diff options
Diffstat (limited to 'src/lib/libcrypto/rand/md_rand.c')
-rw-r--r-- | src/lib/libcrypto/rand/md_rand.c | 572 |
1 files changed, 572 insertions, 0 deletions
diff --git a/src/lib/libcrypto/rand/md_rand.c b/src/lib/libcrypto/rand/md_rand.c new file mode 100644 index 0000000000..eeffc0df4c --- /dev/null +++ b/src/lib/libcrypto/rand/md_rand.c | |||
@@ -0,0 +1,572 @@ | |||
1 | /* crypto/rand/md_rand.c */ | ||
2 | /* Copyright (C) 1995-1998 Eric Young (eay@cryptsoft.com) | ||
3 | * All rights reserved. | ||
4 | * | ||
5 | * This package is an SSL implementation written | ||
6 | * by Eric Young (eay@cryptsoft.com). | ||
7 | * The implementation was written so as to conform with Netscapes SSL. | ||
8 | * | ||
9 | * This library is free for commercial and non-commercial use as long as | ||
10 | * the following conditions are aheared to. The following conditions | ||
11 | * apply to all code found in this distribution, be it the RC4, RSA, | ||
12 | * lhash, DES, etc., code; not just the SSL code. The SSL documentation | ||
13 | * included with this distribution is covered by the same copyright terms | ||
14 | * except that the holder is Tim Hudson (tjh@cryptsoft.com). | ||
15 | * | ||
16 | * Copyright remains Eric Young's, and as such any Copyright notices in | ||
17 | * the code are not to be removed. | ||
18 | * If this package is used in a product, Eric Young should be given attribution | ||
19 | * as the author of the parts of the library used. | ||
20 | * This can be in the form of a textual message at program startup or | ||
21 | * in documentation (online or textual) provided with the package. | ||
22 | * | ||
23 | * Redistribution and use in source and binary forms, with or without | ||
24 | * modification, are permitted provided that the following conditions | ||
25 | * are met: | ||
26 | * 1. Redistributions of source code must retain the copyright | ||
27 | * notice, this list of conditions and the following disclaimer. | ||
28 | * 2. Redistributions in binary form must reproduce the above copyright | ||
29 | * notice, this list of conditions and the following disclaimer in the | ||
30 | * documentation and/or other materials provided with the distribution. | ||
31 | * 3. All advertising materials mentioning features or use of this software | ||
32 | * must display the following acknowledgement: | ||
33 | * "This product includes cryptographic software written by | ||
34 | * Eric Young (eay@cryptsoft.com)" | ||
35 | * The word 'cryptographic' can be left out if the rouines from the library | ||
36 | * being used are not cryptographic related :-). | ||
37 | * 4. If you include any Windows specific code (or a derivative thereof) from | ||
38 | * the apps directory (application code) you must include an acknowledgement: | ||
39 | * "This product includes software written by Tim Hudson (tjh@cryptsoft.com)" | ||
40 | * | ||
41 | * THIS SOFTWARE IS PROVIDED BY ERIC YOUNG ``AS IS'' AND | ||
42 | * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE | ||
43 | * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE | ||
44 | * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE | ||
45 | * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL | ||
46 | * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS | ||
