summaryrefslogtreecommitdiff
path: root/src/lib/libcrypto/sha
diff options
context:
space:
mode:
Diffstat (limited to 'src/lib/libcrypto/sha')
-rw-r--r--src/lib/libcrypto/sha/asm/sha1-ia64.pl346
-rwxr-xr-xsrc/lib/libcrypto/sha/asm/sha1-x86_64.pl242
-rwxr-xr-xsrc/lib/libcrypto/sha/asm/sha512-ia64.pl672
-rwxr-xr-xsrc/lib/libcrypto/sha/asm/sha512-x86_64.pl344
-rw-r--r--src/lib/libcrypto/sha/sha256.c282
-rw-r--r--src/lib/libcrypto/sha/sha512.c537
6 files changed, 2128 insertions, 295 deletions
diff --git a/src/lib/libcrypto/sha/asm/sha1-ia64.pl b/src/lib/libcrypto/sha/asm/sha1-ia64.pl
index cb9dfad124..aa18c1089b 100644
--- a/src/lib/libcrypto/sha/asm/sha1-ia64.pl
+++ b/src/lib/libcrypto/sha/asm/sha1-ia64.pl
@@ -2,8 +2,9 @@
2# 2#
3# ==================================================================== 3# ====================================================================
4# Written by Andy Polyakov <appro@fy.chalmers.se> for the OpenSSL 4# Written by Andy Polyakov <appro@fy.chalmers.se> for the OpenSSL
5# project. Rights for redistribution and usage in source and binary 5# project. The module is, however, dual licensed under OpenSSL and
6# forms are granted according to the OpenSSL license. 6# CRYPTOGAMS licenses depending on where you obtain it. For further
7# details see http://www.openssl.org/~appro/cryptogams/.
7# ==================================================================== 8# ====================================================================
8# 9#
9# Eternal question is what's wrong with compiler generated code? The 10# Eternal question is what's wrong with compiler generated code? The
@@ -11,15 +12,10 @@
11# to perform rotations by maintaining copy of 32-bit value in upper 12# to perform rotations by maintaining copy of 32-bit value in upper
12# bits of 64-bit register. Just follow mux2 and shrp instructions... 13# bits of 64-bit register. Just follow mux2 and shrp instructions...
13# Performance under big-endian OS such as HP-UX is 179MBps*1GHz, which 14# Performance under big-endian OS such as HP-UX is 179MBps*1GHz, which
14# is >50% better than HP C and >2x better than gcc. As of this moment 15# is >50% better than HP C and >2x better than gcc.
15# performance under little-endian OS such as Linux and Windows will be
16# a bit lower, because data has to be picked in reverse byte-order.
17# It's possible to resolve this issue by implementing third function,
18# sha1_block_asm_data_order_aligned, which would temporarily flip
19# BE field in User Mask register...
20 16
21$code=<<___; 17$code=<<___;
22.ident \"sha1-ia64.s, version 1.0\" 18.ident \"sha1-ia64.s, version 1.2\"
23.ident \"IA-64 ISA artwork by Andy Polyakov <appro\@fy.chalmers.se>\" 19.ident \"IA-64 ISA artwork by Andy Polyakov <appro\@fy.chalmers.se>\"
24.explicit 20.explicit
25 21
@@ -55,63 +51,55 @@ else {
55 51
56sub BODY_00_15 { 52sub BODY_00_15 {
57local *code=shift; 53local *code=shift;
58local ($i,$a,$b,$c,$d,$e,$f,$unaligned)=@_; 54local ($i,$a,$b,$c,$d,$e,$f)=@_;
59 55
60if ($unaligned) { 56$code.=<<___ if ($i==0);
61 $code.=<<___; 57{ .mmi; ld1 $X[$i&0xf]=[inp],2 // MSB
62{ .mmi; ld1 tmp0=[inp],2 // MSB 58 ld1 tmp2=[tmp3],2 };;
63 ld1 tmp1=[tmp3],2 };; 59{ .mmi; ld1 tmp0=[inp],2
64{ .mmi; ld1 tmp2=[inp],2 60 ld1 tmp4=[tmp3],2 // LSB
65 ld1 $X[$i&0xf]=[tmp3],2 // LSB 61 dep $X[$i&0xf]=$X[$i&0xf],tmp2,8,8 };;
66 dep tmp1=tmp0,tmp1,8,8 };;
67{ .mii; cmp.ne p16,p0=r0,r0 // no misaligned prefetch
68 dep $X[$i&0xf]=tmp2,$X[$i&0xf],8,8;;
69 dep $X[$i&0xf]=tmp1,$X[$i&0xf],16,16 };;
70{ .mmi; nop.m 0
71___
72 }
73elsif ($i<15) {
74 $code.=<<___;
75{ .mmi; ld4 $X[($i+1)&0xf]=[inp],4 // prefetch
76___
77 }
78else {
79 $code.=<<___;
80{ .mmi; nop.m 0
81___ 62___
82 }
83if ($i<15) { 63if ($i<15) {
84 $code.=<<___; 64 $code.=<<___;
85 and tmp0=$c,$b 65{ .mmi; ld1 $X[($i+1)&0xf]=[inp],2 // +1
86 dep.z tmp5=$a,5,27 } // a<<5 66 dep tmp1=tmp0,tmp4,8,8 };;
67{ .mmi; ld1 tmp2=[tmp3],2 // +1
68 and tmp4=$c,$b
69 dep $X[$i&0xf]=$X[$i&0xf],tmp1,16,16 } //;;
87{ .mmi; andcm tmp1=$d,$b 70{ .mmi; andcm tmp1=$d,$b
88 add tmp4=$e,$K_00_19 };; 71 add tmp0=$e,$K_00_19
89{ .mmi; or tmp0=tmp0,tmp1 // F_00_19(b,c,d)=(b&c)|(~b&d) 72 dep.z tmp5=$a,5,27 };; // a<<5
90 add $f=tmp4,$X[$i&0xf] // f=xi+e+K_00_19 73{ .mmi; or tmp4=tmp4,tmp1 // F_00_19(b,c,d)=(b&c)|(~b&d)
74 add $f=tmp0,$X[$i&0xf] // f=xi+e+K_00_19
91 extr.u tmp1=$a,27,5 };; // a>>27 75 extr.u tmp1=$a,27,5 };; // a>>27
92{ .mib; add $f=$f,tmp0 // f+=F_00_19(b,c,d) 76{ .mmi; ld1 tmp0=[inp],2 // +1
77 add $f=$f,tmp4 // f+=F_00_19(b,c,d)
93 shrp $b=tmp6,tmp6,2 } // b=ROTATE(b,30) 78 shrp $b=tmp6,tmp6,2 } // b=ROTATE(b,30)
94{ .mib; or tmp1=tmp1,tmp5 // ROTATE(a,5) 79{ .mmi; ld1 tmp4=[tmp3],2 // +1
80 or tmp5=tmp1,tmp5 // ROTATE(a,5)
95 mux2 tmp6=$a,0x44 };; // see b in next iteration 81 mux2 tmp6=$a,0x44 };; // see b in next iteration
96{ .mii; add $f=$f,tmp1 // f+=ROTATE(a,5) 82{ .mii; add $f=$f,tmp5 // f+=ROTATE(a,5)
97 mux2 $X[$i&0xf]=$X[$i&0xf],0x44 83 dep $X[($i+1)&0xf]=$X[($i+1)&0xf],tmp2,8,8 // +1
98 nop.i 0 };; 84 mux2 $X[$i&0xf]=$X[$i&0xf],0x44 } //;;
99 85
100___ 86___
101 } 87 }
102else { 88else {
103 $code.=<<___; 89 $code.=<<___;
104 and tmp0=$c,$b 90{ .mii; and tmp3=$c,$b
105 dep.z tmp5=$a,5,27 } // a<<5 ;;? 91 dep tmp1=tmp0,tmp4,8,8;;
92 dep $X[$i&0xf]=$X[$i&0xf],tmp1,16,16 } //;;
106{ .mmi; andcm tmp1=$d,$b 93{ .mmi; andcm tmp1=$d,$b
107 add tmp4=$e,$K_00_19 };; 94 add tmp0=$e,$K_00_19
108{ .mmi; or tmp0=tmp0,tmp1 // F_00_19(b,c,d)=(b&c)|(~b&d) 95 dep.z tmp5=$a,5,27 };; // a<<5
109 add $f=tmp4,$X[$i&0xf] // f=xi+e+K_00_19 96{ .mmi; or tmp4=tmp3,tmp1 // F_00_19(b,c,d)=(b&c)|(~b&d)
97 add $f=tmp0,$X[$i&0xf] // f=xi+e+K_00_19
110 extr.u tmp1=$a,27,5 } // a>>27 98 extr.u tmp1=$a,27,5 } // a>>27
111{ .mmi; xor tmp2=$X[($i+0+1)&0xf],$X[($i+2+1)&0xf] // +1 99{ .mmi; xor tmp2=$X[($i+0+1)&0xf],$X[($i+2+1)&0xf] // +1
112 xor tmp3=$X[($i+8+1)&0xf],$X[($i+13+1)&0xf] // +1 100 xor tmp3=$X[($i+8+1)&0xf],$X[($i+13+1)&0xf] // +1
113 nop.i 0 };; 101 nop.i 0 };;
114{ .mmi; add $f=$f,tmp0 // f+=F_00_19(b,c,d) 102{ .mmi; add $f=$f,tmp4 // f+=F_00_19(b,c,d)
115 xor tmp2=tmp2,tmp3 // +1 103 xor tmp2=tmp2,tmp3 // +1
116 shrp $b=tmp6,tmp6,2 } // b=ROTATE(b,30) 104 shrp $b=tmp6,tmp6,2 } // b=ROTATE(b,30)
117{ .mmi; or tmp1=tmp1,tmp5 // ROTATE(a,5) 105{ .mmi; or tmp1=tmp1,tmp5 // ROTATE(a,5)
@@ -190,9 +178,7 @@ $code.=<<___;
190 extr.u tmp1=$a,27,5 } // a>>27 178 extr.u tmp1=$a,27,5 } // a>>27
191{ .mib; add $f=$f,tmp4 // f+=e+K_20_39 179{ .mib; add $f=$f,tmp4 // f+=e+K_20_39
192 add $h1=$h1,$a };; // wrap up 180 add $h1=$h1,$a };; // wrap up
193{ .mmi; 181{ .mmi; add $f=$f,tmp0 // f+=F_20_39(b,c,d)
194(p16) ld4.s $X[0]=[inp],4 // non-faulting prefetch
195 add $f=$f,tmp0 // f+=F_20_39(b,c,d)
196 shrp $b=tmp6,tmp6,2 } // b=ROTATE(b,30) ;;? 182 shrp $b=tmp6,tmp6,2 } // b=ROTATE(b,30) ;;?
197{ .mmi; or tmp1=tmp1,tmp5 // ROTATE(a,5) 183{ .mmi; or tmp1=tmp1,tmp5 // ROTATE(a,5)
198 add $h3=$h3,$c };; // wrap up 184 add $h3=$h3,$c };; // wrap up
@@ -245,172 +231,15 @@ tmp3=r11;
245ctx=r32; // in0 231ctx=r32; // in0
246inp=r33; // in1 232inp=r33; // in1
247 233
248// void sha1_block_asm_host_order(SHA_CTX *c,const void *p,size_t num); 234// void sha1_block_data_order(SHA_CTX *c,const void *p,size_t num);
249.global sha1_block_asm_host_order# 235.global sha1_block_data_order#
250.proc sha1_block_asm_host_order# 236.proc sha1_block_data_order#
251.align 32 237.align 32
252sha1_block_asm_host_order: 238sha1_block_data_order:
253 .prologue 239 .prologue
254 .fframe 0
255 .save ar.pfs,r0
256 .save ar.lc,r3
257{ .mmi; alloc tmp1=ar.pfs,3,15,0,0 240{ .mmi; alloc tmp1=ar.pfs,3,15,0,0
258 $ADDP tmp0=4,ctx 241 $ADDP tmp0=4,ctx
259 mov r3=ar.lc }
260{ .mmi; $ADDP ctx=0,ctx
261 $ADDP inp=0,inp
262 mov r2=pr };;
263tmp4=in2;
264tmp5=loc13;
265tmp6=loc14;
266 .body
267{ .mlx; ld4 $h0=[ctx],8
268 movl $K_00_19=0x5a827999 }
269{ .mlx; ld4 $h1=[tmp0],8
270 movl $K_20_39=0x6ed9eba1 };;
271{ .mlx; ld4 $h2=[ctx],8
272 movl $K_40_59=0x8f1bbcdc }
273{ .mlx; ld4 $h3=[tmp0]
274 movl $K_60_79=0xca62c1d6 };;
275{ .mmi; ld4 $h4=[ctx],-16
276 add in2=-1,in2 // adjust num for ar.lc
277 mov ar.ec=1 };;
278{ .mmi; ld4 $X[0]=[inp],4 // prefetch
279 cmp.ne p16,p0=r0,in2 // prefecth at loop end
280 mov ar.lc=in2 };; // brp.loop.imp: too far
281
282.Lhtop:
283{ .mmi; mov $A=$h0
284 mov $B=$h1
285 mux2 tmp6=$h1,0x44 }
286{ .mmi; mov $C=$h2
287 mov $D=$h3
288 mov $E=$h4 };;
289
290___
291
292 &BODY_00_15(\$code, 0,$A,$B,$C,$D,$E,$T);
293 &BODY_00_15(\$code, 1,$T,$A,$B,$C,$D,$E);
294 &BODY_00_15(\$code, 2,$E,$T,$A,$B,$C,$D);
295 &BODY_00_15(\$code, 3,$D,$E,$T,$A,$B,$C);
296 &BODY_00_15(\$code, 4,$C,$D,$E,$T,$A,$B);
297 &BODY_00_15(\$code, 5,$B,$C,$D,$E,$T,$A);
298 &BODY_00_15(\$code, 6,$A,$B,$C,$D,$E,$T);
299 &BODY_00_15(\$code, 7,$T,$A,$B,$C,$D,$E);
300 &BODY_00_15(\$code, 8,$E,$T,$A,$B,$C,$D);
301 &BODY_00_15(\$code, 9,$D,$E,$T,$A,$B,$C);
302 &BODY_00_15(\$code,10,$C,$D,$E,$T,$A,$B);
303 &BODY_00_15(\$code,11,$B,$C,$D,$E,$T,$A);
304 &BODY_00_15(\$code,12,$A,$B,$C,$D,$E,$T);
305 &BODY_00_15(\$code,13,$T,$A,$B,$C,$D,$E);
306 &BODY_00_15(\$code,14,$E,$T,$A,$B,$C,$D);
307 &BODY_00_15(\$code,15,$D,$E,$T,$A,$B,$C);
308
309 &BODY_16_19(\$code,16,$C,$D,$E,$T,$A,$B);
310 &BODY_16_19(\$code,17,$B,$C,$D,$E,$T,$A);
311 &BODY_16_19(\$code,18,$A,$B,$C,$D,$E,$T);
312 &BODY_16_19(\$code,19,$T,$A,$B,$C,$D,$E);
313
314 &BODY_20_39(\$code,20,$E,$T,$A,$B,$C,$D);
315 &BODY_20_39(\$code,21,$D,$E,$T,$A,$B,$C);
