summaryrefslogtreecommitdiff
path: root/src/lib/libcrypto/sha/asm/sha1-586.pl
diff options
context:
space:
mode:
Diffstat (limited to 'src/lib/libcrypto/sha/asm/sha1-586.pl')
-rw-r--r--src/lib/libcrypto/sha/asm/sha1-586.pl1225
1 files changed, 0 insertions, 1225 deletions
diff --git a/src/lib/libcrypto/sha/asm/sha1-586.pl b/src/lib/libcrypto/sha/asm/sha1-586.pl
deleted file mode 100644
index 6fbea34d78..0000000000
--- a/src/lib/libcrypto/sha/asm/sha1-586.pl
+++ /dev/null
@@ -1,1225 +0,0 @@
1#!/usr/bin/env perl
2
3# ====================================================================
4# [Re]written by Andy Polyakov <appro@fy.chalmers.se> for the OpenSSL
5# project. The module is, however, dual licensed under OpenSSL and
6# CRYPTOGAMS licenses depending on where you obtain it. For further
7# details see http://www.openssl.org/~appro/cryptogams/.
8# ====================================================================
9
10# "[Re]written" was achieved in two major overhauls. In 2004 BODY_*
11# functions were re-implemented to address P4 performance issue [see
12# commentary below], and in 2006 the rest was rewritten in order to
13# gain freedom to liberate licensing terms.
14
15# January, September 2004.
16#
17# It was noted that Intel IA-32 C compiler generates code which
18# performs ~30% *faster* on P4 CPU than original *hand-coded*
19# SHA1 assembler implementation. To address this problem (and
20# prove that humans are still better than machines:-), the
21# original code was overhauled, which resulted in following
22# performance changes:
23#
24# compared with original compared with Intel cc
25# assembler impl. generated code
26# Pentium -16% +48%
27# PIII/AMD +8% +16%
28# P4 +85%(!) +45%
29#
30# As you can see Pentium came out as looser:-( Yet I reckoned that
31# improvement on P4 outweights the loss and incorporate this
32# re-tuned code to 0.9.7 and later.
33# ----------------------------------------------------------------
34# <appro@fy.chalmers.se>
35
36# August 2009.
37#
38# George Spelvin has tipped that F_40_59(b,c,d) can be rewritten as
39# '(c&d) + (b&(c^d))', which allows to accumulate partial results
40# and lighten "pressure" on scratch registers. This resulted in
41# >12% performance improvement on contemporary AMD cores (with no
42# degradation on other CPUs:-). Also, the code was revised to maximize
43# "distance" between instructions producing input to 'lea' instruction
44# and the 'lea' instruction itself, which is essential for Intel Atom
45# core and resulted in ~15% improvement.
46
47# October 2010.
48#
49# Add SSSE3, Supplemental[!] SSE3, implementation. The idea behind it
50# is to offload message schedule denoted by Wt in NIST specification,
51# or Xupdate in OpenSSL source, to SIMD unit. The idea is not novel,
52# and in SSE2 context was first explored by Dean Gaudet in 2004, see
53# http://arctic.org/~dean/crypto/sha1.html. Since then several things
54# have changed that made it interesting again:
55#
56# a) XMM units became faster and wider;
57# b) instruction set became more versatile;
58# c) an important observation was made by Max Locktykhin, which made
59# it possible to reduce amount of instructions required to perform
60# the operation in question, for further details see
61# http://software.intel.com/en-us/articles/improving-the-performance-of-the-secure-hash-algorithm-1/.
62
63# April 2011.
64#
65# Add AVX code path, probably most controversial... The thing is that
66# switch to AVX alone improves performance by as little as 4% in
67# comparison to SSSE3 code path. But below result doesn't look like
68# 4% improvement... Trouble is that Sandy Bridge decodes 'ro[rl]' as
69# pair of µ-ops, and it's the additional µ-ops, two per round, that
70# make it run slower than Core2 and Westmere. But 'sh[rl]d' is decoded
71# as single µ-op by Sandy Bridge and it's replacing 'ro[rl]' with
72# equivalent 'sh[rl]d' that is responsible for the impressive 5.1
73# cycles per processed byte. But 'sh[rl]d' is not something that used
74# to be fast, nor does it appear to be fast in upcoming Bulldozer
75# [according to its optimization manual]. Which is why AVX code path
76# is guarded by *both* AVX and synthetic bit denoting Intel CPUs.
77# One can argue that it's unfair to AMD, but without 'sh[rl]d' it
78# makes no sense to keep the AVX code path. If somebody feels that
79# strongly, it's probably more appropriate to discuss possibility of
80# using vector rotate XOP on AMD...
81
82######################################################################
83# Current performance is summarized in following table. Numbers are
84# CPU clock cycles spent to process single byte (less is better).
85#
86# x86 SSSE3 AVX
87# Pentium 15.7 -
88# PIII 11.5 -
89# P4 10.6 -
90# AMD K8 7.1 -
91# Core2 7.3 6.1/+20% -
92# Atom 12.5 9.5(*)/+32% -
93# Westmere 7.3 5.6/+30% -
94# Sandy Bridge 8.8 6.2/+40% 5.1(**)/+70%
95#
96# (*) Loop is 1056 instructions long and expected result is ~8.25.
97# It remains mystery [to me] why ILP is limited to 1.7.
98#
99# (**) As per above comment, the result is for AVX *plus* sh[rl]d.
100
101$0 =~ m/(.*[\/\\])[^\/\\]+$/; $dir=$1;
102push(@INC,"${dir}","${dir}../../perlasm");
103require "x86asm.pl";
104
105&asm_init($ARGV[0],"sha1-586.pl",$ARGV[$#ARGV] eq "386");
106
107$xmm=$ymm=0;
108for (@ARGV) { $xmm=1 if (/-DOPENSSL_IA32_SSE2/); }
109
110$ymm=1 if ($xmm &&
111 `$ENV{CC} -Wa,-v -c -o /dev/null -x assembler /dev/null 2>&1`
112 =~ /GNU assembler version ([2-9]\.[0-9]+)/ &&
113 $1>=2.19); # first version supporting AVX
114
115&external_label("OPENSSL_ia32cap_P") if ($xmm);
116
117
118$A="eax";
119$B="ebx";
120$C="ecx";
121$D="edx";
122$E="edi";
123$T="esi";
124$tmp1="ebp";
125
126@V=($A,$B,$C,$D,$E,$T);
127
128$alt=0; # 1 denotes alternative IALU implementation, which performs
129 # 8% *worse* on P4, same on Westmere and Atom, 2% better on
130 # Sandy Bridge...
131
132sub BODY_00_15
133 {
134 local($n,$a,$b,$c,$d,$e,$f)=@_;
135
136 &comment("00_15 $n");
137
138 &mov($f,$c); # f to hold F_00_19(b,c,d)
139 if ($n==0) { &mov($tmp1,$a); }
140 else { &mov($a,$tmp1); }
141 &rotl($tmp1,5); # tmp1=ROTATE(a,5)
142 &xor($f,$d);
143 &add($tmp1,$e); # tmp1+=e;
144 &mov($e,&swtmp($n%16)); # e becomes volatile and is loaded
145 # with xi, also note that e becomes
146 # f in next round...
