diff options
Diffstat (limited to 'src/lib/libcrypto/modes')
| -rw-r--r-- | src/lib/libcrypto/modes/asm/ghash-s390x.pl | 262 | 
1 files changed, 0 insertions, 262 deletions
| diff --git a/src/lib/libcrypto/modes/asm/ghash-s390x.pl b/src/lib/libcrypto/modes/asm/ghash-s390x.pl deleted file mode 100644 index 6a40d5d89c..0000000000 --- a/src/lib/libcrypto/modes/asm/ghash-s390x.pl +++ /dev/null | |||
| @@ -1,262 +0,0 @@ | |||
| 1 | #!/usr/bin/env perl | ||
| 2 | |||
| 3 | # ==================================================================== | ||
| 4 | # Written by Andy Polyakov <appro@openssl.org> for the OpenSSL | ||
| 5 | # project. The module is, however, dual licensed under OpenSSL and | ||
| 6 | # CRYPTOGAMS licenses depending on where you obtain it. For further | ||
| 7 | # details see http://www.openssl.org/~appro/cryptogams/. | ||
| 8 | # ==================================================================== | ||
| 9 | |||
| 10 | # September 2010. | ||
| 11 | # | ||
| 12 | # The module implements "4-bit" GCM GHASH function and underlying | ||
| 13 | # single multiplication operation in GF(2^128). "4-bit" means that it | ||
| 14 | # uses 256 bytes per-key table [+128 bytes shared table]. Performance | ||
| 15 | # was measured to be ~18 cycles per processed byte on z10, which is | ||
| 16 | # almost 40% better than gcc-generated code. It should be noted that | ||
| 17 | # 18 cycles is worse result than expected: loop is scheduled for 12 | ||
| 18 | # and the result should be close to 12. In the lack of instruction- | ||
| 19 | # level profiling data it's impossible to tell why... | ||
| 20 | |||
| 21 | # November 2010. | ||
| 22 | # | ||
| 23 | # Adapt for -m31 build. If kernel supports what's called "highgprs" | ||
| 24 | # feature on Linux [see /proc/cpuinfo], it's possible to use 64-bit | ||
| 25 | # instructions and achieve "64-bit" performance even in 31-bit legacy | ||
| 26 | # application context. The feature is not specific to any particular | ||
| 27 | # processor, as long as it's "z-CPU". Latter implies that the code | ||
| 28 | # remains z/Architecture specific. On z990 it was measured to perform | ||
| 29 | # 2.8x better than 32-bit code generated by gcc 4.3. | ||
| 30 | |||
| 31 | # March 2011. | ||
| 32 | # | ||
| 33 | # Support for hardware KIMD-GHASH is verified to produce correct | ||
| 34 | # result and therefore is engaged. On z196 it was measured to process | ||
