diff options
Diffstat (limited to '')
-rw-r--r-- | src/lib/libcrypto/pem/pvkfmt.c | 944 |
1 files changed, 0 insertions, 944 deletions
diff --git a/src/lib/libcrypto/pem/pvkfmt.c b/src/lib/libcrypto/pem/pvkfmt.c deleted file mode 100644 index 40c9feefe5..0000000000 --- a/src/lib/libcrypto/pem/pvkfmt.c +++ /dev/null | |||
@@ -1,944 +0,0 @@ | |||
1 | /* $OpenBSD: pvkfmt.c,v 1.28 2024/02/18 15:45:42 tb Exp $ */ | ||
2 | /* Written by Dr Stephen N Henson (steve@openssl.org) for the OpenSSL | ||
3 | * project 2005. | ||
4 | */ | ||
5 | /* ==================================================================== | ||
6 | * Copyright (c) 2005 The OpenSSL Project. All rights reserved. | ||
7 | * | ||
8 | * Redistribution and use in source and binary forms, with or without | ||
9 | * modification, are permitted provided that the following conditions | ||
10 | * are met: | ||
11 | * | ||
12 | * 1. Redistributions of source code must retain the above copyright | ||
13 | * notice, this list of conditions and the following disclaimer. | ||
14 | * | ||
15 | * 2. Redistributions in binary form must reproduce the above copyright | ||
16 | * notice, this list of conditions and the following disclaimer in | ||
17 | * the documentation and/or other materials provided with the | ||
18 | * distribution. | ||
19 | * | ||
20 | * 3. All advertising materials mentioning features or use of this | ||
21 | * software must display the following acknowledgment: | ||
22 | * "This product includes software developed by the OpenSSL Project | ||
23 | * for use in the OpenSSL Toolkit. (http://www.OpenSSL.org/)" | ||
24 | * | ||
25 | * 4. The names "OpenSSL Toolkit" and "OpenSSL Project" must not be used to | ||
26 | * endorse or promote products derived from this software without | ||
27 | * prior written permission. For written permission, please contact | ||
28 | * licensing@OpenSSL.org. | ||
29 | * | ||
30 | * 5. Products derived from this software may not be called "OpenSSL" | ||
31 | * nor may "OpenSSL" appear in their names without prior written | ||
32 | * permission of the OpenSSL Project. | ||
33 | * | ||
34 | * 6. Redistributions of any form whatsoever must retain the following | ||
35 | * acknowledgment: | ||
36 | * "This product includes software developed by the OpenSSL Project | ||
37 | * for use in the OpenSSL Toolkit (http://www.OpenSSL.org/)" | ||
38 | * | ||
39 | * THIS SOFTWARE IS PROVIDED BY THE OpenSSL PROJECT ``AS IS'' AND ANY | ||
40 | * EXPRESSED OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE | ||
41 | * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR | ||
42 | * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE OpenSSL PROJECT OR | ||
43 | * ITS CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, | ||
44 | * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT | ||
45 | * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; | ||
46 | * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) | ||
47 | * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, | ||
48 | * STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) | ||
49 | * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED | ||
50 | * OF THE POSSIBILITY OF SUCH DAMAGE. | ||
51 | * ==================================================================== | ||
52 | * | ||
53 | * This product includes cryptographic software written by Eric Young | ||
54 | * (eay@cryptsoft.com). This product includes software written by Tim | ||
55 | * Hudson (tjh@cryptsoft.com). | ||
56 | * | ||
57 | */ | ||
58 | |||
59 | /* Support for PVK format keys and related structures (such a PUBLICKEYBLOB | ||
60 | * and PRIVATEKEYBLOB). | ||
61 | */ | ||
62 | |||
63 | #include <stdlib.h> | ||
64 | #include <string.h> | ||
65 | |||
66 | #include <openssl/opensslconf.h> | ||
67 | |||
68 | #include <openssl/bn.h> | ||
