summaryrefslogtreecommitdiff
path: root/src/lib/libcrypto/modes/asm/ghash-armv4.pl
diff options
context:
space:
mode:
Diffstat (limited to '')
-rw-r--r--src/lib/libcrypto/modes/asm/ghash-armv4.pl430
1 files changed, 0 insertions, 430 deletions
diff --git a/src/lib/libcrypto/modes/asm/ghash-armv4.pl b/src/lib/libcrypto/modes/asm/ghash-armv4.pl
deleted file mode 100644
index 2d57806b46..0000000000
--- a/src/lib/libcrypto/modes/asm/ghash-armv4.pl
+++ /dev/null
@@ -1,430 +0,0 @@
1#!/usr/bin/env perl
2#
3# ====================================================================
4# Written by Andy Polyakov <appro@openssl.org> for the OpenSSL
5# project. The module is, however, dual licensed under OpenSSL and
6# CRYPTOGAMS licenses depending on where you obtain it. For further
7# details see http://www.openssl.org/~appro/cryptogams/.
8# ====================================================================
9#
10# April 2010
11#
12# The module implements "4-bit" GCM GHASH function and underlying
13# single multiplication operation in GF(2^128). "4-bit" means that it
14# uses 256 bytes per-key table [+32 bytes shared table]. There is no
15# experimental performance data available yet. The only approximation
16# that can be made at this point is based on code size. Inner loop is
17# 32 instructions long and on single-issue core should execute in <40
18# cycles. Having verified that gcc 3.4 didn't unroll corresponding
19# loop, this assembler loop body was found to be ~3x smaller than
20# compiler-generated one...
21#
22# July 2010
23#
24# Rescheduling for dual-issue pipeline resulted in 8.5% improvement on
25# Cortex A8 core and ~25 cycles per processed byte (which was observed
26# to be ~3 times faster than gcc-generated code:-)
27#
28# February 2011
29#
30# Profiler-assisted and platform-specific optimization resulted in 7%
31# improvement on Cortex A8 core and ~23.5 cycles per byte.
32#
33# March 2011
34#
35# Add NEON implementation featuring polynomial multiplication, i.e. no
36# lookup tables involved. On Cortex A8 it was measured to process one
37# byte in 15 cycles or 55% faster than integer-only code.
38
39# ====================================================================
40# Note about "528B" variant. In ARM case it makes lesser sense to
41# implement it for following reasons:
42#
43# - performance improvement won't be anywhere near 50%, because 128-
44# bit shift operation is neatly fused with 128-bit xor here, and
45# "538B" variant would eliminate only 4-5 instructions out of 32
46# in the inner loop (meaning that estimated improvement is ~15%);
47# - ARM-based systems are often embedded ones and extra memory
48# consumption might be unappreciated (for so little improvement);
49#
50# Byte order [in]dependence. =========================================
51#
52# Caller is expected to maintain specific *dword* order in Htable,
53# namely with *least* significant dword of 128-bit value at *lower*
54# address. This differs completely from C code and has everything to
55# do with ldm instruction and order in which dwords are "consumed" by
56# algorithm. *Byte* order within these dwords in turn is whatever
57# *native* byte order on current platform. See gcm128.c for working
58# example...
