diff options
Diffstat (limited to '')
-rw-r--r-- | src/lib/libcrypto/pem/pvkfmt.c | 931 |
1 files changed, 0 insertions, 931 deletions
diff --git a/src/lib/libcrypto/pem/pvkfmt.c b/src/lib/libcrypto/pem/pvkfmt.c deleted file mode 100644 index 025381bcc0..0000000000 --- a/src/lib/libcrypto/pem/pvkfmt.c +++ /dev/null | |||
@@ -1,931 +0,0 @@ | |||
1 | /* $OpenBSD: pvkfmt.c,v 1.13 2015/05/15 11:00:14 jsg Exp $ */ | ||
2 | /* Written by Dr Stephen N Henson (steve@openssl.org) for the OpenSSL | ||
3 | * project 2005. | ||
4 | */ | ||
5 | /* ==================================================================== | ||
6 | * Copyright (c) 2005 The OpenSSL Project. All rights reserved. | ||
7 | * | ||
8 | * Redistribution and use in source and binary forms, with or without | ||
9 | * modification, are permitted provided that the following conditions | ||
10 | * are met: | ||
11 | * | ||
12 | * 1. Redistributions of source code must retain the above copyright | ||
13 | * notice, this list of conditions and the following disclaimer. | ||
14 | * | ||
15 | * 2. Redistributions in binary form must reproduce the above copyright | ||
16 | * notice, this list of conditions and the following disclaimer in | ||
17 | * the documentation and/or other materials provided with the | ||
18 | * distribution. | ||
19 | * | ||
20 | * 3. All advertising materials mentioning features or use of this | ||
21 | * software must display the following acknowledgment: | ||
22 | * "This product includes software developed by the OpenSSL Project | ||
23 | * for use in the OpenSSL Toolkit. (http://www.OpenSSL.org/)" | ||
24 | * | ||
25 | * 4. The names "OpenSSL Toolkit" and "OpenSSL Project" must not be used to | ||
26 | * endorse or promote products derived from this software without | ||
27 | * prior written permission. For written permission, please contact | ||
28 | * licensing@OpenSSL.org. | ||
29 | * | ||
30 | * 5. Products derived from this software may not be called "OpenSSL" | ||
31 | * nor may "OpenSSL" appear in their names without prior written | ||
32 | * permission of the OpenSSL Project. | ||
33 | * | ||
34 | * 6. Redistributions of any form whatsoever must retain the following | ||
35 | * acknowledgment: | ||
36 | * "This product includes software developed by the OpenSSL Project | ||
37 | * for use in the OpenSSL Toolkit (http://www.OpenSSL.org/)" | ||
38 | * | ||
39 | * THIS SOFTWARE IS PROVIDED BY THE OpenSSL PROJECT ``AS IS'' AND ANY | ||
40 | * EXPRESSED OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE | ||
41 | * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR | ||
42 | * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE OpenSSL PROJECT OR | ||
43 | * ITS CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, | ||
44 | * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT | ||
45 | * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; | ||
46 | * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) | ||
47 | * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, | ||
48 | * STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) | ||
49 | * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED | ||
50 | * OF THE POSSIBILITY OF SUCH DAMAGE. | ||
51 | * ==================================================================== | ||
52 | * | ||
53 | * This product includes cryptographic software written by Eric Young | ||
54 | * (eay@cryptsoft.com). This product includes software written by Tim | ||
55 | * Hudson (tjh@cryptsoft.com). | ||
56 | * | ||
57 | */ | ||
58 | |||
59 | /* Support for PVK format keys and related structures (such a PUBLICKEYBLOB | ||
60 | * and PRIVATEKEYBLOB). | ||
61 | */ | ||
62 | |||
63 | #include <stdlib.h> | ||
64 | #include <string.h> | ||
65 | |||
66 | #include <openssl/opensslconf.h> | ||
67 | |||
