diff options
Diffstat (limited to '')
-rw-r--r-- | src/lib/libcrypto/mlkem/mlkem768.c | 1138 |
1 files changed, 0 insertions, 1138 deletions
diff --git a/src/lib/libcrypto/mlkem/mlkem768.c b/src/lib/libcrypto/mlkem/mlkem768.c deleted file mode 100644 index bacde0c0b7..0000000000 --- a/src/lib/libcrypto/mlkem/mlkem768.c +++ /dev/null | |||
@@ -1,1138 +0,0 @@ | |||
1 | /* $OpenBSD: mlkem768.c,v 1.7 2025/01/03 08:19:24 tb Exp $ */ | ||
2 | /* | ||
3 | * Copyright (c) 2024, Google Inc. | ||
4 | * Copyright (c) 2024, Bob Beck <beck@obtuse.com> | ||
5 | * | ||
6 | * Permission to use, copy, modify, and/or distribute this software for any | ||
7 | * purpose with or without fee is hereby granted, provided that the above | ||
8 | * copyright notice and this permission notice appear in all copies. | ||
9 | * | ||
10 | * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES | ||
11 | * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF | ||
12 | * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY | ||
13 | * SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES | ||
14 | * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN ACTION | ||
15 | * OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF OR IN | ||
16 | * CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE. | ||
17 | */ | ||
18 | |||
19 | #include <assert.h> | ||
20 | #include <stdlib.h> | ||
21 | #include <string.h> | ||
22 | |||
23 | #include "bytestring.h" | ||
24 | #include "mlkem.h" | ||
25 | |||
26 | #include "sha3_internal.h" | ||
27 | #include "mlkem_internal.h" | ||
28 | #include "constant_time.h" | ||
29 | #include "crypto_internal.h" | ||
30 | |||
31 | /* Remove later */ | ||
32 | #undef LCRYPTO_ALIAS | ||
33 | #define LCRYPTO_ALIAS(A) | ||
34 | |||
35 | /* | ||
36 | * See | ||
37 | * https://csrc.nist.gov/pubs/fips/203/final | ||
38 | */ | ||
39 | |||
40 | static void | ||
41 | prf(uint8_t *out, size_t out_len, const uint8_t in[33]) | ||
42 | { | ||
43 | sha3_ctx ctx; | ||
44 | shake256_init(&ctx); | ||
45 | shake_update(&ctx, in, 33); | ||
46 | shake_xof(&ctx); | ||
47 | shake_out(&ctx, out, out_len); | ||
48 | } | ||
49 | |||
50 | /* Section 4.1 */ | ||
51 | static void | ||
52 | hash_h(uint8_t out[32], const uint8_t *in, size_t len) | ||
53 | { | ||
54 | sha3_ctx ctx; | ||
55 | sha3_init(&ctx, 32); | ||
56 | sha3_update(&ctx, in, len); | ||
57 | sha3_final(out, &ctx); | ||
58 | } | ||
59 | |||
60 | static void | ||
61 | hash_g(uint8_t out[64], const uint8_t *in, size_t len) | ||
62 | { | ||
63 | sha3_ctx ctx; | ||
64 | sha3_init(&ctx, 64); | ||
65 | sha3_update(&ctx, in, len); | ||
66 | sha3_final(out, &ctx); | ||
67 | } | ||
68 | |||
69 | /* this is called 'J' in the spec */ | ||
70 | static void | ||
71 | kdf(uint8_t out[MLKEM_SHARED_SECRET_BYTES], const uint8_t failure_secret[32], | ||
72 | const uint8_t *in, size_t len) | ||
73 | { | ||
74 | sha3_ctx ctx; | ||
75 | shake256_init(&ctx); | ||
76 | shake_update(&ctx, failure_secret, 32); | ||
77 | shake_update(&ctx, in, len); | ||
78 | shake_xof(&ctx); | ||
79 | shake_out(&ctx, out, MLKEM_SHARED_SECRET_BYTES); | ||
80 | } | ||
81 | |||
82 | #define DEGREE 256 | ||
83 | #define RANK768 3 | ||
84 | |||
85 | static const size_t kBarrettMultiplier = 5039; | ||
86 | static const unsigned kBarrettShift = 24; | ||
87 | static const uint16_t kPrime = 3329; | ||
88 | static const int kLog2Prime = 12; | ||
89 | static const uint16_t kHalfPrime = (/*kPrime=*/3329 - 1) / 2; | ||
90 | static const int kDU768 = 10; | ||
91 | static const int kDV768 = 4; | ||
92 | /* | ||
93 | * kInverseDegree is 128^-1 mod 3329; 128 because kPrime does not have a 512th | ||
94 | * root of unity. | ||
95 | */ | ||
96 | static const uint16_t kInverseDegree = 3303; | ||
97 | static const size_t kEncodedVectorSize = | ||
98 | (/*kLog2Prime=*/12 * DEGREE / 8) * RANK768; | ||
99 | static const size_t kCompressedVectorSize = /*kDU768=*/ 10 * RANK768 * DEGREE / | ||
100 | 8; | ||
101 | |||
102 | typedef struct scalar { | ||
103 | /* On every function entry and exit, 0 <= c < kPrime. */ | ||
104 | uint16_t c[DEGREE]; | ||
105 | } scalar; | ||
106 | |||
107 | typedef struct vector { | ||
108 | scalar v[RANK768]; | ||
109 | } vector; | ||
110 | |||
111 | typedef struct matrix { | ||
112 | scalar v[RANK768][RANK768]; | ||
113 | } matrix; | ||
114 | |||
115 | /* | ||
116 | * This bit of Python will be referenced in some of the following comments: | ||
117 | * | ||
118 | * p = 3329 | ||
119 | * | ||
120 | * def bitreverse(i): | ||
121 | * ret = 0 | ||
122 | * for n in range(7): | ||
123 | * bit = i & 1 | ||
124 | * ret <<= 1 | ||
125 | * ret |= bit | ||
126 | * i >>= 1 | ||
127 | * return ret | ||
128 | */ | ||
129 | |||
130 | /* kNTTRoots = [pow(17, bitreverse(i), p) for i in range(128)] */ | ||
131 | static const uint16_t kNTTRoots[128] = { | ||
132 | 1, 1729, 2580, 3289, 2642, 630, 1897, 848, 1062, 1919, 193, 797, | ||
133 | 2786, 3260, 569, 1746, 296, 2447, 1339, 1476, 3046, 56, 2240, 1333, | ||
134 | 1426, 2094, 535, 2882, 2393, 2879, 1974, 821, 289, 331, 3253, 1756, | ||
135 | 1197, 2304, 2277, 2055, 650, 1977, 2513, 632, 2865, 33, 1320, 1915, | ||
136 | 2319, 1435, 807, 452, 1438, 2868, 1534, 2402, 2647, 2617, 1481, 648, | ||
137 | 2474, 3110, 1227, 910, 17, 2761, 583, 2649, 1637, 723, 2288, 1100, | ||
