diff options
Diffstat (limited to '')
-rw-r--r-- | src/lib/libcrypto/modes/gcm128.c | 1358 |
1 files changed, 0 insertions, 1358 deletions
diff --git a/src/lib/libcrypto/modes/gcm128.c b/src/lib/libcrypto/modes/gcm128.c deleted file mode 100644 index 6c89bd44b7..0000000000 --- a/src/lib/libcrypto/modes/gcm128.c +++ /dev/null | |||
@@ -1,1358 +0,0 @@ | |||
1 | /* $OpenBSD: gcm128.c,v 1.27 2024/09/06 09:57:32 tb Exp $ */ | ||
2 | /* ==================================================================== | ||
3 | * Copyright (c) 2010 The OpenSSL Project. All rights reserved. | ||
4 | * | ||
5 | * Redistribution and use in source and binary forms, with or without | ||
6 | * modification, are permitted provided that the following conditions | ||
7 | * are met: | ||
8 | * | ||
9 | * 1. Redistributions of source code must retain the above copyright | ||
10 | * notice, this list of conditions and the following disclaimer. | ||
11 | * | ||
12 | * 2. Redistributions in binary form must reproduce the above copyright | ||
13 | * notice, this list of conditions and the following disclaimer in | ||
14 | * the documentation and/or other materials provided with the | ||
15 | * distribution. | ||
16 | * | ||
17 | * 3. All advertising materials mentioning features or use of this | ||
18 | * software must display the following acknowledgment: | ||
19 | * "This product includes software developed by the OpenSSL Project | ||
20 | * for use in the OpenSSL Toolkit. (http://www.openssl.org/)" | ||
21 | * | ||
22 | * 4. The names "OpenSSL Toolkit" and "OpenSSL Project" must not be used to | ||
23 | * endorse or promote products derived from this software without | ||
24 | * prior written permission. For written permission, please contact | ||
25 | * openssl-core@openssl.org. | ||
26 | * | ||
27 | * 5. Products derived from this software may not be called "OpenSSL" | ||
28 | * nor may "OpenSSL" appear in their names without prior written | ||
29 | * permission of the OpenSSL Project. | ||
30 | * | ||
31 | * 6. Redistributions of any form whatsoever must retain the following | ||
32 | * acknowledgment: | ||
33 | * "This product includes software developed by the OpenSSL Project | ||
34 | * for use in the OpenSSL Toolkit (http://www.openssl.org/)" | ||
35 | * | ||
36 | * THIS SOFTWARE IS PROVIDED BY THE OpenSSL PROJECT ``AS IS'' AND ANY | ||
37 | * EXPRESSED OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE | ||
38 | * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR | ||
39 | * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE OpenSSL PROJECT OR | ||
40 | * ITS CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, | ||
41 | * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT | ||
42 | * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; | ||
43 | * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) | ||
44 | * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, | ||
45 | * STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) | ||
46 | * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED | ||
47 | * OF THE POSSIBILITY OF SUCH DAMAGE. | ||
48 | * ==================================================================== | ||
49 | */ | ||
50 | |||
51 | #define OPENSSL_FIPSAPI | ||
52 | |||
53 | #include <string.h> | ||
54 | |||
55 | #include <openssl/crypto.h> | ||
56 | |||
57 | #include "crypto_internal.h" | ||
58 | #include "modes_local.h" | ||
59 | |||
60 | #ifndef MODES_DEBUG | ||
61 | # ifndef NDEBUG | ||
62 | # define NDEBUG | ||
63 | # endif | ||
64 | #endif | ||
65 | |||
66 | #if defined(BSWAP4) && defined(__STRICT_ALIGNMENT) | ||
67 | /* redefine, because alignment is ensured */ | ||
68 | #undef GETU32 | ||
69 | #define GETU32(p) BSWAP4(*(const u32 *)(p)) | ||
70 | #endif | ||
71 | |||
72 | #define PACK(s) ((size_t)(s)<<(sizeof(size_t)*8-16)) | ||
73 | #define REDUCE1BIT(V) \ | ||
74 | do { \ | ||
75 | if (sizeof(size_t)==8) { \ | ||
76 | u64 T = U64(0xe100000000000000) & (0-(V.lo&1)); \ | ||
77 | V.lo = (V.hi<<63)|(V.lo>>1); \ | ||
78 | V.hi = (V.hi>>1 )^T; \ | ||
79 | } else { \ | ||
80 | u32 T = 0xe1000000U & (0-(u32)(V.lo&1)); \ | ||
81 | V.lo = (V.hi<<63)|(V.lo>>1); \ | ||
82 | V.hi = (V.hi>>1 )^((u64)T<<32); \ | ||
83 | } \ | ||
84 | } while(0) | ||
85 | |||
86 | /* | ||
87 | * Even though permitted values for TABLE_BITS are 8, 4 and 1, it should | ||
88 | * never be set to 8. 8 is effectively reserved for testing purposes. | ||
89 | * TABLE_BITS>1 are lookup-table-driven implementations referred to as | ||
90 | * "Shoup's" in GCM specification. In other words OpenSSL does not cover | ||
91 | * whole spectrum of possible table driven implementations. Why? In | ||
92 | * non-"Shoup's" case memory access pattern is segmented in such manner, | ||
93 | * that it's trivial to see that cache timing information can reveal | ||
94 | * fair portion of intermediate hash value. Given that ciphertext is | ||
95 | * always available to attacker, it's possible for him to attempt to | ||
96 | * deduce secret parameter H and if successful, tamper with messages | ||
97 | * [which is nothing but trivial in CTR mode]. In "Shoup's" case it's | ||
98 | * not as trivial, but there is no reason to believe that it's resistant | ||
99 | * to cache-timing attack. And the thing about "8-bit" implementation is | ||
100 | * that it consumes 16 (sixteen) times more memory, 4KB per individual | ||
101 | * key + 1KB shared. Well, on pros side it should be twice as fast as | ||
102 | * "4-bit" version. And for gcc-generated x86[_64] code, "8-bit" version | ||
103 | * was observed to run ~75% faster, closer to 100% for commercial | ||
104 | * compilers... Yet "4-bit" procedure is preferred, because it's | ||
105 | * believed to provide better security-performance balance and adequate | ||
106 | * all-round performance. "All-round" refers to things like: | ||
107 | * | ||
108 | * - shorter setup time effectively improves overall timing for | ||
109 | * handling short messages; | ||
110 | * - larger table allocation can become unbearable because of VM | ||
111 | * subsystem penalties (for example on Windows large enough free | ||