59
60while (($output=shift) && ($output!~/^\w[\w\-]*\.\w+$/)) {}
61open STDOUT,">$output";
62
63$Xi="r0"; # argument block
64$Htbl="r1";
65$inp="r2";
66$len="r3";
67
68$Zll="r4"; # variables
69$Zlh="r5";
70$Zhl="r6";
71$Zhh="r7";
72$Tll="r8";
73$Tlh="r9";
74$Thl="r10";
75$Thh="r11";
76$nlo="r12";
77################# r13 is stack pointer
78$nhi="r14";
79################# r15 is program counter
80
81$rem_4bit=$inp; # used in gcm_gmult_4bit
82$cnt=$len;
83
84sub Zsmash() {
85 my $i=12;
86 my @args=@_;
87 for ($Zll,$Zlh,$Zhl,$Zhh) {
88 $code.=<<___;
89#if __ARM_ARCH__>=7 && defined(__ARMEL__)
90 rev $_,$_
91 str $_,[$Xi,#$i]
92#elif defined(__ARMEB__)
93 str $_,[$Xi,#$i]
94#else
95 mov $Tlh,$_,lsr#8
96 strb $_,[$Xi,#$i+3]
97 mov $Thl,$_,lsr#16
98 strb $Tlh,[$Xi,#$i+2]
99 mov $Thh,$_,lsr#24
100 strb $Thl,[$Xi,#$i+1]
101 strb $Thh,[$Xi,#$i]
102#endif
103___
104 $code.="\t".shift(@args)."\n";
105 $i-=4;
106 }
107}
108
109$code=<<___;
110#include "arm_arch.h"
111
112.text
113.syntax unified
114.code 32
115
116.type rem_4bit,%object
117.align 5
118rem_4bit:
119.short 0x0000,0x1C20,0x3840,0x2460
120.short 0x7080,0x6CA0,0x48C0,0x54E0
121.short 0xE100,0xFD20,0xD940,0xC560
122.short 0x9180,0x8DA0,0xA9C0,0xB5E0
123.size rem_4bit,.-rem_4bit
124
125.type rem_4bit_get,%function
126rem_4bit_get:
127 sub $rem_4bit,pc,#8
128 sub $rem_4bit,$rem_4bit,#32 @ &rem_4bit
129 b .Lrem_4bit_got
130 nop
131.size rem_4bit_get,.-rem_4bit_get
132
133.global gcm_ghash_4bit
134.type gcm_ghash_4bit,%function
135gcm_ghash_4bit:
136 sub r12,pc,#8
137 add $len,$inp,$len @ $len to point at the end
138 stmdb sp!,{r3-r11,lr} @ save $len/end too
139 sub r12,r12,#48 @ &rem_4bit
140
141 ldmia r12,{r4-r11} @ copy rem_4bit ...
142 stmdb sp!,{r4-r11} @ ... to stack
143
144 ldrb $nlo,[$inp,#15]
145 ldrb $nhi,[$Xi,#15]
146.Louter:
147 eor $nlo,$nlo,$nhi
148 and $nhi,$nlo,#0xf0
149 and $nlo,$nlo,#0x0f
150 mov $cnt,#14
151
152 add $Zhh,$Htbl,$nlo,lsl#4
153 ldmia $Zhh,{$Zll-$Zhh} @ load Htbl[nlo]
154 add $Thh,$Htbl,$nhi
155 ldrb $nlo,[$inp,#14]
156
157 and $nhi,$Zll,#0xf @ rem
158 ldmia $Thh,{$Tll-$Thh} @ load Htbl[nhi]
159 add $nhi,$nhi,$nhi
160 eor $Zll,$Tll,$Zll,lsr#4
161 ldrh $Tll,[sp,$nhi] @ rem_4bit[rem]
162 eor $Zll,$Zll,$Zlh,lsl#28
163 ldrb $nhi,[$Xi,#14]
164 eor $Zlh,$Tlh,$Zlh,lsr#4
165 eor $Zlh,$Zlh,$Zhl,lsl#28
166 eor $Zhl,$Thl,$Zhl,lsr#4
