diff options
Diffstat (limited to 'src/lib/libcrypto/rc4/asm/rc4-586.pl')
| -rw-r--r-- | src/lib/libcrypto/rc4/asm/rc4-586.pl | 388 |
1 files changed, 0 insertions, 388 deletions
diff --git a/src/lib/libcrypto/rc4/asm/rc4-586.pl b/src/lib/libcrypto/rc4/asm/rc4-586.pl deleted file mode 100644 index 8fffe91e74..0000000000 --- a/src/lib/libcrypto/rc4/asm/rc4-586.pl +++ /dev/null | |||
| @@ -1,388 +0,0 @@ | |||
| 1 | #!/usr/bin/env perl | ||
| 2 | |||
| 3 | # ==================================================================== | ||
| 4 | # [Re]written by Andy Polyakov <appro@fy.chalmers.se> for the OpenSSL | ||
| 5 | # project. The module is, however, dual licensed under OpenSSL and | ||
| 6 | # CRYPTOGAMS licenses depending on where you obtain it. For further | ||
| 7 | # details see http://www.openssl.org/~appro/cryptogams/. | ||
| 8 | # ==================================================================== | ||
| 9 | |||
| 10 | # At some point it became apparent that the original SSLeay RC4 | ||
| 11 | # assembler implementation performs suboptimally on latest IA-32 | ||
| 12 | # microarchitectures. After re-tuning performance has changed as | ||
| 13 | # following: | ||
| 14 | # | ||
| 15 | # Pentium -10% | ||
| 16 | # Pentium III +12% | ||
| 17 | # AMD +50%(*) | ||
| 18 | # P4 +250%(**) | ||
| 19 | # | ||
| 20 | # (*) This number is actually a trade-off:-) It's possible to | ||
| 21 | # achieve +72%, but at the cost of -48% off PIII performance. | ||
| 22 | # In other words code performing further 13% faster on AMD | ||
| 23 | # would perform almost 2 times slower on Intel PIII... | ||
| 24 | # For reference! This code delivers ~80% of rc4-amd64.pl | ||
| 25 | # performance on the same Opteron machine. | ||
| 26 | # (**) This number requires compressed key schedule set up by | ||
| 27 | # RC4_set_key [see commentary below for further details]. | ||
| 28 | # | ||
| 29 | # <appro@fy.chalmers.se> | ||
| 30 | |||
| 31 | # May 2011 | ||
| 32 | # | ||
| 33 | # Optimize for Core2 and Westmere [and incidentally Opteron]. Current | ||
| 34 | # performance in cycles per processed byte (less is better) and | ||
| 35 | # improvement relative to previous version of this module is: | ||
| 36 | # | ||
| 37 | # Pentium 10.2 # original numbers | ||
| 38 | # Pentium III 7.8(*) | ||
| 39 | # Intel P4 7.5 | ||
| 40 | # | ||
| 41 | # Opteron 6.1/+20% # new MMX numbers | ||
| 42 | # Core2 5.3/+67%(**) | ||
| 43 | # Westmere 5.1/+94%(**) | ||
| 44 | # Sandy Bridge 5.0/+8% | ||
| 45 | # Atom 12.6/+6% | ||
| 46 | # | ||
| 47 | # (*) PIII can actually deliver 6.6 cycles per byte with MMX code, | ||
| 48 | # but this specific code performs poorly on Core2. And vice | ||