112 | * results in VM working set trimming, meaning that consequent | ||
113 | * malloc would immediately incur working set expansion); | ||
114 | * - larger table has larger cache footprint, which can affect | ||
115 | * performance of other code paths (not necessarily even from same | ||
116 | * thread in Hyper-Threading world); | ||
117 | * | ||
118 | * Value of 1 is not appropriate for performance reasons. | ||
119 | */ | ||
120 | #if TABLE_BITS==8 | ||
121 | |||
122 | static void | ||
123 | gcm_init_8bit(u128 Htable[256], u64 H[2]) | ||
124 | { | ||
125 | int i, j; | ||
126 | u128 V; | ||
127 | |||
128 | Htable[0].hi = 0; | ||
129 | Htable[0].lo = 0; | ||
130 | V.hi = H[0]; | ||
131 | V.lo = H[1]; | ||
132 | |||
133 | for (Htable[128] = V, i = 64; i > 0; i >>= 1) { | ||
134 | REDUCE1BIT(V); | ||
135 | Htable[i] = V; | ||
136 | } | ||
137 | |||
138 | for (i = 2; i < 256; i <<= 1) { | ||
139 | u128 *Hi = Htable + i, H0 = *Hi; | ||
140 | for (j = 1; j < i; ++j) { | ||
141 | Hi[j].hi = H0.hi ^ Htable[j].hi; | ||
142 | Hi[j].lo = H0.lo ^ Htable[j].lo; | ||
143 | } | ||
144 | } | ||
145 | } | ||
146 | |||
147 | static void | ||
148 | gcm_gmult_8bit(u64 Xi[2], const u128 Htable[256]) | ||
149 | { | ||
150 | u128 Z = { 0, 0}; | ||
151 | const u8 *xi = (const u8 *)Xi + 15; | ||
152 | size_t rem, n = *xi; | ||
153 | static const size_t rem_8bit[256] = { | ||
154 | PACK(0x0000), PACK(0x01C2), PACK(0x0384), PACK(0x0246), | ||
155 | PACK(0x0708), PACK(0x06CA), PACK(0x048C), PACK(0x054E), | ||
156 | PACK(0x0E10), PACK(0x0FD2), PACK(0x0D94), PACK(0x0C56), | ||
157 | PACK(0x0918), PACK(0x08DA), PACK(0x0A9C), PACK(0x0B5E), | ||
158 | PACK(0x1C20), PACK(0x1DE2), PACK(0x1FA4), PACK(0x1E66), | ||
159 | PACK(0x1B28), PACK(0x1AEA), PACK(0x18AC), PACK(0x196E), | ||
160 | PACK(0x1230), PACK(0x13F2), PACK(0x11B4), PACK(0x1076), | ||
161 | PACK(0x1538), PACK(0x14FA), PACK(0x16BC), PACK(0x177E), | ||
162 | PACK(0x3840), PACK(0x3982), PACK(0x3BC4), PACK(0x3A06), | ||
163 | PACK(0x3F48), PACK(0x3E8A), PACK(0x3CCC), PACK(0x3D0E), | ||
164 | PACK(0x3650), PACK(0x3792), PACK(0x35D4), PACK(0x3416), | ||
165 | PACK(0x3158), PACK(0x309A), PACK(0x32DC), PACK(0x331E), | ||
166 | PACK(0x2460), PACK(0x25A2), PACK(0x27E4), PACK(0x2626), | ||
167 | PACK(0x2368), PACK(0x22AA), PACK(0x20EC), PACK(0x212E), | ||
168 | PACK(0x2A70), PACK(0x2BB2), PACK(0x29F4), PACK(0x2836), | ||
169 | PACK(0x2D78), PACK(0x2CBA), PACK(0x2EFC), PACK(0x2F3E), | ||
170 | PACK(0x7080), PACK(0x7142), PACK(0x7304), PACK(0x72C6), | ||
171 | PACK(0x7788), PACK(0x764A), PACK(0x740C), PACK(0x75CE), | ||
172 | PACK(0x7E90), PACK(0x7F52), PACK(0x7D14), PACK(0x7CD6), | ||
173 | PACK(0x7998), PACK(0x785A), PACK(0x7A1C), PACK(0x7BDE), | ||
174 | PACK(0x6CA0), PACK(0x6D62), PACK(0x6F24), PACK(0x6EE6), | ||
175 | PACK(0x6BA8), PACK(0x6A6A), PACK(0x682C), PACK(0x69EE), | ||
176 | PACK(0x62B0), PACK(0x6372), PACK(0x6134), PACK(0x60F6), | ||
177 | PACK(0x65B8), PACK(0x647A), PACK(0x663C), PACK(0x67FE), | ||
178 | PACK(0x48C0), PACK(0x4902), PACK(0x4B44), PACK(0x4A86), | ||
179 | PACK(0x4FC8), PACK(0x4E0A), PACK(0x4C4C), PACK(0x4D8E), | ||
180 | PACK(0x46D0), PACK(0x4712), PACK(0x4554), PACK(0x4496), | ||
181 | PACK(0x41D8), PACK(0x401A), PACK(0x425C), PACK(0x439E), | ||
182 | PACK(0x54E0), PACK(0x5522), PACK(0x5764), PACK(0x56A6), | ||
183 | PACK(0x53E8), PACK(0x522A), PACK(0x506C), PACK(0x51AE), | ||
184 | PACK(0x5AF0), PACK(0x5B32), PACK(0x5974), PACK(0x58B6), | ||
185 | PACK(0x5DF8), PACK(0x5C3A), PACK(0x5E7C), PACK(0x5FBE), | ||
186 | PACK(0xE100), PACK(0xE0C2), PACK(0xE284), PACK(0xE346), | ||
187 | PACK(0xE608), PACK(0xE7CA), PACK(0xE58C), PACK(0xE44E), | ||
188 | PACK(0xEF10), PACK(0xEED2), PACK(0xEC94), PACK(0xED56), | ||
189 | PACK(0xE818), PACK(0xE9DA), PACK(0xEB9C), PACK(0xEA5E), | ||
190 | PACK(0xFD20), PACK(0xFCE2), PACK(0xFEA4), PACK(0xFF66), | ||
191 | PACK(0xFA28), PACK(0xFBEA), PACK(0xF9AC), PACK(0xF86E), | ||
192 | PACK(0xF330), PACK(0xF2F2), PACK(0xF0B4), PACK(0xF176), | ||
193 | PACK(0xF438), PACK(0xF5FA), PACK(0xF7BC), PACK(0xF67E), | ||
194 | PACK(0xD940), PACK(0xD882), PACK(0xDAC4), PACK(0xDB06), | ||
195 | PACK(0xDE48), PACK(0xDF8A), PACK(0xDDCC), PACK(0xDC0E), | ||
196 | PACK(0xD750), PACK(0xD692), PACK(0xD4D4), PACK(0xD516), | ||
197 | PACK(0xD058), PACK(0xD19A), PACK(0xD3DC), PACK(0xD21E), | ||
198 | PACK(0xC560), PACK(0xC4A2), PACK(0xC6E4), PACK(0xC726), | ||
199 | PACK(0xC268), PACK(0xC3AA), PACK(0xC1EC), PACK(0xC02E), | ||
200 | PACK(0xCB70), PACK(0xCAB2), PACK(0xC8F4), PACK(0xC936), | ||
201 | PACK(0xCC78), PACK(0xCDBA), PACK(0xCFFC), PACK(0xCE3E), | ||
202 | PACK(0x9180), PACK(0x9042), PACK(0x9204), PACK(0x93C6), | ||
203 | PACK(0x9688), PACK(0x974A), PACK(0x950C), PACK(0x94CE), | ||
204 | PACK(0x9F90), PACK(0x9E52), PACK(0x9C14), PACK(0x9DD6), | ||
205 | PACK(0x9898), PACK(0x995A), PACK(0x9B1C), PACK(0x9ADE), | ||
206 | PACK(0x8DA0), PACK(0x8C62), PACK(0x8E24), PACK(0x8FE6), | ||
207 | PACK(0x8AA8), PACK(0x8B6A), PACK(0x892C), PACK(0x88EE), | ||
208 | PACK(0x83B0), PACK(0x8272), PACK(0x8034), PACK(0x81F6), | ||
209 | PACK(0x84B8), PACK(0x857A), PACK(0x873C), PACK(0x86FE), | ||
210 | PACK(0xA9C0), PACK(0xA802), PACK(0xAA44), PACK(0xAB86), | ||
211 | PACK(0xAEC8), PACK(0xAF0A), PACK(0xAD4C), PACK(0xAC8E), | ||
212 | PACK(0xA7D0), PACK(0xA612), PACK(0xA454), PACK(0xA596), | ||
213 | PACK(0xA0D8), PACK(0xA11A), PACK(0xA35C), PACK(0xA29E), | ||
214 | PACK(0xB5E0), PACK(0xB422), PACK(0xB664), PACK(0xB7A6), | ||
215 | PACK(0xB2E8), PACK(0xB32A), PACK(0xB16C), PACK(0xB0AE), | ||
216 | PACK(0xBBF0), PACK(0xBA32), PACK(0xB874), PACK(0xB9B6), | ||
217 | PACK(0xBCF8), PACK(0xBD3A), PACK(0xBF7C), PACK(0xBEBE) }; | ||
218 | |||
219 | while (1) { | ||
220 | Z.hi ^= Htable[n].hi; | ||
221 | Z.lo ^= Htable[n].lo; | ||
222 | |||
223 | if ((u8 *)Xi == xi) | ||
224 | break; | ||
225 | |||
226 | n = *(--xi); | ||
227 | |||
228 | rem = (size_t)Z.lo & 0xff; | ||
229 | Z.lo = (Z.hi << 56)|(Z.lo >> 8); | ||
230 | Z.hi = (Z.hi >> 8); | ||
231 | #if SIZE_MAX == 0xffffffffffffffff | ||
232 | Z.hi ^= rem_8bit[rem]; | ||
233 | #else | ||
234 | Z.hi ^= (u64)rem_8bit[rem] << 32; | ||
