diff options
Diffstat (limited to 'src/lib/libcrypto/sha/asm/sha1-sparcv9a.pl')
-rw-r--r-- | src/lib/libcrypto/sha/asm/sha1-sparcv9a.pl | 601 |
1 files changed, 0 insertions, 601 deletions
diff --git a/src/lib/libcrypto/sha/asm/sha1-sparcv9a.pl b/src/lib/libcrypto/sha/asm/sha1-sparcv9a.pl deleted file mode 100644 index e65291bbd9..0000000000 --- a/src/lib/libcrypto/sha/asm/sha1-sparcv9a.pl +++ /dev/null | |||
@@ -1,601 +0,0 @@ | |||
1 | #!/usr/bin/env perl | ||
2 | |||
3 | # ==================================================================== | ||
4 | # Written by Andy Polyakov <appro@fy.chalmers.se> for the OpenSSL | ||
5 | # project. The module is, however, dual licensed under OpenSSL and | ||
6 | # CRYPTOGAMS licenses depending on where you obtain it. For further | ||
7 | # details see http://www.openssl.org/~appro/cryptogams/. | ||
8 | # ==================================================================== | ||
9 | |||
10 | # January 2009 | ||
11 | # | ||
12 | # Provided that UltraSPARC VIS instructions are pipe-lined(*) and | ||
13 | # pairable(*) with IALU ones, offloading of Xupdate to the UltraSPARC | ||
14 | # Graphic Unit would make it possible to achieve higher instruction- | ||
15 | # level parallelism, ILP, and thus higher performance. It should be | ||
16 | # explicitly noted that ILP is the keyword, and it means that this | ||
17 | # code would be unsuitable for cores like UltraSPARC-Tx. The idea is | ||
18 | # not really novel, Sun had VIS-powered implementation for a while. | ||
19 | # Unlike Sun's implementation this one can process multiple unaligned | ||
20 | # input blocks, and as such works as drop-in replacement for OpenSSL | ||
21 | # sha1_block_data_order. Performance improvement was measured to be | ||
22 | # 40% over pure IALU sha1-sparcv9.pl on UltraSPARC-IIi, but 12% on | ||
23 | # UltraSPARC-III. See below for discussion... | ||
24 | # | ||
25 | # The module does not present direct interest for OpenSSL, because | ||
26 | # it doesn't provide better performance on contemporary SPARCv9 CPUs, | ||
27 | # UltraSPARC-Tx and SPARC64-V[II] to be specific. Those who feel they | ||
28 | # absolutely must score on UltraSPARC-I-IV can simply replace | ||
29 | # crypto/sha/asm/sha1-sparcv9.pl with this module. | ||
30 | # | ||
31 | # (*) "Pipe-lined" means that even if it takes several cycles to | ||
32 | # complete, next instruction using same functional unit [but not | ||
33 | # depending on the result of the current instruction] can start | ||
34 | # execution without having to wait for the unit. "Pairable" | ||
35 | # means that two [or more] independent instructions can be | ||
36 | # issued at the very same time. | ||
37 | |||
38 | $bits=32; | ||
39 | for (@ARGV) { $bits=64 if (/\-m64/ || /\-xarch\=v9/); } | ||