138 | 1409, 2662, 3281, 233, 756, 2156, 3015, 3050, 1703, 1651, 2789, 1789, | ||
139 | 1847, 952, 1461, 2687, 939, 2308, 2437, 2388, 733, 2337, 268, 641, | ||
140 | 1584, 2298, 2037, 3220, 375, 2549, 2090, 1645, 1063, 319, 2773, 757, | ||
141 | 2099, 561, 2466, 2594, 2804, 1092, 403, 1026, 1143, 2150, 2775, 886, | ||
142 | 1722, 1212, 1874, 1029, 2110, 2935, 885, 2154, | ||
143 | }; | ||
144 | |||
145 | /* kInverseNTTRoots = [pow(17, -bitreverse(i), p) for i in range(128)] */ | ||
146 | static const uint16_t kInverseNTTRoots[128] = { | ||
147 | 1, 1600, 40, 749, 2481, 1432, 2699, 687, 1583, 2760, 69, 543, | ||
148 | 2532, 3136, 1410, 2267, 2508, 1355, 450, 936, 447, 2794, 1235, 1903, | ||
149 | 1996, 1089, 3273, 283, 1853, 1990, 882, 3033, 2419, 2102, 219, 855, | ||
150 | 2681, 1848, 712, 682, 927, 1795, 461, 1891, 2877, 2522, 1894, 1010, | ||
151 | 1414, 2009, 3296, 464, 2697, 816, 1352, 2679, 1274, 1052, 1025, 2132, | ||
152 | 1573, 76, 2998, 3040, 1175, 2444, 394, 1219, 2300, 1455, 2117, 1607, | ||
153 | 2443, 554, 1179, 2186, 2303, 2926, 2237, 525, 735, 863, 2768, 1230, | ||
154 | 2572, 556, 3010, 2266, 1684, 1239, 780, 2954, 109, 1292, 1031, 1745, | ||
155 | 2688, 3061, 992, 2596, 941, 892, 1021, 2390, 642, 1868, 2377, 1482, | ||
156 | 1540, 540, 1678, 1626, 279, 314, 1173, 2573, 3096, 48, 667, 1920, | ||
157 | 2229, 1041, 2606, 1692, 680, 2746, 568, 3312, | ||
158 | }; | ||
159 | |||
160 | /* kModRoots = [pow(17, 2*bitreverse(i) + 1, p) for i in range(128)] */ | ||
161 | static const uint16_t kModRoots[128] = { | ||
162 | 17, 3312, 2761, 568, 583, 2746, 2649, 680, 1637, 1692, 723, 2606, | ||
163 | 2288, 1041, 1100, 2229, 1409, 1920, 2662, 667, 3281, 48, 233, 3096, | ||
164 | 756, 2573, 2156, 1173, 3015, 314, 3050, 279, 1703, 1626, 1651, 1678, | ||
165 | 2789, 540, 1789, 1540, 1847, 1482, 952, 2377, 1461, 1868, 2687, 642, | ||
166 | 939, 2390, 2308, 1021, 2437, 892, 2388, 941, 733, 2596, 2337, 992, | ||
167 | 268, 3061, 641, 2688, 1584, 1745, 2298, 1031, 2037, 1292, 3220, 109, | ||
168 | 375, 2954, 2549, 780, 2090, 1239, 1645, 1684, 1063, 2266, 319, 3010, | ||
169 | 2773, 556, 757, 2572, 2099, 1230, 561, 2768, 2466, 863, 2594, 735, | ||
170 | 2804, 525, 1092, 2237, 403, 2926, 1026, 2303, 1143, 2186, 2150, 1179, | ||
171 | 2775, 554, 886, 2443, 1722, 1607, 1212, 2117, 1874, 1455, 1029, 2300, | ||
172 | 2110, 1219, 2935, 394, 885, 2444, 2154, 1175, | ||
173 | }; | ||
174 | |||
175 | /* reduce_once reduces 0 <= x < 2*kPrime, mod kPrime. */ | ||
176 | static uint16_t | ||
177 | reduce_once(uint16_t x) | ||
178 | { | ||
179 | assert(x < 2 * kPrime); | ||
180 | const uint16_t subtracted = x - kPrime; | ||
181 | uint16_t mask = 0u - (subtracted >> 15); | ||
182 | |||
183 | /* | ||
184 | * Although this is a constant-time select, we omit a value barrier here. | ||
185 | * Value barriers impede auto-vectorization (likely because it forces the | ||
186 | * value to transit through a general-purpose register). On AArch64, this | ||
187 | * is a difference of 2x. | ||
188 | * | ||
189 | * We usually add value barriers to selects because Clang turns | ||
190 | * consecutive selects with the same condition into a branch instead of | ||
191 | * CMOV/CSEL. This condition does not occur in ML-KEM, so omitting it | ||
192 | * seems to be safe so far but see | ||
193 | * |scalar_centered_binomial_distribution_eta_2_with_prf|. | ||
194 | */ | ||
195 | return (mask & x) | (~mask & subtracted); | ||
196 | } | ||
197 | |||
198 | /* | ||
199 | * constant time reduce x mod kPrime using Barrett reduction. x must be less | ||
200 | * than kPrime + 2×kPrime². | ||
201 | */ | ||
202 | static uint16_t | ||
203 | reduce(uint32_t x) | ||
204 | { | ||
205 | uint64_t product = (uint64_t)x * kBarrettMultiplier; | ||
206 | uint32_t quotient = (uint32_t)(product >> kBarrettShift); | ||
207 | uint32_t remainder = x - quotient * kPrime; | ||
208 | |||
209 | assert(x < kPrime + 2u * kPrime * kPrime); | ||
210 | return reduce_once(remainder); | ||
211 | } | ||
212 | |||
213 | static void | ||
214 | scalar_zero(scalar *out) | ||
215 | { | ||
216 | memset(out, 0, sizeof(*out)); | ||
217 | } | ||
218 | |||
219 | static void | ||
220 | vector_zero(vector *out) | ||
221 | { | ||
222 | memset(out, 0, sizeof(*out)); | ||
223 | } | ||
224 | |||
225 | /* | ||
226 | * In place number theoretic transform of a given scalar. | ||
227 | * Note that MLKEM's kPrime 3329 does not have a 512th root of unity, so this | ||
228 | * transform leaves off the last iteration of the usual FFT code, with the 128 | ||
229 | * relevant roots of unity being stored in |kNTTRoots|. This means the output | ||
230 | * should be seen as 128 elements in GF(3329^2), with the coefficients of the | ||
231 | * elements being consecutive entries in |s->c|. | ||
232 | */ | ||
233 | static void | ||
234 | scalar_ntt(scalar *s) | ||
235 | { | ||
236 | int offset = DEGREE; | ||
237 | int step; | ||
238 | /* | ||
239 | * `int` is used here because using `size_t` throughout caused a ~5% slowdown | ||
240 | * with Clang 14 on Aarch64. | ||
241 | */ | ||
242 | for (step = 1; step < DEGREE / 2; step <<= 1) { | ||
243 | int i, j, k = 0; | ||
244 | |||
245 | offset >>= 1; | ||
246 | for (i = 0; i < step; i++) { | ||
247 | const uint32_t step_root = kNTTRoots[i + step]; | ||