69 | #include <openssl/err.h> | ||
70 | #include <openssl/pem.h> | ||
71 | |||
72 | #if !defined(OPENSSL_NO_RSA) && !defined(OPENSSL_NO_DSA) | ||
73 | #include <openssl/dsa.h> | ||
74 | #include <openssl/rsa.h> | ||
75 | |||
76 | #include "bn_local.h" | ||
77 | #include "dsa_local.h" | ||
78 | #include "evp_local.h" | ||
79 | #include "rsa_local.h" | ||
80 | |||
81 | /* Utility function: read a DWORD (4 byte unsigned integer) in little endian | ||
82 | * format | ||
83 | */ | ||
84 | |||
85 | static unsigned int | ||
86 | read_ledword(const unsigned char **in) | ||
87 | { | ||
88 | const unsigned char *p = *in; | ||
89 | unsigned int ret; | ||
90 | |||
91 | ret = *p++; | ||
92 | ret |= (*p++ << 8); | ||
93 | ret |= (*p++ << 16); | ||
94 | ret |= (*p++ << 24); | ||
95 | *in = p; | ||
96 | return ret; | ||
97 | } | ||
98 | |||
99 | /* Read a BIGNUM in little endian format. The docs say that this should take up | ||
100 | * bitlen/8 bytes. | ||
101 | */ | ||
102 | |||
103 | static int | ||
104 | read_lebn(const unsigned char **in, unsigned int nbyte, BIGNUM **r) | ||
105 | { | ||
106 | const unsigned char *p; | ||
107 | unsigned char *tmpbuf, *q; | ||
108 | unsigned int i; | ||
109 | |||
110 | p = *in + nbyte - 1; | ||
111 | tmpbuf = malloc(nbyte); | ||
112 | if (!tmpbuf) | ||
113 | return 0; | ||
114 | q = tmpbuf; | ||
115 | for (i = 0; i < nbyte; i++) | ||
116 | *q++ = *p--; | ||
117 | *r = BN_bin2bn(tmpbuf, nbyte, NULL); | ||
118 | free(tmpbuf); | ||
119 | if (*r) { | ||
120 | *in += nbyte; | ||
121 | return 1; | ||
122 | } else | ||
123 | return 0; | ||
124 | } | ||
125 | |||
126 | |||
127 | /* Convert private key blob to EVP_PKEY: RSA and DSA keys supported */ | ||
128 | |||
129 | #define MS_PUBLICKEYBLOB 0x6 | ||
130 | #define MS_PRIVATEKEYBLOB 0x7 | ||
131 | #define MS_RSA1MAGIC 0x31415352L | ||
132 | #define MS_RSA2MAGIC 0x32415352L | ||
133 | #define MS_DSS1MAGIC 0x31535344L | ||
134 | #define MS_DSS2MAGIC 0x32535344L | ||
135 | |||
136 | #define MS_KEYALG_RSA_KEYX 0xa400 | ||
137 | #define MS_KEYALG_DSS_SIGN 0x2200 | ||
138 | |||
139 | #define MS_KEYTYPE_KEYX 0x1 | ||
140 | #define MS_KEYTYPE_SIGN 0x2 | ||
141 | |||
142 | /* The PVK file magic number: seems to spell out "bobsfile", who is Bob? */ | ||
143 | #define MS_PVKMAGIC 0xb0b5f11eL | ||
144 | /* Salt length for PVK files */ | ||
145 | #define PVK_SALTLEN 0x10 | ||
146 | |||
147 | static EVP_PKEY *b2i_rsa(const unsigned char **in, unsigned int length, | ||
148 | unsigned int bitlen, int ispub); | ||
149 | static EVP_PKEY *b2i_dss(const unsigned char **in, unsigned int length, | ||
150 | unsigned int bitlen, int ispub); | ||
151 | |||
152 | static int | ||
153 | do_blob_header(const unsigned char **in, unsigned int length, | ||
154 | unsigned int *pmagic, unsigned int *pbitlen, int *pisdss, int *pispub) | ||
155 | { | ||
156 | const unsigned char *p = *in; | ||
157 | |||
158 | if (length < 16) | ||
159 | return 0; | ||
160 | /* bType */ | ||
161 | if (*p == MS_PUBLICKEYBLOB) { | ||
162 | if (*pispub == 0) { | ||
163 | PEMerror(PEM_R_EXPECTING_PRIVATE_KEY_BLOB); | ||
164 | return 0; | ||
165 | } | ||
166 | *pispub = 1; | ||
167 | } else if (*p == MS_PRIVATEKEYBLOB) { | ||
168 | if (*pispub == 1) { | ||
169 | PEMerror(PEM_R_EXPECTING_PUBLIC_KEY_BLOB); | ||
170 | return 0; | ||
171 | } | ||
172 | *pispub = 0; | ||
173 | } else | ||
174 | return 0; | ||
175 | p++; | ||
176 | /* Version */ | ||
177 | if (*p++ != 0x2) { | ||
178 | PEMerror(PEM_R_BAD_VERSION_NUMBER); | ||
179 | return 0; | ||
180 | } | ||
181 | /* Ignore reserved, aiKeyAlg */ | ||
182 | p += 6; | ||
183 | *pmagic = read_ledword(&p); | ||
184 | *pbitlen = read_ledword(&p); | ||
185 | if (*pbitlen > 65536) { | ||
186 | PEMerror(PEM_R_INCONSISTENT_HEADER); | ||
187 | return 0; | ||
188 | } | ||
189 | *pisdss = 0; | ||
190 | switch (*pmagic) { | ||