40 | if ($bits==64) { $bias=2047; $frame=192; } | ||
41 | else { $bias=0; $frame=112; } | ||
42 | |||
43 | $output=shift; | ||
44 | open STDOUT,">$output"; | ||
45 | |||
46 | $ctx="%i0"; | ||
47 | $inp="%i1"; | ||
48 | $len="%i2"; | ||
49 | $tmp0="%i3"; | ||
50 | $tmp1="%i4"; | ||
51 | $tmp2="%i5"; | ||
52 | $tmp3="%g5"; | ||
53 | |||
54 | $base="%g1"; | ||
55 | $align="%g4"; | ||
56 | $Xfer="%o5"; | ||
57 | $nXfer=$tmp3; | ||
58 | $Xi="%o7"; | ||
59 | |||
60 | $A="%l0"; | ||
61 | $B="%l1"; | ||
62 | $C="%l2"; | ||
63 | $D="%l3"; | ||
64 | $E="%l4"; | ||
65 | @V=($A,$B,$C,$D,$E); | ||
66 | |||
67 | $Actx="%o0"; | ||
68 | $Bctx="%o1"; | ||
69 | $Cctx="%o2"; | ||
70 | $Dctx="%o3"; | ||
71 | $Ectx="%o4"; | ||
72 | |||
73 | $fmul="%f32"; | ||
74 | $VK_00_19="%f34"; | ||
75 | $VK_20_39="%f36"; | ||
76 | $VK_40_59="%f38"; | ||
77 | $VK_60_79="%f40"; | ||
78 | @VK=($VK_00_19,$VK_20_39,$VK_40_59,$VK_60_79); | ||
79 | @X=("%f0", "%f1", "%f2", "%f3", "%f4", "%f5", "%f6", "%f7", | ||
80 | "%f8", "%f9","%f10","%f11","%f12","%f13","%f14","%f15","%f16"); | ||
81 | |||
82 | # This is reference 2x-parallelized VIS-powered Xupdate procedure. It | ||
83 | # covers even K_NN_MM addition... | ||
84 | sub Xupdate { | ||
85 | my ($i)=@_; | ||
86 | my $K=@VK[($i+16)/20]; | ||
87 | my $j=($i+16)%16; | ||
88 | |||
89 | # [ provided that GSR.alignaddr_offset is 5, $mul contains | ||
90 | # 0x100ULL<<32|0x100 value and K_NN_MM are pre-loaded to | ||
91 | # chosen registers... ] | ||
92 | $code.=<<___; | ||
93 | fxors @X[($j+13)%16],@X[$j],@X[$j] !-1/-1/-1:X[0]^=X[13] | ||
94 | fxors @X[($j+14)%16],@X[$j+1],@X[$j+1]! 0/ 0/ 0:X[1]^=X[14] | ||
95 | fxor @X[($j+2)%16],@X[($j+8)%16],%f18! 1/ 1/ 1:Tmp=X[2,3]^X[8,9] | ||
96 | fxor %f18,@X[$j],@X[$j] ! 2/ 4/ 3:X[0,1]^=X[2,3]^X[8,9] | ||
97 | faligndata @X[$j],@X[$j],%f18 ! 3/ 7/ 5:Tmp=X[0,1]>>>24 | ||
98 | fpadd32 @X[$j],@X[$j],@X[$j] ! 4/ 8/ 6:X[0,1]<<=1 | ||
99 | fmul8ulx16 %f18,$fmul,%f18 ! 5/10/ 7:Tmp>>=7, Tmp&=1 | ||
100 | ![fxors %f15,%f2,%f2] | ||
101 | for %f18,@X[$j],@X[$j] ! 8/14/10:X[0,1]|=Tmp | ||
102 | ![fxors %f0,%f3,%f3] !10/17/12:X[0] dependency | ||
103 | fpadd32 $K,@X[$j],%f20 | ||
104 | std %f20,[$Xfer+`4*$j`] | ||
105 | ___ | ||
106 | # The numbers delimited with slash are the earliest possible dispatch | ||
107 | # cycles for given instruction assuming 1 cycle latency for simple VIS | ||
108 | # instructions, such as on UltraSPARC-I&II, 3 cycles latency, such as | ||
109 | # on UltraSPARC-III&IV, and 2 cycles latency(*), respectively. Being | ||
110 | # 2x-parallelized the procedure is "worth" 5, 8.5 or 6 ticks per SHA1 | ||
111 | # round. As [long as] FPU/VIS instructions are perfectly pairable with | ||
112 | # IALU ones, the round timing is defined by the maximum between VIS | ||
