diff options
Diffstat (limited to 'src/lib/libcrypto/modes/gcm128.c')
| -rw-r--r-- | src/lib/libcrypto/modes/gcm128.c | 1539 |
1 files changed, 0 insertions, 1539 deletions
diff --git a/src/lib/libcrypto/modes/gcm128.c b/src/lib/libcrypto/modes/gcm128.c deleted file mode 100644 index 4a72901a33..0000000000 --- a/src/lib/libcrypto/modes/gcm128.c +++ /dev/null | |||
| @@ -1,1539 +0,0 @@ | |||
| 1 | /* $OpenBSD: gcm128.c,v 1.12 2015/02/10 09:46:30 miod Exp $ */ | ||
| 2 | /* ==================================================================== | ||
| 3 | * Copyright (c) 2010 The OpenSSL Project. All rights reserved. | ||
| 4 | * | ||
| 5 | * Redistribution and use in source and binary forms, with or without | ||
| 6 | * modification, are permitted provided that the following conditions | ||
| 7 | * are met: | ||
| 8 | * | ||
| 9 | * 1. Redistributions of source code must retain the above copyright | ||
| 10 | * notice, this list of conditions and the following disclaimer. | ||
| 11 | * | ||
| 12 | * 2. Redistributions in binary form must reproduce the above copyright | ||
| 13 | * notice, this list of conditions and the following disclaimer in | ||
| 14 | * the documentation and/or other materials provided with the | ||
| 15 | * distribution. | ||
| 16 | * | ||
| 17 | * 3. All advertising materials mentioning features or use of this | ||
| 18 | * software must display the following acknowledgment: | ||
| 19 | * "This product includes software developed by the OpenSSL Project | ||
| 20 | * for use in the OpenSSL Toolkit. (http://www.openssl.org/)" | ||
| 21 | * | ||
| 22 | * 4. The names "OpenSSL Toolkit" and "OpenSSL Project" must not be used to | ||
| 23 | * endorse or promote products derived from this software without | ||
| 24 | * prior written permission. For written permission, please contact | ||
| 25 | * openssl-core@openssl.org. | ||
| 26 | * | ||
| 27 | * 5. Products derived from this software may not be called "OpenSSL" | ||
| 28 | * nor may "OpenSSL" appear in their names without prior written | ||
| 29 | * permission of the OpenSSL Project. | ||
| 30 | * | ||
| 31 | * 6. Redistributions of any form whatsoever must retain the following | ||
| 32 | * acknowledgment: | ||
| 33 | * "This product includes software developed by the OpenSSL Project | ||
| 34 | * for use in the OpenSSL Toolkit (http://www.openssl.org/)" | ||
| 35 | * | ||
| 36 | * THIS SOFTWARE IS PROVIDED BY THE OpenSSL PROJECT ``AS IS'' AND ANY | ||
| 37 | * EXPRESSED OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE | ||
| 38 | * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR | ||
| 39 | * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE OpenSSL PROJECT OR | ||
| 40 | * ITS CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, | ||
| 41 | * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT | ||
| 42 | * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; | ||
| 43 | * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) | ||
| 44 | * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, | ||
| 45 | * STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) | ||
| 46 | * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED | ||
| 47 | * OF THE POSSIBILITY OF SUCH DAMAGE. | ||
| 48 | * ==================================================================== | ||
| 49 | */ | ||
| 50 | |||
| 51 | #define OPENSSL_FIPSAPI | ||
| 52 | |||
| 53 | #include <openssl/crypto.h> | ||
| 54 | #include "modes_lcl.h" | ||
| 55 | #include <string.h> | ||
| 56 | |||
| 57 | #ifndef MODES_DEBUG | ||
| 58 | # ifndef NDEBUG | ||
| 59 | # define NDEBUG | ||
| 60 | # endif | ||
| 61 | #endif | ||
| 62 | |||
| 63 | #if defined(BSWAP4) && defined(__STRICT_ALIGNMENT) | ||
| 64 | /* redefine, because alignment is ensured */ | ||
| 65 | #undef GETU32 | ||
| 66 | #define GETU32(p) BSWAP4(*(const u32 *)(p)) | ||
| 67 | #undef PUTU32 | ||
| 68 | #define PUTU32(p,v) *(u32 *)(p) = BSWAP4(v) | ||
| 69 | #endif | ||
| 70 | |||
| 71 | #define PACK(s) ((size_t)(s)<<(sizeof(size_t)*8-16)) | ||
| 72 | #define REDUCE1BIT(V) \ | ||
| 73 | do { \ | ||
| 74 | if (sizeof(size_t)==8) { \ | ||
| 75 | u64 T = U64(0xe100000000000000) & (0-(V.lo&1)); \ | ||
| 76 | V.lo = (V.hi<<63)|(V.lo>>1); \ | ||
| 77 | V.hi = (V.hi>>1 )^T; \ | ||
| 78 | } else { \ | ||
| 79 | u32 T = 0xe1000000U & (0-(u32)(V.lo&1)); \ | ||
| 80 | V.lo = (V.hi<<63)|(V.lo>>1); \ | ||
| 81 | V.hi = (V.hi>>1 )^((u64)T<<32); \ | ||
| 82 | } \ | ||
| 83 | } while(0) | ||
| 84 | |||
| 85 | /* | ||
| 86 | * Even though permitted values for TABLE_BITS are 8, 4 and 1, it should | ||
| 87 | * never be set to 8. 8 is effectively reserved for testing purposes. | ||
| 88 | * TABLE_BITS>1 are lookup-table-driven implementations referred to as | ||
| 89 | * "Shoup's" in GCM specification. In other words OpenSSL does not cover | ||
| 90 | * whole spectrum of possible table driven implementations. Why? In | ||
| 91 | * non-"Shoup's" case memory access pattern is segmented in such manner, | ||
| 92 | * that it's trivial to see that cache timing information can reveal | ||
| 93 | * fair portion of intermediate hash value. Given that ciphertext is | ||
| 94 | * always available to attacker, it's possible for him to attempt to | ||
| 95 | * deduce secret parameter H and if successful, tamper with messages | ||
| 96 | * [which is nothing but trivial in CTR mode]. In "Shoup's" case it's | ||
| 97 | * not as trivial, but there is no reason to believe that it's resistant | ||
| 98 | * to cache-timing attack. And the thing about "8-bit" implementation is | ||
| 99 | * that it consumes 16 (sixteen) times more memory, 4KB per individual | ||
| 100 | * key + 1KB shared. Well, on pros side it should be twice as fast as | ||
| 101 | * "4-bit" version. And for gcc-generated x86[_64] code, "8-bit" version | ||
| 102 | * was observed to run ~75% faster, closer to 100% for commercial | ||
| 103 | * compilers... Yet "4-bit" procedure is preferred, because it's | ||
| 104 | * believed to provide better security-performance balance and adequate | ||
| 105 | * all-round performance. "All-round" refers to things like: | ||
| 106 | * | ||
| 107 | * - shorter setup time effectively improves overall timing for | ||
| 108 | * handling short messages; | ||
| 109 | * - larger table allocation can become unbearable because of VM | ||
| 110 | * subsystem penalties (for example on Windows large enough free | ||
| 111 | * results in VM working set trimming, meaning that consequent | ||
| 112 | * malloc would immediately incur working set expansion); | ||
| 113 | * - larger table has larger cache footprint, which can affect | ||
| 114 | * performance of other code paths (not necessarily even from same | ||
| 115 | * thread in Hyper-Threading world); | ||
| 116 | * | ||
| 117 | * Value of 1 is not appropriate for performance reasons. | ||
| 118 | */ | ||
| 119 | #if TABLE_BITS==8 | ||
| 120 | |||
| 121 | static void gcm_init_8bit(u128 Htable[256], u64 H[2]) | ||
| 122 | { | ||
| 123 | int i, j; | ||
| 124 | u128 V; | ||
| 125 | |||
| 126 | Htable[0].hi = 0; | ||
| 127 | Htable[0].lo = 0; | ||
| 128 | V.hi = H[0]; | ||
| 129 | V.lo = H[1]; | ||