235 | #endif | ||
236 | } | ||
237 | |||
238 | Xi[0] = htobe64(Z.hi); | ||
239 | Xi[1] = htobe64(Z.lo); | ||
240 | } | ||
241 | #define GCM_MUL(ctx,Xi) gcm_gmult_8bit(ctx->Xi.u,ctx->Htable) | ||
242 | |||
243 | #elif TABLE_BITS==4 | ||
244 | |||
245 | static void | ||
246 | gcm_init_4bit(u128 Htable[16], u64 H[2]) | ||
247 | { | ||
248 | u128 V; | ||
249 | #if defined(OPENSSL_SMALL_FOOTPRINT) | ||
250 | int i; | ||
251 | #endif | ||
252 | |||
253 | Htable[0].hi = 0; | ||
254 | Htable[0].lo = 0; | ||
255 | V.hi = H[0]; | ||
256 | V.lo = H[1]; | ||
257 | |||
258 | #if defined(OPENSSL_SMALL_FOOTPRINT) | ||
259 | for (Htable[8] = V, i = 4; i > 0; i >>= 1) { | ||
260 | REDUCE1BIT(V); | ||
261 | Htable[i] = V; | ||
262 | } | ||
263 | |||
264 | for (i = 2; i < 16; i <<= 1) { | ||
265 | u128 *Hi = Htable + i; | ||
266 | int j; | ||
267 | for (V = *Hi, j = 1; j < i; ++j) { | ||
268 | Hi[j].hi = V.hi ^ Htable[j].hi; | ||
269 | Hi[j].lo = V.lo ^ Htable[j].lo; | ||
270 | } | ||
271 | } | ||
272 | #else | ||
273 | Htable[8] = V; | ||
274 | REDUCE1BIT(V); | ||
275 | Htable[4] = V; | ||
276 | REDUCE1BIT(V); | ||
277 | Htable[2] = V; | ||
278 | REDUCE1BIT(V); | ||
279 | Htable[1] = V; | ||
280 | Htable[3].hi = V.hi ^ Htable[2].hi, Htable[3].lo = V.lo ^ Htable[2].lo; | ||
281 | V = Htable[4]; | ||
282 | Htable[5].hi = V.hi ^ Htable[1].hi, Htable[5].lo = V.lo ^ Htable[1].lo; | ||
283 | Htable[6].hi = V.hi ^ Htable[2].hi, Htable[6].lo = V.lo ^ Htable[2].lo; | ||
284 | Htable[7].hi = V.hi ^ Htable[3].hi, Htable[7].lo = V.lo ^ Htable[3].lo; | ||
285 | V = Htable[8]; | ||
286 | Htable[9].hi = V.hi ^ Htable[1].hi, Htable[9].lo = V.lo ^ Htable[1].lo; | ||
287 | Htable[10].hi = V.hi ^ Htable[2].hi, | ||
288 | Htable[10].lo = V.lo ^ Htable[2].lo; | ||
289 | Htable[11].hi = V.hi ^ Htable[3].hi, | ||
290 | Htable[11].lo = V.lo ^ Htable[3].lo; | ||
291 | Htable[12].hi = V.hi ^ Htable[4].hi, | ||
292 | Htable[12].lo = V.lo ^ Htable[4].lo; | ||
293 | Htable[13].hi = V.hi ^ Htable[5].hi, | ||
294 | Htable[13].lo = V.lo ^ Htable[5].lo; | ||
295 | Htable[14].hi = V.hi ^ Htable[6].hi, | ||
296 | Htable[14].lo = V.lo ^ Htable[6].lo; | ||
297 | Htable[15].hi = V.hi ^ Htable[7].hi, | ||
298 | Htable[15].lo = V.lo ^ Htable[7].lo; | ||
299 | #endif | ||
300 | #if defined(GHASH_ASM) && (defined(__arm__) || defined(__arm)) | ||
301 | /* | ||
302 | * ARM assembler expects specific dword order in Htable. | ||
303 | */ | ||
304 | { | ||
305 | int j; | ||
306 | #if BYTE_ORDER == LITTLE_ENDIAN | ||
307 | for (j = 0; j < 16; ++j) { | ||
308 | V = Htable[j]; | ||
309 | Htable[j].hi = V.lo; | ||
310 | Htable[j].lo = V.hi; | ||
311 | } | ||
312 | #else /* BIG_ENDIAN */ | ||
313 | for (j = 0; j < 16; ++j) { | ||
314 | V = Htable[j]; | ||
315 | Htable[j].hi = V.lo << 32|V.lo >> 32; | ||
316 | Htable[j].lo = V.hi << 32|V.hi >> 32; | ||
317 | } | ||
318 | #endif | ||
319 | } | ||
320 | #endif | ||
321 | } | ||
322 | |||
323 | #ifndef GHASH_ASM | ||
324 | static const size_t rem_4bit[16] = { | ||
325 | PACK(0x0000), PACK(0x1C20), PACK(0x3840), PACK(0x2460), | ||
326 | PACK(0x7080), PACK(0x6CA0), PACK(0x48C0), PACK(0x54E0), | ||
327 | PACK(0xE100), PACK(0xFD20), PACK(0xD940), PACK(0xC560), | ||
328 | PACK(0x9180), PACK(0x8DA0), PACK(0xA9C0), PACK(0xB5E0) }; | ||
329 | |||
330 | static void | ||
331 | gcm_gmult_4bit(u64 Xi[2], const u128 Htable[16]) | ||
332 | { | ||
333 | u128 Z; | ||
334 | int cnt = 15; | ||
335 | size_t rem, nlo, nhi; | ||
336 | |||
337 | nlo = ((const u8 *)Xi)[15]; | ||
338 | nhi = nlo >> 4; | ||
339 | nlo &= 0xf; | ||
340 | |||
341 | Z.hi = Htable[nlo].hi; | ||
342 | Z.lo = Htable[nlo].lo; | ||
343 | |||
344 | while (1) { | ||
345 | rem = (size_t)Z.lo & 0xf; | ||
346 | Z.lo = (Z.hi << 60)|(Z.lo >> 4); | ||
347 | Z.hi = (Z.hi >> 4); | ||
348 | #if SIZE_MAX == 0xffffffffffffffff | ||
349 | Z.hi ^= rem_4bit[rem]; | ||
350 | #else | ||
351 | Z.hi ^= (u64)rem_4bit[rem] << 32; | ||
352 | #endif | ||
353 | Z.hi ^= Htable[nhi].hi; | ||
354 | Z.lo ^= Htable[nhi].lo; | ||
355 | |||
356 | if (--cnt < 0) | ||
357 | break; | ||
358 | |||
359 | nlo = ((const u8 *)Xi)[cnt]; | ||
360 | nhi = nlo >> 4; | ||
361 | nlo &= 0xf; | ||
362 | |||
363 | rem = (size_t)Z.lo & 0xf; | ||
364 | Z.lo = (Z.hi << 60)|(Z.lo >> 4); | ||
365 | Z.hi = (Z.hi >> 4); | ||
366 | #if SIZE_MAX == 0xffffffffffffffff | ||
367 | Z.hi ^= rem_4bit[rem]; | ||
368 | #else | ||
369 | Z.hi ^= (u64)rem_4bit[rem] << 32; | ||
370 | #endif | ||
371 | Z.hi ^= Htable[nlo].hi; | ||
372 | Z.lo ^= Htable[nlo].lo; | ||
373 | } | ||
374 | |||
375 | Xi[0] = htobe64(Z.hi); | ||
376 | Xi[1] = htobe64(Z.lo); | ||
377 | } | ||
378 | |||
379 | #if !defined(OPENSSL_SMALL_FOOTPRINT) | ||
380 | /* | ||
381 | * Streamed gcm_mult_4bit, see CRYPTO_gcm128_[en|de]crypt for | ||
382 | * details... Compiler-generated code doesn't seem to give any | ||
383 | * performance improvement, at least not on x86[_64]. It's here | ||
384 | * mostly as reference and a placeholder for possible future | ||
385 | * non-trivial optimization[s]... | ||
386 | */ | ||
387 | static void | ||
388 | gcm_ghash_4bit(u64 Xi[2], const u128 Htable[16], | ||
389 | const u8 *inp, size_t len) | ||
390 | { | ||
391 | u128 Z; | ||
392 | int cnt; | ||
393 | size_t rem, nlo, nhi; | ||
394 | |||
395 | #if 1 | ||
396 | do { | ||
397 | cnt = 15; | ||
398 | nlo = ((const u8 *)Xi)[15]; | ||
399 | nlo ^= inp[15]; | ||
400 | nhi = nlo >> 4; | ||
401 | nlo &= 0xf; | ||
402 | |||
403 | Z.hi = Htable[nlo].hi; | ||
404 | Z.lo = Htable[nlo].lo; | ||
405 | |||
406 | while (1) { | ||
407 | rem = (size_t)Z.lo & 0xf; | ||
408 | Z.lo = (Z.hi << 60)|(Z.lo >> 4); | ||
409 | Z.hi = (Z.hi >> 4); | ||
410 | #if SIZE_MAX == 0xffffffffffffffff | ||
411 | Z.hi ^= rem_4bit[rem]; | ||
412 | #else | ||
413 | Z.hi ^= (u64)rem_4bit[rem] << 32; | ||
414 | #endif | ||
415 | Z.hi ^= Htable[nhi].hi; | ||
416 | Z.lo ^= Htable[nhi].lo; | ||
417 | |||
418 | if (--cnt < 0) | ||
419 | break; | ||
420 | |||
421 | nlo = ((const u8 *)Xi)[cnt]; | ||
422 | nlo ^= inp[cnt]; | ||
423 | nhi = nlo >> 4; | ||
424 | nlo &= 0xf; | ||
425 | |||
426 | rem = (size_t)Z.lo & 0xf; | ||