248 | |||
249 | for (j = k; j < k + offset; j++) { | ||
250 | uint16_t odd, even; | ||
251 | |||
252 | odd = reduce(step_root * s->c[j + offset]); | ||
253 | even = s->c[j]; | ||
254 | s->c[j] = reduce_once(odd + even); | ||
255 | s->c[j + offset] = reduce_once(even - odd + | ||
256 | kPrime); | ||
257 | } | ||
258 | k += 2 * offset; | ||
259 | } | ||
260 | } | ||
261 | } | ||
262 | |||
263 | static void | ||
264 | vector_ntt(vector *a) | ||
265 | { | ||
266 | int i; | ||
267 | |||
268 | for (i = 0; i < RANK768; i++) { | ||
269 | scalar_ntt(&a->v[i]); | ||
270 | } | ||
271 | } | ||
272 | |||
273 | /* | ||
274 | * In place inverse number theoretic transform of a given scalar, with pairs of | ||
275 | * entries of s->v being interpreted as elements of GF(3329^2). Just as with the | ||
276 | * number theoretic transform, this leaves off the first step of the normal iFFT | ||
277 | * to account for the fact that 3329 does not have a 512th root of unity, using | ||
278 | * the precomputed 128 roots of unity stored in |kInverseNTTRoots|. | ||
279 | */ | ||
280 | static void | ||
281 | scalar_inverse_ntt(scalar *s) | ||
282 | { | ||
283 | int i, j, k, offset, step = DEGREE / 2; | ||
284 | |||
285 | /* | ||
286 | * `int` is used here because using `size_t` throughout caused a ~5% slowdown | ||
287 | * with Clang 14 on Aarch64. | ||
288 | */ | ||
289 | for (offset = 2; offset < DEGREE; offset <<= 1) { | ||
290 | step >>= 1; | ||
291 | k = 0; | ||
292 | for (i = 0; i < step; i++) { | ||
293 | uint32_t step_root = kInverseNTTRoots[i + step]; | ||
294 | for (j = k; j < k + offset; j++) { | ||
295 | uint16_t odd, even; | ||
296 | odd = s->c[j + offset]; | ||
297 | even = s->c[j]; | ||
298 | s->c[j] = reduce_once(odd + even); | ||
299 | s->c[j + offset] = reduce(step_root * | ||
300 | (even - odd + kPrime)); | ||
301 | } | ||
302 | k += 2 * offset; | ||
303 | } | ||
304 | } | ||
305 | for (i = 0; i < DEGREE; i++) { | ||
306 | s->c[i] = reduce(s->c[i] * kInverseDegree); | ||
307 | } | ||
308 | } | ||
309 | |||
310 | static void | ||
311 | vector_inverse_ntt(vector *a) | ||
312 | { | ||
313 | int i; | ||
314 | |||
315 | for (i = 0; i < RANK768; i++) { | ||
316 | scalar_inverse_ntt(&a->v[i]); | ||
317 | } | ||
318 | } | ||
319 | |||
320 | static void | ||
321 | scalar_add(scalar *lhs, const scalar *rhs) | ||
322 | { | ||
323 | int i; | ||
324 | |||
325 | for (i = 0; i < DEGREE; i++) { | ||
326 | lhs->c[i] = reduce_once(lhs->c[i] + rhs->c[i]); | ||
327 | } | ||
328 | } | ||
329 | |||
330 | static void | ||
331 | scalar_sub(scalar *lhs, const scalar *rhs) | ||
332 | { | ||
333 | int i; | ||
334 | |||
335 | for (i = 0; i < DEGREE; i++) { | ||
336 | lhs->c[i] = reduce_once(lhs->c[i] - rhs->c[i] + kPrime); | ||
337 | } | ||
338 | } | ||
339 | |||
340 | /* | ||
341 | * Multiplying two scalars in the number theoretically transformed state. | ||
342 | * Since 3329 does not have a 512th root of unity, this means we have to | ||
343 | * interpret the 2*ith and (2*i+1)th entries of the scalar as elements of | ||
344 | * GF(3329)[X]/(X^2 - 17^(2*bitreverse(i)+1)). | ||
345 | * The value of 17^(2*bitreverse(i)+1) mod 3329 is stored in the precomputed | ||
346 | * |kModRoots| table. Our Barrett transform only allows us to multiply two | ||
347 | * reduced numbers together, so we need some intermediate reduction steps, | ||
348 | * even if an uint64_t could hold 3 multiplied numbers. | ||
349 | */ | ||
350 | static void | ||
351 | scalar_mult(scalar *out, const scalar *lhs, const scalar *rhs) | ||
352 | { | ||
353 | int i; | ||
354 | |||
355 | for (i = 0; i < DEGREE / 2; i++) { | ||
356 | uint32_t real_real = (uint32_t)lhs->c[2 * i] * rhs->c[2 * i]; | ||
357 | uint32_t img_img = (uint32_t)lhs->c[2 * i + 1] * | ||
358 | rhs->c[2 * i + 1]; | ||
359 | uint32_t real_img = (uint32_t)lhs->c[2 * i] * rhs->c[2 * i + 1]; | ||
360 | uint32_t img_real = (uint32_t)lhs->c[2 * i + 1] * rhs->c[2 * i]; | ||
361 | |||
362 | out->c[2 * i] = | ||
363 | reduce(real_real + | ||
364 | (uint32_t)reduce(img_img) * kModRoots[i]); | ||
365 | out->c[2 * i + 1] = reduce(img_real + real_img); | ||
366 | } | ||
367 | } | ||
368 | |||
369 | static void | ||
370 | vector_add(vector *lhs, const vector *rhs) | ||
371 | { | ||
372 | int i; | ||
373 | |||
374 | for (i = 0; i < RANK768; i++) { | ||
375 | scalar_add(&lhs->v[i], &rhs->v[i]); | ||
376 | } | ||
377 | } | ||
378 | |||
379 | static void | ||
380 | matrix_mult(vector *out, const matrix *m, const vector *a) | ||
381 | { | ||
382 | int i, j; | ||
383 | |||
384 | vector_zero(out); | ||
385 | for (i = 0; i < RANK768; i++) { | ||
386 | for (j = 0; j < RANK768; j++) { | ||
387 | scalar product; | ||
388 | |||
389 | scalar_mult(&product, &m->v[i][j], &a->v[j]); | ||
390 | scalar_add(&out->v[i], &product); | ||
391 | } | ||
392 | } | ||
393 | } | ||
394 | |||
395 | static void | ||
396 | matrix_mult_transpose(vector *out, const matrix *m, | ||
397 | const vector *a) | ||
398 | { | ||
399 | int i, j; | ||
400 | |||
401 | vector_zero(out); | ||
402 | for (i = 0; i < RANK768; i++) { | ||
403 | for (j = 0; j < RANK768; j++) { | ||
404 | scalar product; | ||
405 | |||
406 | scalar_mult(&product, &m->v[j][i], &a->v[j]); | ||
407 | scalar_add(&out->v[i], &product); | ||
408 | } | ||
