diff options
Diffstat (limited to '')
-rw-r--r-- | src/lib/libcrypto/rc4/asm/rc4-586.pl | 388 |
1 files changed, 0 insertions, 388 deletions
diff --git a/src/lib/libcrypto/rc4/asm/rc4-586.pl b/src/lib/libcrypto/rc4/asm/rc4-586.pl deleted file mode 100644 index 8fffe91e74..0000000000 --- a/src/lib/libcrypto/rc4/asm/rc4-586.pl +++ /dev/null | |||
@@ -1,388 +0,0 @@ | |||
1 | #!/usr/bin/env perl | ||
2 | |||
3 | # ==================================================================== | ||
4 | # [Re]written by Andy Polyakov <appro@fy.chalmers.se> for the OpenSSL | ||
5 | # project. The module is, however, dual licensed under OpenSSL and | ||
6 | # CRYPTOGAMS licenses depending on where you obtain it. For further | ||
7 | # details see http://www.openssl.org/~appro/cryptogams/. | ||
8 | # ==================================================================== | ||
9 | |||
10 | # At some point it became apparent that the original SSLeay RC4 | ||
11 | # assembler implementation performs suboptimally on latest IA-32 | ||
12 | # microarchitectures. After re-tuning performance has changed as | ||
13 | # following: | ||
14 | # | ||
15 | # Pentium -10% | ||
16 | # Pentium III +12% | ||
17 | # AMD +50%(*) | ||
18 | # P4 +250%(**) | ||
19 | # | ||
20 | # (*) This number is actually a trade-off:-) It's possible to | ||
21 | # achieve +72%, but at the cost of -48% off PIII performance. | ||
22 | # In other words code performing further 13% faster on AMD | ||
23 | # would perform almost 2 times slower on Intel PIII... | ||
24 | # For reference! This code delivers ~80% of rc4-amd64.pl | ||
25 | # performance on the same Opteron machine. | ||
26 | # (**) This number requires compressed key schedule set up by | ||
27 | # RC4_set_key [see commentary below for further details]. | ||
28 | # | ||
29 | # <appro@fy.chalmers.se> | ||
30 | |||
31 | # May 2011 | ||
32 | # | ||
33 | # Optimize for Core2 and Westmere [and incidentally Opteron]. Current | ||
34 | # performance in cycles per processed byte (less is better) and | ||
35 | # improvement relative to previous version of this module is: | ||
36 | # | ||
37 | # Pentium 10.2 # original numbers | ||
38 | # Pentium III 7.8(*) | ||
39 | # Intel P4 7.5 | ||
40 | # | ||
41 | # Opteron 6.1/+20% # new MMX numbers | ||
42 | # Core2 5.3/+67%(**) | ||
43 | # Westmere 5.1/+94%(**) | ||
44 | # Sandy Bridge 5.0/+8% | ||
45 | # Atom 12.6/+6% | ||
46 | # | ||
47 | # (*) PIII can actually deliver 6.6 cycles per byte with MMX code, | ||
48 | # but this specific code performs poorly on Core2. And vice | ||
49 | # versa, below MMX/SSE code delivering 5.8/7.1 on Core2 performs | ||
50 | # poorly on PIII, at 8.0/14.5:-( As PIII is not a "hot" CPU | ||
51 | # [anymore], I chose to discard PIII-specific code path and opt | ||
52 | # for original IALU-only code, which is why MMX/SSE code path | ||
53 | # is guarded by SSE2 bit (see below), not MMX/SSE. | ||
54 | # (**) Performance vs. block size on Core2 and Westmere had a maximum | ||
55 | # at ... 64 bytes block size. And it was quite a maximum, 40-60% | ||
56 | # in comparison to largest 8KB block size. Above improvement | ||