427 | Z.lo = (Z.hi << 60)|(Z.lo >> 4); | ||
428 | Z.hi = (Z.hi >> 4); | ||
429 | #if SIZE_MAX == 0xffffffffffffffff | ||
430 | Z.hi ^= rem_4bit[rem]; | ||
431 | #else | ||
432 | Z.hi ^= (u64)rem_4bit[rem] << 32; | ||
433 | #endif | ||
434 | Z.hi ^= Htable[nlo].hi; | ||
435 | Z.lo ^= Htable[nlo].lo; | ||
436 | } | ||
437 | #else | ||
438 | /* | ||
439 | * Extra 256+16 bytes per-key plus 512 bytes shared tables | ||
440 | * [should] give ~50% improvement... One could have PACK()-ed | ||
441 | * the rem_8bit even here, but the priority is to minimize | ||
442 | * cache footprint... | ||
443 | */ | ||
444 | u128 Hshr4[16]; /* Htable shifted right by 4 bits */ | ||
445 | u8 Hshl4[16]; /* Htable shifted left by 4 bits */ | ||
446 | static const unsigned short rem_8bit[256] = { | ||
447 | 0x0000, 0x01C2, 0x0384, 0x0246, 0x0708, 0x06CA, 0x048C, 0x054E, | ||
448 | 0x0E10, 0x0FD2, 0x0D94, 0x0C56, 0x0918, 0x08DA, 0x0A9C, 0x0B5E, | ||
449 | 0x1C20, 0x1DE2, 0x1FA4, 0x1E66, 0x1B28, 0x1AEA, 0x18AC, 0x196E, | ||
450 | 0x1230, 0x13F2, 0x11B4, 0x1076, 0x1538, 0x14FA, 0x16BC, 0x177E, | ||
451 | 0x3840, 0x3982, 0x3BC4, 0x3A06, 0x3F48, 0x3E8A, 0x3CCC, 0x3D0E, | ||
452 | 0x3650, 0x3792, 0x35D4, 0x3416, 0x3158, 0x309A, 0x32DC, 0x331E, | ||
453 | 0x2460, 0x25A2, 0x27E4, 0x2626, 0x2368, 0x22AA, 0x20EC, 0x212E, | ||
454 | 0x2A70, 0x2BB2, 0x29F4, 0x2836, 0x2D78, 0x2CBA, 0x2EFC, 0x2F3E, | ||
455 | 0x7080, 0x7142, 0x7304, 0x72C6, 0x7788, 0x764A, 0x740C, 0x75CE, | ||
456 | 0x7E90, 0x7F52, 0x7D14, 0x7CD6, 0x7998, 0x785A, 0x7A1C, 0x7BDE, | ||
457 | 0x6CA0, 0x6D62, 0x6F24, 0x6EE6, 0x6BA8, 0x6A6A, 0x682C, 0x69EE, | ||
458 | 0x62B0, 0x6372, 0x6134, 0x60F6, 0x65B8, 0x647A, 0x663C, 0x67FE, | ||
459 | 0x48C0, 0x4902, 0x4B44, 0x4A86, 0x4FC8, 0x4E0A, 0x4C4C, 0x4D8E, | ||
460 | 0x46D0, 0x4712, 0x4554, 0x4496, 0x41D8, 0x401A, 0x425C, 0x439E, | ||
461 | 0x54E0, 0x5522, 0x5764, 0x56A6, 0x53E8, 0x522A, 0x506C, 0x51AE, | ||
462 | 0x5AF0, 0x5B32, 0x5974, 0x58B6, 0x5DF8, 0x5C3A, 0x5E7C, 0x5FBE, | ||
463 | 0xE100, 0xE0C2, 0xE284, 0xE346, 0xE608, 0xE7CA, 0xE58C, 0xE44E, | ||
464 | 0xEF10, 0xEED2, 0xEC94, 0xED56, 0xE818, 0xE9DA, 0xEB9C, 0xEA5E, | ||
465 | 0xFD20, 0xFCE2, 0xFEA4, 0xFF66, 0xFA28, 0xFBEA, 0xF9AC, 0xF86E, | ||
466 | 0xF330, 0xF2F2, 0xF0B4, 0xF176, 0xF438, 0xF5FA, 0xF7BC, 0xF67E, | ||
467 | 0xD940, 0xD882, 0xDAC4, 0xDB06, 0xDE48, 0xDF8A, 0xDDCC, 0xDC0E, | ||
468 | 0xD750, 0xD692, 0xD4D4, 0xD516, 0xD058, 0xD19A, 0xD3DC, 0xD21E, | ||
469 | 0xC560, 0xC4A2, 0xC6E4, 0xC726, 0xC268, 0xC3AA, 0xC1EC, 0xC02E, | ||
470 | 0xCB70, 0xCAB2, 0xC8F4, 0xC936, 0xCC78, 0xCDBA, 0xCFFC, 0xCE3E, | ||
471 | 0x9180, 0x9042, 0x9204, 0x93C6, 0x9688, 0x974A, 0x950C, 0x94CE, | ||
472 | 0x9F90, 0x9E52, 0x9C14, 0x9DD6, 0x9898, 0x995A, 0x9B1C, 0x9ADE, | ||
473 | 0x8DA0, 0x8C62, 0x8E24, 0x8FE6, 0x8AA8, 0x8B6A, 0x892C, 0x88EE, | ||
474 | 0x83B0, 0x8272, 0x8034, 0x81F6, 0x84B8, 0x857A, 0x873C, 0x86FE, | ||
475 | 0xA9C0, 0xA802, 0xAA44, 0xAB86, 0xAEC8, 0xAF0A, 0xAD4C, 0xAC8E, | ||
476 | 0xA7D0, 0xA612, 0xA454, 0xA596, 0xA0D8, 0xA11A, 0xA35C, 0xA29E, | ||
477 | 0xB5E0, 0xB422, 0xB664, 0xB7A6, 0xB2E8, 0xB32A, 0xB16C, 0xB0AE, | ||
478 | 0xBBF0, 0xBA32, 0xB874, 0xB9B6, 0xBCF8, 0xBD3A, 0xBF7C, 0xBEBE }; | ||
479 | /* | ||
480 | * This pre-processing phase slows down procedure by approximately | ||
481 | * same time as it makes each loop spin faster. In other words | ||
482 | * single block performance is approximately same as straightforward | ||
483 | * "4-bit" implementation, and then it goes only faster... | ||
484 | */ | ||
485 | for (cnt = 0; cnt < 16; ++cnt) { | ||
486 | Z.hi = Htable[cnt].hi; | ||
487 | Z.lo = Htable[cnt].lo; | ||
488 | Hshr4[cnt].lo = (Z.hi << 60)|(Z.lo >> 4); | ||
489 | Hshr4[cnt].hi = (Z.hi >> 4); | ||
490 | Hshl4[cnt] = (u8)(Z.lo << 4); | ||
491 | } | ||
492 | |||
493 | do { | ||
494 | for (Z.lo = 0, Z.hi = 0, cnt = 15; cnt; --cnt) { | ||
495 | nlo = ((const u8 *)Xi)[cnt]; | ||
496 | nlo ^= inp[cnt]; | ||
497 | nhi = nlo >> 4; | ||
498 | nlo &= 0xf; | ||
499 | |||
500 | Z.hi ^= Htable[nlo].hi; | ||
501 | Z.lo ^= Htable[nlo].lo; | ||
502 | |||
503 | rem = (size_t)Z.lo & 0xff; | ||
504 | |||
505 | Z.lo = (Z.hi << 56)|(Z.lo >> 8); | ||
506 | Z.hi = (Z.hi >> 8); | ||
507 | |||
508 | Z.hi ^= Hshr4[nhi].hi; | ||
509 | Z.lo ^= Hshr4[nhi].lo; | ||
510 | Z.hi ^= (u64)rem_8bit[rem ^ Hshl4[nhi]] << 48; | ||
511 | } | ||
512 | |||
513 | nlo = ((const u8 *)Xi)[0]; | ||
514 | nlo ^= inp[0]; | ||
515 | nhi = nlo >> 4; | ||
516 | nlo &= 0xf; | ||
517 | |||
518 | Z.hi ^= Htable[nlo].hi; | ||
519 | Z.lo ^= Htable[nlo].lo; | ||
520 | |||
521 | rem = (size_t)Z.lo & 0xf; | ||
522 | |||
523 | Z.lo = (Z.hi << 60)|(Z.lo >> 4); | ||
524 | Z.hi = (Z.hi >> 4); | ||
525 | |||
526 | Z.hi ^= Htable[nhi].hi; | ||
527 | Z.lo ^= Htable[nhi].lo; | ||
528 | Z.hi ^= ((u64)rem_8bit[rem << 4]) << 48; | ||
529 | #endif | ||
530 | |||
531 | Xi[0] = htobe64(Z.hi); | ||
532 | Xi[1] = htobe64(Z.lo); | ||
533 | } while (inp += 16, len -= 16); | ||
534 | } | ||
535 | #endif | ||
536 | #else | ||
537 | void gcm_gmult_4bit(u64 Xi[2], const u128 Htable[16]); | ||
538 | void gcm_ghash_4bit(u64 Xi[2], const u128 Htable[16], const u8 *inp, | ||
539 | size_t len); | ||
540 | #endif | ||
541 | |||
542 | #define GCM_MUL(ctx,Xi) gcm_gmult_4bit(ctx->Xi.u,ctx->Htable) | ||
543 | #if defined(GHASH_ASM) || !defined(OPENSSL_SMALL_FOOTPRINT) | ||
544 | #define GHASH(ctx,in,len) gcm_ghash_4bit((ctx)->Xi.u,(ctx)->Htable,in,len) | ||
545 | /* GHASH_CHUNK is "stride parameter" missioned to mitigate cache | ||
546 | * trashing effect. In other words idea is to hash data while it's | ||
547 | * still in L1 cache after encryption pass... */ | ||
548 | #define GHASH_CHUNK (3*1024) | ||
549 | #endif | ||
550 | |||
551 | #else /* TABLE_BITS */ | ||
552 | |||
553 | static void | ||
554 | gcm_gmult_1bit(u64 Xi[2], const u64 H[2]) | ||
555 | { | ||
556 | u128 V, Z = { 0,0 }; | ||
557 | long X; | ||
558 | int i, j; | ||
559 | const long *xi = (const long *)Xi; | ||
560 | |||
561 | V.hi = H[0]; /* H is in host byte order, no byte swapping */ | ||
562 | V.lo = H[1]; | ||
563 | |||
564 | for (j = 0; j < 16/sizeof(long); ++j) { | ||
