summaryrefslogtreecommitdiff
path: root/src/lib/libcrypto/sha
diff options
context:
space:
mode:
Diffstat (limited to 'src/lib/libcrypto/sha')
-rw-r--r--src/lib/libcrypto/sha/asm/sha1-586.pl1107
-rw-r--r--src/lib/libcrypto/sha/sha.h14
-rw-r--r--src/lib/libcrypto/sha/sha1dgst.c1
-rw-r--r--src/lib/libcrypto/sha/sha_dgst.c1
-rw-r--r--src/lib/libcrypto/sha/sha_locl.h6
5 files changed, 1079 insertions, 50 deletions
diff --git a/src/lib/libcrypto/sha/asm/sha1-586.pl b/src/lib/libcrypto/sha/asm/sha1-586.pl
index a1f876281a..1084d227fe 100644
--- a/src/lib/libcrypto/sha/asm/sha1-586.pl
+++ b/src/lib/libcrypto/sha/asm/sha1-586.pl
@@ -12,6 +12,8 @@
12# commentary below], and in 2006 the rest was rewritten in order to 12# commentary below], and in 2006 the rest was rewritten in order to
13# gain freedom to liberate licensing terms. 13# gain freedom to liberate licensing terms.
14 14
15# January, September 2004.
16#
15# It was noted that Intel IA-32 C compiler generates code which 17# It was noted that Intel IA-32 C compiler generates code which
16# performs ~30% *faster* on P4 CPU than original *hand-coded* 18# performs ~30% *faster* on P4 CPU than original *hand-coded*
17# SHA1 assembler implementation. To address this problem (and 19# SHA1 assembler implementation. To address this problem (and
@@ -31,12 +33,92 @@
31# ---------------------------------------------------------------- 33# ----------------------------------------------------------------
32# <appro@fy.chalmers.se> 34# <appro@fy.chalmers.se>
33 35
36# August 2009.
37#
38# George Spelvin has tipped that F_40_59(b,c,d) can be rewritten as
39# '(c&d) + (b&(c^d))', which allows to accumulate partial results
40# and lighten "pressure" on scratch registers. This resulted in
41# >12% performance improvement on contemporary AMD cores (with no
42# degradation on other CPUs:-). Also, the code was revised to maximize
43# "distance" between instructions producing input to 'lea' instruction
44# and the 'lea' instruction itself, which is essential for Intel Atom
45# core and resulted in ~15% improvement.
46
47# October 2010.
48#
49# Add SSSE3, Supplemental[!] SSE3, implementation. The idea behind it
50# is to offload message schedule denoted by Wt in NIST specification,
51# or Xupdate in OpenSSL source, to SIMD unit. The idea is not novel,
52# and in SSE2 context was first explored by Dean Gaudet in 2004, see
53# http://arctic.org/~dean/crypto/sha1.html. Since then several things
54# have changed that made it interesting again:
55#
56# a) XMM units became faster and wider;
57# b) instruction set became more versatile;
58# c) an important observation was made by Max Locktykhin, which made
59# it possible to reduce amount of instructions required to perform
60# the operation in question, for further details see
61# http://software.intel.com/en-us/articles/improving-the-performance-of-the-secure-hash-algorithm-1/.
62
63# April 2011.
64#
65# Add AVX code path, probably most controversial... The thing is that
66# switch to AVX alone improves performance by as little as 4% in
67# comparison to SSSE3 code path. But below result doesn't look like
68# 4% improvement... Trouble is that Sandy Bridge decodes 'ro[rl]' as
69# pair of µ-ops, and it's the additional µ-ops, two per round, that
70# make it run slower than Core2 and Westmere. But 'sh[rl]d' is decoded
71# as single µ-op by Sandy Bridge and it's replacing 'ro[rl]' with
72# equivalent 'sh[rl]d' that is responsible for the impressive 5.1
73# cycles per processed byte. But 'sh[rl]d' is not something that used
74# to be fast, nor does it appear to be fast in upcoming Bulldozer
75# [according to its optimization manual]. Which is why AVX code path
76# is guarded by *both* AVX and synthetic bit denoting Intel CPUs.
77# One can argue that it's unfair to AMD, but without 'sh[rl]d' it
78# makes no sense to keep the AVX code path. If somebody feels that
79# strongly, it's probably more appropriate to discuss possibility of
80# using vector rotate XOP on AMD...
81
82######################################################################
83# Current performance is summarized in following table. Numbers are
84# CPU clock cycles spent to process single byte (less is better).
85#
86# x86 SSSE3 AVX
87# Pentium 15.7 -
88# PIII 11.5 -
89# P4 10.6 -
90# AMD K8 7.1 -
91# Core2 7.3 6.1/+20% -
92# Atom 12.5 9.5(*)/+32% -
93# Westmere 7.3 5.6/+30% -
94# Sandy Bridge 8.8 6.2/+40% 5.1(**)/+70%
95#
96# (*) Loop is 1056 instructions long and expected result is ~8.25.
97# It remains mystery [to me] why ILP is limited to 1.7.
98#
99# (**) As per above comment, the result is for AVX *plus* sh[rl]d.
100
34$0 =~ m/(.*[\/\\])[^\/\\]+$/; $dir=$1; 101$0 =~ m/(.*[\/\\])[^\/\\]+$/; $dir=$1;
35push(@INC,"${dir}","${dir}../../perlasm"); 102push(@INC,"${dir}","${dir}../../perlasm");
36require "x86asm.pl"; 103require "x86asm.pl";
37 104
38&asm_init($ARGV[0],"sha1-586.pl",$ARGV[$#ARGV] eq "386"); 105&asm_init($ARGV[0],"sha1-586.pl",$ARGV[$#ARGV] eq "386");
39 106
107$xmm=$ymm=0;
108for (@ARGV) { $xmm=1 if (/-DOPENSSL_IA32_SSE2/); }
109
110$ymm=1 if ($xmm &&
111 `$ENV{CC} -Wa,-v -c -o /dev/null -x assembler /dev/null 2>&1`
112 =~ /GNU assembler version ([2-9]\.[0-9]+)/ &&
113 $1>=2.19); # first version supporting AVX
114
115$ymm=1 if ($xmm && !$ymm && $ARGV[0] eq "win32n" &&
116 `nasm -v 2>&1` =~ /NASM version ([2-9]\.[0-9]+)/ &&
117 $1>=2.03); # first version supporting AVX
118
119&external_label("OPENSSL_ia32cap_P") if ($xmm);
120
121
40$A="eax"; 122$A="eax";
41$B="ebx"; 123$B="ebx";
42$C="ecx"; 124$C="ecx";
@@ -47,6 +129,10 @@ $tmp1="ebp";
47 129
48@V=($A,$B,$C,$D,$E,$T); 130@V=($A,$B,$C,$D,$E,$T);
49 131
132$alt=0; # 1 denotes alternative IALU implementation, which performs
133 # 8% *worse* on P4, same on Westmere and Atom, 2% better on
134 # Sandy Bridge...
135
50sub BODY_00_15 136sub BODY_00_15
51 { 137 {
52 local($n,$a,$b,$c,$d,$e,$f)=@_; 138 local($n,$a,$b,$c,$d,$e,$f)=@_;
@@ -59,16 +145,18 @@ sub BODY_00_15
59 &rotl($tmp1,5); # tmp1=ROTATE(a,5) 145 &rotl($tmp1,5); # tmp1=ROTATE(a,5)
60 &xor($f,$d); 146 &xor($f,$d);
61 &add($tmp1,$e); # tmp1+=e; 147 &add($tmp1,$e); # tmp1+=e;
62 &and($f,$b); 148 &mov($e,&swtmp($n%16)); # e becomes volatile and is loaded
63 &mov($e,&swtmp($n%16)); # e becomes volatile and is loaded
64 # with xi, also note that e becomes 149 # with xi, also note that e becomes
65 # f in next round... 150 # f in next round...
