summaryrefslogtreecommitdiff
path: root/src/lib/libcrypto/rc4/asm
diff options
context:
space:
mode:
Diffstat (limited to 'src/lib/libcrypto/rc4/asm')
-rw-r--r--src/lib/libcrypto/rc4/asm/rc4-586.pl162
-rwxr-xr-xsrc/lib/libcrypto/rc4/asm/rc4-x86_64.pl290
2 files changed, 382 insertions, 70 deletions
diff --git a/src/lib/libcrypto/rc4/asm/rc4-586.pl b/src/lib/libcrypto/rc4/asm/rc4-586.pl
index 38a44a70ef..5c9ac6ad28 100644
--- a/src/lib/libcrypto/rc4/asm/rc4-586.pl
+++ b/src/lib/libcrypto/rc4/asm/rc4-586.pl
@@ -28,6 +28,34 @@
28# 28#
29# <appro@fy.chalmers.se> 29# <appro@fy.chalmers.se>
30 30
31# May 2011
32#
33# Optimize for Core2 and Westmere [and incidentally Opteron]. Current
34# performance in cycles per processed byte (less is better) and
35# improvement relative to previous version of this module is:
36#
37# Pentium 10.2 # original numbers
38# Pentium III 7.8(*)
39# Intel P4 7.5
40#
41# Opteron 6.1/+20% # new MMX numbers
42# Core2 5.3/+67%(**)
43# Westmere 5.1/+94%(**)
44# Sandy Bridge 5.0/+8%
45# Atom 12.6/+6%
46#
47# (*) PIII can actually deliver 6.6 cycles per byte with MMX code,
48# but this specific code performs poorly on Core2. And vice
49# versa, below MMX/SSE code delivering 5.8/7.1 on Core2 performs
50# poorly on PIII, at 8.0/14.5:-( As PIII is not a "hot" CPU
51# [anymore], I chose to discard PIII-specific code path and opt
52# for original IALU-only code, which is why MMX/SSE code path
53# is guarded by SSE2 bit (see below), not MMX/SSE.
54# (**) Performance vs. block size on Core2 and Westmere had a maximum
55# at ... 64 bytes block size. And it was quite a maximum, 40-60%
56# in comparison to largest 8KB block size. Above improvement
57# coefficients are for the largest block size.
58
31$0 =~ m/(.*[\/\\])[^\/\\]+$/; $dir=$1; 59$0 =~ m/(.*[\/\\])[^\/\\]+$/; $dir=$1;
32push(@INC,"${dir}","${dir}../../perlasm"); 60push(@INC,"${dir}","${dir}../../perlasm");
33require "x86asm.pl"; 61require "x86asm.pl";
@@ -62,6 +90,68 @@ sub RC4_loop {
62 &$func ($out,&DWP(0,$dat,$ty,4)); 90 &$func ($out,&DWP(0,$dat,$ty,4));
63} 91}
64 92
93if ($alt=0) {
94 # >20% faster on Atom and Sandy Bridge[!], 8% faster on Opteron,
95 # but ~40% slower on Core2 and Westmere... Attempt to add movz
96 # brings down Opteron by 25%, Atom and Sandy Bridge by 15%, yet
97 # on Core2 with movz it's almost 20% slower than below alternative
98 # code... Yes, it's a total mess...
99 my @XX=($xx,$out);
100 $RC4_loop_mmx = sub { # SSE actually...
101 my $i=shift;
102 my $j=$i<=0?0:$i>>1;
103 my $mm=$i<=0?"mm0":"mm".($i&1);
104
105 &add (&LB($yy),&LB($tx));
106 &lea (@XX[1],&DWP(1,@XX[0]));
107 &pxor ("mm2","mm0") if ($i==0);
108 &psllq ("mm1",8) if ($i==0);
109 &and (@XX[1],0xff);
110 &pxor ("mm0","mm0") if ($i<=0);
111 &mov ($ty,&DWP(0,$dat,$yy,4));
112 &mov (&DWP(0,$dat,$yy,4),$tx);
113 &pxor ("mm1","mm2") if ($i==0);
114 &mov (&DWP(0,$dat,$XX[0],4),$ty);
115 &add (&LB($ty),&LB($tx));
116 &movd (@XX[0],"mm7") if ($i==0);
117 &mov ($tx,&DWP(0,$dat,@XX[1],4));
118 &pxor ("mm1","mm1") if ($i==1);
119 &movq ("mm2",&QWP(0,$inp)) if ($i==1);
120 &movq (&QWP(-8,(@XX[0],$inp)),"mm1") if ($i==0);
121 &pinsrw ($mm,&DWP(0,$dat,$ty,4),$j);
122
123 push (@XX,shift(@XX)) if ($i>=0);
124 }
125} else {
126 # Using pinsrw here improves performane on Intel CPUs by 2-3%, but
127 # brings down AMD by 7%...