409 | } | ||
410 | } | ||
411 | |||
412 | static void | ||
413 | scalar_inner_product(scalar *out, const vector *lhs, | ||
414 | const vector *rhs) | ||
415 | { | ||
416 | int i; | ||
417 | scalar_zero(out); | ||
418 | for (i = 0; i < RANK768; i++) { | ||
419 | scalar product; | ||
420 | |||
421 | scalar_mult(&product, &lhs->v[i], &rhs->v[i]); | ||
422 | scalar_add(out, &product); | ||
423 | } | ||
424 | } | ||
425 | |||
426 | /* | ||
427 | * Algorithm 6 of spec. Rejection samples a Keccak stream to get uniformly | ||
428 | * distributed elements. This is used for matrix expansion and only operates on | ||
429 | * public inputs. | ||
430 | */ | ||
431 | static void | ||
432 | scalar_from_keccak_vartime(scalar *out, sha3_ctx *keccak_ctx) | ||
433 | { | ||
434 | int i, done = 0; | ||
435 | |||
436 | while (done < DEGREE) { | ||
437 | uint8_t block[168]; | ||
438 | |||
439 | shake_out(keccak_ctx, block, sizeof(block)); | ||
440 | for (i = 0; i < sizeof(block) && done < DEGREE; i += 3) { | ||
441 | uint16_t d1 = block[i] + 256 * (block[i + 1] % 16); | ||
442 | uint16_t d2 = block[i + 1] / 16 + 16 * block[i + 2]; | ||
443 | |||
444 | if (d1 < kPrime) { | ||
445 | out->c[done++] = d1; | ||
446 | } | ||
447 | if (d2 < kPrime && done < DEGREE) { | ||
448 | out->c[done++] = d2; | ||
449 | } | ||
450 | } | ||
451 | } | ||
452 | } | ||
453 | |||
454 | /* | ||
455 | * Algorithm 7 of the spec, with eta fixed to two and the PRF call | ||
456 | * included. Creates binominally distributed elements by sampling 2*|eta| bits, | ||
457 | * and setting the coefficient to the count of the first bits minus the count of | ||
458 | * the second bits, resulting in a centered binomial distribution. Since eta is | ||
459 | * two this gives -2/2 with a probability of 1/16, -1/1 with probability 1/4, | ||
460 | * and 0 with probability 3/8. | ||
461 | */ | ||
462 | static void | ||
463 | scalar_centered_binomial_distribution_eta_2_with_prf(scalar *out, | ||
464 | const uint8_t input[33]) | ||
465 | { | ||
466 | uint8_t entropy[128]; | ||
467 | int i; | ||
468 | |||
469 | CTASSERT(sizeof(entropy) == 2 * /*kEta=*/ 2 * DEGREE / 8); | ||
470 | prf(entropy, sizeof(entropy), input); | ||
471 | |||
472 | for (i = 0; i < DEGREE; i += 2) { | ||
473 | uint8_t byte = entropy[i / 2]; | ||
474 | uint16_t mask; | ||
475 | uint16_t value = (byte & 1) + ((byte >> 1) & 1); | ||
476 | |||
477 | value -= ((byte >> 2) & 1) + ((byte >> 3) & 1); | ||
478 | |||
479 | /* | ||
480 | * Add |kPrime| if |value| underflowed. See |reduce_once| for a | ||
481 | * discussion on why the value barrier is omitted. While this | ||
482 | * could have been written reduce_once(value + kPrime), this is | ||
483 | * one extra addition and small range of |value| tempts some | ||
484 | * versions of Clang to emit a branch. | ||
485 | */ | ||
486 | mask = 0u - (value >> 15); | ||
487 | out->c[i] = ((value + kPrime) & mask) | (value & ~mask); | ||
488 | |||
489 | byte >>= 4; | ||
490 | value = (byte & 1) + ((byte >> 1) & 1); | ||
491 | value -= ((byte >> 2) & 1) + ((byte >> 3) & 1); | ||
492 | /* See above. */ | ||
493 | mask = 0u - (value >> 15); | ||
494 | out->c[i + 1] = ((value + kPrime) & mask) | (value & ~mask); | ||
495 | } | ||
496 | } | ||
497 | |||
498 | /* | ||
499 | * Generates a secret vector by using | ||
500 | * |scalar_centered_binomial_distribution_eta_2_with_prf|, using the given seed | ||
501 | * appending and incrementing |counter| for entry of the vector. | ||
502 | */ | ||
503 | static void | ||
504 | vector_generate_secret_eta_2(vector *out, uint8_t *counter, | ||
505 | const uint8_t seed[32]) | ||
506 | { | ||
507 | uint8_t input[33]; | ||
508 | int i; | ||
509 | |||
510 | memcpy(input, seed, 32); | ||
511 | for (i = 0; i < RANK768; i++) { | ||
512 | input[32] = (*counter)++; | ||
513 | scalar_centered_binomial_distribution_eta_2_with_prf(&out->v[i], | ||
514 | input); | ||
515 | } | ||
516 | } | ||
517 | |||
518 | /* Expands the matrix of a seed for key generation and for encaps-CPA. */ | ||
519 | static void | ||
520 | matrix_expand(matrix *out, const uint8_t rho[32]) | ||
521 | { | ||
522 | uint8_t input[34]; | ||
523 | int i, j; | ||
524 | |||
525 | memcpy(input, rho, 32); | ||
526 | for (i = 0; i < RANK768; i++) { | ||
527 | for (j = 0; j < RANK768; j++) { | ||
528 | sha3_ctx keccak_ctx; | ||
529 | |||
530 | input[32] = i; | ||
531 | input[33] = j; | ||
532 | shake128_init(&keccak_ctx); | ||
533 | shake_update(&keccak_ctx, input, sizeof(input)); | ||
534 | shake_xof(&keccak_ctx); | ||
535 | scalar_from_keccak_vartime(&out->v[i][j], &keccak_ctx); | ||
536 | } | ||
537 | } | ||
538 | } | ||
539 | |||
540 | static const uint8_t kMasks[8] = {0x01, 0x03, 0x07, 0x0f, | ||
541 | 0x1f, 0x3f, 0x7f, 0xff}; | ||
542 | |||
543 | static void | ||
544 | scalar_encode(uint8_t *out, const scalar *s, int bits) | ||
545 | { | ||
546 | uint8_t out_byte = 0; | ||
547 | int i, out_byte_bits = 0; | ||
548 | |||
549 | assert(bits <= (int)sizeof(*s->c) * 8 && bits != 1); | ||
550 | for (i = 0; i < DEGREE; i++) { | ||
551 | uint16_t element = s->c[i]; | ||
552 | int element_bits_done = 0; | ||
553 | |||
554 | while (element_bits_done < bits) { | ||
555 | int chunk_bits = bits - element_bits_done; | ||
556 | int out_bits_remaining = 8 - out_byte_bits; | ||
