diff options
Diffstat (limited to 'src/lib/libcrypto/whrlpool/wp_block.c')
| -rw-r--r-- | src/lib/libcrypto/whrlpool/wp_block.c | 655 | 
1 files changed, 655 insertions, 0 deletions
diff --git a/src/lib/libcrypto/whrlpool/wp_block.c b/src/lib/libcrypto/whrlpool/wp_block.c new file mode 100644 index 0000000000..824ed1827c --- /dev/null +++ b/src/lib/libcrypto/whrlpool/wp_block.c  | |||
| @@ -0,0 +1,655 @@ | |||
| 1 | /** | ||
| 2 | * The Whirlpool hashing function. | ||
| 3 | * | ||
| 4 | * <P> | ||
| 5 | * <b>References</b> | ||
| 6 | * | ||
| 7 | * <P> | ||
| 8 | * The Whirlpool algorithm was developed by | ||
| 9 | * <a href="mailto:pbarreto@scopus.com.br">Paulo S. L. M. Barreto</a> and | ||
| 10 | * <a href="mailto:vincent.rijmen@cryptomathic.com">Vincent Rijmen</a>. | ||
| 11 | * | ||
| 12 | * See | ||
| 13 | * P.S.L.M. Barreto, V. Rijmen, | ||
| 14 | * ``The Whirlpool hashing function,'' | ||
| 15 | * NESSIE submission, 2000 (tweaked version, 2001), | ||
| 16 | * <https://www.cosic.esat.kuleuven.ac.be/nessie/workshop/submissions/whirlpool.zip> | ||
| 17 | * | ||
| 18 | * Based on "@version 3.0 (2003.03.12)" by Paulo S.L.M. Barreto and | ||
| 19 | * Vincent Rijmen. Lookup "reference implementations" on | ||
| 20 | * <http://planeta.terra.com.br/informatica/paulobarreto/> | ||
| 21 | * | ||
| 22 | * ============================================================================= | ||
| 23 | * | ||
| 24 | * THIS SOFTWARE IS PROVIDED BY THE AUTHORS ''AS IS'' AND ANY EXPRESS | ||
| 25 | * OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED | ||
| 26 | * WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE | ||
| 27 | * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHORS OR CONTRIBUTORS BE | ||
| 28 | * LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR | ||
| 29 | * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF | ||
| 30 | * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR | ||
| 31 | * BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, | ||
| 32 | * WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE | ||
| 33 | * OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, | ||
| 34 | * EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. | ||
| 35 | * | ||
| 36 | */ | ||
| 37 | |||
| 38 | #include "wp_locl.h" | ||
| 39 | #include <string.h> | ||
| 40 | |||
| 41 | typedef unsigned char u8; | ||
| 42 | #if (defined(_WIN32) || defined(_WIN64)) && !defined(__MINGW32) | ||
| 43 | typedef unsigned __int64 u64; | ||
| 44 | #elif defined(__arch64__) | ||
| 45 | typedef unsigned long u64; | ||
| 46 | #else | ||
| 47 | typedef unsigned long long u64; | ||
| 48 | #endif | ||
| 49 | |||
| 50 | #define ROUNDS 10 | ||
| 51 | |||
| 52 | #define STRICT_ALIGNMENT | ||
| 53 | #if defined(__i386) || defined(__i386__) || \ | ||
| 54 | defined(__x86_64) || defined(__x86_64__) || \ | ||
| 55 | defined(_M_IX86) || defined(_M_AMD64) || defined(_M_X64) | ||
| 56 | /* Well, formally there're couple of other architectures, which permit | ||
| 57 | * unaligned loads, specifically those not crossing cache lines, IA-64 | ||
| 58 | * and PowerPC... */ | ||
| 59 | # undef STRICT_ALIGNMENT | ||
| 60 | #endif | ||
| 61 | |||
| 62 | #undef SMALL_REGISTER_BANK | ||
| 63 | #if defined(__i386) || defined(__i386__) || defined(_M_IX86) | ||
| 64 | # define SMALL_REGISTER_BANK | ||
| 65 | # if defined(WHIRLPOOL_ASM) | ||
| 66 | # ifndef OPENSSL_SMALL_FOOTPRINT | ||
| 67 | # define OPENSSL_SMALL_FOOTPRINT /* it appears that for elder non-MMX | ||
| 68 | CPUs this is actually faster! */ | ||
| 69 | # endif | ||
| 70 | # define GO_FOR_MMX(ctx,inp,num) do { \ | ||
| 71 | extern unsigned int OPENSSL_ia32cap_P[]; \ | ||
| 72 | void whirlpool_block_mmx(void *,const void *,size_t); \ | ||
| 73 | if (!(OPENSSL_ia32cap_P[0] & (1<<23))) break; \ | ||
| 74 | whirlpool_block_mmx(ctx->H.c,inp,num); return; \ | ||