191 | |||
192 | case MS_DSS1MAGIC: | ||
193 | *pisdss = 1; | ||
194 | case MS_RSA1MAGIC: | ||
195 | if (*pispub == 0) { | ||
196 | PEMerror(PEM_R_EXPECTING_PRIVATE_KEY_BLOB); | ||
197 | return 0; | ||
198 | } | ||
199 | break; | ||
200 | |||
201 | case MS_DSS2MAGIC: | ||
202 | *pisdss = 1; | ||
203 | case MS_RSA2MAGIC: | ||
204 | if (*pispub == 1) { | ||
205 | PEMerror(PEM_R_EXPECTING_PUBLIC_KEY_BLOB); | ||
206 | return 0; | ||
207 | } | ||
208 | break; | ||
209 | |||
210 | default: | ||
211 | PEMerror(PEM_R_BAD_MAGIC_NUMBER); | ||
212 | return -1; | ||
213 | } | ||
214 | *in = p; | ||
215 | return 1; | ||
216 | } | ||
217 | |||
218 | static unsigned int | ||
219 | blob_length(unsigned bitlen, int isdss, int ispub) | ||
220 | { | ||
221 | unsigned int nbyte, hnbyte; | ||
222 | |||
223 | nbyte = (bitlen + 7) >> 3; | ||
224 | hnbyte = (bitlen + 15) >> 4; | ||
225 | if (isdss) { | ||
226 | |||
227 | /* Expected length: 20 for q + 3 components bitlen each + 24 | ||
228 | * for seed structure. | ||
229 | */ | ||
230 | if (ispub) | ||
231 | return 44 + 3 * nbyte; | ||
232 | /* Expected length: 20 for q, priv, 2 bitlen components + 24 | ||
233 | * for seed structure. | ||
234 | */ | ||
235 | else | ||
236 | return 64 + 2 * nbyte; | ||
237 | } else { | ||
238 | /* Expected length: 4 for 'e' + 'n' */ | ||
239 | if (ispub) | ||
240 | return 4 + nbyte; | ||
241 | else | ||
242 | /* Expected length: 4 for 'e' and 7 other components. | ||
243 | * 2 components are bitlen size, 5 are bitlen/2 | ||
244 | */ | ||
245 | return 4 + 2*nbyte + 5*hnbyte; | ||
246 | } | ||
247 | |||
248 | } | ||
249 | |||
250 | static EVP_PKEY * | ||
251 | do_b2i(const unsigned char **in, unsigned int length, int ispub) | ||
252 | { | ||
253 | const unsigned char *p = *in; | ||
254 | unsigned int bitlen, magic; | ||
255 | int isdss; | ||
256 | |||
257 | if (do_blob_header(&p, length, &magic, &bitlen, &isdss, &ispub) <= 0) { | ||
258 | PEMerror(PEM_R_KEYBLOB_HEADER_PARSE_ERROR); | ||
259 | return NULL; | ||
260 | } | ||
261 | length -= 16; | ||
262 | if (length < blob_length(bitlen, isdss, ispub)) { | ||
263 | PEMerror(PEM_R_KEYBLOB_TOO_SHORT); | ||
264 | return NULL; | ||
265 | } | ||
266 | if (isdss) | ||
267 | return b2i_dss(&p, length, bitlen, ispub); | ||
268 | else | ||
269 | return b2i_rsa(&p, length, bitlen, ispub); | ||
270 | } | ||
271 | |||
272 | static EVP_PKEY * | ||
273 | do_b2i_bio(BIO *in, int ispub) | ||
274 | { | ||
275 | const unsigned char *p; | ||
276 | unsigned char hdr_buf[16], *buf = NULL; | ||
277 | unsigned int bitlen, magic, length; | ||
278 | int isdss; | ||
279 | EVP_PKEY *ret = NULL; | ||
280 | |||
281 | if (BIO_read(in, hdr_buf, 16) != 16) { | ||
282 | PEMerror(PEM_R_KEYBLOB_TOO_SHORT); | ||
283 | return NULL; | ||
284 | } | ||
285 | p = hdr_buf; | ||
286 | if (do_blob_header(&p, 16, &magic, &bitlen, &isdss, &ispub) <= 0) | ||
287 | return NULL; | ||
288 | |||
289 | length = blob_length(bitlen, isdss, ispub); | ||
290 | buf = malloc(length); | ||
291 | if (!buf) { | ||
292 | PEMerror(ERR_R_MALLOC_FAILURE); | ||
293 | goto err; | ||
294 | } | ||
295 | p = buf; | ||
296 | if (BIO_read(in, buf, length) != (int)length) { | ||
297 | PEMerror(PEM_R_KEYBLOB_TOO_SHORT); | ||
298 | goto err; | ||
299 | } | ||
300 | |||
301 | if (isdss) | ||
302 | ret = b2i_dss(&p, length, bitlen, ispub); | ||
303 | else | ||
304 | ret = b2i_rsa(&p, length, bitlen, ispub); | ||
305 | |||
306 | err: | ||
307 | free(buf); | ||
308 | return ret; | ||
309 | } | ||
310 | |||
311 | static EVP_PKEY * | ||
312 | b2i_dss(const unsigned char **in, unsigned int length, unsigned int bitlen, | ||
313 | int ispub) | ||
314 | { | ||
315 | const unsigned char *p = *in; | ||
316 | EVP_PKEY *ret = NULL; | ||
317 | DSA *dsa = NULL; | ||
318 | BN_CTX *ctx = NULL; | ||
319 | unsigned int nbyte; | ||