| 130 | |||
| 131 | for (Htable[128]=V, i=64; i>0; i>>=1) { | ||
| 132 | REDUCE1BIT(V); | ||
| 133 | Htable[i] = V; | ||
| 134 | } | ||
| 135 | |||
| 136 | for (i=2; i<256; i<<=1) { | ||
| 137 | u128 *Hi = Htable+i, H0 = *Hi; | ||
| 138 | for (j=1; j<i; ++j) { | ||
| 139 | Hi[j].hi = H0.hi^Htable[j].hi; | ||
| 140 | Hi[j].lo = H0.lo^Htable[j].lo; | ||
| 141 | } | ||
| 142 | } | ||
| 143 | } | ||
| 144 | |||
| 145 | static void gcm_gmult_8bit(u64 Xi[2], const u128 Htable[256]) | ||
| 146 | { | ||
| 147 | u128 Z = { 0, 0}; | ||
| 148 | const u8 *xi = (const u8 *)Xi+15; | ||
| 149 | size_t rem, n = *xi; | ||
| 150 | static const size_t rem_8bit[256] = { | ||
| 151 | PACK(0x0000), PACK(0x01C2), PACK(0x0384), PACK(0x0246), | ||
| 152 | PACK(0x0708), PACK(0x06CA), PACK(0x048C), PACK(0x054E), | ||
| 153 | PACK(0x0E10), PACK(0x0FD2), PACK(0x0D94), PACK(0x0C56), | ||
| 154 | PACK(0x0918), PACK(0x08DA), PACK(0x0A9C), PACK(0x0B5E), | ||
| 155 | PACK(0x1C20), PACK(0x1DE2), PACK(0x1FA4), PACK(0x1E66), | ||
| 156 | PACK(0x1B28), PACK(0x1AEA), PACK(0x18AC), PACK(0x196E), | ||
| 157 | PACK(0x1230), PACK(0x13F2), PACK(0x11B4), PACK(0x1076), | ||
| 158 | PACK(0x1538), PACK(0x14FA), PACK(0x16BC), PACK(0x177E), | ||
| 159 | PACK(0x3840), PACK(0x3982), PACK(0x3BC4), PACK(0x3A06), | ||
| 160 | PACK(0x3F48), PACK(0x3E8A), PACK(0x3CCC), PACK(0x3D0E), | ||
| 161 | PACK(0x3650), PACK(0x3792), PACK(0x35D4), PACK(0x3416), | ||
| 162 | PACK(0x3158), PACK(0x309A), PACK(0x32DC), PACK(0x331E), | ||
| 163 | PACK(0x2460), PACK(0x25A2), PACK(0x27E4), PACK(0x2626), | ||
| 164 | PACK(0x2368), PACK(0x22AA), PACK(0x20EC), PACK(0x212E), | ||
| 165 | PACK(0x2A70), PACK(0x2BB2), PACK(0x29F4), PACK(0x2836), | ||
| 166 | PACK(0x2D78), PACK(0x2CBA), PACK(0x2EFC), PACK(0x2F3E), | ||
| 167 | PACK(0x7080), PACK(0x7142), PACK(0x7304), PACK(0x72C6), | ||
| 168 | PACK(0x7788), PACK(0x764A), PACK(0x740C), PACK(0x75CE), | ||
| 169 | PACK(0x7E90), PACK(0x7F52), PACK(0x7D14), PACK(0x7CD6), | ||
| 170 | PACK(0x7998), PACK(0x785A), PACK(0x7A1C), PACK(0x7BDE), | ||
| 171 | PACK(0x6CA0), PACK(0x6D62), PACK(0x6F24), PACK(0x6EE6), | ||
| 172 | PACK(0x6BA8), PACK(0x6A6A), PACK(0x682C), PACK(0x69EE), | ||
| 173 | PACK(0x62B0), PACK(0x6372), PACK(0x6134), PACK(0x60F6), | ||
| 174 | PACK(0x65B8), PACK(0x647A), PACK(0x663C), PACK(0x67FE), | ||
| 175 | PACK(0x48C0), PACK(0x4902), PACK(0x4B44), PACK(0x4A86), | ||
| 176 | PACK(0x4FC8), PACK(0x4E0A), PACK(0x4C4C), PACK(0x4D8E), | ||
| 177 | PACK(0x46D0), PACK(0x4712), PACK(0x4554), PACK(0x4496), | ||
| 178 | PACK(0x41D8), PACK(0x401A), PACK(0x425C), PACK(0x439E), | ||
| 179 | PACK(0x54E0), PACK(0x5522), PACK(0x5764), PACK(0x56A6), | ||
| 180 | PACK(0x53E8), PACK(0x522A), PACK(0x506C), PACK(0x51AE), | ||
| 181 | PACK(0x5AF0), PACK(0x5B32), PACK(0x5974), PACK(0x58B6), | ||
| 182 | PACK(0x5DF8), PACK(0x5C3A), PACK(0x5E7C), PACK(0x5FBE), | ||
| 183 | PACK(0xE100), PACK(0xE0C2), PACK(0xE284), PACK(0xE346), | ||
| 184 | PACK(0xE608), PACK(0xE7CA), PACK(0xE58C), PACK(0xE44E), | ||
| 185 | PACK(0xEF10), PACK(0xEED2), PACK(0xEC94), PACK(0xED56), | ||
| 186 | PACK(0xE818), PACK(0xE9DA), PACK(0xEB9C), PACK(0xEA5E), | ||
| 187 | PACK(0xFD20), PACK(0xFCE2), PACK(0xFEA4), PACK(0xFF66), | ||
| 188 | PACK(0xFA28), PACK(0xFBEA), PACK(0xF9AC), PACK(0xF86E), | ||
| 189 | PACK(0xF330), PACK(0xF2F2), PACK(0xF0B4), PACK(0xF176), | ||
| 190 | PACK(0xF438), PACK(0xF5FA), PACK(0xF7BC), PACK(0xF67E), | ||
| 191 | PACK(0xD940), PACK(0xD882), PACK(0xDAC4), PACK(0xDB06), | ||
| 192 | PACK(0xDE48), PACK(0xDF8A), PACK(0xDDCC), PACK(0xDC0E), | ||
| 193 | PACK(0xD750), PACK(0xD692), PACK(0xD4D4), PACK(0xD516), | ||
| 194 | PACK(0xD058), PACK(0xD19A), PACK(0xD3DC), PACK(0xD21E), | ||
| 195 | PACK(0xC560), PACK(0xC4A2), PACK(0xC6E4), PACK(0xC726), | ||
| 196 | PACK(0xC268), PACK(0xC3AA), PACK(0xC1EC), PACK(0xC02E), | ||
| 197 | PACK(0xCB70), PACK(0xCAB2), PACK(0xC8F4), PACK(0xC936), | ||
| 198 | PACK(0xCC78), PACK(0xCDBA), PACK(0xCFFC), PACK(0xCE3E), | ||
| 199 | PACK(0x9180), PACK(0x9042), PACK(0x9204), PACK(0x93C6), | ||
| 200 | PACK(0x9688), PACK(0x974A), PACK(0x950C), PACK(0x94CE), | ||
| 201 | PACK(0x9F90), PACK(0x9E52), PACK(0x9C14), PACK(0x9DD6), | ||
| 202 | PACK(0x9898), PACK(0x995A), PACK(0x9B1C), PACK(0x9ADE), | ||
| 203 | PACK(0x8DA0), PACK(0x8C62), PACK(0x8E24), PACK(0x8FE6), | ||
| 204 | PACK(0x8AA8), PACK(0x8B6A), PACK(0x892C), PACK(0x88EE), | ||
| 205 | PACK(0x83B0), PACK(0x8272), PACK(0x8034), PACK(0x81F6), | ||
| 206 | PACK(0x84B8), PACK(0x857A), PACK(0x873C), PACK(0x86FE), | ||
| 207 | PACK(0xA9C0), PACK(0xA802), PACK(0xAA44), PACK(0xAB86), | ||
| 208 | PACK(0xAEC8), PACK(0xAF0A), PACK(0xAD4C), PACK(0xAC8E), | ||
| 209 | PACK(0xA7D0), PACK(0xA612), PACK(0xA454), PACK(0xA596), | ||
| 210 | PACK(0xA0D8), PACK(0xA11A), PACK(0xA35C), PACK(0xA29E), | ||
| 211 | PACK(0xB5E0), PACK(0xB422), PACK(0xB664), PACK(0xB7A6), | ||
| 212 | PACK(0xB2E8), PACK(0xB32A), PACK(0xB16C), PACK(0xB0AE), | ||
| 213 | PACK(0xBBF0), PACK(0xBA32), PACK(0xB874), PACK(0xB9B6), | ||
| 214 | PACK(0xBCF8), PACK(0xBD3A), PACK(0xBF7C), PACK(0xBEBE) }; | ||
| 215 | |||
| 216 | while (1) { | ||
| 217 | Z.hi ^= Htable[n].hi; | ||
| 218 | Z.lo ^= Htable[n].lo; | ||
| 219 | |||
| 220 | if ((u8 *)Xi==xi) break; | ||
| 221 | |||
| 222 | n = *(--xi); | ||
| 223 | |||
| 224 | rem = (size_t)Z.lo&0xff; | ||
| 225 | Z.lo = (Z.hi<<56)|(Z.lo>>8); | ||
| 226 | Z.hi = (Z.hi>>8); | ||
| 227 | if (sizeof(size_t)==8) | ||
| 228 | Z.hi ^= rem_8bit[rem]; | ||
| 229 | else | ||
| 230 | Z.hi ^= (u64)rem_8bit[rem]<<32; | ||
| 231 | } | ||
| 232 | |||
| 233 | if (BYTE_ORDER == LITTLE_ENDIAN) { | ||
| 234 | #ifdef BSWAP8 | ||
| 235 | Xi[0] = BSWAP8(Z.hi); | ||
| 236 | Xi[1] = BSWAP8(Z.lo); | ||
| 237 | #else | ||
| 238 | u8 *p = (u8 *)Xi; | ||
| 239 | u32 v; | ||
| 240 | v = (u32)(Z.hi>>32); PUTU32(p,v); | ||
| 241 | v = (u32)(Z.hi); PUTU32(p+4,v); | ||
| 242 | v = (u32)(Z.lo>>32); PUTU32(p+8,v); | ||
| 243 | v = (u32)(Z.lo); PUTU32(p+12,v); | ||
| 244 | #endif | ||
| 245 | } | ||
| 246 | else { | ||
| 247 | Xi[0] = Z.hi; | ||
| 248 | Xi[1] = Z.lo; | ||
| 249 | } | ||
| 250 | } | ||
| 251 | #define GCM_MUL(ctx,Xi) gcm_gmult_8bit(ctx->Xi.u,ctx->Htable) | ||
| 252 | |||
| 253 | #elif TABLE_BITS==4 | ||
| 254 | |||
| 255 | static void gcm_init_4bit(u128 Htable[16], u64 H[2]) | ||
| 256 | { | ||
| 257 | u128 V; | ||
| 258 | #if defined(OPENSSL_SMALL_FOOTPRINT) | ||
| 259 | int i; | ||
| 260 | #endif | ||
| 261 | |||
| 262 | Htable[0].hi = 0; | ||
| 263 | Htable[0].lo = 0; | ||
| 264 | V.hi = H[0]; | ||
| 265 | V.lo = H[1]; | ||
| 266 | |||
| 267 | #if defined(OPENSSL_SMALL_FOOTPRINT) | ||
| 268 | for (Htable[8]=V, i=4; i>0; i>>=1) { | ||
| 269 | REDUCE1BIT(V); | ||
| 270 | Htable[i] = V; | ||
| 271 | } | ||
| 272 | |||
| 273 | for (i=2; i<16; i<<=1) { | ||
| 274 | u128 *Hi = Htable+i; | ||
| 275 | int j; | ||
| 276 | for (V=*Hi, j=1; j<i; ++j) { | ||
| 277 | Hi[j].hi = V.hi^Htable[j].hi; | ||
| 278 | Hi[j].lo = V.lo^Htable[j].lo; | ||
| 279 | } | ||
| 280 | } | ||
| 281 | #else | ||
| 282 | Htable[8] = V; | ||
| 283 | REDUCE1BIT(V); | ||
| 284 | Htable[4] = V; | ||
| 285 | REDUCE1BIT(V); | ||