167 eor $Zhl,$Zhl,$Zhh,lsl#28
168 eor $Zhh,$Thh,$Zhh,lsr#4
169 eor $nlo,$nlo,$nhi
170 and $nhi,$nlo,#0xf0
171 and $nlo,$nlo,#0x0f
172 eor $Zhh,$Zhh,$Tll,lsl#16
173
174.Linner:
175 add $Thh,$Htbl,$nlo,lsl#4
176 and $nlo,$Zll,#0xf @ rem
177 subs $cnt,$cnt,#1
178 add $nlo,$nlo,$nlo
179 ldmia $Thh,{$Tll-$Thh} @ load Htbl[nlo]
180 eor $Zll,$Tll,$Zll,lsr#4
181 eor $Zll,$Zll,$Zlh,lsl#28
182 eor $Zlh,$Tlh,$Zlh,lsr#4
183 eor $Zlh,$Zlh,$Zhl,lsl#28
184 ldrh $Tll,[sp,$nlo] @ rem_4bit[rem]
185 eor $Zhl,$Thl,$Zhl,lsr#4
186 ldrbpl $nlo,[$inp,$cnt]
187 eor $Zhl,$Zhl,$Zhh,lsl#28
188 eor $Zhh,$Thh,$Zhh,lsr#4
189
190 add $Thh,$Htbl,$nhi
191 and $nhi,$Zll,#0xf @ rem
192 eor $Zhh,$Zhh,$Tll,lsl#16 @ ^= rem_4bit[rem]
193 add $nhi,$nhi,$nhi
194 ldmia $Thh,{$Tll-$Thh} @ load Htbl[nhi]
195 eor $Zll,$Tll,$Zll,lsr#4
196 ldrbpl $Tll,[$Xi,$cnt]
197 eor $Zll,$Zll,$Zlh,lsl#28
198 eor $Zlh,$Tlh,$Zlh,lsr#4
199 ldrh $Tlh,[sp,$nhi]
200 eor $Zlh,$Zlh,$Zhl,lsl#28
201 eor $Zhl,$Thl,$Zhl,lsr#4
202 eor $Zhl,$Zhl,$Zhh,lsl#28
203 eorpl $nlo,$nlo,$Tll
204 eor $Zhh,$Thh,$Zhh,lsr#4
205 andpl $nhi,$nlo,#0xf0
206 andpl $nlo,$nlo,#0x0f
207 eor $Zhh,$Zhh,$Tlh,lsl#16 @ ^= rem_4bit[rem]
208 bpl .Linner
209
210 ldr $len,[sp,#32] @ re-load $len/end
211 add $inp,$inp,#16
212 mov $nhi,$Zll
213___
214 &Zsmash("cmp\t$inp,$len","ldrbne\t$nlo,[$inp,#15]");
215$code.=<<___;
216 bne .Louter
217
218 add sp,sp,#36
219#if __ARM_ARCH__>=5
220 ldmia sp!,{r4-r11,pc}
221#else
222 ldmia sp!,{r4-r11,lr}
223 tst lr,#1
224 moveq pc,lr @ be binary compatible with V4, yet
225 bx lr @ interoperable with Thumb ISA:-)
226#endif
227.size gcm_ghash_4bit,.-gcm_ghash_4bit
228
229.global gcm_gmult_4bit
230.type gcm_gmult_4bit,%function
231gcm_gmult_4bit:
232 stmdb sp!,{r4-r11,lr}
233 ldrb $nlo,[$Xi,#15]
234 b rem_4bit_get
235.Lrem_4bit_got:
236 and $nhi,$nlo,#0xf0
237 and $nlo,$nlo,#0x0f
238 mov $cnt,#14
239
240 add $Zhh,$Htbl,$nlo,lsl#4
241 ldmia $Zhh,{$Zll-$Zhh} @ load Htbl[nlo]
242 ldrb $nlo,[$Xi,#14]
243
244 add $Thh,$Htbl,$nhi
245 and $nhi,$Zll,#0xf @ rem
246 ldmia $Thh,{$Tll-$Thh} @ load Htbl[nhi]
247 add $nhi,$nhi,$nhi
248 eor $Zll,$Tll,$Zll,lsr#4
249 ldrh $Tll,[$rem_4bit,$nhi] @ rem_4bit[rem]
250 eor $Zll,$Zll,$Zlh,lsl#28
251 eor $Zlh,$Tlh,$Zlh,lsr#4
252 eor $Zlh,$Zlh,$Zhl,lsl#28
253 eor $Zhl,$Thl,$Zhl,lsr#4
254 eor $Zhl,$Zhl,$Zhh,lsl#28
255 eor $Zhh,$Thh,$Zhh,lsr#4
256 and $nhi,$nlo,#0xf0