565 | #if BYTE_ORDER == LITTLE_ENDIAN | ||
566 | #if SIZE_MAX == 0xffffffffffffffff | ||
567 | #ifdef BSWAP8 | ||
568 | X = (long)(BSWAP8(xi[j])); | ||
569 | #else | ||
570 | const u8 *p = (const u8 *)(xi + j); | ||
571 | X = (long)((u64)GETU32(p) << 32|GETU32(p + 4)); | ||
572 | #endif | ||
573 | #else | ||
574 | const u8 *p = (const u8 *)(xi + j); | ||
575 | X = (long)GETU32(p); | ||
576 | #endif | ||
577 | #else /* BIG_ENDIAN */ | ||
578 | X = xi[j]; | ||
579 | #endif | ||
580 | |||
581 | for (i = 0; i < 8*sizeof(long); ++i, X <<= 1) { | ||
582 | u64 M = (u64)(X >> (8*sizeof(long) - 1)); | ||
583 | Z.hi ^= V.hi & M; | ||
584 | Z.lo ^= V.lo & M; | ||
585 | |||
586 | REDUCE1BIT(V); | ||
587 | } | ||
588 | } | ||
589 | |||
590 | Xi[0] = htobe64(Z.hi); | ||
591 | Xi[1] = htobe64(Z.lo); | ||
592 | } | ||
593 | #define GCM_MUL(ctx,Xi) gcm_gmult_1bit(ctx->Xi.u,ctx->H.u) | ||
594 | |||
595 | #endif | ||
596 | |||
597 | #if defined(GHASH_ASM) && \ | ||
598 | (defined(__i386) || defined(__i386__) || \ | ||
599 | defined(__x86_64) || defined(__x86_64__) || \ | ||
600 | defined(_M_IX86) || defined(_M_AMD64) || defined(_M_X64)) | ||
601 | #include "x86_arch.h" | ||
602 | #endif | ||
603 | |||
604 | #if TABLE_BITS==4 && defined(GHASH_ASM) | ||
605 | # if (defined(__i386) || defined(__i386__) || \ | ||
606 | defined(__x86_64) || defined(__x86_64__) || \ | ||
607 | defined(_M_IX86) || defined(_M_AMD64) || defined(_M_X64)) | ||
608 | # define GHASH_ASM_X86_OR_64 | ||
609 | # define GCM_FUNCREF_4BIT | ||
610 | |||
611 | void gcm_init_clmul(u128 Htable[16], const u64 Xi[2]); | ||
612 | void gcm_gmult_clmul(u64 Xi[2], const u128 Htable[16]); | ||
613 | void gcm_ghash_clmul(u64 Xi[2], const u128 Htable[16], const u8 *inp, | ||
614 | size_t len); | ||
615 | |||
616 | # if defined(__i386) || defined(__i386__) || defined(_M_IX86) | ||
617 | # define GHASH_ASM_X86 | ||
618 | void gcm_gmult_4bit_mmx(u64 Xi[2], const u128 Htable[16]); | ||
619 | void gcm_ghash_4bit_mmx(u64 Xi[2], const u128 Htable[16], const u8 *inp, | ||
620 | size_t len); | ||
621 | |||
622 | void gcm_gmult_4bit_x86(u64 Xi[2], const u128 Htable[16]); | ||
623 | void gcm_ghash_4bit_x86(u64 Xi[2], const u128 Htable[16], const u8 *inp, | ||
624 | size_t len); | ||
625 | # endif | ||
626 | # elif defined(__arm__) || defined(__arm) | ||
627 | # include "arm_arch.h" | ||
628 | # if __ARM_ARCH__>=7 && !defined(__STRICT_ALIGNMENT) | ||
629 | # define GHASH_ASM_ARM | ||
630 | # define GCM_FUNCREF_4BIT | ||
631 | void gcm_gmult_neon(u64 Xi[2], const u128 Htable[16]); | ||
632 | void gcm_ghash_neon(u64 Xi[2], const u128 Htable[16], const u8 *inp, | ||
633 | size_t len); | ||
634 | # endif | ||
635 | # endif | ||
636 | #endif | ||
637 | |||
638 | #ifdef GCM_FUNCREF_4BIT | ||
639 | # undef GCM_MUL | ||
640 | # define GCM_MUL(ctx,Xi) (*gcm_gmult_p)(ctx->Xi.u,ctx->Htable) | ||
641 | # ifdef GHASH | ||
642 | # undef GHASH | ||
643 | # define GHASH(ctx,in,len) (*gcm_ghash_p)(ctx->Xi.u,ctx->Htable,in,len) | ||
644 | # endif | ||
645 | #endif | ||
646 | |||
647 | void | ||
648 | CRYPTO_gcm128_init(GCM128_CONTEXT *ctx, void *key, block128_f block) | ||
649 | { | ||
650 | memset(ctx, 0, sizeof(*ctx)); | ||
651 | ctx->block = block; | ||
652 | ctx->key = key; | ||
653 | |||
654 | (*block)(ctx->H.c, ctx->H.c, key); | ||
655 | |||
656 | /* H is stored in host byte order */ | ||
657 | ctx->H.u[0] = be64toh(ctx->H.u[0]); | ||
658 | ctx->H.u[1] = be64toh(ctx->H.u[1]); | ||
659 | |||
660 | #if TABLE_BITS==8 | ||
661 | gcm_init_8bit(ctx->Htable, ctx->H.u); | ||
662 | #elif TABLE_BITS==4 | ||
663 | # if defined(GHASH_ASM_X86_OR_64) | ||
664 | # if !defined(GHASH_ASM_X86) || defined(OPENSSL_IA32_SSE2) | ||
665 | /* check FXSR and PCLMULQDQ bits */ | ||
666 | if ((crypto_cpu_caps_ia32() & (CPUCAP_MASK_FXSR | CPUCAP_MASK_PCLMUL)) == | ||
667 | (CPUCAP_MASK_FXSR | CPUCAP_MASK_PCLMUL)) { | ||
668 | gcm_init_clmul(ctx->Htable, ctx->H.u); | ||
669 | ctx->gmult = gcm_gmult_clmul; | ||
670 | ctx->ghash = gcm_ghash_clmul; | ||
671 | return; | ||
672 | } | ||
673 | # endif | ||
674 | gcm_init_4bit(ctx->Htable, ctx->H.u); | ||
675 | # if defined(GHASH_ASM_X86) /* x86 only */ | ||
676 | # if defined(OPENSSL_IA32_SSE2) | ||
677 | if (crypto_cpu_caps_ia32() & CPUCAP_MASK_SSE) { /* check SSE bit */ | ||
678 | # else | ||
679 | if (crypto_cpu_caps_ia32() & CPUCAP_MASK_MMX) { /* check MMX bit */ | ||
680 | # endif | ||
681 | ctx->gmult = gcm_gmult_4bit_mmx; | ||
682 | ctx->ghash = gcm_ghash_4bit_mmx; | ||
683 | } else { | ||
684 | ctx->gmult = gcm_gmult_4bit_x86; | ||
685 | ctx->ghash = gcm_ghash_4bit_x86; | ||
686 | } | ||
687 | # else | ||
688 | ctx->gmult = gcm_gmult_4bit; | ||
689 | ctx->ghash = gcm_ghash_4bit; | ||
690 | # endif | ||
691 | # elif defined(GHASH_ASM_ARM) | ||
692 | if (OPENSSL_armcap_P & ARMV7_NEON) { | ||
693 | ctx->gmult = gcm_gmult_neon; | ||
694 | ctx->ghash = gcm_ghash_neon; | ||
695 | } else { | ||
696 | gcm_init_4bit(ctx->Htable, ctx->H.u); | ||
697 | ctx->gmult = gcm_gmult_4bit; | ||
698 | ctx->ghash = gcm_ghash_4bit; | ||
699 | } | ||
700 | # else | ||
701 | gcm_init_4bit(ctx->Htable, ctx->H.u); | ||
702 | # endif | ||
703 | #endif | ||
704 | } | ||
705 | LCRYPTO_ALIAS(CRYPTO_gcm128_init); | ||
706 | |||
707 | void | ||
708 | CRYPTO_gcm128_setiv(GCM128_CONTEXT *ctx, const unsigned char *iv, size_t len) | ||
709 | { | ||
710 | unsigned int ctr; | ||
711 | #ifdef GCM_FUNCREF_4BIT | ||
712 | void (*gcm_gmult_p)(u64 Xi[2], const u128 Htable[16]) = ctx->gmult; | ||
713 | #endif | ||
714 | |||
715 | ctx->Yi.u[0] = 0; | ||
716 | ctx->Yi.u[1] = 0; | ||
717 | ctx->Xi.u[0] = 0; | ||
718 | ctx->Xi.u[1] = 0; | ||
719 | ctx->len.u[0] = 0; /* AAD length */ | ||
720 | ctx->len.u[1] = 0; /* message length */ | ||
721 | ctx->ares = 0; | ||
722 | ctx->mres = 0; | ||
723 | |||
724 | if (len == 12) { | ||
725 | memcpy(ctx->Yi.c, iv, 12); | ||
726 | ctx->Yi.c[15] = 1; | ||
727 | ctr = 1; | ||
728 | } else { | ||
729 | size_t i; | ||
730 | u64 len0 = len; | ||
731 | |||
732 | while (len >= 16) { | ||
733 | for (i = 0; i < 16; ++i) | ||
734 | ctx->Yi.c[i] ^= iv[i]; | ||
735 | GCM_MUL(ctx, Yi); | ||