557 | |||
558 | if (chunk_bits >= out_bits_remaining) { | ||
559 | chunk_bits = out_bits_remaining; | ||
560 | out_byte |= (element & | ||
561 | kMasks[chunk_bits - 1]) << out_byte_bits; | ||
562 | *out = out_byte; | ||
563 | out++; | ||
564 | out_byte_bits = 0; | ||
565 | out_byte = 0; | ||
566 | } else { | ||
567 | out_byte |= (element & | ||
568 | kMasks[chunk_bits - 1]) << out_byte_bits; | ||
569 | out_byte_bits += chunk_bits; | ||
570 | } | ||
571 | |||
572 | element_bits_done += chunk_bits; | ||
573 | element >>= chunk_bits; | ||
574 | } | ||
575 | } | ||
576 | |||
577 | if (out_byte_bits > 0) { | ||
578 | *out = out_byte; | ||
579 | } | ||
580 | } | ||
581 | |||
582 | /* scalar_encode_1 is |scalar_encode| specialised for |bits| == 1. */ | ||
583 | static void | ||
584 | scalar_encode_1(uint8_t out[32], const scalar *s) | ||
585 | { | ||
586 | int i, j; | ||
587 | |||
588 | for (i = 0; i < DEGREE; i += 8) { | ||
589 | uint8_t out_byte = 0; | ||
590 | |||
591 | for (j = 0; j < 8; j++) { | ||
592 | out_byte |= (s->c[i + j] & 1) << j; | ||
593 | } | ||
594 | *out = out_byte; | ||
595 | out++; | ||
596 | } | ||
597 | } | ||
598 | |||
599 | /* | ||
600 | * Encodes an entire vector into 32*|RANK768|*|bits| bytes. Note that since 256 | ||
601 | * (DEGREE) is divisible by 8, the individual vector entries will always fill a | ||
602 | * whole number of bytes, so we do not need to worry about bit packing here. | ||
603 | */ | ||
604 | static void | ||
605 | vector_encode(uint8_t *out, const vector *a, int bits) | ||
606 | { | ||
607 | int i; | ||
608 | |||
609 | for (i = 0; i < RANK768; i++) { | ||
610 | scalar_encode(out + i * bits * DEGREE / 8, &a->v[i], bits); | ||
611 | } | ||
612 | } | ||
613 | |||
614 | /* | ||
615 | * scalar_decode parses |DEGREE * bits| bits from |in| into |DEGREE| values in | ||
616 | * |out|. It returns one on success and zero if any parsed value is >= | ||
617 | * |kPrime|. | ||
618 | */ | ||
619 | static int | ||
620 | scalar_decode(scalar *out, const uint8_t *in, int bits) | ||
621 | { | ||
622 | uint8_t in_byte = 0; | ||
623 | int i, in_byte_bits_left = 0; | ||
624 | |||
625 | assert(bits <= (int)sizeof(*out->c) * 8 && bits != 1); | ||
626 | |||
627 | for (i = 0; i < DEGREE; i++) { | ||
628 | uint16_t element = 0; | ||
629 | int element_bits_done = 0; | ||
630 | |||
631 | while (element_bits_done < bits) { | ||
632 | int chunk_bits = bits - element_bits_done; | ||
633 | |||
634 | if (in_byte_bits_left == 0) { | ||
635 | in_byte = *in; | ||
636 | in++; | ||
637 | in_byte_bits_left = 8; | ||
638 | } | ||
639 | |||
640 | if (chunk_bits > in_byte_bits_left) { | ||
641 | chunk_bits = in_byte_bits_left; | ||
642 | } | ||
643 | |||
644 | element |= (in_byte & kMasks[chunk_bits - 1]) << | ||
645 | element_bits_done; | ||
646 | in_byte_bits_left -= chunk_bits; | ||
647 | in_byte >>= chunk_bits; | ||
648 | |||
649 | element_bits_done += chunk_bits; | ||
650 | } | ||
651 | |||
652 | if (element >= kPrime) { | ||
653 | return 0; | ||
654 | } | ||
655 | out->c[i] = element; | ||
656 | } | ||
657 | |||
658 | return 1; | ||
659 | } | ||
660 | |||
661 | /* scalar_decode_1 is |scalar_decode| specialised for |bits| == 1. */ | ||
662 | static void | ||
663 | scalar_decode_1(scalar *out, const uint8_t in[32]) | ||
664 | { | ||
665 | int i, j; | ||
666 | |||
667 | for (i = 0; i < DEGREE; i += 8) { | ||
668 | uint8_t in_byte = *in; | ||
669 | |||
670 | in++; | ||
671 | for (j = 0; j < 8; j++) { | ||
672 | out->c[i + j] = in_byte & 1; | ||
673 | in_byte >>= 1; | ||
674 | } | ||
675 | } | ||
676 | } | ||
677 | |||
678 | /* | ||
679 | * Decodes 32*|RANK768|*|bits| bytes from |in| into |out|. It returns one on | ||
680 | * success or zero if any parsed value is >= |kPrime|. | ||
681 | */ | ||
682 | static int | ||
683 | vector_decode(vector *out, const uint8_t *in, int bits) | ||
684 | { | ||
685 | int i; | ||
686 | |||
687 | for (i = 0; i < RANK768; i++) { | ||
688 | if (!scalar_decode(&out->v[i], in + i * bits * DEGREE / 8, | ||
689 | bits)) { | ||
690 | return 0; | ||
691 | } | ||
692 | } | ||
693 | return 1; | ||
694 | } | ||
695 | |||
696 | /* | ||
697 | * Compresses (lossily) an input |x| mod 3329 into |bits| many bits by grouping | ||
698 | * numbers close to each other together. The formula used is | ||
699 | * round(2^|bits|/kPrime*x) mod 2^|bits|. | ||
700 | * Uses Barrett reduction to achieve constant time. Since we need both the | ||
701 | * remainder (for rounding) and the quotient (as the result), we cannot use | ||
702 | * |reduce| here, but need to do the Barrett reduction directly. | ||
703 | */ | ||
704 | static uint16_t | ||
705 | compress(uint16_t x, int bits) | ||
706 | { | ||
707 | uint32_t shifted = (uint32_t)x << bits; | ||
708 | uint64_t product = (uint64_t)shifted * kBarrettMultiplier; | ||
709 | uint32_t quotient = (uint32_t)(product >> kBarrettShift); | ||
710 | uint32_t remainder = shifted - quotient * kPrime; | ||
711 | |||
712 | /* | ||
713 | * Adjust the quotient to round correctly: | ||
714 | * 0 <= remainder <= kHalfPrime round to 0 | ||
715 | * kHalfPrime < remainder <= kPrime + kHalfPrime round to 1 | ||
716 | * kPrime + kHalfPrime < remainder < 2 * kPrime round to 2 | ||
717 | */ | ||
718 | assert(remainder < 2u * kPrime); | ||