66 &xor($f,$d); # f holds F_00_19(b,c,d) 151 &and($f,$b);
67 &rotr($b,2); # b=ROTATE(b,30) 152 &rotr($b,2); # b=ROTATE(b,30)
68 &lea($tmp1,&DWP(0x5a827999,$tmp1,$e)); # tmp1+=K_00_19+xi 153 &xor($f,$d); # f holds F_00_19(b,c,d)
154 &lea($tmp1,&DWP(0x5a827999,$tmp1,$e)); # tmp1+=K_00_19+xi
69 155
70 if ($n==15) { &add($f,$tmp1); } # f+=tmp1 156 if ($n==15) { &mov($e,&swtmp(($n+1)%16));# pre-fetch f for next round
157 &add($f,$tmp1); } # f+=tmp1
71 else { &add($tmp1,$f); } # f becomes a in next round 158 else { &add($tmp1,$f); } # f becomes a in next round
159 &mov($tmp1,$a) if ($alt && $n==15);
72 } 160 }
73 161
74sub BODY_16_19 162sub BODY_16_19
@@ -77,22 +165,41 @@ sub BODY_16_19
77 165
78 &comment("16_19 $n"); 166 &comment("16_19 $n");
79 167
80 &mov($f,&swtmp($n%16)); # f to hold Xupdate(xi,xa,xb,xc,xd) 168if ($alt) {
81 &mov($tmp1,$c); # tmp1 to hold F_00_19(b,c,d) 169 &xor($c,$d);
82 &xor($f,&swtmp(($n+2)%16)); 170 &xor($f,&swtmp(($n+2)%16)); # f to hold Xupdate(xi,xa,xb,xc,xd)
83 &xor($tmp1,$d); 171 &and($tmp1,$c); # tmp1 to hold F_00_19(b,c,d), b&=c^d
84 &xor($f,&swtmp(($n+8)%16)); 172 &xor($f,&swtmp(($n+8)%16));
85 &and($tmp1,$b); # tmp1 holds F_00_19(b,c,d) 173 &xor($tmp1,$d); # tmp1=F_00_19(b,c,d)
86 &rotr($b,2); # b=ROTATE(b,30) 174 &xor($f,&swtmp(($n+13)%16)); # f holds xa^xb^xc^xd
175 &rotl($f,1); # f=ROTATE(f,1)
176 &add($e,$tmp1); # e+=F_00_19(b,c,d)
177 &xor($c,$d); # restore $c
178 &mov($tmp1,$a); # b in next round
179 &rotr($b,$n==16?2:7); # b=ROTATE(b,30)
180 &mov(&swtmp($n%16),$f); # xi=f
181 &rotl($a,5); # ROTATE(a,5)
182 &lea($f,&DWP(0x5a827999,$f,$e));# f+=F_00_19(b,c,d)+e
183 &mov($e,&swtmp(($n+1)%16)); # pre-fetch f for next round
184 &add($f,$a); # f+=ROTATE(a,5)
185} else {
186 &mov($tmp1,$c); # tmp1 to hold F_00_19(b,c,d)
187 &xor($f,&swtmp(($n+2)%16)); # f to hold Xupdate(xi,xa,xb,xc,xd)
188 &xor($tmp1,$d);
189 &xor($f,&swtmp(($n+8)%16));
190 &and($tmp1,$b);
87 &xor($f,&swtmp(($n+13)%16)); # f holds xa^xb^xc^xd 191 &xor($f,&swtmp(($n+13)%16)); # f holds xa^xb^xc^xd
88 &rotl($f,1); # f=ROTATE(f,1) 192 &rotl($f,1); # f=ROTATE(f,1)
89 &xor($tmp1,$d); # tmp1=F_00_19(b,c,d) 193 &xor($tmp1,$d); # tmp1=F_00_19(b,c,d)
90 &mov(&swtmp($n%16),$f); # xi=f 194 &add($e,$tmp1); # e+=F_00_19(b,c,d)
91 &lea($f,&DWP(0x5a827999,$f,$e));# f+=K_00_19+e 195 &mov($tmp1,$a);
92 &mov($e,$a); # e becomes volatile 196 &rotr($b,2); # b=ROTATE(b,30)
93 &rotl($e,5); # e=ROTATE(a,5) 197 &mov(&swtmp($n%16),$f); # xi=f
94 &add($f,$tmp1); # f+=F_00_19(b,c,d) 198 &rotl($tmp1,5); # ROTATE(a,5)
95 &add($f,$e); # f+=ROTATE(a,5) 199 &lea($f,&DWP(0x5a827999,$f,$e));# f+=F_00_19(b,c,d)+e
200 &mov($e,&swtmp(($n+1)%16)); # pre-fetch f for next round
201 &add($f,$tmp1); # f+=ROTATE(a,5)
202}
96 } 203 }
97 204
98sub BODY_20_39 205sub BODY_20_39
@@ -102,21 +209,41 @@ sub BODY_20_39
102 209
103 &comment("20_39 $n"); 210 &comment("20_39 $n");
104 211
212if ($alt) {
213 &xor($tmp1,$c); # tmp1 to hold F_20_39(b,c,d), b^=c
214 &xor($f,&swtmp(($n+2)%16)); # f to hold Xupdate(xi,xa,xb,xc,xd)
215 &xor($tmp1,$d); # tmp1 holds F_20_39(b,c,d)
216 &xor($f,&swtmp(($n+8)%16));
217 &add($e,$tmp1); # e+=F_20_39(b,c,d)
218 &xor($f,&swtmp(($n+13)%16)); # f holds xa^xb^xc^xd
219 &rotl($f,1); # f=ROTATE(f,1)
220 &mov($tmp1,$a); # b in next round
221 &rotr($b,7); # b=ROTATE(b,30)
222 &mov(&swtmp($n%16),$f) if($n<77);# xi=f
223 &rotl($a,5); # ROTATE(a,5)
224 &xor($b,$c) if($n==39);# warm up for BODY_40_59
225 &and($tmp1,$b) if($n==39);
226 &lea($f,&DWP($K,$f,$e)); # f+=e+K_XX_YY
227 &mov($e,&swtmp(($n+1)%16)) if($n<79);# pre-fetch f for next round
228 &add($f,$a); # f+=ROTATE(a,5)
229 &rotr($a,5) if ($n==79);
230} else {
105 &mov($tmp1,$b); # tmp1 to hold F_20_39(b,c,d) 231 &mov($tmp1,$b); # tmp1 to hold F_20_39(b,c,d)
106 &mov($f,&swtmp($n%16)); # f to hold Xupdate(xi,xa,xb,xc,xd) 232 &xor($f,&swtmp(($n+2)%16)); # f to hold Xupdate(xi,xa,xb,xc,xd)
107 &rotr($b,2); # b=ROTATE(b,30)
108 &xor($f,&swtmp(($n+2)%16));
109 &xor($tmp1,$c); 233 &xor($tmp1,$c);
110 &xor($f,&swtmp(($n+8)%16)); 234 &xor($f,&swtmp(($n+8)%16));
111 &xor($tmp1,$d); # tmp1 holds F_20_39(b,c,d) 235 &xor($tmp1,$d); # tmp1 holds F_20_39(b,c,d)
112 &xor($f,&swtmp(($n+13)%16)); # f holds xa^xb^xc^xd 236 &xor($f,&swtmp(($n+13)%16)); # f holds xa^xb^xc^xd
113 &rotl($f,1); # f=ROTATE(f,1) 237 &rotl($f,1); # f=ROTATE(f,1)
114 &add($tmp1,$e); 238 &add($e,$tmp1); # e+=F_20_39(b,c,d)
115 &mov(&swtmp($n%16),$f); # xi=f 239 &rotr($b,2); # b=ROTATE(b,30)
116 &mov($e,$a); # e becomes volatile 240 &mov($tmp1,$a);
117 &rotl($e,5); # e=ROTATE(a,5) 241 &rotl($tmp1,5); # ROTATE(a,5)
118 &lea($f,&DWP($K,$f,$tmp1)); # f+=K_20_39+e 242 &mov(&swtmp($n%16),$f) if($n<77);# xi=f
119 &add($f,$e); # f+=ROTATE(a,5) 243 &lea($f,&DWP($K,$f,$e)); # f+=e+K_XX_YY
244 &mov($e,&swtmp(($n+1)%16)) if($n<79);# pre-fetch f for next round
245 &add($f,$tmp1); # f+=ROTATE(a,5)
246}
120 } 247 }
121 248
122sub BODY_40_59 249sub BODY_40_59
@@ -125,41 +252,86 @@ sub BODY_40_59
125 252
126 &comment("40_59 $n"); 253 &comment("40_59 $n");
127 254
128 &mov($f,&swtmp($n%16)); # f to hold Xupdate(xi,xa,xb,xc,xd) 255if ($alt) {
129 &mov($tmp1,&swtmp(($n+2)%16)); 256 &add($e,$tmp1); # e+=b&(c^d)
130 &xor($f,$tmp1); 257 &xor($f,&swtmp(($n+2)%16)); # f to hold Xupdate(xi,xa,xb,xc,xd)
131 &mov($tmp1,&swtmp(($n+8)%16)); 258 &mov($tmp1,$d);
132 &xor($f,$tmp1); 259 &xor($f,&swtmp(($n+8)%16));
133 &mov($tmp1,&swtmp(($n+13)%16)); 260 &xor($c,$d); # restore $c