68 | #include <openssl/bn.h> | ||
69 | #include <openssl/err.h> | ||
70 | #include <openssl/pem.h> | ||
71 | |||
72 | #if !defined(OPENSSL_NO_RSA) && !defined(OPENSSL_NO_DSA) | ||
73 | #include <openssl/dsa.h> | ||
74 | #include <openssl/rsa.h> | ||
75 | |||
76 | /* Utility function: read a DWORD (4 byte unsigned integer) in little endian | ||
77 | * format | ||
78 | */ | ||
79 | |||
80 | static unsigned int | ||
81 | read_ledword(const unsigned char **in) | ||
82 | { | ||
83 | const unsigned char *p = *in; | ||
84 | unsigned int ret; | ||
85 | |||
86 | ret = *p++; | ||
87 | ret |= (*p++ << 8); | ||
88 | ret |= (*p++ << 16); | ||
89 | ret |= (*p++ << 24); | ||
90 | *in = p; | ||
91 | return ret; | ||
92 | } | ||
93 | |||
94 | /* Read a BIGNUM in little endian format. The docs say that this should take up | ||
95 | * bitlen/8 bytes. | ||
96 | */ | ||
97 | |||
98 | static int | ||
99 | read_lebn(const unsigned char **in, unsigned int nbyte, BIGNUM **r) | ||
100 | { | ||
101 | const unsigned char *p; | ||
102 | unsigned char *tmpbuf, *q; | ||
103 | unsigned int i; | ||
104 | |||
105 | p = *in + nbyte - 1; | ||
106 | tmpbuf = malloc(nbyte); | ||
107 | if (!tmpbuf) | ||
108 | return 0; | ||
109 | q = tmpbuf; | ||
110 | for (i = 0; i < nbyte; i++) | ||
111 | *q++ = *p--; | ||
112 | *r = BN_bin2bn(tmpbuf, nbyte, NULL); | ||
113 | free(tmpbuf); | ||
114 | if (*r) { | ||
115 | *in += nbyte; | ||
116 | return 1; | ||
117 | } else | ||
118 | return 0; | ||
119 | } | ||
120 | |||
121 | |||
122 | /* Convert private key blob to EVP_PKEY: RSA and DSA keys supported */ | ||
123 | |||
124 | #define MS_PUBLICKEYBLOB 0x6 | ||
125 | #define MS_PRIVATEKEYBLOB 0x7 | ||
126 | #define MS_RSA1MAGIC 0x31415352L | ||
127 | #define MS_RSA2MAGIC 0x32415352L | ||
128 | #define MS_DSS1MAGIC 0x31535344L | ||
129 | #define MS_DSS2MAGIC 0x32535344L | ||
130 | |||
131 | #define MS_KEYALG_RSA_KEYX 0xa400 | ||
132 | #define MS_KEYALG_DSS_SIGN 0x2200 | ||
133 | |||
134 | #define MS_KEYTYPE_KEYX 0x1 | ||
135 | #define MS_KEYTYPE_SIGN 0x2 | ||
136 | |||
137 | /* The PVK file magic number: seems to spell out "bobsfile", who is Bob? */ | ||
138 | #define MS_PVKMAGIC 0xb0b5f11eL | ||
139 | /* Salt length for PVK files */ | ||
140 | #define PVK_SALTLEN 0x10 | ||
141 | |||
142 | static EVP_PKEY *b2i_rsa(const unsigned char **in, unsigned int length, | ||
143 | unsigned int bitlen, int ispub); | ||
144 | static EVP_PKEY *b2i_dss(const unsigned char **in, unsigned int length, | ||
145 | unsigned int bitlen, int ispub); | ||
146 | |||
147 | static int | ||
148 | do_blob_header(const unsigned char **in, unsigned int length, | ||
149 | unsigned int *pmagic, unsigned int *pbitlen, int *pisdss, int *pispub) | ||
150 | { | ||
151 | const unsigned char *p = *in; | ||
152 | |||
153 | if (length < 16) | ||
154 | return 0; | ||
155 | /* bType */ | ||
156 | if (*p == MS_PUBLICKEYBLOB) { | ||
157 | if (*pispub == 0) { | ||
158 | PEMerr(PEM_F_DO_BLOB_HEADER, | ||
159 | PEM_R_EXPECTING_PRIVATE_KEY_BLOB); | ||
160 | return 0; | ||
161 | } | ||
162 | *pispub = 1; | ||
163 | } else if (*p == MS_PRIVATEKEYBLOB) { | ||
164 | if (*pispub == 1) { | ||
165 | PEMerr(PEM_F_DO_BLOB_HEADER, | ||
166 | PEM_R_EXPECTING_PUBLIC_KEY_BLOB); | ||
167 | return 0; | ||
168 | } | ||
169 | *pispub = 0; | ||
170 | } else | ||
171 | return 0; | ||
172 | p++; | ||
173 | /* Version */ | ||
174 | if (*p++ != 0x2) { | ||
175 | PEMerr(PEM_F_DO_BLOB_HEADER, PEM_R_BAD_VERSION_NUMBER); | ||
176 | return 0; | ||
177 | } | ||
178 | /* Ignore reserved, aiKeyAlg */ | ||
179 | p += 6; | ||
180 | *pmagic = read_ledword(&p); | ||
181 | *pbitlen = read_ledword(&p); | ||
182 | *pisdss = 0; | ||
183 | switch (*pmagic) { | ||
184 | |||
185 | case MS_DSS1MAGIC: | ||
186 | *pisdss = 1; | ||
187 | case MS_RSA1MAGIC: | ||
188 | if (*pispub == 0) { | ||