320 | |||
321 | nbyte = (bitlen + 7) >> 3; | ||
322 | |||
323 | dsa = DSA_new(); | ||
324 | ret = EVP_PKEY_new(); | ||
325 | if (!dsa || !ret) | ||
326 | goto err; | ||
327 | if (!read_lebn(&p, nbyte, &dsa->p)) | ||
328 | goto err; | ||
329 | if (!read_lebn(&p, 20, &dsa->q)) | ||
330 | goto err; | ||
331 | if (!read_lebn(&p, nbyte, &dsa->g)) | ||
332 | goto err; | ||
333 | if (ispub) { | ||
334 | if (!read_lebn(&p, nbyte, &dsa->pub_key)) | ||
335 | goto err; | ||
336 | } else { | ||
337 | if (!read_lebn(&p, 20, &dsa->priv_key)) | ||
338 | goto err; | ||
339 | /* Calculate public key */ | ||
340 | if (!(dsa->pub_key = BN_new())) | ||
341 | goto err; | ||
342 | if (!(ctx = BN_CTX_new())) | ||
343 | goto err; | ||
344 | if (!BN_mod_exp_ct(dsa->pub_key, dsa->g, | ||
345 | dsa->priv_key, dsa->p, ctx)) | ||
346 | goto err; | ||
347 | BN_CTX_free(ctx); | ||
348 | } | ||
349 | |||
350 | EVP_PKEY_set1_DSA(ret, dsa); | ||
351 | DSA_free(dsa); | ||
352 | *in = p; | ||
353 | return ret; | ||
354 | |||
355 | err: | ||
356 | PEMerror(ERR_R_MALLOC_FAILURE); | ||
357 | DSA_free(dsa); | ||
358 | EVP_PKEY_free(ret); | ||
359 | BN_CTX_free(ctx); | ||
360 | return NULL; | ||
361 | } | ||
362 | |||
363 | static EVP_PKEY * | ||
364 | b2i_rsa(const unsigned char **in, unsigned int length, unsigned int bitlen, | ||
365 | int ispub) | ||
366 | { | ||
367 | const unsigned char *p = *in; | ||
368 | EVP_PKEY *ret = NULL; | ||
369 | RSA *rsa = NULL; | ||
370 | unsigned int nbyte, hnbyte; | ||
371 | |||
372 | nbyte = (bitlen + 7) >> 3; | ||
373 | hnbyte = (bitlen + 15) >> 4; | ||
374 | rsa = RSA_new(); | ||
375 | ret = EVP_PKEY_new(); | ||
376 | if (!rsa || !ret) | ||
377 | goto err; | ||
378 | rsa->e = BN_new(); | ||
379 | if (!rsa->e) | ||
380 | goto err; | ||
381 | if (!BN_set_word(rsa->e, read_ledword(&p))) | ||
382 | goto err; | ||
383 | if (!read_lebn(&p, nbyte, &rsa->n)) | ||
384 | goto err; | ||
385 | if (!ispub) { | ||
386 | if (!read_lebn(&p, hnbyte, &rsa->p)) | ||
387 | goto err; | ||
388 | if (!read_lebn(&p, hnbyte, &rsa->q)) | ||
389 | goto err; | ||
390 | if (!read_lebn(&p, hnbyte, &rsa->dmp1)) | ||
391 | goto err; | ||
392 | if (!read_lebn(&p, hnbyte, &rsa->dmq1)) | ||
393 | goto err; | ||
394 | if (!read_lebn(&p, hnbyte, &rsa->iqmp)) | ||
395 | goto err; | ||
396 | if (!read_lebn(&p, nbyte, &rsa->d)) | ||
397 | goto err; | ||
398 | } | ||
399 | |||
400 | EVP_PKEY_set1_RSA(ret, rsa); | ||
401 | RSA_free(rsa); | ||
402 | *in = p; | ||
403 | return ret; | ||
404 | |||
405 | err: | ||
406 | PEMerror(ERR_R_MALLOC_FAILURE); | ||
407 | RSA_free(rsa); | ||
408 | EVP_PKEY_free(ret); | ||
409 | return NULL; | ||
410 | } | ||
411 | |||
412 | EVP_PKEY * | ||
413 | b2i_PrivateKey(const unsigned char **in, long length) | ||
414 | { | ||
415 | return do_b2i(in, length, 0); | ||
416 | } | ||
417 | LCRYPTO_ALIAS(b2i_PrivateKey); | ||
418 | |||
419 | EVP_PKEY * | ||
420 | b2i_PublicKey(const unsigned char **in, long length) | ||
421 | { | ||
422 | return do_b2i(in, length, 1); | ||
423 | } | ||
424 | LCRYPTO_ALIAS(b2i_PublicKey); | ||
425 | |||
426 | EVP_PKEY * | ||
427 | b2i_PrivateKey_bio(BIO *in) | ||
428 | { | ||
429 | return do_b2i_bio(in, 0); | ||
430 | } | ||
431 | LCRYPTO_ALIAS(b2i_PrivateKey_bio); | ||
432 | |||
433 | EVP_PKEY * | ||
434 | b2i_PublicKey_bio(BIO *in) | ||
435 | { | ||
436 | return do_b2i_bio(in, 1); | ||
437 | } | ||
438 | LCRYPTO_ALIAS(b2i_PublicKey_bio); | ||
439 | |||
440 | static void | ||
441 | write_ledword(unsigned char **out, unsigned int dw) | ||
442 | { | ||
443 | unsigned char *p = *out; | ||
444 | |||
445 | *p++ = dw & 0xff; | ||
446 | *p++ = (dw >> 8) & 0xff; | ||
447 | *p++ = (dw >> 16) & 0xff; | ||
448 | *p++ = (dw >> 24) & 0xff; | ||
449 | *out = p; | ||
450 | } | ||
451 | |||
452 | static void | ||
453 | write_lebn(unsigned char **out, const BIGNUM *bn, int len) | ||