128 $RC4_loop_mmx = sub {
129 my $i=shift;
130
131 &add (&LB($yy),&LB($tx));
132 &psllq ("mm1",8*(($i-1)&7)) if (abs($i)!=1);
133 &mov ($ty,&DWP(0,$dat,$yy,4));
134 &mov (&DWP(0,$dat,$yy,4),$tx);
135 &mov (&DWP(0,$dat,$xx,4),$ty);
136 &inc ($xx);
137 &add ($ty,$tx);
138 &movz ($xx,&LB($xx)); # (*)
139 &movz ($ty,&LB($ty)); # (*)
140 &pxor ("mm2",$i==1?"mm0":"mm1") if ($i>=0);
141 &movq ("mm0",&QWP(0,$inp)) if ($i<=0);
142 &movq (&QWP(-8,($out,$inp)),"mm2") if ($i==0);
143 &mov ($tx,&DWP(0,$dat,$xx,4));
144 &movd ($i>0?"mm1":"mm2",&DWP(0,$dat,$ty,4));
145
146 # (*) This is the key to Core2 and Westmere performance.
147 # Whithout movz out-of-order execution logic confuses
148 # itself and fails to reorder loads and stores. Problem
149 # appears to be fixed in Sandy Bridge...
150 }
151}
152
153&external_label("OPENSSL_ia32cap_P");
154
65# void RC4(RC4_KEY *key,size_t len,const unsigned char *inp,unsigned char *out); 155# void RC4(RC4_KEY *key,size_t len,const unsigned char *inp,unsigned char *out);
66&function_begin("RC4"); 156&function_begin("RC4");
67 &mov ($dat,&wparam(0)); # load key schedule pointer 157 &mov ($dat,&wparam(0)); # load key schedule pointer
@@ -94,11 +184,56 @@ sub RC4_loop {
94 &and ($ty,-4); # how many 4-byte chunks? 184 &and ($ty,-4); # how many 4-byte chunks?
95 &jz (&label("loop1")); 185 &jz (&label("loop1"));
96 186
187 &test ($ty,-8);
188 &mov (&wparam(3),$out); # $out as accumulator in these loops
189 &jz (&label("go4loop4"));
190
191 &picmeup($out,"OPENSSL_ia32cap_P");
192 &bt (&DWP(0,$out),26); # check SSE2 bit [could have been MMX]
193 &jnc (&label("go4loop4"));
194
195 &mov ($out,&wparam(3)) if (!$alt);
196 &movd ("mm7",&wparam(3)) if ($alt);
197 &and ($ty,-8);
198 &lea ($ty,&DWP(-8,$inp,$ty));
199 &mov (&DWP(-4,$dat),$ty); # save input+(len/8)*8-8
200
201 &$RC4_loop_mmx(-1);
202 &jmp(&label("loop_mmx_enter"));
203
204 &set_label("loop_mmx",16);
205 &$RC4_loop_mmx(0);
206 &set_label("loop_mmx_enter");
207 for ($i=1;$i<8;$i++) { &$RC4_loop_mmx($i); }
208 &mov ($ty,$yy);
209 &xor ($yy,$yy); # this is second key to Core2
210 &mov (&LB($yy),&LB($ty)); # and Westmere performance...