47 | * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) | ||
48 | * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT | ||
49 | * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY | ||
50 | * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF | ||
51 | * SUCH DAMAGE. | ||
52 | * | ||
53 | * The licence and distribution terms for any publically available version or | ||
54 | * derivative of this code cannot be changed. i.e. this code cannot simply be | ||
55 | * copied and put under another distribution licence | ||
56 | * [including the GNU Public Licence.] | ||
57 | */ | ||
58 | /* ==================================================================== | ||
59 | * Copyright (c) 1998-2001 The OpenSSL Project. All rights reserved. | ||
60 | * | ||
61 | * Redistribution and use in source and binary forms, with or without | ||
62 | * modification, are permitted provided that the following conditions | ||
63 | * are met: | ||
64 | * | ||
65 | * 1. Redistributions of source code must retain the above copyright | ||
66 | * notice, this list of conditions and the following disclaimer. | ||
67 | * | ||
68 | * 2. Redistributions in binary form must reproduce the above copyright | ||
69 | * notice, this list of conditions and the following disclaimer in | ||
70 | * the documentation and/or other materials provided with the | ||
71 | * distribution. | ||
72 | * | ||
73 | * 3. All advertising materials mentioning features or use of this | ||
74 | * software must display the following acknowledgment: | ||
75 | * "This product includes software developed by the OpenSSL Project | ||
76 | * for use in the OpenSSL Toolkit. (http://www.openssl.org/)" | ||
77 | * | ||
78 | * 4. The names "OpenSSL Toolkit" and "OpenSSL Project" must not be used to | ||
79 | * endorse or promote products derived from this software without | ||
80 | * prior written permission. For written permission, please contact | ||
81 | * openssl-core@openssl.org. | ||
82 | * | ||
83 | * 5. Products derived from this software may not be called "OpenSSL" | ||
84 | * nor may "OpenSSL" appear in their names without prior written | ||
85 | * permission of the OpenSSL Project. | ||
86 | * | ||
87 | * 6. Redistributions of any form whatsoever must retain the following | ||
88 | * acknowledgment: | ||
89 | * "This product includes software developed by the OpenSSL Project | ||
90 | * for use in the OpenSSL Toolkit (http://www.openssl.org/)" | ||
91 | * | ||
92 | * THIS SOFTWARE IS PROVIDED BY THE OpenSSL PROJECT ``AS IS'' AND ANY | ||
93 | * EXPRESSED OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE | ||
94 | * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR | ||
95 | * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE OpenSSL PROJECT OR | ||
96 | * ITS CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, | ||
97 | * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT | ||
98 | * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; | ||
99 | * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) | ||
100 | * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, | ||
101 | * STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) | ||
102 | * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED | ||
103 | * OF THE POSSIBILITY OF SUCH DAMAGE. | ||
