summaryrefslogtreecommitdiff
path: root/src/lib/libcrypto/rc4/asm/rc4-x86_64.pl
diff options
context:
space:
mode:
Diffstat (limited to '')
-rwxr-xr-xsrc/lib/libcrypto/rc4/asm/rc4-x86_64.pl522
1 files changed, 0 insertions, 522 deletions
diff --git a/src/lib/libcrypto/rc4/asm/rc4-x86_64.pl b/src/lib/libcrypto/rc4/asm/rc4-x86_64.pl
deleted file mode 100755
index 4dfce6a9ad..0000000000
--- a/src/lib/libcrypto/rc4/asm/rc4-x86_64.pl
+++ /dev/null
@@ -1,522 +0,0 @@
1#!/usr/bin/env perl
2#
3# ====================================================================
4# Written by Andy Polyakov <appro@fy.chalmers.se> for the OpenSSL
5# project. The module is, however, dual licensed under OpenSSL and
6# CRYPTOGAMS licenses depending on where you obtain it. For further
7# details see http://www.openssl.org/~appro/cryptogams/.
8# ====================================================================
9#
10# July 2004
11#
12# 2.22x RC4 tune-up:-) It should be noted though that my hand [as in
13# "hand-coded assembler"] doesn't stand for the whole improvement
14# coefficient. It turned out that eliminating RC4_CHAR from config
15# line results in ~40% improvement (yes, even for C implementation).
16# Presumably it has everything to do with AMD cache architecture and
17# RAW or whatever penalties. Once again! The module *requires* config
18# line *without* RC4_CHAR! As for coding "secret," I bet on partial
19# register arithmetics. For example instead of 'inc %r8; and $255,%r8'
20# I simply 'inc %r8b'. Even though optimization manual discourages
21# to operate on partial registers, it turned out to be the best bet.
22# At least for AMD... How IA32E would perform remains to be seen...
23
24# November 2004
25#
26# As was shown by Marc Bevand reordering of couple of load operations
27# results in even higher performance gain of 3.3x:-) At least on
28# Opteron... For reference, 1x in this case is RC4_CHAR C-code
29# compiled with gcc 3.3.2, which performs at ~54MBps per 1GHz clock.
30# Latter means that if you want to *estimate* what to expect from
31# *your* Opteron, then multiply 54 by 3.3 and clock frequency in GHz.
32
33# November 2004
34#
35# Intel P4 EM64T core was found to run the AMD64 code really slow...
36# The only way to achieve comparable performance on P4 was to keep
37# RC4_CHAR. Kind of ironic, huh? As it's apparently impossible to
38# compose blended code, which would perform even within 30% marginal
39# on either AMD and Intel platforms, I implement both cases. See
40# rc4_skey.c for further details...
41
42# April 2005
43#
44# P4 EM64T core appears to be "allergic" to 64-bit inc/dec. Replacing
45# those with add/sub results in 50% performance improvement of folded
46# loop...
47
48# May 2005
49#
50# As was shown by Zou Nanhai loop unrolling can improve Intel EM64T
51# performance by >30% [unlike P4 32-bit case that is]. But this is
52# provided that loads are reordered even more aggressively! Both code
53# paths, AMD64 and EM64T, reorder loads in essentially same manner
54# as my IA-64 implementation. On Opteron this resulted in modest 5%
55# improvement [I had to test it], while final Intel P4 performance
56# achieves respectful 432MBps on 2.8GHz processor now. For reference.
57# If executed on Xeon, current RC4_CHAR code-path is 2.7x faster than
58# RC4_INT code-path. While if executed on Opteron, it's only 25%
59# slower than the RC4_INT one [meaning that if CPU µ-arch detection
60# is not implemented, then this final RC4_CHAR code-path should be
61# preferred, as it provides better *all-round* performance].
62
63# March 2007
64#
65# Intel Core2 was observed to perform poorly on both code paths:-( It
66# apparently suffers from some kind of partial register stall, which
67# occurs in 64-bit mode only [as virtually identical 32-bit loop was
68# observed to outperform 64-bit one by almost 50%]. Adding two movzb to
69# cloop1 boosts its performance by 80%! This loop appears to be optimal
70# fit for Core2 and therefore the code was modified to skip cloop8 on
71# this CPU.