189 | PEMerr(PEM_F_DO_BLOB_HEADER, | ||
190 | PEM_R_EXPECTING_PRIVATE_KEY_BLOB); | ||
191 | return 0; | ||
192 | } | ||
193 | break; | ||
194 | |||
195 | case MS_DSS2MAGIC: | ||
196 | *pisdss = 1; | ||
197 | case MS_RSA2MAGIC: | ||
198 | if (*pispub == 1) { | ||
199 | PEMerr(PEM_F_DO_BLOB_HEADER, | ||
200 | PEM_R_EXPECTING_PUBLIC_KEY_BLOB); | ||
201 | return 0; | ||
202 | } | ||
203 | break; | ||
204 | |||
205 | default: | ||
206 | PEMerr(PEM_F_DO_BLOB_HEADER, PEM_R_BAD_MAGIC_NUMBER); | ||
207 | return -1; | ||
208 | } | ||
209 | *in = p; | ||
210 | return 1; | ||
211 | } | ||
212 | |||
213 | static unsigned int | ||
214 | blob_length(unsigned bitlen, int isdss, int ispub) | ||
215 | { | ||
216 | unsigned int nbyte, hnbyte; | ||
217 | |||
218 | nbyte = (bitlen + 7) >> 3; | ||
219 | hnbyte = (bitlen + 15) >> 4; | ||
220 | if (isdss) { | ||
221 | |||
222 | /* Expected length: 20 for q + 3 components bitlen each + 24 | ||
223 | * for seed structure. | ||
224 | */ | ||
225 | if (ispub) | ||
226 | return 44 + 3 * nbyte; | ||
227 | /* Expected length: 20 for q, priv, 2 bitlen components + 24 | ||
228 | * for seed structure. | ||
229 | */ | ||
230 | else | ||
231 | return 64 + 2 * nbyte; | ||
232 | } else { | ||
233 | /* Expected length: 4 for 'e' + 'n' */ | ||
234 | if (ispub) | ||
235 | return 4 + nbyte; | ||
236 | else | ||
237 | /* Expected length: 4 for 'e' and 7 other components. | ||
238 | * 2 components are bitlen size, 5 are bitlen/2 | ||
239 | */ | ||
240 | return 4 + 2*nbyte + 5*hnbyte; | ||
241 | } | ||
242 | |||
243 | } | ||
244 | |||
245 | static EVP_PKEY * | ||
246 | do_b2i(const unsigned char **in, unsigned int length, int ispub) | ||
247 | { | ||
248 | const unsigned char *p = *in; | ||
249 | unsigned int bitlen, magic; | ||
250 | int isdss; | ||
251 | |||
252 | if (do_blob_header(&p, length, &magic, &bitlen, &isdss, &ispub) <= 0) { | ||
253 | PEMerr(PEM_F_DO_B2I, PEM_R_KEYBLOB_HEADER_PARSE_ERROR); | ||
254 | return NULL; | ||
255 | } | ||
256 | length -= 16; | ||
257 | if (length < blob_length(bitlen, isdss, ispub)) { | ||
258 | PEMerr(PEM_F_DO_B2I, PEM_R_KEYBLOB_TOO_SHORT); | ||
259 | return NULL; | ||
260 | } | ||
261 | if (isdss) | ||
262 | return b2i_dss(&p, length, bitlen, ispub); | ||
263 | else | ||
264 | return b2i_rsa(&p, length, bitlen, ispub); | ||
265 | } | ||
266 | |||
267 | static EVP_PKEY * | ||
268 | do_b2i_bio(BIO *in, int ispub) | ||
269 | { | ||
270 | const unsigned char *p; | ||
271 | unsigned char hdr_buf[16], *buf = NULL; | ||
272 | unsigned int bitlen, magic, length; | ||
273 | int isdss; | ||
274 | EVP_PKEY *ret = NULL; | ||
275 | |||
276 | if (BIO_read(in, hdr_buf, 16) != 16) { | ||
277 | PEMerr(PEM_F_DO_B2I_BIO, PEM_R_KEYBLOB_TOO_SHORT); | ||
278 | return NULL; | ||
279 | } | ||
280 | p = hdr_buf; | ||
281 | if (do_blob_header(&p, 16, &magic, &bitlen, &isdss, &ispub) <= 0) | ||
282 | return NULL; | ||
283 | |||
284 | length = blob_length(bitlen, isdss, ispub); | ||
285 | buf = malloc(length); | ||
286 | if (!buf) { | ||
287 | PEMerr(PEM_F_DO_B2I_BIO, ERR_R_MALLOC_FAILURE); | ||
288 | goto err; | ||
289 | } | ||
290 | p = buf; | ||
291 | if (BIO_read(in, buf, length) != (int)length) { | ||
292 | PEMerr(PEM_F_DO_B2I_BIO, PEM_R_KEYBLOB_TOO_SHORT); | ||
293 | goto err; | ||
294 | } | ||
295 | |||
296 | if (isdss) | ||
297 | ret = b2i_dss(&p, length, bitlen, ispub); | ||
298 | else | ||
299 | ret = b2i_rsa(&p, length, bitlen, ispub); | ||
300 | |||
301 | err: | ||
302 | free(buf); | ||
303 | return ret; | ||
304 | } | ||
305 | |||
306 | static EVP_PKEY * | ||
307 | b2i_dss(const unsigned char **in, unsigned int length, unsigned int bitlen, | ||
308 | int ispub) | ||
309 | { | ||
310 | const unsigned char *p = *in; | ||
311 | EVP_PKEY *ret = NULL; | ||
312 | DSA *dsa = NULL; | ||
313 | BN_CTX *ctx = NULL; | ||