104 | * ==================================================================== | ||
105 | * | ||
106 | * This product includes cryptographic software written by Eric Young | ||
107 | * (eay@cryptsoft.com). This product includes software written by Tim | ||
108 | * Hudson (tjh@cryptsoft.com). | ||
109 | * | ||
110 | */ | ||
111 | |||
112 | #ifdef MD_RAND_DEBUG | ||
113 | # ifndef NDEBUG | ||
114 | # define NDEBUG | ||
115 | # endif | ||
116 | #endif | ||
117 | |||
118 | #include <assert.h> | ||
119 | #include <stdio.h> | ||
120 | #include <string.h> | ||
121 | |||
122 | #include "e_os.h" | ||
123 | |||
124 | #include <openssl/rand.h> | ||
125 | #include "rand_lcl.h" | ||
126 | |||
127 | #include <openssl/crypto.h> | ||
128 | #include <openssl/err.h> | ||
129 | |||
130 | #ifdef BN_DEBUG | ||
131 | # define PREDICT | ||
132 | #endif | ||
133 | |||
134 | /* #define PREDICT 1 */ | ||
135 | |||
136 | #define STATE_SIZE 1023 | ||
137 | static int state_num=0,state_index=0; | ||
138 | static unsigned char state[STATE_SIZE+MD_DIGEST_LENGTH]; | ||
139 | static unsigned char md[MD_DIGEST_LENGTH]; | ||
140 | static long md_count[2]={0,0}; | ||
141 | static double entropy=0; | ||
142 | static int initialized=0; | ||
143 | |||
144 | static unsigned int crypto_lock_rand = 0; /* may be set only when a thread | ||
145 | * holds CRYPTO_LOCK_RAND | ||
146 | * (to prevent double locking) */ | ||
147 | /* access to lockin_thread is synchronized by CRYPTO_LOCK_RAND2 */ | ||
148 | static unsigned long locking_thread = 0; /* valid iff crypto_lock_rand is set */ | ||
149 | |||
150 | |||
151 | #ifdef PREDICT | ||
152 | int rand_predictable=0; | ||
153 | #endif | ||
154 | |||
155 | const char *RAND_version="RAND" OPENSSL_VERSION_PTEXT; | ||
156 | |||
157 | static void ssleay_rand_cleanup(void); | ||
158 | static void ssleay_rand_seed(const void *buf, int num); | ||
159 | static void ssleay_rand_add(const void *buf, int num, double add_entropy); | ||
160 | static int ssleay_rand_bytes(unsigned char *buf, int num); | ||
161 | static int ssleay_rand_pseudo_bytes(unsigned char *buf, int num); | ||
162 | static int ssleay_rand_status(void); | ||
163 | |||
164 | RAND_METHOD rand_ssleay_meth={ | ||
165 | ssleay_rand_seed, | ||
166 | ssleay_rand_bytes, | ||
167 | ssleay_rand_cleanup, | ||
168 | ssleay_rand_add, | ||
169 | ssleay_rand_pseudo_bytes, | ||
170 | ssleay_rand_status | ||
171 | }; | ||
172 | |||
173 | RAND_METHOD *RAND_SSLeay(void) | ||
174 | { | ||
175 | return(&rand_ssleay_meth); | ||
176 | } | ||
177 | |||
178 | static void ssleay_rand_cleanup(void) | ||
179 | { | ||
180 | OPENSSL_cleanse(state,sizeof(state)); | ||
181 | state_num=0; | ||
182 | state_index=0; | ||
183 | OPENSSL_cleanse(md,MD_DIGEST_LENGTH); | ||
184 | md_count[0]=0; | ||
185 | md_count[1]=0; | ||
186 | entropy=0; | ||
187 | initialized=0; | ||
188 | } | ||
189 | |||
190 | static void ssleay_rand_add(const void *buf, int num, double add) | ||
191 | { | ||
192 | int i,j,k,st_idx; | ||
193 | long md_c[2]; | ||
194 | unsigned char local_md[MD_DIGEST_LENGTH]; | ||
195 | EVP_MD_CTX m; | ||
196 | int do_not_lock; | ||
197 | |||
198 | /* | ||
199 | * (Based on the rand(3) manpage) | ||
200 | * | ||
201 | * The input is chopped up into units of 20 bytes (or less for | ||
202 | * the last block). Each of these blocks is run through the hash | ||