| 35 | # 8KB buffer ~7 faster than software implementation. It's not as | ||
| 36 | # impressive for smaller buffer sizes and for smallest 16-bytes buffer | ||
| 37 | # it's actually almost 2 times slower. Which is the reason why | ||
| 38 | # KIMD-GHASH is not used in gcm_gmult_4bit. | ||
| 39 | |||
| 40 | $flavour = shift; | ||
| 41 | |||
| 42 | if ($flavour =~ /3[12]/) { | ||
| 43 | $SIZE_T=4; | ||
| 44 | $g=""; | ||
| 45 | } else { | ||
| 46 | $SIZE_T=8; | ||
| 47 | $g="g"; | ||
| 48 | } | ||
| 49 | |||
| 50 | while (($output=shift) && ($output!~/^\w[\w\-]*\.\w+$/)) {} | ||
| 51 | open STDOUT,">$output"; | ||
| 52 | |||
| 53 | $softonly=0; | ||
| 54 | |||
| 55 | $Zhi="%r0"; | ||
| 56 | $Zlo="%r1"; | ||
| 57 | |||
| 58 | $Xi="%r2"; # argument block | ||
| 59 | $Htbl="%r3"; | ||
| 60 | $inp="%r4"; | ||
| 61 | $len="%r5"; | ||
| 62 | |||
| 63 | $rem0="%r6"; # variables | ||
| 64 | $rem1="%r7"; | ||
| 65 | $nlo="%r8"; | ||
| 66 | $nhi="%r9"; | ||
| 67 | $xi="%r10"; | ||
| 68 | $cnt="%r11"; | ||
| 69 | $tmp="%r12"; | ||
| 70 | $x78="%r13"; | ||
| 71 | $rem_4bit="%r14"; | ||
| 72 | |||
| 73 | $sp="%r15"; | ||
| 74 | |||
| 75 | $code.=<<___; | ||
| 76 | .text | ||
| 77 | |||
| 78 | .globl gcm_gmult_4bit | ||
| 79 | .align 32 | ||
| 80 | gcm_gmult_4bit: | ||
| 81 | ___ | ||
| 82 | $code.=<<___ if(!$softonly && 0); # hardware is slow for single block... | ||
| 83 | larl %r1,OPENSSL_s390xcap_P | ||
| 84 | lg %r0,0(%r1) | ||
| 85 | tmhl %r0,0x4000 # check for message-security-assist | ||
| 86 | jz .Lsoft_gmult | ||
| 87 | lghi %r0,0 | ||
| 88 | la %r1,16($sp) | ||
| 89 | .long 0xb93e0004 # kimd %r0,%r4 | ||
| 90 | lg %r1,24($sp) | ||
| 91 | tmhh %r1,0x4000 # check for function 65 | ||
| 92 | jz .Lsoft_gmult | ||
| 93 | stg %r0,16($sp) # arrange 16 bytes of zero input | ||
| 94 | stg %r0,24($sp) | ||
| 95 | lghi %r0,65 # function 65 | ||
| 96 | la %r1,0($Xi) # H lies right after Xi in gcm128_context | ||
| 97 | la $inp,16($sp) | ||
| 98 | lghi $len,16 | ||
| 99 | .long 0xb93e0004 # kimd %r0,$inp | ||
| 100 | brc 1,.-4 # pay attention to "partial completion" | ||
| 101 | br %r14 | ||
| 102 | .align 32 | ||
| 103 | .Lsoft_gmult: | ||
| 104 | ___ | ||
| 105 | $code.=<<___; | ||
| 106 | stm${g} %r6,%r14,6*$SIZE_T($sp) | ||
| 107 | |||
| 108 | aghi $Xi,-1 | ||
| 109 | lghi $len,1 | ||
| 110 | lghi $x78,`0xf<<3` | ||
| 111 | larl $rem_4bit,rem_4bit | ||
| 112 | |||