134 &xor($f,$tmp1); # f holds xa^xb^xc^xd 261 &xor($f,&swtmp(($n+13)%16)); # f holds xa^xb^xc^xd
135 &mov($tmp1,$b); # tmp1 to hold F_40_59(b,c,d)
136 &rotl($f,1); # f=ROTATE(f,1) 262 &rotl($f,1); # f=ROTATE(f,1)
137 &or($tmp1,$c); 263 &and($tmp1,$c);
138 &mov(&swtmp($n%16),$f); # xi=f 264 &rotr($b,7); # b=ROTATE(b,30)
139 &and($tmp1,$d); 265 &add($e,$tmp1); # e+=c&d
140 &lea($f,&DWP(0x8f1bbcdc,$f,$e));# f+=K_40_59+e 266 &mov($tmp1,$a); # b in next round
141 &mov($e,$b); # e becomes volatile and is used 267 &mov(&swtmp($n%16),$f); # xi=f
142 # to calculate F_40_59(b,c,d) 268 &rotl($a,5); # ROTATE(a,5)
269 &xor($b,$c) if ($n<59);
270 &and($tmp1,$b) if ($n<59);# tmp1 to hold F_40_59(b,c,d)
271 &lea($f,&DWP(0x8f1bbcdc,$f,$e));# f+=K_40_59+e+(b&(c^d))
272 &mov($e,&swtmp(($n+1)%16)); # pre-fetch f for next round
273 &add($f,$a); # f+=ROTATE(a,5)
274} else {
275 &mov($tmp1,$c); # tmp1 to hold F_40_59(b,c,d)
276 &xor($f,&swtmp(($n+2)%16)); # f to hold Xupdate(xi,xa,xb,xc,xd)
277 &xor($tmp1,$d);
278 &xor($f,&swtmp(($n+8)%16));
279 &and($tmp1,$b);
280 &xor($f,&swtmp(($n+13)%16)); # f holds xa^xb^xc^xd
281 &rotl($f,1); # f=ROTATE(f,1)
282 &add($tmp1,$e); # b&(c^d)+=e
143 &rotr($b,2); # b=ROTATE(b,30) 283 &rotr($b,2); # b=ROTATE(b,30)
144 &and($e,$c); 284 &mov($e,$a); # e becomes volatile
145 &or($tmp1,$e); # tmp1 holds F_40_59(b,c,d) 285 &rotl($e,5); # ROTATE(a,5)
146 &mov($e,$a); 286 &mov(&swtmp($n%16),$f); # xi=f
147 &rotl($e,5); # e=ROTATE(a,5) 287 &lea($f,&DWP(0x8f1bbcdc,$f,$tmp1));# f+=K_40_59+e+(b&(c^d))
148 &add($f,$tmp1); # f+=tmp1; 288 &mov($tmp1,$c);
149 &add($f,$e); # f+=ROTATE(a,5) 289 &add($f,$e); # f+=ROTATE(a,5)
290 &and($tmp1,$d);
291 &mov($e,&swtmp(($n+1)%16)); # pre-fetch f for next round
292 &add($f,$tmp1); # f+=c&d
293}
150 } 294 }
151 295
152&function_begin("sha1_block_data_order"); 296&function_begin("sha1_block_data_order");
297if ($xmm) {
298 &static_label("ssse3_shortcut");
299 &static_label("avx_shortcut") if ($ymm);
300 &static_label("K_XX_XX");
301
302 &call (&label("pic_point")); # make it PIC!
303 &set_label("pic_point");
304 &blindpop($tmp1);
305 &picmeup($T,"OPENSSL_ia32cap_P",$tmp1,&label("pic_point"));
306 &lea ($tmp1,&DWP(&label("K_XX_XX")."-".&label("pic_point"),$tmp1));
307
308 &mov ($A,&DWP(0,$T));
309 &mov ($D,&DWP(4,$T));
310 &test ($D,1<<9); # check SSSE3 bit
311 &jz (&label("x86"));
312 &test ($A,1<<24); # check FXSR bit
313 &jz (&label("x86"));
314 if ($ymm) {
315 &and ($D,1<<28); # mask AVX bit
316 &and ($A,1<<30); # mask "Intel CPU" bit
317 &or ($A,$D);
318 &cmp ($A,1<<28|1<<30);
319 &je (&label("avx_shortcut"));
320 }
321 &jmp (&label("ssse3_shortcut"));
322 &set_label("x86",16);
323}
153 &mov($tmp1,&wparam(0)); # SHA_CTX *c 324 &mov($tmp1,&wparam(0)); # SHA_CTX *c
154 &mov($T,&wparam(1)); # const void *input 325 &mov($T,&wparam(1)); # const void *input
155 &mov($A,&wparam(2)); # size_t num 326 &mov($A,&wparam(2)); # size_t num
156 &stack_push(16); # allocate X[16] 327 &stack_push(16+3); # allocate X[16]
157 &shl($A,6); 328 &shl($A,6);
158 &add($A,$T); 329 &add($A,$T);
159 &mov(&wparam(2),$A); # pointer beyond the end of input 330 &mov(&wparam(2),$A); # pointer beyond the end of input
160 &mov($E,&DWP(16,$tmp1));# pre-load E 331 &mov($E,&DWP(16,$tmp1));# pre-load E
332 &jmp(&label("loop"));
161 333
162 &set_label("loop",16); 334&set_label("loop",16);
163 335
164 # copy input chunk to X, but reversing byte order! 336 # copy input chunk to X, but reversing byte order!
165 for ($i=0; $i<16; $i+=4) 337 for ($i=0; $i<16; $i+=4)
@@ -213,8 +385,845 @@ sub BODY_40_59
213 &mov(&DWP(16,$tmp1),$C); 385 &mov(&DWP(16,$tmp1),$C);
214 &jb(&label("loop")); 386 &jb(&label("loop"));
215 387
216 &stack_pop(16); 388 &stack_pop(16+3);
217&function_end("sha1_block_data_order"); 389&function_end("sha1_block_data_order");
390
391if ($xmm) {
392######################################################################
393# The SSSE3 implementation.
394#
395# %xmm[0-7] are used as ring @X[] buffer containing quadruples of last
396# 32 elements of the message schedule or Xupdate outputs. First 4
397# quadruples are simply byte-swapped input, next 4 are calculated
398# according to method originally suggested by Dean Gaudet (modulo
399# being implemented in SSSE3). Once 8 quadruples or 32 elements are
400# collected, it switches to routine proposed by Max Locktyukhin.
401#
402# Calculations inevitably require temporary reqisters, and there are
403# no %xmm registers left to spare. For this reason part of the ring
404# buffer, X[2..4] to be specific, is offloaded to 3 quadriples ring
405# buffer on the stack. Keep in mind that X[2] is alias X[-6], X[3] -
406# X[-5], and X[4] - X[-4]...
407#
408# Another notable optimization is aggressive stack frame compression
409# aiming to minimize amount of 9-byte instructions...
410#
411# Yet another notable optimization is "jumping" $B variable. It means
412# that there is no register permanently allocated for $B value. This
413# allowed to eliminate one instruction from body_20_39...
414#
415my $Xi=4; # 4xSIMD Xupdate round, start pre-seeded
416my @X=map("xmm$_",(4..7,0..3)); # pre-seeded for $Xi=4
417my @V=($A,$B,$C,$D,$E);
418my $j=0; # hash round
419my @T=($T,$tmp1);
420my $inp;
421
422my $_rol=sub { &rol(@_) };
423my $_ror=sub { &ror(@_) };
424
425&function_begin("_sha1_block_data_order_ssse3");
426 &call (&label("pic_point")); # make it PIC!