203 | * function as follows: The data passed to the hash function | ||
204 | * is the current 'md', the same number of bytes from the 'state' | ||
205 | * (the location determined by in incremented looping index) as | ||
206 | * the current 'block', the new key data 'block', and 'count' | ||
207 | * (which is incremented after each use). | ||
208 | * The result of this is kept in 'md' and also xored into the | ||
209 | * 'state' at the same locations that were used as input into the | ||
210 | * hash function. | ||
211 | */ | ||
212 | |||
213 | /* check if we already have the lock */ | ||
214 | if (crypto_lock_rand) | ||
215 | { | ||
216 | CRYPTO_r_lock(CRYPTO_LOCK_RAND2); | ||
217 | do_not_lock = (locking_thread == CRYPTO_thread_id()); | ||
218 | CRYPTO_r_unlock(CRYPTO_LOCK_RAND2); | ||
219 | } | ||
220 | else | ||
221 | do_not_lock = 0; | ||
222 | |||
223 | if (!do_not_lock) CRYPTO_w_lock(CRYPTO_LOCK_RAND); | ||
224 | st_idx=state_index; | ||
225 | |||
226 | /* use our own copies of the counters so that even | ||
227 | * if a concurrent thread seeds with exactly the | ||
228 | * same data and uses the same subarray there's _some_ | ||
229 | * difference */ | ||
230 | md_c[0] = md_count[0]; | ||
231 | md_c[1] = md_count[1]; | ||
232 | |||
233 | memcpy(local_md, md, sizeof md); | ||
234 | |||
235 | /* state_index <= state_num <= STATE_SIZE */ | ||
236 | state_index += num; | ||
237 | if (state_index >= STATE_SIZE) | ||
238 | { | ||
239 | state_index%=STATE_SIZE; | ||
240 | state_num=STATE_SIZE; | ||
241 | } | ||
242 | else if (state_num < STATE_SIZE) | ||
243 | { | ||
244 | if (state_index > state_num) | ||
245 | state_num=state_index; | ||
246 | } | ||
247 | /* state_index <= state_num <= STATE_SIZE */ | ||
248 | |||
249 | /* state[st_idx], ..., state[(st_idx + num - 1) % STATE_SIZE] | ||
250 | * are what we will use now, but other threads may use them | ||
251 | * as well */ | ||
252 | |||
253 | md_count[1] += (num / MD_DIGEST_LENGTH) + (num % MD_DIGEST_LENGTH > 0); | ||
254 | |||
255 | if (!do_not_lock) CRYPTO_w_unlock(CRYPTO_LOCK_RAND); | ||
256 | |||
257 | EVP_MD_CTX_init(&m); | ||
258 | for (i=0; i<num; i+=MD_DIGEST_LENGTH) | ||
259 | { | ||
260 | j=(num-i); | ||
261 | j=(j > MD_DIGEST_LENGTH)?MD_DIGEST_LENGTH:j; | ||
262 | |||
263 | MD_Init(&m); | ||
264 | MD_Update(&m,local_md,MD_DIGEST_LENGTH); | ||
265 | k=(st_idx+j)-STATE_SIZE; | ||
266 | if (k > 0) | ||
267 | { | ||
268 | MD_Update(&m,&(state[st_idx]),j-k); | ||
269 | MD_Update(&m,&(state[0]),k); | ||
270 | } | ||
271 | else | ||
272 | MD_Update(&m,&(state[st_idx]),j); | ||
273 | |||
274 | MD_Update(&m,buf,j); | ||
275 | MD_Update(&m,(unsigned char *)&(md_c[0]),sizeof(md_c)); | ||
276 | MD_Final(&m,local_md); | ||
277 | md_c[1]++; | ||
278 | |||
279 | buf=(const char *)buf + j; | ||
280 | |||
281 | for (k=0; k<j; k++) | ||
282 | { | ||
283 | /* Parallel threads may interfere with this, | ||
284 | * but always each byte of the new state is | ||
285 | * the XOR of some previous value of its | ||
286 | * and local_md (itermediate values may be lost). | ||
287 | * Alway using locking could hurt performance more | ||
288 | * than necessary given that conflicts occur only | ||
289 | * when the total seeding is longer than the random | ||