147 &and($f,$b);
148 &rotr($b,2); # b=ROTATE(b,30)
149 &xor($f,$d); # f holds F_00_19(b,c,d)
150 &lea($tmp1,&DWP(0x5a827999,$tmp1,$e)); # tmp1+=K_00_19+xi
151
152 if ($n==15) { &mov($e,&swtmp(($n+1)%16));# pre-fetch f for next round
153 &add($f,$tmp1); } # f+=tmp1
154 else { &add($tmp1,$f); } # f becomes a in next round
155 &mov($tmp1,$a) if ($alt && $n==15);
156 }
157
158sub BODY_16_19
159 {
160 local($n,$a,$b,$c,$d,$e,$f)=@_;
161
162 &comment("16_19 $n");
163
164if ($alt) {
165 &xor($c,$d);
166 &xor($f,&swtmp(($n+2)%16)); # f to hold Xupdate(xi,xa,xb,xc,xd)
167 &and($tmp1,$c); # tmp1 to hold F_00_19(b,c,d), b&=c^d
168 &xor($f,&swtmp(($n+8)%16));
169 &xor($tmp1,$d); # tmp1=F_00_19(b,c,d)
170 &xor($f,&swtmp(($n+13)%16)); # f holds xa^xb^xc^xd
171 &rotl($f,1); # f=ROTATE(f,1)
172 &add($e,$tmp1); # e+=F_00_19(b,c,d)
173 &xor($c,$d); # restore $c
174 &mov($tmp1,$a); # b in next round
175 &rotr($b,$n==16?2:7); # b=ROTATE(b,30)
176 &mov(&swtmp($n%16),$f); # xi=f
177 &rotl($a,5); # ROTATE(a,5)
178 &lea($f,&DWP(0x5a827999,$f,$e));# f+=F_00_19(b,c,d)+e
179 &mov($e,&swtmp(($n+1)%16)); # pre-fetch f for next round
180 &add($f,$a); # f+=ROTATE(a,5)
181} else {
182 &mov($tmp1,$c); # tmp1 to hold F_00_19(b,c,d)
183 &xor($f,&swtmp(($n+2)%16)); # f to hold Xupdate(xi,xa,xb,xc,xd)
184 &xor($tmp1,$d);
185 &xor($f,&swtmp(($n+8)%16));
186 &and($tmp1,$b);
187 &xor($f,&swtmp(($n+13)%16)); # f holds xa^xb^xc^xd
188 &rotl($f,1); # f=ROTATE(f,1)
189 &xor($tmp1,$d); # tmp1=F_00_19(b,c,d)
190 &add($e,$tmp1); # e+=F_00_19(b,c,d)
191 &mov($tmp1,$a);
192 &rotr($b,2); # b=ROTATE(b,30)
193 &mov(&swtmp($n%16),$f); # xi=f
194 &rotl($tmp1,5); # ROTATE(a,5)
195 &lea($f,&DWP(0x5a827999,$f,$e));# f+=F_00_19(b,c,d)+e
196 &mov($e,&swtmp(($n+1)%16)); # pre-fetch f for next round
197 &add($f,$tmp1); # f+=ROTATE(a,5)
198}
199 }
200
201sub BODY_20_39
202 {
203 local($n,$a,$b,$c,$d,$e,$f)=@_;
204 local $K=($n<40)?0x6ed9eba1:0xca62c1d6;
205
206 &comment("20_39 $n");
207
208if ($alt) {
209 &xor($tmp1,$c); # tmp1 to hold F_20_39(b,c,d), b^=c
210 &xor($f,&swtmp(($n+2)%16)); # f to hold Xupdate(xi,xa,xb,xc,xd)
211 &xor($tmp1,$d); # tmp1 holds F_20_39(b,c,d)
212 &xor($f,&swtmp(($n+8)%16));
213 &add($e,$tmp1); # e+=F_20_39(b,c,d)
214 &xor($f,&swtmp(($n+13)%16)); # f holds xa^xb^xc^xd
215 &rotl($f,1); # f=ROTATE(f,1)
216 &mov($tmp1,$a); # b in next round
217 &rotr($b,7); # b=ROTATE(b,30)
218 &mov(&swtmp($n%16),$f) if($n<77);# xi=f
219 &rotl($a,5); # ROTATE(a,5)
220 &xor($b,$c) if($n==39);# warm up for BODY_40_59
221 &and($tmp1,$b) if($n==39);
222 &lea($f,&DWP($K,$f,$e)); # f+=e+K_XX_YY
223 &mov($e,&swtmp(($n+1)%16)) if($n<79);# pre-fetch f for next round
224 &add($f,$a); # f+=ROTATE(a,5)
225 &rotr($a,5) if ($n==79);
226} else {
227 &mov($tmp1,$b); # tmp1 to hold F_20_39(b,c,d)
228 &xor($f,&swtmp(($n+2)%16)); # f to hold Xupdate(xi,xa,xb,xc,xd)
229 &xor($tmp1,$c);
230 &xor($f,&swtmp(($n+8)%16));
231 &xor($tmp1,$d); # tmp1 holds F_20_39(b,c,d)
232 &xor($f,&swtmp(($n+13)%16)); # f holds xa^xb^xc^xd
233 &rotl($f,1); # f=ROTATE(f,1)
234 &add($e,$tmp1); # e+=F_20_39(b,c,d)
235 &rotr($b,2); # b=ROTATE(b,30)
236 &mov($tmp1,$a);
237 &rotl($tmp1,5); # ROTATE(a,5)
238 &mov(&swtmp($n%16),$f) if($n<77);# xi=f
239 &lea($f,&DWP($K,$f,$e)); # f+=e+K_XX_YY
240 &mov($e,&swtmp(($n+1)%16)) if($n<79);# pre-fetch f for next round
241 &add($f,$tmp1); # f+=ROTATE(a,5)
242}
243 }
244
245sub BODY_40_59
246 {
247 local($n,$a,$b,$c,$d,$e,$f)=@_;
248
249 &comment("40_59 $n");
250
251if ($alt) {
252 &add($e,$tmp1); # e+=b&(c^d)
253 &xor($f,&swtmp(($n+2)%16)); # f to hold Xupdate(xi,xa,xb,xc,xd)
254 &mov($tmp1,$d);
255 &xor($f,&swtmp(($n+8)%16));
256 &xor($c,$d); # restore $c
257 &xor($f,&swtmp(($n+13)%16)); # f holds xa^xb^xc^xd
258 &rotl($f,1); # f=ROTATE(f,1)
259 &and($tmp1,$c);
260 &rotr($b,7); # b=ROTATE(b,30)
261 &add($e,$tmp1); # e+=c&d
262 &mov($tmp1,$a); # b in next round
263 &mov(&swtmp($n%16),$f); # xi=f
264 &rotl($a,5); # ROTATE(a,5)
265 &xor($b,$c) if ($n<59);
266 &and($tmp1,$b) if ($n<59);# tmp1 to hold F_40_59(b,c,d)
267 &lea($f,&DWP(0x8f1bbcdc,$f,$e));# f+=K_40_59+e+(b&(c^d))
268 &mov($e,&swtmp(($n+1)%16)); # pre-fetch f for next round
269 &add($f,$a); # f+=ROTATE(a,5)
270} else {
271 &mov($tmp1,$c); # tmp1 to hold F_40_59(b,c,d)
272 &xor($f,&swtmp(($n+2)%16)); # f to hold Xupdate(xi,xa,xb,xc,xd)
273 &xor($tmp1,$d);
274 &xor($f,&swtmp(($n+8)%16));
275 &and($tmp1,$b);
276 &xor($f,&swtmp(($n+13)%16)); # f holds xa^xb^xc^xd
277 &rotl($f,1); # f=ROTATE(f,1)
278 &add($tmp1,$e); # b&(c^d)+=e
279 &rotr($b,2); # b=ROTATE(b,30)
280 &mov($e,$a); # e becomes volatile
281 &rotl($e,5); # ROTATE(a,5)
282 &mov(&swtmp($n%16),$f); # xi=f
283 &lea($f,&DWP(0x8f1bbcdc,$f,$tmp1));# f+=K_40_59+e+(b&(c^d))
284 &mov($tmp1,$c);
285 &add($f,$e); # f+=ROTATE(a,5)
286 &and($tmp1,$d);
287 &mov($e,&swtmp(($n+1)%16)); # pre-fetch f for next round
288 &add($f,$tmp1); # f+=c&d
289}
290 }
291
292&function_begin("sha1_block_data_order");
293if ($xmm) {
294 &static_label("ssse3_shortcut");
295 &static_label("avx_shortcut") if ($ymm);
296 &static_label("K_XX_XX");
297
298 &call (&label("pic_point")); # make it PIC!