454 | { | ||
455 | int nb, i; | ||
456 | unsigned char *p = *out, *q, c; | ||
457 | |||
458 | nb = BN_num_bytes(bn); | ||
459 | BN_bn2bin(bn, p); | ||
460 | q = p + nb - 1; | ||
461 | /* In place byte order reversal */ | ||
462 | for (i = 0; i < nb / 2; i++) { | ||
463 | c = *p; | ||
464 | *p++ = *q; | ||
465 | *q-- = c; | ||
466 | } | ||
467 | *out += nb; | ||
468 | /* Pad with zeroes if we have to */ | ||
469 | if (len > 0) { | ||
470 | len -= nb; | ||
471 | if (len > 0) { | ||
472 | memset(*out, 0, len); | ||
473 | *out += len; | ||
474 | } | ||
475 | } | ||
476 | } | ||
477 | |||
478 | |||
479 | static int check_bitlen_rsa(RSA *rsa, int ispub, unsigned int *magic); | ||
480 | static int check_bitlen_dsa(DSA *dsa, int ispub, unsigned int *magic); | ||
481 | |||
482 | static void write_rsa(unsigned char **out, RSA *rsa, int ispub); | ||
483 | static void write_dsa(unsigned char **out, DSA *dsa, int ispub); | ||
484 | |||
485 | static int | ||
486 | do_i2b(unsigned char **out, EVP_PKEY *pk, int ispub) | ||
487 | { | ||
488 | unsigned char *p; | ||
489 | unsigned int bitlen, magic = 0, keyalg; | ||
490 | int outlen, noinc = 0; | ||
491 | |||
492 | if (pk->type == EVP_PKEY_DSA) { | ||
493 | bitlen = check_bitlen_dsa(pk->pkey.dsa, ispub, &magic); | ||
494 | keyalg = MS_KEYALG_DSS_SIGN; | ||
495 | } else if (pk->type == EVP_PKEY_RSA) { | ||
496 | bitlen = check_bitlen_rsa(pk->pkey.rsa, ispub, &magic); | ||
497 | keyalg = MS_KEYALG_RSA_KEYX; | ||
498 | } else | ||
499 | return -1; | ||
500 | if (bitlen == 0) | ||
501 | return -1; | ||
502 | outlen = 16 + blob_length(bitlen, | ||
503 | keyalg == MS_KEYALG_DSS_SIGN ? 1 : 0, ispub); | ||
504 | if (out == NULL) | ||
505 | return outlen; | ||
506 | if (*out) | ||
507 | p = *out; | ||
508 | else { | ||
509 | p = malloc(outlen); | ||
510 | if (!p) | ||
511 | return -1; | ||
512 | *out = p; | ||
513 | noinc = 1; | ||
514 | } | ||
515 | if (ispub) | ||
516 | *p++ = MS_PUBLICKEYBLOB; | ||
517 | else | ||
518 | *p++ = MS_PRIVATEKEYBLOB; | ||
519 | *p++ = 0x2; | ||
520 | *p++ = 0; | ||
521 | *p++ = 0; | ||
522 | write_ledword(&p, keyalg); | ||
523 | write_ledword(&p, magic); | ||
524 | write_ledword(&p, bitlen); | ||
525 | if (keyalg == MS_KEYALG_DSS_SIGN) | ||
526 | write_dsa(&p, pk->pkey.dsa, ispub); | ||
527 | else | ||
528 | write_rsa(&p, pk->pkey.rsa, ispub); | ||
529 | if (!noinc) | ||
530 | *out += outlen; | ||
531 | return outlen; | ||
532 | } | ||
533 | |||
534 | static int | ||
535 | do_i2b_bio(BIO *out, EVP_PKEY *pk, int ispub) | ||
536 | { | ||
537 | unsigned char *tmp = NULL; | ||
538 | int outlen, wrlen; | ||
539 | |||
540 | outlen = do_i2b(&tmp, pk, ispub); | ||
541 | if (outlen < 0) | ||
542 | return -1; | ||
543 | wrlen = BIO_write(out, tmp, outlen); | ||
544 | free(tmp); | ||
545 | if (wrlen == outlen) | ||
546 | return outlen; | ||
547 | return -1; | ||
548 | } | ||
549 | |||
550 | static int | ||
551 | check_bitlen_dsa(DSA *dsa, int ispub, unsigned int *pmagic) | ||
552 | { | ||
553 | int bitlen; | ||
554 | |||
555 | bitlen = BN_num_bits(dsa->p); | ||
556 | if ((bitlen & 7) || (BN_num_bits(dsa->q) != 160) || | ||
557 | (BN_num_bits(dsa->g) > bitlen)) | ||
558 | goto err; | ||
559 | if (ispub) { | ||
560 | if (BN_num_bits(dsa->pub_key) > bitlen) | ||
561 | goto err; | ||
562 | *pmagic = MS_DSS1MAGIC; | ||
563 | } else { | ||
564 | if (BN_num_bits(dsa->priv_key) > 160) | ||
565 | goto err; | ||
566 | *pmagic = MS_DSS2MAGIC; | ||
567 | } | ||
568 | |||
569 | return bitlen; | ||
570 | |||
571 | err: | ||
572 | PEMerror(PEM_R_UNSUPPORTED_KEY_COMPONENTS); | ||
573 | return 0; | ||
574 | } | ||
575 | |||
576 | static int | ||
577 | check_bitlen_rsa(RSA *rsa, int ispub, unsigned int *pmagic) | ||
578 | { | ||
579 | int nbyte, hnbyte, bitlen; | ||
580 | |||
581 | if (BN_num_bits(rsa->e) > 32) | ||