314 | unsigned int nbyte; | ||
315 | |||
316 | nbyte = (bitlen + 7) >> 3; | ||
317 | |||
318 | dsa = DSA_new(); | ||
319 | ret = EVP_PKEY_new(); | ||
320 | if (!dsa || !ret) | ||
321 | goto memerr; | ||
322 | if (!read_lebn(&p, nbyte, &dsa->p)) | ||
323 | goto memerr; | ||
324 | if (!read_lebn(&p, 20, &dsa->q)) | ||
325 | goto memerr; | ||
326 | if (!read_lebn(&p, nbyte, &dsa->g)) | ||
327 | goto memerr; | ||
328 | if (ispub) { | ||
329 | if (!read_lebn(&p, nbyte, &dsa->pub_key)) | ||
330 | goto memerr; | ||
331 | } else { | ||
332 | if (!read_lebn(&p, 20, &dsa->priv_key)) | ||
333 | goto memerr; | ||
334 | /* Calculate public key */ | ||
335 | if (!(dsa->pub_key = BN_new())) | ||
336 | goto memerr; | ||
337 | if (!(ctx = BN_CTX_new())) | ||
338 | goto memerr; | ||
339 | if (!BN_mod_exp(dsa->pub_key, dsa->g, | ||
340 | dsa->priv_key, dsa->p, ctx)) | ||
341 | goto memerr; | ||
342 | BN_CTX_free(ctx); | ||
343 | } | ||
344 | |||
345 | EVP_PKEY_set1_DSA(ret, dsa); | ||
346 | DSA_free(dsa); | ||
347 | *in = p; | ||
348 | return ret; | ||
349 | |||
350 | memerr: | ||
351 | PEMerr(PEM_F_B2I_DSS, ERR_R_MALLOC_FAILURE); | ||
352 | DSA_free(dsa); | ||
353 | EVP_PKEY_free(ret); | ||
354 | BN_CTX_free(ctx); | ||
355 | return NULL; | ||
356 | } | ||
357 | |||
358 | static EVP_PKEY * | ||
359 | b2i_rsa(const unsigned char **in, unsigned int length, unsigned int bitlen, | ||
360 | int ispub) | ||
361 | { | ||
362 | const unsigned char *p = *in; | ||
363 | EVP_PKEY *ret = NULL; | ||
364 | RSA *rsa = NULL; | ||
365 | unsigned int nbyte, hnbyte; | ||
366 | |||
367 | nbyte = (bitlen + 7) >> 3; | ||
368 | hnbyte = (bitlen + 15) >> 4; | ||
369 | rsa = RSA_new(); | ||
370 | ret = EVP_PKEY_new(); | ||
371 | if (!rsa || !ret) | ||
372 | goto memerr; | ||
373 | rsa->e = BN_new(); | ||
374 | if (!rsa->e) | ||
375 | goto memerr; | ||
376 | if (!BN_set_word(rsa->e, read_ledword(&p))) | ||
377 | goto memerr; | ||
378 | if (!read_lebn(&p, nbyte, &rsa->n)) | ||
379 | goto memerr; | ||
380 | if (!ispub) { | ||
381 | if (!read_lebn(&p, hnbyte, &rsa->p)) | ||
382 | goto memerr; | ||
383 | if (!read_lebn(&p, hnbyte, &rsa->q)) | ||
384 | goto memerr; | ||
385 | if (!read_lebn(&p, hnbyte, &rsa->dmp1)) | ||
386 | goto memerr; | ||
387 | if (!read_lebn(&p, hnbyte, &rsa->dmq1)) | ||
388 | goto memerr; | ||
389 | if (!read_lebn(&p, hnbyte, &rsa->iqmp)) | ||
390 | goto memerr; | ||
391 | if (!read_lebn(&p, nbyte, &rsa->d)) | ||
392 | goto memerr; | ||
393 | } | ||
394 | |||
395 | EVP_PKEY_set1_RSA(ret, rsa); | ||
396 | RSA_free(rsa); | ||
397 | *in = p; | ||
398 | return ret; | ||
399 | |||
400 | memerr: | ||
401 | PEMerr(PEM_F_B2I_RSA, ERR_R_MALLOC_FAILURE); | ||
402 | RSA_free(rsa); | ||
403 | EVP_PKEY_free(ret); | ||
404 | return NULL; | ||
405 | } | ||
406 | |||
407 | EVP_PKEY * | ||
408 | b2i_PrivateKey(const unsigned char **in, long length) | ||
409 | { | ||
410 | return do_b2i(in, length, 0); | ||
411 | } | ||
412 | |||
413 | EVP_PKEY * | ||
414 | b2i_PublicKey(const unsigned char **in, long length) | ||
415 | { | ||
416 | return do_b2i(in, length, 1); | ||
417 | } | ||
418 | |||
419 | EVP_PKEY * | ||
420 | b2i_PrivateKey_bio(BIO *in) | ||
421 | { | ||
422 | return do_b2i_bio(in, 0); | ||
423 | } | ||
424 | |||
425 | EVP_PKEY * | ||
426 | b2i_PublicKey_bio(BIO *in) | ||
427 | { | ||
428 | return do_b2i_bio(in, 1); | ||
429 | } | ||
430 | |||
431 | static void | ||
432 | write_ledword(unsigned char **out, unsigned int dw) | ||
433 | { | ||
434 | unsigned char *p = *out; | ||
435 | |||
436 | *p++ = dw & 0xff; | ||
437 | *p++ = (dw >> 8) & 0xff; | ||
438 | *p++ = (dw >> 16) & 0xff; | ||
439 | *p++ = (dw >> 24) & 0xff; | ||
440 | *out = p; | ||
441 | } | ||
442 | |||
443 | static void | ||
444 | write_lebn(unsigned char **out, const BIGNUM *bn, int len) | ||
445 | { | ||