| 49 | # versa, below MMX/SSE code delivering 5.8/7.1 on Core2 performs | ||
| 50 | # poorly on PIII, at 8.0/14.5:-( As PIII is not a "hot" CPU | ||
| 51 | # [anymore], I chose to discard PIII-specific code path and opt | ||
| 52 | # for original IALU-only code, which is why MMX/SSE code path | ||
| 53 | # is guarded by SSE2 bit (see below), not MMX/SSE. | ||
| 54 | # (**) Performance vs. block size on Core2 and Westmere had a maximum | ||
| 55 | # at ... 64 bytes block size. And it was quite a maximum, 40-60% | ||
| 56 | # in comparison to largest 8KB block size. Above improvement | ||
| 57 | # coefficients are for the largest block size. | ||
| 58 | |||
| 59 | $0 =~ m/(.*[\/\\])[^\/\\]+$/; $dir=$1; | ||
| 60 | push(@INC,"${dir}","${dir}../../perlasm"); | ||
| 61 | require "x86asm.pl"; | ||
| 62 | |||
| 63 | &asm_init($ARGV[0],"rc4-586.pl"); | ||
| 64 | |||
| 65 | $xx="eax"; | ||
| 66 | $yy="ebx"; | ||
| 67 | $tx="ecx"; | ||
| 68 | $ty="edx"; | ||
| 69 | $inp="esi"; | ||
| 70 | $out="ebp"; | ||
| 71 | $dat="edi"; | ||
| 72 | |||
| 73 | sub RC4_loop { | ||
| 74 | my $i=shift; | ||
| 75 | my $func = ($i==0)?*mov:*or; | ||
| 76 | |||
| 77 | &add (&LB($yy),&LB($tx)); | ||
| 78 | &mov ($ty,&DWP(0,$dat,$yy,4)); | ||
| 79 | &mov (&DWP(0,$dat,$yy,4),$tx); | ||
| 80 | &mov (&DWP(0,$dat,$xx,4),$ty); | ||
| 81 | &add ($ty,$tx); | ||
| 82 | &inc (&LB($xx)); | ||
| 83 | &and ($ty,0xff); | ||
| 84 | &ror ($out,8) if ($i!=0); | ||
| 85 | if ($i<3) { | ||
| 86 | &mov ($tx,&DWP(0,$dat,$xx,4)); | ||
| 87 | } else { | ||
| 88 | &mov ($tx,&wparam(3)); # reload [re-biased] out | ||
| 89 | } | ||
| 90 | &$func ($out,&DWP(0,$dat,$ty,4)); | ||
| 91 | } | ||
| 92 | |||
| 93 | if ($alt=0) { | ||
| 94 | # >20% faster on Atom and Sandy Bridge[!], 8% faster on Opteron, | ||
| 95 | # but ~40% slower on Core2 and Westmere... Attempt to add movz | ||
| 96 | # brings down Opteron by 25%, Atom and Sandy Bridge by 15%, yet | ||
| 97 | # on Core2 with movz it's almost 20% slower than below alternative | ||
| 98 | # code... Yes, it's a total mess... | ||
| 99 | my @XX=($xx,$out); | ||
| 100 | $RC4_loop_mmx = sub { # SSE actually... | ||
| 101 | my $i=shift; | ||
| 102 | my $j=$i<=0?0:$i>>1; | ||
| 103 | my $mm=$i<=0?"mm0":"mm".($i&1); | ||
| 104 | |||
| 105 | &add (&LB($yy),&LB($tx)); | ||
| 106 | &lea (@XX[1],&DWP(1,@XX[0])); | ||
| 107 | &pxor ("mm2","mm0") if ($i==0); | ||
| 108 | &psllq ("mm1",8) if ($i==0); | ||
| 109 | &and (@XX[1],0xff); | ||
| 110 | &pxor ("mm0","mm0") if ($i<=0); | ||
| 111 | &mov ($ty,&DWP(0,$dat,$yy,4)); | ||
| 112 | &mov (&DWP(0,$dat,$yy,4),$tx); | ||
| 113 | &pxor ("mm1","mm2") if ($i==0); | ||
| 114 | &mov (&DWP(0,$dat,$XX[0],4),$ty); | ||
| 115 | &add (&LB($ty),&LB($tx)); | ||
| 116 | &movd (@XX[0],"mm7") if ($i==0); | ||