211 &cmp ($inp,&DWP(-4,$dat));
212 &lea ($inp,&DWP(8,$inp));
213 &jb (&label("loop_mmx"));
214
215 if ($alt) {
216 &movd ($out,"mm7");
217 &pxor ("mm2","mm0");
218 &psllq ("mm1",8);
219 &pxor ("mm1","mm2");
220 &movq (&QWP(-8,$out,$inp),"mm1");
221 } else {
222 &psllq ("mm1",56);
223 &pxor ("mm2","mm1");
224 &movq (&QWP(-8,$out,$inp),"mm2");
225 }
226 &emms ();
227
228 &cmp ($inp,&wparam(1)); # compare to input+len
229 &je (&label("done"));
230 &jmp (&label("loop1"));
231
232&set_label("go4loop4",16);
97 &lea ($ty,&DWP(-4,$inp,$ty)); 233 &lea ($ty,&DWP(-4,$inp,$ty));
98 &mov (&wparam(2),$ty); # save input+(len/4)*4-4 234 &mov (&wparam(2),$ty); # save input+(len/4)*4-4
99 &mov (&wparam(3),$out); # $out as accumulator in this loop
100 235
101 &set_label("loop4",16); 236 &set_label("loop4");
102 for ($i=0;$i<4;$i++) { RC4_loop($i); } 237 for ($i=0;$i<4;$i++) { RC4_loop($i); }
103 &ror ($out,8); 238 &ror ($out,8);
104 &xor ($out,&DWP(0,$inp)); 239 &xor ($out,&DWP(0,$inp));
@@ -151,7 +286,7 @@ sub RC4_loop {
151 286
152&set_label("done"); 287&set_label("done");
153 &dec (&LB($xx)); 288 &dec (&LB($xx));
154 &mov (&BP(-4,$dat),&LB($yy)); # save key->y 289 &mov (&DWP(-4,$dat),$yy); # save key->y
155 &mov (&BP(-8,$dat),&LB($xx)); # save key->x 290 &mov (&BP(-8,$dat),&LB($xx)); # save key->x
156&set_label("abort"); 291&set_label("abort");
157&function_end("RC4"); 292&function_end("RC4");
@@ -164,10 +299,8 @@ $idi="ebp";
164$ido="ecx"; 299$ido="ecx";
165$idx="edx"; 300$idx="edx";
166 301
167&external_label("OPENSSL_ia32cap_P");
168
169# void RC4_set_key(RC4_KEY *key,int len,const unsigned char *data); 302# void RC4_set_key(RC4_KEY *key,int len,const unsigned char *data);
170&function_begin("RC4_set_key"); 303&function_begin("private_RC4_set_key");
171 &mov ($out,&wparam(0)); # load key 304 &mov ($out,&wparam(0)); # load key
172 &mov ($idi,&wparam(1)); # load len 305 &mov ($idi,&wparam(1)); # load len
173 &mov ($inp,&wparam(2)); # load data 306 &mov ($inp,&wparam(2)); # load data
@@ -245,7 +378,7 @@ $idx="edx";
245 &xor ("eax","eax"); 378 &xor ("eax","eax");
246 &mov (&DWP(-8,$out),"eax"); # key->x=0; 379 &mov (&DWP(-8,$out),"eax"); # key->x=0;
247 &mov (&DWP(-4,$out),"eax"); # key->y=0; 380 &mov (&DWP(-4,$out),"eax"); # key->y=0;
248&function_end("RC4_set_key"); 381&function_end("private_RC4_set_key");
249 382
250# const char *RC4_options(void); 383# const char *RC4_options(void);
251&function_begin_B("RC4_options"); 384&function_begin_B("RC4_options");
@@ -254,14 +387,21 @@ $idx="edx";
254 &blindpop("eax"); 387 &blindpop("eax");
255 &lea ("eax",&DWP(&label("opts")."-".&label("pic_point"),"eax")); 388 &lea ("eax",&DWP(&label("opts")."-".&label("pic_point"),"eax"));
256 &picmeup("edx","OPENSSL_ia32cap_P"); 389 &picmeup("edx","OPENSSL_ia32cap_P");
257 &bt (&DWP(0,"edx"),20); 390 &mov ("edx",&DWP(0,"edx"));
258 &jnc (&label("skip")); 391 &bt ("edx",20);
259 &add ("eax",12); 392 &jc (&label("1xchar"));
260 &set_label("skip"); 393 &bt ("edx",26);
394 &jnc (&label("ret"));
395 &add ("eax",25);
396 &ret ();
397&set_label("1xchar");
398 &add ("eax",12);
399&set_label("ret");
261 &ret (); 400 &ret ();
262&set_label("opts",64); 401&set_label("opts",64);
263&asciz ("rc4(4x,int)"); 402&asciz ("rc4(4x,int)");
264&asciz ("rc4(1x,char)"); 403&asciz ("rc4(1x,char)");
404&asciz ("rc4(8x,mmx)");
265&asciz ("RC4 for x86, CRYPTOGAMS by <appro\@openssl.org>"); 405&asciz ("RC4 for x86, CRYPTOGAMS by <appro\@openssl.org>");
266&align (64); 406&align (64);
267&function_end_B("RC4_options"); 407&function_end_B("RC4_options");
diff --git a/src/lib/libcrypto/rc4/asm/rc4-x86_64.pl b/src/lib/libcrypto/rc4/asm/rc4-x86_64.pl
index 544386bf53..ac2c05074e 100755
--- a/src/lib/libcrypto/rc4/asm/rc4-x86_64.pl
+++ b/src/lib/libcrypto/rc4/asm/rc4-x86_64.pl
@@ -7,6 +7,8 @@
7# details see http://www.openssl.org/~appro/cryptogams/. 7# details see http://www.openssl.org/~appro/cryptogams/.