| 286 | Htable[2] = V; | ||
| 287 | REDUCE1BIT(V); | ||
| 288 | Htable[1] = V; | ||
| 289 | Htable[3].hi = V.hi^Htable[2].hi, Htable[3].lo = V.lo^Htable[2].lo; | ||
| 290 | V=Htable[4]; | ||
| 291 | Htable[5].hi = V.hi^Htable[1].hi, Htable[5].lo = V.lo^Htable[1].lo; | ||
| 292 | Htable[6].hi = V.hi^Htable[2].hi, Htable[6].lo = V.lo^Htable[2].lo; | ||
| 293 | Htable[7].hi = V.hi^Htable[3].hi, Htable[7].lo = V.lo^Htable[3].lo; | ||
| 294 | V=Htable[8]; | ||
| 295 | Htable[9].hi = V.hi^Htable[1].hi, Htable[9].lo = V.lo^Htable[1].lo; | ||
| 296 | Htable[10].hi = V.hi^Htable[2].hi, Htable[10].lo = V.lo^Htable[2].lo; | ||
| 297 | Htable[11].hi = V.hi^Htable[3].hi, Htable[11].lo = V.lo^Htable[3].lo; | ||
| 298 | Htable[12].hi = V.hi^Htable[4].hi, Htable[12].lo = V.lo^Htable[4].lo; | ||
| 299 | Htable[13].hi = V.hi^Htable[5].hi, Htable[13].lo = V.lo^Htable[5].lo; | ||
| 300 | Htable[14].hi = V.hi^Htable[6].hi, Htable[14].lo = V.lo^Htable[6].lo; | ||
| 301 | Htable[15].hi = V.hi^Htable[7].hi, Htable[15].lo = V.lo^Htable[7].lo; | ||
| 302 | #endif | ||
| 303 | #if defined(GHASH_ASM) && (defined(__arm__) || defined(__arm)) | ||
| 304 | /* | ||
| 305 | * ARM assembler expects specific dword order in Htable. | ||
| 306 | */ | ||
| 307 | { | ||
| 308 | int j; | ||
| 309 | |||
| 310 | if (BYTE_ORDER == LITTLE_ENDIAN) | ||
| 311 | for (j=0;j<16;++j) { | ||
| 312 | V = Htable[j]; | ||
| 313 | Htable[j].hi = V.lo; | ||
| 314 | Htable[j].lo = V.hi; | ||
| 315 | } | ||
| 316 | else | ||
| 317 | for (j=0;j<16;++j) { | ||
| 318 | V = Htable[j]; | ||
| 319 | Htable[j].hi = V.lo<<32|V.lo>>32; | ||
| 320 | Htable[j].lo = V.hi<<32|V.hi>>32; | ||
| 321 | } | ||
| 322 | } | ||
| 323 | #endif | ||
| 324 | } | ||
| 325 | |||
| 326 | #ifndef GHASH_ASM | ||
| 327 | static const size_t rem_4bit[16] = { | ||
| 328 | PACK(0x0000), PACK(0x1C20), PACK(0x3840), PACK(0x2460), | ||
| 329 | PACK(0x7080), PACK(0x6CA0), PACK(0x48C0), PACK(0x54E0), | ||
| 330 | PACK(0xE100), PACK(0xFD20), PACK(0xD940), PACK(0xC560), | ||
| 331 | PACK(0x9180), PACK(0x8DA0), PACK(0xA9C0), PACK(0xB5E0) }; | ||
| 332 | |||
| 333 | static void gcm_gmult_4bit(u64 Xi[2], const u128 Htable[16]) | ||
| 334 | { | ||
| 335 | u128 Z; | ||
| 336 | int cnt = 15; | ||
| 337 | size_t rem, nlo, nhi; | ||
| 338 | |||
| 339 | nlo = ((const u8 *)Xi)[15]; | ||
| 340 | nhi = nlo>>4; | ||
| 341 | nlo &= 0xf; | ||
| 342 | |||
| 343 | Z.hi = Htable[nlo].hi; | ||
| 344 | Z.lo = Htable[nlo].lo; | ||
| 345 | |||
| 346 | while (1) { | ||
| 347 | rem = (size_t)Z.lo&0xf; | ||
| 348 | Z.lo = (Z.hi<<60)|(Z.lo>>4); | ||
| 349 | Z.hi = (Z.hi>>4); | ||
| 350 | if (sizeof(size_t)==8) | ||
| 351 | Z.hi ^= rem_4bit[rem]; | ||
| 352 | else | ||
| 353 | Z.hi ^= (u64)rem_4bit[rem]<<32; | ||
| 354 | |||
| 355 | Z.hi ^= Htable[nhi].hi; | ||
| 356 | Z.lo ^= Htable[nhi].lo; | ||
| 357 | |||
| 358 | if (--cnt<0) break; | ||
| 359 | |||
| 360 | nlo = ((const u8 *)Xi)[cnt]; | ||
| 361 | nhi = nlo>>4; | ||
| 362 | nlo &= 0xf; | ||
| 363 | |||
| 364 | rem = (size_t)Z.lo&0xf; | ||
| 365 | Z.lo = (Z.hi<<60)|(Z.lo>>4); | ||
| 366 | Z.hi = (Z.hi>>4); | ||
| 367 | if (sizeof(size_t)==8) | ||
| 368 | Z.hi ^= rem_4bit[rem]; | ||
| 369 | else | ||
| 370 | Z.hi ^= (u64)rem_4bit[rem]<<32; | ||
| 371 | |||
| 372 | Z.hi ^= Htable[nlo].hi; | ||
| 373 | Z.lo ^= Htable[nlo].lo; | ||
| 374 | } | ||
| 375 | |||
| 376 | if (BYTE_ORDER == LITTLE_ENDIAN) { | ||
| 377 | #ifdef BSWAP8 | ||
| 378 | Xi[0] = BSWAP8(Z.hi); | ||
| 379 | Xi[1] = BSWAP8(Z.lo); | ||
| 380 | #else | ||
| 381 | u8 *p = (u8 *)Xi; | ||
| 382 | u32 v; | ||
| 383 | v = (u32)(Z.hi>>32); PUTU32(p,v); | ||
| 384 | v = (u32)(Z.hi); PUTU32(p+4,v); | ||
| 385 | v = (u32)(Z.lo>>32); PUTU32(p+8,v); | ||
| 386 | v = (u32)(Z.lo); PUTU32(p+12,v); | ||
| 387 | #endif | ||
| 388 | } | ||
| 389 | else { | ||
| 390 | Xi[0] = Z.hi; | ||
| 391 | Xi[1] = Z.lo; | ||
| 392 | } | ||
| 393 | } | ||
| 394 | |||
| 395 | #if !defined(OPENSSL_SMALL_FOOTPRINT) | ||
| 396 | /* | ||
| 397 | * Streamed gcm_mult_4bit, see CRYPTO_gcm128_[en|de]crypt for | ||
| 398 | * details... Compiler-generated code doesn't seem to give any | ||
| 399 | * performance improvement, at least not on x86[_64]. It's here | ||
| 400 | * mostly as reference and a placeholder for possible future | ||
| 401 | * non-trivial optimization[s]... | ||
| 402 | */ | ||
| 403 | static void gcm_ghash_4bit(u64 Xi[2],const u128 Htable[16], | ||
| 404 | const u8 *inp,size_t len) | ||
| 405 | { | ||
| 406 | u128 Z; | ||
| 407 | int cnt; | ||
| 408 | size_t rem, nlo, nhi; | ||
| 409 | |||
| 410 | #if 1 | ||
| 411 | do { | ||
| 412 | cnt = 15; | ||
| 413 | nlo = ((const u8 *)Xi)[15]; | ||
| 414 | nlo ^= inp[15]; | ||
| 415 | nhi = nlo>>4; | ||
| 416 | nlo &= 0xf; | ||
| 417 | |||
| 418 | Z.hi = Htable[nlo].hi; | ||
| 419 | Z.lo = Htable[nlo].lo; | ||
| 420 | |||
| 421 | while (1) { | ||
| 422 | rem = (size_t)Z.lo&0xf; | ||
| 423 | Z.lo = (Z.hi<<60)|(Z.lo>>4); | ||
| 424 | Z.hi = (Z.hi>>4); | ||
| 425 | if (sizeof(size_t)==8) | ||
| 426 | Z.hi ^= rem_4bit[rem]; | ||
| 427 | else | ||
| 428 | Z.hi ^= (u64)rem_4bit[rem]<<32; | ||
| 429 | |||
| 430 | Z.hi ^= Htable[nhi].hi; | ||
| 431 | Z.lo ^= Htable[nhi].lo; | ||
| 432 | |||
| 433 | if (--cnt<0) break; | ||
| 434 | |||
| 435 | nlo = ((const u8 *)Xi)[cnt]; | ||
| 436 | nlo ^= inp[cnt]; | ||
| 437 | nhi = nlo>>4; | ||
| 438 | nlo &= 0xf; | ||
| 439 | |||
| 440 | rem = (size_t)Z.lo&0xf; | ||
| 441 | Z.lo = (Z.hi<<60)|(Z.lo>>4); | ||
| 442 | Z.hi = (Z.hi>>4); | ||
| 443 | if (sizeof(size_t)==8) | ||
| 444 | Z.hi ^= rem_4bit[rem]; | ||
| 445 | else | ||
| 446 | Z.hi ^= (u64)rem_4bit[rem]<<32; | ||
| 447 | |||
| 448 | Z.hi ^= Htable[nlo].hi; | ||
| 449 | Z.lo ^= Htable[nlo].lo; | ||
| 450 | } | ||
| 451 | #else | ||
| 452 | /* | ||
| 453 | * Extra 256+16 bytes per-key plus 512 bytes shared tables | ||
| 454 | * [should] give ~50% improvement... One could have PACK()-ed | ||
| 455 | * the rem_8bit even here, but the priority is to minimize | ||
| 456 | * cache footprint... | ||
| 457 | */ | ||
| 458 | u128 Hshr4[16]; /* Htable shifted right by 4 bits */ | ||
| 459 | u8 Hshl4[16]; /* Htable shifted left by 4 bits */ | ||
| 460 | static const unsigned short rem_8bit[256] = { | ||
| 461 | 0x0000, 0x01C2, 0x0384, 0x0246, 0x0708, 0x06CA, 0x048C, 0x054E, | ||
| 462 | 0x0E10, 0x0FD2, 0x0D94, 0x0C56, 0x0918, 0x08DA, 0x0A9C, 0x0B5E, | ||
| 463 | 0x1C20, 0x1DE2, 0x1FA4, 0x1E66, 0x1B28, 0x1AEA, 0x18AC, 0x196E, | ||
| 464 | 0x1230, 0x13F2, 0x11B4, 0x1076, 0x1538, 0x14FA, 0x16BC, 0x177E, | ||
| 465 | 0x3840, 0x3982, 0x3BC4, 0x3A06, 0x3F48, 0x3E8A, 0x3CCC, 0x3D0E, | ||
| 466 | 0x3650, 0x3792, 0x35D4, 0x3416, 0x3158, 0x309A, 0x32DC, 0x331E, | ||
| 467 | 0x2460, 0x25A2, 0x27E4, 0x2626, 0x2368, 0x22AA, 0x20EC, 0x212E, | ||
| 468 | 0x2A70, 0x2BB2, 0x29F4, 0x2836, 0x2D78, 0x2CBA, 0x2EFC, 0x2F3E, | ||
| 469 | 0x7080, 0x7142, 0x7304, 0x72C6, 0x7788, 0x764A, 0x740C, 0x75CE, | ||
| 470 | 0x7E90, 0x7F52, 0x7D14, 0x7CD6, 0x7998, 0x785A, 0x7A1C, 0x7BDE, | ||
| 471 | 0x6CA0, 0x6D62, 0x6F24, 0x6EE6, 0x6BA8, 0x6A6A, 0x682C, 0x69EE, | ||
| 472 | 0x62B0, 0x6372, 0x6134, 0x60F6, 0x65B8, 0x647A, 0x663C, 0x67FE, | ||