| 117 | &mov ($tx,&DWP(0,$dat,@XX[1],4)); | ||
| 118 | &pxor ("mm1","mm1") if ($i==1); | ||
| 119 | &movq ("mm2",&QWP(0,$inp)) if ($i==1); | ||
| 120 | &movq (&QWP(-8,(@XX[0],$inp)),"mm1") if ($i==0); | ||
| 121 | &pinsrw ($mm,&DWP(0,$dat,$ty,4),$j); | ||
| 122 | |||
| 123 | push (@XX,shift(@XX)) if ($i>=0); | ||
| 124 | } | ||
| 125 | } else { | ||
| 126 | # Using pinsrw here improves performance on Intel CPUs by 2-3%, but | ||
| 127 | # brings down AMD by 7%... | ||
| 128 | $RC4_loop_mmx = sub { | ||
| 129 | my $i=shift; | ||
| 130 | |||
| 131 | &add (&LB($yy),&LB($tx)); | ||
| 132 | &psllq ("mm1",8*(($i-1)&7)) if (abs($i)!=1); | ||
| 133 | &mov ($ty,&DWP(0,$dat,$yy,4)); | ||
| 134 | &mov (&DWP(0,$dat,$yy,4),$tx); | ||
| 135 | &mov (&DWP(0,$dat,$xx,4),$ty); | ||
| 136 | &inc ($xx); | ||
| 137 | &add ($ty,$tx); | ||
| 138 | &movz ($xx,&LB($xx)); # (*) | ||
| 139 | &movz ($ty,&LB($ty)); # (*) | ||
| 140 | &pxor ("mm2",$i==1?"mm0":"mm1") if ($i>=0); | ||
| 141 | &movq ("mm0",&QWP(0,$inp)) if ($i<=0); | ||
| 142 | &movq (&QWP(-8,($out,$inp)),"mm2") if ($i==0); | ||
| 143 | &mov ($tx,&DWP(0,$dat,$xx,4)); | ||
| 144 | &movd ($i>0?"mm1":"mm2",&DWP(0,$dat,$ty,4)); | ||
| 145 | |||
| 146 | # (*) This is the key to Core2 and Westmere performance. | ||
| 147 | # Without movz out-of-order execution logic confuses | ||
| 148 | # itself and fails to reorder loads and stores. Problem | ||
| 149 | # appears to be fixed in Sandy Bridge... | ||
| 150 | } | ||
| 151 | } | ||
| 152 | |||
| 153 | &external_label("OPENSSL_ia32cap_P"); | ||
| 154 | |||
| 155 | # void rc4_internal(RC4_KEY *key, size_t len, const unsigned char *inp, | ||
| 156 | # unsigned char *out); | ||
| 157 | &function_begin("rc4_internal"); | ||
| 158 | &mov ($dat,&wparam(0)); # load key schedule pointer | ||
| 159 | &mov ($ty, &wparam(1)); # load len | ||
| 160 | &mov ($inp,&wparam(2)); # load inp | ||
| 161 | &mov ($out,&wparam(3)); # load out | ||
| 162 | |||
| 163 | &xor ($xx,$xx); # avoid partial register stalls | ||
| 164 | &xor ($yy,$yy); | ||
| 165 | |||
| 166 | &cmp ($ty,0); # safety net | ||
| 167 | &je (&label("abort")); | ||
| 168 | |||
| 169 | &mov (&LB($xx),&BP(0,$dat)); # load key->x | ||
| 170 | &mov (&LB($yy),&BP(4,$dat)); # load key->y | ||
| 171 | &add ($dat,8); | ||
| 172 | |||
| 173 | &lea ($tx,&DWP(0,$inp,$ty)); | ||
| 174 | &sub ($out,$inp); # re-bias out | ||
| 175 | &mov (&wparam(1),$tx); # save input+len | ||
| 176 | |||
| 177 | &inc (&LB($xx)); | ||
| 178 | |||
| 179 | # detect compressed key schedule... | ||
| 180 | &cmp (&DWP(256,$dat),-1); | ||
| 181 | &je (&label("RC4_CHAR")); | ||
| 182 | |||
| 183 | &mov ($tx,&DWP(0,$dat,$xx,4)); | ||
| 184 | |||