427 &set_label("pic_point");
428 &blindpop($tmp1);
429 &lea ($tmp1,&DWP(&label("K_XX_XX")."-".&label("pic_point"),$tmp1));
430&set_label("ssse3_shortcut");
431
432 &movdqa (@X[3],&QWP(0,$tmp1)); # K_00_19
433 &movdqa (@X[4],&QWP(16,$tmp1)); # K_20_39
434 &movdqa (@X[5],&QWP(32,$tmp1)); # K_40_59
435 &movdqa (@X[6],&QWP(48,$tmp1)); # K_60_79
436 &movdqa (@X[2],&QWP(64,$tmp1)); # pbswap mask
437
438 &mov ($E,&wparam(0)); # load argument block
439 &mov ($inp=@T[1],&wparam(1));
440 &mov ($D,&wparam(2));
441 &mov (@T[0],"esp");
442
443 # stack frame layout
444 #
445 # +0 X[0]+K X[1]+K X[2]+K X[3]+K # XMM->IALU xfer area
446 # X[4]+K X[5]+K X[6]+K X[7]+K
447 # X[8]+K X[9]+K X[10]+K X[11]+K
448 # X[12]+K X[13]+K X[14]+K X[15]+K
449 #
450 # +64 X[0] X[1] X[2] X[3] # XMM->XMM backtrace area
451 # X[4] X[5] X[6] X[7]
452 # X[8] X[9] X[10] X[11] # even borrowed for K_00_19
453 #
454 # +112 K_20_39 K_20_39 K_20_39 K_20_39 # constants
455 # K_40_59 K_40_59 K_40_59 K_40_59
456 # K_60_79 K_60_79 K_60_79 K_60_79
457 # K_00_19 K_00_19 K_00_19 K_00_19
458 # pbswap mask
459 #
460 # +192 ctx # argument block
461 # +196 inp
462 # +200 end
463 # +204 esp
464 &sub ("esp",208);
465 &and ("esp",-64);
466
467 &movdqa (&QWP(112+0,"esp"),@X[4]); # copy constants
468 &movdqa (&QWP(112+16,"esp"),@X[5]);
469 &movdqa (&QWP(112+32,"esp"),@X[6]);
470 &shl ($D,6); # len*64
471 &movdqa (&QWP(112+48,"esp"),@X[3]);
472 &add ($D,$inp); # end of input
473 &movdqa (&QWP(112+64,"esp"),@X[2]);
474 &add ($inp,64);
475 &mov (&DWP(192+0,"esp"),$E); # save argument block
476 &mov (&DWP(192+4,"esp"),$inp);
477 &mov (&DWP(192+8,"esp"),$D);
478 &mov (&DWP(192+12,"esp"),@T[0]); # save original %esp
479
480 &mov ($A,&DWP(0,$E)); # load context
481 &mov ($B,&DWP(4,$E));
482 &mov ($C,&DWP(8,$E));
483 &mov ($D,&DWP(12,$E));
484 &mov ($E,&DWP(16,$E));
485 &mov (@T[0],$B); # magic seed
486
487 &movdqu (@X[-4&7],&QWP(-64,$inp)); # load input to %xmm[0-3]
488 &movdqu (@X[-3&7],&QWP(-48,$inp));
489 &movdqu (@X[-2&7],&QWP(-32,$inp));
490 &movdqu (@X[-1&7],&QWP(-16,$inp));
491 &pshufb (@X[-4&7],@X[2]); # byte swap
492 &pshufb (@X[-3&7],@X[2]);
493 &pshufb (@X[-2&7],@X[2]);
494 &movdqa (&QWP(112-16,"esp"),@X[3]); # borrow last backtrace slot
495 &pshufb (@X[-1&7],@X[2]);
496 &paddd (@X[-4&7],@X[3]); # add K_00_19
497 &paddd (@X[-3&7],@X[3]);
498 &paddd (@X[-2&7],@X[3]);
499 &movdqa (&QWP(0,"esp"),@X[-4&7]); # X[]+K xfer to IALU
500 &psubd (@X[-4&7],@X[3]); # restore X[]
501 &movdqa (&QWP(0+16,"esp"),@X[-3&7]);
502 &psubd (@X[-3&7],@X[3]);
503 &movdqa (&QWP(0+32,"esp"),@X[-2&7]);
504 &psubd (@X[-2&7],@X[3]);
505 &movdqa (@X[0],@X[-3&7]);
506 &jmp (&label("loop"));
507
508######################################################################
509# SSE instruction sequence is first broken to groups of indepentent
510# instructions, independent in respect to their inputs and shifter
511# (not all architectures have more than one). Then IALU instructions
512# are "knitted in" between the SSE groups. Distance is maintained for
513# SSE latency of 2 in hope that it fits better upcoming AMD Bulldozer
514# [which allegedly also implements SSSE3]...
515#
516# Temporary registers usage. X[2] is volatile at the entry and at the
517# end is restored from backtrace ring buffer. X[3] is expected to
518# contain current K_XX_XX constant and is used to caclulate X[-1]+K
519# from previous round, it becomes volatile the moment the value is
520# saved to stack for transfer to IALU. X[4] becomes volatile whenever
521# X[-4] is accumulated and offloaded to backtrace ring buffer, at the
522# end it is loaded with next K_XX_XX [which becomes X[3] in next
523# round]...
524#
525sub Xupdate_ssse3_16_31() # recall that $Xi starts wtih 4
526{ use integer;
527 my $body = shift;
528 my @insns = (&$body,&$body,&$body,&$body); # 40 instructions
529 my ($a,$b,$c,$d,$e);
530
531 eval(shift(@insns));
532 eval(shift(@insns));
533 &palignr(@X[0],@X[-4&7],8); # compose "X[-14]" in "X[0]"
534 &movdqa (@X[2],@X[-1&7]);
535 eval(shift(@insns));
536 eval(shift(@insns));
537
538 &paddd (@X[3],@X[-1&7]);
539 &movdqa (&QWP(64+16*(($Xi-4)%3),"esp"),@X[-4&7]);# save X[] to backtrace buffer
540 eval(shift(@insns));
541 eval(shift(@insns));
542 &psrldq (@X[2],4); # "X[-3]", 3 dwords
543 eval(shift(@insns));
544 eval(shift(@insns));
545 &pxor (@X[0],@X[-4&7]); # "X[0]"^="X[-16]"
546 eval(shift(@insns));
547 eval(shift(@insns));
548
549 &pxor (@X[2],@X[-2&7]); # "X[-3]"^"X[-8]"
550 eval(shift(@insns));
551 eval(shift(@insns));
552 eval(shift(@insns));
553 eval(shift(@insns));
554
555 &pxor (@X[0],@X[2]); # "X[0]"^="X[-3]"^"X[-8]"
556 eval(shift(@insns));
557 eval(shift(@insns));
558 &movdqa (&QWP(0+16*(($Xi-1)&3),"esp"),@X[3]); # X[]+K xfer to IALU
559 eval(shift(@insns));
560 eval(shift(@insns));
561
562 &movdqa (@X[4],@X[0]);
563 &movdqa (@X[2],@X[0]);
564 eval(shift(@insns));
565 eval(shift(@insns));
566 eval(shift(@insns));
567 eval(shift(@insns));
568
569 &pslldq (@X[4],12); # "X[0]"<<96, extract one dword
570 &paddd (@X[0],@X[0]);
571 eval(shift(@insns));
572 eval(shift(@insns));
573 eval(shift(@insns));
574 eval(shift(@insns));
575
576 &psrld (@X[2],31);
577 eval(shift(@insns));
578 eval(shift(@insns));
579 &movdqa (@X[3],@X[4]);
580 eval(shift(@insns));
581 eval(shift(@insns));
582
583 &psrld (@X[4],30);
584 &por (@X[0],@X[2]); # "X[0]"<<<=1
585 eval(shift(@insns));
586 eval(shift(@insns));
587 &movdqa (@X[2],&QWP(64+16*(($Xi-6)%3),"esp")) if ($Xi>5); # restore X[] from backtrace buffer
588 eval(shift(@insns));
589 eval(shift(@insns));
590
591 &pslld (@X[3],2);
592 &pxor (@X[0],@X[4]);
593 eval(shift(@insns));
594 eval(shift(@insns));
595 &movdqa (@X[4],&QWP(112-16+16*(($Xi)/5),"esp")); # K_XX_XX
596 eval(shift(@insns));
597 eval(shift(@insns));
598
599 &pxor (@X[0],@X[3]); # "X[0]"^=("X[0]"<<96)<<<2
600 &movdqa (@X[1],@X[-2&7]) if ($Xi<7);
601 eval(shift(@insns));
602 eval(shift(@insns));
603
604 foreach (@insns) { eval; } # remaining instructions [if any]
605
606 $Xi++; push(@X,shift(@X)); # "rotate" X[]
607}
608
609sub Xupdate_ssse3_32_79()
610{ use integer;
611 my $body = shift;
612 my @insns = (&$body,&$body,&$body,&$body); # 32 to 48 instructions
613 my ($a,$b,$c,$d,$e);
614
615 &movdqa (@X[2],@X[-1&7]) if ($Xi==8);
616 eval(shift(@insns)); # body_20_39
617 &pxor (@X[0],@X[-4&7]); # "X[0]"="X[-32]"^"X[-16]"
618 &palignr(@X[2],@X[-2&7],8); # compose "X[-6]"
619 eval(shift(@insns));
620 eval(shift(@insns));
621 eval(shift(@insns)); # rol
622
623 &pxor (@X[0],@X[-7&7]); # "X[0]"^="X[-28]"
624 &movdqa (&QWP(64+16*(($Xi-4)%3),"esp"),@X[-4&7]); # save X[] to backtrace buffer
625 eval(shift(@insns));
626 eval(shift(@insns));
627 if ($Xi%5) {
628 &movdqa (@X[4],@X[3]); # "perpetuate" K_XX_XX...