| 473 | 0x48C0, 0x4902, 0x4B44, 0x4A86, 0x4FC8, 0x4E0A, 0x4C4C, 0x4D8E, | ||
| 474 | 0x46D0, 0x4712, 0x4554, 0x4496, 0x41D8, 0x401A, 0x425C, 0x439E, | ||
| 475 | 0x54E0, 0x5522, 0x5764, 0x56A6, 0x53E8, 0x522A, 0x506C, 0x51AE, | ||
| 476 | 0x5AF0, 0x5B32, 0x5974, 0x58B6, 0x5DF8, 0x5C3A, 0x5E7C, 0x5FBE, | ||
| 477 | 0xE100, 0xE0C2, 0xE284, 0xE346, 0xE608, 0xE7CA, 0xE58C, 0xE44E, | ||
| 478 | 0xEF10, 0xEED2, 0xEC94, 0xED56, 0xE818, 0xE9DA, 0xEB9C, 0xEA5E, | ||
| 479 | 0xFD20, 0xFCE2, 0xFEA4, 0xFF66, 0xFA28, 0xFBEA, 0xF9AC, 0xF86E, | ||
| 480 | 0xF330, 0xF2F2, 0xF0B4, 0xF176, 0xF438, 0xF5FA, 0xF7BC, 0xF67E, | ||
| 481 | 0xD940, 0xD882, 0xDAC4, 0xDB06, 0xDE48, 0xDF8A, 0xDDCC, 0xDC0E, | ||
| 482 | 0xD750, 0xD692, 0xD4D4, 0xD516, 0xD058, 0xD19A, 0xD3DC, 0xD21E, | ||
| 483 | 0xC560, 0xC4A2, 0xC6E4, 0xC726, 0xC268, 0xC3AA, 0xC1EC, 0xC02E, | ||
| 484 | 0xCB70, 0xCAB2, 0xC8F4, 0xC936, 0xCC78, 0xCDBA, 0xCFFC, 0xCE3E, | ||
| 485 | 0x9180, 0x9042, 0x9204, 0x93C6, 0x9688, 0x974A, 0x950C, 0x94CE, | ||
| 486 | 0x9F90, 0x9E52, 0x9C14, 0x9DD6, 0x9898, 0x995A, 0x9B1C, 0x9ADE, | ||
| 487 | 0x8DA0, 0x8C62, 0x8E24, 0x8FE6, 0x8AA8, 0x8B6A, 0x892C, 0x88EE, | ||
| 488 | 0x83B0, 0x8272, 0x8034, 0x81F6, 0x84B8, 0x857A, 0x873C, 0x86FE, | ||
| 489 | 0xA9C0, 0xA802, 0xAA44, 0xAB86, 0xAEC8, 0xAF0A, 0xAD4C, 0xAC8E, | ||
| 490 | 0xA7D0, 0xA612, 0xA454, 0xA596, 0xA0D8, 0xA11A, 0xA35C, 0xA29E, | ||
| 491 | 0xB5E0, 0xB422, 0xB664, 0xB7A6, 0xB2E8, 0xB32A, 0xB16C, 0xB0AE, | ||
| 492 | 0xBBF0, 0xBA32, 0xB874, 0xB9B6, 0xBCF8, 0xBD3A, 0xBF7C, 0xBEBE }; | ||
| 493 | /* | ||
| 494 | * This pre-processing phase slows down procedure by approximately | ||
| 495 | * same time as it makes each loop spin faster. In other words | ||
| 496 | * single block performance is approximately same as straightforward | ||
| 497 | * "4-bit" implementation, and then it goes only faster... | ||
| 498 | */ | ||
| 499 | for (cnt=0; cnt<16; ++cnt) { | ||
| 500 | Z.hi = Htable[cnt].hi; | ||
| 501 | Z.lo = Htable[cnt].lo; | ||
| 502 | Hshr4[cnt].lo = (Z.hi<<60)|(Z.lo>>4); | ||
| 503 | Hshr4[cnt].hi = (Z.hi>>4); | ||
| 504 | Hshl4[cnt] = (u8)(Z.lo<<4); | ||
| 505 | } | ||
| 506 | |||
| 507 | do { | ||
| 508 | for (Z.lo=0, Z.hi=0, cnt=15; cnt; --cnt) { | ||
| 509 | nlo = ((const u8 *)Xi)[cnt]; | ||
| 510 | nlo ^= inp[cnt]; | ||
| 511 | nhi = nlo>>4; | ||
| 512 | nlo &= 0xf; | ||
| 513 | |||
| 514 | Z.hi ^= Htable[nlo].hi; | ||
| 515 | Z.lo ^= Htable[nlo].lo; | ||
| 516 | |||
| 517 | rem = (size_t)Z.lo&0xff; | ||
| 518 | |||
| 519 | Z.lo = (Z.hi<<56)|(Z.lo>>8); | ||
| 520 | Z.hi = (Z.hi>>8); | ||
| 521 | |||
| 522 | Z.hi ^= Hshr4[nhi].hi; | ||
| 523 | Z.lo ^= Hshr4[nhi].lo; | ||
| 524 | Z.hi ^= (u64)rem_8bit[rem^Hshl4[nhi]]<<48; | ||
| 525 | } | ||
| 526 | |||
| 527 | nlo = ((const u8 *)Xi)[0]; | ||
| 528 | nlo ^= inp[0]; | ||
| 529 | nhi = nlo>>4; | ||
| 530 | nlo &= 0xf; | ||
| 531 | |||
| 532 | Z.hi ^= Htable[nlo].hi; | ||
| 533 | Z.lo ^= Htable[nlo].lo; | ||
| 534 | |||
| 535 | rem = (size_t)Z.lo&0xf; | ||
| 536 | |||
| 537 | Z.lo = (Z.hi<<60)|(Z.lo>>4); | ||
| 538 | Z.hi = (Z.hi>>4); | ||
| 539 | |||
| 540 | Z.hi ^= Htable[nhi].hi; | ||
| 541 | Z.lo ^= Htable[nhi].lo; | ||
| 542 | Z.hi ^= ((u64)rem_8bit[rem<<4])<<48; | ||
| 543 | #endif | ||
| 544 | |||
| 545 | if (BYTE_ORDER == LITTLE_ENDIAN) { | ||
| 546 | #ifdef BSWAP8 | ||
| 547 | Xi[0] = BSWAP8(Z.hi); | ||
| 548 | Xi[1] = BSWAP8(Z.lo); | ||
| 549 | #else | ||
| 550 | u8 *p = (u8 *)Xi; | ||
| 551 | u32 v; | ||
| 552 | v = (u32)(Z.hi>>32); PUTU32(p,v); | ||
| 553 | v = (u32)(Z.hi); PUTU32(p+4,v); | ||
| 554 | v = (u32)(Z.lo>>32); PUTU32(p+8,v); | ||
| 555 | v = (u32)(Z.lo); PUTU32(p+12,v); | ||
| 556 | #endif | ||
| 557 | } | ||
| 558 | else { | ||
| 559 | Xi[0] = Z.hi; | ||
| 560 | Xi[1] = Z.lo; | ||
| 561 | } | ||
| 562 | } while (inp+=16, len-=16); | ||
| 563 | } | ||
| 564 | #endif | ||
| 565 | #else | ||
| 566 | void gcm_gmult_4bit(u64 Xi[2],const u128 Htable[16]); | ||
| 567 | void gcm_ghash_4bit(u64 Xi[2],const u128 Htable[16],const u8 *inp,size_t len); | ||
| 568 | #endif | ||
| 569 | |||
| 570 | #define GCM_MUL(ctx,Xi) gcm_gmult_4bit(ctx->Xi.u,ctx->Htable) | ||
| 571 | #if defined(GHASH_ASM) || !defined(OPENSSL_SMALL_FOOTPRINT) | ||
| 572 | #define GHASH(ctx,in,len) gcm_ghash_4bit((ctx)->Xi.u,(ctx)->Htable,in,len) | ||
| 573 | /* GHASH_CHUNK is "stride parameter" missioned to mitigate cache | ||
| 574 | * trashing effect. In other words idea is to hash data while it's | ||
| 575 | * still in L1 cache after encryption pass... */ | ||
| 576 | #define GHASH_CHUNK (3*1024) | ||
| 577 | #endif | ||
| 578 | |||
| 579 | #else /* TABLE_BITS */ | ||
| 580 | |||
| 581 | static void gcm_gmult_1bit(u64 Xi[2],const u64 H[2]) | ||
| 582 | { | ||
| 583 | u128 V,Z = { 0,0 }; | ||
| 584 | long X; | ||
| 585 | int i,j; | ||
| 586 | const long *xi = (const long *)Xi; | ||
| 587 | |||
| 588 | V.hi = H[0]; /* H is in host byte order, no byte swapping */ | ||
| 589 | V.lo = H[1]; | ||
| 590 | |||
| 591 | for (j=0; j<16/sizeof(long); ++j) { | ||
| 592 | if (BYTE_ORDER == LITTLE_ENDIAN) { | ||
| 593 | if (sizeof(long)==8) { | ||
| 594 | #ifdef BSWAP8 | ||
| 595 | X = (long)(BSWAP8(xi[j])); | ||
| 596 | #else | ||
| 597 | const u8 *p = (const u8 *)(xi+j); | ||
| 598 | X = (long)((u64)GETU32(p)<<32|GETU32(p+4)); | ||
| 599 | #endif | ||
| 600 | } | ||
| 601 | else { | ||
| 602 | const u8 *p = (const u8 *)(xi+j); | ||
| 603 | X = (long)GETU32(p); | ||
| 604 | } | ||
| 605 | } | ||
| 606 | else | ||
| 607 | X = xi[j]; | ||
| 608 | |||
| 609 | for (i=0; i<8*sizeof(long); ++i, X<<=1) { | ||
| 610 | u64 M = (u64)(X>>(8*sizeof(long)-1)); | ||
| 611 | Z.hi ^= V.hi&M; | ||
| 612 | Z.lo ^= V.lo&M; | ||
| 613 | |||
| 614 | REDUCE1BIT(V); | ||
| 615 | } | ||
| 616 | } | ||
| 617 | |||
| 618 | if (BYTE_ORDER == LITTLE_ENDIAN) { | ||
| 619 | #ifdef BSWAP8 | ||
| 620 | Xi[0] = BSWAP8(Z.hi); | ||
| 621 | Xi[1] = BSWAP8(Z.lo); | ||
| 622 | #else | ||
| 623 | u8 *p = (u8 *)Xi; | ||
| 624 | u32 v; | ||
| 625 | v = (u32)(Z.hi>>32); PUTU32(p,v); | ||
| 626 | v = (u32)(Z.hi); PUTU32(p+4,v); | ||
| 627 | v = (u32)(Z.lo>>32); PUTU32(p+8,v); | ||
| 628 | v = (u32)(Z.lo); PUTU32(p+12,v); | ||
| 629 | #endif | ||
| 630 | } | ||
| 631 | else { | ||
| 632 | Xi[0] = Z.hi; | ||
| 633 | Xi[1] = Z.lo; | ||
| 634 | } | ||
| 635 | } | ||
| 636 | #define GCM_MUL(ctx,Xi) gcm_gmult_1bit(ctx->Xi.u,ctx->H.u) | ||
| 637 | |||
| 638 | #endif | ||
| 639 | |||
| 640 | #if TABLE_BITS==4 && defined(GHASH_ASM) | ||
| 641 | # if !defined(I386_ONLY) && \ | ||
| 642 | (defined(__i386) || defined(__i386__) || \ | ||
| 643 | defined(__x86_64) || defined(__x86_64__) || \ | ||
| 644 | defined(_M_IX86) || defined(_M_AMD64) || defined(_M_X64)) | ||
| 645 | # define GHASH_ASM_X86_OR_64 | ||
| 646 | # define GCM_FUNCREF_4BIT | ||
| 647 | extern unsigned int OPENSSL_ia32cap_P[2]; | ||
| 648 | |||
| 649 | void gcm_init_clmul(u128 Htable[16],const u64 Xi[2]); | ||
| 650 | void gcm_gmult_clmul(u64 Xi[2],const u128 Htable[16]); | ||
| 651 | void gcm_ghash_clmul(u64 Xi[2],const u128 Htable[16],const u8 *inp,size_t len); | ||
| 652 | |||
| 653 | # if defined(__i386) || defined(__i386__) || defined(_M_IX86) | ||