8# ==================================================================== 8# ====================================================================
9# 9#
10# July 2004
11#
10# 2.22x RC4 tune-up:-) It should be noted though that my hand [as in 12# 2.22x RC4 tune-up:-) It should be noted though that my hand [as in
11# "hand-coded assembler"] doesn't stand for the whole improvement 13# "hand-coded assembler"] doesn't stand for the whole improvement
12# coefficient. It turned out that eliminating RC4_CHAR from config 14# coefficient. It turned out that eliminating RC4_CHAR from config
@@ -19,6 +21,8 @@
19# to operate on partial registers, it turned out to be the best bet. 21# to operate on partial registers, it turned out to be the best bet.
20# At least for AMD... How IA32E would perform remains to be seen... 22# At least for AMD... How IA32E would perform remains to be seen...
21 23
24# November 2004
25#
22# As was shown by Marc Bevand reordering of couple of load operations 26# As was shown by Marc Bevand reordering of couple of load operations
23# results in even higher performance gain of 3.3x:-) At least on 27# results in even higher performance gain of 3.3x:-) At least on
24# Opteron... For reference, 1x in this case is RC4_CHAR C-code 28# Opteron... For reference, 1x in this case is RC4_CHAR C-code
@@ -26,6 +30,8 @@
26# Latter means that if you want to *estimate* what to expect from 30# Latter means that if you want to *estimate* what to expect from
27# *your* Opteron, then multiply 54 by 3.3 and clock frequency in GHz. 31# *your* Opteron, then multiply 54 by 3.3 and clock frequency in GHz.
28 32
33# November 2004
34#
29# Intel P4 EM64T core was found to run the AMD64 code really slow... 35# Intel P4 EM64T core was found to run the AMD64 code really slow...
30# The only way to achieve comparable performance on P4 was to keep 36# The only way to achieve comparable performance on P4 was to keep
31# RC4_CHAR. Kind of ironic, huh? As it's apparently impossible to 37# RC4_CHAR. Kind of ironic, huh? As it's apparently impossible to
@@ -33,10 +39,14 @@
33# on either AMD and Intel platforms, I implement both cases. See 39# on either AMD and Intel platforms, I implement both cases. See
34# rc4_skey.c for further details... 40# rc4_skey.c for further details...
35 41
42# April 2005
43#
36# P4 EM64T core appears to be "allergic" to 64-bit inc/dec. Replacing 44# P4 EM64T core appears to be "allergic" to 64-bit inc/dec. Replacing
37# those with add/sub results in 50% performance improvement of folded 45# those with add/sub results in 50% performance improvement of folded
38# loop... 46# loop...
39 47
48# May 2005
49#
40# As was shown by Zou Nanhai loop unrolling can improve Intel EM64T 50# As was shown by Zou Nanhai loop unrolling can improve Intel EM64T
41# performance by >30% [unlike P4 32-bit case that is]. But this is 51# performance by >30% [unlike P4 32-bit case that is]. But this is
42# provided that loads are reordered even more aggressively! Both code 52# provided that loads are reordered even more aggressively! Both code
@@ -50,6 +60,8 @@
50# is not implemented, then this final RC4_CHAR code-path should be 60# is not implemented, then this final RC4_CHAR code-path should be
51# preferred, as it provides better *all-round* performance]. 61# preferred, as it provides better *all-round* performance].
52 62
63# March 2007
64#
53# Intel Core2 was observed to perform poorly on both code paths:-( It 65# Intel Core2 was observed to perform poorly on both code paths:-( It
54# apparently suffers from some kind of partial register stall, which 66# apparently suffers from some kind of partial register stall, which
55# occurs in 64-bit mode only [as virtually identical 32-bit loop was 67# occurs in 64-bit mode only [as virtually identical 32-bit loop was
@@ -58,6 +70,37 @@
58# fit for Core2 and therefore the code was modified to skip cloop8 on 70# fit for Core2 and therefore the code was modified to skip cloop8 on
59# this CPU. 71# this CPU.
60 72
73# May 2010
74#
75# Intel Westmere was observed to perform suboptimally. Adding yet
76# another movzb to cloop1 improved performance by almost 50%! Core2
77# performance is improved too, but nominally...
78
79# May 2011
80#
81# The only code path that was not modified is P4-specific one. Non-P4
82# Intel code path optimization is heavily based on submission by Maxim
83# Perminov, Maxim Locktyukhin and Jim Guilford of Intel. I've used
84# some of the ideas even in attempt to optmize the original RC4_INT
85# code path... Current performance in cycles per processed byte (less
86# is better) and improvement coefficients relative to previous
87# version of this module are:
88#
89# Opteron 5.3/+0%(*)
90# P4 6.5
91# Core2 6.2/+15%(**)
92# Westmere 4.2/+60%
93# Sandy Bridge 4.2/+120%
94# Atom 9.3/+80%
95#
96# (*) But corresponding loop has less instructions, which should have
97# positive effect on upcoming Bulldozer, which has one less ALU.
98# For reference, Intel code runs at 6.8 cpb rate on Opteron.