113 | # and IALU timings. The latter varies from round to round and averages | ||
114 | # out at 6.25 ticks. This means that USI&II should operate at IALU | ||
115 | # rate, while USIII&IV - at VIS rate. This explains why performance | ||
116 | # improvement varies among processors. Well, given that pure IALU | ||
117 | # sha1-sparcv9.pl module exhibits virtually uniform performance of | ||
118 | # ~9.3 cycles per SHA1 round. Timings mentioned above are theoretical | ||
119 | # lower limits. Real-life performance was measured to be 6.6 cycles | ||
120 | # per SHA1 round on USIIi and 8.3 on USIII. The latter is lower than | ||
121 | # half-round VIS timing, because there are 16 Xupdate-free rounds, | ||
122 | # which "push down" average theoretical timing to 8 cycles... | ||
123 | |||
124 | # (*) SPARC64-V[II] was originally believed to have 2 cycles VIS | ||
125 | # latency. Well, it might have, but it doesn't have dedicated | ||
126 | # VIS-unit. Instead, VIS instructions are executed by other | ||
127 | # functional units, ones used here - by IALU. This doesn't | ||
128 | # improve effective ILP... | ||
129 | } | ||
130 | |||
131 | # The reference Xupdate procedure is then "strained" over *pairs* of | ||
132 | # BODY_NN_MM and kind of modulo-scheduled in respect to X[n]^=X[n+13] | ||
133 | # and K_NN_MM addition. It's "running" 15 rounds ahead, which leaves | ||
134 | # plenty of room to amortize for read-after-write hazard, as well as | ||
135 | # to fetch and align input for the next spin. The VIS instructions are | ||
136 | # scheduled for latency of 2 cycles, because there are not enough IALU | ||
137 | # instructions to schedule for latency of 3, while scheduling for 1 | ||
138 | # would give no gain on USI&II anyway. | ||
139 | |||
140 | sub BODY_00_19 { | ||
141 | my ($i,$a,$b,$c,$d,$e)=@_; | ||
142 | my $j=$i&~1; | ||
143 | my $k=($j+16+2)%16; # ahead reference | ||
144 | my $l=($j+16-2)%16; # behind reference | ||
145 | my $K=@VK[($j+16-2)/20]; | ||
146 | |||
147 | $j=($j+16)%16; | ||
148 | |||
149 | $code.=<<___ if (!($i&1)); | ||
150 | sll $a,5,$tmp0 !! $i | ||
151 | and $c,$b,$tmp3 | ||
152 | ld [$Xfer+`4*($i%16)`],$Xi | ||
153 | fxors @X[($j+14)%16],@X[$j+1],@X[$j+1]! 0/ 0/ 0:X[1]^=X[14] | ||
154 | srl $a,27,$tmp1 | ||
155 | add $tmp0,$e,$e | ||
156 | fxor @X[($j+2)%16],@X[($j+8)%16],%f18! 1/ 1/ 1:Tmp=X[2,3]^X[8,9] | ||
157 | sll $b,30,$tmp2 | ||
158 | add $tmp1,$e,$e | ||
159 | andn $d,$b,$tmp1 | ||
160 | add $Xi,$e,$e | ||
161 | fxor %f18,@X[$j],@X[$j] ! 2/ 4/ 3:X[0,1]^=X[2,3]^X[8,9] | ||
162 | srl $b,2,$b | ||
163 | or $tmp1,$tmp3,$tmp1 | ||
164 | or $tmp2,$b,$b | ||
165 | add $tmp1,$e,$e | ||
166 | faligndata @X[$j],@X[$j],%f18 ! 3/ 7/ 5:Tmp=X[0,1]>>>24 | ||
167 | ___ | ||
168 | $code.=<<___ if ($i&1); | ||
169 | sll $a,5,$tmp0 !! $i | ||