446 | int nb, i; | ||
447 | unsigned char *p = *out, *q, c; | ||
448 | |||
449 | nb = BN_num_bytes(bn); | ||
450 | BN_bn2bin(bn, p); | ||
451 | q = p + nb - 1; | ||
452 | /* In place byte order reversal */ | ||
453 | for (i = 0; i < nb / 2; i++) { | ||
454 | c = *p; | ||
455 | *p++ = *q; | ||
456 | *q-- = c; | ||
457 | } | ||
458 | *out += nb; | ||
459 | /* Pad with zeroes if we have to */ | ||
460 | if (len > 0) { | ||
461 | len -= nb; | ||
462 | if (len > 0) { | ||
463 | memset(*out, 0, len); | ||
464 | *out += len; | ||
465 | } | ||
466 | } | ||
467 | } | ||
468 | |||
469 | |||
470 | static int check_bitlen_rsa(RSA *rsa, int ispub, unsigned int *magic); | ||
471 | static int check_bitlen_dsa(DSA *dsa, int ispub, unsigned int *magic); | ||
472 | |||
473 | static void write_rsa(unsigned char **out, RSA *rsa, int ispub); | ||
474 | static void write_dsa(unsigned char **out, DSA *dsa, int ispub); | ||
475 | |||
476 | static int | ||
477 | do_i2b(unsigned char **out, EVP_PKEY *pk, int ispub) | ||
478 | { | ||
479 | unsigned char *p; | ||
480 | unsigned int bitlen, magic = 0, keyalg; | ||
481 | int outlen, noinc = 0; | ||
482 | |||
483 | if (pk->type == EVP_PKEY_DSA) { | ||
484 | bitlen = check_bitlen_dsa(pk->pkey.dsa, ispub, &magic); | ||
485 | keyalg = MS_KEYALG_DSS_SIGN; | ||
486 | } else if (pk->type == EVP_PKEY_RSA) { | ||
487 | bitlen = check_bitlen_rsa(pk->pkey.rsa, ispub, &magic); | ||
488 | keyalg = MS_KEYALG_RSA_KEYX; | ||
489 | } else | ||
490 | return -1; | ||
491 | if (bitlen == 0) | ||
492 | return -1; | ||
493 | outlen = 16 + blob_length(bitlen, | ||
494 | keyalg == MS_KEYALG_DSS_SIGN ? 1 : 0, ispub); | ||
495 | if (out == NULL) | ||
496 | return outlen; | ||
497 | if (*out) | ||
498 | p = *out; | ||
499 | else { | ||
500 | p = malloc(outlen); | ||
501 | if (!p) | ||
502 | return -1; | ||
503 | *out = p; | ||
504 | noinc = 1; | ||
505 | } | ||
506 | if (ispub) | ||
507 | *p++ = MS_PUBLICKEYBLOB; | ||
508 | else | ||
509 | *p++ = MS_PRIVATEKEYBLOB; | ||
510 | *p++ = 0x2; | ||
511 | *p++ = 0; | ||
512 | *p++ = 0; | ||
513 | write_ledword(&p, keyalg); | ||
514 | write_ledword(&p, magic); | ||
515 | write_ledword(&p, bitlen); | ||
516 | if (keyalg == MS_KEYALG_DSS_SIGN) | ||
517 | write_dsa(&p, pk->pkey.dsa, ispub); | ||
518 | else | ||
519 | write_rsa(&p, pk->pkey.rsa, ispub); | ||
520 | if (!noinc) | ||
521 | *out += outlen; | ||
522 | return outlen; | ||
523 | } | ||
524 | |||
525 | static int | ||
526 | do_i2b_bio(BIO *out, EVP_PKEY *pk, int ispub) | ||
527 | { | ||
528 | unsigned char *tmp = NULL; | ||
529 | int outlen, wrlen; | ||
530 | |||
531 | outlen = do_i2b(&tmp, pk, ispub); | ||
532 | if (outlen < 0) | ||
533 | return -1; | ||
534 | wrlen = BIO_write(out, tmp, outlen); | ||
535 | free(tmp); | ||
536 | if (wrlen == outlen) | ||
537 | return outlen; | ||
538 | return -1; | ||
539 | } | ||
540 | |||
541 | static int | ||
542 | check_bitlen_dsa(DSA *dsa, int ispub, unsigned int *pmagic) | ||
543 | { | ||
544 | int bitlen; | ||
545 | |||
546 | bitlen = BN_num_bits(dsa->p); | ||
547 | if ((bitlen & 7) || (BN_num_bits(dsa->q) != 160) || | ||
548 | (BN_num_bits(dsa->g) > bitlen)) | ||
549 | goto badkey; | ||
550 | if (ispub) { | ||
551 | if (BN_num_bits(dsa->pub_key) > bitlen) | ||
552 | goto badkey; | ||
553 | *pmagic = MS_DSS1MAGIC; | ||
554 | } else { | ||
555 | if (BN_num_bits(dsa->priv_key) > 160) | ||
556 | goto badkey; | ||
557 | *pmagic = MS_DSS2MAGIC; | ||
558 | } | ||
559 | |||
560 | return bitlen; | ||
561 | |||
562 | badkey: | ||
563 | PEMerr(PEM_F_CHECK_BITLEN_DSA, PEM_R_UNSUPPORTED_KEY_COMPONENTS); | ||
564 | return 0; | ||
565 | } | ||
566 | |||
567 | static int | ||
568 | check_bitlen_rsa(RSA *rsa, int ispub, unsigned int *pmagic) | ||
569 | { | ||
570 | int nbyte, hnbyte, bitlen; | ||
571 | |||
572 | if (BN_num_bits(rsa->e) > 32) | ||