316 &BODY_20_39(\$code,22,$C,$D,$E,$T,$A,$B);
317 &BODY_20_39(\$code,23,$B,$C,$D,$E,$T,$A);
318 &BODY_20_39(\$code,24,$A,$B,$C,$D,$E,$T);
319 &BODY_20_39(\$code,25,$T,$A,$B,$C,$D,$E);
320 &BODY_20_39(\$code,26,$E,$T,$A,$B,$C,$D);
321 &BODY_20_39(\$code,27,$D,$E,$T,$A,$B,$C);
322 &BODY_20_39(\$code,28,$C,$D,$E,$T,$A,$B);
323 &BODY_20_39(\$code,29,$B,$C,$D,$E,$T,$A);
324 &BODY_20_39(\$code,30,$A,$B,$C,$D,$E,$T);
325 &BODY_20_39(\$code,31,$T,$A,$B,$C,$D,$E);
326 &BODY_20_39(\$code,32,$E,$T,$A,$B,$C,$D);
327 &BODY_20_39(\$code,33,$D,$E,$T,$A,$B,$C);
328 &BODY_20_39(\$code,34,$C,$D,$E,$T,$A,$B);
329 &BODY_20_39(\$code,35,$B,$C,$D,$E,$T,$A);
330 &BODY_20_39(\$code,36,$A,$B,$C,$D,$E,$T);
331 &BODY_20_39(\$code,37,$T,$A,$B,$C,$D,$E);
332 &BODY_20_39(\$code,38,$E,$T,$A,$B,$C,$D);
333 &BODY_20_39(\$code,39,$D,$E,$T,$A,$B,$C);
334
335 &BODY_40_59(\$code,40,$C,$D,$E,$T,$A,$B);
336 &BODY_40_59(\$code,41,$B,$C,$D,$E,$T,$A);
337 &BODY_40_59(\$code,42,$A,$B,$C,$D,$E,$T);
338 &BODY_40_59(\$code,43,$T,$A,$B,$C,$D,$E);
339 &BODY_40_59(\$code,44,$E,$T,$A,$B,$C,$D);
340 &BODY_40_59(\$code,45,$D,$E,$T,$A,$B,$C);
341 &BODY_40_59(\$code,46,$C,$D,$E,$T,$A,$B);
342 &BODY_40_59(\$code,47,$B,$C,$D,$E,$T,$A);
343 &BODY_40_59(\$code,48,$A,$B,$C,$D,$E,$T);
344 &BODY_40_59(\$code,49,$T,$A,$B,$C,$D,$E);
345 &BODY_40_59(\$code,50,$E,$T,$A,$B,$C,$D);
346 &BODY_40_59(\$code,51,$D,$E,$T,$A,$B,$C);
347 &BODY_40_59(\$code,52,$C,$D,$E,$T,$A,$B);
348 &BODY_40_59(\$code,53,$B,$C,$D,$E,$T,$A);
349 &BODY_40_59(\$code,54,$A,$B,$C,$D,$E,$T);
350 &BODY_40_59(\$code,55,$T,$A,$B,$C,$D,$E);
351 &BODY_40_59(\$code,56,$E,$T,$A,$B,$C,$D);
352 &BODY_40_59(\$code,57,$D,$E,$T,$A,$B,$C);
353 &BODY_40_59(\$code,58,$C,$D,$E,$T,$A,$B);
354 &BODY_40_59(\$code,59,$B,$C,$D,$E,$T,$A);
355
356 &BODY_60_79(\$code,60,$A,$B,$C,$D,$E,$T);
357 &BODY_60_79(\$code,61,$T,$A,$B,$C,$D,$E);
358 &BODY_60_79(\$code,62,$E,$T,$A,$B,$C,$D);
359 &BODY_60_79(\$code,63,$D,$E,$T,$A,$B,$C);
360 &BODY_60_79(\$code,64,$C,$D,$E,$T,$A,$B);
361 &BODY_60_79(\$code,65,$B,$C,$D,$E,$T,$A);
362 &BODY_60_79(\$code,66,$A,$B,$C,$D,$E,$T);
363 &BODY_60_79(\$code,67,$T,$A,$B,$C,$D,$E);
364 &BODY_60_79(\$code,68,$E,$T,$A,$B,$C,$D);
365 &BODY_60_79(\$code,69,$D,$E,$T,$A,$B,$C);
366 &BODY_60_79(\$code,70,$C,$D,$E,$T,$A,$B);
367 &BODY_60_79(\$code,71,$B,$C,$D,$E,$T,$A);
368 &BODY_60_79(\$code,72,$A,$B,$C,$D,$E,$T);
369 &BODY_60_79(\$code,73,$T,$A,$B,$C,$D,$E);
370 &BODY_60_79(\$code,74,$E,$T,$A,$B,$C,$D);
371 &BODY_60_79(\$code,75,$D,$E,$T,$A,$B,$C);
372 &BODY_60_79(\$code,76,$C,$D,$E,$T,$A,$B);
373 &BODY_60_79(\$code,77,$B,$C,$D,$E,$T,$A);
374 &BODY_60_79(\$code,78,$A,$B,$C,$D,$E,$T);
375 &BODY_60_79(\$code,79,$T,$A,$B,$C,$D,$E);
376
377$code.=<<___;
378{ .mmb; add $h0=$h0,$E
379 nop.m 0
380 br.ctop.dptk.many .Lhtop };;
381.Lhend:
382{ .mmi; add tmp0=4,ctx
383 mov ar.lc=r3 };;
384{ .mmi; st4 [ctx]=$h0,8
385 st4 [tmp0]=$h1,8 };;
386{ .mmi; st4 [ctx]=$h2,8
387 st4 [tmp0]=$h3 };;
388{ .mib; st4 [ctx]=$h4,-16
389 mov pr=r2,0x1ffff
390 br.ret.sptk.many b0 };;
391.endp sha1_block_asm_host_order#
392___
393
394
395$code.=<<___;
396// void sha1_block_asm_data_order(SHA_CTX *c,const void *p,size_t num);
397.global sha1_block_asm_data_order#
398.proc sha1_block_asm_data_order#
399.align 32
400sha1_block_asm_data_order:
401___
402$code.=<<___ if ($big_endian);
403{ .mmi; and r2=3,inp };;
404{ .mib; cmp.eq p6,p0=r0,r2
405(p6) br.dptk.many sha1_block_asm_host_order };;
406___
407$code.=<<___;
408 .prologue
409 .fframe 0
410 .save ar.pfs,r0
411 .save ar.lc,r3 242 .save ar.lc,r3
412{ .mmi; alloc tmp1=ar.pfs,3,15,0,0
413 $ADDP tmp0=4,ctx
414 mov r3=ar.lc } 243 mov r3=ar.lc }
415{ .mmi; $ADDP ctx=0,ctx 244{ .mmi; $ADDP ctx=0,ctx
416 $ADDP inp=0,inp 245 $ADDP inp=0,inp
@@ -444,90 +273,16 @@ tmp6=loc14;
444 273
445___ 274___
446 275
447 &BODY_00_15(\$code, 0,$A,$B,$C,$D,$E,$T,1); 276{ my $i,@V=($A,$B,$C,$D,$E,$T);
448 &BODY_00_15(\$code, 1,$T,$A,$B,$C,$D,$E,1);
449 &BODY_00_15(\$code, 2,$E,$T,$A,$B,$C,$D,1);
450 &BODY_00_15(\$code, 3,$D,$E,$T,$A,$B,$C,1);
451 &BODY_00_15(\$code, 4,$C,$D,$E,$T,$A,$B,1);
452 &BODY_00_15(\$code, 5,$B,$C,$D,$E,$T,$A,1);
453 &BODY_00_15(\$code, 6,$A,$B,$C,$D,$E,$T,1);
454 &BODY_00_15(\$code, 7,$T,$A,$B,$C,$D,$E,1);
455 &BODY_00_15(\$code, 8,$E,$T,$A,$B,$C,$D,1);
456 &BODY_00_15(\$code, 9,$D,$E,$T,$A,$B,$C,1);
457 &BODY_00_15(\$code,10,$C,$D,$E,$T,$A,$B,1);
458 &BODY_00_15(\$code,11,$B,$C,$D,$E,$T,$A,1);
459 &BODY_00_15(\$code,12,$A,$B,$C,$D,$E,$T,1);
460 &BODY_00_15(\$code,13,$T,$A,$B,$C,$D,$E,1);
461 &BODY_00_15(\$code,14,$E,$T,$A,$B,$C,$D,1);
462 &BODY_00_15(\$code,15,$D,$E,$T,$A,$B,$C,1);
463
464 &BODY_16_19(\$code,16,$C,$D,$E,$T,$A,$B);
465 &BODY_16_19(\$code,17,$B,$C,$D,$E,$T,$A);
466 &BODY_16_19(\$code,18,$A,$B,$C,$D,$E,$T);
467 &BODY_16_19(\$code,19,$T,$A,$B,$C,$D,$E);
468 277
469 &BODY_20_39(\$code,20,$E,$T,$A,$B,$C,$D); 278 for($i=0;$i<16;$i++) { &BODY_00_15(\$code,$i,@V); unshift(@V,pop(@V)); }
470 &BODY_20_39(\$code,21,$D,$E,$T,$A,$B,$C); 279 for(;$i<20;$i++) { &BODY_16_19(\$code,$i,@V); unshift(@V,pop(@V)); }
471 &BODY_20_39(\$code,22,$C,$D,$E,$T,$A,$B); 280 for(;$i<40;$i++) { &BODY_20_39(\$code,$i,@V); unshift(@V,pop(@V)); }
472 &BODY_20_39(\$code,23,$B,$C,$D,$E,$T,$A); 281 for(;$i<60;$i++) { &BODY_40_59(\$code,$i,@V); unshift(@V,pop(@V)); }
473 &BODY_20_39(\$code,24,$A,$B,$C,$D,$E,$T); 282 for(;$i<80;$i++) { &BODY_60_79(\$code,$i,@V); unshift(@V,pop(@V)); }
474 &BODY_20_39(\$code,25,$T,$A,$B,$C,$D,$E);
475 &BODY_20_39(\$code,26,$E,$T,$A,$B,$C,$D);
476 &BODY_20_39(\$code,27,$D,$E,$T,$A,$B,$C);
477 &BODY_20_39(\$code,28,$C,$D,$E,$T,$A,$B);
478 &BODY_20_39(\$code,29,$B,$C,$D,$E,$T,$A);
479 &BODY_20_39(\$code,30,$A,$B,$C,$D,$E,$T);
480 &BODY_20_39(\$code,31,$T,$A,$B,$C,$D,$E);
481 &BODY_20_39(\$code,32,$E,$T,$A,$B,$C,$D);
482 &BODY_20_39(\$code,33,$D,$E,$T,$A,$B,$C);
483 &BODY_20_39(\$code,34,$C,$D,$E,$T,$A,$B);
484 &BODY_20_39(\$code,35,$B,$C,$D,$E,$T,$A);
485 &BODY_20_39(\$code,36,$A,$B,$C,$D,$E,$T);
486 &BODY_20_39(\$code,37,$T,$A,$B,$C,$D,$E);
487 &BODY_20_39(\$code,38,$E,$T,$A,$B,$C,$D);
488 &BODY_20_39(\$code,39,$D,$E,$T,$A,$B,$C);
489 283
490 &BODY_40_59(\$code,40,$C,$D,$E,$T,$A,$B); 284 (($V[5] eq $D) and ($V[0] eq $E)) or die; # double-check
491 &BODY_40_59(\$code,41,$B,$C,$D,$E,$T,$A); 285}
492 &BODY_40_59(\$code,42,$A,$B,$C,$D,$E,$T);
493 &BODY_40_59(\$code,43,$T,$A,$B,$C,$D,$E);
494 &BODY_40_59(\$code,44,$E,$T,$A,$B,$C,$D);
495 &BODY_40_59(\$code,45,$D,$E,$T,$A,$B,$C);
496 &BODY_40_59(\$code,46,$C,$D,$E,$T,$A,$B);
497 &BODY_40_59(\$code,47,$B,$C,$D,$E,$T,$A);
498 &BODY_40_59(\$code,48,$A,$B,$C,$D,$E,$T);
499 &BODY_40_59(\$code,49,$T,$A,$B,$C,$D,$E);
500 &BODY_40_59(\$code,50,$E,$T,$A,$B,$C,$D);
501 &BODY_40_59(\$code,51,$D,$E,$T,$A,$B,$C);
502 &BODY_40_59(\$code,52,$C,$D,$E,$T,$A,$B);
503 &BODY_40_59(\$code,53,$B,$C,$D,$E,$T,$A);
504 &BODY_40_59(\$code,54,$A,$B,$C,$D,$E,$T);
505 &BODY_40_59(\$code,55,$T,$A,$B,$C,$D,$E);
506 &BODY_40_59(\$code,56,$E,$T,$A,$B,$C,$D);
507 &BODY_40_59(\$code,57,$D,$E,$T,$A,$B,$C);
508 &BODY_40_59(\$code,58,$C,$D,$E,$T,$A,$B);
509 &BODY_40_59(\$code,59,$B,$C,$D,$E,$T,$A);
510
511 &BODY_60_79(\$code,60,$A,$B,$C,$D,$E,$T);
512 &BODY_60_79(\$code,61,$T,$A,$B,$C,$D,$E);
513 &BODY_60_79(\$code,62,$E,$T,$A,$B,$C,$D);
514 &BODY_60_79(\$code,63,$D,$E,$T,$A,$B,$C);
515 &BODY_60_79(\$code,64,$C,$D,$E,$T,$A,$B);
516 &BODY_60_79(\$code,65,$B,$C,$D,$E,$T,$A);
517 &BODY_60_79(\$code,66,$A,$B,$C,$D,$E,$T);
518 &BODY_60_79(\$code,67,$T,$A,$B,$C,$D,$E);
519 &BODY_60_79(\$code,68,$E,$T,$A,$B,$C,$D);
520 &BODY_60_79(\$code,69,$D,$E,$T,$A,$B,$C);
521 &BODY_60_79(\$code,70,$C,$D,$E,$T,$A,$B);
522 &BODY_60_79(\$code,71,$B,$C,$D,$E,$T,$A);
523 &BODY_60_79(\$code,72,$A,$B,$C,$D,$E,$T);
524 &BODY_60_79(\$code,73,$T,$A,$B,$C,$D,$E);
525 &BODY_60_79(\$code,74,$E,$T,$A,$B,$C,$D);
526 &BODY_60_79(\$code,75,$D,$E,$T,$A,$B,$C);
527 &BODY_60_79(\$code,76,$C,$D,$E,$T,$A,$B);
528 &BODY_60_79(\$code,77,$B,$C,$D,$E,$T,$A);
529 &BODY_60_79(\$code,78,$A,$B,$C,$D,$E,$T);
530 &BODY_60_79(\$code,79,$T,$A,$B,$C,$D,$E);
531 286
532$code.=<<___; 287$code.=<<___;
533{ .mmb; add $h0=$h0,$E 288{ .mmb; add $h0=$h0,$E
@@ -543,7 +298,8 @@ $code.=<<___;
543{ .mib; st4 [ctx]=$h4,-16 298{ .mib; st4 [ctx]=$h4,-16
544 mov pr=r2,0x1ffff 299 mov pr=r2,0x1ffff
545 br.ret.sptk.many b0 };; 300 br.ret.sptk.many b0 };;
546.endp sha1_block_asm_data_order# 301.endp sha1_block_data_order#
302stringz "SHA1 block transform for IA64, CRYPTOGAMS by <appro\@openssl.org>"
547___ 303___
548 304
549print $code; 305print $code;
diff --git a/src/lib/libcrypto/sha/asm/sha1-x86_64.pl b/src/lib/libcrypto/sha/asm/sha1-x86_64.pl
new file mode 100755
index 0000000000..f7ed67a726
--- /dev/null
+++ b/src/lib/libcrypto/sha/asm/sha1-x86_64.pl
@@ -0,0 +1,242 @@
1#!/usr/bin/env perl
2#
3# ====================================================================
4# Written by Andy Polyakov <appro@fy.chalmers.se> for the OpenSSL
5# project. The module is, however, dual licensed under OpenSSL and
6# CRYPTOGAMS licenses depending on where you obtain it. For further
7# details see http://www.openssl.org/~appro/cryptogams/.
8# ====================================================================
9#
10# sha1_block procedure for x86_64.
11#
12# It was brought to my attention that on EM64T compiler-generated code
13# was far behind 32-bit assembler implementation. This is unlike on
14# Opteron where compiler-generated code was only 15% behind 32-bit
15# assembler, which originally made it hard to motivate the effort.
