diff options
Diffstat (limited to 'src/lib/libcrypto/rand/md_rand.c')
| -rw-r--r-- | src/lib/libcrypto/rand/md_rand.c | 607 |
1 files changed, 0 insertions, 607 deletions
diff --git a/src/lib/libcrypto/rand/md_rand.c b/src/lib/libcrypto/rand/md_rand.c deleted file mode 100644 index aee1c30b0a..0000000000 --- a/src/lib/libcrypto/rand/md_rand.c +++ /dev/null | |||
| @@ -1,607 +0,0 @@ | |||
| 1 | /* crypto/rand/md_rand.c */ | ||
| 2 | /* Copyright (C) 1995-1998 Eric Young (eay@cryptsoft.com) | ||
| 3 | * All rights reserved. | ||
| 4 | * | ||
| 5 | * This package is an SSL implementation written | ||
| 6 | * by Eric Young (eay@cryptsoft.com). | ||
| 7 | * The implementation was written so as to conform with Netscapes SSL. | ||
| 8 | * | ||
| 9 | * This library is free for commercial and non-commercial use as long as | ||
| 10 | * the following conditions are aheared to. The following conditions | ||
| 11 | * apply to all code found in this distribution, be it the RC4, RSA, | ||
| 12 | * lhash, DES, etc., code; not just the SSL code. The SSL documentation | ||
| 13 | * included with this distribution is covered by the same copyright terms | ||
| 14 | * except that the holder is Tim Hudson (tjh@cryptsoft.com). | ||
| 15 | * | ||
| 16 | * Copyright remains Eric Young's, and as such any Copyright notices in | ||
| 17 | * the code are not to be removed. | ||
| 18 | * If this package is used in a product, Eric Young should be given attribution | ||
| 19 | * as the author of the parts of the library used. | ||
| 20 | * This can be in the form of a textual message at program startup or | ||
| 21 | * in documentation (online or textual) provided with the package. | ||
| 22 | * | ||
| 23 | * Redistribution and use in source and binary forms, with or without | ||
| 24 | * modification, are permitted provided that the following conditions | ||
| 25 | * are met: | ||
| 26 | * 1. Redistributions of source code must retain the copyright | ||
| 27 | * notice, this list of conditions and the following disclaimer. | ||
| 28 | * 2. Redistributions in binary form must reproduce the above copyright | ||
| 29 | * notice, this list of conditions and the following disclaimer in the | ||
| 30 | * documentation and/or other materials provided with the distribution. | ||
| 31 | * 3. All advertising materials mentioning features or use of this software | ||
| 32 | * must display the following acknowledgement: | ||
| 33 | * "This product includes cryptographic software written by | ||
| 34 | * Eric Young (eay@cryptsoft.com)" | ||
| 35 | * The word 'cryptographic' can be left out if the rouines from the library | ||
| 36 | * being used are not cryptographic related :-). | ||
| 37 | * 4. If you include any Windows specific code (or a derivative thereof) from | ||
| 38 | * the apps directory (application code) you must include an acknowledgement: | ||
| 39 | * "This product includes software written by Tim Hudson (tjh@cryptsoft.com)" | ||
| 40 | * | ||
| 41 | * THIS SOFTWARE IS PROVIDED BY ERIC YOUNG ``AS IS'' AND | ||
| 42 | * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE | ||
| 43 | * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE | ||
| 44 | * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE | ||