573 | goto badkey; | ||
574 | bitlen = BN_num_bits(rsa->n); | ||
575 | nbyte = BN_num_bytes(rsa->n); | ||
576 | hnbyte = (BN_num_bits(rsa->n) + 15) >> 4; | ||
577 | if (ispub) { | ||
578 | *pmagic = MS_RSA1MAGIC; | ||
579 | return bitlen; | ||
580 | } else { | ||
581 | *pmagic = MS_RSA2MAGIC; | ||
582 | /* For private key each component must fit within nbyte or | ||
583 | * hnbyte. | ||
584 | */ | ||
585 | if (BN_num_bytes(rsa->d) > nbyte) | ||
586 | goto badkey; | ||
587 | if ((BN_num_bytes(rsa->iqmp) > hnbyte) || | ||
588 | (BN_num_bytes(rsa->p) > hnbyte) || | ||
589 | (BN_num_bytes(rsa->q) > hnbyte) || | ||
590 | (BN_num_bytes(rsa->dmp1) > hnbyte) || | ||
591 | (BN_num_bytes(rsa->dmq1) > hnbyte)) | ||
592 | goto badkey; | ||
593 | } | ||
594 | return bitlen; | ||
595 | |||
596 | badkey: | ||
597 | PEMerr(PEM_F_CHECK_BITLEN_RSA, PEM_R_UNSUPPORTED_KEY_COMPONENTS); | ||
598 | return 0; | ||
599 | } | ||
600 | |||
601 | static void | ||
602 | write_rsa(unsigned char **out, RSA *rsa, int ispub) | ||
603 | { | ||
604 | int nbyte, hnbyte; | ||
605 | |||
606 | nbyte = BN_num_bytes(rsa->n); | ||
607 | hnbyte = (BN_num_bits(rsa->n) + 15) >> 4; | ||
608 | write_lebn(out, rsa->e, 4); | ||
609 | write_lebn(out, rsa->n, -1); | ||
610 | if (ispub) | ||
611 | return; | ||
612 | write_lebn(out, rsa->p, hnbyte); | ||
613 | write_lebn(out, rsa->q, hnbyte); | ||
614 | write_lebn(out, rsa->dmp1, hnbyte); | ||
615 | write_lebn(out, rsa->dmq1, hnbyte); | ||
616 | write_lebn(out, rsa->iqmp, hnbyte); | ||
617 | write_lebn(out, rsa->d, nbyte); | ||
618 | } | ||
619 | |||
620 | static void | ||
621 | write_dsa(unsigned char **out, DSA *dsa, int ispub) | ||
622 | { | ||
623 | int nbyte; | ||
624 | |||
625 | nbyte = BN_num_bytes(dsa->p); | ||
626 | write_lebn(out, dsa->p, nbyte); | ||
627 | write_lebn(out, dsa->q, 20); | ||
628 | write_lebn(out, dsa->g, nbyte); | ||
629 | if (ispub) | ||
630 | write_lebn(out, dsa->pub_key, nbyte); | ||
631 | else | ||
632 | write_lebn(out, dsa->priv_key, 20); | ||
633 | /* Set "invalid" for seed structure values */ | ||
634 | memset(*out, 0xff, 24); | ||
635 | *out += 24; | ||
636 | return; | ||
637 | } | ||
638 | |||
639 | int | ||
640 | i2b_PrivateKey_bio(BIO *out, EVP_PKEY *pk) | ||
641 | { | ||
642 | return do_i2b_bio(out, pk, 0); | ||
643 | } | ||
644 | |||
645 | int | ||
646 | i2b_PublicKey_bio(BIO *out, EVP_PKEY *pk) | ||
647 | { | ||
648 | return do_i2b_bio(out, pk, 1); | ||
649 | } | ||
650 | |||
651 | #ifndef OPENSSL_NO_RC4 | ||
652 | |||
653 | static int | ||
654 | do_PVK_header(const unsigned char **in, unsigned int length, int skip_magic, | ||
655 | unsigned int *psaltlen, unsigned int *pkeylen) | ||
656 | { | ||
657 | const unsigned char *p = *in; | ||
658 | unsigned int pvk_magic, is_encrypted; | ||
659 | |||
660 | if (skip_magic) { | ||
661 | if (length < 20) { | ||
662 | PEMerr(PEM_F_DO_PVK_HEADER, PEM_R_PVK_TOO_SHORT); | ||
663 | return 0; | ||
664 | } | ||
665 | length -= 20; | ||
666 | } else { | ||
667 | if (length < 24) { | ||
668 | PEMerr(PEM_F_DO_PVK_HEADER, PEM_R_PVK_TOO_SHORT); | ||
669 | return 0; | ||
670 | } | ||
671 | length -= 24; | ||
672 | pvk_magic = read_ledword(&p); | ||
673 | if (pvk_magic != MS_PVKMAGIC) { | ||
674 | PEMerr(PEM_F_DO_PVK_HEADER, PEM_R_BAD_MAGIC_NUMBER); | ||
675 | return 0; | ||
676 | } | ||
677 | } | ||
678 | /* Skip reserved */ | ||
679 | p += 4; | ||
680 | /*keytype = */read_ledword(&p); | ||
681 | is_encrypted = read_ledword(&p); | ||
682 | *psaltlen = read_ledword(&p); | ||
683 | *pkeylen = read_ledword(&p); | ||
684 | |||
685 | if (is_encrypted && !*psaltlen) { | ||
686 | PEMerr(PEM_F_DO_PVK_HEADER, PEM_R_INCONSISTENT_HEADER); | ||
687 | return 0; | ||
688 | } | ||
689 | |||
690 | *in = p; | ||
691 | return 1; | ||
692 | } | ||
693 | |||
694 | static int | ||