629 } else { # ... or load next one
630 &movdqa (@X[4],&QWP(112-16+16*($Xi/5),"esp"));
631 }
632 &paddd (@X[3],@X[-1&7]);
633 eval(shift(@insns)); # ror
634 eval(shift(@insns));
635
636 &pxor (@X[0],@X[2]); # "X[0]"^="X[-6]"
637 eval(shift(@insns)); # body_20_39
638 eval(shift(@insns));
639 eval(shift(@insns));
640 eval(shift(@insns)); # rol
641
642 &movdqa (@X[2],@X[0]);
643 &movdqa (&QWP(0+16*(($Xi-1)&3),"esp"),@X[3]); # X[]+K xfer to IALU
644 eval(shift(@insns));
645 eval(shift(@insns));
646 eval(shift(@insns)); # ror
647 eval(shift(@insns));
648
649 &pslld (@X[0],2);
650 eval(shift(@insns)); # body_20_39
651 eval(shift(@insns));
652 &psrld (@X[2],30);
653 eval(shift(@insns));
654 eval(shift(@insns)); # rol
655 eval(shift(@insns));
656 eval(shift(@insns));
657 eval(shift(@insns)); # ror
658 eval(shift(@insns));
659
660 &por (@X[0],@X[2]); # "X[0]"<<<=2
661 eval(shift(@insns)); # body_20_39
662 eval(shift(@insns));
663 &movdqa (@X[2],&QWP(64+16*(($Xi-6)%3),"esp")) if($Xi<19); # restore X[] from backtrace buffer
664 eval(shift(@insns));
665 eval(shift(@insns)); # rol
666 eval(shift(@insns));
667 eval(shift(@insns));
668 eval(shift(@insns)); # ror
669 &movdqa (@X[3],@X[0]) if ($Xi<19);
670 eval(shift(@insns));
671
672 foreach (@insns) { eval; } # remaining instructions
673
674 $Xi++; push(@X,shift(@X)); # "rotate" X[]
675}
676
677sub Xuplast_ssse3_80()
678{ use integer;
679 my $body = shift;
680 my @insns = (&$body,&$body,&$body,&$body); # 32 instructions
681 my ($a,$b,$c,$d,$e);
682
683 eval(shift(@insns));
684 &paddd (@X[3],@X[-1&7]);
685 eval(shift(@insns));
686 eval(shift(@insns));
687 eval(shift(@insns));
688 eval(shift(@insns));
689
690 &movdqa (&QWP(0+16*(($Xi-1)&3),"esp"),@X[3]); # X[]+K xfer IALU
691
692 foreach (@insns) { eval; } # remaining instructions
693
694 &mov ($inp=@T[1],&DWP(192+4,"esp"));
695 &cmp ($inp,&DWP(192+8,"esp"));
696 &je (&label("done"));
697
698 &movdqa (@X[3],&QWP(112+48,"esp")); # K_00_19
699 &movdqa (@X[2],&QWP(112+64,"esp")); # pbswap mask
700 &movdqu (@X[-4&7],&QWP(0,$inp)); # load input
701 &movdqu (@X[-3&7],&QWP(16,$inp));
702 &movdqu (@X[-2&7],&QWP(32,$inp));
703 &movdqu (@X[-1&7],&QWP(48,$inp));
704 &add ($inp,64);
705 &pshufb (@X[-4&7],@X[2]); # byte swap
706 &mov (&DWP(192+4,"esp"),$inp);
707 &movdqa (&QWP(112-16,"esp"),@X[3]); # borrow last backtrace slot
708
709 $Xi=0;
710}
711
712sub Xloop_ssse3()
713{ use integer;
714 my $body = shift;
715 my @insns = (&$body,&$body,&$body,&$body); # 32 instructions
716 my ($a,$b,$c,$d,$e);
717
718 eval(shift(@insns));
719 eval(shift(@insns));
720 &pshufb (@X[($Xi-3)&7],@X[2]);
721 eval(shift(@insns));
722 eval(shift(@insns));
723 &paddd (@X[($Xi-4)&7],@X[3]);
724 eval(shift(@insns));
725 eval(shift(@insns));
726 eval(shift(@insns));
727 eval(shift(@insns));
728 &movdqa (&QWP(0+16*$Xi,"esp"),@X[($Xi-4)&7]); # X[]+K xfer to IALU
729 eval(shift(@insns));
730 eval(shift(@insns));
731 &psubd (@X[($Xi-4)&7],@X[3]);
732
733 foreach (@insns) { eval; }
734 $Xi++;
735}
736
737sub Xtail_ssse3()
738{ use integer;
739 my $body = shift;
740 my @insns = (&$body,&$body,&$body,&$body); # 32 instructions
741 my ($a,$b,$c,$d,$e);
742
743 foreach (@insns) { eval; }
744}
745
746sub body_00_19 () {
747 (
748 '($a,$b,$c,$d,$e)=@V;'.
749 '&add ($e,&DWP(4*($j&15),"esp"));', # X[]+K xfer
750 '&xor ($c,$d);',
751 '&mov (@T[1],$a);', # $b in next round
752 '&$_rol ($a,5);',
753 '&and (@T[0],$c);', # ($b&($c^$d))
754 '&xor ($c,$d);', # restore $c
755 '&xor (@T[0],$d);',
756 '&add ($e,$a);',
757 '&$_ror ($b,$j?7:2);', # $b>>>2
758 '&add ($e,@T[0]);' .'$j++; unshift(@V,pop(@V)); unshift(@T,pop(@T));'
759 );
760}
761
762sub body_20_39 () {
763 (
764 '($a,$b,$c,$d,$e)=@V;'.
765 '&add ($e,&DWP(4*($j++&15),"esp"));', # X[]+K xfer
766 '&xor (@T[0],$d);', # ($b^$d)
767 '&mov (@T[1],$a);', # $b in next round
768 '&$_rol ($a,5);',
769 '&xor (@T[0],$c);', # ($b^$d^$c)
770 '&add ($e,$a);',
771 '&$_ror ($b,7);', # $b>>>2
772 '&add ($e,@T[0]);' .'unshift(@V,pop(@V)); unshift(@T,pop(@T));'
773 );
774}
775
776sub body_40_59 () {
777 (
778 '($a,$b,$c,$d,$e)=@V;'.
779 '&mov (@T[1],$c);',
780 '&xor ($c,$d);',
781 '&add ($e,&DWP(4*($j++&15),"esp"));', # X[]+K xfer
782 '&and (@T[1],$d);',
783 '&and (@T[0],$c);', # ($b&($c^$d))
784 '&$_ror ($b,7);', # $b>>>2
785 '&add ($e,@T[1]);',
786 '&mov (@T[1],$a);', # $b in next round
787 '&$_rol ($a,5);',
788 '&add ($e,@T[0]);',
789 '&xor ($c,$d);', # restore $c
790 '&add ($e,$a);' .'unshift(@V,pop(@V)); unshift(@T,pop(@T));'
791 );
792}
793
794&set_label("loop",16);
795 &Xupdate_ssse3_16_31(\&body_00_19);
796 &Xupdate_ssse3_16_31(\&body_00_19);
797 &Xupdate_ssse3_16_31(\&body_00_19);
798 &Xupdate_ssse3_16_31(\&body_00_19);
799 &Xupdate_ssse3_32_79(\&body_00_19);
800 &Xupdate_ssse3_32_79(\&body_20_39);
801 &Xupdate_ssse3_32_79(\&body_20_39);
802 &Xupdate_ssse3_32_79(\&body_20_39);
803 &Xupdate_ssse3_32_79(\&body_20_39);
804 &Xupdate_ssse3_32_79(\&body_20_39);
805 &Xupdate_ssse3_32_79(\&body_40_59);
806 &Xupdate_ssse3_32_79(\&body_40_59);
807 &Xupdate_ssse3_32_79(\&body_40_59);
808 &Xupdate_ssse3_32_79(\&body_40_59);
809 &Xupdate_ssse3_32_79(\&body_40_59);
810 &Xupdate_ssse3_32_79(\&body_20_39);
811 &Xuplast_ssse3_80(\&body_20_39); # can jump to "done"
812
813 $saved_j=$j; @saved_V=@V;
814
815 &Xloop_ssse3(\&body_20_39);
816 &Xloop_ssse3(\&body_20_39);
817 &Xloop_ssse3(\&body_20_39);
818
819 &mov (@T[1],&DWP(192,"esp")); # update context
820 &add ($A,&DWP(0,@T[1]));
821 &add (@T[0],&DWP(4,@T[1])); # $b
822 &add ($C,&DWP(8,@T[1]));
823 &mov (&DWP(0,@T[1]),$A);
824 &add ($D,&DWP(12,@T[1]));
825 &mov (&DWP(4,@T[1]),@T[0]);
826 &add ($E,&DWP(16,@T[1]));
827 &mov (&DWP(8,@T[1]),$C);
828 &mov ($B,@T[0]);
829 &mov (&DWP(12,@T[1]),$D);
830 &mov (&DWP(16,@T[1]),$E);
831 &movdqa (@X[0],@X[-3&7]);
832
833 &jmp (&label("loop"));
834
835&set_label("done",16); $j=$saved_j; @V=@saved_V;
836
837 &Xtail_ssse3(\&body_20_39);
838 &Xtail_ssse3(\&body_20_39);
839 &Xtail_ssse3(\&body_20_39);
840
841 &mov (@T[1],&DWP(192,"esp")); # update context
842 &add ($A,&DWP(0,@T[1]));
843 &mov ("esp",&DWP(192+12,"esp")); # restore %esp
844 &add (@T[0],&DWP(4,@T[1])); # $b
845 &add ($C,&DWP(8,@T[1]));
846 &mov (&DWP(0,@T[1]),$A);
847 &add ($D,&DWP(12,@T[1]));
848 &mov (&DWP(4,@T[1]),@T[0]);
849 &add ($E,&DWP(16,@T[1]));
850 &mov (&DWP(8,@T[1]),$C);
851 &mov (&DWP(12,@T[1]),$D);
852 &mov (&DWP(16,@T[1]),$E);
853
854&function_end("_sha1_block_data_order_ssse3");
855
856if ($ymm) {
857my $Xi=4; # 4xSIMD Xupdate round, start pre-seeded
858my @X=map("xmm$_",(4..7,0..3)); # pre-seeded for $Xi=4
859my @V=($A,$B,$C,$D,$E);
860my $j=0; # hash round
861my @T=($T,$tmp1);
862my $inp;
863
864my $_rol=sub { &shld(@_[0],@_) };
865my $_ror=sub { &shrd(@_[0],@_) };
866
867&function_begin("_sha1_block_data_order_avx");
868 &call (&label("pic_point")); # make it PIC!