| 45 | * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL | ||
| 46 | * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS | ||
| 47 | * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) | ||
| 48 | * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT | ||
| 49 | * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY | ||
| 50 | * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF | ||
| 51 | * SUCH DAMAGE. | ||
| 52 | * | ||
| 53 | * The licence and distribution terms for any publically available version or | ||
| 54 | * derivative of this code cannot be changed. i.e. this code cannot simply be | ||
| 55 | * copied and put under another distribution licence | ||
| 56 | * [including the GNU Public Licence.] | ||
| 57 | */ | ||
| 58 | /* ==================================================================== | ||
| 59 | * Copyright (c) 1998-2001 The OpenSSL Project. All rights reserved. | ||
| 60 | * | ||
| 61 | * Redistribution and use in source and binary forms, with or without | ||
| 62 | * modification, are permitted provided that the following conditions | ||
| 63 | * are met: | ||
| 64 | * | ||
| 65 | * 1. Redistributions of source code must retain the above copyright | ||
| 66 | * notice, this list of conditions and the following disclaimer. | ||
| 67 | * | ||
| 68 | * 2. Redistributions in binary form must reproduce the above copyright | ||
| 69 | * notice, this list of conditions and the following disclaimer in | ||
| 70 | * the documentation and/or other materials provided with the | ||
| 71 | * distribution. | ||
| 72 | * | ||
| 73 | * 3. All advertising materials mentioning features or use of this | ||
| 74 | * software must display the following acknowledgment: | ||
| 75 | * "This product includes software developed by the OpenSSL Project | ||
| 76 | * for use in the OpenSSL Toolkit. (http://www.openssl.org/)" | ||
| 77 | * | ||
| 78 | * 4. The names "OpenSSL Toolkit" and "OpenSSL Project" must not be used to | ||
| 79 | * endorse or promote products derived from this software without | ||
| 80 | * prior written permission. For written permission, please contact | ||
| 81 | * openssl-core@openssl.org. | ||
| 82 | * | ||
| 83 | * 5. Products derived from this software may not be called "OpenSSL" | ||
| 84 | * nor may "OpenSSL" appear in their names without prior written | ||
| 85 | * permission of the OpenSSL Project. | ||
| 86 | * | ||
| 87 | * 6. Redistributions of any form whatsoever must retain the following | ||
| 88 | * acknowledgment: | ||
| 89 | * "This product includes software developed by the OpenSSL Project | ||
| 90 | * for use in the OpenSSL Toolkit (http://www.openssl.org/)" | ||
| 91 | * | ||
| 92 | * THIS SOFTWARE IS PROVIDED BY THE OpenSSL PROJECT ``AS IS'' AND ANY | ||
| 93 | * EXPRESSED OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE | ||
| 94 | * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR | ||
| 95 | * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE OpenSSL PROJECT OR | ||
| 96 | * ITS CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, | ||
| 97 | * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT | ||
| 98 | * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; | ||