719 | quotient += 1 & constant_time_lt(kHalfPrime, remainder); | ||
720 | quotient += 1 & constant_time_lt(kPrime + kHalfPrime, remainder); | ||
721 | return quotient & ((1 << bits) - 1); | ||
722 | } | ||
723 | |||
724 | /* | ||
725 | * Decompresses |x| by using an equi-distant representative. The formula is | ||
726 | * round(kPrime/2^|bits|*x). Note that 2^|bits| being the divisor allows us to | ||
727 | * implement this logic using only bit operations. | ||
728 | */ | ||
729 | static uint16_t | ||
730 | decompress(uint16_t x, int bits) | ||
731 | { | ||
732 | uint32_t product = (uint32_t)x * kPrime; | ||
733 | uint32_t power = 1 << bits; | ||
734 | /* This is |product| % power, since |power| is a power of 2. */ | ||
735 | uint32_t remainder = product & (power - 1); | ||
736 | /* This is |product| / power, since |power| is a power of 2. */ | ||
737 | uint32_t lower = product >> bits; | ||
738 | |||
739 | /* | ||
740 | * The rounding logic works since the first half of numbers mod |power| have a | ||
741 | * 0 as first bit, and the second half has a 1 as first bit, since |power| is | ||
742 | * a power of 2. As a 12 bit number, |remainder| is always positive, so we | ||
743 | * will shift in 0s for a right shift. | ||
744 | */ | ||
745 | return lower + (remainder >> (bits - 1)); | ||
746 | } | ||
747 | |||
748 | static void | ||
749 | scalar_compress(scalar *s, int bits) | ||
750 | { | ||
751 | int i; | ||
752 | |||
753 | for (i = 0; i < DEGREE; i++) { | ||
754 | s->c[i] = compress(s->c[i], bits); | ||
755 | } | ||
756 | } | ||
757 | |||
758 | static void | ||
759 | scalar_decompress(scalar *s, int bits) | ||
760 | { | ||
761 | int i; | ||
762 | |||
763 | for (i = 0; i < DEGREE; i++) { | ||
764 | s->c[i] = decompress(s->c[i], bits); | ||
765 | } | ||
766 | } | ||
767 | |||
768 | static void | ||
769 | vector_compress(vector *a, int bits) | ||
770 | { | ||
771 | int i; | ||
772 | |||
773 | for (i = 0; i < RANK768; i++) { | ||
774 | scalar_compress(&a->v[i], bits); | ||
775 | } | ||
776 | } | ||
777 | |||
778 | static void | ||
779 | vector_decompress(vector *a, int bits) | ||
780 | { | ||
781 | int i; | ||
782 | |||
783 | for (i = 0; i < RANK768; i++) { | ||
784 | scalar_decompress(&a->v[i], bits); | ||
785 | } | ||
786 | } | ||
787 | |||
788 | struct public_key { | ||
789 | vector t; | ||
790 | uint8_t rho[32]; | ||
791 | uint8_t public_key_hash[32]; | ||
792 | matrix m; | ||
793 | }; | ||
794 | |||
795 | static struct public_key * | ||
796 | public_key_768_from_external(const struct MLKEM768_public_key *external) | ||
797 | { | ||
798 | return (struct public_key *)external; | ||
799 | } | ||
800 | |||
801 | struct private_key { | ||
802 | struct public_key pub; | ||
803 | vector s; | ||
804 | uint8_t fo_failure_secret[32]; | ||
805 | }; | ||
806 | |||
807 | static struct private_key * | ||
808 | private_key_768_from_external(const struct MLKEM768_private_key *external) | ||
809 | { | ||
810 | return (struct private_key *)external; | ||
811 | } | ||
812 | |||
813 | /* | ||
814 | * Calls |MLKEM768_generate_key_external_entropy| with random bytes from | ||
815 | * |RAND_bytes|. | ||
816 | */ | ||
817 | void | ||
818 | MLKEM768_generate_key(uint8_t out_encoded_public_key[MLKEM768_PUBLIC_KEY_BYTES], | ||
819 | uint8_t optional_out_seed[MLKEM_SEED_BYTES], | ||
820 | struct MLKEM768_private_key *out_private_key) | ||
821 | { | ||
822 | uint8_t entropy_buf[MLKEM_SEED_BYTES]; | ||
823 | uint8_t *entropy = optional_out_seed != NULL ? optional_out_seed : | ||
824 | entropy_buf; | ||
825 | |||
826 | arc4random_buf(entropy, MLKEM_SEED_BYTES); | ||
827 | MLKEM768_generate_key_external_entropy(out_encoded_public_key, | ||
828 | out_private_key, entropy); | ||
829 | } | ||
830 | LCRYPTO_ALIAS(MLKEM768_generate_key); | ||
831 | |||
832 | int | ||
833 | MLKEM768_private_key_from_seed(struct MLKEM768_private_key *out_private_key, | ||
834 | const uint8_t *seed, size_t seed_len) | ||
835 | { | ||
836 | uint8_t public_key_bytes[MLKEM768_PUBLIC_KEY_BYTES]; | ||
837 | |||
838 | if (seed_len != MLKEM_SEED_BYTES) { | ||
839 | return 0; | ||
840 | } | ||
841 | MLKEM768_generate_key_external_entropy(public_key_bytes, | ||
842 | out_private_key, seed); | ||
843 | |||
844 | return 1; | ||
845 | } | ||
846 | LCRYPTO_ALIAS(MLKEM768_private_key_from_seed); | ||
847 | |||
848 | static int | ||
849 | mlkem_marshal_public_key(CBB *out, const struct public_key *pub) | ||
850 | { | ||
851 | uint8_t *vector_output; | ||
852 | |||
853 | if (!CBB_add_space(out, &vector_output, kEncodedVectorSize)) { | ||
854 | return 0; | ||
855 | } | ||
856 | vector_encode(vector_output, &pub->t, kLog2Prime); | ||
857 | if (!CBB_add_bytes(out, pub->rho, sizeof(pub->rho))) { | ||
858 | return 0; | ||
859 | } | ||
860 | return 1; | ||
861 | } | ||
862 | |||
863 | void | ||
864 | MLKEM768_generate_key_external_entropy( | ||
865 | uint8_t out_encoded_public_key[MLKEM768_PUBLIC_KEY_BYTES], | ||
866 | struct MLKEM768_private_key *out_private_key, | ||
867 | const uint8_t entropy[MLKEM_SEED_BYTES]) | ||
868 | { | ||
869 | struct private_key *priv = private_key_768_from_external( | ||
870 | out_private_key); | ||
871 | uint8_t augmented_seed[33]; | ||
872 | uint8_t *rho, *sigma; | ||
873 | uint8_t counter = 0; | ||
874 | uint8_t hashed[64]; | ||
875 | vector error; | ||