57 | # coefficients are for the largest block size. | ||
58 | |||
59 | $0 =~ m/(.*[\/\\])[^\/\\]+$/; $dir=$1; | ||
60 | push(@INC,"${dir}","${dir}../../perlasm"); | ||
61 | require "x86asm.pl"; | ||
62 | |||
63 | &asm_init($ARGV[0],"rc4-586.pl"); | ||
64 | |||
65 | $xx="eax"; | ||
66 | $yy="ebx"; | ||
67 | $tx="ecx"; | ||
68 | $ty="edx"; | ||
69 | $inp="esi"; | ||
70 | $out="ebp"; | ||
71 | $dat="edi"; | ||
72 | |||
73 | sub RC4_loop { | ||
74 | my $i=shift; | ||
75 | my $func = ($i==0)?*mov:*or; | ||
76 | |||
77 | &add (&LB($yy),&LB($tx)); | ||
78 | &mov ($ty,&DWP(0,$dat,$yy,4)); | ||
79 | &mov (&DWP(0,$dat,$yy,4),$tx); | ||
80 | &mov (&DWP(0,$dat,$xx,4),$ty); | ||
81 | &add ($ty,$tx); | ||
82 | &inc (&LB($xx)); | ||
83 | &and ($ty,0xff); | ||
84 | &ror ($out,8) if ($i!=0); | ||
85 | if ($i<3) { | ||
86 | &mov ($tx,&DWP(0,$dat,$xx,4)); | ||
87 | } else { | ||
88 | &mov ($tx,&wparam(3)); # reload [re-biased] out | ||
89 | } | ||
90 | &$func ($out,&DWP(0,$dat,$ty,4)); | ||
91 | } | ||
92 | |||
93 | if ($alt=0) { | ||
94 | # >20% faster on Atom and Sandy Bridge[!], 8% faster on Opteron, | ||
95 | # but ~40% slower on Core2 and Westmere... Attempt to add movz | ||
96 | # brings down Opteron by 25%, Atom and Sandy Bridge by 15%, yet | ||
97 | # on Core2 with movz it's almost 20% slower than below alternative | ||
98 | # code... Yes, it's a total mess... | ||
99 | my @XX=($xx,$out); | ||
100 | $RC4_loop_mmx = sub { # SSE actually... | ||
101 | my $i=shift; | ||
102 | my $j=$i<=0?0:$i>>1; | ||
103 | my $mm=$i<=0?"mm0":"mm".($i&1); | ||
104 | |||
105 | &add (&LB($yy),&LB($tx)); | ||
106 | &lea (@XX[1],&DWP(1,@XX[0])); | ||
107 | &pxor ("mm2","mm0") if ($i==0); | ||
108 | &psllq ("mm1",8) if ($i==0); | ||
109 | &and (@XX[1],0xff); | ||
110 | &pxor ("mm0","mm0") if ($i<=0); | ||
111 | &mov ($ty,&DWP(0,$dat,$yy,4)); | ||
112 | &mov (&DWP(0,$dat,$yy,4),$tx); | ||
113 | &pxor ("mm1","mm2") if ($i==0); | ||
114 | &mov (&DWP(0,$dat,$XX[0],4),$ty); | ||
115 | &add (&LB($ty),&LB($tx)); | ||
116 | &movd (@XX[0],"mm7") if ($i==0); | ||
117 | &mov ($tx,&DWP(0,$dat,@XX[1],4)); | ||
118 | &pxor ("mm1","mm1") if ($i==1); | ||
119 | &movq ("mm2",&QWP(0,$inp)) if ($i==1); | ||
120 | &movq (&QWP(-8,(@XX[0],$inp)),"mm1") if ($i==0); | ||
121 | &pinsrw ($mm,&DWP(0,$dat,$ty,4),$j); | ||
122 | |||
123 | push (@XX,shift(@XX)) if ($i>=0); | ||
124 | } | ||
125 | } else { | ||
126 | # Using pinsrw here improves performance on Intel CPUs by 2-3%, but | ||
127 | # brings down AMD by 7%... | ||
128 | $RC4_loop_mmx = sub { | ||
129 | my $i=shift; | ||
130 | |||
131 | &add (&LB($yy),&LB($tx)); | ||
132 | &psllq ("mm1",8*(($i-1)&7)) if (abs($i)!=1); | ||
133 | &mov ($ty,&DWP(0,$dat,$yy,4)); | ||
134 | &mov (&DWP(0,$dat,$yy,4),$tx); | ||
135 | &mov (&DWP(0,$dat,$xx,4),$ty); | ||
136 | &inc ($xx); | ||
137 | &add ($ty,$tx); | ||
138 | &movz ($xx,&LB($xx)); # (*) | ||
139 | &movz ($ty,&LB($ty)); # (*) | ||
140 | &pxor ("mm2",$i==1?"mm0":"mm1") if ($i>=0); | ||
141 | &movq ("mm0",&QWP(0,$inp)) if ($i<=0); | ||
142 | &movq (&QWP(-8,($out,$inp)),"mm2") if ($i==0); | ||