99# (**) Note that Core2 result is ~15% lower than corresponding result
100# for 32-bit code, meaning that it's possible to improve it,
101# but more than likely at the cost of the others (see rc4-586.pl
102# to get the idea)...
103
61$flavour = shift; 104$flavour = shift;
62$output = shift; 105$output = shift;
63if ($flavour =~ /\./) { $output = $flavour; undef $flavour; } 106if ($flavour =~ /\./) { $output = $flavour; undef $flavour; }
@@ -76,13 +119,10 @@ $len="%rsi"; # arg2
76$inp="%rdx"; # arg3 119$inp="%rdx"; # arg3
77$out="%rcx"; # arg4 120$out="%rcx"; # arg4
78 121
79@XX=("%r8","%r10"); 122{
80@TX=("%r9","%r11");
81$YY="%r12";
82$TY="%r13";
83
84$code=<<___; 123$code=<<___;
85.text 124.text
125.extern OPENSSL_ia32cap_P
86 126
87.globl RC4 127.globl RC4
88.type RC4,\@function,4 128.type RC4,\@function,4
@@ -95,48 +135,173 @@ RC4: or $len,$len
95 push %r12 135 push %r12
96 push %r13 136 push %r13
97.Lprologue: 137.Lprologue:
138 mov $len,%r11
139 mov $inp,%r12
140 mov $out,%r13
141___
142my $len="%r11"; # reassign input arguments
143my $inp="%r12";
144my $out="%r13";
98 145
99 add \$8,$dat 146my @XX=("%r10","%rsi");
100 movl -8($dat),$XX[0]#d 147my @TX=("%rax","%rbx");
101 movl -4($dat),$YY#d 148my $YY="%rcx";
149my $TY="%rdx";
150
151$code.=<<___;
152 xor $XX[0],$XX[0]
153 xor $YY,$YY
154
155 lea 8($dat),$dat
156 mov -8($dat),$XX[0]#b
157 mov -4($dat),$YY#b
102 cmpl \$-1,256($dat) 158 cmpl \$-1,256($dat)
103 je .LRC4_CHAR 159 je .LRC4_CHAR
160 mov OPENSSL_ia32cap_P(%rip),%r8d
161 xor $TX[1],$TX[1]
104 inc $XX[0]#b 162 inc $XX[0]#b
163 sub $XX[0],$TX[1]
164 sub $inp,$out
105 movl ($dat,$XX[0],4),$TX[0]#d 165 movl ($dat,$XX[0],4),$TX[0]#d
106 test \$-8,$len 166 test \$-16,$len
107 jz .Lloop1 167 jz .Lloop1
108 jmp .Lloop8 168 bt \$30,%r8d # Intel CPU?
169 jc .Lintel
170 and \$7,$TX[1]
171 lea 1($XX[0]),$XX[1]
172 jz .Loop8
173 sub $TX[1],$len
174.Loop8_warmup:
175 add $TX[0]#b,$YY#b
176 movl ($dat,$YY,4),$TY#d
177 movl $TX[0]#d,($dat,$YY,4)
178 movl $TY#d,($dat,$XX[0],4)
179 add $TY#b,$TX[0]#b
180 inc $XX[0]#b
181 movl ($dat,$TX[0],4),$TY#d
182 movl ($dat,$XX[0],4),$TX[0]#d
183 xorb ($inp),$TY#b
184 movb $TY#b,($out,$inp)
185 lea 1($inp),$inp
186 dec $TX[1]
187 jnz .Loop8_warmup
188
189 lea 1($XX[0]),$XX[1]
190 jmp .Loop8
109.align 16 191.align 16
110.Lloop8: 192.Loop8:
111___ 193___
112for ($i=0;$i<8;$i++) { 194for ($i=0;$i<8;$i++) {
195$code.=<<___ if ($i==7);
196 add \$8,$XX[1]#b
197___
113$code.=<<___; 198$code.=<<___;
114 add $TX[0]#b,$YY#b 199 add $TX[0]#b,$YY#b
115 mov $XX[0],$XX[1]
116 movl ($dat,$YY,4),$TY#d 200 movl ($dat,$YY,4),$TY#d
117 ror \$8,%rax # ror is redundant when $i=0
118 inc $XX[1]#b
119 movl ($dat,$XX[1],4),$TX[1]#d
120 cmp $XX[1],$YY
121 movl $TX[0]#d,($dat,$YY,4) 201 movl $TX[0]#d,($dat,$YY,4)
122 cmove $TX[0],$TX[1] 202 movl `4*($i==7?-1:$i)`($dat,$XX[1],4),$TX[1]#d
123 movl $TY#d,($dat,$XX[0],4) 203 ror \$8,%r8 # ror is redundant when $i=0
204 movl $TY#d,4*$i($dat,$XX[0],4)