16# There was suggestion to mechanically translate 32-bit code, but I
17# dismissed it, reasoning that x86_64 offers enough register bank
18# capacity to fully utilize SHA-1 parallelism. Therefore this fresh
19# implementation:-) However! While 64-bit code does performs better
20# on Opteron, I failed to beat 32-bit assembler on EM64T core. Well,
21# x86_64 does offer larger *addressable* bank, but out-of-order core
22# reaches for even more registers through dynamic aliasing, and EM64T
23# core must have managed to run-time optimize even 32-bit code just as
24# good as 64-bit one. Performance improvement is summarized in the
25# following table:
26#
27# gcc 3.4 32-bit asm cycles/byte
28# Opteron +45% +20% 6.8
29# Xeon P4 +65% +0% 9.9
30# Core2 +60% +10% 7.0
31
32$output=shift;
33
34$0 =~ m/(.*[\/\\])[^\/\\]+$/; $dir=$1;
35( $xlate="${dir}x86_64-xlate.pl" and -f $xlate ) or
36( $xlate="${dir}../../perlasm/x86_64-xlate.pl" and -f $xlate) or
37die "can't locate x86_64-xlate.pl";
38
39open STDOUT,"| $^X $xlate $output";
40
41$ctx="%rdi"; # 1st arg
42$inp="%rsi"; # 2nd arg
43$num="%rdx"; # 3rd arg
44
45# reassign arguments in order to produce more compact code
46$ctx="%r8";
47$inp="%r9";
48$num="%r10";
49
50$xi="%eax";
51$t0="%ebx";
52$t1="%ecx";
53$A="%edx";
54$B="%esi";
55$C="%edi";
56$D="%ebp";
57$E="%r11d";
58$T="%r12d";
59
60@V=($A,$B,$C,$D,$E,$T);
61
62sub PROLOGUE {
63my $func=shift;
64$code.=<<___;
65.globl $func
66.type $func,\@function,3
67.align 16
68$func:
69 push %rbx
70 push %rbp
71 push %r12
72 mov %rsp,%rax
73 mov %rdi,$ctx # reassigned argument
74 sub \$`8+16*4`,%rsp
75 mov %rsi,$inp # reassigned argument
76 and \$-64,%rsp
77 mov %rdx,$num # reassigned argument
78 mov %rax,`16*4`(%rsp)
79
80 mov 0($ctx),$A
81 mov 4($ctx),$B
82 mov 8($ctx),$C
83 mov 12($ctx),$D
84 mov 16($ctx),$E
85___
86}
87
88sub EPILOGUE {
89my $func=shift;
90$code.=<<___;
91 mov `16*4`(%rsp),%rsp
92 pop %r12
93 pop %rbp
94 pop %rbx
95 ret
96.size $func,.-$func
97___
98}
99
100sub BODY_00_19 {
101my ($i,$a,$b,$c,$d,$e,$f,$host)=@_;
102my $j=$i+1;
103$code.=<<___ if ($i==0);
104 mov `4*$i`($inp),$xi
105 `"bswap $xi" if(!defined($host))`
106 mov $xi,`4*$i`(%rsp)
107___
108$code.=<<___ if ($i<15);
109 lea 0x5a827999($xi,$e),$f
110 mov $c,$t0
111 mov `4*$j`($inp),$xi
112 mov $a,$e
113 xor $d,$t0
114 `"bswap $xi" if(!defined($host))`
115 rol \$5,$e
116 and $b,$t0
117 mov $xi,`4*$j`(%rsp)
118 add $e,$f
119 xor $d,$t0
120 rol \$30,$b
121 add $t0,$f
122___
123$code.=<<___ if ($i>=15);
124 lea 0x5a827999($xi,$e),$f
125 mov `4*($j%16)`(%rsp),$xi
126 mov $c,$t0
127 mov $a,$e
128 xor `4*(($j+2)%16)`(%rsp),$xi
129 xor $d,$t0
130 rol \$5,$e
131 xor `4*(($j+8)%16)`(%rsp),$xi
132 and $b,$t0
133 add $e,$f
134 xor `4*(($j+13)%16)`(%rsp),$xi
135 xor $d,$t0
136 rol \$30,$b
137 add $t0,$f
138 rol \$1,$xi
139 mov $xi,`4*($j%16)`(%rsp)
140___
141}
142
143sub BODY_20_39 {
144my ($i,$a,$b,$c,$d,$e,$f)=@_;
145my $j=$i+1;
146my $K=($i<40)?0x6ed9eba1:0xca62c1d6;
147$code.=<<___ if ($i<79);
148 lea $K($xi,$e),$f
149 mov `4*($j%16)`(%rsp),$xi
150 mov $c,$t0
151 mov $a,$e
152 xor `4*(($j+2)%16)`(%rsp),$xi
153 xor $b,$t0
154 rol \$5,$e
155 xor `4*(($j+8)%16)`(%rsp),$xi
156 xor $d,$t0
157 add $e,$f
158 xor `4*(($j+13)%16)`(%rsp),$xi
159 rol \$30,$b
160 add $t0,$f
161 rol \$1,$xi
162___
163$code.=<<___ if ($i<76);
164 mov $xi,`4*($j%16)`(%rsp)
165___
166$code.=<<___ if ($i==79);
167 lea $K($xi,$e),$f
168 mov $c,$t0
169 mov $a,$e
170 xor $b,$t0
171 rol \$5,$e
172 xor $d,$t0
173 add $e,$f
174 rol \$30,$b
175 add $t0,$f
176___
177}
178
179sub BODY_40_59 {
180my ($i,$a,$b,$c,$d,$e,$f)=@_;
181my $j=$i+1;
182$code.=<<___;
183 lea 0x8f1bbcdc($xi,$e),$f
184 mov `4*($j%16)`(%rsp),$xi
185 mov $b,$t0
186 mov $b,$t1
187 xor `4*(($j+2)%16)`(%rsp),$xi
188 mov $a,$e
189 and $c,$t0
190 xor `4*(($j+8)%16)`(%rsp),$xi
191 or $c,$t1
192 rol \$5,$e
193 xor `4*(($j+13)%16)`(%rsp),$xi
194 and $d,$t1
195 add $e,$f
196 rol \$1,$xi
197 or $t1,$t0
198 rol \$30,$b
199 mov $xi,`4*($j%16)`(%rsp)
200 add $t0,$f
201___
202}
203
204$code=".text\n";
205
206&PROLOGUE("sha1_block_data_order");
207$code.=".align 4\n.Lloop:\n";
208for($i=0;$i<20;$i++) { &BODY_00_19($i,@V); unshift(@V,pop(@V)); }
209for(;$i<40;$i++) { &BODY_20_39($i,@V); unshift(@V,pop(@V)); }
210for(;$i<60;$i++) { &BODY_40_59($i,@V); unshift(@V,pop(@V)); }
211for(;$i<80;$i++) { &BODY_20_39($i,@V); unshift(@V,pop(@V)); }
212$code.=<<___;
213 add 0($ctx),$E
214 add 4($ctx),$T
215 add 8($ctx),$A
216 add 12($ctx),$B
217 add 16($ctx),$C
218 mov $E,0($ctx)
219 mov $T,4($ctx)
220 mov $A,8($ctx)
221 mov $B,12($ctx)
222 mov $C,16($ctx)
223
224 xchg $E,$A # mov $E,$A
225 xchg $T,$B # mov $T,$B
226 xchg $E,$C # mov $A,$C
227 xchg $T,$D # mov $B,$D
228 # mov $C,$E
229 lea `16*4`($inp),$inp
230 sub \$1,$num
231 jnz .Lloop
232___
233&EPILOGUE("sha1_block_data_order");
234$code.=<<___;
235.asciz "SHA1 block transform for x86_64, CRYPTOGAMS by <appro\@openssl.org>"
236___
237
238####################################################################
239
240$code =~ s/\`([^\`]*)\`/eval $1/gem;
241print $code;
242close STDOUT;
diff --git a/src/lib/libcrypto/sha/asm/sha512-ia64.pl b/src/lib/libcrypto/sha/asm/sha512-ia64.pl
new file mode 100755
index 0000000000..1c6ce56522
--- /dev/null
+++ b/src/lib/libcrypto/sha/asm/sha512-ia64.pl
@@ -0,0 +1,672 @@
1#!/usr/bin/env perl
2#
3# ====================================================================
4# Written by Andy Polyakov <appro@fy.chalmers.se> for the OpenSSL
5# project. The module is, however, dual licensed under OpenSSL and
6# CRYPTOGAMS licenses depending on where you obtain it. For further
7# details see http://www.openssl.org/~appro/cryptogams/.
8# ====================================================================
9#
10# SHA256/512_Transform for Itanium.
11#
12# sha512_block runs in 1003 cycles on Itanium 2, which is almost 50%
13# faster than gcc and >60%(!) faster than code generated by HP-UX
14# compiler (yes, HP-UX is generating slower code, because unlike gcc,
15# it failed to deploy "shift right pair," 'shrp' instruction, which
16# substitutes for 64-bit rotate).
17#
18# 924 cycles long sha256_block outperforms gcc by over factor of 2(!)
19# and HP-UX compiler - by >40% (yes, gcc won sha512_block, but lost
20# this one big time). Note that "formally" 924 is about 100 cycles
21# too much. I mean it's 64 32-bit rounds vs. 80 virtually identical
22# 64-bit ones and 1003*64/80 gives 802. Extra cycles, 2 per round,
23# are spent on extra work to provide for 32-bit rotations. 32-bit
24# rotations are still handled by 'shrp' instruction and for this
25# reason lower 32 bits are deposited to upper half of 64-bit register
26# prior 'shrp' issue. And in order to minimize the amount of such
27# operations, X[16] values are *maintained* with copies of lower
28# halves in upper halves, which is why you'll spot such instructions
29# as custom 'mux2', "parallel 32-bit add," 'padd4' and "parallel
30# 32-bit unsigned right shift," 'pshr4.u' instructions here.
31#
32# Rules of engagement.
33#
34# There is only one integer shifter meaning that if I have two rotate,
35# deposit or extract instructions in adjacent bundles, they shall
36# split [at run-time if they have to]. But note that variable and
37# parallel shifts are performed by multi-media ALU and *are* pairable
38# with rotates [and alike]. On the backside MMALU is rather slow: it
39# takes 2 extra cycles before the result of integer operation is
40# available *to* MMALU and 2(*) extra cycles before the result of MM
41# operation is available "back" *to* integer ALU, not to mention that
42# MMALU itself has 2 cycles latency. However! I explicitly scheduled
43# these MM instructions to avoid MM stalls, so that all these extra
44# latencies get "hidden" in instruction-level parallelism.
45#
46# (*) 2 cycles on Itanium 1 and 1 cycle on Itanium 2. But I schedule
47# for 2 in order to provide for best *overall* performance,
48# because on Itanium 1 stall on MM result is accompanied by
49# pipeline flush, which takes 6 cycles:-(
50#
51# Resulting performance numbers for 900MHz Itanium 2 system:
52#
53# The 'numbers' are in 1000s of bytes per second processed.
54# type 16 bytes 64 bytes 256 bytes 1024 bytes 8192 bytes
55# sha1(*) 6210.14k 20376.30k 52447.83k 85870.05k 105478.12k
56# sha256 7476.45k 20572.05k 41538.34k 56062.29k 62093.18k
57# sha512 4996.56k 20026.28k 47597.20k 85278.79k 111501.31k
58#
59# (*) SHA1 numbers are for HP-UX compiler and are presented purely
60# for reference purposes. I bet it can improved too...
61#
62# To generate code, pass the file name with either 256 or 512 in its
63# name and compiler flags.
64
65$output=shift;
66
67if ($output =~ /512.*\.[s|asm]/) {
68 $SZ=8;
69 $BITS=8*$SZ;
70 $LDW="ld8";
71 $STW="st8";
72 $ADD="add";
73 $SHRU="shr.u";
74 $TABLE="K512";
75 $func="sha512_block_data_order";
76 @Sigma0=(28,34,39);
77 @Sigma1=(14,18,41);
78 @sigma0=(1, 8, 7);
79 @sigma1=(19,61, 6);
80 $rounds=80;
81} elsif ($output =~ /256.*\.[s|asm]/) {
82 $SZ=4;
83 $BITS=8*$SZ;
84 $LDW="ld4";
85 $STW="st4";
86 $ADD="padd4";
87 $SHRU="pshr4.u";
88 $TABLE="K256";
89 $func="sha256_block_data_order";
90 @Sigma0=( 2,13,22);
91 @Sigma1=( 6,11,25);
92 @sigma0=( 7,18, 3);
93 @sigma1=(17,19,10);
94 $rounds=64;
95} else { die "nonsense $output"; }
96
97open STDOUT,">$output" || die "can't open $output: $!";
98
99if ($^O eq "hpux") {
100 $ADDP="addp4";
101 for (@ARGV) { $ADDP="add" if (/[\+DD|\-mlp]64/); }
102} else { $ADDP="add"; }
103for (@ARGV) { $big_endian=1 if (/\-DB_ENDIAN/);
104 $big_endian=0 if (/\-DL_ENDIAN/); }
105if (!defined($big_endian))
106 { $big_endian=(unpack('L',pack('N',1))==1); }
107
108$code=<<___;
109.ident \"$output, version 1.1\"
110.ident \"IA-64 ISA artwork by Andy Polyakov <appro\@fy.chalmers.se>\"
111.explicit
112.text
113
114pfssave=r2;
115lcsave=r3;
116prsave=r14;
117K=r15;
118A=r16; B=r17; C=r18; D=r19;
119E=r20; F=r21; G=r22; H=r23;
120T1=r24; T2=r25;
121s0=r26; s1=r27; t0=r28; t1=r29;
122Ktbl=r30;
123ctx=r31; // 1st arg
124input=r48; // 2nd arg
125num=r49; // 3rd arg
126sgm0=r50; sgm1=r51; // small constants
127A_=r54; B_=r55; C_=r56; D_=r57;
128E_=r58; F_=r59; G_=r60; H_=r61;
129
130// void $func (SHA_CTX *ctx, const void *in,size_t num[,int host])
131.global $func#
132.proc $func#
133.align 32
134$func:
135 .prologue
136 .save ar.pfs,pfssave
137{ .mmi; alloc pfssave=ar.pfs,3,27,0,16
138 $ADDP ctx=0,r32 // 1st arg
139 .save ar.lc,lcsave
140 mov lcsave=ar.lc }
141{ .mmi; $ADDP input=0,r33 // 2nd arg
142 mov num=r34 // 3rd arg
143 .save pr,prsave
144 mov prsave=pr };;
145
146 .body
147{ .mib; add r8=0*$SZ,ctx
148 add r9=1*$SZ,ctx
149 brp.loop.imp .L_first16,.L_first16_end-16 }
150{ .mib; add r10=2*$SZ,ctx
151 add r11=3*$SZ,ctx
152 brp.loop.imp .L_rest,.L_rest_end-16 };;
153
154// load A-H
155.Lpic_point:
156{ .mmi; $LDW A_=[r8],4*$SZ
157 $LDW B_=[r9],4*$SZ
158 mov Ktbl=ip }
159{ .mmi; $LDW C_=[r10],4*$SZ
160 $LDW D_=[r11],4*$SZ
161 mov sgm0=$sigma0[2] };;
162{ .mmi; $LDW E_=[r8]
163 $LDW F_=[r9]
164 add Ktbl=($TABLE#-.Lpic_point),Ktbl }
165{ .mmi; $LDW G_=[r10]
166 $LDW H_=[r11]
167 cmp.ne p0,p16=0,r0 };; // used in sha256_block
168___
169$code.=<<___ if ($BITS==64);
170{ .mii; and r8=7,input
171 and input=~7,input;;
172 cmp.eq p9,p0=1,r8 }
173{ .mmi; cmp.eq p10,p0=2,r8
174 cmp.eq p11,p0=3,r8
175 cmp.eq p12,p0=4,r8 }
176{ .mmi; cmp.eq p13,p0=5,r8
177 cmp.eq p14,p0=6,r8
178 cmp.eq p15,p0=7,r8 };;
179___
180$code.=<<___;
181.L_outer:
182.rotr X[16]
183{ .mmi; mov A=A_
184 mov B=B_
185 mov ar.lc=14 }
186{ .mmi; mov C=C_
187 mov D=D_
188 mov E=E_ }
189{ .mmi; mov F=F_
190 mov G=G_
191 mov ar.ec=2 }
192{ .mmi; ld1 X[15]=[input],$SZ // eliminated in 64-bit
193 mov H=H_
194 mov sgm1=$sigma1[2] };;
195
196___
197$t0="t0", $t1="t1", $code.=<<___ if ($BITS==32);
198.align 32
199.L_first16:
200{ .mmi; add r9=1-$SZ,input
201 add r10=2-$SZ,input
202 add r11=3-$SZ,input };;
203{ .mmi; ld1 r9=[r9]
204 ld1 r10=[r10]
205 dep.z $t1=E,32,32 }
206{ .mmi; $LDW K=[Ktbl],$SZ
207 ld1 r11=[r11]
208 zxt4 E=E };;
209{ .mii; or $t1=$t1,E
210 dep X[15]=X[15],r9,8,8
211 dep r11=r10,r11,8,8 };;
212{ .mmi; and T1=F,E
213 and T2=A,B
214 dep X[15]=X[15],r11,16,16 }
215{ .mmi; andcm r8=G,E
216 and r9=A,C
217 mux2 $t0=A,0x44 };; // copy lower half to upper
218{ .mmi; (p16) ld1 X[15-1]=[input],$SZ // prefetch
219 xor T1=T1,r8 // T1=((e & f) ^ (~e & g))
220 _rotr r11=$t1,$Sigma1[0] } // ROTR(e,14)
221{ .mib; and r10=B,C
222 xor T2=T2,r9 };;
223___
224$t0="A", $t1="E", $code.=<<___ if ($BITS==64);
225// in 64-bit mode I load whole X[16] at once and take care of alignment...