582 | goto err; | ||
583 | bitlen = BN_num_bits(rsa->n); | ||
584 | nbyte = BN_num_bytes(rsa->n); | ||
585 | hnbyte = (BN_num_bits(rsa->n) + 15) >> 4; | ||
586 | if (ispub) { | ||
587 | *pmagic = MS_RSA1MAGIC; | ||
588 | return bitlen; | ||
589 | } else { | ||
590 | *pmagic = MS_RSA2MAGIC; | ||
591 | /* For private key each component must fit within nbyte or | ||
592 | * hnbyte. | ||
593 | */ | ||
594 | if (BN_num_bytes(rsa->d) > nbyte) | ||
595 | goto err; | ||
596 | if ((BN_num_bytes(rsa->iqmp) > hnbyte) || | ||
597 | (BN_num_bytes(rsa->p) > hnbyte) || | ||
598 | (BN_num_bytes(rsa->q) > hnbyte) || | ||
599 | (BN_num_bytes(rsa->dmp1) > hnbyte) || | ||
600 | (BN_num_bytes(rsa->dmq1) > hnbyte)) | ||
601 | goto err; | ||
602 | } | ||
603 | return bitlen; | ||
604 | |||
605 | err: | ||
606 | PEMerror(PEM_R_UNSUPPORTED_KEY_COMPONENTS); | ||
607 | return 0; | ||
608 | } | ||
609 | |||
610 | static void | ||
611 | write_rsa(unsigned char **out, RSA *rsa, int ispub) | ||
612 | { | ||
613 | int nbyte, hnbyte; | ||
614 | |||
615 | nbyte = BN_num_bytes(rsa->n); | ||
616 | hnbyte = (BN_num_bits(rsa->n) + 15) >> 4; | ||
617 | write_lebn(out, rsa->e, 4); | ||
618 | write_lebn(out, rsa->n, -1); | ||
619 | if (ispub) | ||
620 | return; | ||
621 | write_lebn(out, rsa->p, hnbyte); | ||
622 | write_lebn(out, rsa->q, hnbyte); | ||
623 | write_lebn(out, rsa->dmp1, hnbyte); | ||
624 | write_lebn(out, rsa->dmq1, hnbyte); | ||
625 | write_lebn(out, rsa->iqmp, hnbyte); | ||
626 | write_lebn(out, rsa->d, nbyte); | ||
627 | } | ||
628 | |||
629 | static void | ||
630 | write_dsa(unsigned char **out, DSA *dsa, int ispub) | ||
631 | { | ||
632 | int nbyte; | ||
633 | |||
634 | nbyte = BN_num_bytes(dsa->p); | ||
635 | write_lebn(out, dsa->p, nbyte); | ||
636 | write_lebn(out, dsa->q, 20); | ||
637 | write_lebn(out, dsa->g, nbyte); | ||
638 | if (ispub) | ||
639 | write_lebn(out, dsa->pub_key, nbyte); | ||
640 | else | ||
641 | write_lebn(out, dsa->priv_key, 20); | ||
642 | /* Set "invalid" for seed structure values */ | ||
643 | memset(*out, 0xff, 24); | ||
644 | *out += 24; | ||
645 | return; | ||
646 | } | ||
647 | |||
648 | int | ||
649 | i2b_PrivateKey_bio(BIO *out, EVP_PKEY *pk) | ||
650 | { | ||
651 | return do_i2b_bio(out, pk, 0); | ||
652 | } | ||
653 | LCRYPTO_ALIAS(i2b_PrivateKey_bio); | ||
654 | |||
655 | int | ||
656 | i2b_PublicKey_bio(BIO *out, EVP_PKEY *pk) | ||
657 | { | ||
658 | return do_i2b_bio(out, pk, 1); | ||
659 | } | ||
660 | LCRYPTO_ALIAS(i2b_PublicKey_bio); | ||
661 | |||
662 | #ifndef OPENSSL_NO_RC4 | ||
663 | |||
664 | static int | ||
665 | do_PVK_header(const unsigned char **in, unsigned int length, int skip_magic, | ||
666 | unsigned int *psaltlen, unsigned int *pkeylen) | ||
667 | { | ||
668 | const unsigned char *p = *in; | ||
669 | unsigned int pvk_magic, is_encrypted; | ||
670 | |||
671 | if (skip_magic) { | ||
672 | if (length < 20) { | ||
673 | PEMerror(PEM_R_PVK_TOO_SHORT); | ||
674 | return 0; | ||
675 | } | ||
676 | length -= 20; | ||
677 | } else { | ||
678 | if (length < 24) { | ||
679 | PEMerror(PEM_R_PVK_TOO_SHORT); | ||
680 | return 0; | ||
681 | } | ||
682 | length -= 24; | ||
683 | pvk_magic = read_ledword(&p); | ||
684 | if (pvk_magic != MS_PVKMAGIC) { | ||
685 | PEMerror(PEM_R_BAD_MAGIC_NUMBER); | ||
686 | return 0; | ||
687 | } | ||
688 | } | ||
689 | /* Skip reserved */ | ||
690 | p += 4; | ||
691 | /*keytype = */read_ledword(&p); | ||
692 | is_encrypted = read_ledword(&p); | ||
693 | *psaltlen = read_ledword(&p); | ||
694 | *pkeylen = read_ledword(&p); | ||
695 | if (*psaltlen > 65536 || *pkeylen > 65536) { | ||
696 | PEMerror(PEM_R_ERROR_CONVERTING_PRIVATE_KEY); | ||
697 | return 0; | ||
698 | } | ||
699 | |||
700 | if (is_encrypted && !*psaltlen) { | ||
701 | PEMerror(PEM_R_INCONSISTENT_HEADER); | ||
702 | return 0; | ||