736 | iv += 16; | ||
737 | len -= 16; | ||
738 | } | ||
739 | if (len) { | ||
740 | for (i = 0; i < len; ++i) | ||
741 | ctx->Yi.c[i] ^= iv[i]; | ||
742 | GCM_MUL(ctx, Yi); | ||
743 | } | ||
744 | len0 <<= 3; | ||
745 | ctx->Yi.u[1] ^= htobe64(len0); | ||
746 | |||
747 | GCM_MUL(ctx, Yi); | ||
748 | |||
749 | ctr = be32toh(ctx->Yi.d[3]); | ||
750 | } | ||
751 | |||
752 | (*ctx->block)(ctx->Yi.c, ctx->EK0.c, ctx->key); | ||
753 | ++ctr; | ||
754 | ctx->Yi.d[3] = htobe32(ctr); | ||
755 | } | ||
756 | LCRYPTO_ALIAS(CRYPTO_gcm128_setiv); | ||
757 | |||
758 | int | ||
759 | CRYPTO_gcm128_aad(GCM128_CONTEXT *ctx, const unsigned char *aad, size_t len) | ||
760 | { | ||
761 | size_t i; | ||
762 | unsigned int n; | ||
763 | u64 alen = ctx->len.u[0]; | ||
764 | #ifdef GCM_FUNCREF_4BIT | ||
765 | void (*gcm_gmult_p)(u64 Xi[2], const u128 Htable[16]) = ctx->gmult; | ||
766 | # ifdef GHASH | ||
767 | void (*gcm_ghash_p)(u64 Xi[2], const u128 Htable[16], | ||
768 | const u8 *inp, size_t len) = ctx->ghash; | ||
769 | # endif | ||
770 | #endif | ||
771 | |||
772 | if (ctx->len.u[1]) | ||
773 | return -2; | ||
774 | |||
775 | alen += len; | ||
776 | if (alen > (U64(1) << 61) || (sizeof(len) == 8 && alen < len)) | ||
777 | return -1; | ||
778 | ctx->len.u[0] = alen; | ||
779 | |||
780 | n = ctx->ares; | ||
781 | if (n) { | ||
782 | while (n && len) { | ||
783 | ctx->Xi.c[n] ^= *(aad++); | ||
784 | --len; | ||
785 | n = (n + 1) % 16; | ||
786 | } | ||
787 | if (n == 0) | ||
788 | GCM_MUL(ctx, Xi); | ||
789 | else { | ||
790 | ctx->ares = n; | ||
791 | return 0; | ||
792 | } | ||
793 | } | ||
794 | |||
795 | #ifdef GHASH | ||
796 | if ((i = (len & (size_t)-16))) { | ||
797 | GHASH(ctx, aad, i); | ||
798 | aad += i; | ||
799 | len -= i; | ||
800 | } | ||
801 | #else | ||
802 | while (len >= 16) { | ||
803 | for (i = 0; i < 16; ++i) | ||
804 | ctx->Xi.c[i] ^= aad[i]; | ||
805 | GCM_MUL(ctx, Xi); | ||
806 | aad += 16; | ||
807 | len -= 16; | ||
808 | } | ||
809 | #endif | ||
810 | if (len) { | ||
811 | n = (unsigned int)len; | ||
812 | for (i = 0; i < len; ++i) | ||
813 | ctx->Xi.c[i] ^= aad[i]; | ||
814 | } | ||
815 | |||
816 | ctx->ares = n; | ||
817 | return 0; | ||
818 | } | ||
819 | LCRYPTO_ALIAS(CRYPTO_gcm128_aad); | ||
820 | |||
821 | int | ||
822 | CRYPTO_gcm128_encrypt(GCM128_CONTEXT *ctx, | ||
823 | const unsigned char *in, unsigned char *out, | ||
824 | size_t len) | ||
825 | { | ||
826 | unsigned int n, ctr; | ||
827 | size_t i; | ||
828 | u64 mlen = ctx->len.u[1]; | ||
829 | block128_f block = ctx->block; | ||
830 | void *key = ctx->key; | ||
831 | #ifdef GCM_FUNCREF_4BIT | ||
832 | void (*gcm_gmult_p)(u64 Xi[2], const u128 Htable[16]) = ctx->gmult; | ||
833 | # ifdef GHASH | ||
834 | void (*gcm_ghash_p)(u64 Xi[2], const u128 Htable[16], | ||
835 | const u8 *inp, size_t len) = ctx->ghash; | ||
836 | # endif | ||
837 | #endif | ||
838 | |||
839 | mlen += len; | ||
840 | if (mlen > ((U64(1) << 36) - 32) || (sizeof(len) == 8 && mlen < len)) | ||
841 | return -1; | ||
842 | ctx->len.u[1] = mlen; | ||
843 | |||
844 | if (ctx->ares) { | ||
845 | /* First call to encrypt finalizes GHASH(AAD) */ | ||
846 | GCM_MUL(ctx, Xi); | ||
847 | ctx->ares = 0; | ||
848 | } | ||
849 | |||
850 | ctr = be32toh(ctx->Yi.d[3]); | ||
851 | |||
852 | n = ctx->mres; | ||
853 | #if !defined(OPENSSL_SMALL_FOOTPRINT) | ||
854 | if (16 % sizeof(size_t) == 0) | ||
855 | do { /* always true actually */ | ||
856 | if (n) { | ||
857 | while (n && len) { | ||
858 | ctx->Xi.c[n] ^= *(out++) = *(in++) ^ | ||
859 | ctx->EKi.c[n]; | ||
860 | --len; | ||
861 | n = (n + 1) % 16; | ||
862 | } | ||
863 | if (n == 0) | ||
864 | GCM_MUL(ctx, Xi); | ||
865 | else { | ||
866 | ctx->mres = n; | ||
867 | return 0; | ||
868 | } | ||
869 | } | ||
870 | #ifdef __STRICT_ALIGNMENT | ||
871 | if (((size_t)in|(size_t)out) % sizeof(size_t) != 0) | ||
872 | break; | ||
873 | #endif | ||
874 | #if defined(GHASH) && defined(GHASH_CHUNK) | ||
875 | while (len >= GHASH_CHUNK) { | ||
876 | size_t j = GHASH_CHUNK; | ||
877 | |||
878 | while (j) { | ||
879 | size_t *out_t = (size_t *)out; | ||
880 | const size_t *in_t = (const size_t *)in; | ||
881 | |||
882 | (*block)(ctx->Yi.c, ctx->EKi.c, key); | ||
883 | ++ctr; | ||
884 | ctx->Yi.d[3] = htobe32(ctr); | ||
885 | |||
886 | for (i = 0; i < 16/sizeof(size_t); ++i) | ||
887 | out_t[i] = in_t[i] ^ | ||
888 | ctx->EKi.t[i]; | ||
889 | out += 16; | ||
890 | in += 16; | ||
891 | j -= 16; | ||
892 | } | ||
893 | GHASH(ctx, out - GHASH_CHUNK, GHASH_CHUNK); | ||
894 | len -= GHASH_CHUNK; | ||
895 | } | ||
896 | if ((i = (len & (size_t)-16))) { | ||
897 | size_t j = i; | ||
898 | |||
899 | while (len >= 16) { | ||
900 | size_t *out_t = (size_t *)out; | ||
901 | const size_t *in_t = (const size_t *)in; | ||
902 | |||
903 | (*block)(ctx->Yi.c, ctx->EKi.c, key); | ||
904 | ++ctr; | ||
905 | ctx->Yi.d[3] = htobe32(ctr); | ||
906 | |||
907 | for (i = 0; i < 16/sizeof(size_t); ++i) | ||
908 | out_t[i] = in_t[i] ^ | ||
909 | ctx->EKi.t[i]; | ||
910 | out += 16; | ||
911 | in += 16; | ||
912 | len -= 16; | ||
913 | } | ||
914 | GHASH(ctx, out - j, j); | ||
915 | } | ||
916 | #else | ||
917 | while (len >= 16) { | ||
918 | size_t *out_t = (size_t *)out; | ||
919 | const size_t *in_t = (const size_t *)in; | ||
920 | |||
921 | (*block)(ctx->Yi.c, ctx->EKi.c, key); | ||
922 | ++ctr; | ||
923 | ctx->Yi.d[3] = htobe32(ctr); | ||
924 | |||
925 | for (i = 0; i < 16/sizeof(size_t); ++i) | ||
926 | ctx->Xi.t[i] ^= | ||
927 | out_t[i] = in_t[i] ^ ctx->EKi.t[i]; | ||
928 | GCM_MUL(ctx, Xi); | ||
929 | out += 16; | ||
930 | in += 16; | ||
931 | len -= 16; | ||
932 | } | ||
933 | #endif | ||
934 | if (len) { | ||
935 | (*block)(ctx->Yi.c, ctx->EKi.c, key); | ||
936 | ++ctr; | ||
937 | ctx->Yi.d[3] = htobe32(ctr); | ||
938 | |||
939 | while (len--) { | ||
940 | ctx->Xi.c[n] ^= out[n] = in[n] ^ | ||
941 | ctx->EKi.c[n]; | ||
942 | ++n; | ||
943 | } | ||
944 | } | ||
945 | |||
946 | ctx->mres = n; | ||
947 | return 0; | ||
948 | } while (0); | ||
949 | #endif | ||
950 | for (i = 0; i < len; ++i) { | ||
951 | if (n == 0) { | ||
952 | (*block)(ctx->Yi.c, ctx->EKi.c, key); | ||