226{ .mmi; add r8=1*$SZ,input
227 add r9=2*$SZ,input
228 add r10=3*$SZ,input };;
229{ .mmb; $LDW X[15]=[input],4*$SZ
230 $LDW X[14]=[r8],4*$SZ
231(p9) br.cond.dpnt.many .L1byte };;
232{ .mmb; $LDW X[13]=[r9],4*$SZ
233 $LDW X[12]=[r10],4*$SZ
234(p10) br.cond.dpnt.many .L2byte };;
235{ .mmb; $LDW X[11]=[input],4*$SZ
236 $LDW X[10]=[r8],4*$SZ
237(p11) br.cond.dpnt.many .L3byte };;
238{ .mmb; $LDW X[ 9]=[r9],4*$SZ
239 $LDW X[ 8]=[r10],4*$SZ
240(p12) br.cond.dpnt.many .L4byte };;
241{ .mmb; $LDW X[ 7]=[input],4*$SZ
242 $LDW X[ 6]=[r8],4*$SZ
243(p13) br.cond.dpnt.many .L5byte };;
244{ .mmb; $LDW X[ 5]=[r9],4*$SZ
245 $LDW X[ 4]=[r10],4*$SZ
246(p14) br.cond.dpnt.many .L6byte };;
247{ .mmb; $LDW X[ 3]=[input],4*$SZ
248 $LDW X[ 2]=[r8],4*$SZ
249(p15) br.cond.dpnt.many .L7byte };;
250{ .mmb; $LDW X[ 1]=[r9],4*$SZ
251 $LDW X[ 0]=[r10],4*$SZ
252 br.many .L_first16 };;
253.L1byte:
254{ .mmi; $LDW X[13]=[r9],4*$SZ
255 $LDW X[12]=[r10],4*$SZ
256 shrp X[15]=X[15],X[14],56 };;
257{ .mmi; $LDW X[11]=[input],4*$SZ
258 $LDW X[10]=[r8],4*$SZ
259 shrp X[14]=X[14],X[13],56 }
260{ .mmi; $LDW X[ 9]=[r9],4*$SZ
261 $LDW X[ 8]=[r10],4*$SZ
262 shrp X[13]=X[13],X[12],56 };;
263{ .mmi; $LDW X[ 7]=[input],4*$SZ
264 $LDW X[ 6]=[r8],4*$SZ
265 shrp X[12]=X[12],X[11],56 }
266{ .mmi; $LDW X[ 5]=[r9],4*$SZ
267 $LDW X[ 4]=[r10],4*$SZ
268 shrp X[11]=X[11],X[10],56 };;
269{ .mmi; $LDW X[ 3]=[input],4*$SZ
270 $LDW X[ 2]=[r8],4*$SZ
271 shrp X[10]=X[10],X[ 9],56 }
272{ .mmi; $LDW X[ 1]=[r9],4*$SZ
273 $LDW X[ 0]=[r10],4*$SZ
274 shrp X[ 9]=X[ 9],X[ 8],56 };;
275{ .mii; $LDW T1=[input]
276 shrp X[ 8]=X[ 8],X[ 7],56
277 shrp X[ 7]=X[ 7],X[ 6],56 }
278{ .mii; shrp X[ 6]=X[ 6],X[ 5],56
279 shrp X[ 5]=X[ 5],X[ 4],56 };;
280{ .mii; shrp X[ 4]=X[ 4],X[ 3],56
281 shrp X[ 3]=X[ 3],X[ 2],56 }
282{ .mii; shrp X[ 2]=X[ 2],X[ 1],56
283 shrp X[ 1]=X[ 1],X[ 0],56 }
284{ .mib; shrp X[ 0]=X[ 0],T1,56
285 br.many .L_first16 };;
286.L2byte:
287{ .mmi; $LDW X[11]=[input],4*$SZ
288 $LDW X[10]=[r8],4*$SZ
289 shrp X[15]=X[15],X[14],48 }
290{ .mmi; $LDW X[ 9]=[r9],4*$SZ
291 $LDW X[ 8]=[r10],4*$SZ
292 shrp X[14]=X[14],X[13],48 };;
293{ .mmi; $LDW X[ 7]=[input],4*$SZ
294 $LDW X[ 6]=[r8],4*$SZ
295 shrp X[13]=X[13],X[12],48 }
296{ .mmi; $LDW X[ 5]=[r9],4*$SZ
297 $LDW X[ 4]=[r10],4*$SZ
298 shrp X[12]=X[12],X[11],48 };;
299{ .mmi; $LDW X[ 3]=[input],4*$SZ
300 $LDW X[ 2]=[r8],4*$SZ
301 shrp X[11]=X[11],X[10],48 }
302{ .mmi; $LDW X[ 1]=[r9],4*$SZ
303 $LDW X[ 0]=[r10],4*$SZ
304 shrp X[10]=X[10],X[ 9],48 };;
305{ .mii; $LDW T1=[input]
306 shrp X[ 9]=X[ 9],X[ 8],48
307 shrp X[ 8]=X[ 8],X[ 7],48 }
308{ .mii; shrp X[ 7]=X[ 7],X[ 6],48
309 shrp X[ 6]=X[ 6],X[ 5],48 };;
310{ .mii; shrp X[ 5]=X[ 5],X[ 4],48
311 shrp X[ 4]=X[ 4],X[ 3],48 }
312{ .mii; shrp X[ 3]=X[ 3],X[ 2],48
313 shrp X[ 2]=X[ 2],X[ 1],48 }
314{ .mii; shrp X[ 1]=X[ 1],X[ 0],48
315 shrp X[ 0]=X[ 0],T1,48 }
316{ .mfb; br.many .L_first16 };;
317.L3byte:
318{ .mmi; $LDW X[ 9]=[r9],4*$SZ
319 $LDW X[ 8]=[r10],4*$SZ
320 shrp X[15]=X[15],X[14],40 };;
321{ .mmi; $LDW X[ 7]=[input],4*$SZ
322 $LDW X[ 6]=[r8],4*$SZ
323 shrp X[14]=X[14],X[13],40 }
324{ .mmi; $LDW X[ 5]=[r9],4*$SZ
325 $LDW X[ 4]=[r10],4*$SZ
326 shrp X[13]=X[13],X[12],40 };;
327{ .mmi; $LDW X[ 3]=[input],4*$SZ
328 $LDW X[ 2]=[r8],4*$SZ
329 shrp X[12]=X[12],X[11],40 }
330{ .mmi; $LDW X[ 1]=[r9],4*$SZ
331 $LDW X[ 0]=[r10],4*$SZ
332 shrp X[11]=X[11],X[10],40 };;
333{ .mii; $LDW T1=[input]
334 shrp X[10]=X[10],X[ 9],40
335 shrp X[ 9]=X[ 9],X[ 8],40 }
336{ .mii; shrp X[ 8]=X[ 8],X[ 7],40
337 shrp X[ 7]=X[ 7],X[ 6],40 };;
338{ .mii; shrp X[ 6]=X[ 6],X[ 5],40
339 shrp X[ 5]=X[ 5],X[ 4],40 }
340{ .mii; shrp X[ 4]=X[ 4],X[ 3],40
341 shrp X[ 3]=X[ 3],X[ 2],40 }
342{ .mii; shrp X[ 2]=X[ 2],X[ 1],40
343 shrp X[ 1]=X[ 1],X[ 0],40 }
344{ .mib; shrp X[ 0]=X[ 0],T1,40
345 br.many .L_first16 };;
346.L4byte:
347{ .mmi; $LDW X[ 7]=[input],4*$SZ
348 $LDW X[ 6]=[r8],4*$SZ
349 shrp X[15]=X[15],X[14],32 }
350{ .mmi; $LDW X[ 5]=[r9],4*$SZ
351 $LDW X[ 4]=[r10],4*$SZ
352 shrp X[14]=X[14],X[13],32 };;
353{ .mmi; $LDW X[ 3]=[input],4*$SZ
354 $LDW X[ 2]=[r8],4*$SZ
355 shrp X[13]=X[13],X[12],32 }
356{ .mmi; $LDW X[ 1]=[r9],4*$SZ
357 $LDW X[ 0]=[r10],4*$SZ
358 shrp X[12]=X[12],X[11],32 };;
359{ .mii; $LDW T1=[input]
360 shrp X[11]=X[11],X[10],32
361 shrp X[10]=X[10],X[ 9],32 }
362{ .mii; shrp X[ 9]=X[ 9],X[ 8],32
363 shrp X[ 8]=X[ 8],X[ 7],32 };;
364{ .mii; shrp X[ 7]=X[ 7],X[ 6],32
365 shrp X[ 6]=X[ 6],X[ 5],32 }
366{ .mii; shrp X[ 5]=X[ 5],X[ 4],32
367 shrp X[ 4]=X[ 4],X[ 3],32 }
368{ .mii; shrp X[ 3]=X[ 3],X[ 2],32
369 shrp X[ 2]=X[ 2],X[ 1],32 }
370{ .mii; shrp X[ 1]=X[ 1],X[ 0],32
371 shrp X[ 0]=X[ 0],T1,32 }
372{ .mfb; br.many .L_first16 };;
373.L5byte:
374{ .mmi; $LDW X[ 5]=[r9],4*$SZ
375 $LDW X[ 4]=[r10],4*$SZ
376 shrp X[15]=X[15],X[14],24 };;
377{ .mmi; $LDW X[ 3]=[input],4*$SZ
378 $LDW X[ 2]=[r8],4*$SZ
379 shrp X[14]=X[14],X[13],24 }
380{ .mmi; $LDW X[ 1]=[r9],4*$SZ
381 $LDW X[ 0]=[r10],4*$SZ
382 shrp X[13]=X[13],X[12],24 };;
383{ .mii; $LDW T1=[input]
384 shrp X[12]=X[12],X[11],24
385 shrp X[11]=X[11],X[10],24 }
386{ .mii; shrp X[10]=X[10],X[ 9],24
387 shrp X[ 9]=X[ 9],X[ 8],24 };;
388{ .mii; shrp X[ 8]=X[ 8],X[ 7],24
389 shrp X[ 7]=X[ 7],X[ 6],24 }
390{ .mii; shrp X[ 6]=X[ 6],X[ 5],24
391 shrp X[ 5]=X[ 5],X[ 4],24 }
392{ .mii; shrp X[ 4]=X[ 4],X[ 3],24
393 shrp X[ 3]=X[ 3],X[ 2],24 }
394{ .mii; shrp X[ 2]=X[ 2],X[ 1],24
395 shrp X[ 1]=X[ 1],X[ 0],24 }
396{ .mib; shrp X[ 0]=X[ 0],T1,24
397 br.many .L_first16 };;
398.L6byte:
399{ .mmi; $LDW X[ 3]=[input],4*$SZ
400 $LDW X[ 2]=[r8],4*$SZ
401 shrp X[15]=X[15],X[14],16 }
402{ .mmi; $LDW X[ 1]=[r9],4*$SZ
403 $LDW X[ 0]=[r10],4*$SZ
404 shrp X[14]=X[14],X[13],16 };;
405{ .mii; $LDW T1=[input]
406 shrp X[13]=X[13],X[12],16
407 shrp X[12]=X[12],X[11],16 }
408{ .mii; shrp X[11]=X[11],X[10],16
409 shrp X[10]=X[10],X[ 9],16 };;
410{ .mii; shrp X[ 9]=X[ 9],X[ 8],16
411 shrp X[ 8]=X[ 8],X[ 7],16 }
412{ .mii; shrp X[ 7]=X[ 7],X[ 6],16
413 shrp X[ 6]=X[ 6],X[ 5],16 }
414{ .mii; shrp X[ 5]=X[ 5],X[ 4],16
415 shrp X[ 4]=X[ 4],X[ 3],16 }
416{ .mii; shrp X[ 3]=X[ 3],X[ 2],16
417 shrp X[ 2]=X[ 2],X[ 1],16 }
418{ .mii; shrp X[ 1]=X[ 1],X[ 0],16
419 shrp X[ 0]=X[ 0],T1,16 }
420{ .mfb; br.many .L_first16 };;
421.L7byte:
422{ .mmi; $LDW X[ 1]=[r9],4*$SZ
423 $LDW X[ 0]=[r10],4*$SZ
424 shrp X[15]=X[15],X[14],8 };;
425{ .mii; $LDW T1=[input]
426 shrp X[14]=X[14],X[13],8
427 shrp X[13]=X[13],X[12],8 }
428{ .mii; shrp X[12]=X[12],X[11],8
429 shrp X[11]=X[11],X[10],8 };;
430{ .mii; shrp X[10]=X[10],X[ 9],8
431 shrp X[ 9]=X[ 9],X[ 8],8 }
432{ .mii; shrp X[ 8]=X[ 8],X[ 7],8
433 shrp X[ 7]=X[ 7],X[ 6],8 }
434{ .mii; shrp X[ 6]=X[ 6],X[ 5],8
435 shrp X[ 5]=X[ 5],X[ 4],8 }
436{ .mii; shrp X[ 4]=X[ 4],X[ 3],8
437 shrp X[ 3]=X[ 3],X[ 2],8 }
438{ .mii; shrp X[ 2]=X[ 2],X[ 1],8
439 shrp X[ 1]=X[ 1],X[ 0],8 }
440{ .mib; shrp X[ 0]=X[ 0],T1,8
441 br.many .L_first16 };;
442
443.align 32
444.L_first16:
445{ .mmi; $LDW K=[Ktbl],$SZ
446 and T1=F,E
447 and T2=A,B }
448{ .mmi; //$LDW X[15]=[input],$SZ // X[i]=*input++
449 andcm r8=G,E
450 and r9=A,C };;
451{ .mmi; xor T1=T1,r8 //T1=((e & f) ^ (~e & g))
452 and r10=B,C
453 _rotr r11=$t1,$Sigma1[0] } // ROTR(e,14)
454{ .mmi; xor T2=T2,r9
455 mux1 X[15]=X[15],\@rev };; // eliminated in big-endian
456___
457$code.=<<___;
458{ .mib; add T1=T1,H // T1=Ch(e,f,g)+h
459 _rotr r8=$t1,$Sigma1[1] } // ROTR(e,18)
460{ .mib; xor T2=T2,r10 // T2=((a & b) ^ (a & c) ^ (b & c))
461 mov H=G };;
462{ .mib; xor r11=r8,r11
463 _rotr r9=$t1,$Sigma1[2] } // ROTR(e,41)
464{ .mib; mov G=F
465 mov F=E };;
466{ .mib; xor r9=r9,r11 // r9=Sigma1(e)
467 _rotr r10=$t0,$Sigma0[0] } // ROTR(a,28)
468{ .mib; add T1=T1,K // T1=Ch(e,f,g)+h+K512[i]
469 mov E=D };;
470{ .mib; add T1=T1,r9 // T1+=Sigma1(e)
471 _rotr r11=$t0,$Sigma0[1] } // ROTR(a,34)
472{ .mib; mov D=C
473 mov C=B };;
474{ .mib; add T1=T1,X[15] // T1+=X[i]
475 _rotr r8=$t0,$Sigma0[2] } // ROTR(a,39)
476{ .mib; xor r10=r10,r11
477 mux2 X[15]=X[15],0x44 };; // eliminated in 64-bit
478{ .mmi; xor r10=r8,r10 // r10=Sigma0(a)
479 mov B=A
480 add A=T1,T2 };;
481{ .mib; add E=E,T1
482 add A=A,r10 // T2=Maj(a,b,c)+Sigma0(a)
483 br.ctop.sptk .L_first16 };;
484.L_first16_end:
485
486{ .mii; mov ar.lc=$rounds-17
487 mov ar.ec=1 };;
488
489.align 32
490.L_rest:
491.rotr X[16]
492{ .mib; $LDW K=[Ktbl],$SZ
493 _rotr r8=X[15-1],$sigma0[0] } // ROTR(s0,1)
494{ .mib; $ADD X[15]=X[15],X[15-9] // X[i&0xF]+=X[(i+9)&0xF]
495 $SHRU s0=X[15-1],sgm0 };; // s0=X[(i+1)&0xF]>>7
496{ .mib; and T1=F,E
497 _rotr r9=X[15-1],$sigma0[1] } // ROTR(s0,8)
498{ .mib; andcm r10=G,E
499 $SHRU s1=X[15-14],sgm1 };; // s1=X[(i+14)&0xF]>>6
500{ .mmi; xor T1=T1,r10 // T1=((e & f) ^ (~e & g))
501 xor r9=r8,r9
502 _rotr r10=X[15-14],$sigma1[0] };;// ROTR(s1,19)
503{ .mib; and T2=A,B
504 _rotr r11=X[15-14],$sigma1[1] }// ROTR(s1,61)
505{ .mib; and r8=A,C };;
506___
507$t0="t0", $t1="t1", $code.=<<___ if ($BITS==32);
508// I adhere to mmi; in order to hold Itanium 1 back and avoid 6 cycle
509// pipeline flush in last bundle. Note that even on Itanium2 the
510// latter stalls for one clock cycle...