170 | and $c,$b,$tmp3 | ||
171 | ld [$Xfer+`4*($i%16)`],$Xi | ||
172 | fpadd32 @X[$j],@X[$j],@X[$j] ! 4/ 8/ 6:X[0,1]<<=1 | ||
173 | srl $a,27,$tmp1 | ||
174 | add $tmp0,$e,$e | ||
175 | fmul8ulx16 %f18,$fmul,%f18 ! 5/10/ 7:Tmp>>=7, Tmp&=1 | ||
176 | sll $b,30,$tmp2 | ||
177 | add $tmp1,$e,$e | ||
178 | fpadd32 $K,@X[$l],%f20 ! | ||
179 | andn $d,$b,$tmp1 | ||
180 | add $Xi,$e,$e | ||
181 | fxors @X[($k+13)%16],@X[$k],@X[$k] !-1/-1/-1:X[0]^=X[13] | ||
182 | srl $b,2,$b | ||
183 | or $tmp1,$tmp3,$tmp1 | ||
184 | fxor %f18,@X[$j],@X[$j] ! 8/14/10:X[0,1]|=Tmp | ||
185 | or $tmp2,$b,$b | ||
186 | add $tmp1,$e,$e | ||
187 | ___ | ||
188 | $code.=<<___ if ($i&1 && $i>=2); | ||
189 | std %f20,[$Xfer+`4*$l`] ! | ||
190 | ___ | ||
191 | } | ||
192 | |||
193 | sub BODY_20_39 { | ||
194 | my ($i,$a,$b,$c,$d,$e)=@_; | ||
195 | my $j=$i&~1; | ||
196 | my $k=($j+16+2)%16; # ahead reference | ||
197 | my $l=($j+16-2)%16; # behind reference | ||
198 | my $K=@VK[($j+16-2)/20]; | ||
199 | |||
200 | $j=($j+16)%16; | ||
201 | |||
202 | $code.=<<___ if (!($i&1) && $i<64); | ||
203 | sll $a,5,$tmp0 !! $i | ||
204 | ld [$Xfer+`4*($i%16)`],$Xi | ||
205 | fxors @X[($j+14)%16],@X[$j+1],@X[$j+1]! 0/ 0/ 0:X[1]^=X[14] | ||
206 | srl $a,27,$tmp1 | ||
207 | add $tmp0,$e,$e | ||
208 | fxor @X[($j+2)%16],@X[($j+8)%16],%f18! 1/ 1/ 1:Tmp=X[2,3]^X[8,9] | ||
209 | xor $c,$b,$tmp0 | ||
210 | add $tmp1,$e,$e | ||
211 | sll $b,30,$tmp2 | ||
212 | xor $d,$tmp0,$tmp1 | ||
213 | fxor %f18,@X[$j],@X[$j] ! 2/ 4/ 3:X[0,1]^=X[2,3]^X[8,9] | ||
214 | srl $b,2,$b | ||
215 | add $tmp1,$e,$e | ||
216 | or $tmp2,$b,$b | ||
217 | add $Xi,$e,$e | ||
218 | faligndata @X[$j],@X[$j],%f18 ! 3/ 7/ 5:Tmp=X[0,1]>>>24 | ||
219 | ___ | ||
220 | $code.=<<___ if ($i&1 && $i<64); | ||
221 | sll $a,5,$tmp0 !! $i | ||
222 | ld [$Xfer+`4*($i%16)`],$Xi | ||
223 | fpadd32 @X[$j],@X[$j],@X[$j] ! 4/ 8/ 6:X[0,1]<<=1 | ||
224 | srl $a,27,$tmp1 | ||
225 | add $tmp0,$e,$e | ||
226 | fmul8ulx16 %f18,$fmul,%f18 ! 5/10/ 7:Tmp>>=7, Tmp&=1 | ||
227 | xor $c,$b,$tmp0 | ||
228 | add $tmp1,$e,$e | ||
229 | fpadd32 $K,@X[$l],%f20 ! | ||
230 | sll $b,30,$tmp2 | ||
231 | xor $d,$tmp0,$tmp1 | ||
232 | fxors @X[($k+13)%16],@X[$k],@X[$k] !-1/-1/-1:X[0]^=X[13] | ||
233 | srl $b,2,$b | ||
234 | add $tmp1,$e,$e | ||
235 | fxor %f18,@X[$j],@X[$j] ! 8/14/10:X[0,1]|=Tmp | ||
236 | or $tmp2,$b,$b | ||
237 | add $Xi,$e,$e | ||
238 | std %f20,[$Xfer+`4*$l`] ! | ||
239 | ___ | ||
240 | $code.=<<___ if ($i==64); | ||
241 | sll $a,5,$tmp0 !! $i | ||
242 | ld [$Xfer+`4*($i%16)`],$Xi | ||
243 | fpadd32 $K,@X[$l],%f20 | ||
244 | srl $a,27,$tmp1 | ||
245 | add $tmp0,$e,$e | ||
246 | xor $c,$b,$tmp0 | ||
247 | add $tmp1,$e,$e | ||
248 | sll $b,30,$tmp2 | ||
249 | xor $d,$tmp0,$tmp1 | ||
250 | std %f20,[$Xfer+`4*$l`] | ||
251 | srl $b,2,$b | ||