| 99 | * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) | ||
| 100 | * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, | ||
| 101 | * STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) | ||
| 102 | * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED | ||
| 103 | * OF THE POSSIBILITY OF SUCH DAMAGE. | ||
| 104 | * ==================================================================== | ||
| 105 | * | ||
| 106 | * This product includes cryptographic software written by Eric Young | ||
| 107 | * (eay@cryptsoft.com). This product includes software written by Tim | ||
| 108 | * Hudson (tjh@cryptsoft.com). | ||
| 109 | * | ||
| 110 | */ | ||
| 111 | |||
| 112 | #define OPENSSL_FIPSEVP | ||
| 113 | |||
| 114 | #ifdef MD_RAND_DEBUG | ||
| 115 | # ifndef NDEBUG | ||
| 116 | # define NDEBUG | ||
| 117 | # endif | ||
| 118 | #endif | ||
| 119 | |||
| 120 | #include <assert.h> | ||
| 121 | #include <stdio.h> | ||
| 122 | #include <string.h> | ||
| 123 | |||
| 124 | #include "e_os.h" | ||
| 125 | |||
| 126 | #include <openssl/crypto.h> | ||
| 127 | #include <openssl/rand.h> | ||
| 128 | #include "rand_lcl.h" | ||
| 129 | |||
| 130 | #include <openssl/err.h> | ||
| 131 | |||
| 132 | #ifdef BN_DEBUG | ||
| 133 | # define PREDICT | ||
| 134 | #endif | ||
| 135 | |||
| 136 | /* #define PREDICT 1 */ | ||
| 137 | |||
| 138 | #define STATE_SIZE 1023 | ||
| 139 | static int state_num=0,state_index=0; | ||
| 140 | static unsigned char state[STATE_SIZE+MD_DIGEST_LENGTH]; | ||
| 141 | static unsigned char md[MD_DIGEST_LENGTH]; | ||
| 142 | static long md_count[2]={0,0}; | ||
| 143 | static double entropy=0; | ||
| 144 | static int initialized=0; | ||
| 145 | |||
| 146 | static unsigned int crypto_lock_rand = 0; /* may be set only when a thread | ||
| 147 | * holds CRYPTO_LOCK_RAND | ||
| 148 | * (to prevent double locking) */ | ||
| 149 | /* access to lockin_thread is synchronized by CRYPTO_LOCK_RAND2 */ | ||
| 150 | static CRYPTO_THREADID locking_threadid; /* valid iff crypto_lock_rand is set */ | ||
| 151 | |||
| 152 | |||
| 153 | #ifdef PREDICT | ||
| 154 | int rand_predictable=0; | ||
| 155 | #endif | ||
| 156 | |||
| 157 | const char RAND_version[]="RAND" OPENSSL_VERSION_PTEXT; | ||
| 158 | |||
| 159 | static void ssleay_rand_cleanup(void); | ||
| 160 | static void ssleay_rand_seed(const void *buf, int num); | ||
| 161 | static void ssleay_rand_add(const void *buf, int num, double add_entropy); | ||
| 162 | static int ssleay_rand_bytes(unsigned char *buf, int num, int pseudo); | ||
| 163 | static int ssleay_rand_nopseudo_bytes(unsigned char *buf, int num); | ||
| 164 | static int ssleay_rand_pseudo_bytes(unsigned char *buf, int num); | ||
| 165 | static int ssleay_rand_status(void); | ||
| 166 | |||
| 167 | RAND_METHOD rand_ssleay_meth={ | ||
| 168 | ssleay_rand_seed, | ||
| 169 | ssleay_rand_nopseudo_bytes, | ||
| 170 | ssleay_rand_cleanup, | ||
| 171 | ssleay_rand_add, | ||
| 172 | ssleay_rand_pseudo_bytes, | ||
| 173 | ssleay_rand_status | ||
| 174 | }; | ||
| 175 | |||
| 176 | RAND_METHOD *RAND_SSLeay(void) | ||
| 177 | { | ||
| 178 | return(&rand_ssleay_meth); | ||
| 179 | } | ||
| 180 | |||
| 181 | static void ssleay_rand_cleanup(void) | ||