299 &set_label("pic_point");
300 &blindpop($tmp1);
301 &picmeup($T,"OPENSSL_ia32cap_P",$tmp1,&label("pic_point"));
302 &lea ($tmp1,&DWP(&label("K_XX_XX")."-".&label("pic_point"),$tmp1));
303
304 &mov ($A,&DWP(0,$T));
305 &mov ($D,&DWP(4,$T));
306 &test ($D,1<<9); # check SSSE3 bit
307 &jz (&label("x86"));
308 &test ($A,1<<24); # check FXSR bit
309 &jz (&label("x86"));
310 if ($ymm) {
311 &and ($D,1<<28); # mask AVX bit
312 &and ($A,1<<30); # mask "Intel CPU" bit
313 &or ($A,$D);
314 &cmp ($A,1<<28|1<<30);
315 &je (&label("avx_shortcut"));
316 }
317 &jmp (&label("ssse3_shortcut"));
318 &set_label("x86",16);
319}
320 &mov($tmp1,&wparam(0)); # SHA_CTX *c
321 &mov($T,&wparam(1)); # const void *input
322 &mov($A,&wparam(2)); # size_t num
323 &stack_push(16+3); # allocate X[16]
324 &shl($A,6);
325 &add($A,$T);
326 &mov(&wparam(2),$A); # pointer beyond the end of input
327 &mov($E,&DWP(16,$tmp1));# pre-load E
328 &jmp(&label("loop"));
329
330&set_label("loop",16);
331
332 # copy input chunk to X, but reversing byte order!
333 for ($i=0; $i<16; $i+=4)
334 {
335 &mov($A,&DWP(4*($i+0),$T));
336 &mov($B,&DWP(4*($i+1),$T));
337 &mov($C,&DWP(4*($i+2),$T));
338 &mov($D,&DWP(4*($i+3),$T));
339 &bswap($A);
340 &bswap($B);
341 &bswap($C);
342 &bswap($D);
343 &mov(&swtmp($i+0),$A);
344 &mov(&swtmp($i+1),$B);
345 &mov(&swtmp($i+2),$C);
346 &mov(&swtmp($i+3),$D);
347 }
348 &mov(&wparam(1),$T); # redundant in 1st spin
349
350 &mov($A,&DWP(0,$tmp1)); # load SHA_CTX
351 &mov($B,&DWP(4,$tmp1));
352 &mov($C,&DWP(8,$tmp1));
353 &mov($D,&DWP(12,$tmp1));
354 # E is pre-loaded
355
356 for($i=0;$i<16;$i++) { &BODY_00_15($i,@V); unshift(@V,pop(@V)); }
357 for(;$i<20;$i++) { &BODY_16_19($i,@V); unshift(@V,pop(@V)); }
358 for(;$i<40;$i++) { &BODY_20_39($i,@V); unshift(@V,pop(@V)); }
359 for(;$i<60;$i++) { &BODY_40_59($i,@V); unshift(@V,pop(@V)); }
360 for(;$i<80;$i++) { &BODY_20_39($i,@V); unshift(@V,pop(@V)); }
361
362 (($V[5] eq $D) and ($V[0] eq $E)) or die; # double-check
363
364 &mov($tmp1,&wparam(0)); # re-load SHA_CTX*
365 &mov($D,&wparam(1)); # D is last "T" and is discarded
366
367 &add($E,&DWP(0,$tmp1)); # E is last "A"...
368 &add($T,&DWP(4,$tmp1));
369 &add($A,&DWP(8,$tmp1));
370 &add($B,&DWP(12,$tmp1));
371 &add($C,&DWP(16,$tmp1));
372
373 &mov(&DWP(0,$tmp1),$E); # update SHA_CTX
374 &add($D,64); # advance input pointer
375 &mov(&DWP(4,$tmp1),$T);
376 &cmp($D,&wparam(2)); # have we reached the end yet?
377 &mov(&DWP(8,$tmp1),$A);
378 &mov($E,$C); # C is last "E" which needs to be "pre-loaded"
379 &mov(&DWP(12,$tmp1),$B);
380 &mov($T,$D); # input pointer
381 &mov(&DWP(16,$tmp1),$C);
382 &jb(&label("loop"));
383
384 &stack_pop(16+3);
385&function_end("sha1_block_data_order");
386
387if ($xmm) {
388######################################################################
389# The SSSE3 implementation.
390#
391# %xmm[0-7] are used as ring @X[] buffer containing quadruples of last
392# 32 elements of the message schedule or Xupdate outputs. First 4
393# quadruples are simply byte-swapped input, next 4 are calculated
394# according to method originally suggested by Dean Gaudet (modulo
395# being implemented in SSSE3). Once 8 quadruples or 32 elements are
396# collected, it switches to routine proposed by Max Locktyukhin.
397#
398# Calculations inevitably require temporary reqisters, and there are
399# no %xmm registers left to spare. For this reason part of the ring
400# buffer, X[2..4] to be specific, is offloaded to 3 quadriples ring
401# buffer on the stack. Keep in mind that X[2] is alias X[-6], X[3] -
402# X[-5], and X[4] - X[-4]...
403#
404# Another notable optimization is aggressive stack frame compression
405# aiming to minimize amount of 9-byte instructions...
406#
407# Yet another notable optimization is "jumping" $B variable. It means
408# that there is no register permanently allocated for $B value. This
409# allowed to eliminate one instruction from body_20_39...
410#
411my $Xi=4; # 4xSIMD Xupdate round, start pre-seeded
412my @X=map("xmm$_",(4..7,0..3)); # pre-seeded for $Xi=4
413my @V=($A,$B,$C,$D,$E);
414my $j=0; # hash round
415my @T=($T,$tmp1);
416my $inp;
417
418my $_rol=sub { &rol(@_) };
419my $_ror=sub { &ror(@_) };
420
421&function_begin("_sha1_block_data_order_ssse3");
422 &call (&label("pic_point")); # make it PIC!