290 | * state. */ | ||
291 | state[st_idx++]^=local_md[k]; | ||
292 | if (st_idx >= STATE_SIZE) | ||
293 | st_idx=0; | ||
294 | } | ||
295 | } | ||
296 | EVP_MD_CTX_cleanup(&m); | ||
297 | |||
298 | if (!do_not_lock) CRYPTO_w_lock(CRYPTO_LOCK_RAND); | ||
299 | /* Don't just copy back local_md into md -- this could mean that | ||
300 | * other thread's seeding remains without effect (except for | ||
301 | * the incremented counter). By XORing it we keep at least as | ||
302 | * much entropy as fits into md. */ | ||
303 | for (k = 0; k < sizeof md; k++) | ||
304 | { | ||
305 | md[k] ^= local_md[k]; | ||
306 | } | ||
307 | if (entropy < ENTROPY_NEEDED) /* stop counting when we have enough */ | ||
308 | entropy += add; | ||
309 | if (!do_not_lock) CRYPTO_w_unlock(CRYPTO_LOCK_RAND); | ||
310 | |||
311 | #if !defined(OPENSSL_THREADS) && !defined(OPENSSL_SYS_WIN32) | ||
312 | assert(md_c[1] == md_count[1]); | ||
313 | #endif | ||
314 | } | ||
315 | |||
316 | static void ssleay_rand_seed(const void *buf, int num) | ||
317 | { | ||
318 | ssleay_rand_add(buf, num, num); | ||
319 | } | ||
320 | |||
321 | static int ssleay_rand_bytes(unsigned char *buf, int num) | ||
322 | { | ||
323 | static volatile int stirred_pool = 0; | ||
324 | int i,j,k,st_num,st_idx; | ||
325 | int num_ceil; | ||
326 | int ok; | ||
327 | long md_c[2]; | ||
328 | unsigned char local_md[MD_DIGEST_LENGTH]; | ||
329 | EVP_MD_CTX m; | ||
330 | #ifndef GETPID_IS_MEANINGLESS | ||
331 | pid_t curr_pid = getpid(); | ||
332 | #endif | ||
333 | int do_stir_pool = 0; | ||
334 | |||
335 | #ifdef PREDICT | ||
336 | if (rand_predictable) | ||
337 | { | ||
338 | static unsigned char val=0; | ||
339 | |||
340 | for (i=0; i<num; i++) | ||
341 | buf[i]=val++; | ||
342 | return(1); | ||
343 | } | ||
344 | #endif | ||
345 | |||
346 | if (num <= 0) | ||
347 | return 1; | ||
348 | |||
349 | EVP_MD_CTX_init(&m); | ||
350 | /* round upwards to multiple of MD_DIGEST_LENGTH/2 */ | ||
351 | num_ceil = (1 + (num-1)/(MD_DIGEST_LENGTH/2)) * (MD_DIGEST_LENGTH/2); | ||
352 | |||
353 | /* | ||
354 | * (Based on the rand(3) manpage:) | ||
355 | * | ||
356 | * For each group of 10 bytes (or less), we do the following: | ||
357 | * | ||
358 | * Input into the hash function the local 'md' (which is initialized from | ||
359 | * the global 'md' before any bytes are generated), the bytes that are to | ||
360 | * be overwritten by the random bytes, and bytes from the 'state' | ||
361 | * (incrementing looping index). From this digest output (which is kept | ||
362 | * in 'md'), the top (up to) 10 bytes are returned to the caller and the | ||
363 | * bottom 10 bytes are xored into the 'state'. | ||
364 | * | ||
365 | * Finally, after we have finished 'num' random bytes for the | ||
366 | * caller, 'count' (which is incremented) and the local and global 'md' | ||
367 | * are fed into the hash function and the results are kept in the | ||
368 | * global 'md'. | ||
369 | */ | ||
370 | |||
371 | CRYPTO_w_lock(CRYPTO_LOCK_RAND); | ||
372 | |||
373 | /* prevent ssleay_rand_bytes() from trying to obtain the lock again */ | ||
374 | CRYPTO_w_lock(CRYPTO_LOCK_RAND2); | ||
375 | locking_thread = CRYPTO_thread_id(); | ||
376 | CRYPTO_w_unlock(CRYPTO_LOCK_RAND2); | ||
377 | crypto_lock_rand = 1; | ||
378 | |||