| 182 | { | ||
| 183 | OPENSSL_cleanse(state,sizeof(state)); | ||
| 184 | state_num=0; | ||
| 185 | state_index=0; | ||
| 186 | OPENSSL_cleanse(md,MD_DIGEST_LENGTH); | ||
| 187 | md_count[0]=0; | ||
| 188 | md_count[1]=0; | ||
| 189 | entropy=0; | ||
| 190 | initialized=0; | ||
| 191 | } | ||
| 192 | |||
| 193 | static void ssleay_rand_add(const void *buf, int num, double add) | ||
| 194 | { | ||
| 195 | int i,j,k,st_idx; | ||
| 196 | long md_c[2]; | ||
| 197 | unsigned char local_md[MD_DIGEST_LENGTH]; | ||
| 198 | EVP_MD_CTX m; | ||
| 199 | int do_not_lock; | ||
| 200 | |||
| 201 | if (!num) | ||
| 202 | return; | ||
| 203 | |||
| 204 | /* | ||
| 205 | * (Based on the rand(3) manpage) | ||
| 206 | * | ||
| 207 | * The input is chopped up into units of 20 bytes (or less for | ||
| 208 | * the last block). Each of these blocks is run through the hash | ||
| 209 | * function as follows: The data passed to the hash function | ||
| 210 | * is the current 'md', the same number of bytes from the 'state' | ||
| 211 | * (the location determined by in incremented looping index) as | ||
| 212 | * the current 'block', the new key data 'block', and 'count' | ||
| 213 | * (which is incremented after each use). | ||
| 214 | * The result of this is kept in 'md' and also xored into the | ||
| 215 | * 'state' at the same locations that were used as input into the | ||
| 216 | * hash function. | ||
| 217 | */ | ||
| 218 | |||
| 219 | /* check if we already have the lock */ | ||
| 220 | if (crypto_lock_rand) | ||
| 221 | { | ||
| 222 | CRYPTO_THREADID cur; | ||
| 223 | CRYPTO_THREADID_current(&cur); | ||
| 224 | CRYPTO_r_lock(CRYPTO_LOCK_RAND2); | ||
| 225 | do_not_lock = !CRYPTO_THREADID_cmp(&locking_threadid, &cur); | ||
| 226 | CRYPTO_r_unlock(CRYPTO_LOCK_RAND2); | ||
| 227 | } | ||
| 228 | else | ||
| 229 | do_not_lock = 0; | ||
| 230 | |||
| 231 | if (!do_not_lock) CRYPTO_w_lock(CRYPTO_LOCK_RAND); | ||
| 232 | st_idx=state_index; | ||
| 233 | |||
| 234 | /* use our own copies of the counters so that even | ||
| 235 | * if a concurrent thread seeds with exactly the | ||
| 236 | * same data and uses the same subarray there's _some_ | ||
| 237 | * difference */ | ||
| 238 | md_c[0] = md_count[0]; | ||
| 239 | md_c[1] = md_count[1]; | ||
| 240 | |||
| 241 | memcpy(local_md, md, sizeof md); | ||
| 242 | |||
| 243 | /* state_index <= state_num <= STATE_SIZE */ | ||
| 244 | state_index += num; | ||
| 245 | if (state_index >= STATE_SIZE) | ||
| 246 | { | ||
| 247 | state_index%=STATE_SIZE; | ||
| 248 | state_num=STATE_SIZE; | ||
| 249 | } | ||
| 250 | else if (state_num < STATE_SIZE) | ||
| 251 | { | ||
| 252 | if (state_index > state_num) | ||
| 253 | state_num=state_index; | ||
| 254 | } | ||
| 255 | /* state_index <= state_num <= STATE_SIZE */ | ||
| 256 | |||
| 257 | /* state[st_idx], ..., state[(st_idx + num - 1) % STATE_SIZE] | ||
| 258 | * are what we will use now, but other threads may use them | ||
| 259 | * as well */ | ||
| 260 | |||
| 261 | md_count[1] += (num / MD_DIGEST_LENGTH) + (num % MD_DIGEST_LENGTH > 0); | ||
| 262 | |||
| 263 | if (!do_not_lock) CRYPTO_w_unlock(CRYPTO_LOCK_RAND); | ||
| 264 | |||
| 265 | EVP_MD_CTX_init(&m); | ||
| 266 | for (i=0; i<num; i+=MD_DIGEST_LENGTH) | ||