953 | ++ctr; | ||
954 | ctx->Yi.d[3] = htobe32(ctr); | ||
955 | } | ||
956 | ctx->Xi.c[n] ^= out[i] = in[i] ^ ctx->EKi.c[n]; | ||
957 | n = (n + 1) % 16; | ||
958 | if (n == 0) | ||
959 | GCM_MUL(ctx, Xi); | ||
960 | } | ||
961 | |||
962 | ctx->mres = n; | ||
963 | return 0; | ||
964 | } | ||
965 | LCRYPTO_ALIAS(CRYPTO_gcm128_encrypt); | ||
966 | |||
967 | int | ||
968 | CRYPTO_gcm128_decrypt(GCM128_CONTEXT *ctx, | ||
969 | const unsigned char *in, unsigned char *out, | ||
970 | size_t len) | ||
971 | { | ||
972 | unsigned int n, ctr; | ||
973 | size_t i; | ||
974 | u64 mlen = ctx->len.u[1]; | ||
975 | block128_f block = ctx->block; | ||
976 | void *key = ctx->key; | ||
977 | #ifdef GCM_FUNCREF_4BIT | ||
978 | void (*gcm_gmult_p)(u64 Xi[2], const u128 Htable[16]) = ctx->gmult; | ||
979 | # ifdef GHASH | ||
980 | void (*gcm_ghash_p)(u64 Xi[2], const u128 Htable[16], | ||
981 | const u8 *inp, size_t len) = ctx->ghash; | ||
982 | # endif | ||
983 | #endif | ||
984 | |||
985 | mlen += len; | ||
986 | if (mlen > ((U64(1) << 36) - 32) || (sizeof(len) == 8 && mlen < len)) | ||
987 | return -1; | ||
988 | ctx->len.u[1] = mlen; | ||
989 | |||
990 | if (ctx->ares) { | ||
991 | /* First call to decrypt finalizes GHASH(AAD) */ | ||
992 | GCM_MUL(ctx, Xi); | ||
993 | ctx->ares = 0; | ||
994 | } | ||
995 | |||
996 | ctr = be32toh(ctx->Yi.d[3]); | ||
997 | |||
998 | n = ctx->mres; | ||
999 | #if !defined(OPENSSL_SMALL_FOOTPRINT) | ||
1000 | if (16 % sizeof(size_t) == 0) | ||
1001 | do { /* always true actually */ | ||
1002 | if (n) { | ||
1003 | while (n && len) { | ||
1004 | u8 c = *(in++); | ||
1005 | *(out++) = c ^ ctx->EKi.c[n]; | ||
1006 | ctx->Xi.c[n] ^= c; | ||
1007 | --len; | ||
1008 | n = (n + 1) % 16; | ||
1009 | } | ||
1010 | if (n == 0) | ||
1011 | GCM_MUL(ctx, Xi); | ||
1012 | else { | ||
1013 | ctx->mres = n; | ||
1014 | return 0; | ||
1015 | } | ||
1016 | } | ||
1017 | #ifdef __STRICT_ALIGNMENT | ||
1018 | if (((size_t)in|(size_t)out) % sizeof(size_t) != 0) | ||
1019 | break; | ||
1020 | #endif | ||
1021 | #if defined(GHASH) && defined(GHASH_CHUNK) | ||
1022 | while (len >= GHASH_CHUNK) { | ||
1023 | size_t j = GHASH_CHUNK; | ||
1024 | |||
1025 | GHASH(ctx, in, GHASH_CHUNK); | ||
1026 | while (j) { | ||
1027 | size_t *out_t = (size_t *)out; | ||
1028 | const size_t *in_t = (const size_t *)in; | ||
1029 | |||
1030 | (*block)(ctx->Yi.c, ctx->EKi.c, key); | ||
1031 | ++ctr; | ||
1032 | ctx->Yi.d[3] = htobe32(ctr); | ||
1033 | |||
1034 | for (i = 0; i < 16/sizeof(size_t); ++i) | ||
1035 | out_t[i] = in_t[i] ^ | ||
1036 | ctx->EKi.t[i]; | ||
1037 | out += 16; | ||
1038 | in += 16; | ||
1039 | j -= 16; | ||
1040 | } | ||
1041 | len -= GHASH_CHUNK; | ||
1042 | } | ||
1043 | if ((i = (len & (size_t)-16))) { | ||
1044 | GHASH(ctx, in, i); | ||
1045 | while (len >= 16) { | ||
1046 | size_t *out_t = (size_t *)out; | ||
1047 | const size_t *in_t = (const size_t *)in; | ||
1048 | |||
1049 | (*block)(ctx->Yi.c, ctx->EKi.c, key); | ||
1050 | ++ctr; | ||
1051 | ctx->Yi.d[3] = htobe32(ctr); | ||
1052 | |||
1053 | for (i = 0; i < 16/sizeof(size_t); ++i) | ||
1054 | out_t[i] = in_t[i] ^ | ||
1055 | ctx->EKi.t[i]; | ||
1056 | out += 16; | ||
1057 | in += 16; | ||
1058 | len -= 16; | ||
1059 | } | ||
1060 | } | ||
1061 | #else | ||
1062 | while (len >= 16) { | ||
1063 | size_t *out_t = (size_t *)out; | ||
1064 | const size_t *in_t = (const size_t *)in; | ||
1065 | |||
1066 | (*block)(ctx->Yi.c, ctx->EKi.c, key); | ||
1067 | ++ctr; | ||
1068 | ctx->Yi.d[3] = htobe32(ctr); | ||
1069 | |||
1070 | for (i = 0; i < 16/sizeof(size_t); ++i) { | ||
1071 | size_t c = in[i]; | ||
1072 | out[i] = c ^ ctx->EKi.t[i]; | ||
1073 | ctx->Xi.t[i] ^= c; | ||
1074 | } | ||
1075 | GCM_MUL(ctx, Xi); | ||
1076 | out += 16; | ||
1077 | in += 16; | ||
1078 | len -= 16; | ||
1079 | } | ||
1080 | #endif | ||
1081 | if (len) { | ||
1082 | (*block)(ctx->Yi.c, ctx->EKi.c, key); | ||
1083 | ++ctr; | ||
1084 | ctx->Yi.d[3] = htobe32(ctr); | ||
1085 | |||
1086 | while (len--) { | ||
1087 | u8 c = in[n]; | ||
1088 | ctx->Xi.c[n] ^= c; | ||
1089 | out[n] = c ^ ctx->EKi.c[n]; | ||
1090 | ++n; | ||
1091 | } | ||
1092 | } | ||
1093 | |||
1094 | ctx->mres = n; | ||
1095 | return 0; | ||
1096 | } while (0); | ||
1097 | #endif | ||
1098 | for (i = 0; i < len; ++i) { | ||
1099 | u8 c; | ||
1100 | if (n == 0) { | ||
1101 | (*block)(ctx->Yi.c, ctx->EKi.c, key); | ||
1102 | ++ctr; | ||
1103 | ctx->Yi.d[3] = htobe32(ctr); | ||
1104 | } | ||
1105 | c = in[i]; | ||
1106 | out[i] = c ^ ctx->EKi.c[n]; | ||
1107 | ctx->Xi.c[n] ^= c; | ||
1108 | n = (n + 1) % 16; | ||
1109 | if (n == 0) | ||
1110 | GCM_MUL(ctx, Xi); | ||
1111 | } | ||
1112 | |||
1113 | ctx->mres = n; | ||
1114 | return 0; | ||
1115 | } | ||
1116 | LCRYPTO_ALIAS(CRYPTO_gcm128_decrypt); | ||
1117 | |||
1118 | int | ||
1119 | CRYPTO_gcm128_encrypt_ctr32(GCM128_CONTEXT *ctx, | ||
1120 | const unsigned char *in, unsigned char *out, | ||
1121 | size_t len, ctr128_f stream) | ||
1122 | { | ||
1123 | unsigned int n, ctr; | ||
1124 | size_t i; | ||
1125 | u64 mlen = ctx->len.u[1]; | ||
1126 | void *key = ctx->key; | ||
1127 | #ifdef GCM_FUNCREF_4BIT | ||
1128 | void (*gcm_gmult_p)(u64 Xi[2], const u128 Htable[16]) = ctx->gmult; | ||
1129 | # ifdef GHASH | ||
1130 | void (*gcm_ghash_p)(u64 Xi[2], const u128 Htable[16], | ||
1131 | const u8 *inp, size_t len) = ctx->ghash; | ||
1132 | # endif | ||
1133 | #endif | ||
1134 | |||
1135 | mlen += len; | ||
1136 | if (mlen > ((U64(1) << 36) - 32) || (sizeof(len) == 8 && mlen < len)) | ||
1137 | return -1; | ||
1138 | ctx->len.u[1] = mlen; | ||
1139 | |||
1140 | if (ctx->ares) { | ||
1141 | /* First call to encrypt finalizes GHASH(AAD) */ | ||
1142 | GCM_MUL(ctx, Xi); | ||
1143 | ctx->ares = 0; | ||
1144 | } | ||
1145 | |||
1146 | ctr = be32toh(ctx->Yi.d[3]); | ||
1147 | |||
1148 | n = ctx->mres; | ||
1149 | if (n) { | ||
1150 | while (n && len) { | ||
1151 | ctx->Xi.c[n] ^= *(out++) = *(in++) ^ ctx->EKi.c[n]; | ||
1152 | --len; | ||
1153 | n = (n + 1) % 16; | ||
1154 | } | ||
1155 | if (n == 0) | ||
1156 | GCM_MUL(ctx, Xi); | ||
1157 | else { | ||
1158 | ctx->mres = n; | ||