252 | add $tmp1,$e,$e | ||
253 | or $tmp2,$b,$b | ||
254 | add $Xi,$e,$e | ||
255 | ___ | ||
256 | $code.=<<___ if ($i>64); | ||
257 | sll $a,5,$tmp0 !! $i | ||
258 | ld [$Xfer+`4*($i%16)`],$Xi | ||
259 | srl $a,27,$tmp1 | ||
260 | add $tmp0,$e,$e | ||
261 | xor $c,$b,$tmp0 | ||
262 | add $tmp1,$e,$e | ||
263 | sll $b,30,$tmp2 | ||
264 | xor $d,$tmp0,$tmp1 | ||
265 | srl $b,2,$b | ||
266 | add $tmp1,$e,$e | ||
267 | or $tmp2,$b,$b | ||
268 | add $Xi,$e,$e | ||
269 | ___ | ||
270 | } | ||
271 | |||
272 | sub BODY_40_59 { | ||
273 | my ($i,$a,$b,$c,$d,$e)=@_; | ||
274 | my $j=$i&~1; | ||
275 | my $k=($j+16+2)%16; # ahead reference | ||
276 | my $l=($j+16-2)%16; # behind reference | ||
277 | my $K=@VK[($j+16-2)/20]; | ||
278 | |||
279 | $j=($j+16)%16; | ||
280 | |||
281 | $code.=<<___ if (!($i&1)); | ||
282 | sll $a,5,$tmp0 !! $i | ||
283 | ld [$Xfer+`4*($i%16)`],$Xi | ||
284 | fxors @X[($j+14)%16],@X[$j+1],@X[$j+1]! 0/ 0/ 0:X[1]^=X[14] | ||
285 | srl $a,27,$tmp1 | ||
286 | add $tmp0,$e,$e | ||
287 | fxor @X[($j+2)%16],@X[($j+8)%16],%f18! 1/ 1/ 1:Tmp=X[2,3]^X[8,9] | ||
288 | and $c,$b,$tmp0 | ||
289 | add $tmp1,$e,$e | ||
290 | sll $b,30,$tmp2 | ||
291 | or $c,$b,$tmp1 | ||
292 | fxor %f18,@X[$j],@X[$j] ! 2/ 4/ 3:X[0,1]^=X[2,3]^X[8,9] | ||
293 | srl $b,2,$b | ||
294 | and $d,$tmp1,$tmp1 | ||
295 | add $Xi,$e,$e | ||
296 | or $tmp1,$tmp0,$tmp1 | ||
297 | faligndata @X[$j],@X[$j],%f18 ! 3/ 7/ 5:Tmp=X[0,1]>>>24 | ||
298 | or $tmp2,$b,$b | ||
299 | add $tmp1,$e,$e | ||
300 | fpadd32 @X[$j],@X[$j],@X[$j] ! 4/ 8/ 6:X[0,1]<<=1 | ||
301 | ___ | ||
302 | $code.=<<___ if ($i&1); | ||
303 | sll $a,5,$tmp0 !! $i | ||
304 | ld [$Xfer+`4*($i%16)`],$Xi | ||
305 | srl $a,27,$tmp1 | ||
306 | add $tmp0,$e,$e | ||
307 | fmul8ulx16 %f18,$fmul,%f18 ! 5/10/ 7:Tmp>>=7, Tmp&=1 | ||
308 | and $c,$b,$tmp0 | ||
309 | add $tmp1,$e,$e | ||
310 | fpadd32 $K,@X[$l],%f20 ! | ||
311 | sll $b,30,$tmp2 | ||
312 | or $c,$b,$tmp1 | ||
313 | fxors @X[($k+13)%16],@X[$k],@X[$k] !-1/-1/-1:X[0]^=X[13] | ||
314 | srl $b,2,$b | ||
315 | and $d,$tmp1,$tmp1 | ||
316 | fxor %f18,@X[$j],@X[$j] ! 8/14/10:X[0,1]|=Tmp | ||
317 | add $Xi,$e,$e | ||
318 | or $tmp1,$tmp0,$tmp1 | ||
319 | or $tmp2,$b,$b | ||
320 | add $tmp1,$e,$e | ||
321 | std %f20,[$Xfer+`4*$l`] ! | ||
322 | ___ | ||
323 | } | ||
324 | |||
325 | # If there is more data to process, then we pre-fetch the data for | ||
326 | # next iteration in last ten rounds... | ||
327 | sub BODY_70_79 { | ||
328 | my ($i,$a,$b,$c,$d,$e)=@_; | ||
329 | my $j=$i&~1; | ||
330 | my $m=($i%8)*2; | ||
331 | |||
332 | $j=($j+16)%16; | ||
333 | |||
334 | $code.=<<___ if ($i==70); | ||
335 | sll $a,5,$tmp0 !! $i | ||
336 | ld [$Xfer+`4*($i%16)`],$Xi | ||
337 | srl $a,27,$tmp1 | ||
338 | add $tmp0,$e,$e | ||
339 | ldd [$inp+64],@X[0] | ||
340 | xor $c,$b,$tmp0 | ||