| 267 | { | ||
| 268 | j=(num-i); | ||
| 269 | j=(j > MD_DIGEST_LENGTH)?MD_DIGEST_LENGTH:j; | ||
| 270 | |||
| 271 | MD_Init(&m); | ||
| 272 | MD_Update(&m,local_md,MD_DIGEST_LENGTH); | ||
| 273 | k=(st_idx+j)-STATE_SIZE; | ||
| 274 | if (k > 0) | ||
| 275 | { | ||
| 276 | MD_Update(&m,&(state[st_idx]),j-k); | ||
| 277 | MD_Update(&m,&(state[0]),k); | ||
| 278 | } | ||
| 279 | else | ||
| 280 | MD_Update(&m,&(state[st_idx]),j); | ||
| 281 | |||
| 282 | /* DO NOT REMOVE THE FOLLOWING CALL TO MD_Update()! */ | ||
| 283 | MD_Update(&m,buf,j); | ||
| 284 | /* We know that line may cause programs such as | ||
| 285 | purify and valgrind to complain about use of | ||
| 286 | uninitialized data. The problem is not, it's | ||
| 287 | with the caller. Removing that line will make | ||
| 288 | sure you get really bad randomness and thereby | ||
| 289 | other problems such as very insecure keys. */ | ||
| 290 | |||
| 291 | MD_Update(&m,(unsigned char *)&(md_c[0]),sizeof(md_c)); | ||
| 292 | MD_Final(&m,local_md); | ||
| 293 | md_c[1]++; | ||
| 294 | |||
| 295 | buf=(const char *)buf + j; | ||
| 296 | |||
| 297 | for (k=0; k<j; k++) | ||
| 298 | { | ||
| 299 | /* Parallel threads may interfere with this, | ||
| 300 | * but always each byte of the new state is | ||
| 301 | * the XOR of some previous value of its | ||
| 302 | * and local_md (itermediate values may be lost). | ||
| 303 | * Alway using locking could hurt performance more | ||
| 304 | * than necessary given that conflicts occur only | ||
| 305 | * when the total seeding is longer than the random | ||
| 306 | * state. */ | ||
| 307 | state[st_idx++]^=local_md[k]; | ||
| 308 | if (st_idx >= STATE_SIZE) | ||
| 309 | st_idx=0; | ||
| 310 | } | ||
| 311 | } | ||
| 312 | EVP_MD_CTX_cleanup(&m); | ||
| 313 | |||
| 314 | if (!do_not_lock) CRYPTO_w_lock(CRYPTO_LOCK_RAND); | ||
| 315 | /* Don't just copy back local_md into md -- this could mean that | ||
| 316 | * other thread's seeding remains without effect (except for | ||
| 317 | * the incremented counter). By XORing it we keep at least as | ||
| 318 | * much entropy as fits into md. */ | ||
| 319 | for (k = 0; k < (int)sizeof(md); k++) | ||
| 320 | { | ||
| 321 | md[k] ^= local_md[k]; | ||
| 322 | } | ||
| 323 | if (entropy < ENTROPY_NEEDED) /* stop counting when we have enough */ | ||
| 324 | entropy += add; | ||
| 325 | if (!do_not_lock) CRYPTO_w_unlock(CRYPTO_LOCK_RAND); | ||
| 326 | |||
| 327 | #if !defined(OPENSSL_THREADS) && !defined(OPENSSL_SYS_WIN32) | ||
| 328 | assert(md_c[1] == md_count[1]); | ||
| 329 | #endif | ||
| 330 | } | ||
| 331 | |||
| 332 | static void ssleay_rand_seed(const void *buf, int num) | ||
| 333 | { | ||
| 334 | ssleay_rand_add(buf, num, (double)num); | ||
| 335 | } | ||
| 336 | |||
| 337 | static int ssleay_rand_bytes(unsigned char *buf, int num, int pseudo) | ||
| 338 | { | ||
| 339 | static volatile int stirred_pool = 0; | ||
| 340 | int i,j,k,st_num,st_idx; | ||
| 341 | int num_ceil; | ||
| 342 | int ok; | ||
| 343 | long md_c[2]; | ||
| 344 | unsigned char local_md[MD_DIGEST_LENGTH]; | ||
| 345 | EVP_MD_CTX m; | ||
| 346 | #ifndef GETPID_IS_MEANINGLESS | ||
| 347 | pid_t curr_pid = getpid(); | ||
| 348 | #endif | ||