423 &set_label("pic_point");
424 &blindpop($tmp1);
425 &lea ($tmp1,&DWP(&label("K_XX_XX")."-".&label("pic_point"),$tmp1));
426&set_label("ssse3_shortcut");
427
428 &movdqa (@X[3],&QWP(0,$tmp1)); # K_00_19
429 &movdqa (@X[4],&QWP(16,$tmp1)); # K_20_39
430 &movdqa (@X[5],&QWP(32,$tmp1)); # K_40_59
431 &movdqa (@X[6],&QWP(48,$tmp1)); # K_60_79
432 &movdqa (@X[2],&QWP(64,$tmp1)); # pbswap mask
433
434 &mov ($E,&wparam(0)); # load argument block
435 &mov ($inp=@T[1],&wparam(1));
436 &mov ($D,&wparam(2));
437 &mov (@T[0],"esp");
438
439 # stack frame layout
440 #
441 # +0 X[0]+K X[1]+K X[2]+K X[3]+K # XMM->IALU xfer area
442 # X[4]+K X[5]+K X[6]+K X[7]+K
443 # X[8]+K X[9]+K X[10]+K X[11]+K
444 # X[12]+K X[13]+K X[14]+K X[15]+K
445 #
446 # +64 X[0] X[1] X[2] X[3] # XMM->XMM backtrace area
447 # X[4] X[5] X[6] X[7]
448 # X[8] X[9] X[10] X[11] # even borrowed for K_00_19
449 #
450 # +112 K_20_39 K_20_39 K_20_39 K_20_39 # constants
451 # K_40_59 K_40_59 K_40_59 K_40_59
452 # K_60_79 K_60_79 K_60_79 K_60_79
453 # K_00_19 K_00_19 K_00_19 K_00_19
454 # pbswap mask
455 #
456 # +192 ctx # argument block
457 # +196 inp
458 # +200 end
459 # +204 esp
460 &sub ("esp",208);
461 &and ("esp",-64);
462
463 &movdqa (&QWP(112+0,"esp"),@X[4]); # copy constants
464 &movdqa (&QWP(112+16,"esp"),@X[5]);
465 &movdqa (&QWP(112+32,"esp"),@X[6]);
466 &shl ($D,6); # len*64
467 &movdqa (&QWP(112+48,"esp"),@X[3]);
468 &add ($D,$inp); # end of input
469 &movdqa (&QWP(112+64,"esp"),@X[2]);
470 &add ($inp,64);
471 &mov (&DWP(192+0,"esp"),$E); # save argument block
472 &mov (&DWP(192+4,"esp"),$inp);
473 &mov (&DWP(192+8,"esp"),$D);
474 &mov (&DWP(192+12,"esp"),@T[0]); # save original %esp
475
476 &mov ($A,&DWP(0,$E)); # load context
477 &mov ($B,&DWP(4,$E));
478 &mov ($C,&DWP(8,$E));
479 &mov ($D,&DWP(12,$E));
480 &mov ($E,&DWP(16,$E));
481 &mov (@T[0],$B); # magic seed
482
483 &movdqu (@X[-4&7],&QWP(-64,$inp)); # load input to %xmm[0-3]
484 &movdqu (@X[-3&7],&QWP(-48,$inp));
485 &movdqu (@X[-2&7],&QWP(-32,$inp));
486 &movdqu (@X[-1&7],&QWP(-16,$inp));
487 &pshufb (@X[-4&7],@X[2]); # byte swap
488 &pshufb (@X[-3&7],@X[2]);
489 &pshufb (@X[-2&7],@X[2]);
490 &movdqa (&QWP(112-16,"esp"),@X[3]); # borrow last backtrace slot
491 &pshufb (@X[-1&7],@X[2]);
492 &paddd (@X[-4&7],@X[3]); # add K_00_19
493 &paddd (@X[-3&7],@X[3]);
494 &paddd (@X[-2&7],@X[3]);
495 &movdqa (&QWP(0,"esp"),@X[-4&7]); # X[]+K xfer to IALU
496 &psubd (@X[-4&7],@X[3]); # restore X[]
497 &movdqa (&QWP(0+16,"esp"),@X[-3&7]);
498 &psubd (@X[-3&7],@X[3]);
499 &movdqa (&QWP(0+32,"esp"),@X[-2&7]);
500 &psubd (@X[-2&7],@X[3]);
501 &movdqa (@X[0],@X[-3&7]);
502 &jmp (&label("loop"));
503
504######################################################################
505# SSE instruction sequence is first broken to groups of independent
506# instructions, independent in respect to their inputs and shifter
507# (not all architectures have more than one). Then IALU instructions
508# are "knitted in" between the SSE groups. Distance is maintained for
509# SSE latency of 2 in hope that it fits better upcoming AMD Bulldozer
510# [which allegedly also implements SSSE3]...
511#
512# Temporary registers usage. X[2] is volatile at the entry and at the
513# end is restored from backtrace ring buffer. X[3] is expected to
514# contain current K_XX_XX constant and is used to caclulate X[-1]+K
515# from previous round, it becomes volatile the moment the value is
516# saved to stack for transfer to IALU. X[4] becomes volatile whenever
517# X[-4] is accumulated and offloaded to backtrace ring buffer, at the
518# end it is loaded with next K_XX_XX [which becomes X[3] in next
519# round]...
520#
521sub Xupdate_ssse3_16_31() # recall that $Xi starts wtih 4
522{ use integer;
523 my $body = shift;
524 my @insns = (&$body,&$body,&$body,&$body); # 40 instructions
525 my ($a,$b,$c,$d,$e);
526
527 eval(shift(@insns));
528 eval(shift(@insns));
529 &palignr(@X[0],@X[-4&7],8); # compose "X[-14]" in "X[0]"
530 &movdqa (@X[2],@X[-1&7]);
531 eval(shift(@insns));
532 eval(shift(@insns));
533
534 &paddd (@X[3],@X[-1&7]);
535 &movdqa (&QWP(64+16*(($Xi-4)%3),"esp"),@X[-4&7]);# save X[] to backtrace buffer
536 eval(shift(@insns));
537 eval(shift(@insns));
538 &psrldq (@X[2],4); # "X[-3]", 3 dwords
539 eval(shift(@insns));
540 eval(shift(@insns));
541 &pxor (@X[0],@X[-4&7]); # "X[0]"^="X[-16]"
542 eval(shift(@insns));
543 eval(shift(@insns));
544
545 &pxor (@X[2],@X[-2&7]); # "X[-3]"^"X[-8]"
546 eval(shift(@insns));
547 eval(shift(@insns));
548 eval(shift(@insns));
549 eval(shift(@insns));
550
551 &pxor (@X[0],@X[2]); # "X[0]"^="X[-3]"^"X[-8]"
552 eval(shift(@insns));
553 eval(shift(@insns));
554 &movdqa (&QWP(0+16*(($Xi-1)&3),"esp"),@X[3]); # X[]+K xfer to IALU
555 eval(shift(@insns));
556 eval(shift(@insns));
557
558 &movdqa (@X[4],@X[0]);
559 &movdqa (@X[2],@X[0]);
560 eval(shift(@insns));
561 eval(shift(@insns));
562 eval(shift(@insns));
563 eval(shift(@insns));
564
565 &pslldq (@X[4],12); # "X[0]"<<96, extract one dword
566 &paddd (@X[0],@X[0]);
567 eval(shift(@insns));
568 eval(shift(@insns));
569 eval(shift(@insns));
570 eval(shift(@insns));
571
572 &psrld (@X[2],31);
573 eval(shift(@insns));
574 eval(shift(@insns));
575 &movdqa (@X[3],@X[4]);
576 eval(shift(@insns));
577 eval(shift(@insns));
578
579 &psrld (@X[4],30);
580 &por (@X[0],@X[2]); # "X[0]"<<<=1
581 eval(shift(@insns));
582 eval(shift(@insns));
583 &movdqa (@X[2],&QWP(64+16*(($Xi-6)%3),"esp")) if ($Xi>5); # restore X[] from backtrace buffer
584 eval(shift(@insns));
585 eval(shift(@insns));
586
587 &pslld (@X[3],2);
588 &pxor (@X[0],@X[4]);
589 eval(shift(@insns));
590 eval(shift(@insns));
591 &movdqa (@X[4],&QWP(112-16+16*(($Xi)/5),"esp")); # K_XX_XX
592 eval(shift(@insns));
593 eval(shift(@insns));
594
595 &pxor (@X[0],@X[3]); # "X[0]"^=("X[0]"<<96)<<<2
596 &movdqa (@X[1],@X[-2&7]) if ($Xi<7);
597 eval(shift(@insns));
598 eval(shift(@insns));
599
600 foreach (@insns) { eval; } # remaining instructions [if any]
601
602 $Xi++; push(@X,shift(@X)); # "rotate" X[]
603}
604
605sub Xupdate_ssse3_32_79()
606{ use integer;
607 my $body = shift;
608 my @insns = (&$body,&$body,&$body,&$body); # 32 to 48 instructions
609 my ($a,$b,$c,$d,$e);
610
611 &movdqa (@X[2],@X[-1&7]) if ($Xi==8);
612 eval(shift(@insns)); # body_20_39
613 &pxor (@X[0],@X[-4&7]); # "X[0]"="X[-32]"^"X[-16]"
614 &palignr(@X[2],@X[-2&7],8); # compose "X[-6]"
615 eval(shift(@insns));
616 eval(shift(@insns));
617 eval(shift(@insns)); # rol
618
619 &pxor (@X[0],@X[-7&7]); # "X[0]"^="X[-28]"
620 &movdqa (&QWP(64+16*(($Xi-4)%3),"esp"),@X[-4&7]); # save X[] to backtrace buffer
621 eval(shift(@insns));
622 eval(shift(@insns));
623 if ($Xi%5) {
624 &movdqa (@X[4],@X[3]); # "perpetuate" K_XX_XX...