511{ .mmi; xor s0=s0,r9 // s0=sigma0(X[(i+1)&0xF])
512 dep.z $t1=E,32,32 }
513{ .mmi; xor r10=r11,r10
514 zxt4 E=E };;
515{ .mmi; or $t1=$t1,E
516 xor s1=s1,r10 // s1=sigma1(X[(i+14)&0xF])
517 mux2 $t0=A,0x44 };; // copy lower half to upper
518{ .mmi; xor T2=T2,r8
519 _rotr r9=$t1,$Sigma1[0] } // ROTR(e,14)
520{ .mmi; and r10=B,C
521 add T1=T1,H // T1=Ch(e,f,g)+h
522 $ADD X[15]=X[15],s0 };; // X[i&0xF]+=sigma0(X[(i+1)&0xF])
523___
524$t0="A", $t1="E", $code.=<<___ if ($BITS==64);
525{ .mib; xor s0=s0,r9 // s0=sigma0(X[(i+1)&0xF])
526 _rotr r9=$t1,$Sigma1[0] } // ROTR(e,14)
527{ .mib; xor r10=r11,r10
528 xor T2=T2,r8 };;
529{ .mib; xor s1=s1,r10 // s1=sigma1(X[(i+14)&0xF])
530 add T1=T1,H }
531{ .mib; and r10=B,C
532 $ADD X[15]=X[15],s0 };; // X[i&0xF]+=sigma0(X[(i+1)&0xF])
533___
534$code.=<<___;
535{ .mmi; xor T2=T2,r10 // T2=((a & b) ^ (a & c) ^ (b & c))
536 mov H=G
537 _rotr r8=$t1,$Sigma1[1] };; // ROTR(e,18)
538{ .mmi; xor r11=r8,r9
539 $ADD X[15]=X[15],s1 // X[i&0xF]+=sigma1(X[(i+14)&0xF])
540 _rotr r9=$t1,$Sigma1[2] } // ROTR(e,41)
541{ .mmi; mov G=F
542 mov F=E };;
543{ .mib; xor r9=r9,r11 // r9=Sigma1(e)
544 _rotr r10=$t0,$Sigma0[0] } // ROTR(a,28)
545{ .mib; add T1=T1,K // T1=Ch(e,f,g)+h+K512[i]
546 mov E=D };;
547{ .mib; add T1=T1,r9 // T1+=Sigma1(e)
548 _rotr r11=$t0,$Sigma0[1] } // ROTR(a,34)
549{ .mib; mov D=C
550 mov C=B };;
551{ .mmi; add T1=T1,X[15] // T1+=X[i]
552 xor r10=r10,r11
553 _rotr r8=$t0,$Sigma0[2] };; // ROTR(a,39)
554{ .mmi; xor r10=r8,r10 // r10=Sigma0(a)
555 mov B=A
556 add A=T1,T2 };;
557{ .mib; add E=E,T1
558 add A=A,r10 // T2=Maj(a,b,c)+Sigma0(a)
559 br.ctop.sptk .L_rest };;
560.L_rest_end:
561
562{ .mmi; add A_=A_,A
563 add B_=B_,B
564 add C_=C_,C }
565{ .mmi; add D_=D_,D
566 add E_=E_,E
567 cmp.ltu p16,p0=1,num };;
568{ .mmi; add F_=F_,F
569 add G_=G_,G
570 add H_=H_,H }
571{ .mmb; add Ktbl=-$SZ*$rounds,Ktbl
572(p16) add num=-1,num
573(p16) br.dptk.many .L_outer };;
574
575{ .mib; add r8=0*$SZ,ctx
576 add r9=1*$SZ,ctx }
577{ .mib; add r10=2*$SZ,ctx
578 add r11=3*$SZ,ctx };;
579{ .mmi; $STW [r8]=A_,4*$SZ
580 $STW [r9]=B_,4*$SZ
581 mov ar.lc=lcsave }
582{ .mmi; $STW [r10]=C_,4*$SZ
583 $STW [r11]=D_,4*$SZ
584 mov pr=prsave,0x1ffff };;
585{ .mmb; $STW [r8]=E_
586 $STW [r9]=F_ }
587{ .mmb; $STW [r10]=G_
588 $STW [r11]=H_
589 br.ret.sptk.many b0 };;
590.endp $func#
591___
592
593$code =~ s/\`([^\`]*)\`/eval $1/gem;
594$code =~ s/_rotr(\s+)([^=]+)=([^,]+),([0-9]+)/shrp$1$2=$3,$3,$4/gm;
595if ($BITS==64) {
596 $code =~ s/mux2(\s+)\S+/nop.i$1 0x0/gm;
597 $code =~ s/mux1(\s+)\S+/nop.i$1 0x0/gm if ($big_endian);
598 $code =~ s/(shrp\s+X\[[^=]+)=([^,]+),([^,]+),([1-9]+)/$1=$3,$2,64-$4/gm
599 if (!$big_endian);
600 $code =~ s/ld1(\s+)X\[\S+/nop.m$1 0x0/gm;
601}
602
603print $code;
604
605print<<___ if ($BITS==32);
606.align 64
607.type K256#,\@object
608K256: data4 0x428a2f98,0x71374491,0xb5c0fbcf,0xe9b5dba5
609 data4 0x3956c25b,0x59f111f1,0x923f82a4,0xab1c5ed5
610 data4 0xd807aa98,0x12835b01,0x243185be,0x550c7dc3
611 data4 0x72be5d74,0x80deb1fe,0x9bdc06a7,0xc19bf174
612 data4 0xe49b69c1,0xefbe4786,0x0fc19dc6,0x240ca1cc
613 data4 0x2de92c6f,0x4a7484aa,0x5cb0a9dc,0x76f988da
614 data4 0x983e5152,0xa831c66d,0xb00327c8,0xbf597fc7
615 data4 0xc6e00bf3,0xd5a79147,0x06ca6351,0x14292967
616 data4 0x27b70a85,0x2e1b2138,0x4d2c6dfc,0x53380d13
617 data4 0x650a7354,0x766a0abb,0x81c2c92e,0x92722c85
618 data4 0xa2bfe8a1,0xa81a664b,0xc24b8b70,0xc76c51a3
619 data4 0xd192e819,0xd6990624,0xf40e3585,0x106aa070
620 data4 0x19a4c116,0x1e376c08,0x2748774c,0x34b0bcb5
621 data4 0x391c0cb3,0x4ed8aa4a,0x5b9cca4f,0x682e6ff3
622 data4 0x748f82ee,0x78a5636f,0x84c87814,0x8cc70208
623 data4 0x90befffa,0xa4506ceb,0xbef9a3f7,0xc67178f2
624.size K256#,$SZ*$rounds
625stringz "SHA256 block transform for IA64, CRYPTOGAMS by <appro\@openssl.org>"
626___
627print<<___ if ($BITS==64);
628.align 64
629.type K512#,\@object
630K512: data8 0x428a2f98d728ae22,0x7137449123ef65cd
631 data8 0xb5c0fbcfec4d3b2f,0xe9b5dba58189dbbc
632 data8 0x3956c25bf348b538,0x59f111f1b605d019
633 data8 0x923f82a4af194f9b,0xab1c5ed5da6d8118
634 data8 0xd807aa98a3030242,0x12835b0145706fbe
635 data8 0x243185be4ee4b28c,0x550c7dc3d5ffb4e2
636 data8 0x72be5d74f27b896f,0x80deb1fe3b1696b1
637 data8 0x9bdc06a725c71235,0xc19bf174cf692694
638 data8 0xe49b69c19ef14ad2,0xefbe4786384f25e3
639 data8 0x0fc19dc68b8cd5b5,0x240ca1cc77ac9c65
640 data8 0x2de92c6f592b0275,0x4a7484aa6ea6e483
641 data8 0x5cb0a9dcbd41fbd4,0x76f988da831153b5
642 data8 0x983e5152ee66dfab,0xa831c66d2db43210
643 data8 0xb00327c898fb213f,0xbf597fc7beef0ee4
644 data8 0xc6e00bf33da88fc2,0xd5a79147930aa725
645 data8 0x06ca6351e003826f,0x142929670a0e6e70
646 data8 0x27b70a8546d22ffc,0x2e1b21385c26c926
647 data8 0x4d2c6dfc5ac42aed,0x53380d139d95b3df
648 data8 0x650a73548baf63de,0x766a0abb3c77b2a8
649 data8 0x81c2c92e47edaee6,0x92722c851482353b
650 data8 0xa2bfe8a14cf10364,0xa81a664bbc423001
651 data8 0xc24b8b70d0f89791,0xc76c51a30654be30
652 data8 0xd192e819d6ef5218,0xd69906245565a910
653 data8 0xf40e35855771202a,0x106aa07032bbd1b8
654 data8 0x19a4c116b8d2d0c8,0x1e376c085141ab53
655 data8 0x2748774cdf8eeb99,0x34b0bcb5e19b48a8
656 data8 0x391c0cb3c5c95a63,0x4ed8aa4ae3418acb
657 data8 0x5b9cca4f7763e373,0x682e6ff3d6b2b8a3
658 data8 0x748f82ee5defb2fc,0x78a5636f43172f60
659 data8 0x84c87814a1f0ab72,0x8cc702081a6439ec
660 data8 0x90befffa23631e28,0xa4506cebde82bde9
661 data8 0xbef9a3f7b2c67915,0xc67178f2e372532b
662 data8 0xca273eceea26619c,0xd186b8c721c0c207
663 data8 0xeada7dd6cde0eb1e,0xf57d4f7fee6ed178
664 data8 0x06f067aa72176fba,0x0a637dc5a2c898a6
665 data8 0x113f9804bef90dae,0x1b710b35131c471b
666 data8 0x28db77f523047d84,0x32caab7b40c72493
667 data8 0x3c9ebe0a15c9bebc,0x431d67c49c100d4c
668 data8 0x4cc5d4becb3e42b6,0x597f299cfc657e2a
669 data8 0x5fcb6fab3ad6faec,0x6c44198c4a475817
670.size K512#,$SZ*$rounds
671stringz "SHA512 block transform for IA64, CRYPTOGAMS by <appro\@openssl.org>"
672___
diff --git a/src/lib/libcrypto/sha/asm/sha512-x86_64.pl b/src/lib/libcrypto/sha/asm/sha512-x86_64.pl
new file mode 100755
index 0000000000..b6252d31ec
--- /dev/null
+++ b/src/lib/libcrypto/sha/asm/sha512-x86_64.pl
@@ -0,0 +1,344 @@
1#!/usr/bin/env perl
2#
3# ====================================================================
4# Written by Andy Polyakov <appro@fy.chalmers.se> for the OpenSSL
5# project. Rights for redistribution and usage in source and binary
6# forms are granted according to the OpenSSL license.
7# ====================================================================
8#
9# sha256/512_block procedure for x86_64.
10#
11# 40% improvement over compiler-generated code on Opteron. On EM64T
12# sha256 was observed to run >80% faster and sha512 - >40%. No magical
13# tricks, just straight implementation... I really wonder why gcc
14# [being armed with inline assembler] fails to generate as fast code.
15# The only thing which is cool about this module is that it's very
16# same instruction sequence used for both SHA-256 and SHA-512. In
17# former case the instructions operate on 32-bit operands, while in
18# latter - on 64-bit ones. All I had to do is to get one flavor right,
19# the other one passed the test right away:-)
20#
21# sha256_block runs in ~1005 cycles on Opteron, which gives you
22# asymptotic performance of 64*1000/1005=63.7MBps times CPU clock
23# frequency in GHz. sha512_block runs in ~1275 cycles, which results
24# in 128*1000/1275=100MBps per GHz. Is there room for improvement?
25# Well, if you compare it to IA-64 implementation, which maintains
26# X[16] in register bank[!], tends to 4 instructions per CPU clock
27# cycle and runs in 1003 cycles, 1275 is very good result for 3-way
28# issue Opteron pipeline and X[16] maintained in memory. So that *if*
29# there is a way to improve it, *then* the only way would be to try to
30# offload X[16] updates to SSE unit, but that would require "deeper"
31# loop unroll, which in turn would naturally cause size blow-up, not
32# to mention increased complexity! And once again, only *if* it's
33# actually possible to noticeably improve overall ILP, instruction
34# level parallelism, on a given CPU implementation in this case.
35#
36# Special note on Intel EM64T. While Opteron CPU exhibits perfect
37# perfromance ratio of 1.5 between 64- and 32-bit flavors [see above],
38# [currently available] EM64T CPUs apparently are far from it. On the
39# contrary, 64-bit version, sha512_block, is ~30% *slower* than 32-bit
40# sha256_block:-( This is presumably because 64-bit shifts/rotates
41# apparently are not atomic instructions, but implemented in microcode.
42
43$output=shift;
44
45$0 =~ m/(.*[\/\\])[^\/\\]+$/; $dir=$1;
46( $xlate="${dir}x86_64-xlate.pl" and -f $xlate ) or
47( $xlate="${dir}../../perlasm/x86_64-xlate.pl" and -f $xlate) or
48die "can't locate x86_64-xlate.pl";
49
50open STDOUT,"| $^X $xlate $output";
51
52if ($output =~ /512/) {
53 $func="sha512_block_data_order";
54 $TABLE="K512";
55 $SZ=8;
56 @ROT=($A,$B,$C,$D,$E,$F,$G,$H)=("%rax","%rbx","%rcx","%rdx",
57 "%r8", "%r9", "%r10","%r11");
58 ($T1,$a0,$a1,$a2)=("%r12","%r13","%r14","%r15");
59 @Sigma0=(28,34,39);
60 @Sigma1=(14,18,41);
61 @sigma0=(1, 8, 7);
62 @sigma1=(19,61, 6);
63 $rounds=80;
64} else {
65 $func="sha256_block_data_order";
66 $TABLE="K256";
67 $SZ=4;
68 @ROT=($A,$B,$C,$D,$E,$F,$G,$H)=("%eax","%ebx","%ecx","%edx",
69 "%r8d","%r9d","%r10d","%r11d");
70 ($T1,$a0,$a1,$a2)=("%r12d","%r13d","%r14d","%r15d");
71 @Sigma0=( 2,13,22);
72 @Sigma1=( 6,11,25);
73 @sigma0=( 7,18, 3);
74 @sigma1=(17,19,10);
75 $rounds=64;
76}
77
78$ctx="%rdi"; # 1st arg
79$round="%rdi"; # zaps $ctx
80$inp="%rsi"; # 2nd arg
81$Tbl="%rbp";
82
83$_ctx="16*$SZ+0*8(%rsp)";
84$_inp="16*$SZ+1*8(%rsp)";
85$_end="16*$SZ+2*8(%rsp)";
86$_rsp="16*$SZ+3*8(%rsp)";
87$framesz="16*$SZ+4*8";
88
89
90sub ROUND_00_15()
91{ my ($i,$a,$b,$c,$d,$e,$f,$g,$h) = @_;
92
93$code.=<<___;
94 mov $e,$a0
95 mov $e,$a1
96 mov $f,$a2
97
98 ror \$$Sigma1[0],$a0
99 ror \$$Sigma1[1],$a1
100 xor $g,$a2 # f^g
101
102 xor $a1,$a0
103 ror \$`$Sigma1[2]-$Sigma1[1]`,$a1
104 and $e,$a2 # (f^g)&e
105 mov $T1,`$SZ*($i&0xf)`(%rsp)
106
107 xor $a1,$a0 # Sigma1(e)
108 xor $g,$a2 # Ch(e,f,g)=((f^g)&e)^g
109 add $h,$T1 # T1+=h
110
111 mov $a,$h
112 add $a0,$T1 # T1+=Sigma1(e)
113
114 add $a2,$T1 # T1+=Ch(e,f,g)
115 mov $a,$a0
116 mov $a,$a1
117
118 ror \$$Sigma0[0],$h
119 ror \$$Sigma0[1],$a0
120 mov $a,$a2
121 add ($Tbl,$round,$SZ),$T1 # T1+=K[round]
122
123 xor $a0,$h
124 ror \$`$Sigma0[2]-$Sigma0[1]`,$a0
125 or $c,$a1 # a|c
126
127 xor $a0,$h # h=Sigma0(a)
128 and $c,$a2 # a&c
129 add $T1,$d # d+=T1
130