72
73# May 2010
74#
75# Intel Westmere was observed to perform suboptimally. Adding yet
76# another movzb to cloop1 improved performance by almost 50%! Core2
77# performance is improved too, but nominally...
78
79# May 2011
80#
81# The only code path that was not modified is P4-specific one. Non-P4
82# Intel code path optimization is heavily based on submission by Maxim
83# Perminov, Maxim Locktyukhin and Jim Guilford of Intel. I've used
84# some of the ideas even in attempt to optimize the original RC4_INT
85# code path... Current performance in cycles per processed byte (less
86# is better) and improvement coefficients relative to previous
87# version of this module are:
88#
89# Opteron 5.3/+0%(*)
90# P4 6.5
91# Core2 6.2/+15%(**)
92# Westmere 4.2/+60%
93# Sandy Bridge 4.2/+120%
94# Atom 9.3/+80%
95#
96# (*) But corresponding loop has less instructions, which should have
97# positive effect on upcoming Bulldozer, which has one less ALU.
98# For reference, Intel code runs at 6.8 cpb rate on Opteron.
99# (**) Note that Core2 result is ~15% lower than corresponding result
100# for 32-bit code, meaning that it's possible to improve it,
101# but more than likely at the cost of the others (see rc4-586.pl
102# to get the idea)...
103
104$flavour = shift;
105$output = shift;
106if ($flavour =~ /\./) { $output = $flavour; undef $flavour; }
107
108$0 =~ m/(.*[\/\\])[^\/\\]+$/; $dir=$1;
109( $xlate="${dir}x86_64-xlate.pl" and -f $xlate ) or
110( $xlate="${dir}../../perlasm/x86_64-xlate.pl" and -f $xlate) or
111die "can't locate x86_64-xlate.pl";
112
113open OUT,"| \"$^X\" $xlate $flavour $output";
114*STDOUT=*OUT;
115
116$dat="%rdi"; # arg1
117$len="%rsi"; # arg2
118$inp="%rdx"; # arg3
119$out="%rcx"; # arg4
120
121{
122$code=<<___;
123.text
124.extern OPENSSL_ia32cap_P
125.hidden OPENSSL_ia32cap_P
126
127.globl rc4_internal
128.type rc4_internal,\@function,4
129.align 16
130rc4_internal:
131 _CET_ENDBR
132 or $len,$len
133 jne .Lentry
134 ret
135.Lentry:
136 push %rbx
137 push %r12
138 push %r13
139.Lprologue:
140 mov $len,%r11
141 mov $inp,%r12
142 mov $out,%r13
143___
144my $len="%r11"; # reassign input arguments
145my $inp="%r12";
146my $out="%r13";
147
148my @XX=("%r10","%rsi");
149my @TX=("%rax","%rbx");
150my $YY="%rcx";
151my $TY="%rdx";
152
153$code.=<<___;
154 xor $XX[0],$XX[0]
155 xor $YY,$YY
156
157 lea 8($dat),$dat
158 mov -8($dat),$XX[0]#b
159 mov -4($dat),$YY#b
160 cmpl \$-1,256($dat)
161 je .LRC4_CHAR
162 mov OPENSSL_ia32cap_P(%rip),%r8d
163 xor $TX[1],$TX[1]
164 inc $XX[0]#b
165 sub $XX[0],$TX[1]
166 sub $inp,$out
167 movl ($dat,$XX[0],4),$TX[0]#d
168 test \$-16,$len
169 jz .Lloop1
170 bt \$IA32CAP_BIT0_INTEL,%r8d # Intel CPU?