625 } else { # ... or load next one
626 &movdqa (@X[4],&QWP(112-16+16*($Xi/5),"esp"));
627 }
628 &paddd (@X[3],@X[-1&7]);
629 eval(shift(@insns)); # ror
630 eval(shift(@insns));
631
632 &pxor (@X[0],@X[2]); # "X[0]"^="X[-6]"
633 eval(shift(@insns)); # body_20_39
634 eval(shift(@insns));
635 eval(shift(@insns));
636 eval(shift(@insns)); # rol
637
638 &movdqa (@X[2],@X[0]);
639 &movdqa (&QWP(0+16*(($Xi-1)&3),"esp"),@X[3]); # X[]+K xfer to IALU
640 eval(shift(@insns));
641 eval(shift(@insns));
642 eval(shift(@insns)); # ror
643 eval(shift(@insns));
644
645 &pslld (@X[0],2);
646 eval(shift(@insns)); # body_20_39
647 eval(shift(@insns));
648 &psrld (@X[2],30);
649 eval(shift(@insns));
650 eval(shift(@insns)); # rol
651 eval(shift(@insns));
652 eval(shift(@insns));
653 eval(shift(@insns)); # ror
654 eval(shift(@insns));
655
656 &por (@X[0],@X[2]); # "X[0]"<<<=2
657 eval(shift(@insns)); # body_20_39
658 eval(shift(@insns));
659 &movdqa (@X[2],&QWP(64+16*(($Xi-6)%3),"esp")) if($Xi<19); # restore X[] from backtrace buffer
660 eval(shift(@insns));
661 eval(shift(@insns)); # rol
662 eval(shift(@insns));
663 eval(shift(@insns));
664 eval(shift(@insns)); # ror
665 &movdqa (@X[3],@X[0]) if ($Xi<19);
666 eval(shift(@insns));
667
668 foreach (@insns) { eval; } # remaining instructions
669
670 $Xi++; push(@X,shift(@X)); # "rotate" X[]
671}
672
673sub Xuplast_ssse3_80()
674{ use integer;
675 my $body = shift;
676 my @insns = (&$body,&$body,&$body,&$body); # 32 instructions
677 my ($a,$b,$c,$d,$e);
678
679 eval(shift(@insns));
680 &paddd (@X[3],@X[-1&7]);
681 eval(shift(@insns));
682 eval(shift(@insns));
683 eval(shift(@insns));
684 eval(shift(@insns));
685
686 &movdqa (&QWP(0+16*(($Xi-1)&3),"esp"),@X[3]); # X[]+K xfer IALU
687
688 foreach (@insns) { eval; } # remaining instructions
689
690 &mov ($inp=@T[1],&DWP(192+4,"esp"));
691 &cmp ($inp,&DWP(192+8,"esp"));
692 &je (&label("done"));
693
694 &movdqa (@X[3],&QWP(112+48,"esp")); # K_00_19
695 &movdqa (@X[2],&QWP(112+64,"esp")); # pbswap mask
696 &movdqu (@X[-4&7],&QWP(0,$inp)); # load input
697 &movdqu (@X[-3&7],&QWP(16,$inp));
698 &movdqu (@X[-2&7],&QWP(32,$inp));
699 &movdqu (@X[-1&7],&QWP(48,$inp));
700 &add ($inp,64);
701 &pshufb (@X[-4&7],@X[2]); # byte swap
702 &mov (&DWP(192+4,"esp"),$inp);
703 &movdqa (&QWP(112-16,"esp"),@X[3]); # borrow last backtrace slot
704
705 $Xi=0;
706}
707
708sub Xloop_ssse3()
709{ use integer;
710 my $body = shift;
711 my @insns = (&$body,&$body,&$body,&$body); # 32 instructions
712 my ($a,$b,$c,$d,$e);
713
714 eval(shift(@insns));
715 eval(shift(@insns));
716 &pshufb (@X[($Xi-3)&7],@X[2]);
717 eval(shift(@insns));
718 eval(shift(@insns));
719 &paddd (@X[($Xi-4)&7],@X[3]);
720 eval(shift(@insns));
721 eval(shift(@insns));
722 eval(shift(@insns));
723 eval(shift(@insns));
724 &movdqa (&QWP(0+16*$Xi,"esp"),@X[($Xi-4)&7]); # X[]+K xfer to IALU
725 eval(shift(@insns));
726 eval(shift(@insns));
727 &psubd (@X[($Xi-4)&7],@X[3]);
728
729 foreach (@insns) { eval; }
730 $Xi++;
731}
732
733sub Xtail_ssse3()
734{ use integer;
735 my $body = shift;
736 my @insns = (&$body,&$body,&$body,&$body); # 32 instructions
737 my ($a,$b,$c,$d,$e);
738
739 foreach (@insns) { eval; }
740}
741
742sub body_00_19 () {
743 (
744 '($a,$b,$c,$d,$e)=@V;'.
745 '&add ($e,&DWP(4*($j&15),"esp"));', # X[]+K xfer
746 '&xor ($c,$d);',
747 '&mov (@T[1],$a);', # $b in next round
748 '&$_rol ($a,5);',
749 '&and (@T[0],$c);', # ($b&($c^$d))
750 '&xor ($c,$d);', # restore $c
751 '&xor (@T[0],$d);',
752 '&add ($e,$a);',
753 '&$_ror ($b,$j?7:2);', # $b>>>2
754 '&add ($e,@T[0]);' .'$j++; unshift(@V,pop(@V)); unshift(@T,pop(@T));'
755 );
756}
757
758sub body_20_39 () {
759 (
760 '($a,$b,$c,$d,$e)=@V;'.
761 '&add ($e,&DWP(4*($j++&15),"esp"));', # X[]+K xfer
762 '&xor (@T[0],$d);', # ($b^$d)
763 '&mov (@T[1],$a);', # $b in next round
764 '&$_rol ($a,5);',
765 '&xor (@T[0],$c);', # ($b^$d^$c)
766 '&add ($e,$a);',
767 '&$_ror ($b,7);', # $b>>>2
768 '&add ($e,@T[0]);' .'unshift(@V,pop(@V)); unshift(@T,pop(@T));'
769 );
770}
771
772sub body_40_59 () {
773 (
774 '($a,$b,$c,$d,$e)=@V;'.