| 349 | int do_stir_pool = 0; | ||
| 350 | |||
| 351 | #ifdef PREDICT | ||
| 352 | if (rand_predictable) | ||
| 353 | { | ||
| 354 | static unsigned char val=0; | ||
| 355 | |||
| 356 | for (i=0; i<num; i++) | ||
| 357 | buf[i]=val++; | ||
| 358 | return(1); | ||
| 359 | } | ||
| 360 | #endif | ||
| 361 | |||
| 362 | if (num <= 0) | ||
| 363 | return 1; | ||
| 364 | |||
| 365 | EVP_MD_CTX_init(&m); | ||
| 366 | /* round upwards to multiple of MD_DIGEST_LENGTH/2 */ | ||
| 367 | num_ceil = (1 + (num-1)/(MD_DIGEST_LENGTH/2)) * (MD_DIGEST_LENGTH/2); | ||
| 368 | |||
| 369 | /* | ||
| 370 | * (Based on the rand(3) manpage:) | ||
| 371 | * | ||
| 372 | * For each group of 10 bytes (or less), we do the following: | ||
| 373 | * | ||
| 374 | * Input into the hash function the local 'md' (which is initialized from | ||
| 375 | * the global 'md' before any bytes are generated), the bytes that are to | ||
| 376 | * be overwritten by the random bytes, and bytes from the 'state' | ||
| 377 | * (incrementing looping index). From this digest output (which is kept | ||
| 378 | * in 'md'), the top (up to) 10 bytes are returned to the caller and the | ||
| 379 | * bottom 10 bytes are xored into the 'state'. | ||
| 380 | * | ||
| 381 | * Finally, after we have finished 'num' random bytes for the | ||
| 382 | * caller, 'count' (which is incremented) and the local and global 'md' | ||
| 383 | * are fed into the hash function and the results are kept in the | ||
| 384 | * global 'md'. | ||
| 385 | */ | ||
| 386 | #ifdef OPENSSL_FIPS | ||
| 387 | /* NB: in FIPS mode we are already under a lock */ | ||
| 388 | if (!FIPS_mode()) | ||
| 389 | #endif | ||
| 390 | CRYPTO_w_lock(CRYPTO_LOCK_RAND); | ||
| 391 | |||
| 392 | /* prevent ssleay_rand_bytes() from trying to obtain the lock again */ | ||
| 393 | CRYPTO_w_lock(CRYPTO_LOCK_RAND2); | ||
| 394 | CRYPTO_THREADID_current(&locking_threadid); | ||
| 395 | CRYPTO_w_unlock(CRYPTO_LOCK_RAND2); | ||
| 396 | crypto_lock_rand = 1; | ||
| 397 | |||
| 398 | if (!initialized) | ||
| 399 | { | ||
| 400 | RAND_poll(); | ||
| 401 | initialized = 1; | ||
| 402 | } | ||
| 403 | |||
| 404 | if (!stirred_pool) | ||
| 405 | do_stir_pool = 1; | ||
| 406 | |||
| 407 | ok = (entropy >= ENTROPY_NEEDED); | ||
| 408 | if (!ok) | ||
| 409 | { | ||
| 410 | /* If the PRNG state is not yet unpredictable, then seeing | ||
| 411 | * the PRNG output may help attackers to determine the new | ||
| 412 | * state; thus we have to decrease the entropy estimate. | ||
| 413 | * Once we've had enough initial seeding we don't bother to | ||
| 414 | * adjust the entropy count, though, because we're not ambitious | ||
| 415 | * to provide *information-theoretic* randomness. | ||
| 416 | * | ||
| 417 | * NOTE: This approach fails if the program forks before | ||
| 418 | * we have enough entropy. Entropy should be collected | ||
| 419 | * in a separate input pool and be transferred to the | ||
| 420 | * output pool only when the entropy limit has been reached. | ||
| 421 | */ | ||
| 422 | entropy -= num; | ||
| 423 | if (entropy < 0) | ||
| 424 | entropy = 0; | ||
| 425 | } | ||
| 426 | |||
| 427 | if (do_stir_pool) | ||
| 428 | { | ||
| 429 | /* In the output function only half of 'md' remains secret, | ||