| 654 | # define GHASH_ASM_X86 | ||
| 655 | void gcm_gmult_4bit_mmx(u64 Xi[2],const u128 Htable[16]); | ||
| 656 | void gcm_ghash_4bit_mmx(u64 Xi[2],const u128 Htable[16],const u8 *inp,size_t len); | ||
| 657 | |||
| 658 | void gcm_gmult_4bit_x86(u64 Xi[2],const u128 Htable[16]); | ||
| 659 | void gcm_ghash_4bit_x86(u64 Xi[2],const u128 Htable[16],const u8 *inp,size_t len); | ||
| 660 | # endif | ||
| 661 | # elif defined(__arm__) || defined(__arm) | ||
| 662 | # include "arm_arch.h" | ||
| 663 | # if __ARM_ARCH__>=7 | ||
| 664 | # define GHASH_ASM_ARM | ||
| 665 | # define GCM_FUNCREF_4BIT | ||
| 666 | void gcm_gmult_neon(u64 Xi[2],const u128 Htable[16]); | ||
| 667 | void gcm_ghash_neon(u64 Xi[2],const u128 Htable[16],const u8 *inp,size_t len); | ||
| 668 | # endif | ||
| 669 | # endif | ||
| 670 | #endif | ||
| 671 | |||
| 672 | #ifdef GCM_FUNCREF_4BIT | ||
| 673 | # undef GCM_MUL | ||
| 674 | # define GCM_MUL(ctx,Xi) (*gcm_gmult_p)(ctx->Xi.u,ctx->Htable) | ||
| 675 | # ifdef GHASH | ||
| 676 | # undef GHASH | ||
| 677 | # define GHASH(ctx,in,len) (*gcm_ghash_p)(ctx->Xi.u,ctx->Htable,in,len) | ||
| 678 | # endif | ||
| 679 | #endif | ||
| 680 | |||
| 681 | void CRYPTO_gcm128_init(GCM128_CONTEXT *ctx,void *key,block128_f block) | ||
| 682 | { | ||
| 683 | memset(ctx,0,sizeof(*ctx)); | ||
| 684 | ctx->block = block; | ||
| 685 | ctx->key = key; | ||
| 686 | |||
| 687 | (*block)(ctx->H.c,ctx->H.c,key); | ||
| 688 | |||
| 689 | if (BYTE_ORDER == LITTLE_ENDIAN) { | ||
| 690 | /* H is stored in host byte order */ | ||
| 691 | #ifdef BSWAP8 | ||
| 692 | ctx->H.u[0] = BSWAP8(ctx->H.u[0]); | ||
| 693 | ctx->H.u[1] = BSWAP8(ctx->H.u[1]); | ||
| 694 | #else | ||
| 695 | u8 *p = ctx->H.c; | ||
| 696 | u64 hi,lo; | ||
| 697 | hi = (u64)GETU32(p) <<32|GETU32(p+4); | ||
| 698 | lo = (u64)GETU32(p+8)<<32|GETU32(p+12); | ||
| 699 | ctx->H.u[0] = hi; | ||
| 700 | ctx->H.u[1] = lo; | ||
| 701 | #endif | ||
| 702 | } | ||
| 703 | |||
| 704 | #if TABLE_BITS==8 | ||
| 705 | gcm_init_8bit(ctx->Htable,ctx->H.u); | ||
| 706 | #elif TABLE_BITS==4 | ||
| 707 | # if defined(GHASH_ASM_X86_OR_64) | ||
| 708 | # if !defined(GHASH_ASM_X86) || defined(OPENSSL_IA32_SSE2) | ||
| 709 | if (OPENSSL_ia32cap_P[0]&(1<<24) && /* check FXSR bit */ | ||
| 710 | OPENSSL_ia32cap_P[1]&(1<<1) ) { /* check PCLMULQDQ bit */ | ||
| 711 | gcm_init_clmul(ctx->Htable,ctx->H.u); | ||
| 712 | ctx->gmult = gcm_gmult_clmul; | ||
| 713 | ctx->ghash = gcm_ghash_clmul; | ||
| 714 | return; | ||
| 715 | } | ||
| 716 | # endif | ||
| 717 | gcm_init_4bit(ctx->Htable,ctx->H.u); | ||
| 718 | # if defined(GHASH_ASM_X86) /* x86 only */ | ||
| 719 | # if defined(OPENSSL_IA32_SSE2) | ||
| 720 | if (OPENSSL_ia32cap_P[0]&(1<<25)) { /* check SSE bit */ | ||
| 721 | # else | ||
| 722 | if (OPENSSL_ia32cap_P[0]&(1<<23)) { /* check MMX bit */ | ||
| 723 | # endif | ||
| 724 | ctx->gmult = gcm_gmult_4bit_mmx; | ||
| 725 | ctx->ghash = gcm_ghash_4bit_mmx; | ||
| 726 | } else { | ||
| 727 | ctx->gmult = gcm_gmult_4bit_x86; | ||
| 728 | ctx->ghash = gcm_ghash_4bit_x86; | ||
| 729 | } | ||
| 730 | # else | ||
| 731 | ctx->gmult = gcm_gmult_4bit; | ||
| 732 | ctx->ghash = gcm_ghash_4bit; | ||
| 733 | # endif | ||
| 734 | # elif defined(GHASH_ASM_ARM) | ||
| 735 | if (OPENSSL_armcap_P & ARMV7_NEON) { | ||
| 736 | ctx->gmult = gcm_gmult_neon; | ||
| 737 | ctx->ghash = gcm_ghash_neon; | ||
| 738 | } else { | ||
| 739 | gcm_init_4bit(ctx->Htable,ctx->H.u); | ||
| 740 | ctx->gmult = gcm_gmult_4bit; | ||
| 741 | ctx->ghash = gcm_ghash_4bit; | ||
| 742 | } | ||
| 743 | # else | ||
| 744 | gcm_init_4bit(ctx->Htable,ctx->H.u); | ||
| 745 | # endif | ||
| 746 | #endif | ||
| 747 | } | ||
| 748 | |||
| 749 | void CRYPTO_gcm128_setiv(GCM128_CONTEXT *ctx,const unsigned char *iv,size_t len) | ||
| 750 | { | ||
| 751 | unsigned int ctr; | ||
| 752 | #ifdef GCM_FUNCREF_4BIT | ||
| 753 | void (*gcm_gmult_p)(u64 Xi[2],const u128 Htable[16]) = ctx->gmult; | ||
| 754 | #endif | ||
| 755 | |||
| 756 | ctx->Yi.u[0] = 0; | ||
| 757 | ctx->Yi.u[1] = 0; | ||
| 758 | ctx->Xi.u[0] = 0; | ||
| 759 | ctx->Xi.u[1] = 0; | ||
| 760 | ctx->len.u[0] = 0; /* AAD length */ | ||
| 761 | ctx->len.u[1] = 0; /* message length */ | ||
| 762 | ctx->ares = 0; | ||
| 763 | ctx->mres = 0; | ||
| 764 | |||
| 765 | if (len==12) { | ||
| 766 | memcpy(ctx->Yi.c,iv,12); | ||
| 767 | ctx->Yi.c[15]=1; | ||
| 768 | ctr=1; | ||
| 769 | } | ||
| 770 | else { | ||
| 771 | size_t i; | ||
| 772 | u64 len0 = len; | ||
| 773 | |||
| 774 | while (len>=16) { | ||
| 775 | for (i=0; i<16; ++i) ctx->Yi.c[i] ^= iv[i]; | ||
| 776 | GCM_MUL(ctx,Yi); | ||
| 777 | iv += 16; | ||
| 778 | len -= 16; | ||
| 779 | } | ||
| 780 | if (len) { | ||
| 781 | for (i=0; i<len; ++i) ctx->Yi.c[i] ^= iv[i]; | ||
| 782 | GCM_MUL(ctx,Yi); | ||
| 783 | } | ||
| 784 | len0 <<= 3; | ||
| 785 | if (BYTE_ORDER == LITTLE_ENDIAN) { | ||
| 786 | #ifdef BSWAP8 | ||
| 787 | ctx->Yi.u[1] ^= BSWAP8(len0); | ||
| 788 | #else | ||
| 789 | ctx->Yi.c[8] ^= (u8)(len0>>56); | ||
| 790 | ctx->Yi.c[9] ^= (u8)(len0>>48); | ||
| 791 | ctx->Yi.c[10] ^= (u8)(len0>>40); | ||
| 792 | ctx->Yi.c[11] ^= (u8)(len0>>32); | ||
| 793 | ctx->Yi.c[12] ^= (u8)(len0>>24); | ||
| 794 | ctx->Yi.c[13] ^= (u8)(len0>>16); | ||
| 795 | ctx->Yi.c[14] ^= (u8)(len0>>8); | ||
| 796 | ctx->Yi.c[15] ^= (u8)(len0); | ||
| 797 | #endif | ||
| 798 | } | ||
| 799 | else | ||
| 800 | ctx->Yi.u[1] ^= len0; | ||
| 801 | |||
| 802 | GCM_MUL(ctx,Yi); | ||
| 803 | |||
| 804 | if (BYTE_ORDER == LITTLE_ENDIAN) | ||
| 805 | #ifdef BSWAP4 | ||
| 806 | ctr = BSWAP4(ctx->Yi.d[3]); | ||
| 807 | #else | ||
| 808 | ctr = GETU32(ctx->Yi.c+12); | ||
| 809 | #endif | ||
| 810 | else | ||
| 811 | ctr = ctx->Yi.d[3]; | ||
| 812 | } | ||
| 813 | |||
| 814 | (*ctx->block)(ctx->Yi.c,ctx->EK0.c,ctx->key); | ||
| 815 | ++ctr; | ||
| 816 | if (BYTE_ORDER == LITTLE_ENDIAN) | ||
| 817 | #ifdef BSWAP4 | ||
| 818 | ctx->Yi.d[3] = BSWAP4(ctr); | ||
| 819 | #else | ||
| 820 | PUTU32(ctx->Yi.c+12,ctr); | ||
| 821 | #endif | ||
| 822 | else | ||
| 823 | ctx->Yi.d[3] = ctr; | ||
| 824 | } | ||
| 825 | |||
| 826 | int CRYPTO_gcm128_aad(GCM128_CONTEXT *ctx,const unsigned char *aad,size_t len) | ||
| 827 | { | ||
| 828 | size_t i; | ||
| 829 | unsigned int n; | ||
| 830 | u64 alen = ctx->len.u[0]; | ||
| 831 | #ifdef GCM_FUNCREF_4BIT | ||
| 832 | void (*gcm_gmult_p)(u64 Xi[2],const u128 Htable[16]) = ctx->gmult; | ||
| 833 | # ifdef GHASH | ||
| 834 | void (*gcm_ghash_p)(u64 Xi[2],const u128 Htable[16], | ||
| 835 | const u8 *inp,size_t len) = ctx->ghash; | ||
| 836 | # endif | ||
| 837 | #endif | ||
| 838 | |||
| 839 | if (ctx->len.u[1]) return -2; | ||
| 840 | |||
| 841 | alen += len; | ||
| 842 | if (alen>(U64(1)<<61) || (sizeof(len)==8 && alen<len)) | ||
| 843 | return -1; | ||
| 844 | ctx->len.u[0] = alen; | ||
| 845 | |||
| 846 | n = ctx->ares; | ||
| 847 | if (n) { | ||
| 848 | while (n && len) { | ||
| 849 | ctx->Xi.c[n] ^= *(aad++); | ||
| 850 | --len; | ||
| 851 | n = (n+1)%16; | ||
| 852 | } | ||
| 853 | if (n==0) GCM_MUL(ctx,Xi); | ||
| 854 | else { | ||
| 855 | ctx->ares = n; | ||
| 856 | return 0; | ||