379 | if (!initialized) | ||
380 | { | ||
381 | RAND_poll(); | ||
382 | initialized = 1; | ||
383 | } | ||
384 | |||
385 | if (!stirred_pool) | ||
386 | do_stir_pool = 1; | ||
387 | |||
388 | ok = (entropy >= ENTROPY_NEEDED); | ||
389 | if (!ok) | ||
390 | { | ||
391 | /* If the PRNG state is not yet unpredictable, then seeing | ||
392 | * the PRNG output may help attackers to determine the new | ||
393 | * state; thus we have to decrease the entropy estimate. | ||
394 | * Once we've had enough initial seeding we don't bother to | ||
395 | * adjust the entropy count, though, because we're not ambitious | ||
396 | * to provide *information-theoretic* randomness. | ||
397 | * | ||
398 | * NOTE: This approach fails if the program forks before | ||
399 | * we have enough entropy. Entropy should be collected | ||
400 | * in a separate input pool and be transferred to the | ||
401 | * output pool only when the entropy limit has been reached. | ||
402 | */ | ||
403 | entropy -= num; | ||
404 | if (entropy < 0) | ||
405 | entropy = 0; | ||
406 | } | ||
407 | |||
408 | if (do_stir_pool) | ||
409 | { | ||
410 | /* In the output function only half of 'md' remains secret, | ||
411 | * so we better make sure that the required entropy gets | ||
412 | * 'evenly distributed' through 'state', our randomness pool. | ||
413 | * The input function (ssleay_rand_add) chains all of 'md', | ||
414 | * which makes it more suitable for this purpose. | ||
415 | */ | ||
416 | |||
417 | int n = STATE_SIZE; /* so that the complete pool gets accessed */ | ||
418 | while (n > 0) | ||
419 | { | ||
420 | #if MD_DIGEST_LENGTH > 20 | ||
421 | # error "Please adjust DUMMY_SEED." | ||
422 | #endif | ||
423 | #define DUMMY_SEED "...................." /* at least MD_DIGEST_LENGTH */ | ||
424 | /* Note that the seed does not matter, it's just that | ||
425 | * ssleay_rand_add expects to have something to hash. */ | ||
426 | ssleay_rand_add(DUMMY_SEED, MD_DIGEST_LENGTH, 0.0); | ||
427 | n -= MD_DIGEST_LENGTH; | ||
428 | } | ||
429 | if (ok) | ||
430 | stirred_pool = 1; | ||
431 | } | ||
432 | |||
433 | st_idx=state_index; | ||
434 | st_num=state_num; | ||
435 | md_c[0] = md_count[0]; | ||
436 | md_c[1] = md_count[1]; | ||
437 | memcpy(local_md, md, sizeof md); | ||
438 | |||
439 | state_index+=num_ceil; | ||
440 | if (state_index > state_num) | ||
441 | state_index %= state_num; | ||
442 | |||
443 | /* state[st_idx], ..., state[(st_idx + num_ceil - 1) % st_num] | ||
444 | * are now ours (but other threads may use them too) */ | ||
445 | |||
446 | md_count[0] += 1; | ||
447 | |||
448 | /* before unlocking, we must clear 'crypto_lock_rand' */ | ||
449 | crypto_lock_rand = 0; | ||
450 | CRYPTO_w_unlock(CRYPTO_LOCK_RAND); | ||
451 | |||
452 | while (num > 0) | ||
453 | { | ||
454 | /* num_ceil -= MD_DIGEST_LENGTH/2 */ | ||
455 | j=(num >= MD_DIGEST_LENGTH/2)?MD_DIGEST_LENGTH/2:num; | ||
456 | num-=j; | ||
457 | MD_Init(&m); | ||
458 | #ifndef GETPID_IS_MEANINGLESS | ||
459 | if (curr_pid) /* just in the first iteration to save time */ | ||
460 | { | ||
461 | MD_Update(&m,(unsigned char*)&curr_pid,sizeof curr_pid); | ||
462 | curr_pid = 0; | ||
463 | } | ||
464 | #endif | ||
465 | MD_Update(&m,local_md,MD_DIGEST_LENGTH); | ||
466 | MD_Update(&m,(unsigned char *)&(md_c[0]),sizeof(md_c)); | ||