131 and $b,$a1 # (a|c)&b
132 add $T1,$h # h+=T1
133
134 or $a2,$a1 # Maj(a,b,c)=((a|c)&b)|(a&c)
135 lea 1($round),$round # round++
136
137 add $a1,$h # h+=Maj(a,b,c)
138___
139}
140
141sub ROUND_16_XX()
142{ my ($i,$a,$b,$c,$d,$e,$f,$g,$h) = @_;
143
144$code.=<<___;
145 mov `$SZ*(($i+1)&0xf)`(%rsp),$a0
146 mov `$SZ*(($i+14)&0xf)`(%rsp),$T1
147
148 mov $a0,$a2
149
150 shr \$$sigma0[2],$a0
151 ror \$$sigma0[0],$a2
152
153 xor $a2,$a0
154 ror \$`$sigma0[1]-$sigma0[0]`,$a2
155
156 xor $a2,$a0 # sigma0(X[(i+1)&0xf])
157 mov $T1,$a1
158
159 shr \$$sigma1[2],$T1
160 ror \$$sigma1[0],$a1
161
162 xor $a1,$T1
163 ror \$`$sigma1[1]-$sigma1[0]`,$a1
164
165 xor $a1,$T1 # sigma1(X[(i+14)&0xf])
166
167 add $a0,$T1
168
169 add `$SZ*(($i+9)&0xf)`(%rsp),$T1
170
171 add `$SZ*($i&0xf)`(%rsp),$T1
172___
173 &ROUND_00_15(@_);
174}
175
176$code=<<___;
177.text
178
179.globl $func
180.type $func,\@function,4
181.align 16
182$func:
183 push %rbx
184 push %rbp
185 push %r12
186 push %r13
187 push %r14
188 push %r15
189 mov %rsp,%rbp # copy %rsp
190 shl \$4,%rdx # num*16
191 sub \$$framesz,%rsp
192 lea ($inp,%rdx,$SZ),%rdx # inp+num*16*$SZ
193 and \$-64,%rsp # align stack frame
194 mov $ctx,$_ctx # save ctx, 1st arg
195 mov $inp,$_inp # save inp, 2nd arh
196 mov %rdx,$_end # save end pointer, "3rd" arg
197 mov %rbp,$_rsp # save copy of %rsp
198
199 .picmeup $Tbl
200 lea $TABLE-.($Tbl),$Tbl
201
202 mov $SZ*0($ctx),$A
203 mov $SZ*1($ctx),$B
204 mov $SZ*2($ctx),$C
205 mov $SZ*3($ctx),$D
206 mov $SZ*4($ctx),$E
207 mov $SZ*5($ctx),$F
208 mov $SZ*6($ctx),$G
209 mov $SZ*7($ctx),$H
210 jmp .Lloop
211
212.align 16
213.Lloop:
214 xor $round,$round
215___
216 for($i=0;$i<16;$i++) {
217 $code.=" mov $SZ*$i($inp),$T1\n";
218 $code.=" bswap $T1\n";
219 &ROUND_00_15($i,@ROT);
220 unshift(@ROT,pop(@ROT));
221 }
222$code.=<<___;
223 jmp .Lrounds_16_xx
224.align 16
225.Lrounds_16_xx:
226___
227 for(;$i<32;$i++) {
228 &ROUND_16_XX($i,@ROT);
229 unshift(@ROT,pop(@ROT));
230 }
231
232$code.=<<___;
233 cmp \$$rounds,$round
234 jb .Lrounds_16_xx
235
236 mov $_ctx,$ctx
237 lea 16*$SZ($inp),$inp
238
239 add $SZ*0($ctx),$A
240 add $SZ*1($ctx),$B
241 add $SZ*2($ctx),$C
242 add $SZ*3($ctx),$D
243 add $SZ*4($ctx),$E
244 add $SZ*5($ctx),$F
245 add $SZ*6($ctx),$G
246 add $SZ*7($ctx),$H
247
248 cmp $_end,$inp
249
250 mov $A,$SZ*0($ctx)
251 mov $B,$SZ*1($ctx)
252 mov $C,$SZ*2($ctx)
253 mov $D,$SZ*3($ctx)
254 mov $E,$SZ*4($ctx)
255 mov $F,$SZ*5($ctx)
256 mov $G,$SZ*6($ctx)
257 mov $H,$SZ*7($ctx)
258 jb .Lloop
259
260 mov $_rsp,%rsp
261 pop %r15
262 pop %r14
263 pop %r13
264 pop %r12
265 pop %rbp
266 pop %rbx
267
268 ret
269.size $func,.-$func
270___
271
272if ($SZ==4) {
273$code.=<<___;
274.align 64
275.type $TABLE,\@object
276$TABLE:
277 .long 0x428a2f98,0x71374491,0xb5c0fbcf,0xe9b5dba5
278 .long 0x3956c25b,0x59f111f1,0x923f82a4,0xab1c5ed5
279 .long 0xd807aa98,0x12835b01,0x243185be,0x550c7dc3
280 .long 0x72be5d74,0x80deb1fe,0x9bdc06a7,0xc19bf174
281 .long 0xe49b69c1,0xefbe4786,0x0fc19dc6,0x240ca1cc
282 .long 0x2de92c6f,0x4a7484aa,0x5cb0a9dc,0x76f988da
283 .long 0x983e5152,0xa831c66d,0xb00327c8,0xbf597fc7
284 .long 0xc6e00bf3,0xd5a79147,0x06ca6351,0x14292967
285 .long 0x27b70a85,0x2e1b2138,0x4d2c6dfc,0x53380d13
286 .long 0x650a7354,0x766a0abb,0x81c2c92e,0x92722c85
287 .long 0xa2bfe8a1,0xa81a664b,0xc24b8b70,0xc76c51a3
288 .long 0xd192e819,0xd6990624,0xf40e3585,0x106aa070
289 .long 0x19a4c116,0x1e376c08,0x2748774c,0x34b0bcb5
290 .long 0x391c0cb3,0x4ed8aa4a,0x5b9cca4f,0x682e6ff3
291 .long 0x748f82ee,0x78a5636f,0x84c87814,0x8cc70208
292 .long 0x90befffa,0xa4506ceb,0xbef9a3f7,0xc67178f2
293___
294} else {
295$code.=<<___;
296.align 64
297.type $TABLE,\@object
298$TABLE:
299 .quad 0x428a2f98d728ae22,0x7137449123ef65cd
300 .quad 0xb5c0fbcfec4d3b2f,0xe9b5dba58189dbbc
301 .quad 0x3956c25bf348b538,0x59f111f1b605d019
302 .quad 0x923f82a4af194f9b,0xab1c5ed5da6d8118
303 .quad 0xd807aa98a3030242,0x12835b0145706fbe
304 .quad 0x243185be4ee4b28c,0x550c7dc3d5ffb4e2
305 .quad 0x72be5d74f27b896f,0x80deb1fe3b1696b1
306 .quad 0x9bdc06a725c71235,0xc19bf174cf692694
307 .quad 0xe49b69c19ef14ad2,0xefbe4786384f25e3
308 .quad 0x0fc19dc68b8cd5b5,0x240ca1cc77ac9c65
309 .quad 0x2de92c6f592b0275,0x4a7484aa6ea6e483
310 .quad 0x5cb0a9dcbd41fbd4,0x76f988da831153b5
311 .quad 0x983e5152ee66dfab,0xa831c66d2db43210
312 .quad 0xb00327c898fb213f,0xbf597fc7beef0ee4
313 .quad 0xc6e00bf33da88fc2,0xd5a79147930aa725
314 .quad 0x06ca6351e003826f,0x142929670a0e6e70
315 .quad 0x27b70a8546d22ffc,0x2e1b21385c26c926
316 .quad 0x4d2c6dfc5ac42aed,0x53380d139d95b3df
317 .quad 0x650a73548baf63de,0x766a0abb3c77b2a8
318 .quad 0x81c2c92e47edaee6,0x92722c851482353b
319 .quad 0xa2bfe8a14cf10364,0xa81a664bbc423001
320 .quad 0xc24b8b70d0f89791,0xc76c51a30654be30
321 .quad 0xd192e819d6ef5218,0xd69906245565a910
322 .quad 0xf40e35855771202a,0x106aa07032bbd1b8
323 .quad 0x19a4c116b8d2d0c8,0x1e376c085141ab53
324 .quad 0x2748774cdf8eeb99,0x34b0bcb5e19b48a8
325 .quad 0x391c0cb3c5c95a63,0x4ed8aa4ae3418acb
326 .quad 0x5b9cca4f7763e373,0x682e6ff3d6b2b8a3
327 .quad 0x748f82ee5defb2fc,0x78a5636f43172f60
328 .quad 0x84c87814a1f0ab72,0x8cc702081a6439ec
329 .quad 0x90befffa23631e28,0xa4506cebde82bde9
330 .quad 0xbef9a3f7b2c67915,0xc67178f2e372532b
331 .quad 0xca273eceea26619c,0xd186b8c721c0c207
332 .quad 0xeada7dd6cde0eb1e,0xf57d4f7fee6ed178
333 .quad 0x06f067aa72176fba,0x0a637dc5a2c898a6
334 .quad 0x113f9804bef90dae,0x1b710b35131c471b
335 .quad 0x28db77f523047d84,0x32caab7b40c72493
336 .quad 0x3c9ebe0a15c9bebc,0x431d67c49c100d4c
337 .quad 0x4cc5d4becb3e42b6,0x597f299cfc657e2a
338 .quad 0x5fcb6fab3ad6faec,0x6c44198c4a475817
339___
340}
341
342$code =~ s/\`([^\`]*)\`/eval $1/gem;
343print $code;
344close STDOUT;
diff --git a/src/lib/libcrypto/sha/sha256.c b/src/lib/libcrypto/sha/sha256.c
new file mode 100644
index 0000000000..867f90cc97
--- /dev/null
+++ b/src/lib/libcrypto/sha/sha256.c
@@ -0,0 +1,282 @@
1/* crypto/sha/sha256.c */
2/* ====================================================================
3 * Copyright (c) 2004 The OpenSSL Project. All rights reserved
4 * according to the OpenSSL license [found in ../../LICENSE].
5 * ====================================================================
6 */
7#include <openssl/opensslconf.h>
8#if !defined(OPENSSL_NO_SHA) && !defined(OPENSSL_NO_SHA256)
9
10#include <stdlib.h>
11#include <string.h>
12
13#include <openssl/crypto.h>
14#include <openssl/sha.h>
15#include <openssl/opensslv.h>
16
17const char SHA256_version[]="SHA-256" OPENSSL_VERSION_PTEXT;
18
19int SHA224_Init (SHA256_CTX *c)
20 {
21 c->h[0]=0xc1059ed8UL; c->h[1]=0x367cd507UL;
22 c->h[2]=0x3070dd17UL; c->h[3]=0xf70e5939UL;
23 c->h[4]=0xffc00b31UL; c->h[5]=0x68581511UL;
24 c->h[6]=0x64f98fa7UL; c->h[7]=0xbefa4fa4UL;
25 c->Nl=0; c->Nh=0;
26 c->num=0; c->md_len=SHA224_DIGEST_LENGTH;
27 return 1;
28 }
29
30int SHA256_Init (SHA256_CTX *c)
31 {
32 c->h[0]=0x6a09e667UL; c->h[1]=0xbb67ae85UL;
33 c->h[2]=0x3c6ef372UL; c->h[3]=0xa54ff53aUL;
34 c->h[4]=0x510e527fUL; c->h[5]=0x9b05688cUL;
35 c->h[6]=0x1f83d9abUL; c->h[7]=0x5be0cd19UL;
36 c->Nl=0; c->Nh=0;
37 c->num=0; c->md_len=SHA256_DIGEST_LENGTH;
38 return 1;
39 }
40
41unsigned char *SHA224(const unsigned char *d, size_t n, unsigned char *md)
42 {
43 SHA256_CTX c;
44 static unsigned char m[SHA224_DIGEST_LENGTH];
45
46 if (md == NULL) md=m;
47 SHA224_Init(&c);
48 SHA256_Update(&c,d,n);
49 SHA256_Final(md,&c);
50 OPENSSL_cleanse(&c,sizeof(c));
51 return(md);
52 }
53
54unsigned char *SHA256(const unsigned char *d, size_t n, unsigned char *md)
55 {
56 SHA256_CTX c;
57 static unsigned char m[SHA256_DIGEST_LENGTH];
58
59 if (md == NULL) md=m;
60 SHA256_Init(&c);
61 SHA256_Update(&c,d,n);
62 SHA256_Final(md,&c);
63 OPENSSL_cleanse(&c,sizeof(c));
64 return(md);
65 }
66
67int SHA224_Update(SHA256_CTX *c, const void *data, size_t len)
68{ return SHA256_Update (c,data,len); }
69int SHA224_Final (unsigned char *md, SHA256_CTX *c)
70{ return SHA256_Final (md,c); }
71
72#define DATA_ORDER_IS_BIG_ENDIAN
73
74#define HASH_LONG SHA_LONG
75#define HASH_CTX SHA256_CTX
76#define HASH_CBLOCK SHA_CBLOCK
77/*
78 * Note that FIPS180-2 discusses "Truncation of the Hash Function Output."
79 * default: case below covers for it. It's not clear however if it's
80 * permitted to truncate to amount of bytes not divisible by 4. I bet not,
81 * but if it is, then default: case shall be extended. For reference.
82 * Idea behind separate cases for pre-defined lenghts is to let the
83 * compiler decide if it's appropriate to unroll small loops.
84 */
85#define HASH_MAKE_STRING(c,s) do { \
86 unsigned long ll; \
87 unsigned int xn; \
88 switch ((c)->md_len) \
89 { case SHA224_DIGEST_LENGTH: \
90 for (xn=0;xn<SHA224_DIGEST_LENGTH/4;xn++) \
91 { ll=(c)->h[xn]; HOST_l2c(ll,(s)); } \
92 break; \
93 case SHA256_DIGEST_LENGTH: \
94 for (xn=0;xn<SHA256_DIGEST_LENGTH/4;xn++) \
95 { ll=(c)->h[xn]; HOST_l2c(ll,(s)); } \
96 break; \
97 default: \
98 if ((c)->md_len > SHA256_DIGEST_LENGTH) \
99 return 0; \
100 for (xn=0;xn<(c)->md_len/4;xn++) \
101 { ll=(c)->h[xn]; HOST_l2c(ll,(s)); } \
102 break; \
103 } \
104 } while (0)
105
106#define HASH_UPDATE SHA256_Update
107#define HASH_TRANSFORM SHA256_Transform
108#define HASH_FINAL SHA256_Final
109#define HASH_BLOCK_DATA_ORDER sha256_block_data_order
110#ifndef SHA256_ASM
111static
112#endif
113void sha256_block_data_order (SHA256_CTX *ctx, const void *in, size_t num);
114
115#include "md32_common.h"
116
117#ifndef SHA256_ASM
118static const SHA_LONG K256[64] = {
119 0x428a2f98UL,0x71374491UL,0xb5c0fbcfUL,0xe9b5dba5UL,
120 0x3956c25bUL,0x59f111f1UL,0x923f82a4UL,0xab1c5ed5UL,
121 0xd807aa98UL,0x12835b01UL,0x243185beUL,0x550c7dc3UL,
122 0x72be5d74UL,0x80deb1feUL,0x9bdc06a7UL,0xc19bf174UL,
123 0xe49b69c1UL,0xefbe4786UL,0x0fc19dc6UL,0x240ca1ccUL,
124 0x2de92c6fUL,0x4a7484aaUL,0x5cb0a9dcUL,0x76f988daUL,
125 0x983e5152UL,0xa831c66dUL,0xb00327c8UL,0xbf597fc7UL,
126 0xc6e00bf3UL,0xd5a79147UL,0x06ca6351UL,0x14292967UL,
127 0x27b70a85UL,0x2e1b2138UL,0x4d2c6dfcUL,0x53380d13UL,
128 0x650a7354UL,0x766a0abbUL,0x81c2c92eUL,0x92722c85UL,
129 0xa2bfe8a1UL,0xa81a664bUL,0xc24b8b70UL,0xc76c51a3UL,
130 0xd192e819UL,0xd6990624UL,0xf40e3585UL,0x106aa070UL,
131 0x19a4c116UL,0x1e376c08UL,0x2748774cUL,0x34b0bcb5UL,
132 0x391c0cb3UL,0x4ed8aa4aUL,0x5b9cca4fUL,0x682e6ff3UL,
133 0x748f82eeUL,0x78a5636fUL,0x84c87814UL,0x8cc70208UL,
134 0x90befffaUL,0xa4506cebUL,0xbef9a3f7UL,0xc67178f2UL };
135
136/*
137 * FIPS specification refers to right rotations, while our ROTATE macro
138 * is left one. This is why you might notice that rotation coefficients
139 * differ from those observed in FIPS document by 32-N...