| 857 | } | ||
| 858 | } | ||
| 859 | |||
| 860 | #ifdef GHASH | ||
| 861 | if ((i = (len&(size_t)-16))) { | ||
| 862 | GHASH(ctx,aad,i); | ||
| 863 | aad += i; | ||
| 864 | len -= i; | ||
| 865 | } | ||
| 866 | #else | ||
| 867 | while (len>=16) { | ||
| 868 | for (i=0; i<16; ++i) ctx->Xi.c[i] ^= aad[i]; | ||
| 869 | GCM_MUL(ctx,Xi); | ||
| 870 | aad += 16; | ||
| 871 | len -= 16; | ||
| 872 | } | ||
| 873 | #endif | ||
| 874 | if (len) { | ||
| 875 | n = (unsigned int)len; | ||
| 876 | for (i=0; i<len; ++i) ctx->Xi.c[i] ^= aad[i]; | ||
| 877 | } | ||
| 878 | |||
| 879 | ctx->ares = n; | ||
| 880 | return 0; | ||
| 881 | } | ||
| 882 | |||
| 883 | int CRYPTO_gcm128_encrypt(GCM128_CONTEXT *ctx, | ||
| 884 | const unsigned char *in, unsigned char *out, | ||
| 885 | size_t len) | ||
| 886 | { | ||
| 887 | unsigned int n, ctr; | ||
| 888 | size_t i; | ||
| 889 | u64 mlen = ctx->len.u[1]; | ||
| 890 | block128_f block = ctx->block; | ||
| 891 | void *key = ctx->key; | ||
| 892 | #ifdef GCM_FUNCREF_4BIT | ||
| 893 | void (*gcm_gmult_p)(u64 Xi[2],const u128 Htable[16]) = ctx->gmult; | ||
| 894 | # ifdef GHASH | ||
| 895 | void (*gcm_ghash_p)(u64 Xi[2],const u128 Htable[16], | ||
| 896 | const u8 *inp,size_t len) = ctx->ghash; | ||
| 897 | # endif | ||
| 898 | #endif | ||
| 899 | |||
| 900 | mlen += len; | ||
| 901 | if (mlen>((U64(1)<<36)-32) || (sizeof(len)==8 && mlen<len)) | ||
| 902 | return -1; | ||
| 903 | ctx->len.u[1] = mlen; | ||
| 904 | |||
| 905 | if (ctx->ares) { | ||
| 906 | /* First call to encrypt finalizes GHASH(AAD) */ | ||
| 907 | GCM_MUL(ctx,Xi); | ||
| 908 | ctx->ares = 0; | ||
| 909 | } | ||
| 910 | |||
| 911 | if (BYTE_ORDER == LITTLE_ENDIAN) | ||
| 912 | #ifdef BSWAP4 | ||
| 913 | ctr = BSWAP4(ctx->Yi.d[3]); | ||
| 914 | #else | ||
| 915 | ctr = GETU32(ctx->Yi.c+12); | ||
| 916 | #endif | ||
| 917 | else | ||
| 918 | ctr = ctx->Yi.d[3]; | ||
| 919 | |||
| 920 | n = ctx->mres; | ||
| 921 | #if !defined(OPENSSL_SMALL_FOOTPRINT) | ||
| 922 | if (16%sizeof(size_t) == 0) do { /* always true actually */ | ||
| 923 | if (n) { | ||
| 924 | while (n && len) { | ||
| 925 | ctx->Xi.c[n] ^= *(out++) = *(in++)^ctx->EKi.c[n]; | ||
| 926 | --len; | ||
| 927 | n = (n+1)%16; | ||
| 928 | } | ||
| 929 | if (n==0) GCM_MUL(ctx,Xi); | ||
| 930 | else { | ||
| 931 | ctx->mres = n; | ||
| 932 | return 0; | ||
| 933 | } | ||
| 934 | } | ||
| 935 | #ifdef __STRICT_ALIGNMENT | ||
| 936 | if (((size_t)in|(size_t)out)%sizeof(size_t) != 0) | ||
| 937 | break; | ||
| 938 | #endif | ||
| 939 | #if defined(GHASH) && defined(GHASH_CHUNK) | ||
| 940 | while (len>=GHASH_CHUNK) { | ||
| 941 | size_t j=GHASH_CHUNK; | ||
| 942 | |||
| 943 | while (j) { | ||
| 944 | size_t *out_t=(size_t *)out; | ||
| 945 | const size_t *in_t=(const size_t *)in; | ||
| 946 | |||
| 947 | (*block)(ctx->Yi.c,ctx->EKi.c,key); | ||
| 948 | ++ctr; | ||
| 949 | if (BYTE_ORDER == LITTLE_ENDIAN) | ||
| 950 | #ifdef BSWAP4 | ||
| 951 | ctx->Yi.d[3] = BSWAP4(ctr); | ||
| 952 | #else | ||
| 953 | PUTU32(ctx->Yi.c+12,ctr); | ||
| 954 | #endif | ||
| 955 | else | ||
| 956 | ctx->Yi.d[3] = ctr; | ||
| 957 | for (i=0; i<16/sizeof(size_t); ++i) | ||
| 958 | out_t[i] = in_t[i] ^ ctx->EKi.t[i]; | ||
| 959 | out += 16; | ||
| 960 | in += 16; | ||
| 961 | j -= 16; | ||
| 962 | } | ||
| 963 | GHASH(ctx,out-GHASH_CHUNK,GHASH_CHUNK); | ||
| 964 | len -= GHASH_CHUNK; | ||
| 965 | } | ||
| 966 | if ((i = (len&(size_t)-16))) { | ||
| 967 | size_t j=i; | ||
| 968 | |||
| 969 | while (len>=16) { | ||
| 970 | size_t *out_t=(size_t *)out; | ||
| 971 | const size_t *in_t=(const size_t *)in; | ||
| 972 | |||
| 973 | (*block)(ctx->Yi.c,ctx->EKi.c,key); | ||
| 974 | ++ctr; | ||
| 975 | if (BYTE_ORDER == LITTLE_ENDIAN) | ||
| 976 | #ifdef BSWAP4 | ||
| 977 | ctx->Yi.d[3] = BSWAP4(ctr); | ||
| 978 | #else | ||
| 979 | PUTU32(ctx->Yi.c+12,ctr); | ||
| 980 | #endif | ||
| 981 | else | ||
| 982 | ctx->Yi.d[3] = ctr; | ||
| 983 | for (i=0; i<16/sizeof(size_t); ++i) | ||
| 984 | out_t[i] = in_t[i] ^ ctx->EKi.t[i]; | ||
| 985 | out += 16; | ||
| 986 | in += 16; | ||
| 987 | len -= 16; | ||
| 988 | } | ||
| 989 | GHASH(ctx,out-j,j); | ||
| 990 | } | ||
| 991 | #else | ||
| 992 | while (len>=16) { | ||
| 993 | size_t *out_t=(size_t *)out; | ||
| 994 | const size_t *in_t=(const size_t *)in; | ||
| 995 | |||
| 996 | (*block)(ctx->Yi.c,ctx->EKi.c,key); | ||
| 997 | ++ctr; | ||
| 998 | if (BYTE_ORDER == LITTLE_ENDIAN) | ||
| 999 | #ifdef BSWAP4 | ||
| 1000 | ctx->Yi.d[3] = BSWAP4(ctr); | ||
| 1001 | #else | ||
| 1002 | PUTU32(ctx->Yi.c+12,ctr); | ||
| 1003 | #endif | ||
| 1004 | else | ||
| 1005 | ctx->Yi.d[3] = ctr; | ||
| 1006 | for (i=0; i<16/sizeof(size_t); ++i) | ||
| 1007 | ctx->Xi.t[i] ^= | ||
| 1008 | out_t[i] = in_t[i]^ctx->EKi.t[i]; | ||
| 1009 | GCM_MUL(ctx,Xi); | ||
| 1010 | out += 16; | ||
| 1011 | in += 16; | ||
| 1012 | len -= 16; | ||
| 1013 | } | ||
| 1014 | #endif | ||
| 1015 | if (len) { | ||
| 1016 | (*block)(ctx->Yi.c,ctx->EKi.c,key); | ||
| 1017 | ++ctr; | ||
| 1018 | if (BYTE_ORDER == LITTLE_ENDIAN) | ||
| 1019 | #ifdef BSWAP4 | ||
| 1020 | ctx->Yi.d[3] = BSWAP4(ctr); | ||
| 1021 | #else | ||
| 1022 | PUTU32(ctx->Yi.c+12,ctr); | ||
| 1023 | #endif | ||
| 1024 | else | ||
| 1025 | ctx->Yi.d[3] = ctr; | ||
| 1026 | while (len--) { | ||
| 1027 | ctx->Xi.c[n] ^= out[n] = in[n]^ctx->EKi.c[n]; | ||
| 1028 | ++n; | ||
| 1029 | } | ||
| 1030 | } | ||
| 1031 | |||
| 1032 | ctx->mres = n; | ||
| 1033 | return 0; | ||
| 1034 | } while(0); | ||
| 1035 | #endif | ||
| 1036 | for (i=0;i<len;++i) { | ||
| 1037 | if (n==0) { | ||
| 1038 | (*block)(ctx->Yi.c,ctx->EKi.c,key); | ||
| 1039 | ++ctr; | ||
| 1040 | if (BYTE_ORDER == LITTLE_ENDIAN) | ||
| 1041 | #ifdef BSWAP4 | ||
| 1042 | ctx->Yi.d[3] = BSWAP4(ctr); | ||
| 1043 | #else | ||
| 1044 | PUTU32(ctx->Yi.c+12,ctr); | ||
| 1045 | #endif | ||
| 1046 | else | ||
| 1047 | ctx->Yi.d[3] = ctr; | ||
| 1048 | } | ||
| 1049 | ctx->Xi.c[n] ^= out[i] = in[i]^ctx->EKi.c[n]; | ||
| 1050 | n = (n+1)%16; | ||
| 1051 | if (n==0) | ||
| 1052 | GCM_MUL(ctx,Xi); | ||
| 1053 | } | ||
| 1054 | |||
| 1055 | ctx->mres = n; | ||
| 1056 | return 0; | ||
| 1057 | } | ||
| 1058 | |||
| 1059 | int CRYPTO_gcm128_decrypt(GCM128_CONTEXT *ctx, | ||
| 1060 | const unsigned char *in, unsigned char *out, | ||
| 1061 | size_t len) | ||
| 1062 | { | ||
| 1063 | unsigned int n, ctr; | ||
| 1064 | size_t i; | ||
| 1065 | u64 mlen = ctx->len.u[1]; | ||
| 1066 | block128_f block = ctx->block; | ||
| 1067 | void *key = ctx->key; | ||
| 1068 | #ifdef GCM_FUNCREF_4BIT | ||
| 1069 | void (*gcm_gmult_p)(u64 Xi[2],const u128 Htable[16]) = ctx->gmult; | ||
| 1070 | # ifdef GHASH | ||
| 1071 | void (*gcm_ghash_p)(u64 Xi[2],const u128 Htable[16], | ||
| 1072 | const u8 *inp,size_t len) = ctx->ghash; | ||
| 1073 | # endif | ||
| 1074 | #endif | ||
| 1075 | |||
| 1076 | mlen += len; | ||
| 1077 | if (mlen>((U64(1)<<36)-32) || (sizeof(len)==8 && mlen<len)) | ||
| 1078 | return -1; | ||
| 1079 | ctx->len.u[1] = mlen; | ||
| 1080 | |||
| 1081 | if (ctx->ares) { | ||
| 1082 | /* First call to decrypt finalizes GHASH(AAD) */ | ||
| 1083 | GCM_MUL(ctx,Xi); | ||
| 1084 | ctx->ares = 0; | ||