171 jc .Lintel
172 and \$7,$TX[1]
173 lea 1($XX[0]),$XX[1]
174 jz .Loop8
175 sub $TX[1],$len
176.Loop8_warmup:
177 add $TX[0]#b,$YY#b
178 movl ($dat,$YY,4),$TY#d
179 movl $TX[0]#d,($dat,$YY,4)
180 movl $TY#d,($dat,$XX[0],4)
181 add $TY#b,$TX[0]#b
182 inc $XX[0]#b
183 movl ($dat,$TX[0],4),$TY#d
184 movl ($dat,$XX[0],4),$TX[0]#d
185 xorb ($inp),$TY#b
186 movb $TY#b,($out,$inp)
187 lea 1($inp),$inp
188 dec $TX[1]
189 jnz .Loop8_warmup
190
191 lea 1($XX[0]),$XX[1]
192 jmp .Loop8
193.align 16
194.Loop8:
195___
196for ($i=0;$i<8;$i++) {
197$code.=<<___ if ($i==7);
198 add \$8,$XX[1]#b
199___
200$code.=<<___;
201 add $TX[0]#b,$YY#b
202 movl ($dat,$YY,4),$TY#d
203 movl $TX[0]#d,($dat,$YY,4)
204 movl `4*($i==7?-1:$i)`($dat,$XX[1],4),$TX[1]#d
205 ror \$8,%r8 # ror is redundant when $i=0
206 movl $TY#d,4*$i($dat,$XX[0],4)
207 add $TX[0]#b,$TY#b
208 movb ($dat,$TY,4),%r8b
209___
210push(@TX,shift(@TX)); #push(@XX,shift(@XX)); # "rotate" registers
211}
212$code.=<<___;
213 add \$8,$XX[0]#b
214 ror \$8,%r8
215 sub \$8,$len
216
217 xor ($inp),%r8
218 mov %r8,($out,$inp)
219 lea 8($inp),$inp
220
221 test \$-8,$len
222 jnz .Loop8
223 cmp \$0,$len
224 jne .Lloop1
225 jmp .Lexit
226
227.align 16
228.Lintel:
229 test \$-32,$len
230 jz .Lloop1
231 and \$15,$TX[1]
232 jz .Loop16_is_hot
233 sub $TX[1],$len
234.Loop16_warmup:
235 add $TX[0]#b,$YY#b
236 movl ($dat,$YY,4),$TY#d
237 movl $TX[0]#d,($dat,$YY,4)
238 movl $TY#d,($dat,$XX[0],4)
239 add $TY#b,$TX[0]#b
240 inc $XX[0]#b
241 movl ($dat,$TX[0],4),$TY#d
242 movl ($dat,$XX[0],4),$TX[0]#d
243 xorb ($inp),$TY#b
244 movb $TY#b,($out,$inp)
245 lea 1($inp),$inp
246 dec $TX[1]
247 jnz .Loop16_warmup
248
249 mov $YY,$TX[1]
250 xor $YY,$YY
251 mov $TX[1]#b,$YY#b
252
253.Loop16_is_hot:
254 lea ($dat,$XX[0],4),$XX[1]
255___
256sub RC4_loop {
257 my $i=shift;
258 my $j=$i<0?0:$i;
259 my $xmm="%xmm".($j&1);
260
261 $code.=" add \$16,$XX[0]#b\n" if ($i==15);
262 $code.=" movdqu ($inp),%xmm2\n" if ($i==15);
263 $code.=" add $TX[0]#b,$YY#b\n" if ($i<=0);
264 $code.=" movl ($dat,$YY,4),$TY#d\n";
265 $code.=" pxor %xmm0,%xmm2\n" if ($i==0);
266 $code.=" psllq \$8,%xmm1\n" if ($i==0);
267 $code.=" pxor $xmm,$xmm\n" if ($i<=1);
268 $code.=" movl $TX[0]#d,($dat,$YY,4)\n";
269 $code.=" add $TY#b,$TX[0]#b\n";
270 $code.=" movl `4*($j+1)`($XX[1]),$TX[1]#d\n" if ($i<15);
271 $code.=" movz $TX[0]#b,$TX[0]#d\n";