775 '&mov (@T[1],$c);',
776 '&xor ($c,$d);',
777 '&add ($e,&DWP(4*($j++&15),"esp"));', # X[]+K xfer
778 '&and (@T[1],$d);',
779 '&and (@T[0],$c);', # ($b&($c^$d))
780 '&$_ror ($b,7);', # $b>>>2
781 '&add ($e,@T[1]);',
782 '&mov (@T[1],$a);', # $b in next round
783 '&$_rol ($a,5);',
784 '&add ($e,@T[0]);',
785 '&xor ($c,$d);', # restore $c
786 '&add ($e,$a);' .'unshift(@V,pop(@V)); unshift(@T,pop(@T));'
787 );
788}
789
790&set_label("loop",16);
791 &Xupdate_ssse3_16_31(\&body_00_19);
792 &Xupdate_ssse3_16_31(\&body_00_19);
793 &Xupdate_ssse3_16_31(\&body_00_19);
794 &Xupdate_ssse3_16_31(\&body_00_19);
795 &Xupdate_ssse3_32_79(\&body_00_19);
796 &Xupdate_ssse3_32_79(\&body_20_39);
797 &Xupdate_ssse3_32_79(\&body_20_39);
798 &Xupdate_ssse3_32_79(\&body_20_39);
799 &Xupdate_ssse3_32_79(\&body_20_39);
800 &Xupdate_ssse3_32_79(\&body_20_39);
801 &Xupdate_ssse3_32_79(\&body_40_59);
802 &Xupdate_ssse3_32_79(\&body_40_59);
803 &Xupdate_ssse3_32_79(\&body_40_59);
804 &Xupdate_ssse3_32_79(\&body_40_59);
805 &Xupdate_ssse3_32_79(\&body_40_59);
806 &Xupdate_ssse3_32_79(\&body_20_39);
807 &Xuplast_ssse3_80(\&body_20_39); # can jump to "done"
808
809 $saved_j=$j; @saved_V=@V;
810
811 &Xloop_ssse3(\&body_20_39);
812 &Xloop_ssse3(\&body_20_39);
813 &Xloop_ssse3(\&body_20_39);
814
815 &mov (@T[1],&DWP(192,"esp")); # update context
816 &add ($A,&DWP(0,@T[1]));
817 &add (@T[0],&DWP(4,@T[1])); # $b
818 &add ($C,&DWP(8,@T[1]));
819 &mov (&DWP(0,@T[1]),$A);
820 &add ($D,&DWP(12,@T[1]));
821 &mov (&DWP(4,@T[1]),@T[0]);
822 &add ($E,&DWP(16,@T[1]));
823 &mov (&DWP(8,@T[1]),$C);
824 &mov ($B,@T[0]);
825 &mov (&DWP(12,@T[1]),$D);
826 &mov (&DWP(16,@T[1]),$E);
827 &movdqa (@X[0],@X[-3&7]);
828
829 &jmp (&label("loop"));
830
831&set_label("done",16); $j=$saved_j; @V=@saved_V;
832
833 &Xtail_ssse3(\&body_20_39);
834 &Xtail_ssse3(\&body_20_39);
835 &Xtail_ssse3(\&body_20_39);
836
837 &mov (@T[1],&DWP(192,"esp")); # update context
838 &add ($A,&DWP(0,@T[1]));
839 &mov ("esp",&DWP(192+12,"esp")); # restore %esp
840 &add (@T[0],&DWP(4,@T[1])); # $b
841 &add ($C,&DWP(8,@T[1]));
842 &mov (&DWP(0,@T[1]),$A);
843 &add ($D,&DWP(12,@T[1]));
844 &mov (&DWP(4,@T[1]),@T[0]);
845 &add ($E,&DWP(16,@T[1]));
846 &mov (&DWP(8,@T[1]),$C);
847 &mov (&DWP(12,@T[1]),$D);
848 &mov (&DWP(16,@T[1]),$E);
849
850&function_end("_sha1_block_data_order_ssse3");
851
852if ($ymm) {
853my $Xi=4; # 4xSIMD Xupdate round, start pre-seeded
854my @X=map("xmm$_",(4..7,0..3)); # pre-seeded for $Xi=4
855my @V=($A,$B,$C,$D,$E);
856my $j=0; # hash round
857my @T=($T,$tmp1);
858my $inp;
859
860my $_rol=sub { &shld(@_[0],@_) };
861my $_ror=sub { &shrd(@_[0],@_) };
862
863&function_begin("_sha1_block_data_order_avx");
864 &call (&label("pic_point")); # make it PIC!
865 &set_label("pic_point");
866 &blindpop($tmp1);
867 &lea ($tmp1,&DWP(&label("K_XX_XX")."-".&label("pic_point"),$tmp1));
868&set_label("avx_shortcut");
869 &vzeroall();
870
871 &vmovdqa(@X[3],&QWP(0,$tmp1)); # K_00_19
872 &vmovdqa(@X[4],&QWP(16,$tmp1)); # K_20_39
873 &vmovdqa(@X[5],&QWP(32,$tmp1)); # K_40_59
874 &vmovdqa(@X[6],&QWP(48,$tmp1)); # K_60_79
875 &vmovdqa(@X[2],&QWP(64,$tmp1)); # pbswap mask
876
877 &mov ($E,&wparam(0)); # load argument block
878 &mov ($inp=@T[1],&wparam(1));
879 &mov ($D,&wparam(2));
880 &mov (@T[0],"esp");
881
882 # stack frame layout
883 #
884 # +0 X[0]+K X[1]+K X[2]+K X[3]+K # XMM->IALU xfer area
885 # X[4]+K X[5]+K X[6]+K X[7]+K
886 # X[8]+K X[9]+K X[10]+K X[11]+K
887 # X[12]+K X[13]+K X[14]+K X[15]+K
888 #
889 # +64 X[0] X[1] X[2] X[3] # XMM->XMM backtrace area
890 # X[4] X[5] X[6] X[7]
891 # X[8] X[9] X[10] X[11] # even borrowed for K_00_19
892 #
893 # +112 K_20_39 K_20_39 K_20_39 K_20_39 # constants
894 # K_40_59 K_40_59 K_40_59 K_40_59
895 # K_60_79 K_60_79 K_60_79 K_60_79
896 # K_00_19 K_00_19 K_00_19 K_00_19
897 # pbswap mask
898 #
899 # +192 ctx # argument block
900 # +196 inp
901 # +200 end
902 # +204 esp
903 &sub ("esp",208);
904 &and ("esp",-64);
905
906 &vmovdqa(&QWP(112+0,"esp"),@X[4]); # copy constants
907 &vmovdqa(&QWP(112+16,"esp"),@X[5]);
908 &vmovdqa(&QWP(112+32,"esp"),@X[6]);
909 &shl ($D,6); # len*64
910 &vmovdqa(&QWP(112+48,"esp"),@X[3]);
911 &add ($D,$inp); # end of input