341 | add $tmp1,$e,$e | ||
342 | sll $b,30,$tmp2 | ||
343 | xor $d,$tmp0,$tmp1 | ||
344 | srl $b,2,$b | ||
345 | add $tmp1,$e,$e | ||
346 | or $tmp2,$b,$b | ||
347 | add $Xi,$e,$e | ||
348 | |||
349 | and $inp,-64,$nXfer | ||
350 | inc 64,$inp | ||
351 | and $nXfer,255,$nXfer | ||
352 | alignaddr %g0,$align,%g0 | ||
353 | add $base,$nXfer,$nXfer | ||
354 | ___ | ||
355 | $code.=<<___ if ($i==71); | ||
356 | sll $a,5,$tmp0 !! $i | ||
357 | ld [$Xfer+`4*($i%16)`],$Xi | ||
358 | srl $a,27,$tmp1 | ||
359 | add $tmp0,$e,$e | ||
360 | xor $c,$b,$tmp0 | ||
361 | add $tmp1,$e,$e | ||
362 | sll $b,30,$tmp2 | ||
363 | xor $d,$tmp0,$tmp1 | ||
364 | srl $b,2,$b | ||
365 | add $tmp1,$e,$e | ||
366 | or $tmp2,$b,$b | ||
367 | add $Xi,$e,$e | ||
368 | ___ | ||
369 | $code.=<<___ if ($i>=72); | ||
370 | faligndata @X[$m],@X[$m+2],@X[$m] | ||
371 | sll $a,5,$tmp0 !! $i | ||
372 | ld [$Xfer+`4*($i%16)`],$Xi | ||
373 | srl $a,27,$tmp1 | ||
374 | add $tmp0,$e,$e | ||
375 | xor $c,$b,$tmp0 | ||
376 | add $tmp1,$e,$e | ||
377 | fpadd32 $VK_00_19,@X[$m],%f20 | ||
378 | sll $b,30,$tmp2 | ||
379 | xor $d,$tmp0,$tmp1 | ||
380 | srl $b,2,$b | ||
381 | add $tmp1,$e,$e | ||
382 | or $tmp2,$b,$b | ||
383 | add $Xi,$e,$e | ||
384 | ___ | ||
385 | $code.=<<___ if ($i<77); | ||
386 | ldd [$inp+`8*($i+1-70)`],@X[2*($i+1-70)] | ||
387 | ___ | ||
388 | $code.=<<___ if ($i==77); # redundant if $inp was aligned | ||
389 | add $align,63,$tmp0 | ||
390 | and $tmp0,-8,$tmp0 | ||
391 | ldd [$inp+$tmp0],@X[16] | ||
392 | ___ | ||
393 | $code.=<<___ if ($i>=72); | ||
394 | std %f20,[$nXfer+`4*$m`] | ||
395 | ___ | ||
396 | } | ||
397 | |||
398 | $code.=<<___; | ||
399 | .section ".text",#alloc,#execinstr | ||
400 | |||
401 | .align 64 | ||
402 | vis_const: | ||
403 | .long 0x5a827999,0x5a827999 ! K_00_19 | ||
404 | .long 0x6ed9eba1,0x6ed9eba1 ! K_20_39 | ||
405 | .long 0x8f1bbcdc,0x8f1bbcdc ! K_40_59 | ||
406 | .long 0xca62c1d6,0xca62c1d6 ! K_60_79 | ||
407 | .long 0x00000100,0x00000100 | ||
408 | .align 64 | ||
409 | .type vis_const,#object | ||
410 | .size vis_const,(.-vis_const) | ||
411 | |||
412 | .globl sha1_block_data_order | ||
413 | sha1_block_data_order: | ||
414 | save %sp,-$frame,%sp | ||
415 | add %fp,$bias-256,$base | ||
416 | |||
417 | 1: call .+8 | ||
418 | add %o7,vis_const-1b,$tmp0 | ||
419 | |||
420 | ldd [$tmp0+0],$VK_00_19 | ||
421 | ldd [$tmp0+8],$VK_20_39 | ||
422 | ldd [$tmp0+16],$VK_40_59 | ||
423 | ldd [$tmp0+24],$VK_60_79 | ||
424 | ldd [$tmp0+32],$fmul | ||
425 | |||
426 | ld [$ctx+0],$Actx | ||
427 | and $base,-256,$base | ||
428 | ld [$ctx+4],$Bctx | ||
429 | sub $base,$bias+$frame,%sp | ||
430 | ld [$ctx+8],$Cctx | ||
431 | and $inp,7,$align | ||
432 | ld [$ctx+12],$Dctx | ||
433 | and $inp,-8,$inp | ||
434 | ld [$ctx+16],$Ectx | ||
435 | |||