695 | derive_pvk_key(unsigned char *key, const unsigned char *salt, | ||
696 | unsigned int saltlen, const unsigned char *pass, int passlen) | ||
697 | { | ||
698 | EVP_MD_CTX mctx; | ||
699 | int rv = 1; | ||
700 | |||
701 | EVP_MD_CTX_init(&mctx); | ||
702 | if (!EVP_DigestInit_ex(&mctx, EVP_sha1(), NULL) || | ||
703 | !EVP_DigestUpdate(&mctx, salt, saltlen) || | ||
704 | !EVP_DigestUpdate(&mctx, pass, passlen) || | ||
705 | !EVP_DigestFinal_ex(&mctx, key, NULL)) | ||
706 | rv = 0; | ||
707 | |||
708 | EVP_MD_CTX_cleanup(&mctx); | ||
709 | return rv; | ||
710 | } | ||
711 | |||
712 | static EVP_PKEY * | ||
713 | do_PVK_body(const unsigned char **in, unsigned int saltlen, | ||
714 | unsigned int keylen, pem_password_cb *cb, void *u) | ||
715 | { | ||
716 | EVP_PKEY *ret = NULL; | ||
717 | const unsigned char *p = *in; | ||
718 | unsigned int magic; | ||
719 | unsigned char *enctmp = NULL, *q; | ||
720 | EVP_CIPHER_CTX cctx; | ||
721 | |||
722 | EVP_CIPHER_CTX_init(&cctx); | ||
723 | if (saltlen) { | ||
724 | char psbuf[PEM_BUFSIZE]; | ||
725 | unsigned char keybuf[20]; | ||
726 | int enctmplen, inlen; | ||
727 | |||
728 | if (cb) | ||
729 | inlen = cb(psbuf, PEM_BUFSIZE, 0, u); | ||
730 | else | ||
731 | inlen = PEM_def_callback(psbuf, PEM_BUFSIZE, 0, u); | ||
732 | if (inlen <= 0) { | ||
733 | PEMerr(PEM_F_DO_PVK_BODY, PEM_R_BAD_PASSWORD_READ); | ||
734 | goto err; | ||
735 | } | ||
736 | enctmp = malloc(keylen + 8); | ||
737 | if (!enctmp) { | ||
738 | PEMerr(PEM_F_DO_PVK_BODY, ERR_R_MALLOC_FAILURE); | ||
739 | goto err; | ||
740 | } | ||
741 | if (!derive_pvk_key(keybuf, p, saltlen, (unsigned char *)psbuf, | ||
742 | inlen)) { | ||
743 | goto err; | ||
744 | } | ||
745 | p += saltlen; | ||
746 | /* Copy BLOBHEADER across, decrypt rest */ | ||
747 | memcpy(enctmp, p, 8); | ||
748 | p += 8; | ||
749 | if (keylen < 8) { | ||
750 | PEMerr(PEM_F_DO_PVK_BODY, PEM_R_PVK_TOO_SHORT); | ||
751 | goto err; | ||
752 | } | ||
753 | inlen = keylen - 8; | ||
754 | q = enctmp + 8; | ||
755 | if (!EVP_DecryptInit_ex(&cctx, EVP_rc4(), NULL, keybuf, NULL)) | ||
756 | goto err; | ||
757 | if (!EVP_DecryptUpdate(&cctx, q, &enctmplen, p, inlen)) | ||
758 | goto err; | ||
759 | if (!EVP_DecryptFinal_ex(&cctx, q + enctmplen, &enctmplen)) | ||
760 | goto err; | ||
761 | magic = read_ledword((const unsigned char **)&q); | ||
762 | if (magic != MS_RSA2MAGIC && magic != MS_DSS2MAGIC) { | ||
763 | q = enctmp + 8; | ||
764 | memset(keybuf + 5, 0, 11); | ||
765 | if (!EVP_DecryptInit_ex(&cctx, EVP_rc4(), NULL, keybuf, | ||
766 | NULL)) | ||
767 | goto err; | ||
768 | OPENSSL_cleanse(keybuf, 20); | ||
769 | if (!EVP_DecryptUpdate(&cctx, q, &enctmplen, p, inlen)) | ||
770 | goto err; | ||
771 | if (!EVP_DecryptFinal_ex(&cctx, q + enctmplen, | ||
772 | &enctmplen)) | ||
773 | goto err; | ||
774 | magic = read_ledword((const unsigned char **)&q); | ||
775 | if (magic != MS_RSA2MAGIC && magic != MS_DSS2MAGIC) { | ||
776 | PEMerr(PEM_F_DO_PVK_BODY, PEM_R_BAD_DECRYPT); | ||
777 | goto err; | ||
778 | } | ||
779 | } else | ||
780 | OPENSSL_cleanse(keybuf, 20); | ||
781 | p = enctmp; | ||
782 | } | ||
783 | |||
784 | ret = b2i_PrivateKey(&p, keylen); | ||
785 | |||
786 | err: | ||
787 | EVP_CIPHER_CTX_cleanup(&cctx); | ||
788 | if (enctmp && saltlen) | ||
789 | free(enctmp); | ||
790 | return ret; | ||
791 | } | ||
792 | |||
793 | |||
794 | EVP_PKEY * | ||
795 | b2i_PVK_bio(BIO *in, pem_password_cb *cb, void *u) | ||
796 | { | ||
797 | unsigned char pvk_hdr[24], *buf = NULL; | ||
798 | const unsigned char *p; | ||
799 | int buflen; | ||
800 | EVP_PKEY *ret = NULL; | ||
801 | unsigned int saltlen, keylen; | ||
802 | |||
803 | if (BIO_read(in, pvk_hdr, 24) != 24) { | ||
804 | PEMerr(PEM_F_B2I_PVK_BIO, PEM_R_PVK_DATA_TOO_SHORT); | ||
805 | return NULL; | ||
806 | } | ||
