS | ||
343 | The following description is based on the SSLeay documentation: | ||
344 | .Pp | ||
345 | The lhash library implements a hash table described in the | ||
346 | .Em Communications of the ACM | ||
347 | in 1991. | ||
348 | What makes this hash table different is that as the table fills, | ||
349 | the hash table is increased (or decreased) in size via | ||
350 | .Xr OPENSSL_realloc 3 . | ||
351 | When a 'resize' is done, instead of all hashes being redistributed over | ||
352 | twice as many 'buckets', one bucket is split. | ||
353 | So when an 'expand' is done, there is only a minimal cost to | ||
354 | redistribute some values. | ||
355 | Subsequent inserts will cause more single 'bucket' redistributions but | ||
356 | there will never be a sudden large cost due to redistributing all the | ||
357 | \&'buckets'. | ||
358 | .Pp | ||
359 | The state for a particular hash table is kept in the | ||
360 | .Vt LHASH | ||
361 | structure. | ||
362 | The decision to increase or decrease the hash table size is made | ||
363 | depending on the 'load' of the hash table. | ||
364 | The load is the number of items in the hash table divided by the size of | ||
365 | the hash table. | ||
366 | The default values are as follows. | ||
367 | If (hash->up_load < load) => expand. | ||
368 | if (hash->down_load > load) => contract. | ||
369 | The | ||
370 | .Fa up_load | ||
371 | has a default value of 1 and | ||
372 | .Fa down_load | ||
373 | has a default value of 2. | ||
374 | These numbers can be modified by the application by just playing | ||
375 | with the | ||
376 | .Fa up_load | ||
377 | and | ||
378 | .Fa down_load | ||
379 | variables. | ||
380 | The 'load' is kept in a form which is multiplied by 256. | ||
381 | So hash->up_load=8*256 will cause a load of 8 to be set. | ||
382 | .Pp | ||
383 | If you are interested in performance the field to watch is | ||
384 | .Fa num_comp_calls . | ||
385 | The hash library keeps track of the 'hash' value for each item so when a | ||
386 | lookup is done, the 'hashes' are compared, if there is a match, then a | ||
387 | full compare is done, and hash->num_comp_calls is incremented. | ||
388 | If num_comp_calls is not equal to num_delete plus num_retrieve it means | ||
389 | that your hash function is generating hashes that are the same for | ||
390 | different values. | ||
391 | It is probably worth changing your hash function if this is the case | ||
392 | because even if your hash table has 10 items in a 'bucket', it can be | ||
393 | searched with 10 | ||
394 | .Vt unsigned long | ||
395 | compares and 10 linked list traverses. | ||
396 | This will be much less expensive that 10 calls to your compare function. | ||
397 | .Pp | ||
398 | .Fn lh_strhash | ||
399 | is a demo string hashing function: | ||
400 | .Pp | ||
401 | .Dl unsigned long lh_strhash(const char *c); | ||
402 | .Pp | ||
403 | Since the LHASH routines would normally be passed structures, this | ||
404 | routine would not normally be passed to | ||
405 | .Fn lh_<type>_new , | ||
406 | rather it would be used in the function passed to | ||
407 | .Fn lh_<type>_new . | ||
408 | .Sh SEE ALSO | ||
409 | .Xr lh_stats 3 | ||
410 | .Sh HISTORY | ||
411 | The lhash library is available in all versions of SSLeay and OpenSSL. | ||
412 | .Fn lh_<type>_error | ||
413 | was added in SSLeay 0.9.1b. | ||
414 | .Pp | ||
415 | In OpenSSL 0.9.7, all lhash functions that were passed function pointers | ||
416 | were changed for better type safety, and the function types | ||
417 | .Vt LHASH_COMP_FN_TYPE , | ||
418 | .Vt LHASH_HASH_FN_TYPE , | ||
419 | .Vt LHASH_DOALL_FN_TYPE , | ||
420 | and | ||
421 | .Vt LHASH_DOALL_ARG_FN_TYPE | ||
422 | became available. | ||
423 | .Pp | ||
424 | In OpenSSL 1.0.0, the lhash interface was revamped for even better type | ||
425 | checking. | ||
426 | .Sh BUGS | ||
427 | .Fn lh_<type>_insert | ||
428 | returns | ||
429 | .Dv NULL | ||
430 | both for success and error. | ||