| 185 | &and ($ty,-4); # how many 4-byte chunks? | ||
| 186 | &jz (&label("loop1")); | ||
| 187 | |||
| 188 | &test ($ty,-8); | ||
| 189 | &mov (&wparam(3),$out); # $out as accumulator in these loops | ||
| 190 | &jz (&label("go4loop4")); | ||
| 191 | |||
| 192 | &picsetup($out); | ||
| 193 | &picsymbol($out, "OPENSSL_ia32cap_P", $out); | ||
| 194 | # check SSE2 bit [could have been MMX] | ||
| 195 | &bt (&DWP(0,$out),"\$IA32CAP_BIT0_SSE2"); | ||
| 196 | &jnc (&label("go4loop4")); | ||
| 197 | |||
| 198 | &mov ($out,&wparam(3)) if (!$alt); | ||
| 199 | &movd ("mm7",&wparam(3)) if ($alt); | ||
| 200 | &and ($ty,-8); | ||
| 201 | &lea ($ty,&DWP(-8,$inp,$ty)); | ||
| 202 | &mov (&DWP(-4,$dat),$ty); # save input+(len/8)*8-8 | ||
| 203 | |||
| 204 | &$RC4_loop_mmx(-1); | ||
| 205 | &jmp(&label("loop_mmx_enter")); | ||
| 206 | |||
| 207 | &set_label("loop_mmx",16); | ||
| 208 | &$RC4_loop_mmx(0); | ||
| 209 | &set_label("loop_mmx_enter"); | ||
| 210 | for ($i=1;$i<8;$i++) { &$RC4_loop_mmx($i); } | ||
| 211 | &mov ($ty,$yy); | ||
| 212 | &xor ($yy,$yy); # this is second key to Core2 | ||
| 213 | &mov (&LB($yy),&LB($ty)); # and Westmere performance... | ||
| 214 | &cmp ($inp,&DWP(-4,$dat)); | ||
| 215 | &lea ($inp,&DWP(8,$inp)); | ||
| 216 | &jb (&label("loop_mmx")); | ||
| 217 | |||
| 218 | if ($alt) { | ||
| 219 | &movd ($out,"mm7"); | ||
| 220 | &pxor ("mm2","mm0"); | ||
| 221 | &psllq ("mm1",8); | ||
| 222 | &pxor ("mm1","mm2"); | ||
| 223 | &movq (&QWP(-8,$out,$inp),"mm1"); | ||
| 224 | } else { | ||
| 225 | &psllq ("mm1",56); | ||
| 226 | &pxor ("mm2","mm1"); | ||
| 227 | &movq (&QWP(-8,$out,$inp),"mm2"); | ||
| 228 | } | ||
| 229 | &emms (); | ||
| 230 | |||
| 231 | &cmp ($inp,&wparam(1)); # compare to input+len | ||
| 232 | &je (&label("done")); | ||
| 233 | &jmp (&label("loop1")); | ||
| 234 | |||
| 235 | &set_label("go4loop4",16); | ||
| 236 | &lea ($ty,&DWP(-4,$inp,$ty)); | ||
| 237 | &mov (&wparam(2),$ty); # save input+(len/4)*4-4 | ||
| 238 | |||
| 239 | &set_label("loop4"); | ||
| 240 | for ($i=0;$i<4;$i++) { RC4_loop($i); } | ||
| 241 | &ror ($out,8); | ||
| 242 | &xor ($out,&DWP(0,$inp)); | ||
| 243 | &cmp ($inp,&wparam(2)); # compare to input+(len/4)*4-4 | ||
| 244 | &mov (&DWP(0,$tx,$inp),$out);# $tx holds re-biased out here | ||
| 245 | &lea ($inp,&DWP(4,$inp)); | ||
| 246 | &mov ($tx,&DWP(0,$dat,$xx,4)); | ||
| 247 | &jb (&label("loop4")); | ||
| 248 | |||
| 249 | &cmp ($inp,&wparam(1)); # compare to input+len | ||
| 250 | &je (&label("done")); | ||
| 251 | &mov ($out,&wparam(3)); # restore $out | ||
| 252 | |||
| 253 | &set_label("loop1",16); | ||
| 254 | &add (&LB($yy),&LB($tx)); | ||
| 255 | &mov ($ty,&DWP(0,$dat,$yy,4)); | ||
| 256 | &mov (&DWP(0,$dat,$yy,4),$tx); | ||