| 1085 | } | ||
| 1086 | |||
| 1087 | if (BYTE_ORDER == LITTLE_ENDIAN) | ||
| 1088 | #ifdef BSWAP4 | ||
| 1089 | ctr = BSWAP4(ctx->Yi.d[3]); | ||
| 1090 | #else | ||
| 1091 | ctr = GETU32(ctx->Yi.c+12); | ||
| 1092 | #endif | ||
| 1093 | else | ||
| 1094 | ctr = ctx->Yi.d[3]; | ||
| 1095 | |||
| 1096 | n = ctx->mres; | ||
| 1097 | #if !defined(OPENSSL_SMALL_FOOTPRINT) | ||
| 1098 | if (16%sizeof(size_t) == 0) do { /* always true actually */ | ||
| 1099 | if (n) { | ||
| 1100 | while (n && len) { | ||
| 1101 | u8 c = *(in++); | ||
| 1102 | *(out++) = c^ctx->EKi.c[n]; | ||
| 1103 | ctx->Xi.c[n] ^= c; | ||
| 1104 | --len; | ||
| 1105 | n = (n+1)%16; | ||
| 1106 | } | ||
| 1107 | if (n==0) GCM_MUL (ctx,Xi); | ||
| 1108 | else { | ||
| 1109 | ctx->mres = n; | ||
| 1110 | return 0; | ||
| 1111 | } | ||
| 1112 | } | ||
| 1113 | #ifdef __STRICT_ALIGNMENT | ||
| 1114 | if (((size_t)in|(size_t)out)%sizeof(size_t) != 0) | ||
| 1115 | break; | ||
| 1116 | #endif | ||
| 1117 | #if defined(GHASH) && defined(GHASH_CHUNK) | ||
| 1118 | while (len>=GHASH_CHUNK) { | ||
| 1119 | size_t j=GHASH_CHUNK; | ||
| 1120 | |||
| 1121 | GHASH(ctx,in,GHASH_CHUNK); | ||
| 1122 | while (j) { | ||
| 1123 | size_t *out_t=(size_t *)out; | ||
| 1124 | const size_t *in_t=(const size_t *)in; | ||
| 1125 | |||
| 1126 | (*block)(ctx->Yi.c,ctx->EKi.c,key); | ||
| 1127 | ++ctr; | ||
| 1128 | if (BYTE_ORDER == LITTLE_ENDIAN) | ||
| 1129 | #ifdef BSWAP4 | ||
| 1130 | ctx->Yi.d[3] = BSWAP4(ctr); | ||
| 1131 | #else | ||
| 1132 | PUTU32(ctx->Yi.c+12,ctr); | ||
| 1133 | #endif | ||
| 1134 | else | ||
| 1135 | ctx->Yi.d[3] = ctr; | ||
| 1136 | for (i=0; i<16/sizeof(size_t); ++i) | ||
| 1137 | out_t[i] = in_t[i]^ctx->EKi.t[i]; | ||
| 1138 | out += 16; | ||
| 1139 | in += 16; | ||
| 1140 | j -= 16; | ||
| 1141 | } | ||
| 1142 | len -= GHASH_CHUNK; | ||
| 1143 | } | ||
| 1144 | if ((i = (len&(size_t)-16))) { | ||
| 1145 | GHASH(ctx,in,i); | ||
| 1146 | while (len>=16) { | ||
| 1147 | size_t *out_t=(size_t *)out; | ||
| 1148 | const size_t *in_t=(const size_t *)in; | ||
| 1149 | |||
| 1150 | (*block)(ctx->Yi.c,ctx->EKi.c,key); | ||
| 1151 | ++ctr; | ||
| 1152 | if (BYTE_ORDER == LITTLE_ENDIAN) | ||
| 1153 | #ifdef BSWAP4 | ||
| 1154 | ctx->Yi.d[3] = BSWAP4(ctr); | ||
| 1155 | #else | ||
| 1156 | PUTU32(ctx->Yi.c+12,ctr); | ||
| 1157 | #endif | ||
| 1158 | else | ||
| 1159 | ctx->Yi.d[3] = ctr; | ||
| 1160 | for (i=0; i<16/sizeof(size_t); ++i) | ||
| 1161 | out_t[i] = in_t[i]^ctx->EKi.t[i]; | ||
| 1162 | out += 16; | ||
| 1163 | in += 16; | ||
| 1164 | len -= 16; | ||
| 1165 | } | ||
| 1166 | } | ||
| 1167 | #else | ||
| 1168 | while (len>=16) { | ||
| 1169 | size_t *out_t=(size_t *)out; | ||
| 1170 | const size_t *in_t=(const size_t *)in; | ||
| 1171 | |||
| 1172 | (*block)(ctx->Yi.c,ctx->EKi.c,key); | ||
| 1173 | ++ctr; | ||
| 1174 | if (BYTE_ORDER == LITTLE_ENDIAN) | ||
| 1175 | #ifdef BSWAP4 | ||
| 1176 | ctx->Yi.d[3] = BSWAP4(ctr); | ||
| 1177 | #else | ||
| 1178 | PUTU32(ctx->Yi.c+12,ctr); | ||
| 1179 | #endif | ||
| 1180 | else | ||
| 1181 | ctx->Yi.d[3] = ctr; | ||
| 1182 | for (i=0; i<16/sizeof(size_t); ++i) { | ||
| 1183 | size_t c = in[i]; | ||
| 1184 | out[i] = c^ctx->EKi.t[i]; | ||
| 1185 | ctx->Xi.t[i] ^= c; | ||
| 1186 | } | ||
| 1187 | GCM_MUL(ctx,Xi); | ||
| 1188 | out += 16; | ||
| 1189 | in += 16; | ||
| 1190 | len -= 16; | ||
| 1191 | } | ||
| 1192 | #endif | ||
| 1193 | if (len) { | ||
| 1194 | (*block)(ctx->Yi.c,ctx->EKi.c,key); | ||
| 1195 | ++ctr; | ||
| 1196 | if (BYTE_ORDER == LITTLE_ENDIAN) | ||
| 1197 | #ifdef BSWAP4 | ||
| 1198 | ctx->Yi.d[3] = BSWAP4(ctr); | ||
| 1199 | #else | ||
| 1200 | PUTU32(ctx->Yi.c+12,ctr); | ||
| 1201 | #endif | ||
| 1202 | else | ||
| 1203 | ctx->Yi.d[3] = ctr; | ||
| 1204 | while (len--) { | ||
| 1205 | u8 c = in[n]; | ||
| 1206 | ctx->Xi.c[n] ^= c; | ||
| 1207 | out[n] = c^ctx->EKi.c[n]; | ||
| 1208 | ++n; | ||
| 1209 | } | ||
| 1210 | } | ||
| 1211 | |||
| 1212 | ctx->mres = n; | ||
| 1213 | return 0; | ||
| 1214 | } while(0); | ||
| 1215 | #endif | ||
| 1216 | for (i=0;i<len;++i) { | ||
| 1217 | u8 c; | ||
| 1218 | if (n==0) { | ||
| 1219 | (*block)(ctx->Yi.c,ctx->EKi.c,key); | ||
| 1220 | ++ctr; | ||
| 1221 | if (BYTE_ORDER == LITTLE_ENDIAN) | ||
| 1222 | #ifdef BSWAP4 | ||
| 1223 | ctx->Yi.d[3] = BSWAP4(ctr); | ||
| 1224 | #else | ||
| 1225 | PUTU32(ctx->Yi.c+12,ctr); | ||
| 1226 | #endif | ||
| 1227 | else | ||
| 1228 | ctx->Yi.d[3] = ctr; | ||
| 1229 | } | ||
| 1230 | c = in[i]; | ||
| 1231 | out[i] = c^ctx->EKi.c[n]; | ||
| 1232 | ctx->Xi.c[n] ^= c; | ||
| 1233 | n = (n+1)%16; | ||
| 1234 | if (n==0) | ||
| 1235 | GCM_MUL(ctx,Xi); | ||
| 1236 | } | ||
| 1237 | |||
| 1238 | ctx->mres = n; | ||
| 1239 | return 0; | ||
| 1240 | } | ||
| 1241 | |||
| 1242 | int CRYPTO_gcm128_encrypt_ctr32(GCM128_CONTEXT *ctx, | ||
| 1243 | const unsigned char *in, unsigned char *out, | ||
| 1244 | size_t len, ctr128_f stream) | ||
| 1245 | { | ||
| 1246 | unsigned int n, ctr; | ||
| 1247 | size_t i; | ||
| 1248 | u64 mlen = ctx->len.u[1]; | ||
| 1249 | void *key = ctx->key; | ||
| 1250 | #ifdef GCM_FUNCREF_4BIT | ||
| 1251 | void (*gcm_gmult_p)(u64 Xi[2],const u128 Htable[16]) = ctx->gmult; | ||
| 1252 | # ifdef GHASH | ||
| 1253 | void (*gcm_ghash_p)(u64 Xi[2],const u128 Htable[16], | ||
| 1254 | const u8 *inp,size_t len) = ctx->ghash; | ||
| 1255 | # endif | ||
| 1256 | #endif | ||
| 1257 | |||
| 1258 | mlen += len; | ||
| 1259 | if (mlen>((U64(1)<<36)-32) || (sizeof(len)==8 && mlen<len)) | ||
| 1260 | return -1; | ||
| 1261 | ctx->len.u[1] = mlen; | ||
| 1262 | |||
| 1263 | if (ctx->ares) { | ||
| 1264 | /* First call to encrypt finalizes GHASH(AAD) */ | ||
| 1265 | GCM_MUL(ctx,Xi); | ||
| 1266 | ctx->ares = 0; | ||
| 1267 | } | ||
| 1268 | |||
| 1269 | if (BYTE_ORDER == LITTLE_ENDIAN) | ||
| 1270 | #ifdef BSWAP4 | ||
| 1271 | ctr = BSWAP4(ctx->Yi.d[3]); | ||
| 1272 | #else | ||
| 1273 | ctr = GETU32(ctx->Yi.c+12); | ||
| 1274 | #endif | ||
| 1275 | else | ||
| 1276 | ctr = ctx->Yi.d[3]; | ||
| 1277 | |||
| 1278 | n = ctx->mres; | ||
| 1279 | if (n) { | ||
| 1280 | while (n && len) { | ||
| 1281 | ctx->Xi.c[n] ^= *(out++) = *(in++)^ctx->EKi.c[n]; | ||
| 1282 | --len; | ||
| 1283 | n = (n+1)%16; | ||
| 1284 | } | ||
| 1285 | if (n==0) GCM_MUL(ctx,Xi); | ||
| 1286 | else { | ||
| 1287 | ctx->mres = n; | ||
| 1288 | return 0; | ||
| 1289 | } | ||
| 1290 | } | ||
| 1291 | #if defined(GHASH) && !defined(OPENSSL_SMALL_FOOTPRINT) | ||
| 1292 | while (len>=GHASH_CHUNK) { | ||
| 1293 | (*stream)(in,out,GHASH_CHUNK/16,key,ctx->Yi.c); | ||
| 1294 | ctr += GHASH_CHUNK/16; | ||
| 1295 | if (BYTE_ORDER == LITTLE_ENDIAN) | ||
| 1296 | #ifdef BSWAP4 | ||
| 1297 | ctx->Yi.d[3] = BSWAP4(ctr); | ||
| 1298 | #else | ||
| 1299 | PUTU32(ctx->Yi.c+12,ctr); | ||
| 1300 | #endif | ||
| 1301 | else | ||
| 1302 | ctx->Yi.d[3] = ctr; | ||
| 1303 | GHASH(ctx,out,GHASH_CHUNK); | ||
| 1304 | out += GHASH_CHUNK; | ||
| 1305 | in += GHASH_CHUNK; | ||
| 1306 | len -= GHASH_CHUNK; | ||
| 1307 | } | ||
| 1308 | #endif | ||
| 1309 | if ((i = (len&(size_t)-16))) { | ||
| 1310 | size_t j=i/16; | ||
| 1311 | |||