| 113 | lg $Zlo,8+1($Xi) # Xi | ||
| 114 | j .Lgmult_shortcut | ||
| 115 | .type gcm_gmult_4bit,\@function | ||
| 116 | .size gcm_gmult_4bit,(.-gcm_gmult_4bit) | ||
| 117 | |||
| 118 | .globl gcm_ghash_4bit | ||
| 119 | .align 32 | ||
| 120 | gcm_ghash_4bit: | ||
| 121 | ___ | ||
| 122 | $code.=<<___ if(!$softonly); | ||
| 123 | larl %r1,OPENSSL_s390xcap_P | ||
| 124 | lg %r0,0(%r1) | ||
| 125 | tmhl %r0,0x4000 # check for message-security-assist | ||
| 126 | jz .Lsoft_ghash | ||
| 127 | lghi %r0,0 | ||
| 128 | la %r1,16($sp) | ||
| 129 | .long 0xb93e0004 # kimd %r0,%r4 | ||
| 130 | lg %r1,24($sp) | ||
| 131 | tmhh %r1,0x4000 # check for function 65 | ||
| 132 | jz .Lsoft_ghash | ||
| 133 | lghi %r0,65 # function 65 | ||
| 134 | la %r1,0($Xi) # H lies right after Xi in gcm128_context | ||
| 135 | .long 0xb93e0004 # kimd %r0,$inp | ||
| 136 | brc 1,.-4 # pay attention to "partial completion" | ||
| 137 | br %r14 | ||
| 138 | .align 32 | ||
| 139 | .Lsoft_ghash: | ||
| 140 | ___ | ||
| 141 | $code.=<<___ if ($flavour =~ /3[12]/); | ||
| 142 | llgfr $len,$len | ||
| 143 | ___ | ||
| 144 | $code.=<<___; | ||
| 145 | stm${g} %r6,%r14,6*$SIZE_T($sp) | ||
| 146 | |||
| 147 | aghi $Xi,-1 | ||
| 148 | srlg $len,$len,4 | ||
| 149 | lghi $x78,`0xf<<3` | ||
| 150 | larl $rem_4bit,rem_4bit | ||
| 151 | |||
| 152 | lg $Zlo,8+1($Xi) # Xi | ||
| 153 | lg $Zhi,0+1($Xi) | ||
| 154 | lghi $tmp,0 | ||
| 155 | .Louter: | ||
| 156 | xg $Zhi,0($inp) # Xi ^= inp | ||
| 157 | xg $Zlo,8($inp) | ||
| 158 | xgr $Zhi,$tmp | ||
| 159 | stg $Zlo,8+1($Xi) | ||
| 160 | stg $Zhi,0+1($Xi) | ||
| 161 | |||
| 162 | .Lgmult_shortcut: | ||
| 163 | lghi $tmp,0xf0 | ||
| 164 | sllg $nlo,$Zlo,4 | ||
| 165 | srlg $xi,$Zlo,8 # extract second byte | ||
| 166 | ngr $nlo,$tmp | ||
| 167 | lgr $nhi,$Zlo | ||
| 168 | lghi $cnt,14 | ||
| 169 | ngr $nhi,$tmp | ||
| 170 | |||
| 171 | lg $Zlo,8($nlo,$Htbl) | ||
| 172 | lg $Zhi,0($nlo,$Htbl) | ||
| 173 | |||
| 174 | sllg $nlo,$xi,4 | ||
| 175 | sllg $rem0,$Zlo,3 | ||
| 176 | ngr $nlo,$tmp | ||
| 177 | ngr $rem0,$x78 | ||
| 178 | ngr $xi,$tmp | ||
| 179 | |||
| 180 | sllg $tmp,$Zhi,60 | ||
| 181 | srlg $Zlo,$Zlo,4 | ||
| 182 | srlg $Zhi,$Zhi,4 | ||
| 183 | xg $Zlo,8($nhi,$Htbl) | ||
| 184 | xg $Zhi,0($nhi,$Htbl) | ||
| 185 | lgr $nhi,$xi | ||
| 186 | sllg $rem1,$Zlo,3 | ||
| 187 | xgr $Zlo,$tmp | ||
| 188 | ngr $rem1,$x78 | ||
| 189 | j .Lghash_inner | ||
| 190 | .align 16 | ||
