summaryrefslogtreecommitdiff
path: root/src/lib/libcrypto/rc4/asm/rc4-ia64.S
diff options
context:
space:
mode:
Diffstat (limited to 'src/lib/libcrypto/rc4/asm/rc4-ia64.S')
-rw-r--r--src/lib/libcrypto/rc4/asm/rc4-ia64.S160
1 files changed, 160 insertions, 0 deletions
diff --git a/src/lib/libcrypto/rc4/asm/rc4-ia64.S b/src/lib/libcrypto/rc4/asm/rc4-ia64.S
new file mode 100644
index 0000000000..a322d0c718
--- /dev/null
+++ b/src/lib/libcrypto/rc4/asm/rc4-ia64.S
@@ -0,0 +1,160 @@
1// ====================================================================
2// Written by Andy Polyakov <appro@fy.chalmers.se> for the OpenSSL
3// project.
4//
5// Rights for redistribution and usage in source and binary forms are
6// granted according to the OpenSSL license. Warranty of any kind is
7// disclaimed.
8// ====================================================================
9
10.ident "rc4-ia64.S, Version 2.0"
11.ident "IA-64 ISA artwork by Andy Polyakov <appro@fy.chalmers.se>"
12
13// What's wrong with compiler generated code? Because of the nature of
14// C language, compiler doesn't [dare to] reorder load and stores. But
15// being memory-bound, RC4 should benefit from reorder [on in-order-
16// execution core such as IA-64]. But what can we reorder? At the very
17// least we can safely reorder references to key schedule in respect
18// to input and output streams. Secondly, from the first [close] glance
19// it appeared that it's possible to pull up some references to
20// elements of the key schedule itself. Original rationale ["prior
21// loads are not safe only for "degenerated" key schedule, when some
22// elements equal to the same value"] was kind of sloppy. I should have
23// formulated as it really was: if we assume that pulling up reference
24// to key[x+1] is not safe, then it would mean that key schedule would
25// "degenerate," which is never the case. The problem is that this
26// holds true in respect to references to key[x], but not to key[y].
27// Legitimate "collisions" do occur within every 256^2 bytes window.
28// Fortunately there're enough free instruction slots to keep prior
29// reference to key[x+1], detect "collision" and compensate for it.
30// All this without sacrificing a single clock cycle:-) Throughput is
31// ~210MBps on 900MHz CPU, which is is >3x faster than gcc generated
32// code and +30% - if compared to HP-UX C. Unrolling loop below should
33// give >30% on top of that...
34
35.text
36.explicit
37
38#if defined(_HPUX_SOURCE) && !defined(_LP64)
39# define ADDP addp4
40#else
41# define ADDP add
42#endif
43
44#ifndef SZ
45#define SZ 4 // this is set to sizeof(RC4_INT)
46#endif
47// SZ==4 seems to be optimal. At least SZ==8 is not any faster, not for
48// assembler implementation, while SZ==1 code is ~30% slower.
49#if SZ==1 // RC4_INT is unsigned char
50# define LDKEY ld1
51# define STKEY st1
52# define OFF 0
53#elif SZ==4 // RC4_INT is unsigned int
54# define LDKEY ld4
55# define STKEY st4
56# define OFF 2
57#elif SZ==8 // RC4_INT is unsigned long
58# define LDKEY ld8
59# define STKEY st8
60# define OFF 3
61#endif
62
63out=r8; // [expanded] output pointer
64inp=r9; // [expanded] output pointer
65prsave=r10;
66key=r28; // [expanded] pointer to RC4_KEY
67ksch=r29; // (key->data+255)[&~(sizeof(key->data)-1)]
68xx=r30;
69yy=r31;
70
71// void RC4(RC4_KEY *key,size_t len,const void *inp,void *out);
72.global RC4#
73.proc RC4#
74.align 32
75.skip 16
76RC4:
77 .prologue
78 .fframe 0
79 .save ar.pfs,r2
80 .save ar.lc,r3
81 .save pr,prsave
82{ .mii; alloc r2=ar.pfs,4,12,0,16
83 mov prsave=pr
84 ADDP key=0,in0 };;
85{ .mib; cmp.eq p6,p0=0,in1 // len==0?