| 1312 | (*stream)(in,out,j,key,ctx->Yi.c); | ||
| 1313 | ctr += (unsigned int)j; | ||
| 1314 | if (BYTE_ORDER == LITTLE_ENDIAN) | ||
| 1315 | #ifdef BSWAP4 | ||
| 1316 | ctx->Yi.d[3] = BSWAP4(ctr); | ||
| 1317 | #else | ||
| 1318 | PUTU32(ctx->Yi.c+12,ctr); | ||
| 1319 | #endif | ||
| 1320 | else | ||
| 1321 | ctx->Yi.d[3] = ctr; | ||
| 1322 | in += i; | ||
| 1323 | len -= i; | ||
| 1324 | #if defined(GHASH) | ||
| 1325 | GHASH(ctx,out,i); | ||
| 1326 | out += i; | ||
| 1327 | #else | ||
| 1328 | while (j--) { | ||
| 1329 | for (i=0;i<16;++i) ctx->Xi.c[i] ^= out[i]; | ||
| 1330 | GCM_MUL(ctx,Xi); | ||
| 1331 | out += 16; | ||
| 1332 | } | ||
| 1333 | #endif | ||
| 1334 | } | ||
| 1335 | if (len) { | ||
| 1336 | (*ctx->block)(ctx->Yi.c,ctx->EKi.c,key); | ||
| 1337 | ++ctr; | ||
| 1338 | if (BYTE_ORDER == LITTLE_ENDIAN) | ||
| 1339 | #ifdef BSWAP4 | ||
| 1340 | ctx->Yi.d[3] = BSWAP4(ctr); | ||
| 1341 | #else | ||
| 1342 | PUTU32(ctx->Yi.c+12,ctr); | ||
| 1343 | #endif | ||
| 1344 | else | ||
| 1345 | ctx->Yi.d[3] = ctr; | ||
| 1346 | while (len--) { | ||
| 1347 | ctx->Xi.c[n] ^= out[n] = in[n]^ctx->EKi.c[n]; | ||
| 1348 | ++n; | ||
| 1349 | } | ||
| 1350 | } | ||
| 1351 | |||
| 1352 | ctx->mres = n; | ||
| 1353 | return 0; | ||
| 1354 | } | ||
| 1355 | |||
| 1356 | int CRYPTO_gcm128_decrypt_ctr32(GCM128_CONTEXT *ctx, | ||
| 1357 | const unsigned char *in, unsigned char *out, | ||
| 1358 | size_t len,ctr128_f stream) | ||
| 1359 | { | ||
| 1360 | unsigned int n, ctr; | ||
| 1361 | size_t i; | ||
| 1362 | u64 mlen = ctx->len.u[1]; | ||
| 1363 | void *key = ctx->key; | ||
| 1364 | #ifdef GCM_FUNCREF_4BIT | ||
| 1365 | void (*gcm_gmult_p)(u64 Xi[2],const u128 Htable[16]) = ctx->gmult; | ||
| 1366 | # ifdef GHASH | ||
| 1367 | void (*gcm_ghash_p)(u64 Xi[2],const u128 Htable[16], | ||
| 1368 | const u8 *inp,size_t len) = ctx->ghash; | ||
| 1369 | # endif | ||
| 1370 | #endif | ||
| 1371 | |||
| 1372 | mlen += len; | ||
| 1373 | if (mlen>((U64(1)<<36)-32) || (sizeof(len)==8 && mlen<len)) | ||
| 1374 | return -1; | ||
| 1375 | ctx->len.u[1] = mlen; | ||
| 1376 | |||
| 1377 | if (ctx->ares) { | ||
| 1378 | /* First call to decrypt finalizes GHASH(AAD) */ | ||
| 1379 | GCM_MUL(ctx,Xi); | ||
| 1380 | ctx->ares = 0; | ||
| 1381 | } | ||
| 1382 | |||
| 1383 | if (BYTE_ORDER == LITTLE_ENDIAN) | ||
| 1384 | #ifdef BSWAP4 | ||
| 1385 | ctr = BSWAP4(ctx->Yi.d[3]); | ||
| 1386 | #else | ||
| 1387 | ctr = GETU32(ctx->Yi.c+12); | ||
| 1388 | #endif | ||
| 1389 | else | ||
| 1390 | ctr = ctx->Yi.d[3]; | ||
| 1391 | |||
| 1392 | n = ctx->mres; | ||
| 1393 | if (n) { | ||
| 1394 | while (n && len) { | ||
| 1395 | u8 c = *(in++); | ||
| 1396 | *(out++) = c^ctx->EKi.c[n]; | ||
| 1397 | ctx->Xi.c[n] ^= c; | ||
| 1398 | --len; | ||
| 1399 | n = (n+1)%16; | ||
| 1400 | } | ||
| 1401 | if (n==0) GCM_MUL (ctx,Xi); | ||
| 1402 | else { | ||
| 1403 | ctx->mres = n; | ||
| 1404 | return 0; | ||
| 1405 | } | ||
| 1406 | } | ||
| 1407 | #if defined(GHASH) && !defined(OPENSSL_SMALL_FOOTPRINT) | ||
| 1408 | while (len>=GHASH_CHUNK) { | ||
| 1409 | GHASH(ctx,in,GHASH_CHUNK); | ||
| 1410 | (*stream)(in,out,GHASH_CHUNK/16,key,ctx->Yi.c); | ||
| 1411 | ctr += GHASH_CHUNK/16; | ||
| 1412 | if (BYTE_ORDER == LITTLE_ENDIAN) | ||
| 1413 | #ifdef BSWAP4 | ||
| 1414 | ctx->Yi.d[3] = BSWAP4(ctr); | ||
| 1415 | #else | ||
| 1416 | PUTU32(ctx->Yi.c+12,ctr); | ||
| 1417 | #endif | ||
| 1418 | else | ||
| 1419 | ctx->Yi.d[3] = ctr; | ||
| 1420 | out += GHASH_CHUNK; | ||
| 1421 | in += GHASH_CHUNK; | ||
| 1422 | len -= GHASH_CHUNK; | ||
| 1423 | } | ||
| 1424 | #endif | ||
| 1425 | if ((i = (len&(size_t)-16))) { | ||
| 1426 | size_t j=i/16; | ||
| 1427 | |||
| 1428 | #if defined(GHASH) | ||
| 1429 | GHASH(ctx,in,i); | ||
| 1430 | #else | ||
| 1431 | while (j--) { | ||
| 1432 | size_t k; | ||
| 1433 | for (k=0;k<16;++k) ctx->Xi.c[k] ^= in[k]; | ||
| 1434 | GCM_MUL(ctx,Xi); | ||
| 1435 | in += 16; | ||
| 1436 | } | ||
| 1437 | j = i/16; | ||
| 1438 | in -= i; | ||
| 1439 | #endif | ||
| 1440 | (*stream)(in,out,j,key,ctx->Yi.c); | ||
| 1441 | ctr += (unsigned int)j; | ||
| 1442 | if (BYTE_ORDER == LITTLE_ENDIAN) | ||
| 1443 | #ifdef BSWAP4 | ||
| 1444 | ctx->Yi.d[3] = BSWAP4(ctr); | ||
| 1445 | #else | ||
| 1446 | PUTU32(ctx->Yi.c+12,ctr); | ||
| 1447 | #endif | ||
| 1448 | else | ||
| 1449 | ctx->Yi.d[3] = ctr; | ||
| 1450 | out += i; | ||
| 1451 | in += i; | ||
| 1452 | len -= i; | ||
| 1453 | } | ||
| 1454 | if (len) { | ||
| 1455 | (*ctx->block)(ctx->Yi.c,ctx->EKi.c,key); | ||
| 1456 | ++ctr; | ||
| 1457 | if (BYTE_ORDER == LITTLE_ENDIAN) | ||
| 1458 | #ifdef BSWAP4 | ||
| 1459 | ctx->Yi.d[3] = BSWAP4(ctr); | ||
| 1460 | #else | ||
| 1461 | PUTU32(ctx->Yi.c+12,ctr); | ||
| 1462 | #endif | ||
| 1463 | else | ||
| 1464 | ctx->Yi.d[3] = ctr; | ||
| 1465 | while (len--) { | ||
| 1466 | u8 c = in[n]; | ||
| 1467 | ctx->Xi.c[n] ^= c; | ||
| 1468 | out[n] = c^ctx->EKi.c[n]; | ||
| 1469 | ++n; | ||
| 1470 | } | ||
| 1471 | } | ||
| 1472 | |||
| 1473 | ctx->mres = n; | ||
| 1474 | return 0; | ||
| 1475 | } | ||
| 1476 | |||
| 1477 | int CRYPTO_gcm128_finish(GCM128_CONTEXT *ctx,const unsigned char *tag, | ||
| 1478 | size_t len) | ||
| 1479 | { | ||
| 1480 | u64 alen = ctx->len.u[0]<<3; | ||
| 1481 | u64 clen = ctx->len.u[1]<<3; | ||
| 1482 | #ifdef GCM_FUNCREF_4BIT | ||
| 1483 | void (*gcm_gmult_p)(u64 Xi[2],const u128 Htable[16]) = ctx->gmult; | ||
| 1484 | #endif | ||
| 1485 | |||
| 1486 | if (ctx->mres || ctx->ares) | ||
| 1487 | GCM_MUL(ctx,Xi); | ||
| 1488 | |||
| 1489 | if (BYTE_ORDER == LITTLE_ENDIAN) { | ||
| 1490 | #ifdef BSWAP8 | ||
| 1491 | alen = BSWAP8(alen); | ||
| 1492 | clen = BSWAP8(clen); | ||
| 1493 | #else | ||
| 1494 | u8 *p = ctx->len.c; | ||
| 1495 | |||
| 1496 | ctx->len.u[0] = alen; | ||
| 1497 | ctx->len.u[1] = clen; | ||
| 1498 | |||
| 1499 | alen = (u64)GETU32(p) <<32|GETU32(p+4); | ||
| 1500 | clen = (u64)GETU32(p+8)<<32|GETU32(p+12); | ||
| 1501 | #endif | ||
| 1502 | } | ||
| 1503 | |||
| 1504 | ctx->Xi.u[0] ^= alen; | ||
| 1505 | ctx->Xi.u[1] ^= clen; | ||
| 1506 | GCM_MUL(ctx,Xi); | ||
| 1507 | |||
| 1508 | ctx->Xi.u[0] ^= ctx->EK0.u[0]; | ||
| 1509 | ctx->Xi.u[1] ^= ctx->EK0.u[1]; | ||
| 1510 | |||
| 1511 | if (tag && len<=sizeof(ctx->Xi)) | ||
| 1512 | return memcmp(ctx->Xi.c,tag,len); | ||
| 1513 | else | ||
| 1514 | return -1; | ||
| 1515 | } | ||
| 1516 | |||
| 1517 | void CRYPTO_gcm128_tag(GCM128_CONTEXT *ctx, unsigned char *tag, size_t len) | ||
| 1518 | { | ||
| 1519 | CRYPTO_gcm128_finish(ctx, NULL, 0); | ||
| 1520 | memcpy(tag, ctx->Xi.c, len<=sizeof(ctx->Xi.c)?len:sizeof(ctx->Xi.c)); | ||
| 1521 | } | ||
| 1522 | |||
| 1523 | GCM128_CONTEXT *CRYPTO_gcm128_new(void *key, block128_f block) | ||
| 1524 | { | ||
| 1525 | GCM128_CONTEXT *ret; | ||
| 1526 | |||
| 1527 | if ((ret = malloc(sizeof(GCM128_CONTEXT)))) | ||
| 1528 | CRYPTO_gcm128_init(ret,key,block); | ||
| 1529 | |||
| 1530 | return ret; | ||
| 1531 | } | ||
| 1532 | |||
| 1533 | void CRYPTO_gcm128_release(GCM128_CONTEXT *ctx) | ||
| 1534 | { | ||
| 1535 | if (ctx) { | ||
| 1536 | OPENSSL_cleanse(ctx,sizeof(*ctx)); | ||
| 1537 | free(ctx); | ||
| 1538 | } | ||
| 1539 | } | ||