272 $code.=" movl $TY#d,4*$j($XX[1])\n";
273 $code.=" pxor %xmm1,%xmm2\n" if ($i==0);
274 $code.=" lea ($dat,$XX[0],4),$XX[1]\n" if ($i==15);
275 $code.=" add $TX[1]#b,$YY#b\n" if ($i<15);
276 $code.=" pinsrw \$`($j>>1)&7`,($dat,$TX[0],4),$xmm\n";
277 $code.=" movdqu %xmm2,($out,$inp)\n" if ($i==0);
278 $code.=" lea 16($inp),$inp\n" if ($i==0);
279 $code.=" movl ($XX[1]),$TX[1]#d\n" if ($i==15);
280}
281 RC4_loop(-1);
282$code.=<<___;
283 jmp .Loop16_enter
284.align 16
285.Loop16:
286___
287
288for ($i=0;$i<16;$i++) {
289 $code.=".Loop16_enter:\n" if ($i==1);
290 RC4_loop($i);
291 push(@TX,shift(@TX)); # "rotate" registers
292}
293$code.=<<___;
294 mov $YY,$TX[1]
295 xor $YY,$YY # keyword to partial register
296 sub \$16,$len
297 mov $TX[1]#b,$YY#b
298 test \$-16,$len
299 jnz .Loop16
300
301 psllq \$8,%xmm1
302 pxor %xmm0,%xmm2
303 pxor %xmm1,%xmm2
304 movdqu %xmm2,($out,$inp)
305 lea 16($inp),$inp
306
307 cmp \$0,$len
308 jne .Lloop1
309 jmp .Lexit
310
311.align 16
312.Lloop1:
313 add $TX[0]#b,$YY#b
314 movl ($dat,$YY,4),$TY#d
315 movl $TX[0]#d,($dat,$YY,4)
316 movl $TY#d,($dat,$XX[0],4)
317 add $TY#b,$TX[0]#b
318 inc $XX[0]#b
319 movl ($dat,$TX[0],4),$TY#d
320 movl ($dat,$XX[0],4),$TX[0]#d
321 xorb ($inp),$TY#b
322 movb $TY#b,($out,$inp)
323 lea 1($inp),$inp
324 dec $len
325 jnz .Lloop1
326 jmp .Lexit
327
328.align 16
329.LRC4_CHAR:
330 add \$1,$XX[0]#b
331 movzb ($dat,$XX[0]),$TX[0]#d
332 test \$-8,$len
333 jz .Lcloop1
334 jmp .Lcloop8
335.align 16
336.Lcloop8:
337 mov ($inp),%r8d
338 mov 4($inp),%r9d
339___
340# unroll 2x4-wise, because 64-bit rotates kill Intel P4...
341for ($i=0;$i<4;$i++) {
342$code.=<<___;
343 add $TX[0]#b,$YY#b
344 lea 1($XX[0]),$XX[1]
345 movzb ($dat,$YY),$TY#d
346 movzb $XX[1]#b,$XX[1]#d
347 movzb ($dat,$XX[1]),$TX[1]#d
348 movb $TX[0]#b,($dat,$YY)
349 cmp $XX[1],$YY
350 movb $TY#b,($dat,$XX[0])
351 jne .Lcmov$i # Intel cmov is sloooow...
352 mov $TX[0],$TX[1]
353.Lcmov$i:
354 add $TX[0]#b,$TY#b
355 xor ($dat,$TY),%r8b
356 ror \$8,%r8d
357___
358push(@TX,shift(@TX)); push(@XX,shift(@XX)); # "rotate" registers
359}
360for ($i=4;$i<8;$i++) {
361$code.=<<___;
362 add $TX[0]#b,$YY#b
363 lea 1($XX[0]),$XX[1]
364 movzb ($dat,$YY),$TY#d
365 movzb $XX[1]#b,$XX[1]#d
366 movzb ($dat,$XX[1]),$TX[1]#d
367 movb $TX[0]#b,($dat,$YY)
368 cmp $XX[1],$YY
369 movb $TY#b,($dat,$XX[0])
370 jne .Lcmov$i # Intel cmov is sloooow...