876 | CBB cbb; | ||
877 | |||
878 | memcpy(augmented_seed, entropy, 32); | ||
879 | augmented_seed[32] = RANK768; | ||
880 | hash_g(hashed, augmented_seed, 33); | ||
881 | rho = hashed; | ||
882 | sigma = hashed + 32; | ||
883 | memcpy(priv->pub.rho, hashed, sizeof(priv->pub.rho)); | ||
884 | matrix_expand(&priv->pub.m, rho); | ||
885 | vector_generate_secret_eta_2(&priv->s, &counter, sigma); | ||
886 | vector_ntt(&priv->s); | ||
887 | vector_generate_secret_eta_2(&error, &counter, sigma); | ||
888 | vector_ntt(&error); | ||
889 | matrix_mult_transpose(&priv->pub.t, &priv->pub.m, &priv->s); | ||
890 | vector_add(&priv->pub.t, &error); | ||
891 | |||
892 | /* XXX - error checking */ | ||
893 | CBB_init_fixed(&cbb, out_encoded_public_key, MLKEM768_PUBLIC_KEY_BYTES); | ||
894 | if (!mlkem_marshal_public_key(&cbb, &priv->pub)) { | ||
895 | abort(); | ||
896 | } | ||
897 | CBB_cleanup(&cbb); | ||
898 | |||
899 | hash_h(priv->pub.public_key_hash, out_encoded_public_key, | ||
900 | MLKEM768_PUBLIC_KEY_BYTES); | ||
901 | memcpy(priv->fo_failure_secret, entropy + 32, 32); | ||
902 | } | ||
903 | |||
904 | void | ||
905 | MLKEM768_public_from_private(struct MLKEM768_public_key *out_public_key, | ||
906 | const struct MLKEM768_private_key *private_key) | ||
907 | { | ||
908 | struct public_key *const pub = public_key_768_from_external( | ||
909 | out_public_key); | ||
910 | const struct private_key *const priv = private_key_768_from_external( | ||
911 | private_key); | ||
912 | |||
913 | *pub = priv->pub; | ||
914 | } | ||
915 | LCRYPTO_ALIAS(MLKEM768_public_from_private); | ||
916 | |||
917 | /* | ||
918 | * Encrypts a message with given randomness to the ciphertext in |out|. Without | ||
919 | * applying the Fujisaki-Okamoto transform this would not result in a CCA secure | ||
920 | * scheme, since lattice schemes are vulnerable to decryption failure oracles. | ||
921 | */ | ||
922 | static void | ||
923 | encrypt_cpa(uint8_t out[MLKEM768_CIPHERTEXT_BYTES], | ||
924 | const struct public_key *pub, const uint8_t message[32], | ||
925 | const uint8_t randomness[32]) | ||
926 | { | ||
927 | scalar expanded_message, scalar_error; | ||
928 | vector secret, error, u; | ||
929 | uint8_t counter = 0; | ||
930 | uint8_t input[33]; | ||
931 | scalar v; | ||
932 | |||
933 | vector_generate_secret_eta_2(&secret, &counter, randomness); | ||
934 | vector_ntt(&secret); | ||
935 | vector_generate_secret_eta_2(&error, &counter, randomness); | ||
936 | memcpy(input, randomness, 32); | ||
937 | input[32] = counter; | ||
938 | scalar_centered_binomial_distribution_eta_2_with_prf(&scalar_error, | ||
939 | input); | ||
940 | matrix_mult(&u, &pub->m, &secret); | ||
941 | vector_inverse_ntt(&u); | ||
942 | vector_add(&u, &error); | ||
943 | scalar_inner_product(&v, &pub->t, &secret); | ||
944 | scalar_inverse_ntt(&v); | ||
945 | scalar_add(&v, &scalar_error); | ||
946 | scalar_decode_1(&expanded_message, message); | ||
947 | scalar_decompress(&expanded_message, 1); | ||
948 | scalar_add(&v, &expanded_message); | ||
949 | vector_compress(&u, kDU768); | ||
950 | vector_encode(out, &u, kDU768); | ||
951 | scalar_compress(&v, kDV768); | ||
952 | scalar_encode(out + kCompressedVectorSize, &v, kDV768); | ||
953 | } | ||
954 | |||
955 | /* Calls MLKEM768_encap_external_entropy| with random bytes */ | ||
956 | void | ||
957 | MLKEM768_encap(uint8_t out_ciphertext[MLKEM768_CIPHERTEXT_BYTES], | ||
958 | uint8_t out_shared_secret[MLKEM_SHARED_SECRET_BYTES], | ||
959 | const struct MLKEM768_public_key *public_key) | ||
960 | { | ||
961 | uint8_t entropy[MLKEM_ENCAP_ENTROPY]; | ||
962 | |||
963 | arc4random_buf(entropy, MLKEM_ENCAP_ENTROPY); | ||
964 | MLKEM768_encap_external_entropy(out_ciphertext, out_shared_secret, | ||
965 | public_key, entropy); | ||
966 | } | ||
967 | LCRYPTO_ALIAS(MLKEM768_encap); | ||
968 | |||
969 | /* See section 6.2 of the spec. */ | ||
970 | void | ||
971 | MLKEM768_encap_external_entropy( | ||
972 | uint8_t out_ciphertext[MLKEM768_CIPHERTEXT_BYTES], | ||
973 | uint8_t out_shared_secret[MLKEM_SHARED_SECRET_BYTES], | ||
974 | const struct MLKEM768_public_key *public_key, | ||
975 | const uint8_t entropy[MLKEM_ENCAP_ENTROPY]) | ||
976 | { | ||
977 | const struct public_key *pub = public_key_768_from_external(public_key); | ||
978 | uint8_t key_and_randomness[64]; | ||
979 | uint8_t input[64]; | ||
980 | |||
981 | memcpy(input, entropy, MLKEM_ENCAP_ENTROPY); | ||
982 | memcpy(input + MLKEM_ENCAP_ENTROPY, pub->public_key_hash, | ||
983 | sizeof(input) - MLKEM_ENCAP_ENTROPY); | ||
984 | hash_g(key_and_randomness, input, sizeof(input)); | ||
985 | encrypt_cpa(out_ciphertext, pub, entropy, key_and_randomness + 32); | ||
986 | memcpy(out_shared_secret, key_and_randomness, 32); | ||
987 | } | ||
988 | |||
989 | static void | ||
990 | decrypt_cpa(uint8_t out[32], const struct private_key *priv, | ||
991 | const uint8_t ciphertext[MLKEM768_CIPHERTEXT_BYTES]) | ||
992 | { | ||
993 | scalar mask, v; | ||
994 | vector u; | ||
995 | |||
996 | vector_decode(&u, ciphertext, kDU768); | ||
997 | vector_decompress(&u, kDU768); | ||
998 | vector_ntt(&u); | ||
999 | scalar_decode(&v, ciphertext + kCompressedVectorSize, kDV768); | ||
1000 | scalar_decompress(&v, kDV768); | ||
1001 | scalar_inner_product(&mask, &priv->s, &u); | ||