703 | } | ||
704 | |||
705 | *in = p; | ||
706 | return 1; | ||
707 | } | ||
708 | |||
709 | static int | ||
710 | derive_pvk_key(unsigned char *key, const unsigned char *salt, | ||
711 | unsigned int saltlen, const unsigned char *pass, int passlen) | ||
712 | { | ||
713 | EVP_MD_CTX mctx; | ||
714 | int rv = 1; | ||
715 | |||
716 | EVP_MD_CTX_legacy_clear(&mctx); | ||
717 | if (!EVP_DigestInit_ex(&mctx, EVP_sha1(), NULL) || | ||
718 | !EVP_DigestUpdate(&mctx, salt, saltlen) || | ||
719 | !EVP_DigestUpdate(&mctx, pass, passlen) || | ||
720 | !EVP_DigestFinal_ex(&mctx, key, NULL)) | ||
721 | rv = 0; | ||
722 | |||
723 | EVP_MD_CTX_cleanup(&mctx); | ||
724 | return rv; | ||
725 | } | ||
726 | |||
727 | static EVP_PKEY * | ||
728 | do_PVK_body(const unsigned char **in, unsigned int saltlen, | ||
729 | unsigned int keylen, pem_password_cb *cb, void *u) | ||
730 | { | ||
731 | EVP_PKEY *ret = NULL; | ||
732 | const unsigned char *p = *in; | ||
733 | unsigned int magic; | ||
734 | unsigned char *enctmp = NULL, *q; | ||
735 | EVP_CIPHER_CTX *cctx = NULL; | ||
736 | |||
737 | if ((cctx = EVP_CIPHER_CTX_new()) == NULL) { | ||
738 | PEMerror(ERR_R_MALLOC_FAILURE); | ||
739 | goto err; | ||
740 | } | ||
741 | if (saltlen) { | ||
742 | char psbuf[PEM_BUFSIZE]; | ||
743 | unsigned char keybuf[20]; | ||
744 | int enctmplen, inlen; | ||
745 | |||
746 | if (cb) | ||
747 | inlen = cb(psbuf, PEM_BUFSIZE, 0, u); | ||
748 | else | ||
749 | inlen = PEM_def_callback(psbuf, PEM_BUFSIZE, 0, u); | ||
750 | if (inlen <= 0) { | ||
751 | PEMerror(PEM_R_BAD_PASSWORD_READ); | ||
752 | goto err; | ||
753 | } | ||
754 | enctmp = malloc(keylen + 8); | ||
755 | if (!enctmp) { | ||
756 | PEMerror(ERR_R_MALLOC_FAILURE); | ||
757 | goto err; | ||
758 | } | ||
759 | if (!derive_pvk_key(keybuf, p, saltlen, (unsigned char *)psbuf, | ||
760 | inlen)) { | ||
761 | goto err; | ||
762 | } | ||
763 | p += saltlen; | ||
764 | /* Copy BLOBHEADER across, decrypt rest */ | ||
765 | memcpy(enctmp, p, 8); | ||
766 | p += 8; | ||
767 | if (keylen < 8) { | ||
768 | PEMerror(PEM_R_PVK_TOO_SHORT); | ||
769 | goto err; | ||
770 | } | ||
771 | inlen = keylen - 8; | ||
772 | q = enctmp + 8; | ||
773 | if (!EVP_DecryptInit_ex(cctx, EVP_rc4(), NULL, keybuf, NULL)) | ||
774 | goto err; | ||
775 | if (!EVP_DecryptUpdate(cctx, q, &enctmplen, p, inlen)) | ||
776 | goto err; | ||
777 | if (!EVP_DecryptFinal_ex(cctx, q + enctmplen, &enctmplen)) | ||
778 | goto err; | ||
779 | magic = read_ledword((const unsigned char **)&q); | ||
780 | if (magic != MS_RSA2MAGIC && magic != MS_DSS2MAGIC) { | ||
781 | q = enctmp + 8; | ||
782 | memset(keybuf + 5, 0, 11); | ||
783 | if (!EVP_DecryptInit_ex(cctx, EVP_rc4(), NULL, keybuf, | ||
784 | NULL)) | ||
785 | goto err; | ||
786 | explicit_bzero(keybuf, 20); | ||
787 | if (!EVP_DecryptUpdate(cctx, q, &enctmplen, p, inlen)) | ||
788 | goto err; | ||
789 | if (!EVP_DecryptFinal_ex(cctx, q + enctmplen, | ||
790 | &enctmplen)) | ||
791 | goto err; | ||
792 | magic = read_ledword((const unsigned char **)&q); | ||
793 | if (magic != MS_RSA2MAGIC && magic != MS_DSS2MAGIC) { | ||
794 | PEMerror(PEM_R_BAD_DECRYPT); | ||
795 | goto err; | ||
796 | } | ||
797 | } else | ||
798 | explicit_bzero(keybuf, 20); | ||
799 | p = enctmp; | ||
800 | } | ||
801 | |||
802 | ret = b2i_PrivateKey(&p, keylen); | ||
803 | |||
804 | err: | ||
805 | EVP_CIPHER_CTX_free(cctx); | ||
806 | if (enctmp && saltlen) | ||
807 | free(enctmp); | ||
808 | return ret; | ||
809 | } | ||
810 | |||
811 | |||
812 | EVP_PKEY * | ||
813 | b2i_PVK_bio(BIO *in, pem_password_cb *cb, void *u) | ||
814 | { | ||
815 | unsigned char pvk_hdr[24], *buf = NULL; | ||
816 | const unsigned char *p; | ||
817 | size_t buflen; | ||
818 | EVP_PKEY *ret = NULL; | ||
819 | unsigned int saltlen, keylen; | ||
820 | |||
821 | if (BIO_read(in, pvk_hdr, 24) != 24) { | ||