912 &vmovdqa(&QWP(112+64,"esp"),@X[2]);
913 &add ($inp,64);
914 &mov (&DWP(192+0,"esp"),$E); # save argument block
915 &mov (&DWP(192+4,"esp"),$inp);
916 &mov (&DWP(192+8,"esp"),$D);
917 &mov (&DWP(192+12,"esp"),@T[0]); # save original %esp
918
919 &mov ($A,&DWP(0,$E)); # load context
920 &mov ($B,&DWP(4,$E));
921 &mov ($C,&DWP(8,$E));
922 &mov ($D,&DWP(12,$E));
923 &mov ($E,&DWP(16,$E));
924 &mov (@T[0],$B); # magic seed
925
926 &vmovdqu(@X[-4&7],&QWP(-64,$inp)); # load input to %xmm[0-3]
927 &vmovdqu(@X[-3&7],&QWP(-48,$inp));
928 &vmovdqu(@X[-2&7],&QWP(-32,$inp));
929 &vmovdqu(@X[-1&7],&QWP(-16,$inp));
930 &vpshufb(@X[-4&7],@X[-4&7],@X[2]); # byte swap
931 &vpshufb(@X[-3&7],@X[-3&7],@X[2]);
932 &vpshufb(@X[-2&7],@X[-2&7],@X[2]);
933 &vmovdqa(&QWP(112-16,"esp"),@X[3]); # borrow last backtrace slot
934 &vpshufb(@X[-1&7],@X[-1&7],@X[2]);
935 &vpaddd (@X[0],@X[-4&7],@X[3]); # add K_00_19
936 &vpaddd (@X[1],@X[-3&7],@X[3]);
937 &vpaddd (@X[2],@X[-2&7],@X[3]);
938 &vmovdqa(&QWP(0,"esp"),@X[0]); # X[]+K xfer to IALU
939 &vmovdqa(&QWP(0+16,"esp"),@X[1]);
940 &vmovdqa(&QWP(0+32,"esp"),@X[2]);
941 &jmp (&label("loop"));
942
943sub Xupdate_avx_16_31() # recall that $Xi starts wtih 4
944{ use integer;
945 my $body = shift;
946 my @insns = (&$body,&$body,&$body,&$body); # 40 instructions
947 my ($a,$b,$c,$d,$e);
948
949 eval(shift(@insns));
950 eval(shift(@insns));
951 &vpalignr(@X[0],@X[-3&7],@X[-4&7],8); # compose "X[-14]" in "X[0]"
952 eval(shift(@insns));
953 eval(shift(@insns));
954
955 &vpaddd (@X[3],@X[3],@X[-1&7]);
956 &vmovdqa (&QWP(64+16*(($Xi-4)%3),"esp"),@X[-4&7]);# save X[] to backtrace buffer
957 eval(shift(@insns));
958 eval(shift(@insns));
959 &vpsrldq(@X[2],@X[-1&7],4); # "X[-3]", 3 dwords
960 eval(shift(@insns));
961 eval(shift(@insns));
962 &vpxor (@X[0],@X[0],@X[-4&7]); # "X[0]"^="X[-16]"
963 eval(shift(@insns));
964 eval(shift(@insns));
965
966 &vpxor (@X[2],@X[2],@X[-2&7]); # "X[-3]"^"X[-8]"
967 eval(shift(@insns));
968 eval(shift(@insns));
969 &vmovdqa (&QWP(0+16*(($Xi-1)&3),"esp"),@X[3]); # X[]+K xfer to IALU
970 eval(shift(@insns));
971 eval(shift(@insns));
972
973 &vpxor (@X[0],@X[0],@X[2]); # "X[0]"^="X[-3]"^"X[-8]"
974 eval(shift(@insns));
975 eval(shift(@insns));
976 eval(shift(@insns));
977 eval(shift(@insns));
978
979 &vpsrld (@X[2],@X[0],31);
980 eval(shift(@insns));
981 eval(shift(@insns));
982 eval(shift(@insns));
983 eval(shift(@insns));
984
985 &vpslldq(@X[4],@X[0],12); # "X[0]"<<96, extract one dword
986 &vpaddd (@X[0],@X[0],@X[0]);
987 eval(shift(@insns));
988 eval(shift(@insns));
989 eval(shift(@insns));
990 eval(shift(@insns));
991
992 &vpsrld (@X[3],@X[4],30);
993 &vpor (@X[0],@X[0],@X[2]); # "X[0]"<<<=1
994 eval(shift(@insns));
995 eval(shift(@insns));
996 eval(shift(@insns));
997 eval(shift(@insns));
998
999 &vpslld (@X[4],@X[4],2);
1000 &vmovdqa (@X[2],&QWP(64+16*(($Xi-6)%3),"esp")) if ($Xi>5); # restore X[] from backtrace buffer
1001 eval(shift(@insns));
1002 eval(shift(@insns));
1003 &vpxor (@X[0],@X[0],@X[3]);
1004 eval(shift(@insns));
1005 eval(shift(@insns));
1006 eval(shift(@insns));
1007 eval(shift(@insns));
1008
1009 &vpxor (@X[0],@X[0],@X[4]); # "X[0]"^=("X[0]"<<96)<<<2
1010 eval(shift(@insns));
1011 eval(shift(@insns));
1012 &vmovdqa (@X[4],&QWP(112-16+16*(($Xi)/5),"esp")); # K_XX_XX
1013 eval(shift(@insns));
1014 eval(shift(@insns));
1015
1016 foreach (@insns) { eval; } # remaining instructions [if any]
1017
1018 $Xi++; push(@X,shift(@X)); # "rotate" X[]
1019}
1020
1021sub Xupdate_avx_32_79()
1022{ use integer;
1023 my $body = shift;
1024 my @insns = (&$body,&$body,&$body,&$body); # 32 to 48 instructions
1025 my ($a,$b,$c,$d,$e);
1026
1027 &vpalignr(@X[2],@X[-1&7],@X[-2&7],8); # compose "X[-6]"
1028 &vpxor (@X[0],@X[0],@X[-4&7]); # "X[0]"="X[-32]"^"X[-16]"
1029 eval(shift(@insns)); # body_20_39
1030 eval(shift(@insns));
1031 eval(shift(@insns));
1032 eval(shift(@insns)); # rol
1033
1034 &vpxor (@X[0],@X[0],@X[-7&7]); # "X[0]"^="X[-28]"
1035 &vmovdqa (&QWP(64+16*(($Xi-4)%3),"esp"),@X[-4&7]); # save X[] to backtrace buffer
1036 eval(shift(@insns));
1037 eval(shift(@insns));
1038 if ($Xi%5) {
1039 &vmovdqa (@X[4],@X[3]); # "perpetuate" K_XX_XX...