869 &set_label("pic_point");
870 &blindpop($tmp1);
871 &lea ($tmp1,&DWP(&label("K_XX_XX")."-".&label("pic_point"),$tmp1));
872&set_label("avx_shortcut");
873 &vzeroall();
874
875 &vmovdqa(@X[3],&QWP(0,$tmp1)); # K_00_19
876 &vmovdqa(@X[4],&QWP(16,$tmp1)); # K_20_39
877 &vmovdqa(@X[5],&QWP(32,$tmp1)); # K_40_59
878 &vmovdqa(@X[6],&QWP(48,$tmp1)); # K_60_79
879 &vmovdqa(@X[2],&QWP(64,$tmp1)); # pbswap mask
880
881 &mov ($E,&wparam(0)); # load argument block
882 &mov ($inp=@T[1],&wparam(1));
883 &mov ($D,&wparam(2));
884 &mov (@T[0],"esp");
885
886 # stack frame layout
887 #
888 # +0 X[0]+K X[1]+K X[2]+K X[3]+K # XMM->IALU xfer area
889 # X[4]+K X[5]+K X[6]+K X[7]+K
890 # X[8]+K X[9]+K X[10]+K X[11]+K
891 # X[12]+K X[13]+K X[14]+K X[15]+K
892 #
893 # +64 X[0] X[1] X[2] X[3] # XMM->XMM backtrace area
894 # X[4] X[5] X[6] X[7]
895 # X[8] X[9] X[10] X[11] # even borrowed for K_00_19
896 #
897 # +112 K_20_39 K_20_39 K_20_39 K_20_39 # constants
898 # K_40_59 K_40_59 K_40_59 K_40_59
899 # K_60_79 K_60_79 K_60_79 K_60_79
900 # K_00_19 K_00_19 K_00_19 K_00_19
901 # pbswap mask
902 #
903 # +192 ctx # argument block
904 # +196 inp
905 # +200 end
906 # +204 esp
907 &sub ("esp",208);
908 &and ("esp",-64);
909
910 &vmovdqa(&QWP(112+0,"esp"),@X[4]); # copy constants
911 &vmovdqa(&QWP(112+16,"esp"),@X[5]);
912 &vmovdqa(&QWP(112+32,"esp"),@X[6]);
913 &shl ($D,6); # len*64
914 &vmovdqa(&QWP(112+48,"esp"),@X[3]);
915 &add ($D,$inp); # end of input
916 &vmovdqa(&QWP(112+64,"esp"),@X[2]);
917 &add ($inp,64);
918 &mov (&DWP(192+0,"esp"),$E); # save argument block
919 &mov (&DWP(192+4,"esp"),$inp);
920 &mov (&DWP(192+8,"esp"),$D);
921 &mov (&DWP(192+12,"esp"),@T[0]); # save original %esp
922
923 &mov ($A,&DWP(0,$E)); # load context
924 &mov ($B,&DWP(4,$E));
925 &mov ($C,&DWP(8,$E));
926 &mov ($D,&DWP(12,$E));
927 &mov ($E,&DWP(16,$E));
928 &mov (@T[0],$B); # magic seed
929
930 &vmovdqu(@X[-4&7],&QWP(-64,$inp)); # load input to %xmm[0-3]
931 &vmovdqu(@X[-3&7],&QWP(-48,$inp));
932 &vmovdqu(@X[-2&7],&QWP(-32,$inp));
933 &vmovdqu(@X[-1&7],&QWP(-16,$inp));
934 &vpshufb(@X[-4&7],@X[-4&7],@X[2]); # byte swap
935 &vpshufb(@X[-3&7],@X[-3&7],@X[2]);
936 &vpshufb(@X[-2&7],@X[-2&7],@X[2]);
937 &vmovdqa(&QWP(112-16,"esp"),@X[3]); # borrow last backtrace slot
938 &vpshufb(@X[-1&7],@X[-1&7],@X[2]);
939 &vpaddd (@X[0],@X[-4&7],@X[3]); # add K_00_19
940 &vpaddd (@X[1],@X[-3&7],@X[3]);
941 &vpaddd (@X[2],@X[-2&7],@X[3]);
942 &vmovdqa(&QWP(0,"esp"),@X[0]); # X[]+K xfer to IALU
943 &vmovdqa(&QWP(0+16,"esp"),@X[1]);
944 &vmovdqa(&QWP(0+32,"esp"),@X[2]);
945 &jmp (&label("loop"));
946
947sub Xupdate_avx_16_31() # recall that $Xi starts wtih 4
948{ use integer;
949 my $body = shift;
950 my @insns = (&$body,&$body,&$body,&$body); # 40 instructions
951 my ($a,$b,$c,$d,$e);
952
953 eval(shift(@insns));
954 eval(shift(@insns));
955 &vpalignr(@X[0],@X[-3&7],@X[-4&7],8); # compose "X[-14]" in "X[0]"
956 eval(shift(@insns));
957 eval(shift(@insns));
958
959 &vpaddd (@X[3],@X[3],@X[-1&7]);
960 &vmovdqa (&QWP(64+16*(($Xi-4)%3),"esp"),@X[-4&7]);# save X[] to backtrace buffer
961 eval(shift(@insns));
962 eval(shift(@insns));
963 &vpsrldq(@X[2],@X[-1&7],4); # "X[-3]", 3 dwords
964 eval(shift(@insns));
965 eval(shift(@insns));
966 &vpxor (@X[0],@X[0],@X[-4&7]); # "X[0]"^="X[-16]"
967 eval(shift(@insns));
968 eval(shift(@insns));
969
970 &vpxor (@X[2],@X[2],@X[-2&7]); # "X[-3]"^"X[-8]"
971 eval(shift(@insns));
972 eval(shift(@insns));
973 &vmovdqa (&QWP(0+16*(($Xi-1)&3),"esp"),@X[3]); # X[]+K xfer to IALU
974 eval(shift(@insns));
975 eval(shift(@insns));
976
977 &vpxor (@X[0],@X[0],@X[2]); # "X[0]"^="X[-3]"^"X[-8]"
978 eval(shift(@insns));
979 eval(shift(@insns));
980 eval(shift(@insns));
981 eval(shift(@insns));
982
983 &vpsrld (@X[2],@X[0],31);
984 eval(shift(@insns));
985 eval(shift(@insns));
986 eval(shift(@insns));
987 eval(shift(@insns));
988
989 &vpslldq(@X[4],@X[0],12); # "X[0]"<<96, extract one dword
990 &vpaddd (@X[0],@X[0],@X[0]);
991 eval(shift(@insns));
992 eval(shift(@insns));
993 eval(shift(@insns));
994 eval(shift(@insns));
995
996 &vpsrld (@X[3],@X[4],30);
997 &vpor (@X[0],@X[0],@X[2]); # "X[0]"<<<=1
998 eval(shift(@insns));
999 eval(shift(@insns));
1000 eval(shift(@insns));
1001 eval(shift(@insns));
1002
1003 &vpslld (@X[4],@X[4],2);
1004 &vmovdqa (@X[2],&QWP(64+16*(($Xi-6)%3),"esp")) if ($Xi>5); # restore X[] from backtrace buffer
1005 eval(shift(@insns));
1006 eval(shift(@insns));
1007 &vpxor (@X[0],@X[0],@X[3]);
1008 eval(shift(@insns));
1009 eval(shift(@insns));
1010 eval(shift(@insns));
1011 eval(shift(@insns));
1012
1013 &vpxor (@X[0],@X[0],@X[4]); # "X[0]"^=("X[0]"<<96)<<<2
1014 eval(shift(@insns));
1015 eval(shift(@insns));
1016 &vmovdqa (@X[4],&QWP(112-16+16*(($Xi)/5),"esp")); # K_XX_XX
1017 eval(shift(@insns));
1018 eval(shift(@insns));
1019
1020 foreach (@insns) { eval; } # remaining instructions [if any]
1021
1022 $Xi++; push(@X,shift(@X)); # "rotate" X[]
1023}
1024
1025sub Xupdate_avx_32_79()
1026{ use integer;
1027 my $body = shift;
1028 my @insns = (&$body,&$body,&$body,&$body); # 32 to 48 instructions
1029 my ($a,$b,$c,$d,$e);
1030
1031 &vpalignr(@X[2],@X[-1&7],@X[-2&7],8); # compose "X[-6]"
1032 &vpxor (@X[0],@X[0],@X[-4&7]); # "X[0]"="X[-32]"^"X[-16]"
1033 eval(shift(@insns)); # body_20_39
1034 eval(shift(@insns));
1035 eval(shift(@insns));
1036 eval(shift(@insns)); # rol
1037
1038 &vpxor (@X[0],@X[0],@X[-7&7]); # "X[0]"^="X[-28]"
1039 &vmovdqa (&QWP(64+16*(($Xi-4)%3),"esp"),@X[-4&7]); # save X[] to backtrace buffer
1040 eval(shift(@insns));
1041 eval(shift(@insns));
1042 if ($Xi%5) {
1043 &vmovdqa (@X[4],@X[3]); # "perpetuate" K_XX_XX...