86 mov r3=ar.lc
87(p6) br.ret.spnt.many b0 };; // emergency exit
88
89 .body
90 .rotr dat[4],key_x[4],tx[2],rnd[2],key_y[2],ty[1];
91
92{ .mib; LDKEY xx=[key],SZ // load key->x
93 add in1=-1,in1 // adjust len for loop counter
94 nop.b 0 }
95{ .mib; ADDP inp=0,in2
96 ADDP out=0,in3
97 brp.loop.imp .Ltop,.Lexit-16 };;
98{ .mmi; LDKEY yy=[key] // load key->y
99 add ksch=SZ,key
100 mov ar.lc=in1 }
101{ .mmi; mov key_y[1]=r0 // guarantee inequality
102 // in first iteration
103 add xx=1,xx
104 mov pr.rot=1<<16 };;
105{ .mii; nop.m 0
106 dep key_x[1]=xx,r0,OFF,8
107 mov ar.ec=3 };; // note that epilogue counter
108 // is off by 1. I compensate
109 // for this at exit...
110.Ltop:
111// The loop is scheduled for 4*(n+2) spin-rate on Itanium 2, which
112// theoretically gives asymptotic performance of clock frequency
113// divided by 4 bytes per seconds, or 400MBps on 1.6GHz CPU. This is
114// for sizeof(RC4_INT)==4. For smaller RC4_INT STKEY inadvertently
115// splits the last bundle and you end up with 5*n spin-rate:-(
116// Originally the loop was scheduled for 3*n and relied on key
117// schedule to be aligned at 256*sizeof(RC4_INT) boundary. But
118// *(out++)=dat, which maps to st1, had same effect [inadvertent
119// bundle split] and holded the loop back. Rescheduling for 4*n
120// made it possible to eliminate dependence on specific alignment
121// and allow OpenSSH keep "abusing" our API. Reaching for 3*n would
122// require unrolling, sticking to variable shift instruction for
123// collecting output [to avoid starvation for integer shifter] and
124// copying of key schedule to controlled place in stack [so that
125// deposit instruction can serve as substitute for whole
126// key->data+((x&255)<<log2(sizeof(key->data[0])))]...
127{ .mmi; (p19) st1 [out]=dat[3],1 // *(out++)=dat
128 (p16) add xx=1,xx // x++
129 (p18) dep rnd[1]=rnd[1],r0,OFF,8 } // ((tx+ty)&255)<<OFF
130{ .mmi; (p16) add key_x[1]=ksch,key_x[1] // &key[xx&255]
131 (p17) add key_y[1]=ksch,key_y[1] };; // &key[yy&255]
132{ .mmi; (p16) LDKEY tx[0]=[key_x[1]] // tx=key[xx]
133 (p17) LDKEY ty[0]=[key_y[1]] // ty=key[yy]
134 (p16) dep key_x[0]=xx,r0,OFF,8 } // (xx&255)<<OFF
135{ .mmi; (p18) add rnd[1]=ksch,rnd[1] // &key[(tx+ty)&255]
136 (p16) cmp.ne.unc p20,p21=key_x[1],key_y[1] };;
137{ .mmi; (p18) LDKEY rnd[1]=[rnd[1]] // rnd=key[(tx+ty)&255]
138 (p16) ld1 dat[0]=[inp],1 } // dat=*(inp++)
139.pred.rel "mutex",p20,p21
140{ .mmi; (p21) add yy=yy,tx[1] // (p16)
141 (p20) add yy=yy,tx[0] // (p16) y+=tx
142 (p21) mov tx[0]=tx[1] };; // (p16)
143{ .mmi; (p17) STKEY [key_y[1]]=tx[1] // key[yy]=tx
144 (p17) STKEY [key_x[2]]=ty[0] // key[xx]=ty
145 (p16) dep key_y[0]=yy,r0,OFF,8 } // &key[yy&255]
146{ .mmb; (p17) add rnd[0]=tx[1],ty[0] // tx+=ty
147 (p18) xor dat[2]=dat[2],rnd[1] // dat^=rnd
148 br.ctop.sptk .Ltop };;
149.Lexit:
150{ .mib; STKEY [key]=yy,-SZ // save key->y
151 mov pr=prsave,0x1ffff
152 nop.b 0 }
153{ .mib; st1 [out]=dat[3],1 // compensate for truncated
154 // epilogue counter
155 add xx=-1,xx
156 nop.b 0 };;
157{ .mib; STKEY [key]=xx // save key->x
158 mov ar.lc=r3
159 br.ret.sptk.many b0 };;
160.endp RC4#