257 eor $Zhh,$Zhh,$Tll,lsl#16
258 and $nlo,$nlo,#0x0f
259
260.Loop:
261 add $Thh,$Htbl,$nlo,lsl#4
262 and $nlo,$Zll,#0xf @ rem
263 subs $cnt,$cnt,#1
264 add $nlo,$nlo,$nlo
265 ldmia $Thh,{$Tll-$Thh} @ load Htbl[nlo]
266 eor $Zll,$Tll,$Zll,lsr#4
267 eor $Zll,$Zll,$Zlh,lsl#28
268 eor $Zlh,$Tlh,$Zlh,lsr#4
269 eor $Zlh,$Zlh,$Zhl,lsl#28
270 ldrh $Tll,[$rem_4bit,$nlo] @ rem_4bit[rem]
271 eor $Zhl,$Thl,$Zhl,lsr#4
272 ldrbpl $nlo,[$Xi,$cnt]
273 eor $Zhl,$Zhl,$Zhh,lsl#28
274 eor $Zhh,$Thh,$Zhh,lsr#4
275
276 add $Thh,$Htbl,$nhi
277 and $nhi,$Zll,#0xf @ rem
278 eor $Zhh,$Zhh,$Tll,lsl#16 @ ^= rem_4bit[rem]
279 add $nhi,$nhi,$nhi
280 ldmia $Thh,{$Tll-$Thh} @ load Htbl[nhi]
281 eor $Zll,$Tll,$Zll,lsr#4
282 eor $Zll,$Zll,$Zlh,lsl#28
283 eor $Zlh,$Tlh,$Zlh,lsr#4
284 ldrh $Tll,[$rem_4bit,$nhi] @ rem_4bit[rem]
285 eor $Zlh,$Zlh,$Zhl,lsl#28
286 eor $Zhl,$Thl,$Zhl,lsr#4
287 eor $Zhl,$Zhl,$Zhh,lsl#28
288 eor $Zhh,$Thh,$Zhh,lsr#4
289 andpl $nhi,$nlo,#0xf0
290 andpl $nlo,$nlo,#0x0f
291 eor $Zhh,$Zhh,$Tll,lsl#16 @ ^= rem_4bit[rem]
292 bpl .Loop
293___
294 &Zsmash();
295$code.=<<___;
296#if __ARM_ARCH__>=5
297 ldmia sp!,{r4-r11,pc}
298#else
299 ldmia sp!,{r4-r11,lr}
300 tst lr,#1
301 moveq pc,lr @ be binary compatible with V4, yet
302 bx lr @ interoperable with Thumb ISA:-)
303#endif
304.size gcm_gmult_4bit,.-gcm_gmult_4bit
305___
306{
307my $cnt=$Htbl; # $Htbl is used once in the very beginning
308
309my ($Hhi, $Hlo, $Zo, $T, $xi, $mod) = map("d$_",(0..7));
310my ($Qhi, $Qlo, $Z, $R, $zero, $Qpost, $IN) = map("q$_",(8..15));
311
312# Z:Zo keeps 128-bit result shifted by 1 to the right, with bottom bit
313# in Zo. Or should I say "top bit", because GHASH is specified in
314# reverse bit order? Otherwise straightforward 128-bt H by one input
315# byte multiplication and modulo-reduction, times 16.
316
317sub Dlo() { shift=~m|q([1]?[0-9])|?"d".($1*2):""; }
318sub Dhi() { shift=~m|q([1]?[0-9])|?"d".($1*2+1):""; }
319sub Q() { shift=~m|d([1-3]?[02468])|?"q".($1/2):""; }
320
321$code.=<<___;
322#if __ARM_ARCH__>=7 && !defined(__STRICT_ALIGNMENT)
323.fpu neon
324
325.global gcm_gmult_neon
326.type gcm_gmult_neon,%function
327.align 4
328gcm_gmult_neon:
329 sub $Htbl,#16 @ point at H in GCM128_CTX
330 vld1.64 `&Dhi("$IN")`,[$Xi,:64]!@ load Xi
331 vmov.i32 $mod,#0xe1 @ our irreducible polynomial
332 vld1.64 `&Dlo("$IN")`,[$Xi,:64]!