1159 | return 0; | ||
1160 | } | ||
1161 | } | ||
1162 | #if defined(GHASH) && !defined(OPENSSL_SMALL_FOOTPRINT) | ||
1163 | while (len >= GHASH_CHUNK) { | ||
1164 | (*stream)(in, out, GHASH_CHUNK/16, key, ctx->Yi.c); | ||
1165 | ctr += GHASH_CHUNK/16; | ||
1166 | ctx->Yi.d[3] = htobe32(ctr); | ||
1167 | GHASH(ctx, out, GHASH_CHUNK); | ||
1168 | out += GHASH_CHUNK; | ||
1169 | in += GHASH_CHUNK; | ||
1170 | len -= GHASH_CHUNK; | ||
1171 | } | ||
1172 | #endif | ||
1173 | if ((i = (len & (size_t)-16))) { | ||
1174 | size_t j = i/16; | ||
1175 | |||
1176 | (*stream)(in, out, j, key, ctx->Yi.c); | ||
1177 | ctr += (unsigned int)j; | ||
1178 | ctx->Yi.d[3] = htobe32(ctr); | ||
1179 | in += i; | ||
1180 | len -= i; | ||
1181 | #if defined(GHASH) | ||
1182 | GHASH(ctx, out, i); | ||
1183 | out += i; | ||
1184 | #else | ||
1185 | while (j--) { | ||
1186 | for (i = 0; i < 16; ++i) | ||
1187 | ctx->Xi.c[i] ^= out[i]; | ||
1188 | GCM_MUL(ctx, Xi); | ||
1189 | out += 16; | ||
1190 | } | ||
1191 | #endif | ||
1192 | } | ||
1193 | if (len) { | ||
1194 | (*ctx->block)(ctx->Yi.c, ctx->EKi.c, key); | ||
1195 | ++ctr; | ||
1196 | ctx->Yi.d[3] = htobe32(ctr); | ||
1197 | while (len--) { | ||
1198 | ctx->Xi.c[n] ^= out[n] = in[n] ^ ctx->EKi.c[n]; | ||
1199 | ++n; | ||
1200 | } | ||
1201 | } | ||
1202 | |||
1203 | ctx->mres = n; | ||
1204 | return 0; | ||
1205 | } | ||
1206 | LCRYPTO_ALIAS(CRYPTO_gcm128_encrypt_ctr32); | ||
1207 | |||
1208 | int | ||
1209 | CRYPTO_gcm128_decrypt_ctr32(GCM128_CONTEXT *ctx, | ||
1210 | const unsigned char *in, unsigned char *out, | ||
1211 | size_t len, ctr128_f stream) | ||
1212 | { | ||
1213 | unsigned int n, ctr; | ||
1214 | size_t i; | ||
1215 | u64 mlen = ctx->len.u[1]; | ||
1216 | void *key = ctx->key; | ||
1217 | #ifdef GCM_FUNCREF_4BIT | ||
1218 | void (*gcm_gmult_p)(u64 Xi[2], const u128 Htable[16]) = ctx->gmult; | ||
1219 | # ifdef GHASH | ||
1220 | void (*gcm_ghash_p)(u64 Xi[2], const u128 Htable[16], | ||
1221 | const u8 *inp, size_t len) = ctx->ghash; | ||
1222 | # endif | ||
1223 | #endif | ||
1224 | |||
1225 | mlen += len; | ||
1226 | if (mlen > ((U64(1) << 36) - 32) || (sizeof(len) == 8 && mlen < len)) | ||
1227 | return -1; | ||
1228 | ctx->len.u[1] = mlen; | ||
1229 | |||
1230 | if (ctx->ares) { | ||
1231 | /* First call to decrypt finalizes GHASH(AAD) */ | ||
1232 | GCM_MUL(ctx, Xi); | ||
1233 | ctx->ares = 0; | ||
1234 | } | ||
1235 | |||
1236 | ctr = be32toh(ctx->Yi.d[3]); | ||
1237 | |||
1238 | n = ctx->mres; | ||
1239 | if (n) { | ||
1240 | while (n && len) { | ||
1241 | u8 c = *(in++); | ||
1242 | *(out++) = c ^ ctx->EKi.c[n]; | ||
1243 | ctx->Xi.c[n] ^= c; | ||
1244 | --len; | ||
1245 | n = (n + 1) % 16; | ||
1246 | } | ||
1247 | if (n == 0) | ||
1248 | GCM_MUL(ctx, Xi); | ||
1249 | else { | ||
1250 | ctx->mres = n; | ||
1251 | return 0; | ||
1252 | } | ||
1253 | } | ||
1254 | #if defined(GHASH) && !defined(OPENSSL_SMALL_FOOTPRINT) | ||
1255 | while (len >= GHASH_CHUNK) { | ||
1256 | GHASH(ctx, in, GHASH_CHUNK); | ||
1257 | (*stream)(in, out, GHASH_CHUNK/16, key, ctx->Yi.c); | ||
1258 | ctr += GHASH_CHUNK/16; | ||
1259 | ctx->Yi.d[3] = htobe32(ctr); | ||
1260 | out += GHASH_CHUNK; | ||
1261 | in += GHASH_CHUNK; | ||
1262 | len -= GHASH_CHUNK; | ||
1263 | } | ||
1264 | #endif | ||
1265 | if ((i = (len & (size_t)-16))) { | ||
1266 | size_t j = i/16; | ||
1267 | |||
1268 | #if defined(GHASH) | ||
1269 | GHASH(ctx, in, i); | ||
1270 | #else | ||
1271 | while (j--) { | ||
1272 | size_t k; | ||
1273 | for (k = 0; k < 16; ++k) | ||
1274 | ctx->Xi.c[k] ^= in[k]; | ||
1275 | GCM_MUL(ctx, Xi); | ||
1276 | in += 16; | ||
1277 | } | ||
1278 | j = i/16; | ||
1279 | in -= i; | ||
1280 | #endif | ||
1281 | (*stream)(in, out, j, key, ctx->Yi.c); | ||
1282 | ctr += (unsigned int)j; | ||
1283 | ctx->Yi.d[3] = htobe32(ctr); | ||
1284 | out += i; | ||
1285 | in += i; | ||
1286 | len -= i; | ||
1287 | } | ||
1288 | if (len) { | ||
1289 | (*ctx->block)(ctx->Yi.c, ctx->EKi.c, key); | ||
1290 | ++ctr; | ||
1291 | ctx->Yi.d[3] = htobe32(ctr); | ||
1292 | while (len--) { | ||
1293 | u8 c = in[n]; | ||
1294 | ctx->Xi.c[n] ^= c; | ||
1295 | out[n] = c ^ ctx->EKi.c[n]; | ||
1296 | ++n; | ||
1297 | } | ||
1298 | } | ||
1299 | |||
1300 | ctx->mres = n; | ||
1301 | return 0; | ||
1302 | } | ||
1303 | LCRYPTO_ALIAS(CRYPTO_gcm128_decrypt_ctr32); | ||
1304 | |||
1305 | int | ||
1306 | CRYPTO_gcm128_finish(GCM128_CONTEXT *ctx, const unsigned char *tag, | ||
1307 | size_t len) | ||
1308 | { | ||
1309 | u64 alen = ctx->len.u[0] << 3; | ||
1310 | u64 clen = ctx->len.u[1] << 3; | ||
1311 | #ifdef GCM_FUNCREF_4BIT | ||
1312 | void (*gcm_gmult_p)(u64 Xi[2], const u128 Htable[16]) = ctx->gmult; | ||
1313 | #endif | ||
1314 | |||
1315 | if (ctx->mres || ctx->ares) | ||
1316 | GCM_MUL(ctx, Xi); | ||
1317 | |||
1318 | ctx->Xi.u[0] ^= htobe64(alen); | ||
1319 | ctx->Xi.u[1] ^= htobe64(clen); | ||
1320 | GCM_MUL(ctx, Xi); | ||
1321 | |||
1322 | ctx->Xi.u[0] ^= ctx->EK0.u[0]; | ||
1323 | ctx->Xi.u[1] ^= ctx->EK0.u[1]; | ||
1324 | |||
1325 | if (tag && len <= sizeof(ctx->Xi)) | ||
1326 | return memcmp(ctx->Xi.c, tag, len); | ||
1327 | else | ||
1328 | return -1; | ||
1329 | } | ||
1330 | LCRYPTO_ALIAS(CRYPTO_gcm128_finish); | ||
1331 | |||
1332 | void | ||
1333 | CRYPTO_gcm128_tag(GCM128_CONTEXT *ctx, unsigned char *tag, size_t len) | ||
1334 | { | ||
1335 | CRYPTO_gcm128_finish(ctx, NULL, 0); | ||
1336 | memcpy(tag, ctx->Xi.c, | ||
1337 | len <= sizeof(ctx->Xi.c) ? len : sizeof(ctx->Xi.c)); | ||
1338 | } | ||
1339 | LCRYPTO_ALIAS(CRYPTO_gcm128_tag); | ||
1340 | |||
1341 | GCM128_CONTEXT * | ||
1342 | CRYPTO_gcm128_new(void *key, block128_f block) | ||
1343 | { | ||
1344 | GCM128_CONTEXT *ret; | ||
1345 | |||
1346 | if ((ret = malloc(sizeof(GCM128_CONTEXT)))) | ||
1347 | CRYPTO_gcm128_init(ret, key, block); | ||
1348 | |||
1349 | return ret; | ||
1350 | } | ||
1351 | LCRYPTO_ALIAS(CRYPTO_gcm128_new); | ||
1352 | |||
1353 | void | ||
1354 | CRYPTO_gcm128_release(GCM128_CONTEXT *ctx) | ||
1355 | { | ||
1356 | freezero(ctx, sizeof(*ctx)); | ||
1357 | } | ||
1358 | LCRYPTO_ALIAS(CRYPTO_gcm128_release); | ||