124 add $TX[0]#b,$TY#b 205 add $TX[0]#b,$TY#b
125 movb ($dat,$TY,4),%al 206 movb ($dat,$TY,4),%r8b
126___ 207___
127push(@TX,shift(@TX)); push(@XX,shift(@XX)); # "rotate" registers 208push(@TX,shift(@TX)); #push(@XX,shift(@XX)); # "rotate" registers
128} 209}
129$code.=<<___; 210$code.=<<___;
130 ror \$8,%rax 211 add \$8,$XX[0]#b
212 ror \$8,%r8
131 sub \$8,$len 213 sub \$8,$len
132 214
133 xor ($inp),%rax 215 xor ($inp),%r8
134 add \$8,$inp 216 mov %r8,($out,$inp)
135 mov %rax,($out) 217 lea 8($inp),$inp
136 add \$8,$out
137 218
138 test \$-8,$len 219 test \$-8,$len
139 jnz .Lloop8 220 jnz .Loop8
221 cmp \$0,$len
222 jne .Lloop1
223 jmp .Lexit
224
225.align 16
226.Lintel:
227 test \$-32,$len
228 jz .Lloop1
229 and \$15,$TX[1]
230 jz .Loop16_is_hot
231 sub $TX[1],$len
232.Loop16_warmup:
233 add $TX[0]#b,$YY#b
234 movl ($dat,$YY,4),$TY#d
235 movl $TX[0]#d,($dat,$YY,4)
236 movl $TY#d,($dat,$XX[0],4)
237 add $TY#b,$TX[0]#b
238 inc $XX[0]#b
239 movl ($dat,$TX[0],4),$TY#d
240 movl ($dat,$XX[0],4),$TX[0]#d
241 xorb ($inp),$TY#b
242 movb $TY#b,($out,$inp)
243 lea 1($inp),$inp
244 dec $TX[1]
245 jnz .Loop16_warmup
246
247 mov $YY,$TX[1]
248 xor $YY,$YY
249 mov $TX[1]#b,$YY#b
250
251.Loop16_is_hot:
252 lea ($dat,$XX[0],4),$XX[1]
253___
254sub RC4_loop {
255 my $i=shift;
256 my $j=$i<0?0:$i;
257 my $xmm="%xmm".($j&1);
258
259 $code.=" add \$16,$XX[0]#b\n" if ($i==15);
260 $code.=" movdqu ($inp),%xmm2\n" if ($i==15);
261 $code.=" add $TX[0]#b,$YY#b\n" if ($i<=0);
262 $code.=" movl ($dat,$YY,4),$TY#d\n";
263 $code.=" pxor %xmm0,%xmm2\n" if ($i==0);
264 $code.=" psllq \$8,%xmm1\n" if ($i==0);
265 $code.=" pxor $xmm,$xmm\n" if ($i<=1);
266 $code.=" movl $TX[0]#d,($dat,$YY,4)\n";
267 $code.=" add $TY#b,$TX[0]#b\n";
268 $code.=" movl `4*($j+1)`($XX[1]),$TX[1]#d\n" if ($i<15);
269 $code.=" movz $TX[0]#b,$TX[0]#d\n";
270 $code.=" movl $TY#d,4*$j($XX[1])\n";
271 $code.=" pxor %xmm1,%xmm2\n" if ($i==0);
272 $code.=" lea ($dat,$XX[0],4),$XX[1]\n" if ($i==15);
273 $code.=" add $TX[1]#b,$YY#b\n" if ($i<15);
274 $code.=" pinsrw \$`($j>>1)&7`,($dat,$TX[0],4),$xmm\n";
275 $code.=" movdqu %xmm2,($out,$inp)\n" if ($i==0);
276 $code.=" lea 16($inp),$inp\n" if ($i==0);
277 $code.=" movl ($XX[1]),$TX[1]#d\n" if ($i==15);
278}
279 RC4_loop(-1);
280$code.=<<___;
281 jmp .Loop16_enter
282.align 16
283.Loop16:
284___
285
286for ($i=0;$i<16;$i++) {
287 $code.=".Loop16_enter:\n" if ($i==1);
288 RC4_loop($i);
289 push(@TX,shift(@TX)); # "rotate" registers
290}
291$code.=<<___;
292 mov $YY,$TX[1]
293 xor $YY,$YY # keyword to partial register
294 sub \$16,$len
295 mov $TX[1]#b,$YY#b
296 test \$-16,$len
297 jnz .Loop16
298
299 psllq \$8,%xmm1
300 pxor %xmm0,%xmm2
301 pxor %xmm1,%xmm2
302 movdqu %xmm2,($out,$inp)
303 lea 16($inp),$inp
304
140 cmp \$0,$len 305 cmp \$0,$len
141 jne .Lloop1 306 jne .Lloop1
142 jmp .Lexit 307 jmp .Lexit
@@ -152,9 +317,8 @@ $code.=<<___;
152 movl ($dat,$TX[0],4),$TY#d 317 movl ($dat,$TX[0],4),$TY#d
153 movl ($dat,$XX[0],4),$TX[0]#d 318 movl ($dat,$XX[0],4),$TX[0]#d