| 257 | &mov (&DWP(0,$dat,$xx,4),$ty); | ||
| 258 | &add ($ty,$tx); | ||
| 259 | &inc (&LB($xx)); | ||
| 260 | &and ($ty,0xff); | ||
| 261 | &mov ($ty,&DWP(0,$dat,$ty,4)); | ||
| 262 | &xor (&LB($ty),&BP(0,$inp)); | ||
| 263 | &lea ($inp,&DWP(1,$inp)); | ||
| 264 | &mov ($tx,&DWP(0,$dat,$xx,4)); | ||
| 265 | &cmp ($inp,&wparam(1)); # compare to input+len | ||
| 266 | &mov (&BP(-1,$out,$inp),&LB($ty)); | ||
| 267 | &jb (&label("loop1")); | ||
| 268 | |||
| 269 | &jmp (&label("done")); | ||
| 270 | |||
| 271 | # this is essentially Intel P4 specific codepath... | ||
| 272 | &set_label("RC4_CHAR",16); | ||
| 273 | &movz ($tx,&BP(0,$dat,$xx)); | ||
| 274 | # strangely enough unrolled loop performs over 20% slower... | ||
| 275 | &set_label("cloop1"); | ||
| 276 | &add (&LB($yy),&LB($tx)); | ||
| 277 | &movz ($ty,&BP(0,$dat,$yy)); | ||
| 278 | &mov (&BP(0,$dat,$yy),&LB($tx)); | ||
| 279 | &mov (&BP(0,$dat,$xx),&LB($ty)); | ||
| 280 | &add (&LB($ty),&LB($tx)); | ||
| 281 | &movz ($ty,&BP(0,$dat,$ty)); | ||
| 282 | &add (&LB($xx),1); | ||
| 283 | &xor (&LB($ty),&BP(0,$inp)); | ||
| 284 | &lea ($inp,&DWP(1,$inp)); | ||
| 285 | &movz ($tx,&BP(0,$dat,$xx)); | ||
| 286 | &cmp ($inp,&wparam(1)); | ||
| 287 | &mov (&BP(-1,$out,$inp),&LB($ty)); | ||
| 288 | &jb (&label("cloop1")); | ||
| 289 | |||
| 290 | &set_label("done"); | ||
| 291 | &dec (&LB($xx)); | ||
| 292 | &mov (&DWP(-4,$dat),$yy); # save key->y | ||
| 293 | &mov (&BP(-8,$dat),&LB($xx)); # save key->x | ||
| 294 | &set_label("abort"); | ||
| 295 | &function_end("rc4_internal"); | ||
| 296 | |||
| 297 | ######################################################################## | ||
| 298 | |||
| 299 | $inp="esi"; | ||
| 300 | $out="edi"; | ||
| 301 | $idi="ebp"; | ||
| 302 | $ido="ecx"; | ||
| 303 | $idx="edx"; | ||
| 304 | |||
| 305 | # void rc4_set_key_internal(RC4_KEY *key,int len,const unsigned char *data); | ||
| 306 | &function_begin("rc4_set_key_internal"); | ||
| 307 | &mov ($out,&wparam(0)); # load key | ||
| 308 | &mov ($idi,&wparam(1)); # load len | ||
| 309 | &mov ($inp,&wparam(2)); # load data | ||
| 310 | |||
| 311 | &picsetup($idx); | ||
| 312 | &picsymbol($idx, "OPENSSL_ia32cap_P", $idx); | ||
| 313 | |||
| 314 | &lea ($out,&DWP(2*4,$out)); # &key->data | ||
| 315 | &lea ($inp,&DWP(0,$inp,$idi)); # $inp to point at the end | ||
| 316 | &neg ($idi); | ||
| 317 | &xor ("eax","eax"); | ||
| 318 | &mov (&DWP(-4,$out),$idi); # borrow key->y | ||
| 319 | |||
| 320 | &bt (&DWP(0,$idx),"\$IA32CAP_BIT0_INTELP4"); | ||
| 321 | &jc (&label("c1stloop")); | ||
| 322 | |||
| 323 | &set_label("w1stloop",16); | ||
| 324 | &mov (&DWP(0,$out,"eax",4),"eax"); # key->data[i]=i; | ||
| 325 | &add (&LB("eax"),1); # i++; | ||