140 */
141#define Sigma0(x) (ROTATE((x),30) ^ ROTATE((x),19) ^ ROTATE((x),10))
142#define Sigma1(x) (ROTATE((x),26) ^ ROTATE((x),21) ^ ROTATE((x),7))
143#define sigma0(x) (ROTATE((x),25) ^ ROTATE((x),14) ^ ((x)>>3))
144#define sigma1(x) (ROTATE((x),15) ^ ROTATE((x),13) ^ ((x)>>10))
145
146#define Ch(x,y,z) (((x) & (y)) ^ ((~(x)) & (z)))
147#define Maj(x,y,z) (((x) & (y)) ^ ((x) & (z)) ^ ((y) & (z)))
148
149#ifdef OPENSSL_SMALL_FOOTPRINT
150
151static void sha256_block_data_order (SHA256_CTX *ctx, const void *in, size_t num)
152 {
153 unsigned MD32_REG_T a,b,c,d,e,f,g,h,s0,s1,T1,T2;
154 SHA_LONG X[16],l;
155 int i;
156 const unsigned char *data=in;
157
158 while (num--) {
159
160 a = ctx->h[0]; b = ctx->h[1]; c = ctx->h[2]; d = ctx->h[3];
161 e = ctx->h[4]; f = ctx->h[5]; g = ctx->h[6]; h = ctx->h[7];
162
163 for (i=0;i<16;i++)
164 {
165 HOST_c2l(data,l); T1 = X[i] = l;
166 T1 += h + Sigma1(e) + Ch(e,f,g) + K256[i];
167 T2 = Sigma0(a) + Maj(a,b,c);
168 h = g; g = f; f = e; e = d + T1;
169 d = c; c = b; b = a; a = T1 + T2;
170 }
171
172 for (;i<64;i++)
173 {
174 s0 = X[(i+1)&0x0f]; s0 = sigma0(s0);
175 s1 = X[(i+14)&0x0f]; s1 = sigma1(s1);
176
177 T1 = X[i&0xf] += s0 + s1 + X[(i+9)&0xf];
178 T1 += h + Sigma1(e) + Ch(e,f,g) + K256[i];
179 T2 = Sigma0(a) + Maj(a,b,c);
180 h = g; g = f; f = e; e = d + T1;
181 d = c; c = b; b = a; a = T1 + T2;
182 }
183
184 ctx->h[0] += a; ctx->h[1] += b; ctx->h[2] += c; ctx->h[3] += d;
185 ctx->h[4] += e; ctx->h[5] += f; ctx->h[6] += g; ctx->h[7] += h;
186
187 }
188}
189
190#else
191
192#define ROUND_00_15(i,a,b,c,d,e,f,g,h) do { \
193 T1 += h + Sigma1(e) + Ch(e,f,g) + K256[i]; \
194 h = Sigma0(a) + Maj(a,b,c); \
195 d += T1; h += T1; } while (0)
196
197#define ROUND_16_63(i,a,b,c,d,e,f,g,h,X) do { \
198 s0 = X[(i+1)&0x0f]; s0 = sigma0(s0); \
199 s1 = X[(i+14)&0x0f]; s1 = sigma1(s1); \
200 T1 = X[(i)&0x0f] += s0 + s1 + X[(i+9)&0x0f]; \
201 ROUND_00_15(i,a,b,c,d,e,f,g,h); } while (0)
202
203static void sha256_block_data_order (SHA256_CTX *ctx, const void *in, size_t num)
204 {
205 unsigned MD32_REG_T a,b,c,d,e,f,g,h,s0,s1,T1;
206 SHA_LONG X[16];
207 int i;
208 const unsigned char *data=in;
209 const union { long one; char little; } is_endian = {1};
210
211 while (num--) {
212
213 a = ctx->h[0]; b = ctx->h[1]; c = ctx->h[2]; d = ctx->h[3];
214 e = ctx->h[4]; f = ctx->h[5]; g = ctx->h[6]; h = ctx->h[7];
215
216 if (!is_endian.little && sizeof(SHA_LONG)==4 && ((size_t)in%4)==0)
217 {
218 const SHA_LONG *W=(const SHA_LONG *)data;
219
220 T1 = X[0] = W[0]; ROUND_00_15(0,a,b,c,d,e,f,g,h);
221 T1 = X[1] = W[1]; ROUND_00_15(1,h,a,b,c,d,e,f,g);
222 T1 = X[2] = W[2]; ROUND_00_15(2,g,h,a,b,c,d,e,f);
223 T1 = X[3] = W[3]; ROUND_00_15(3,f,g,h,a,b,c,d,e);
224 T1 = X[4] = W[4]; ROUND_00_15(4,e,f,g,h,a,b,c,d);
225 T1 = X[5] = W[5]; ROUND_00_15(5,d,e,f,g,h,a,b,c);
226 T1 = X[6] = W[6]; ROUND_00_15(6,c,d,e,f,g,h,a,b);
227 T1 = X[7] = W[7]; ROUND_00_15(7,b,c,d,e,f,g,h,a);
228 T1 = X[8] = W[8]; ROUND_00_15(8,a,b,c,d,e,f,g,h);
229 T1 = X[9] = W[9]; ROUND_00_15(9,h,a,b,c,d,e,f,g);
230 T1 = X[10] = W[10]; ROUND_00_15(10,g,h,a,b,c,d,e,f);
231 T1 = X[11] = W[11]; ROUND_00_15(11,f,g,h,a,b,c,d,e);
232 T1 = X[12] = W[12]; ROUND_00_15(12,e,f,g,h,a,b,c,d);
233 T1 = X[13] = W[13]; ROUND_00_15(13,d,e,f,g,h,a,b,c);
234 T1 = X[14] = W[14]; ROUND_00_15(14,c,d,e,f,g,h,a,b);
235 T1 = X[15] = W[15]; ROUND_00_15(15,b,c,d,e,f,g,h,a);
236
237 data += SHA256_CBLOCK;
238 }
239 else
240 {
241 SHA_LONG l;
242
243 HOST_c2l(data,l); T1 = X[0] = l; ROUND_00_15(0,a,b,c,d,e,f,g,h);
244 HOST_c2l(data,l); T1 = X[1] = l; ROUND_00_15(1,h,a,b,c,d,e,f,g);
245 HOST_c2l(data,l); T1 = X[2] = l; ROUND_00_15(2,g,h,a,b,c,d,e,f);
246 HOST_c2l(data,l); T1 = X[3] = l; ROUND_00_15(3,f,g,h,a,b,c,d,e);
247 HOST_c2l(data,l); T1 = X[4] = l; ROUND_00_15(4,e,f,g,h,a,b,c,d);
248 HOST_c2l(data,l); T1 = X[5] = l; ROUND_00_15(5,d,e,f,g,h,a,b,c);
249 HOST_c2l(data,l); T1 = X[6] = l; ROUND_00_15(6,c,d,e,f,g,h,a,b);
250 HOST_c2l(data,l); T1 = X[7] = l; ROUND_00_15(7,b,c,d,e,f,g,h,a);
251 HOST_c2l(data,l); T1 = X[8] = l; ROUND_00_15(8,a,b,c,d,e,f,g,h);
252 HOST_c2l(data,l); T1 = X[9] = l; ROUND_00_15(9,h,a,b,c,d,e,f,g);
253 HOST_c2l(data,l); T1 = X[10] = l; ROUND_00_15(10,g,h,a,b,c,d,e,f);
254 HOST_c2l(data,l); T1 = X[11] = l; ROUND_00_15(11,f,g,h,a,b,c,d,e);
255 HOST_c2l(data,l); T1 = X[12] = l; ROUND_00_15(12,e,f,g,h,a,b,c,d);
256 HOST_c2l(data,l); T1 = X[13] = l; ROUND_00_15(13,d,e,f,g,h,a,b,c);
257 HOST_c2l(data,l); T1 = X[14] = l; ROUND_00_15(14,c,d,e,f,g,h,a,b);
258 HOST_c2l(data,l); T1 = X[15] = l; ROUND_00_15(15,b,c,d,e,f,g,h,a);
259 }
260
261 for (i=16;i<64;i+=8)
262 {
263 ROUND_16_63(i+0,a,b,c,d,e,f,g,h,X);
264 ROUND_16_63(i+1,h,a,b,c,d,e,f,g,X);
265 ROUND_16_63(i+2,g,h,a,b,c,d,e,f,X);
266 ROUND_16_63(i+3,f,g,h,a,b,c,d,e,X);
267 ROUND_16_63(i+4,e,f,g,h,a,b,c,d,X);
268 ROUND_16_63(i+5,d,e,f,g,h,a,b,c,X);
269 ROUND_16_63(i+6,c,d,e,f,g,h,a,b,X);
270 ROUND_16_63(i+7,b,c,d,e,f,g,h,a,X);
271 }
272
273 ctx->h[0] += a; ctx->h[1] += b; ctx->h[2] += c; ctx->h[3] += d;
274 ctx->h[4] += e; ctx->h[5] += f; ctx->h[6] += g; ctx->h[7] += h;
275
276 }
277 }
278
279#endif
280#endif /* SHA256_ASM */
281
282#endif /* OPENSSL_NO_SHA256 */
diff --git a/src/lib/libcrypto/sha/sha512.c b/src/lib/libcrypto/sha/sha512.c
new file mode 100644
index 0000000000..987fc07c99
--- /dev/null
+++ b/src/lib/libcrypto/sha/sha512.c
@@ -0,0 +1,537 @@
1/* crypto/sha/sha512.c */
2/* ====================================================================
3 * Copyright (c) 2004 The OpenSSL Project. All rights reserved
4 * according to the OpenSSL license [found in ../../LICENSE].
5 * ====================================================================
6 */
7#include <openssl/opensslconf.h>
8#if !defined(OPENSSL_NO_SHA) && !defined(OPENSSL_NO_SHA512)
9/*
10 * IMPLEMENTATION NOTES.
11 *
12 * As you might have noticed 32-bit hash algorithms:
13 *
14 * - permit SHA_LONG to be wider than 32-bit (case on CRAY);
15 * - optimized versions implement two transform functions: one operating
16 * on [aligned] data in host byte order and one - on data in input
17 * stream byte order;
18 * - share common byte-order neutral collector and padding function
19 * implementations, ../md32_common.h;
20 *
21 * Neither of the above applies to this SHA-512 implementations. Reasons
22 * [in reverse order] are:
23 *
24 * - it's the only 64-bit hash algorithm for the moment of this writing,
25 * there is no need for common collector/padding implementation [yet];
26 * - by supporting only one transform function [which operates on
27 * *aligned* data in input stream byte order, big-endian in this case]
28 * we minimize burden of maintenance in two ways: a) collector/padding
29 * function is simpler; b) only one transform function to stare at;
30 * - SHA_LONG64 is required to be exactly 64-bit in order to be able to
31 * apply a number of optimizations to mitigate potential performance
32 * penalties caused by previous design decision;
33 *
34 * Caveat lector.
35 *
36 * Implementation relies on the fact that "long long" is 64-bit on
37 * both 32- and 64-bit platforms. If some compiler vendor comes up
38 * with 128-bit long long, adjustment to sha.h would be required.
39 * As this implementation relies on 64-bit integer type, it's totally
40 * inappropriate for platforms which don't support it, most notably
41 * 16-bit platforms.
42 * <appro@fy.chalmers.se>
43 */
44#include <stdlib.h>
45#include <string.h>
46
47#include <openssl/crypto.h>
48#include <openssl/sha.h>
49#include <openssl/opensslv.h>
50
51#include "cryptlib.h"
52
53const char SHA512_version[]="SHA-512" OPENSSL_VERSION_PTEXT;
54
55#if defined(__i386) || defined(__i386__) || defined(_M_IX86) || \
56 defined(__x86_64) || defined(_M_AMD64) || defined(_M_X64) || \
57 defined(__s390__) || defined(__s390x__) || \
58 defined(SHA512_ASM)
59#define SHA512_BLOCK_CAN_MANAGE_UNALIGNED_DATA
60#endif
61
62int SHA384_Init (SHA512_CTX *c)
63 {
64 c->h[0]=U64(0xcbbb9d5dc1059ed8);
65 c->h[1]=U64(0x629a292a367cd507);
66 c->h[2]=U64(0x9159015a3070dd17);
67 c->h[3]=U64(0x152fecd8f70e5939);
68 c->h[4]=U64(0x67332667ffc00b31);
69 c->h[5]=U64(0x8eb44a8768581511);
70 c->h[6]=U64(0xdb0c2e0d64f98fa7);
71 c->h[7]=U64(0x47b5481dbefa4fa4);
72 c->Nl=0; c->Nh=0;
73 c->num=0; c->md_len=SHA384_DIGEST_LENGTH;
74 return 1;
75 }
76
77int SHA512_Init (SHA512_CTX *c)
78 {
79 c->h[0]=U64(0x6a09e667f3bcc908);
80 c->h[1]=U64(0xbb67ae8584caa73b);
81 c->h[2]=U64(0x3c6ef372fe94f82b);
82 c->h[3]=U64(0xa54ff53a5f1d36f1);
83 c->h[4]=U64(0x510e527fade682d1);
84 c->h[5]=U64(0x9b05688c2b3e6c1f);
85 c->h[6]=U64(0x1f83d9abfb41bd6b);
86 c->h[7]=U64(0x5be0cd19137e2179);
87 c->Nl=0; c->Nh=0;
88 c->num=0; c->md_len=SHA512_DIGEST_LENGTH;
89 return 1;
90 }
91
92#ifndef SHA512_ASM
93static
94#endif
95void sha512_block_data_order (SHA512_CTX *ctx, const void *in, size_t num);
96
97int SHA512_Final (unsigned char *md, SHA512_CTX *c)
98 {
99 unsigned char *p=(unsigned char *)c->u.p;
100 size_t n=c->num;
101
102 p[n]=0x80; /* There always is a room for one */
103 n++;
104 if (n > (sizeof(c->u)-16))
105 memset (p+n,0,sizeof(c->u)-n), n=0,
106 sha512_block_data_order (c,p,1);
107
108 memset (p+n,0,sizeof(c->u)-16-n);
109#ifdef B_ENDIAN
110 c->u.d[SHA_LBLOCK-2] = c->Nh;
111 c->u.d[SHA_LBLOCK-1] = c->Nl;
112#else
113 p[sizeof(c->u)-1] = (unsigned char)(c->Nl);
114 p[sizeof(c->u)-2] = (unsigned char)(c->Nl>>8);
115 p[sizeof(c->u)-3] = (unsigned char)(c->Nl>>16);
116 p[sizeof(c->u)-4] = (unsigned char)(c->Nl>>24);
117 p[sizeof(c->u)-5] = (unsigned char)(c->Nl>>32);
118 p[sizeof(c->u)-6] = (unsigned char)(c->Nl>>40);
119 p[sizeof(c->u)-7] = (unsigned char)(c->Nl>>48);
120 p[sizeof(c->u)-8] = (unsigned char)(c->Nl>>56);
121 p[sizeof(c->u)-9] = (unsigned char)(c->Nh);
122 p[sizeof(c->u)-10] = (unsigned char)(c->Nh>>8);
123 p[sizeof(c->u)-11] = (unsigned char)(c->Nh>>16);
124 p[sizeof(c->u)-12] = (unsigned char)(c->Nh>>24);
125 p[sizeof(c->u)-13] = (unsigned char)(c->Nh>>32);
126 p[sizeof(c->u)-14] = (unsigned char)(c->Nh>>40);
127 p[sizeof(c->u)-15] = (unsigned char)(c->Nh>>48);
128 p[sizeof(c->u)-16] = (unsigned char)(c->Nh>>56);
129#endif
130
131 sha512_block_data_order (c,p,1);
132
133 if (md==0) return 0;
134
135 switch (c->md_len)
136 {
137 /* Let compiler decide if it's appropriate to unroll... */
138 case SHA384_DIGEST_LENGTH:
139 for (n=0;n<SHA384_DIGEST_LENGTH/8;n++)
140 {
141 SHA_LONG64 t = c->h[n];
142
143 *(md++) = (unsigned char)(t>>56);
144 *(md++) = (unsigned char)(t>>48);
145 *(md++) = (unsigned char)(t>>40);
146 *(md++) = (unsigned char)(t>>32);
147 *(md++) = (unsigned char)(t>>24);
148 *(md++) = (unsigned char)(t>>16);
149 *(md++) = (unsigned char)(t>>8);
150 *(md++) = (unsigned char)(t);
151 }
152 break;
153 case SHA512_DIGEST_LENGTH:
154 for (n=0;n<SHA512_DIGEST_LENGTH/8;n++)
155 {
156 SHA_LONG64 t = c->h[n];
157
158 *(md++) = (unsigned char)(t>>56);
159 *(md++) = (unsigned char)(t>>48);
160 *(md++) = (unsigned char)(t>>40);
161 *(md++) = (unsigned char)(t>>32);
162 *(md++) = (unsigned char)(t>>24);
163 *(md++) = (unsigned char)(t>>16);
164 *(md++) = (unsigned char)(t>>8);
165 *(md++) = (unsigned char)(t);
166 }
167 break;
168 /* ... as well as make sure md_len is not abused. */
169 default: return 0;
170 }
171
172 return 1;
173 }
174
175int SHA384_Final (unsigned char *md,SHA512_CTX *c)
176{ return SHA512_Final (md,c); }
177
178int SHA512_Update (SHA512_CTX *c, const void *_data, size_t len)
179 {
180 SHA_LONG64 l;
181 unsigned char *p=c->u.p;
182 const unsigned char *data=(const unsigned char *)_data;
183
184 if (len==0) return 1;
185
186 l = (c->Nl+(((SHA_LONG64)len)<<3))&U64(0xffffffffffffffff);
187 if (l < c->Nl) c->Nh++;
188 if (sizeof(len)>=8) c->Nh+=(((SHA_LONG64)len)>>61);