| 430 | * so we better make sure that the required entropy gets | ||
| 431 | * 'evenly distributed' through 'state', our randomness pool. | ||
| 432 | * The input function (ssleay_rand_add) chains all of 'md', | ||
| 433 | * which makes it more suitable for this purpose. | ||
| 434 | */ | ||
| 435 | |||
| 436 | int n = STATE_SIZE; /* so that the complete pool gets accessed */ | ||
| 437 | while (n > 0) | ||
| 438 | { | ||
| 439 | #if MD_DIGEST_LENGTH > 20 | ||
| 440 | # error "Please adjust DUMMY_SEED." | ||
| 441 | #endif | ||
| 442 | #define DUMMY_SEED "...................." /* at least MD_DIGEST_LENGTH */ | ||
| 443 | /* Note that the seed does not matter, it's just that | ||
| 444 | * ssleay_rand_add expects to have something to hash. */ | ||
| 445 | ssleay_rand_add(DUMMY_SEED, MD_DIGEST_LENGTH, 0.0); | ||
| 446 | n -= MD_DIGEST_LENGTH; | ||
| 447 | } | ||
| 448 | if (ok) | ||
| 449 | stirred_pool = 1; | ||
| 450 | } | ||
| 451 | |||
| 452 | st_idx=state_index; | ||
| 453 | st_num=state_num; | ||
| 454 | md_c[0] = md_count[0]; | ||
| 455 | md_c[1] = md_count[1]; | ||
| 456 | memcpy(local_md, md, sizeof md); | ||
| 457 | |||
| 458 | state_index+=num_ceil; | ||
| 459 | if (state_index > state_num) | ||
| 460 | state_index %= state_num; | ||
| 461 | |||
| 462 | /* state[st_idx], ..., state[(st_idx + num_ceil - 1) % st_num] | ||
| 463 | * are now ours (but other threads may use them too) */ | ||
| 464 | |||
| 465 | md_count[0] += 1; | ||
| 466 | |||
| 467 | /* before unlocking, we must clear 'crypto_lock_rand' */ | ||
| 468 | crypto_lock_rand = 0; | ||
| 469 | #ifdef OPENSSL_FIPS | ||
| 470 | if (!FIPS_mode()) | ||
| 471 | #endif | ||
| 472 | CRYPTO_w_unlock(CRYPTO_LOCK_RAND); | ||
| 473 | |||
| 474 | while (num > 0) | ||
| 475 | { | ||
| 476 | /* num_ceil -= MD_DIGEST_LENGTH/2 */ | ||
| 477 | j=(num >= MD_DIGEST_LENGTH/2)?MD_DIGEST_LENGTH/2:num; | ||
| 478 | num-=j; | ||
| 479 | MD_Init(&m); | ||
| 480 | #ifndef GETPID_IS_MEANINGLESS | ||
| 481 | if (curr_pid) /* just in the first iteration to save time */ | ||
| 482 | { | ||
| 483 | MD_Update(&m,(unsigned char*)&curr_pid,sizeof curr_pid); | ||
| 484 | curr_pid = 0; | ||
| 485 | } | ||
| 486 | #endif | ||
| 487 | MD_Update(&m,local_md,MD_DIGEST_LENGTH); | ||
| 488 | MD_Update(&m,(unsigned char *)&(md_c[0]),sizeof(md_c)); | ||
| 489 | |||
| 490 | #ifndef PURIFY /* purify complains */ | ||
| 491 | /* The following line uses the supplied buffer as a small | ||
| 492 | * source of entropy: since this buffer is often uninitialised | ||
| 493 | * it may cause programs such as purify or valgrind to | ||
| 494 | * complain. So for those builds it is not used: the removal | ||
| 495 | * of such a small source of entropy has negligible impact on | ||
| 496 | * security. | ||
| 497 | */ | ||
| 498 | MD_Update(&m,buf,j); | ||
| 499 | #endif | ||
| 500 | |||
| 501 | k=(st_idx+MD_DIGEST_LENGTH/2)-st_num; | ||
| 502 | if (k > 0) | ||
| 503 | { | ||
| 504 | MD_Update(&m,&(state[st_idx]),MD_DIGEST_LENGTH/2-k); | ||
| 505 | MD_Update(&m,&(state[0]),k); | ||
| 506 | } | ||
| 507 | else | ||
| 508 | MD_Update(&m,&(state[st_idx]),MD_DIGEST_LENGTH/2); | ||
| 509 | MD_Final(&m,local_md); | ||
| 510 | |||