143 | &mov ($tx,&DWP(0,$dat,$xx,4)); | ||
144 | &movd ($i>0?"mm1":"mm2",&DWP(0,$dat,$ty,4)); | ||
145 | |||
146 | # (*) This is the key to Core2 and Westmere performance. | ||
147 | # Without movz out-of-order execution logic confuses | ||
148 | # itself and fails to reorder loads and stores. Problem | ||
149 | # appears to be fixed in Sandy Bridge... | ||
150 | } | ||
151 | } | ||
152 | |||
153 | &external_label("OPENSSL_ia32cap_P"); | ||
154 | |||
155 | # void rc4_internal(RC4_KEY *key, size_t len, const unsigned char *inp, | ||
156 | # unsigned char *out); | ||
157 | &function_begin("rc4_internal"); | ||
158 | &mov ($dat,&wparam(0)); # load key schedule pointer | ||
159 | &mov ($ty, &wparam(1)); # load len | ||
160 | &mov ($inp,&wparam(2)); # load inp | ||
161 | &mov ($out,&wparam(3)); # load out | ||
162 | |||
163 | &xor ($xx,$xx); # avoid partial register stalls | ||
164 | &xor ($yy,$yy); | ||
165 | |||
166 | &cmp ($ty,0); # safety net | ||
167 | &je (&label("abort")); | ||
168 | |||
169 | &mov (&LB($xx),&BP(0,$dat)); # load key->x | ||
170 | &mov (&LB($yy),&BP(4,$dat)); # load key->y | ||
171 | &add ($dat,8); | ||
172 | |||
173 | &lea ($tx,&DWP(0,$inp,$ty)); | ||
174 | &sub ($out,$inp); # re-bias out | ||
175 | &mov (&wparam(1),$tx); # save input+len | ||
176 | |||
177 | &inc (&LB($xx)); | ||
178 | |||
179 | # detect compressed key schedule... | ||
180 | &cmp (&DWP(256,$dat),-1); | ||
181 | &je (&label("RC4_CHAR")); | ||
182 | |||
183 | &mov ($tx,&DWP(0,$dat,$xx,4)); | ||
184 | |||
185 | &and ($ty,-4); # how many 4-byte chunks? | ||
186 | &jz (&label("loop1")); | ||
187 | |||
188 | &test ($ty,-8); | ||
189 | &mov (&wparam(3),$out); # $out as accumulator in these loops | ||
190 | &jz (&label("go4loop4")); | ||
191 | |||
192 | &picsetup($out); | ||
193 | &picsymbol($out, "OPENSSL_ia32cap_P", $out); | ||
194 | # check SSE2 bit [could have been MMX] | ||
195 | &bt (&DWP(0,$out),"\$IA32CAP_BIT0_SSE2"); | ||
196 | &jnc (&label("go4loop4")); | ||
197 | |||
198 | &mov ($out,&wparam(3)) if (!$alt); | ||
199 | &movd ("mm7",&wparam(3)) if ($alt); | ||
200 | &and ($ty,-8); | ||
201 | &lea ($ty,&DWP(-8,$inp,$ty)); | ||
202 | &mov (&DWP(-4,$dat),$ty); # save input+(len/8)*8-8 | ||
203 | |||
204 | &$RC4_loop_mmx(-1); | ||
205 | &jmp(&label("loop_mmx_enter")); | ||
206 | |||
207 | &set_label("loop_mmx",16); | ||
208 | &$RC4_loop_mmx(0); | ||
209 | &set_label("loop_mmx_enter"); | ||
210 | for ($i=1;$i<8;$i++) { &$RC4_loop_mmx($i); } | ||
211 | &mov ($ty,$yy); | ||
212 | &xor ($yy,$yy); # this is second key to Core2 | ||
213 | &mov (&LB($yy),&LB($ty)); # and Westmere performance... | ||
214 | &cmp ($inp,&DWP(-4,$dat)); | ||
215 | &lea ($inp,&DWP(8,$inp)); | ||
216 | &jb (&label("loop_mmx")); | ||
217 | |||
218 | if ($alt) { | ||
219 | &movd ($out,"mm7"); | ||
220 | &pxor ("mm2","mm0"); | ||
221 | &psllq ("mm1",8); | ||
222 | &pxor ("mm1","mm2"); | ||
223 | &movq (&QWP(-8,$out,$inp),"mm1"); | ||
224 | } else { | ||
225 | &psllq ("mm1",56); | ||
226 | &pxor ("mm2","mm1"); | ||
227 | &movq (&QWP(-8,$out,$inp),"mm2"); | ||
228 | } | ||