| 326 | &jnc (&label("w1stloop")); | ||
| 327 | |||
| 328 | &xor ($ido,$ido); | ||
| 329 | &xor ($idx,$idx); | ||
| 330 | |||
| 331 | &set_label("w2ndloop",16); | ||
| 332 | &mov ("eax",&DWP(0,$out,$ido,4)); | ||
| 333 | &add (&LB($idx),&BP(0,$inp,$idi)); | ||
| 334 | &add (&LB($idx),&LB("eax")); | ||
| 335 | &add ($idi,1); | ||
| 336 | &mov ("ebx",&DWP(0,$out,$idx,4)); | ||
| 337 | &jnz (&label("wnowrap")); | ||
| 338 | &mov ($idi,&DWP(-4,$out)); | ||
| 339 | &set_label("wnowrap"); | ||
| 340 | &mov (&DWP(0,$out,$idx,4),"eax"); | ||
| 341 | &mov (&DWP(0,$out,$ido,4),"ebx"); | ||
| 342 | &add (&LB($ido),1); | ||
| 343 | &jnc (&label("w2ndloop")); | ||
| 344 | &jmp (&label("exit")); | ||
| 345 | |||
| 346 | # Unlike all other x86 [and x86_64] implementations, Intel P4 core | ||
| 347 | # [including EM64T] was found to perform poorly with above "32-bit" key | ||
| 348 | # schedule, a.k.a. RC4_INT. Performance improvement for IA-32 hand-coded | ||
| 349 | # assembler turned out to be 3.5x if re-coded for compressed 8-bit one, | ||
| 350 | # a.k.a. RC4_CHAR! It's however inappropriate to just switch to 8-bit | ||
| 351 | # schedule for x86[_64], because non-P4 implementations suffer from | ||
| 352 | # significant performance losses then, e.g. PIII exhibits >2x | ||
| 353 | # deterioration, and so does Opteron. In order to assure optimal | ||
| 354 | # all-round performance, we detect P4 at run-time and set up compressed | ||
| 355 | # key schedule, which is recognized by RC4 procedure. | ||
| 356 | |||
| 357 | &set_label("c1stloop",16); | ||
| 358 | &mov (&BP(0,$out,"eax"),&LB("eax")); # key->data[i]=i; | ||
| 359 | &add (&LB("eax"),1); # i++; | ||
| 360 | &jnc (&label("c1stloop")); | ||
| 361 | |||
| 362 | &xor ($ido,$ido); | ||
| 363 | &xor ($idx,$idx); | ||
| 364 | &xor ("ebx","ebx"); | ||
| 365 | |||
| 366 | &set_label("c2ndloop",16); | ||
| 367 | &mov (&LB("eax"),&BP(0,$out,$ido)); | ||
| 368 | &add (&LB($idx),&BP(0,$inp,$idi)); | ||
| 369 | &add (&LB($idx),&LB("eax")); | ||
| 370 | &add ($idi,1); | ||
| 371 | &mov (&LB("ebx"),&BP(0,$out,$idx)); | ||
| 372 | &jnz (&label("cnowrap")); | ||
| 373 | &mov ($idi,&DWP(-4,$out)); | ||
| 374 | &set_label("cnowrap"); | ||
| 375 | &mov (&BP(0,$out,$idx),&LB("eax")); | ||
| 376 | &mov (&BP(0,$out,$ido),&LB("ebx")); | ||
| 377 | &add (&LB($ido),1); | ||
| 378 | &jnc (&label("c2ndloop")); | ||
| 379 | |||
| 380 | &mov (&DWP(256,$out),-1); # mark schedule as compressed | ||
| 381 | |||
| 382 | &set_label("exit"); | ||
| 383 | &xor ("eax","eax"); | ||
| 384 | &mov (&DWP(-8,$out),"eax"); # key->x=0; | ||
| 385 | &mov (&DWP(-4,$out),"eax"); # key->y=0; | ||
| 386 | &function_end("rc4_set_key_internal"); | ||
| 387 | |||
| 388 | &asm_finish(); | ||