154 xorb ($inp),$TY#b 319 xorb ($inp),$TY#b
155 inc $inp 320 movb $TY#b,($out,$inp)
156 movb $TY#b,($out) 321 lea 1($inp),$inp
157 inc $out
158 dec $len 322 dec $len
159 jnz .Lloop1 323 jnz .Lloop1
160 jmp .Lexit 324 jmp .Lexit
@@ -165,13 +329,11 @@ $code.=<<___;
165 movzb ($dat,$XX[0]),$TX[0]#d 329 movzb ($dat,$XX[0]),$TX[0]#d
166 test \$-8,$len 330 test \$-8,$len
167 jz .Lcloop1 331 jz .Lcloop1
168 cmpl \$0,260($dat)
169 jnz .Lcloop1
170 jmp .Lcloop8 332 jmp .Lcloop8
171.align 16 333.align 16
172.Lcloop8: 334.Lcloop8:
173 mov ($inp),%eax 335 mov ($inp),%r8d
174 mov 4($inp),%ebx 336 mov 4($inp),%r9d
175___ 337___
176# unroll 2x4-wise, because 64-bit rotates kill Intel P4... 338# unroll 2x4-wise, because 64-bit rotates kill Intel P4...
177for ($i=0;$i<4;$i++) { 339for ($i=0;$i<4;$i++) {
@@ -188,8 +350,8 @@ $code.=<<___;
188 mov $TX[0],$TX[1] 350 mov $TX[0],$TX[1]
189.Lcmov$i: 351.Lcmov$i:
190 add $TX[0]#b,$TY#b 352 add $TX[0]#b,$TY#b
191 xor ($dat,$TY),%al 353 xor ($dat,$TY),%r8b
192 ror \$8,%eax 354 ror \$8,%r8d
193___ 355___
194push(@TX,shift(@TX)); push(@XX,shift(@XX)); # "rotate" registers 356push(@TX,shift(@TX)); push(@XX,shift(@XX)); # "rotate" registers
195} 357}
@@ -207,16 +369,16 @@ $code.=<<___;
207 mov $TX[0],$TX[1] 369 mov $TX[0],$TX[1]
208.Lcmov$i: 370.Lcmov$i:
209 add $TX[0]#b,$TY#b 371 add $TX[0]#b,$TY#b
210 xor ($dat,$TY),%bl 372 xor ($dat,$TY),%r9b
211 ror \$8,%ebx 373 ror \$8,%r9d
212___ 374___
213push(@TX,shift(@TX)); push(@XX,shift(@XX)); # "rotate" registers 375push(@TX,shift(@TX)); push(@XX,shift(@XX)); # "rotate" registers
214} 376}
215$code.=<<___; 377$code.=<<___;
216 lea -8($len),$len 378 lea -8($len),$len
217 mov %eax,($out) 379 mov %r8d,($out)
218 lea 8($inp),$inp 380 lea 8($inp),$inp
219 mov %ebx,4($out) 381 mov %r9d,4($out)
220 lea 8($out),$out 382 lea 8($out),$out
221 383
222 test \$-8,$len 384 test \$-8,$len
@@ -229,6 +391,7 @@ $code.=<<___;
229.align 16 391.align 16
230.Lcloop1: 392.Lcloop1:
231 add $TX[0]#b,$YY#b 393 add $TX[0]#b,$YY#b
394 movzb $YY#b,$YY#d
232 movzb ($dat,$YY),$TY#d 395 movzb ($dat,$YY),$TY#d
233 movb $TX[0]#b,($dat,$YY) 396 movb $TX[0]#b,($dat,$YY)
234 movb $TY#b,($dat,$XX[0]) 397 movb $TY#b,($dat,$XX[0])
@@ -260,16 +423,16 @@ $code.=<<___;
260 ret 423 ret
261.size RC4,.-RC4 424.size RC4,.-RC4
262___ 425___
426}
263 427
264$idx="%r8"; 428$idx="%r8";
265$ido="%r9"; 429$ido="%r9";
266 430
267$code.=<<___; 431$code.=<<___;
268.extern OPENSSL_ia32cap_P 432.globl private_RC4_set_key
269.globl RC4_set_key 433.type private_RC4_set_key,\@function,3
270.type RC4_set_key,\@function,3
271.align 16 434.align 16
272RC4_set_key: 435private_RC4_set_key:
273 lea 8($dat),$dat 436 lea 8($dat),$dat
274 lea ($inp,$len),$inp 437 lea ($inp,$len),$inp
275 neg $len 438 neg $len
@@ -280,12 +443,9 @@ RC4_set_key:
280 xor %r11,%r11 443 xor %r11,%r11
281 444
282 mov PIC_GOT(OPENSSL_ia32cap_P),$idx#d 445 mov PIC_GOT(OPENSSL_ia32cap_P),$idx#d
283 bt \$20,$idx#d 446 bt \$20,$idx#d # RC4_CHAR?