1044 } else { # ... or load next one
1045 &vmovdqa (@X[4],&QWP(112-16+16*($Xi/5),"esp"));
1046 }
1047 &vpaddd (@X[3],@X[3],@X[-1&7]);
1048 eval(shift(@insns)); # ror
1049 eval(shift(@insns));
1050
1051 &vpxor (@X[0],@X[0],@X[2]); # "X[0]"^="X[-6]"
1052 eval(shift(@insns)); # body_20_39
1053 eval(shift(@insns));
1054 eval(shift(@insns));
1055 eval(shift(@insns)); # rol
1056
1057 &vpsrld (@X[2],@X[0],30);
1058 &vmovdqa (&QWP(0+16*(($Xi-1)&3),"esp"),@X[3]); # X[]+K xfer to IALU
1059 eval(shift(@insns));
1060 eval(shift(@insns));
1061 eval(shift(@insns)); # ror
1062 eval(shift(@insns));
1063
1064 &vpslld (@X[0],@X[0],2);
1065 eval(shift(@insns)); # body_20_39
1066 eval(shift(@insns));
1067 eval(shift(@insns));
1068 eval(shift(@insns)); # rol
1069 eval(shift(@insns));
1070 eval(shift(@insns));
1071 eval(shift(@insns)); # ror
1072 eval(shift(@insns));
1073
1074 &vpor (@X[0],@X[0],@X[2]); # "X[0]"<<<=2
1075 eval(shift(@insns)); # body_20_39
1076 eval(shift(@insns));
1077 &vmovdqa (@X[2],&QWP(64+16*(($Xi-6)%3),"esp")) if($Xi<19); # restore X[] from backtrace buffer
1078 eval(shift(@insns));
1079 eval(shift(@insns)); # rol
1080 eval(shift(@insns));
1081 eval(shift(@insns));
1082 eval(shift(@insns)); # ror
1083 eval(shift(@insns));
1084
1085 foreach (@insns) { eval; } # remaining instructions
1086
1087 $Xi++; push(@X,shift(@X)); # "rotate" X[]
1088}
1089
1090sub Xuplast_avx_80()
1091{ use integer;
1092 my $body = shift;
1093 my @insns = (&$body,&$body,&$body,&$body); # 32 instructions
1094 my ($a,$b,$c,$d,$e);
1095
1096 eval(shift(@insns));
1097 &vpaddd (@X[3],@X[3],@X[-1&7]);
1098 eval(shift(@insns));
1099 eval(shift(@insns));
1100 eval(shift(@insns));
1101 eval(shift(@insns));
1102
1103 &vmovdqa (&QWP(0+16*(($Xi-1)&3),"esp"),@X[3]); # X[]+K xfer IALU
1104
1105 foreach (@insns) { eval; } # remaining instructions
1106
1107 &mov ($inp=@T[1],&DWP(192+4,"esp"));
1108 &cmp ($inp,&DWP(192+8,"esp"));
1109 &je (&label("done"));
1110
1111 &vmovdqa(@X[3],&QWP(112+48,"esp")); # K_00_19
1112 &vmovdqa(@X[2],&QWP(112+64,"esp")); # pbswap mask
1113 &vmovdqu(@X[-4&7],&QWP(0,$inp)); # load input
1114 &vmovdqu(@X[-3&7],&QWP(16,$inp));
1115 &vmovdqu(@X[-2&7],&QWP(32,$inp));
1116 &vmovdqu(@X[-1&7],&QWP(48,$inp));
1117 &add ($inp,64);
1118 &vpshufb(@X[-4&7],@X[-4&7],@X[2]); # byte swap
1119 &mov (&DWP(192+4,"esp"),$inp);
1120 &vmovdqa(&QWP(112-16,"esp"),@X[3]); # borrow last backtrace slot
1121
1122 $Xi=0;
1123}
1124
1125sub Xloop_avx()
1126{ use integer;
1127 my $body = shift;
1128 my @insns = (&$body,&$body,&$body,&$body); # 32 instructions
1129 my ($a,$b,$c,$d,$e);
1130
1131 eval(shift(@insns));
1132 eval(shift(@insns));
1133 &vpshufb (@X[($Xi-3)&7],@X[($Xi-3)&7],@X[2]);
1134 eval(shift(@insns));
1135 eval(shift(@insns));
1136 &vpaddd (@X[$Xi&7],@X[($Xi-4)&7],@X[3]);
1137 eval(shift(@insns));
1138 eval(shift(@insns));
1139 eval(shift(@insns));
1140 eval(shift(@insns));
1141 &vmovdqa (&QWP(0+16*$Xi,"esp"),@X[$Xi&7]); # X[]+K xfer to IALU
1142 eval(shift(@insns));
1143 eval(shift(@insns));
1144
1145 foreach (@insns) { eval; }
1146 $Xi++;
1147}
1148
1149sub Xtail_avx()
1150{ use integer;
1151 my $body = shift;
1152 my @insns = (&$body,&$body,&$body,&$body); # 32 instructions
1153 my ($a,$b,$c,$d,$e);
1154
1155 foreach (@insns) { eval; }
1156}
1157
1158&set_label("loop",16);
1159 &Xupdate_avx_16_31(\&body_00_19);
1160 &Xupdate_avx_16_31(\&body_00_19);
1161 &Xupdate_avx_16_31(\&body_00_19);
1162 &Xupdate_avx_16_31(\&body_00_19);
1163 &Xupdate_avx_32_79(\&body_00_19);
1164 &Xupdate_avx_32_79(\&body_20_39);
1165 &Xupdate_avx_32_79(\&body_20_39);
1166 &Xupdate_avx_32_79(\&body_20_39);
1167 &Xupdate_avx_32_79(\&body_20_39);
1168 &Xupdate_avx_32_79(\&body_20_39);
1169 &Xupdate_avx_32_79(\&body_40_59);
1170 &Xupdate_avx_32_79(\&body_40_59);
1171 &Xupdate_avx_32_79(\&body_40_59);
1172 &Xupdate_avx_32_79(\&body_40_59);
1173 &Xupdate_avx_32_79(\&body_40_59);
1174 &Xupdate_avx_32_79(\&body_20_39);
1175 &Xuplast_avx_80(\&body_20_39); # can jump to "done"
1176
1177 $saved_j=$j; @saved_V=@V;
1178
1179 &Xloop_avx(\&body_20_39);
1180 &Xloop_avx(\&body_20_39);
1181 &Xloop_avx(\&body_20_39);
1182
1183 &mov (@T[1],&DWP(192,"esp")); # update context
1184 &add ($A,&DWP(0,@T[1]));
1185 &add (@T[0],&DWP(4,@T[1])); # $b
1186 &add ($C,&DWP(8,@T[1]));
1187 &mov (&DWP(0,@T[1]),$A);
1188 &add ($D,&DWP(12,@T[1]));
1189 &mov (&DWP(4,@T[1]),@T[0]);
1190 &add ($E,&DWP(16,@T[1]));
1191 &mov (&DWP(8,@T[1]),$C);
1192 &mov ($B,@T[0]);
1193 &mov (&DWP(12,@T[1]),$D);
1194 &mov (&DWP(16,@T[1]),$E);
1195
1196 &jmp (&label("loop"));
1197
1198&set_label("done",16); $j=$saved_j; @V=@saved_V;
1199
1200 &Xtail_avx(\&body_20_39);
1201 &Xtail_avx(\&body_20_39);
1202 &Xtail_avx(\&body_20_39);
1203
1204 &vzeroall();
1205
1206 &mov (@T[1],&DWP(192,"esp")); # update context
1207 &add ($A,&DWP(0,@T[1]));
1208 &mov ("esp",&DWP(192+12,"esp")); # restore %esp
1209 &add (@T[0],&DWP(4,@T[1])); # $b
1210 &add ($C,&DWP(8,@T[1]));
1211 &mov (&DWP(0,@T[1]),$A);