| 191 | .Lghash_inner: | ||
| 192 | srlg $Zlo,$Zlo,4 | ||
| 193 | sllg $tmp,$Zhi,60 | ||
| 194 | xg $Zlo,8($nlo,$Htbl) | ||
| 195 | srlg $Zhi,$Zhi,4 | ||
| 196 | llgc $xi,0($cnt,$Xi) | ||
| 197 | xg $Zhi,0($nlo,$Htbl) | ||
| 198 | sllg $nlo,$xi,4 | ||
| 199 | xg $Zhi,0($rem0,$rem_4bit) | ||
| 200 | nill $nlo,0xf0 | ||
| 201 | sllg $rem0,$Zlo,3 | ||
| 202 | xgr $Zlo,$tmp | ||
| 203 | ngr $rem0,$x78 | ||
| 204 | nill $xi,0xf0 | ||
| 205 | |||
| 206 | sllg $tmp,$Zhi,60 | ||
| 207 | srlg $Zlo,$Zlo,4 | ||
| 208 | srlg $Zhi,$Zhi,4 | ||
| 209 | xg $Zlo,8($nhi,$Htbl) | ||
| 210 | xg $Zhi,0($nhi,$Htbl) | ||
| 211 | lgr $nhi,$xi | ||
| 212 | xg $Zhi,0($rem1,$rem_4bit) | ||
| 213 | sllg $rem1,$Zlo,3 | ||
| 214 | xgr $Zlo,$tmp | ||
| 215 | ngr $rem1,$x78 | ||
| 216 | brct $cnt,.Lghash_inner | ||
| 217 | |||
| 218 | sllg $tmp,$Zhi,60 | ||
| 219 | srlg $Zlo,$Zlo,4 | ||
| 220 | srlg $Zhi,$Zhi,4 | ||
| 221 | xg $Zlo,8($nlo,$Htbl) | ||
| 222 | xg $Zhi,0($nlo,$Htbl) | ||
| 223 | sllg $xi,$Zlo,3 | ||
| 224 | xg $Zhi,0($rem0,$rem_4bit) | ||
| 225 | xgr $Zlo,$tmp | ||
| 226 | ngr $xi,$x78 | ||
| 227 | |||
| 228 | sllg $tmp,$Zhi,60 | ||
| 229 | srlg $Zlo,$Zlo,4 | ||
| 230 | srlg $Zhi,$Zhi,4 | ||
| 231 | xg $Zlo,8($nhi,$Htbl) | ||
| 232 | xg $Zhi,0($nhi,$Htbl) | ||
| 233 | xgr $Zlo,$tmp | ||
| 234 | xg $Zhi,0($rem1,$rem_4bit) | ||
| 235 | |||
| 236 | lg $tmp,0($xi,$rem_4bit) | ||
| 237 | la $inp,16($inp) | ||
| 238 | sllg $tmp,$tmp,4 # correct last rem_4bit[rem] | ||
| 239 | brctg $len,.Louter | ||
| 240 | |||
| 241 | xgr $Zhi,$tmp | ||
| 242 | stg $Zlo,8+1($Xi) | ||
| 243 | stg $Zhi,0+1($Xi) | ||
| 244 | lm${g} %r6,%r14,6*$SIZE_T($sp) | ||
| 245 | br %r14 | ||
| 246 | .type gcm_ghash_4bit,\@function | ||
| 247 | .size gcm_ghash_4bit,(.-gcm_ghash_4bit) | ||
| 248 | |||
| 249 | .align 64 | ||
| 250 | rem_4bit: | ||
| 251 | .long `0x0000<<12`,0,`0x1C20<<12`,0,`0x3840<<12`,0,`0x2460<<12`,0 | ||
| 252 | .long `0x7080<<12`,0,`0x6CA0<<12`,0,`0x48C0<<12`,0,`0x54E0<<12`,0 | ||
| 253 | .long `0xE100<<12`,0,`0xFD20<<12`,0,`0xD940<<12`,0,`0xC560<<12`,0 | ||
| 254 | .long `0x9180<<12`,0,`0x8DA0<<12`,0,`0xA9C0<<12`,0,`0xB5E0<<12`,0 | ||
| 255 | .type rem_4bit,\@object | ||
| 256 | .size rem_4bit,(.-rem_4bit) | ||
| 257 | .string "GHASH for s390x, CRYPTOGAMS by <appro\@openssl.org>" | ||
| 258 | ___ | ||
| 259 | |||
| 260 | $code =~ s/\`([^\`]*)\`/eval $1/gem; | ||
| 261 | print $code; | ||
| 262 | close STDOUT; | ||