1040 } else { # ... or load next one
1041 &vmovdqa (@X[4],&QWP(112-16+16*($Xi/5),"esp"));
1042 }
1043 &vpaddd (@X[3],@X[3],@X[-1&7]);
1044 eval(shift(@insns)); # ror
1045 eval(shift(@insns));
1046
1047 &vpxor (@X[0],@X[0],@X[2]); # "X[0]"^="X[-6]"
1048 eval(shift(@insns)); # body_20_39
1049 eval(shift(@insns));
1050 eval(shift(@insns));
1051 eval(shift(@insns)); # rol
1052
1053 &vpsrld (@X[2],@X[0],30);
1054 &vmovdqa (&QWP(0+16*(($Xi-1)&3),"esp"),@X[3]); # X[]+K xfer to IALU
1055 eval(shift(@insns));
1056 eval(shift(@insns));
1057 eval(shift(@insns)); # ror
1058 eval(shift(@insns));
1059
1060 &vpslld (@X[0],@X[0],2);
1061 eval(shift(@insns)); # body_20_39
1062 eval(shift(@insns));
1063 eval(shift(@insns));
1064 eval(shift(@insns)); # rol
1065 eval(shift(@insns));
1066 eval(shift(@insns));
1067 eval(shift(@insns)); # ror
1068 eval(shift(@insns));
1069
1070 &vpor (@X[0],@X[0],@X[2]); # "X[0]"<<<=2
1071 eval(shift(@insns)); # body_20_39
1072 eval(shift(@insns));
1073 &vmovdqa (@X[2],&QWP(64+16*(($Xi-6)%3),"esp")) if($Xi<19); # restore X[] from backtrace buffer
1074 eval(shift(@insns));
1075 eval(shift(@insns)); # rol
1076 eval(shift(@insns));
1077 eval(shift(@insns));
1078 eval(shift(@insns)); # ror
1079 eval(shift(@insns));
1080
1081 foreach (@insns) { eval; } # remaining instructions
1082
1083 $Xi++; push(@X,shift(@X)); # "rotate" X[]
1084}
1085
1086sub Xuplast_avx_80()
1087{ use integer;
1088 my $body = shift;
1089 my @insns = (&$body,&$body,&$body,&$body); # 32 instructions
1090 my ($a,$b,$c,$d,$e);
1091
1092 eval(shift(@insns));
1093 &vpaddd (@X[3],@X[3],@X[-1&7]);
1094 eval(shift(@insns));
1095 eval(shift(@insns));
1096 eval(shift(@insns));
1097 eval(shift(@insns));
1098
1099 &vmovdqa (&QWP(0+16*(($Xi-1)&3),"esp"),@X[3]); # X[]+K xfer IALU
1100
1101 foreach (@insns) { eval; } # remaining instructions
1102
1103 &mov ($inp=@T[1],&DWP(192+4,"esp"));
1104 &cmp ($inp,&DWP(192+8,"esp"));
1105 &je (&label("done"));
1106
1107 &vmovdqa(@X[3],&QWP(112+48,"esp")); # K_00_19
1108 &vmovdqa(@X[2],&QWP(112+64,"esp")); # pbswap mask
1109 &vmovdqu(@X[-4&7],&QWP(0,$inp)); # load input
1110 &vmovdqu(@X[-3&7],&QWP(16,$inp));
1111 &vmovdqu(@X[-2&7],&QWP(32,$inp));
1112 &vmovdqu(@X[-1&7],&QWP(48,$inp));
1113 &add ($inp,64);
1114 &vpshufb(@X[-4&7],@X[-4&7],@X[2]); # byte swap
1115 &mov (&DWP(192+4,"esp"),$inp);
1116 &vmovdqa(&QWP(112-16,"esp"),@X[3]); # borrow last backtrace slot
1117
1118 $Xi=0;
1119}
1120
1121sub Xloop_avx()
1122{ use integer;
1123 my $body = shift;
1124 my @insns = (&$body,&$body,&$body,&$body); # 32 instructions
1125 my ($a,$b,$c,$d,$e);
1126
1127 eval(shift(@insns));
1128 eval(shift(@insns));
1129 &vpshufb (@X[($Xi-3)&7],@X[($Xi-3)&7],@X[2]);
1130 eval(shift(@insns));
1131 eval(shift(@insns));
1132 &vpaddd (@X[$Xi&7],@X[($Xi-4)&7],@X[3]);
1133 eval(shift(@insns));
1134 eval(shift(@insns));
1135 eval(shift(@insns));
1136 eval(shift(@insns));
1137 &vmovdqa (&QWP(0+16*$Xi,"esp"),@X[$Xi&7]); # X[]+K xfer to IALU
1138 eval(shift(@insns));
1139 eval(shift(@insns));
1140
1141 foreach (@insns) { eval; }
1142 $Xi++;
1143}
1144
1145sub Xtail_avx()
1146{ use integer;
1147 my $body = shift;
1148 my @insns = (&$body,&$body,&$body,&$body); # 32 instructions
1149 my ($a,$b,$c,$d,$e);
1150
1151 foreach (@insns) { eval; }
1152}
1153
1154&set_label("loop",16);
1155 &Xupdate_avx_16_31(\&body_00_19);
1156 &Xupdate_avx_16_31(\&body_00_19);
1157 &Xupdate_avx_16_31(\&body_00_19);
1158 &Xupdate_avx_16_31(\&body_00_19);
1159 &Xupdate_avx_32_79(\&body_00_19);
1160 &Xupdate_avx_32_79(\&body_20_39);
1161 &Xupdate_avx_32_79(\&body_20_39);
1162 &Xupdate_avx_32_79(\&body_20_39);
1163 &Xupdate_avx_32_79(\&body_20_39);
1164 &Xupdate_avx_32_79(\&body_20_39);
1165 &Xupdate_avx_32_79(\&body_40_59);
1166 &Xupdate_avx_32_79(\&body_40_59);
1167 &Xupdate_avx_32_79(\&body_40_59);
1168 &Xupdate_avx_32_79(\&body_40_59);
1169 &Xupdate_avx_32_79(\&body_40_59);
1170 &Xupdate_avx_32_79(\&body_20_39);
1171 &Xuplast_avx_80(\&body_20_39); # can jump to "done"
1172
1173 $saved_j=$j; @saved_V=@V;
1174
1175 &Xloop_avx(\&body_20_39);
1176 &Xloop_avx(\&body_20_39);
1177 &Xloop_avx(\&body_20_39);
1178
1179 &mov (@T[1],&DWP(192,"esp")); # update context
1180 &add ($A,&DWP(0,@T[1]));
1181 &add (@T[0],&DWP(4,@T[1])); # $b
1182 &add ($C,&DWP(8,@T[1]));
1183 &mov (&DWP(0,@T[1]),$A);
1184 &add ($D,&DWP(12,@T[1]));
1185 &mov (&DWP(4,@T[1]),@T[0]);
1186 &add ($E,&DWP(16,@T[1]));
1187 &mov (&DWP(8,@T[1]),$C);
1188 &mov ($B,@T[0]);
1189 &mov (&DWP(12,@T[1]),$D);
1190 &mov (&DWP(16,@T[1]),$E);
1191
1192 &jmp (&label("loop"));
1193
1194&set_label("done",16); $j=$saved_j; @V=@saved_V;
1195
1196 &Xtail_avx(\&body_20_39);
1197 &Xtail_avx(\&body_20_39);
1198 &Xtail_avx(\&body_20_39);
1199
1200 &vzeroall();
1201
1202 &mov (@T[1],&DWP(192,"esp")); # update context
1203 &add ($A,&DWP(0,@T[1]));
1204 &mov ("esp",&DWP(192+12,"esp")); # restore %esp
1205 &add (@T[0],&DWP(4,@T[1])); # $b
1206 &add ($C,&DWP(8,@T[1]));
1207 &mov (&DWP(0,@T[1]),$A);
1208 &add ($D,&DWP(12,@T[1]));
1209 &mov (&DWP(4,@T[1]),@T[0]);
1210 &add ($E,&DWP(16,@T[1]));
1211 &mov (&DWP(8,@T[1]),$C);
1212 &mov (&DWP(12,@T[1]),$D);
1213 &mov (&DWP(16,@T[1]),$E);
1214&function_end("_sha1_block_data_order_avx");
1215}
1216&set_label("K_XX_XX",64);
1217&data_word(0x5a827999,0x5a827999,0x5a827999,0x5a827999); # K_00_19
1218&data_word(0x6ed9eba1,0x6ed9eba1,0x6ed9eba1,0x6ed9eba1); # K_20_39
1219&data_word(0x8f1bbcdc,0x8f1bbcdc,0x8f1bbcdc,0x8f1bbcdc); # K_40_59
1220&data_word(0xca62c1d6,0xca62c1d6,0xca62c1d6,0xca62c1d6); # K_60_79
1221&data_word(0x00010203,0x04050607,0x08090a0b,0x0c0d0e0f); # pbswap mask
1222}
1223&asciz("SHA1 block transform for x86, CRYPTOGAMS by <appro\@openssl.org>");
1224
1225&asm_finish();