333 vshr.u64 $mod,#32
334 vldmia $Htbl,{$Hhi-$Hlo} @ load H
335 veor $zero,$zero
336#ifdef __ARMEL__
337 vrev64.8 $IN,$IN
338#endif
339 veor $Qpost,$Qpost
340 veor $R,$R
341 mov $cnt,#16
342 veor $Z,$Z
343 mov $len,#16
344 veor $Zo,$Zo
345 vdup.8 $xi,`&Dlo("$IN")`[0] @ broadcast lowest byte
346 b .Linner_neon
347.size gcm_gmult_neon,.-gcm_gmult_neon
348
349.global gcm_ghash_neon
350.type gcm_ghash_neon,%function
351.align 4
352gcm_ghash_neon:
353 vld1.64 `&Dhi("$Z")`,[$Xi,:64]! @ load Xi
354 vmov.i32 $mod,#0xe1 @ our irreducible polynomial
355 vld1.64 `&Dlo("$Z")`,[$Xi,:64]!
356 vshr.u64 $mod,#32
357 vldmia $Xi,{$Hhi-$Hlo} @ load H
358 veor $zero,$zero
359 nop
360#ifdef __ARMEL__
361 vrev64.8 $Z,$Z
362#endif
363.Louter_neon:
364 vld1.64 `&Dhi($IN)`,[$inp]! @ load inp
365 veor $Qpost,$Qpost
366 vld1.64 `&Dlo($IN)`,[$inp]!
367 veor $R,$R
368 mov $cnt,#16
369#ifdef __ARMEL__
370 vrev64.8 $IN,$IN
371#endif
372 veor $Zo,$Zo
373 veor $IN,$Z @ inp^=Xi
374 veor $Z,$Z
375 vdup.8 $xi,`&Dlo("$IN")`[0] @ broadcast lowest byte
376.Linner_neon:
377 subs $cnt,$cnt,#1
378 vmull.p8 $Qlo,$Hlo,$xi @ H.lo·Xi[i]
379 vmull.p8 $Qhi,$Hhi,$xi @ H.hi·Xi[i]
380 vext.8 $IN,$zero,#1 @ IN>>=8
381
382 veor $Z,$Qpost @ modulo-scheduled part
383 vshl.i64 `&Dlo("$R")`,#48
384 vdup.8 $xi,`&Dlo("$IN")`[0] @ broadcast lowest byte
385 veor $T,`&Dlo("$Qlo")`,`&Dlo("$Z")`
386
387 veor `&Dhi("$Z")`,`&Dlo("$R")`
388 vuzp.8 $Qlo,$Qhi
389 vsli.8 $Zo,$T,#1 @ compose the "carry" byte
390 vext.8 $Z,$zero,#1 @ Z>>=8
391
392 vmull.p8 $R,$Zo,$mod @ "carry"·0xe1
393 vshr.u8 $Zo,$T,#7 @ save Z's bottom bit
394 vext.8 $Qpost,$Qlo,$zero,#1 @ Qlo>>=8
395 veor $Z,$Qhi
396 bne .Linner_neon
397
398 veor $Z,$Qpost @ modulo-scheduled artefact
399 vshl.i64 `&Dlo("$R")`,#48
400 veor `&Dhi("$Z")`,`&Dlo("$R")`
401
402 @ finalization, normalize Z:Zo
403 vand $Zo,$mod @ suffices to mask the bit
404 vshr.u64 `&Dhi(&Q("$Zo"))`,`&Dlo("$Z")`,#63
405 vshl.i64 $Z,#1
406 subs $len,#16
407 vorr $Z,`&Q("$Zo")` @ Z=Z:Zo<<1
408 bne .Louter_neon
409
410#ifdef __ARMEL__
411 vrev64.8 $Z,$Z
412#endif
413 sub $Xi,#16
414 vst1.64 `&Dhi("$Z")`,[$Xi,:64]! @ write out Xi
415 vst1.64 `&Dlo("$Z")`,[$Xi,:64]
416
417 bx lr
418.size gcm_ghash_neon,.-gcm_ghash_neon
419#endif
420___
421}
422$code.=<<___;
423.asciz "GHASH for ARMv4/NEON, CRYPTOGAMS by <appro\@openssl.org>"
424.align 2
425___
426
427$code =~ s/\`([^\`]*)\`/eval $1/gem;
428$code =~ s/\bbx\s+lr\b/.word\t0xe12fff1e/gm; # make it possible to compile with -march=armv4
429print $code;
430close STDOUT; # enforce flush