229 | &emms (); | ||
230 | |||
231 | &cmp ($inp,&wparam(1)); # compare to input+len | ||
232 | &je (&label("done")); | ||
233 | &jmp (&label("loop1")); | ||
234 | |||
235 | &set_label("go4loop4",16); | ||
236 | &lea ($ty,&DWP(-4,$inp,$ty)); | ||
237 | &mov (&wparam(2),$ty); # save input+(len/4)*4-4 | ||
238 | |||
239 | &set_label("loop4"); | ||
240 | for ($i=0;$i<4;$i++) { RC4_loop($i); } | ||
241 | &ror ($out,8); | ||
242 | &xor ($out,&DWP(0,$inp)); | ||
243 | &cmp ($inp,&wparam(2)); # compare to input+(len/4)*4-4 | ||
244 | &mov (&DWP(0,$tx,$inp),$out);# $tx holds re-biased out here | ||
245 | &lea ($inp,&DWP(4,$inp)); | ||
246 | &mov ($tx,&DWP(0,$dat,$xx,4)); | ||
247 | &jb (&label("loop4")); | ||
248 | |||
249 | &cmp ($inp,&wparam(1)); # compare to input+len | ||
250 | &je (&label("done")); | ||
251 | &mov ($out,&wparam(3)); # restore $out | ||
252 | |||
253 | &set_label("loop1",16); | ||
254 | &add (&LB($yy),&LB($tx)); | ||
255 | &mov ($ty,&DWP(0,$dat,$yy,4)); | ||
256 | &mov (&DWP(0,$dat,$yy,4),$tx); | ||
257 | &mov (&DWP(0,$dat,$xx,4),$ty); | ||
258 | &add ($ty,$tx); | ||
259 | &inc (&LB($xx)); | ||
260 | &and ($ty,0xff); | ||
261 | &mov ($ty,&DWP(0,$dat,$ty,4)); | ||
262 | &xor (&LB($ty),&BP(0,$inp)); | ||
263 | &lea ($inp,&DWP(1,$inp)); | ||
264 | &mov ($tx,&DWP(0,$dat,$xx,4)); | ||
265 | &cmp ($inp,&wparam(1)); # compare to input+len | ||
266 | &mov (&BP(-1,$out,$inp),&LB($ty)); | ||
267 | &jb (&label("loop1")); | ||
268 | |||
269 | &jmp (&label("done")); | ||
270 | |||
271 | # this is essentially Intel P4 specific codepath... | ||
272 | &set_label("RC4_CHAR",16); | ||
273 | &movz ($tx,&BP(0,$dat,$xx)); | ||
274 | # strangely enough unrolled loop performs over 20% slower... | ||
275 | &set_label("cloop1"); | ||
276 | &add (&LB($yy),&LB($tx)); | ||
277 | &movz ($ty,&BP(0,$dat,$yy)); | ||
278 | &mov (&BP(0,$dat,$yy),&LB($tx)); | ||
279 | &mov (&BP(0,$dat,$xx),&LB($ty)); | ||
280 | &add (&LB($ty),&LB($tx)); | ||
281 | &movz ($ty,&BP(0,$dat,$ty)); | ||
282 | &add (&LB($xx),1); | ||
283 | &xor (&LB($ty),&BP(0,$inp)); | ||
284 | &lea ($inp,&DWP(1,$inp)); | ||
285 | &movz ($tx,&BP(0,$dat,$xx)); | ||
286 | &cmp ($inp,&wparam(1)); | ||
287 | &mov (&BP(-1,$out,$inp),&LB($ty)); | ||
288 | &jb (&label("cloop1")); | ||
289 | |||
290 | &set_label("done"); | ||
291 | &dec (&LB($xx)); | ||
292 | &mov (&DWP(-4,$dat),$yy); # save key->y | ||
293 | &mov (&BP(-8,$dat),&LB($xx)); # save key->x | ||
294 | &set_label("abort"); | ||
295 | &function_end("rc4_internal"); | ||
296 | |||
297 | ######################################################################## | ||
298 | |||
299 | $inp="esi"; | ||
300 | $out="edi"; | ||
301 | $idi="ebp"; | ||
302 | $ido="ecx"; | ||
303 | $idx="edx"; | ||
304 | |||
305 | # void rc4_set_key_internal(RC4_KEY *key,int len,const unsigned char *data); | ||
306 | &function_begin("rc4_set_key_internal"); | ||
307 | &mov ($out,&wparam(0)); # load key | ||
308 | &mov ($idi,&wparam(1)); # load len | ||
309 | &mov ($inp,&wparam(2)); # load data | ||
310 | |||
311 | &picsetup($idx); | ||
312 | &picsymbol($idx, "OPENSSL_ia32cap_P", $idx); | ||