189 c->Nl=l;
190
191 if (c->num != 0)
192 {
193 size_t n = sizeof(c->u) - c->num;
194
195 if (len < n)
196 {
197 memcpy (p+c->num,data,len), c->num += len;
198 return 1;
199 }
200 else {
201 memcpy (p+c->num,data,n), c->num = 0;
202 len-=n, data+=n;
203 sha512_block_data_order (c,p,1);
204 }
205 }
206
207 if (len >= sizeof(c->u))
208 {
209#ifndef SHA512_BLOCK_CAN_MANAGE_UNALIGNED_DATA
210 if ((size_t)data%sizeof(c->u.d[0]) != 0)
211 while (len >= sizeof(c->u))
212 memcpy (p,data,sizeof(c->u)),
213 sha512_block_data_order (c,p,1),
214 len -= sizeof(c->u),
215 data += sizeof(c->u);
216 else
217#endif
218 sha512_block_data_order (c,data,len/sizeof(c->u)),
219 data += len,
220 len %= sizeof(c->u),
221 data -= len;
222 }
223
224 if (len != 0) memcpy (p,data,len), c->num = (int)len;
225
226 return 1;
227 }
228
229int SHA384_Update (SHA512_CTX *c, const void *data, size_t len)
230{ return SHA512_Update (c,data,len); }
231
232void SHA512_Transform (SHA512_CTX *c, const unsigned char *data)
233{ sha512_block_data_order (c,data,1); }
234
235unsigned char *SHA384(const unsigned char *d, size_t n, unsigned char *md)
236 {
237 SHA512_CTX c;
238 static unsigned char m[SHA384_DIGEST_LENGTH];
239
240 if (md == NULL) md=m;
241 SHA384_Init(&c);
242 SHA512_Update(&c,d,n);
243 SHA512_Final(md,&c);
244 OPENSSL_cleanse(&c,sizeof(c));
245 return(md);
246 }
247
248unsigned char *SHA512(const unsigned char *d, size_t n, unsigned char *md)
249 {
250 SHA512_CTX c;
251 static unsigned char m[SHA512_DIGEST_LENGTH];
252
253 if (md == NULL) md=m;
254 SHA512_Init(&c);
255 SHA512_Update(&c,d,n);
256 SHA512_Final(md,&c);
257 OPENSSL_cleanse(&c,sizeof(c));
258 return(md);
259 }
260
261#ifndef SHA512_ASM
262static const SHA_LONG64 K512[80] = {
263 U64(0x428a2f98d728ae22),U64(0x7137449123ef65cd),
264 U64(0xb5c0fbcfec4d3b2f),U64(0xe9b5dba58189dbbc),
265 U64(0x3956c25bf348b538),U64(0x59f111f1b605d019),
266 U64(0x923f82a4af194f9b),U64(0xab1c5ed5da6d8118),
267 U64(0xd807aa98a3030242),U64(0x12835b0145706fbe),
268 U64(0x243185be4ee4b28c),U64(0x550c7dc3d5ffb4e2),
269 U64(0x72be5d74f27b896f),U64(0x80deb1fe3b1696b1),
270 U64(0x9bdc06a725c71235),U64(0xc19bf174cf692694),
271 U64(0xe49b69c19ef14ad2),U64(0xefbe4786384f25e3),
272 U64(0x0fc19dc68b8cd5b5),U64(0x240ca1cc77ac9c65),
273 U64(0x2de92c6f592b0275),U64(0x4a7484aa6ea6e483),
274 U64(0x5cb0a9dcbd41fbd4),U64(0x76f988da831153b5),
275 U64(0x983e5152ee66dfab),U64(0xa831c66d2db43210),
276 U64(0xb00327c898fb213f),U64(0xbf597fc7beef0ee4),
277 U64(0xc6e00bf33da88fc2),U64(0xd5a79147930aa725),
278 U64(0x06ca6351e003826f),U64(0x142929670a0e6e70),
279 U64(0x27b70a8546d22ffc),U64(0x2e1b21385c26c926),
280 U64(0x4d2c6dfc5ac42aed),U64(0x53380d139d95b3df),
281 U64(0x650a73548baf63de),U64(0x766a0abb3c77b2a8),
282 U64(0x81c2c92e47edaee6),U64(0x92722c851482353b),
283 U64(0xa2bfe8a14cf10364),U64(0xa81a664bbc423001),
284 U64(0xc24b8b70d0f89791),U64(0xc76c51a30654be30),
285 U64(0xd192e819d6ef5218),U64(0xd69906245565a910),
286 U64(0xf40e35855771202a),U64(0x106aa07032bbd1b8),
287 U64(0x19a4c116b8d2d0c8),U64(0x1e376c085141ab53),
288 U64(0x2748774cdf8eeb99),U64(0x34b0bcb5e19b48a8),
289 U64(0x391c0cb3c5c95a63),U64(0x4ed8aa4ae3418acb),
290 U64(0x5b9cca4f7763e373),U64(0x682e6ff3d6b2b8a3),
291 U64(0x748f82ee5defb2fc),U64(0x78a5636f43172f60),
292 U64(0x84c87814a1f0ab72),U64(0x8cc702081a6439ec),
293 U64(0x90befffa23631e28),U64(0xa4506cebde82bde9),
294 U64(0xbef9a3f7b2c67915),U64(0xc67178f2e372532b),
295 U64(0xca273eceea26619c),U64(0xd186b8c721c0c207),
296 U64(0xeada7dd6cde0eb1e),U64(0xf57d4f7fee6ed178),
297 U64(0x06f067aa72176fba),U64(0x0a637dc5a2c898a6),
298 U64(0x113f9804bef90dae),U64(0x1b710b35131c471b),
299 U64(0x28db77f523047d84),U64(0x32caab7b40c72493),
300 U64(0x3c9ebe0a15c9bebc),U64(0x431d67c49c100d4c),
301 U64(0x4cc5d4becb3e42b6),U64(0x597f299cfc657e2a),
302 U64(0x5fcb6fab3ad6faec),U64(0x6c44198c4a475817) };
303
304#ifndef PEDANTIC
305# if defined(__GNUC__) && __GNUC__>=2 && !defined(OPENSSL_NO_ASM) && !defined(OPENSSL_NO_INLINE_ASM)
306# if defined(__x86_64) || defined(__x86_64__)
307# define ROTR(a,n) ({ unsigned long ret; \
308 asm ("rorq %1,%0" \
309 : "=r"(ret) \
310 : "J"(n),"0"(a) \
311 : "cc"); ret; })
312# if !defined(B_ENDIAN)
313# define PULL64(x) ({ SHA_LONG64 ret=*((const SHA_LONG64 *)(&(x))); \
314 asm ("bswapq %0" \
315 : "=r"(ret) \
316 : "0"(ret)); ret; })
317# endif
318# elif (defined(__i386) || defined(__i386__)) && !defined(B_ENDIAN)
319# if defined(I386_ONLY)
320# define PULL64(x) ({ const unsigned int *p=(const unsigned int *)(&(x));\
321 unsigned int hi=p[0],lo=p[1]; \
322 asm("xchgb %%ah,%%al;xchgb %%dh,%%dl;"\
323 "roll $16,%%eax; roll $16,%%edx; "\
324 "xchgb %%ah,%%al;xchgb %%dh,%%dl;" \
325 : "=a"(lo),"=d"(hi) \
326 : "0"(lo),"1"(hi) : "cc"); \
327 ((SHA_LONG64)hi)<<32|lo; })
328# else
329# define PULL64(x) ({ const unsigned int *p=(const unsigned int *)(&(x));\
330 unsigned int hi=p[0],lo=p[1]; \
331 asm ("bswapl %0; bswapl %1;" \
332 : "=r"(lo),"=r"(hi) \
333 : "0"(lo),"1"(hi)); \
334 ((SHA_LONG64)hi)<<32|lo; })
335# endif
336# elif (defined(_ARCH_PPC) && defined(__64BIT__)) || defined(_ARCH_PPC64)
337# define ROTR(a,n) ({ unsigned long ret; \
338 asm ("rotrdi %0,%1,%2" \
339 : "=r"(ret) \
340 : "r"(a),"K"(n)); ret; })
341# endif
342# elif defined(_MSC_VER)
343# if defined(_WIN64) /* applies to both IA-64 and AMD64 */
344# define ROTR(a,n) _rotr64((a),n)
345# endif
346# if defined(_M_IX86) && !defined(OPENSSL_NO_ASM) && !defined(OPENSSL_NO_INLINE_ASM)
347# if defined(I386_ONLY)
348 static SHA_LONG64 __fastcall __pull64be(const void *x)
349 { _asm mov edx, [ecx + 0]
350 _asm mov eax, [ecx + 4]
351 _asm xchg dh,dl
352 _asm xchg ah,al
353 _asm rol edx,16
354 _asm rol eax,16
355 _asm xchg dh,dl
356 _asm xchg ah,al
357 }
358# else
359 static SHA_LONG64 __fastcall __pull64be(const void *x)
360 { _asm mov edx, [ecx + 0]
361 _asm mov eax, [ecx + 4]
362 _asm bswap edx
363 _asm bswap eax
364 }
365# endif
366# define PULL64(x) __pull64be(&(x))
367# if _MSC_VER<=1200
368# pragma inline_depth(0)
369# endif
370# endif
371# endif
372#endif
373
374#ifndef PULL64
375#define B(x,j) (((SHA_LONG64)(*(((const unsigned char *)(&x))+j)))<<((7-j)*8))
376#define PULL64(x) (B(x,0)|B(x,1)|B(x,2)|B(x,3)|B(x,4)|B(x,5)|B(x,6)|B(x,7))
377#endif
378
379#ifndef ROTR
380#define ROTR(x,s) (((x)>>s) | (x)<<(64-s))
381#endif
382
383#define Sigma0(x) (ROTR((x),28) ^ ROTR((x),34) ^ ROTR((x),39))
384#define Sigma1(x) (ROTR((x),14) ^ ROTR((x),18) ^ ROTR((x),41))
385#define sigma0(x) (ROTR((x),1) ^ ROTR((x),8) ^ ((x)>>7))
386#define sigma1(x) (ROTR((x),19) ^ ROTR((x),61) ^ ((x)>>6))
387
388#define Ch(x,y,z) (((x) & (y)) ^ ((~(x)) & (z)))
389#define Maj(x,y,z) (((x) & (y)) ^ ((x) & (z)) ^ ((y) & (z)))
390
391#if defined(OPENSSL_IA32_SSE2) && !defined(OPENSSL_NO_ASM) && !defined(I386_ONLY)
392#define GO_FOR_SSE2(ctx,in,num) do { \
393 void sha512_block_sse2(void *,const void *,size_t); \
394 if (!(OPENSSL_ia32cap_P & (1<<26))) break; \
395 sha512_block_sse2(ctx->h,in,num); return; \
396 } while (0)
397#endif
398
399#ifdef OPENSSL_SMALL_FOOTPRINT
400
401static void sha512_block_data_order (SHA512_CTX *ctx, const void *in, size_t num)
402 {
403 const SHA_LONG64 *W=in;
404 SHA_LONG64 a,b,c,d,e,f,g,h,s0,s1,T1,T2;
405 SHA_LONG64 X[16];
406 int i;
407
408#ifdef GO_FOR_SSE2
409 GO_FOR_SSE2(ctx,in,num);
410#endif
411
412 while (num--) {
413
414 a = ctx->h[0]; b = ctx->h[1]; c = ctx->h[2]; d = ctx->h[3];
415 e = ctx->h[4]; f = ctx->h[5]; g = ctx->h[6]; h = ctx->h[7];
416
417 for (i=0;i<16;i++)
418 {
419#ifdef B_ENDIAN
420 T1 = X[i] = W[i];
421#else
422 T1 = X[i] = PULL64(W[i]);
423#endif
424 T1 += h + Sigma1(e) + Ch(e,f,g) + K512[i];
425 T2 = Sigma0(a) + Maj(a,b,c);
426 h = g; g = f; f = e; e = d + T1;
427 d = c; c = b; b = a; a = T1 + T2;
428 }
429
430 for (;i<80;i++)
431 {
432 s0 = X[(i+1)&0x0f]; s0 = sigma0(s0);
433 s1 = X[(i+14)&0x0f]; s1 = sigma1(s1);
434
435 T1 = X[i&0xf] += s0 + s1 + X[(i+9)&0xf];
436 T1 += h + Sigma1(e) + Ch(e,f,g) + K512[i];
437 T2 = Sigma0(a) + Maj(a,b,c);
438 h = g; g = f; f = e; e = d + T1;
439 d = c; c = b; b = a; a = T1 + T2;
440 }
441
442 ctx->h[0] += a; ctx->h[1] += b; ctx->h[2] += c; ctx->h[3] += d;
443 ctx->h[4] += e; ctx->h[5] += f; ctx->h[6] += g; ctx->h[7] += h;
444
445 W+=SHA_LBLOCK;
446 }
447 }
448
449#else
450
451#define ROUND_00_15(i,a,b,c,d,e,f,g,h) do { \
452 T1 += h + Sigma1(e) + Ch(e,f,g) + K512[i]; \
453 h = Sigma0(a) + Maj(a,b,c); \
454 d += T1; h += T1; } while (0)
455
456#define ROUND_16_80(i,a,b,c,d,e,f,g,h,X) do { \
457 s0 = X[(i+1)&0x0f]; s0 = sigma0(s0); \
458 s1 = X[(i+14)&0x0f]; s1 = sigma1(s1); \
459 T1 = X[(i)&0x0f] += s0 + s1 + X[(i+9)&0x0f]; \
460 ROUND_00_15(i,a,b,c,d,e,f,g,h); } while (0)
461
462static void sha512_block_data_order (SHA512_CTX *ctx, const void *in, size_t num)
463 {
464 const SHA_LONG64 *W=in;
465 SHA_LONG64 a,b,c,d,e,f,g,h,s0,s1,T1;
466 SHA_LONG64 X[16];
467 int i;
468
469#ifdef GO_FOR_SSE2
470 GO_FOR_SSE2(ctx,in,num);
471#endif
472
473 while (num--) {
474
475 a = ctx->h[0]; b = ctx->h[1]; c = ctx->h[2]; d = ctx->h[3];
476 e = ctx->h[4]; f = ctx->h[5]; g = ctx->h[6]; h = ctx->h[7];
477
478#ifdef B_ENDIAN
479 T1 = X[0] = W[0]; ROUND_00_15(0,a,b,c,d,e,f,g,h);
480 T1 = X[1] = W[1]; ROUND_00_15(1,h,a,b,c,d,e,f,g);
481 T1 = X[2] = W[2]; ROUND_00_15(2,g,h,a,b,c,d,e,f);
482 T1 = X[3] = W[3]; ROUND_00_15(3,f,g,h,a,b,c,d,e);
483 T1 = X[4] = W[4]; ROUND_00_15(4,e,f,g,h,a,b,c,d);
484 T1 = X[5] = W[5]; ROUND_00_15(5,d,e,f,g,h,a,b,c);
485 T1 = X[6] = W[6]; ROUND_00_15(6,c,d,e,f,g,h,a,b);
486 T1 = X[7] = W[7]; ROUND_00_15(7,b,c,d,e,f,g,h,a);
487 T1 = X[8] = W[8]; ROUND_00_15(8,a,b,c,d,e,f,g,h);
488 T1 = X[9] = W[9]; ROUND_00_15(9,h,a,b,c,d,e,f,g);
489 T1 = X[10] = W[10]; ROUND_00_15(10,g,h,a,b,c,d,e,f);
490 T1 = X[11] = W[11]; ROUND_00_15(11,f,g,h,a,b,c,d,e);
491 T1 = X[12] = W[12]; ROUND_00_15(12,e,f,g,h,a,b,c,d);
492 T1 = X[13] = W[13]; ROUND_00_15(13,d,e,f,g,h,a,b,c);
493 T1 = X[14] = W[14]; ROUND_00_15(14,c,d,e,f,g,h,a,b);
494 T1 = X[15] = W[15]; ROUND_00_15(15,b,c,d,e,f,g,h,a);
495#else
496 T1 = X[0] = PULL64(W[0]); ROUND_00_15(0,a,b,c,d,e,f,g,h);
497 T1 = X[1] = PULL64(W[1]); ROUND_00_15(1,h,a,b,c,d,e,f,g);
498 T1 = X[2] = PULL64(W[2]); ROUND_00_15(2,g,h,a,b,c,d,e,f);
499 T1 = X[3] = PULL64(W[3]); ROUND_00_15(3,f,g,h,a,b,c,d,e);
500 T1 = X[4] = PULL64(W[4]); ROUND_00_15(4,e,f,g,h,a,b,c,d);
501 T1 = X[5] = PULL64(W[5]); ROUND_00_15(5,d,e,f,g,h,a,b,c);
502 T1 = X[6] = PULL64(W[6]); ROUND_00_15(6,c,d,e,f,g,h,a,b);
503 T1 = X[7] = PULL64(W[7]); ROUND_00_15(7,b,c,d,e,f,g,h,a);
504 T1 = X[8] = PULL64(W[8]); ROUND_00_15(8,a,b,c,d,e,f,g,h);
505 T1 = X[9] = PULL64(W[9]); ROUND_00_15(9,h,a,b,c,d,e,f,g);
506 T1 = X[10] = PULL64(W[10]); ROUND_00_15(10,g,h,a,b,c,d,e,f);
507 T1 = X[11] = PULL64(W[11]); ROUND_00_15(11,f,g,h,a,b,c,d,e);
508 T1 = X[12] = PULL64(W[12]); ROUND_00_15(12,e,f,g,h,a,b,c,d);
509 T1 = X[13] = PULL64(W[13]); ROUND_00_15(13,d,e,f,g,h,a,b,c);
510 T1 = X[14] = PULL64(W[14]); ROUND_00_15(14,c,d,e,f,g,h,a,b);
511 T1 = X[15] = PULL64(W[15]); ROUND_00_15(15,b,c,d,e,f,g,h,a);
512#endif
513
514 for (i=16;i<80;i+=8)
515 {
516 ROUND_16_80(i+0,a,b,c,d,e,f,g,h,X);
517 ROUND_16_80(i+1,h,a,b,c,d,e,f,g,X);
518 ROUND_16_80(i+2,g,h,a,b,c,d,e,f,X);
519 ROUND_16_80(i+3,f,g,h,a,b,c,d,e,X);
520 ROUND_16_80(i+4,e,f,g,h,a,b,c,d,X);
521 ROUND_16_80(i+5,d,e,f,g,h,a,b,c,X);
522 ROUND_16_80(i+6,c,d,e,f,g,h,a,b,X);
523 ROUND_16_80(i+7,b,c,d,e,f,g,h,a,X);
524 }
525
526 ctx->h[0] += a; ctx->h[1] += b; ctx->h[2] += c; ctx->h[3] += d;
527 ctx->h[4] += e; ctx->h[5] += f; ctx->h[6] += g; ctx->h[7] += h;
528
529 W+=SHA_LBLOCK;
530 }
531 }
532
533#endif
534
535#endif /* SHA512_ASM */
536
537#endif /* OPENSSL_NO_SHA512 */