1212 &add ($D,&DWP(12,@T[1]));
1213 &mov (&DWP(4,@T[1]),@T[0]);
1214 &add ($E,&DWP(16,@T[1]));
1215 &mov (&DWP(8,@T[1]),$C);
1216 &mov (&DWP(12,@T[1]),$D);
1217 &mov (&DWP(16,@T[1]),$E);
1218&function_end("_sha1_block_data_order_avx");
1219}
1220&set_label("K_XX_XX",64);
1221&data_word(0x5a827999,0x5a827999,0x5a827999,0x5a827999); # K_00_19
1222&data_word(0x6ed9eba1,0x6ed9eba1,0x6ed9eba1,0x6ed9eba1); # K_20_39
1223&data_word(0x8f1bbcdc,0x8f1bbcdc,0x8f1bbcdc,0x8f1bbcdc); # K_40_59
1224&data_word(0xca62c1d6,0xca62c1d6,0xca62c1d6,0xca62c1d6); # K_60_79
1225&data_word(0x00010203,0x04050607,0x08090a0b,0x0c0d0e0f); # pbswap mask
1226}
218&asciz("SHA1 block transform for x86, CRYPTOGAMS by <appro\@openssl.org>"); 1227&asciz("SHA1 block transform for x86, CRYPTOGAMS by <appro\@openssl.org>");
219 1228
220&asm_finish(); 1229&asm_finish();
diff --git a/src/lib/libcrypto/sha/sha.h b/src/lib/libcrypto/sha/sha.h
index 16cacf9fc0..8a6bf4bbbb 100644
--- a/src/lib/libcrypto/sha/sha.h
+++ b/src/lib/libcrypto/sha/sha.h
@@ -106,6 +106,9 @@ typedef struct SHAstate_st
106 } SHA_CTX; 106 } SHA_CTX;
107 107
108#ifndef OPENSSL_NO_SHA0 108#ifndef OPENSSL_NO_SHA0
109#ifdef OPENSSL_FIPS
110int private_SHA_Init(SHA_CTX *c);
111#endif
109int SHA_Init(SHA_CTX *c); 112int SHA_Init(SHA_CTX *c);
110int SHA_Update(SHA_CTX *c, const void *data, size_t len); 113int SHA_Update(SHA_CTX *c, const void *data, size_t len);
111int SHA_Final(unsigned char *md, SHA_CTX *c); 114int SHA_Final(unsigned char *md, SHA_CTX *c);
@@ -113,6 +116,9 @@ unsigned char *SHA(const unsigned char *d, size_t n, unsigned char *md);
113void SHA_Transform(SHA_CTX *c, const unsigned char *data); 116void SHA_Transform(SHA_CTX *c, const unsigned char *data);
114#endif 117#endif
115#ifndef OPENSSL_NO_SHA1 118#ifndef OPENSSL_NO_SHA1
119#ifdef OPENSSL_FIPS
120int private_SHA1_Init(SHA_CTX *c);
121#endif
116int SHA1_Init(SHA_CTX *c); 122int SHA1_Init(SHA_CTX *c);
117int SHA1_Update(SHA_CTX *c, const void *data, size_t len); 123int SHA1_Update(SHA_CTX *c, const void *data, size_t len);
118int SHA1_Final(unsigned char *md, SHA_CTX *c); 124int SHA1_Final(unsigned char *md, SHA_CTX *c);
@@ -135,6 +141,10 @@ typedef struct SHA256state_st
135 } SHA256_CTX; 141 } SHA256_CTX;
136 142
137#ifndef OPENSSL_NO_SHA256 143#ifndef OPENSSL_NO_SHA256
144#ifdef OPENSSL_FIPS
145int private_SHA224_Init(SHA256_CTX *c);
146int private_SHA256_Init(SHA256_CTX *c);
147#endif
138int SHA224_Init(SHA256_CTX *c); 148int SHA224_Init(SHA256_CTX *c);
139int SHA224_Update(SHA256_CTX *c, const void *data, size_t len); 149int SHA224_Update(SHA256_CTX *c, const void *data, size_t len);
140int SHA224_Final(unsigned char *md, SHA256_CTX *c); 150int SHA224_Final(unsigned char *md, SHA256_CTX *c);
@@ -182,6 +192,10 @@ typedef struct SHA512state_st
182#endif 192#endif
183 193
184#ifndef OPENSSL_NO_SHA512 194#ifndef OPENSSL_NO_SHA512
195#ifdef OPENSSL_FIPS
196int private_SHA384_Init(SHA512_CTX *c);
197int private_SHA512_Init(SHA512_CTX *c);
198#endif
185int SHA384_Init(SHA512_CTX *c); 199int SHA384_Init(SHA512_CTX *c);
186int SHA384_Update(SHA512_CTX *c, const void *data, size_t len); 200int SHA384_Update(SHA512_CTX *c, const void *data, size_t len);
187int SHA384_Final(unsigned char *md, SHA512_CTX *c); 201int SHA384_Final(unsigned char *md, SHA512_CTX *c);
diff --git a/src/lib/libcrypto/sha/sha1dgst.c b/src/lib/libcrypto/sha/sha1dgst.c
index 50d1925cde..81219af088 100644
--- a/src/lib/libcrypto/sha/sha1dgst.c
+++ b/src/lib/libcrypto/sha/sha1dgst.c
@@ -57,6 +57,7 @@
57 */ 57 */
58 58
59#include <openssl/opensslconf.h> 59#include <openssl/opensslconf.h>
60#include <openssl/crypto.h>
60#if !defined(OPENSSL_NO_SHA1) && !defined(OPENSSL_NO_SHA) 61#if !defined(OPENSSL_NO_SHA1) && !defined(OPENSSL_NO_SHA)
61 62
62#undef SHA_0 63#undef SHA_0
diff --git a/src/lib/libcrypto/sha/sha_dgst.c b/src/lib/libcrypto/sha/sha_dgst.c
index 70eb56032c..c946ad827d 100644
--- a/src/lib/libcrypto/sha/sha_dgst.c
+++ b/src/lib/libcrypto/sha/sha_dgst.c
@@ -57,6 +57,7 @@
57 */ 57 */
58 58
59#include <openssl/opensslconf.h> 59#include <openssl/opensslconf.h>
60#include <openssl/crypto.h>
60#if !defined(OPENSSL_NO_SHA0) && !defined(OPENSSL_NO_SHA) 61#if !defined(OPENSSL_NO_SHA0) && !defined(OPENSSL_NO_SHA)
61 62
62#undef SHA_1 63#undef SHA_1
diff --git a/src/lib/libcrypto/sha/sha_locl.h b/src/lib/libcrypto/sha/sha_locl.h
index 672c26eee1..7a0c3ca8d8 100644
--- a/src/lib/libcrypto/sha/sha_locl.h
+++ b/src/lib/libcrypto/sha/sha_locl.h
@@ -122,7 +122,11 @@ void sha1_block_data_order (SHA_CTX *c, const void *p,size_t num);
122#define INIT_DATA_h3 0x10325476UL 122#define INIT_DATA_h3 0x10325476UL
123#define INIT_DATA_h4 0xc3d2e1f0UL 123#define INIT_DATA_h4 0xc3d2e1f0UL
124 124
125int HASH_INIT (SHA_CTX *c) 125#ifdef SHA_0
126fips_md_init(SHA)
127#else
128fips_md_init_ctx(SHA1, SHA)
129#endif
126 { 130 {
127 memset (c,0,sizeof(*c)); 131 memset (c,0,sizeof(*c));
128 c->h0=INIT_DATA_h0; 132 c->h0=INIT_DATA_h0;