822 | PEMerror(PEM_R_PVK_DATA_TOO_SHORT); | ||
823 | return NULL; | ||
824 | } | ||
825 | p = pvk_hdr; | ||
826 | |||
827 | if (!do_PVK_header(&p, 24, 0, &saltlen, &keylen)) | ||
828 | return 0; | ||
829 | buflen = keylen + saltlen; | ||
830 | buf = malloc(buflen); | ||
831 | if (!buf) { | ||
832 | PEMerror(ERR_R_MALLOC_FAILURE); | ||
833 | return 0; | ||
834 | } | ||
835 | p = buf; | ||
836 | if (BIO_read(in, buf, buflen) != buflen) { | ||
837 | PEMerror(PEM_R_PVK_DATA_TOO_SHORT); | ||
838 | goto err; | ||
839 | } | ||
840 | ret = do_PVK_body(&p, saltlen, keylen, cb, u); | ||
841 | |||
842 | err: | ||
843 | freezero(buf, buflen); | ||
844 | return ret; | ||
845 | } | ||
846 | LCRYPTO_ALIAS(b2i_PVK_bio); | ||
847 | |||
848 | static int | ||
849 | i2b_PVK(unsigned char **out, EVP_PKEY*pk, int enclevel, pem_password_cb *cb, | ||
850 | void *u) | ||
851 | { | ||
852 | int outlen = 24, pklen; | ||
853 | unsigned char *p = NULL, *start = NULL, *salt = NULL; | ||
854 | EVP_CIPHER_CTX *cctx = NULL; | ||
855 | |||
856 | if ((cctx = EVP_CIPHER_CTX_new()) == NULL) { | ||
857 | PEMerror(ERR_R_MALLOC_FAILURE); | ||
858 | goto err; | ||
859 | } | ||
860 | if (enclevel != 0) | ||
861 | outlen += PVK_SALTLEN; | ||
862 | pklen = do_i2b(NULL, pk, 0); | ||
863 | if (pklen < 0) | ||
864 | goto err; | ||
865 | outlen += pklen; | ||
866 | start = p = malloc(outlen); | ||
867 | if (!p) { | ||
868 | PEMerror(ERR_R_MALLOC_FAILURE); | ||
869 | goto err; | ||
870 | } | ||
871 | |||
872 | write_ledword(&p, MS_PVKMAGIC); | ||
873 | write_ledword(&p, 0); | ||
874 | if (pk->type == EVP_PKEY_DSA) | ||
875 | write_ledword(&p, MS_KEYTYPE_SIGN); | ||
876 | else | ||
877 | write_ledword(&p, MS_KEYTYPE_KEYX); | ||
878 | write_ledword(&p, enclevel ? 1 : 0); | ||
879 | write_ledword(&p, enclevel ? PVK_SALTLEN : 0); | ||
880 | write_ledword(&p, pklen); | ||
881 | if (enclevel != 0) { | ||
882 | arc4random_buf(p, PVK_SALTLEN); | ||
883 | salt = p; | ||
884 | p += PVK_SALTLEN; | ||
885 | } | ||
886 | do_i2b(&p, pk, 0); | ||
887 | if (enclevel != 0) { | ||
888 | char psbuf[PEM_BUFSIZE]; | ||
889 | unsigned char keybuf[20]; | ||
890 | int enctmplen, inlen; | ||
891 | if (cb) | ||
892 | inlen = cb(psbuf, PEM_BUFSIZE, 1, u); | ||
893 | else | ||
894 | inlen = PEM_def_callback(psbuf, PEM_BUFSIZE, 1, u); | ||
895 | if (inlen <= 0) { | ||
896 | PEMerror(PEM_R_BAD_PASSWORD_READ); | ||
897 | goto err; | ||
898 | } | ||
899 | if (!derive_pvk_key(keybuf, salt, PVK_SALTLEN, | ||
900 | (unsigned char *)psbuf, inlen)) | ||
901 | goto err; | ||
902 | if (enclevel == 1) | ||
903 | memset(keybuf + 5, 0, 11); | ||
904 | p = salt + PVK_SALTLEN + 8; | ||
905 | if (!EVP_EncryptInit_ex(cctx, EVP_rc4(), NULL, keybuf, NULL)) | ||
906 | goto err; | ||
907 | explicit_bzero(keybuf, 20); | ||
908 | if (!EVP_EncryptUpdate(cctx, p, &enctmplen, p, pklen - 8)) | ||
909 | goto err; | ||
910 | if (!EVP_EncryptFinal_ex(cctx, p + enctmplen, &enctmplen)) | ||
911 | goto err; | ||
912 | } | ||
913 | EVP_CIPHER_CTX_free(cctx); | ||
914 | *out = start; | ||
915 | return outlen; | ||
916 | |||
917 | err: | ||
918 | EVP_CIPHER_CTX_free(cctx); | ||
919 | free(start); | ||
920 | return -1; | ||
921 | } | ||
922 | |||
923 | int | ||
924 | i2b_PVK_bio(BIO *out, EVP_PKEY *pk, int enclevel, pem_password_cb *cb, void *u) | ||
925 | { | ||
926 | unsigned char *tmp = NULL; | ||
927 | int outlen, wrlen; | ||
928 | |||
929 | outlen = i2b_PVK(&tmp, pk, enclevel, cb, u); | ||
930 | if (outlen < 0) | ||
931 | return -1; | ||
932 | wrlen = BIO_write(out, tmp, outlen); | ||
933 | free(tmp); | ||
934 | if (wrlen != outlen) { | ||
935 | PEMerror(PEM_R_BIO_WRITE_FAILURE); | ||
936 | return -1; | ||
937 | } | ||
938 | return outlen; | ||
939 | } | ||
940 | LCRYPTO_ALIAS(i2b_PVK_bio); | ||
941 | |||
942 | #endif | ||
943 | |||
944 | #endif | ||