284 jnc .Lw1stloop 447 jc .Lc1stloop
285 bt \$30,$idx#d 448 jmp .Lw1stloop
286 setc $ido#b
287 mov $ido#d,260($dat)
288 jmp .Lc1stloop
289 449
290.align 16 450.align 16
291.Lw1stloop: 451.Lw1stloop:
@@ -339,7 +499,7 @@ RC4_set_key:
339 mov %eax,-8($dat) 499 mov %eax,-8($dat)
340 mov %eax,-4($dat) 500 mov %eax,-4($dat)
341 ret 501 ret
342.size RC4_set_key,.-RC4_set_key 502.size private_RC4_set_key,.-private_RC4_set_key
343 503
344.globl RC4_options 504.globl RC4_options
345.type RC4_options,\@abi-omnipotent 505.type RC4_options,\@abi-omnipotent
@@ -348,18 +508,20 @@ RC4_options:
348 lea .Lopts(%rip),%rax 508 lea .Lopts(%rip),%rax
349 mov PIC_GOT(OPENSSL_ia32cap_P),%edx 509 mov PIC_GOT(OPENSSL_ia32cap_P),%edx
350 bt \$20,%edx 510 bt \$20,%edx
351 jnc .Ldone 511 jc .L8xchar
352 add \$12,%rax
353 bt \$30,%edx 512 bt \$30,%edx
354 jnc .Ldone 513 jnc .Ldone
355 add \$13,%rax 514 add \$25,%rax
515 ret
516.L8xchar:
517 add \$12,%rax
356.Ldone: 518.Ldone:
357 ret 519 ret
358.align 64 520.align 64
359.Lopts: 521.Lopts:
360.asciz "rc4(8x,int)" 522.asciz "rc4(8x,int)"
361.asciz "rc4(8x,char)" 523.asciz "rc4(8x,char)"
362.asciz "rc4(1x,char)" 524.asciz "rc4(16x,int)"
363.asciz "RC4 for x86_64, CRYPTOGAMS by <appro\@openssl.org>" 525.asciz "RC4 for x86_64, CRYPTOGAMS by <appro\@openssl.org>"
364.align 64 526.align 64
365.size RC4_options,.-RC4_options 527.size RC4_options,.-RC4_options
@@ -482,22 +644,32 @@ key_se_handler:
482 .rva .LSEH_end_RC4 644 .rva .LSEH_end_RC4
483 .rva .LSEH_info_RC4 645 .rva .LSEH_info_RC4
484 646
485 .rva .LSEH_begin_RC4_set_key 647 .rva .LSEH_begin_private_RC4_set_key
486 .rva .LSEH_end_RC4_set_key 648 .rva .LSEH_end_private_RC4_set_key
487 .rva .LSEH_info_RC4_set_key 649 .rva .LSEH_info_private_RC4_set_key
488 650
489.section .xdata 651.section .xdata
490.align 8 652.align 8
491.LSEH_info_RC4: 653.LSEH_info_RC4:
492 .byte 9,0,0,0 654 .byte 9,0,0,0
493 .rva stream_se_handler 655 .rva stream_se_handler
494.LSEH_info_RC4_set_key: 656.LSEH_info_private_RC4_set_key:
495 .byte 9,0,0,0 657 .byte 9,0,0,0
496 .rva key_se_handler 658 .rva key_se_handler
497___ 659___
498} 660}
499 661
500$code =~ s/#([bwd])/$1/gm; 662sub reg_part {
663my ($reg,$conv)=@_;
664 if ($reg =~ /%r[0-9]+/) { $reg .= $conv; }
665 elsif ($conv eq "b") { $reg =~ s/%[er]([^x]+)x?/%$1l/; }
666 elsif ($conv eq "w") { $reg =~ s/%[er](.+)/%$1/; }
667 elsif ($conv eq "d") { $reg =~ s/%[er](.+)/%e$1/; }
668 return $reg;
669}
670
671$code =~ s/(%[a-z0-9]+)#([bwd])/reg_part($1,$2)/gem;
672$code =~ s/\`([^\`]*)\`/eval $1/gem;
501 673
502print $code; 674print $code;
503 675