436 | ! X[16] is maintained in FP register bank | ||
437 | alignaddr %g0,$align,%g0 | ||
438 | ldd [$inp+0],@X[0] | ||
439 | sub $inp,-64,$Xfer | ||
440 | ldd [$inp+8],@X[2] | ||
441 | and $Xfer,-64,$Xfer | ||
442 | ldd [$inp+16],@X[4] | ||
443 | and $Xfer,255,$Xfer | ||
444 | ldd [$inp+24],@X[6] | ||
445 | add $base,$Xfer,$Xfer | ||
446 | ldd [$inp+32],@X[8] | ||
447 | ldd [$inp+40],@X[10] | ||
448 | ldd [$inp+48],@X[12] | ||
449 | brz,pt $align,.Laligned | ||
450 | ldd [$inp+56],@X[14] | ||
451 | |||
452 | ldd [$inp+64],@X[16] | ||
453 | faligndata @X[0],@X[2],@X[0] | ||
454 | faligndata @X[2],@X[4],@X[2] | ||
455 | faligndata @X[4],@X[6],@X[4] | ||
456 | faligndata @X[6],@X[8],@X[6] | ||
457 | faligndata @X[8],@X[10],@X[8] | ||
458 | faligndata @X[10],@X[12],@X[10] | ||
459 | faligndata @X[12],@X[14],@X[12] | ||
460 | faligndata @X[14],@X[16],@X[14] | ||
461 | |||
462 | .Laligned: | ||
463 | mov 5,$tmp0 | ||
464 | dec 1,$len | ||
465 | alignaddr %g0,$tmp0,%g0 | ||
466 | fpadd32 $VK_00_19,@X[0],%f16 | ||
467 | fpadd32 $VK_00_19,@X[2],%f18 | ||
468 | fpadd32 $VK_00_19,@X[4],%f20 | ||
469 | fpadd32 $VK_00_19,@X[6],%f22 | ||
470 | fpadd32 $VK_00_19,@X[8],%f24 | ||
471 | fpadd32 $VK_00_19,@X[10],%f26 | ||
472 | fpadd32 $VK_00_19,@X[12],%f28 | ||
473 | fpadd32 $VK_00_19,@X[14],%f30 | ||
474 | std %f16,[$Xfer+0] | ||
475 | mov $Actx,$A | ||
476 | std %f18,[$Xfer+8] | ||
477 | mov $Bctx,$B | ||
478 | std %f20,[$Xfer+16] | ||
479 | mov $Cctx,$C | ||
480 | std %f22,[$Xfer+24] | ||
481 | mov $Dctx,$D | ||
482 | std %f24,[$Xfer+32] | ||
483 | mov $Ectx,$E | ||
484 | std %f26,[$Xfer+40] | ||
485 | fxors @X[13],@X[0],@X[0] | ||
486 | std %f28,[$Xfer+48] | ||
487 | ba .Loop | ||
488 | std %f30,[$Xfer+56] | ||
489 | .align 32 | ||
490 | .Loop: | ||
491 | ___ | ||
492 | for ($i=0;$i<20;$i++) { &BODY_00_19($i,@V); unshift(@V,pop(@V)); } | ||
493 | for (;$i<40;$i++) { &BODY_20_39($i,@V); unshift(@V,pop(@V)); } | ||
494 | for (;$i<60;$i++) { &BODY_40_59($i,@V); unshift(@V,pop(@V)); } | ||
495 | for (;$i<70;$i++) { &BODY_20_39($i,@V); unshift(@V,pop(@V)); } | ||
496 | $code.=<<___; | ||
497 | tst $len | ||
498 | bz,pn `$bits==32?"%icc":"%xcc"`,.Ltail | ||
499 | nop | ||
500 | ___ | ||
501 | for (;$i<80;$i++) { &BODY_70_79($i,@V); unshift(@V,pop(@V)); } | ||
502 | $code.=<<___; | ||
503 | add $A,$Actx,$Actx | ||
504 | add $B,$Bctx,$Bctx | ||
505 | add $C,$Cctx,$Cctx | ||
506 | add $D,$Dctx,$Dctx | ||
507 | add $E,$Ectx,$Ectx | ||
508 | mov 5,$tmp0 | ||
509 | fxors @X[13],@X[0],@X[0] | ||
510 | mov $Actx,$A | ||
511 | mov $Bctx,$B | ||
512 | mov $Cctx,$C | ||
513 | mov $Dctx,$D | ||
514 | mov $Ectx,$E | ||
515 | alignaddr %g0,$tmp0,%g0 | ||
516 | dec 1,$len | ||
517 | ba .Loop | ||
518 | mov $nXfer,$Xfer | ||
519 | |||
520 | .align 32 | ||
521 | .Ltail: | ||
522 | ___ | ||