371 mov $TX[0],$TX[1]
372.Lcmov$i:
373 add $TX[0]#b,$TY#b
374 xor ($dat,$TY),%r9b
375 ror \$8,%r9d
376___
377push(@TX,shift(@TX)); push(@XX,shift(@XX)); # "rotate" registers
378}
379$code.=<<___;
380 lea -8($len),$len
381 mov %r8d,($out)
382 lea 8($inp),$inp
383 mov %r9d,4($out)
384 lea 8($out),$out
385
386 test \$-8,$len
387 jnz .Lcloop8
388 cmp \$0,$len
389 jne .Lcloop1
390 jmp .Lexit
391___
392$code.=<<___;
393.align 16
394.Lcloop1:
395 add $TX[0]#b,$YY#b
396 movzb $YY#b,$YY#d
397 movzb ($dat,$YY),$TY#d
398 movb $TX[0]#b,($dat,$YY)
399 movb $TY#b,($dat,$XX[0])
400 add $TX[0]#b,$TY#b
401 add \$1,$XX[0]#b
402 movzb $TY#b,$TY#d
403 movzb $XX[0]#b,$XX[0]#d
404 movzb ($dat,$TY),$TY#d
405 movzb ($dat,$XX[0]),$TX[0]#d
406 xorb ($inp),$TY#b
407 lea 1($inp),$inp
408 movb $TY#b,($out)
409 lea 1($out),$out
410 sub \$1,$len
411 jnz .Lcloop1
412 jmp .Lexit
413
414.align 16
415.Lexit:
416 sub \$1,$XX[0]#b
417 movl $XX[0]#d,-8($dat)
418 movl $YY#d,-4($dat)
419
420 mov (%rsp),%r13
421 mov 8(%rsp),%r12
422 mov 16(%rsp),%rbx
423 add \$24,%rsp
424.Lepilogue:
425 ret
426.size rc4_internal,.-rc4_internal
427___
428}
429
430$idx="%r8";
431$ido="%r9";
432
433$code.=<<___;
434.globl rc4_set_key_internal
435.type rc4_set_key_internal,\@function,3
436.align 16
437rc4_set_key_internal:
438 _CET_ENDBR
439 lea 8($dat),$dat
440 lea ($inp,$len),$inp
441 neg $len
442 mov $len,%rcx
443 xor %eax,%eax
444 xor $ido,$ido
445 xor %r10,%r10
446 xor %r11,%r11
447
448 mov OPENSSL_ia32cap_P(%rip),$idx#d
449 bt \$IA32CAP_BIT0_INTELP4,$idx#d # RC4_CHAR?
450 jc .Lc1stloop
451 jmp .Lw1stloop
452
453.align 16
454.Lw1stloop:
455 mov %eax,($dat,%rax,4)
456 add \$1,%al
457 jnc .Lw1stloop
458
459 xor $ido,$ido
460 xor $idx,$idx
461.align 16
462.Lw2ndloop:
463 mov ($dat,$ido,4),%r10d
464 add ($inp,$len,1),$idx#b
465 add %r10b,$idx#b
466 add \$1,$len
467 mov ($dat,$idx,4),%r11d
468 cmovz %rcx,$len
469 mov %r10d,($dat,$idx,4)
470 mov %r11d,($dat,$ido,4)
471 add \$1,$ido#b
472 jnc .Lw2ndloop
473 jmp .Lexit_key
474
475.align 16
476.Lc1stloop:
477 mov %al,($dat,%rax)
478 add \$1,%al
479 jnc .Lc1stloop
480
481 xor $ido,$ido
482 xor $idx,$idx
483.align 16
484.Lc2ndloop:
485 mov ($dat,$ido),%r10b
486 add ($inp,$len),$idx#b
487 add %r10b,$idx#b
488 add \$1,$len
489 mov ($dat,$idx),%r11b
490 jnz .Lcnowrap
491 mov %rcx,$len
492.Lcnowrap:
493 mov %r10b,($dat,$idx)
494 mov %r11b,($dat,$ido)
495 add \$1,$ido#b
496 jnc .Lc2ndloop
497 movl \$-1,256($dat)
498
499.align 16
500.Lexit_key:
501 xor %eax,%eax
502 mov %eax,-8($dat)
503 mov %eax,-4($dat)
504 ret
505.size rc4_set_key_internal,.-rc4_set_key_internal
506___
507
508sub reg_part {
509my ($reg,$conv)=@_;
510 if ($reg =~ /%r[0-9]+/) { $reg .= $conv; }
511 elsif ($conv eq "b") { $reg =~ s/%[er]([^x]+)x?/%$1l/; }
512 elsif ($conv eq "w") { $reg =~ s/%[er](.+)/%$1/; }
513 elsif ($conv eq "d") { $reg =~ s/%[er](.+)/%e$1/; }
514 return $reg;
515}
516
517$code =~ s/(%[a-z0-9]+)#([bwd])/reg_part($1,$2)/gem;
518$code =~ s/\`([^\`]*)\`/eval $1/gem;
519
520print $code;
521
522close STDOUT;