313 | |||
314 | &lea ($out,&DWP(2*4,$out)); # &key->data | ||
315 | &lea ($inp,&DWP(0,$inp,$idi)); # $inp to point at the end | ||
316 | &neg ($idi); | ||
317 | &xor ("eax","eax"); | ||
318 | &mov (&DWP(-4,$out),$idi); # borrow key->y | ||
319 | |||
320 | &bt (&DWP(0,$idx),"\$IA32CAP_BIT0_INTELP4"); | ||
321 | &jc (&label("c1stloop")); | ||
322 | |||
323 | &set_label("w1stloop",16); | ||
324 | &mov (&DWP(0,$out,"eax",4),"eax"); # key->data[i]=i; | ||
325 | &add (&LB("eax"),1); # i++; | ||
326 | &jnc (&label("w1stloop")); | ||
327 | |||
328 | &xor ($ido,$ido); | ||
329 | &xor ($idx,$idx); | ||
330 | |||
331 | &set_label("w2ndloop",16); | ||
332 | &mov ("eax",&DWP(0,$out,$ido,4)); | ||
333 | &add (&LB($idx),&BP(0,$inp,$idi)); | ||
334 | &add (&LB($idx),&LB("eax")); | ||
335 | &add ($idi,1); | ||
336 | &mov ("ebx",&DWP(0,$out,$idx,4)); | ||
337 | &jnz (&label("wnowrap")); | ||
338 | &mov ($idi,&DWP(-4,$out)); | ||
339 | &set_label("wnowrap"); | ||
340 | &mov (&DWP(0,$out,$idx,4),"eax"); | ||
341 | &mov (&DWP(0,$out,$ido,4),"ebx"); | ||
342 | &add (&LB($ido),1); | ||
343 | &jnc (&label("w2ndloop")); | ||
344 | &jmp (&label("exit")); | ||
345 | |||
346 | # Unlike all other x86 [and x86_64] implementations, Intel P4 core | ||
347 | # [including EM64T] was found to perform poorly with above "32-bit" key | ||
348 | # schedule, a.k.a. RC4_INT. Performance improvement for IA-32 hand-coded | ||
349 | # assembler turned out to be 3.5x if re-coded for compressed 8-bit one, | ||
350 | # a.k.a. RC4_CHAR! It's however inappropriate to just switch to 8-bit | ||
351 | # schedule for x86[_64], because non-P4 implementations suffer from | ||
352 | # significant performance losses then, e.g. PIII exhibits >2x | ||
353 | # deterioration, and so does Opteron. In order to assure optimal | ||
354 | # all-round performance, we detect P4 at run-time and set up compressed | ||
355 | # key schedule, which is recognized by RC4 procedure. | ||
356 | |||
357 | &set_label("c1stloop",16); | ||
358 | &mov (&BP(0,$out,"eax"),&LB("eax")); # key->data[i]=i; | ||
359 | &add (&LB("eax"),1); # i++; | ||
360 | &jnc (&label("c1stloop")); | ||
361 | |||
362 | &xor ($ido,$ido); | ||
363 | &xor ($idx,$idx); | ||
364 | &xor ("ebx","ebx"); | ||
365 | |||
366 | &set_label("c2ndloop",16); | ||
367 | &mov (&LB("eax"),&BP(0,$out,$ido)); | ||
368 | &add (&LB($idx),&BP(0,$inp,$idi)); | ||
369 | &add (&LB($idx),&LB("eax")); | ||
370 | &add ($idi,1); | ||
371 | &mov (&LB("ebx"),&BP(0,$out,$idx)); | ||
372 | &jnz (&label("cnowrap")); | ||
373 | &mov ($idi,&DWP(-4,$out)); | ||
374 | &set_label("cnowrap"); | ||
375 | &mov (&BP(0,$out,$idx),&LB("eax")); | ||
376 | &mov (&BP(0,$out,$ido),&LB("ebx")); | ||
377 | &add (&LB($ido),1); | ||
378 | &jnc (&label("c2ndloop")); | ||
379 | |||
380 | &mov (&DWP(256,$out),-1); # mark schedule as compressed | ||
381 | |||
382 | &set_label("exit"); | ||
383 | &xor ("eax","eax"); | ||
384 | &mov (&DWP(-8,$out),"eax"); # key->x=0; | ||
385 | &mov (&DWP(-4,$out),"eax"); # key->y=0; | ||
386 | &function_end("rc4_set_key_internal"); | ||
387 | |||
388 | &asm_finish(); | ||