467 | #ifndef PURIFY | ||
468 | MD_Update(&m,buf,j); /* purify complains */ | ||
469 | #endif | ||
470 | k=(st_idx+MD_DIGEST_LENGTH/2)-st_num; | ||
471 | if (k > 0) | ||
472 | { | ||
473 | MD_Update(&m,&(state[st_idx]),MD_DIGEST_LENGTH/2-k); | ||
474 | MD_Update(&m,&(state[0]),k); | ||
475 | } | ||
476 | else | ||
477 | MD_Update(&m,&(state[st_idx]),MD_DIGEST_LENGTH/2); | ||
478 | MD_Final(&m,local_md); | ||
479 | |||
480 | for (i=0; i<MD_DIGEST_LENGTH/2; i++) | ||
481 | { | ||
482 | state[st_idx++]^=local_md[i]; /* may compete with other threads */ | ||
483 | if (st_idx >= st_num) | ||
484 | st_idx=0; | ||
485 | if (i < j) | ||
486 | *(buf++)=local_md[i+MD_DIGEST_LENGTH/2]; | ||
487 | } | ||
488 | } | ||
489 | |||
490 | MD_Init(&m); | ||
491 | MD_Update(&m,(unsigned char *)&(md_c[0]),sizeof(md_c)); | ||
492 | MD_Update(&m,local_md,MD_DIGEST_LENGTH); | ||
493 | CRYPTO_w_lock(CRYPTO_LOCK_RAND); | ||
494 | MD_Update(&m,md,MD_DIGEST_LENGTH); | ||
495 | MD_Final(&m,md); | ||
496 | CRYPTO_w_unlock(CRYPTO_LOCK_RAND); | ||
497 | |||
498 | EVP_MD_CTX_cleanup(&m); | ||
499 | if (ok) | ||
500 | return(1); | ||
501 | else | ||
502 | { | ||
503 | RANDerr(RAND_F_SSLEAY_RAND_BYTES,RAND_R_PRNG_NOT_SEEDED); | ||
504 | ERR_add_error_data(1, "You need to read the OpenSSL FAQ, " | ||
505 | "http://www.openssl.org/support/faq.html"); | ||
506 | return(0); | ||
507 | } | ||
508 | } | ||
509 | |||
510 | /* pseudo-random bytes that are guaranteed to be unique but not | ||
511 | unpredictable */ | ||
512 | static int ssleay_rand_pseudo_bytes(unsigned char *buf, int num) | ||
513 | { | ||
514 | int ret; | ||
515 | unsigned long err; | ||
516 | |||
517 | ret = RAND_bytes(buf, num); | ||
518 | if (ret == 0) | ||
519 | { | ||
520 | err = ERR_peek_error(); | ||
521 | if (ERR_GET_LIB(err) == ERR_LIB_RAND && | ||
522 | ERR_GET_REASON(err) == RAND_R_PRNG_NOT_SEEDED) | ||
523 | (void)ERR_get_error(); | ||
524 | } | ||
525 | return (ret); | ||
526 | } | ||
527 | |||
528 | static int ssleay_rand_status(void) | ||
529 | { | ||
530 | int ret; | ||
531 | int do_not_lock; | ||
532 | |||
533 | /* check if we already have the lock | ||
534 | * (could happen if a RAND_poll() implementation calls RAND_status()) */ | ||
535 | if (crypto_lock_rand) | ||
536 | { | ||
537 | CRYPTO_r_lock(CRYPTO_LOCK_RAND2); | ||
538 | do_not_lock = (locking_thread == CRYPTO_thread_id()); | ||
539 | CRYPTO_r_unlock(CRYPTO_LOCK_RAND2); | ||
540 | } | ||
541 | else | ||
542 | do_not_lock = 0; | ||
543 | |||
544 | if (!do_not_lock) | ||
545 | { | ||
546 | CRYPTO_w_lock(CRYPTO_LOCK_RAND); | ||
547 | |||
548 | /* prevent ssleay_rand_bytes() from trying to obtain the lock again */ | ||
549 | CRYPTO_w_lock(CRYPTO_LOCK_RAND2); | ||
550 | locking_thread = CRYPTO_thread_id(); | ||
551 | CRYPTO_w_unlock(CRYPTO_LOCK_RAND2); | ||
552 | crypto_lock_rand = 1; | ||
553 | } | ||
554 | |||
555 | if (!initialized) | ||
556 | { | ||
557 | RAND_poll(); | ||
558 | initialized = 1; | ||
559 | } | ||
560 | |||
561 | ret = entropy >= ENTROPY_NEEDED; | ||
562 | |||
563 | if (!do_not_lock) | ||
564 | { | ||
565 | /* before unlocking, we must clear 'crypto_lock_rand' */ | ||
566 | crypto_lock_rand = 0; | ||
567 | |||
568 | CRYPTO_w_unlock(CRYPTO_LOCK_RAND); | ||
569 | } | ||
570 | |||
571 | return ret; | ||
572 | } | ||