807 | p = pvk_hdr; | ||
808 | |||
809 | if (!do_PVK_header(&p, 24, 0, &saltlen, &keylen)) | ||
810 | return 0; | ||
811 | buflen = (int) keylen + saltlen; | ||
812 | buf = malloc(buflen); | ||
813 | if (!buf) { | ||
814 | PEMerr(PEM_F_B2I_PVK_BIO, ERR_R_MALLOC_FAILURE); | ||
815 | return 0; | ||
816 | } | ||
817 | p = buf; | ||
818 | if (BIO_read(in, buf, buflen) != buflen) { | ||
819 | PEMerr(PEM_F_B2I_PVK_BIO, PEM_R_PVK_DATA_TOO_SHORT); | ||
820 | goto err; | ||
821 | } | ||
822 | ret = do_PVK_body(&p, saltlen, keylen, cb, u); | ||
823 | |||
824 | err: | ||
825 | if (buf) { | ||
826 | OPENSSL_cleanse(buf, buflen); | ||
827 | free(buf); | ||
828 | } | ||
829 | return ret; | ||
830 | } | ||
831 | |||
832 | static int | ||
833 | i2b_PVK(unsigned char **out, EVP_PKEY*pk, int enclevel, pem_password_cb *cb, | ||
834 | void *u) | ||
835 | { | ||
836 | int outlen = 24, pklen; | ||
837 | unsigned char *p, *salt = NULL; | ||
838 | EVP_CIPHER_CTX cctx; | ||
839 | |||
840 | EVP_CIPHER_CTX_init(&cctx); | ||
841 | if (enclevel) | ||
842 | outlen += PVK_SALTLEN; | ||
843 | pklen = do_i2b(NULL, pk, 0); | ||
844 | if (pklen < 0) | ||
845 | return -1; | ||
846 | outlen += pklen; | ||
847 | if (!out) | ||
848 | return outlen; | ||
849 | if (*out) | ||
850 | p = *out; | ||
851 | else { | ||
852 | p = malloc(outlen); | ||
853 | if (!p) { | ||
854 | PEMerr(PEM_F_I2B_PVK, ERR_R_MALLOC_FAILURE); | ||
855 | return -1; | ||
856 | } | ||
857 | *out = p; | ||
858 | } | ||
859 | |||
860 | write_ledword(&p, MS_PVKMAGIC); | ||
861 | write_ledword(&p, 0); | ||
862 | if (pk->type == EVP_PKEY_DSA) | ||
863 | write_ledword(&p, MS_KEYTYPE_SIGN); | ||
864 | else | ||
865 | write_ledword(&p, MS_KEYTYPE_KEYX); | ||
866 | write_ledword(&p, enclevel ? 1 : 0); | ||
867 | write_ledword(&p, enclevel ? PVK_SALTLEN : 0); | ||
868 | write_ledword(&p, pklen); | ||
869 | if (enclevel) { | ||
870 | arc4random_buf(p, PVK_SALTLEN); | ||
871 | salt = p; | ||
872 | p += PVK_SALTLEN; | ||
873 | } | ||
874 | do_i2b(&p, pk, 0); | ||
875 | if (enclevel == 0) | ||
876 | return outlen; | ||
877 | else { | ||
878 | char psbuf[PEM_BUFSIZE]; | ||
879 | unsigned char keybuf[20]; | ||
880 | int enctmplen, inlen; | ||
881 | if (cb) | ||
882 | inlen = cb(psbuf, PEM_BUFSIZE, 1, u); | ||
883 | else | ||
884 | inlen = PEM_def_callback(psbuf, PEM_BUFSIZE, 1, u); | ||
885 | if (inlen <= 0) { | ||
886 | PEMerr(PEM_F_I2B_PVK, PEM_R_BAD_PASSWORD_READ); | ||
887 | goto error; | ||
888 | } | ||
889 | if (!derive_pvk_key(keybuf, salt, PVK_SALTLEN, | ||
890 | (unsigned char *)psbuf, inlen)) | ||
891 | goto error; | ||
892 | if (enclevel == 1) | ||
893 | memset(keybuf + 5, 0, 11); | ||
894 | p = salt + PVK_SALTLEN + 8; | ||
895 | if (!EVP_EncryptInit_ex(&cctx, EVP_rc4(), NULL, keybuf, NULL)) | ||
896 | goto error; | ||
897 | OPENSSL_cleanse(keybuf, 20); | ||
898 | if (!EVP_DecryptUpdate(&cctx, p, &enctmplen, p, pklen - 8)) | ||
899 | goto error; | ||
900 | if (!EVP_DecryptFinal_ex(&cctx, p + enctmplen, &enctmplen)) | ||
901 | goto error; | ||
902 | } | ||
903 | EVP_CIPHER_CTX_cleanup(&cctx); | ||
904 | return outlen; | ||
905 | |||
906 | error: | ||
907 | EVP_CIPHER_CTX_cleanup(&cctx); | ||
908 | return -1; | ||
909 | } | ||
910 | |||
911 | int | ||
912 | i2b_PVK_bio(BIO *out, EVP_PKEY *pk, int enclevel, pem_password_cb *cb, void *u) | ||
913 | { | ||
914 | unsigned char *tmp = NULL; | ||
915 | int outlen, wrlen; | ||
916 | |||
917 | outlen = i2b_PVK(&tmp, pk, enclevel, cb, u); | ||
918 | if (outlen < 0) | ||
919 | return -1; | ||
920 | wrlen = BIO_write(out, tmp, outlen); | ||
921 | free(tmp); | ||
922 | if (wrlen == outlen) { | ||
923 | PEMerr(PEM_F_I2B_PVK_BIO, PEM_R_BIO_WRITE_FAILURE); | ||
924 | return outlen; | ||
925 | } | ||
926 | return -1; | ||
927 | } | ||
928 | |||
929 | #endif | ||
930 | |||
931 | #endif | ||