1002 | scalar_inverse_ntt(&mask); | ||
1003 | scalar_sub(&v, &mask); | ||
1004 | scalar_compress(&v, 1); | ||
1005 | scalar_encode_1(out, &v); | ||
1006 | } | ||
1007 | |||
1008 | /* See section 6.3 */ | ||
1009 | int | ||
1010 | MLKEM768_decap(uint8_t out_shared_secret[MLKEM_SHARED_SECRET_BYTES], | ||
1011 | const uint8_t *ciphertext, size_t ciphertext_len, | ||
1012 | const struct MLKEM768_private_key *private_key) | ||
1013 | { | ||
1014 | const struct private_key *priv = private_key_768_from_external( | ||
1015 | private_key); | ||
1016 | uint8_t expected_ciphertext[MLKEM768_CIPHERTEXT_BYTES]; | ||
1017 | uint8_t key_and_randomness[64]; | ||
1018 | uint8_t failure_key[32]; | ||
1019 | uint8_t decrypted[64]; | ||
1020 | uint8_t mask; | ||
1021 | int i; | ||
1022 | |||
1023 | if (ciphertext_len != MLKEM768_CIPHERTEXT_BYTES) { | ||
1024 | arc4random_buf(out_shared_secret, MLKEM_SHARED_SECRET_BYTES); | ||
1025 | return 0; | ||
1026 | } | ||
1027 | |||
1028 | decrypt_cpa(decrypted, priv, ciphertext); | ||
1029 | memcpy(decrypted + 32, priv->pub.public_key_hash, | ||
1030 | sizeof(decrypted) - 32); | ||
1031 | hash_g(key_and_randomness, decrypted, sizeof(decrypted)); | ||
1032 | encrypt_cpa(expected_ciphertext, &priv->pub, decrypted, | ||
1033 | key_and_randomness + 32); | ||
1034 | kdf(failure_key, priv->fo_failure_secret, ciphertext, ciphertext_len); | ||
1035 | mask = constant_time_eq_int_8(memcmp(ciphertext, expected_ciphertext, | ||
1036 | sizeof(expected_ciphertext)), 0); | ||
1037 | for (i = 0; i < MLKEM_SHARED_SECRET_BYTES; i++) { | ||
1038 | out_shared_secret[i] = constant_time_select_8(mask, | ||
1039 | key_and_randomness[i], failure_key[i]); | ||
1040 | } | ||
1041 | |||
1042 | return 1; | ||
1043 | } | ||
1044 | LCRYPTO_ALIAS(MLKEM768_decap); | ||
1045 | |||
1046 | int | ||
1047 | MLKEM768_marshal_public_key(CBB *out, | ||
1048 | const struct MLKEM768_public_key *public_key) | ||
1049 | { | ||
1050 | return mlkem_marshal_public_key(out, | ||
1051 | public_key_768_from_external(public_key)); | ||
1052 | } | ||
1053 | LCRYPTO_ALIAS(MLKEM768_marshal_public_key); | ||
1054 | |||
1055 | /* | ||
1056 | * mlkem_parse_public_key_no_hash parses |in| into |pub| but doesn't calculate | ||
1057 | * the value of |pub->public_key_hash|. | ||
1058 | */ | ||
1059 | static int | ||
1060 | mlkem_parse_public_key_no_hash(struct public_key *pub, CBS *in) | ||
1061 | { | ||
1062 | CBS t_bytes; | ||
1063 | |||
1064 | if (!CBS_get_bytes(in, &t_bytes, kEncodedVectorSize) || | ||
1065 | !vector_decode(&pub->t, CBS_data(&t_bytes), kLog2Prime)) { | ||
1066 | return 0; | ||
1067 | } | ||
1068 | memcpy(pub->rho, CBS_data(in), sizeof(pub->rho)); | ||
1069 | if (!CBS_skip(in, sizeof(pub->rho))) | ||
1070 | return 0; | ||
1071 | matrix_expand(&pub->m, pub->rho); | ||
1072 | return 1; | ||
1073 | } | ||
1074 | |||
1075 | int | ||
1076 | MLKEM768_parse_public_key(struct MLKEM768_public_key *public_key, CBS *in) | ||
1077 | { | ||
1078 | struct public_key *pub = public_key_768_from_external(public_key); | ||
1079 | CBS orig_in = *in; | ||
1080 | |||
1081 | if (!mlkem_parse_public_key_no_hash(pub, in) || | ||
1082 | CBS_len(in) != 0) { | ||
1083 | return 0; | ||
1084 | } | ||
1085 | hash_h(pub->public_key_hash, CBS_data(&orig_in), CBS_len(&orig_in)); | ||
1086 | return 1; | ||
1087 | } | ||
1088 | LCRYPTO_ALIAS(MLKEM768_parse_public_key); | ||
1089 | |||
1090 | int | ||
1091 | MLKEM768_marshal_private_key(CBB *out, | ||
1092 | const struct MLKEM768_private_key *private_key) | ||
1093 | { | ||
1094 | const struct private_key *const priv = private_key_768_from_external( | ||
1095 | private_key); | ||
1096 | uint8_t *s_output; | ||
1097 | |||
1098 | if (!CBB_add_space(out, &s_output, kEncodedVectorSize)) { | ||
1099 | return 0; | ||
1100 | } | ||
1101 | vector_encode(s_output, &priv->s, kLog2Prime); | ||
1102 | if (!mlkem_marshal_public_key(out, &priv->pub) || | ||
1103 | !CBB_add_bytes(out, priv->pub.public_key_hash, | ||
1104 | sizeof(priv->pub.public_key_hash)) || | ||
1105 | !CBB_add_bytes(out, priv->fo_failure_secret, | ||
1106 | sizeof(priv->fo_failure_secret))) { | ||
1107 | return 0; | ||
1108 | } | ||
1109 | return 1; | ||
1110 | } | ||
1111 | |||
1112 | int | ||
1113 | MLKEM768_parse_private_key(struct MLKEM768_private_key *out_private_key, | ||
1114 | CBS *in) | ||
1115 | { | ||
1116 | struct private_key *const priv = private_key_768_from_external( | ||
1117 | out_private_key); | ||
1118 | CBS s_bytes; | ||
1119 | |||
1120 | if (!CBS_get_bytes(in, &s_bytes, kEncodedVectorSize) || | ||
1121 | !vector_decode(&priv->s, CBS_data(&s_bytes), kLog2Prime) || | ||
1122 | !mlkem_parse_public_key_no_hash(&priv->pub, in)) { | ||
1123 | return 0; | ||
1124 | } | ||
1125 | memcpy(priv->pub.public_key_hash, CBS_data(in), | ||
1126 | sizeof(priv->pub.public_key_hash)); | ||
1127 | if (!CBS_skip(in, sizeof(priv->pub.public_key_hash))) | ||
1128 | return 0; | ||
1129 | memcpy(priv->fo_failure_secret, CBS_data(in), | ||
1130 | sizeof(priv->fo_failure_secret)); | ||
1131 | if (!CBS_skip(in, sizeof(priv->fo_failure_secret))) | ||
1132 | return 0; | ||
1133 | if (CBS_len(in) != 0) | ||
1134 | return 0; | ||
1135 | |||
1136 | return 1; | ||
1137 | } | ||
1138 | LCRYPTO_ALIAS(MLKEM768_parse_private_key); | ||