523 | for($i=70;$i<80;$i++) { &BODY_20_39($i,@V); unshift(@V,pop(@V)); } | ||
524 | $code.=<<___; | ||
525 | add $A,$Actx,$Actx | ||
526 | add $B,$Bctx,$Bctx | ||
527 | add $C,$Cctx,$Cctx | ||
528 | add $D,$Dctx,$Dctx | ||
529 | add $E,$Ectx,$Ectx | ||
530 | |||
531 | st $Actx,[$ctx+0] | ||
532 | st $Bctx,[$ctx+4] | ||
533 | st $Cctx,[$ctx+8] | ||
534 | st $Dctx,[$ctx+12] | ||
535 | st $Ectx,[$ctx+16] | ||
536 | |||
537 | ret | ||
538 | restore | ||
539 | .type sha1_block_data_order,#function | ||
540 | .size sha1_block_data_order,(.-sha1_block_data_order) | ||
541 | .asciz "SHA1 block transform for SPARCv9a, CRYPTOGAMS by <appro\@openssl.org>" | ||
542 | .align 4 | ||
543 | ___ | ||
544 | |||
545 | # Purpose of these subroutines is to explicitly encode VIS instructions, | ||
546 | # so that one can compile the module without having to specify VIS | ||
547 | # extentions on compiler command line, e.g. -xarch=v9 vs. -xarch=v9a. | ||
548 | # Idea is to reserve for option to produce "universal" binary and let | ||
549 | # programmer detect if current CPU is VIS capable at run-time. | ||
550 | sub unvis { | ||
551 | my ($mnemonic,$rs1,$rs2,$rd)=@_; | ||
552 | my ($ref,$opf); | ||
553 | my %visopf = ( "fmul8ulx16" => 0x037, | ||
554 | "faligndata" => 0x048, | ||
555 | "fpadd32" => 0x052, | ||
556 | "fxor" => 0x06c, | ||
557 | "fxors" => 0x06d ); | ||
558 | |||
559 | $ref = "$mnemonic\t$rs1,$rs2,$rd"; | ||
560 | |||
561 | if ($opf=$visopf{$mnemonic}) { | ||
562 | foreach ($rs1,$rs2,$rd) { | ||
563 | return $ref if (!/%f([0-9]{1,2})/); | ||
564 | $_=$1; | ||
565 | if ($1>=32) { | ||
566 | return $ref if ($1&1); | ||
567 | # re-encode for upper double register addressing | ||
568 | $_=($1|$1>>5)&31; | ||
569 | } | ||
570 | } | ||
571 | |||
572 | return sprintf ".word\t0x%08x !%s", | ||
573 | 0x81b00000|$rd<<25|$rs1<<14|$opf<<5|$rs2, | ||
574 | $ref; | ||
575 | } else { | ||
576 | return $ref; | ||
577 | } | ||
578 | } | ||
579 | sub unalignaddr { | ||
580 | my ($mnemonic,$rs1,$rs2,$rd)=@_; | ||
581 | my %bias = ( "g" => 0, "o" => 8, "l" => 16, "i" => 24 ); | ||
582 | my $ref="$mnemonic\t$rs1,$rs2,$rd"; | ||
583 | |||
584 | foreach ($rs1,$rs2,$rd) { | ||
585 | if (/%([goli])([0-7])/) { $_=$bias{$1}+$2; } | ||
586 | else { return $ref; } | ||
587 | } | ||
588 | return sprintf ".word\t0x%08x !%s", | ||
589 | 0x81b00300|$rd<<25|$rs1<<14|$rs2, | ||
590 | $ref; | ||
591 | } | ||
592 | |||
593 | $code =~ s/\`([^\`]*)\`/eval $1/gem; | ||
594 | $code =~ s/\b(f[^\s]*)\s+(%f[0-9]{1,2}),(%f[0-9]{1,2}),(%f[0-9]{1,2})/ | ||
595 | &unvis($1,$2,$3,$4) | ||
596 | /gem; | ||
597 | $code =~ s/\b(alignaddr)\s+(%[goli][0-7]),(%[goli][0-7]),(%[goli][0-7])/ | ||
598 | &unalignaddr($1,$2,$3,$4) | ||
599 | /gem; | ||
600 | print $code; | ||
601 | close STDOUT; | ||