| 511 | for (i=0; i<MD_DIGEST_LENGTH/2; i++) | ||
| 512 | { | ||
| 513 | state[st_idx++]^=local_md[i]; /* may compete with other threads */ | ||
| 514 | if (st_idx >= st_num) | ||
| 515 | st_idx=0; | ||
| 516 | if (i < j) | ||
| 517 | *(buf++)=local_md[i+MD_DIGEST_LENGTH/2]; | ||
| 518 | } | ||
| 519 | } | ||
| 520 | |||
| 521 | MD_Init(&m); | ||
| 522 | MD_Update(&m,(unsigned char *)&(md_c[0]),sizeof(md_c)); | ||
| 523 | MD_Update(&m,local_md,MD_DIGEST_LENGTH); | ||
| 524 | #ifdef OPENSSL_FIPS | ||
| 525 | if (!FIPS_mode()) | ||
| 526 | #endif | ||
| 527 | CRYPTO_w_lock(CRYPTO_LOCK_RAND); | ||
| 528 | MD_Update(&m,md,MD_DIGEST_LENGTH); | ||
| 529 | MD_Final(&m,md); | ||
| 530 | #ifdef OPENSSL_FIPS | ||
| 531 | if (!FIPS_mode()) | ||
| 532 | #endif | ||
| 533 | CRYPTO_w_unlock(CRYPTO_LOCK_RAND); | ||
| 534 | |||
| 535 | EVP_MD_CTX_cleanup(&m); | ||
| 536 | if (ok) | ||
| 537 | return(1); | ||
| 538 | else if (pseudo) | ||
| 539 | return 0; | ||
| 540 | else | ||
| 541 | { | ||
| 542 | RANDerr(RAND_F_SSLEAY_RAND_BYTES,RAND_R_PRNG_NOT_SEEDED); | ||
| 543 | ERR_add_error_data(1, "You need to read the OpenSSL FAQ, " | ||
| 544 | "http://www.openssl.org/support/faq.html"); | ||
| 545 | return(0); | ||
| 546 | } | ||
| 547 | } | ||
| 548 | |||
| 549 | static int ssleay_rand_nopseudo_bytes(unsigned char *buf, int num) | ||
| 550 | { | ||
| 551 | return ssleay_rand_bytes(buf, num, 0); | ||
| 552 | } | ||
| 553 | |||
| 554 | /* pseudo-random bytes that are guaranteed to be unique but not | ||
| 555 | unpredictable */ | ||
| 556 | static int ssleay_rand_pseudo_bytes(unsigned char *buf, int num) | ||
| 557 | { | ||
| 558 | return ssleay_rand_bytes(buf, num, 1); | ||
| 559 | } | ||
| 560 | |||
| 561 | static int ssleay_rand_status(void) | ||
| 562 | { | ||
| 563 | CRYPTO_THREADID cur; | ||
| 564 | int ret; | ||
| 565 | int do_not_lock; | ||
| 566 | |||
| 567 | CRYPTO_THREADID_current(&cur); | ||
| 568 | /* check if we already have the lock | ||
| 569 | * (could happen if a RAND_poll() implementation calls RAND_status()) */ | ||
| 570 | if (crypto_lock_rand) | ||
| 571 | { | ||
| 572 | CRYPTO_r_lock(CRYPTO_LOCK_RAND2); | ||
| 573 | do_not_lock = !CRYPTO_THREADID_cmp(&locking_threadid, &cur); | ||
| 574 | CRYPTO_r_unlock(CRYPTO_LOCK_RAND2); | ||
| 575 | } | ||
| 576 | else | ||
| 577 | do_not_lock = 0; | ||
| 578 | |||
| 579 | if (!do_not_lock) | ||
| 580 | { | ||
| 581 | CRYPTO_w_lock(CRYPTO_LOCK_RAND); | ||
| 582 | |||
| 583 | /* prevent ssleay_rand_bytes() from trying to obtain the lock again */ | ||
| 584 | CRYPTO_w_lock(CRYPTO_LOCK_RAND2); | ||
| 585 | CRYPTO_THREADID_cpy(&locking_threadid, &cur); | ||
| 586 | CRYPTO_w_unlock(CRYPTO_LOCK_RAND2); | ||
| 587 | crypto_lock_rand = 1; | ||
| 588 | } | ||
| 589 | |||
| 590 | if (!initialized) | ||
| 591 | { | ||
| 592 | RAND_poll(); | ||
| 593 | initialized = 1; | ||
| 594 | } | ||
| 595 | |||
| 596 | ret = entropy >= ENTROPY_NEEDED; | ||
| 597 | |||
| 598 | if (!do_not_lock) | ||
| 599 | { | ||
| 600 | /* before unlocking, we must clear 'crypto_lock_rand' */ | ||
| 601 | crypto_lock_rand = 0; | ||
| 602 | |||
| 603 | CRYPTO_w_unlock(CRYPTO_LOCK_RAND); | ||
| 604 | } | ||
| 605 | |||
| 606 | return ret; | ||
| 607 | } | ||