| 75 | } while (0) | ||
| 76 | # endif | ||
| 77 | #endif | ||
| 78 | |||
| 79 | #undef ROTATE | ||
| 80 | #if defined(_MSC_VER) | ||
| 81 | # if defined(_WIN64) /* applies to both IA-64 and AMD64 */ | ||
| 82 | # pragma intrinsic(_rotl64) | ||
| 83 | # define ROTATE(a,n) _rotl64((a),n) | ||
| 84 | # endif | ||
| 85 | #elif defined(__GNUC__) && __GNUC__>=2 | ||
| 86 | # if defined(__x86_64) || defined(__x86_64__) | ||
| 87 | # if defined(L_ENDIAN) | ||
| 88 | # define ROTATE(a,n) ({ u64 ret; asm ("rolq %1,%0" \ | ||
| 89 | : "=r"(ret) : "J"(n),"0"(a) : "cc"); ret; }) | ||
| 90 | # elif defined(B_ENDIAN) | ||
| 91 | /* Most will argue that x86_64 is always little-endian. Well, | ||
| 92 | * yes, but then we have stratus.com who has modified gcc to | ||
| 93 | * "emulate" big-endian on x86. Is there evidence that they | ||
| 94 | * [or somebody else] won't do same for x86_64? Naturally no. | ||
| 95 | * And this line is waiting ready for that brave soul:-) */ | ||
| 96 | # define ROTATE(a,n) ({ u64 ret; asm ("rorq %1,%0" \ | ||
| 97 | : "=r"(ret) : "J"(n),"0"(a) : "cc"); ret; }) | ||
| 98 | # endif | ||
| 99 | # elif defined(__ia64) || defined(__ia64__) | ||
| 100 | # if defined(L_ENDIAN) | ||
| 101 | # define ROTATE(a,n) ({ u64 ret; asm ("shrp %0=%1,%1,%2" \ | ||
| 102 | : "=r"(ret) : "r"(a),"M"(64-(n))); ret; }) | ||
| 103 | # elif defined(B_ENDIAN) | ||
| 104 | # define ROTATE(a,n) ({ u64 ret; asm ("shrp %0=%1,%1,%2" \ | ||
| 105 | : "=r"(ret) : "r"(a),"M"(n)); ret; }) | ||
| 106 | # endif | ||
| 107 | # endif | ||
| 108 | #endif | ||
| 109 | |||
| 110 | #if defined(OPENSSL_SMALL_FOOTPRINT) | ||
| 111 | # if !defined(ROTATE) | ||
| 112 | # if defined(L_ENDIAN) /* little-endians have to rotate left */ | ||
| 113 | # define ROTATE(i,n) ((i)<<(n) ^ (i)>>(64-n)) | ||
| 114 | # elif defined(B_ENDIAN) /* big-endians have to rotate right */ | ||
| 115 | # define ROTATE(i,n) ((i)>>(n) ^ (i)<<(64-n)) | ||
| 116 | # endif | ||
| 117 | # endif | ||
| 118 | # if defined(ROTATE) && !defined(STRICT_ALIGNMENT) | ||
| 119 | # define STRICT_ALIGNMENT /* ensure smallest table size */ | ||
| 120 | # endif | ||
| 121 | #endif | ||
| 122 | |||
| 123 | /* | ||
| 124 | * Table size depends on STRICT_ALIGNMENT and whether or not endian- | ||
| 125 | * specific ROTATE macro is defined. If STRICT_ALIGNMENT is not | ||
| 126 | * defined, which is normally the case on x86[_64] CPUs, the table is | ||
| 127 | * 4KB large unconditionally. Otherwise if ROTATE is defined, the | ||
| 128 | * table is 2KB large, and otherwise - 16KB. 2KB table requires a | ||
| 129 | * whole bunch of additional rotations, but I'm willing to "trade," | ||
| 130 | * because 16KB table certainly trashes L1 cache. I wish all CPUs | ||
| 131 | * could handle unaligned load as 4KB table doesn't trash the cache, | ||
| 132 | * nor does it require additional rotations. | ||
| 133 | */ | ||
| 134 | /* | ||
| 135 | * Note that every Cn macro expands as two loads: one byte load and | ||
| 136 | * one quadword load. One can argue that that many single-byte loads | ||
| 137 | * is too excessive, as one could load a quadword and "milk" it for | ||
| 138 | * eight 8-bit values instead. Well, yes, but in order to do so *and* | ||
| 139 | * avoid excessive loads you have to accomodate a handful of 64-bit | ||
| 140 | * values in the register bank and issue a bunch of shifts and mask. | ||
| 141 | * It's a tradeoff: loads vs. shift and mask in big register bank[!]. | ||
| 142 | * On most CPUs eight single-byte loads are faster and I let other | ||
| 143 | * ones to depend on smart compiler to fold byte loads if beneficial. | ||
| 144 | * Hand-coded assembler would be another alternative:-) | ||
| 145 | */ | ||
| 146 | #ifdef STRICT_ALIGNMENT | ||
| 147 | # if defined(ROTATE) | ||
| 148 | # define N 1 | ||
| 149 | # define LL(c0,c1,c2,c3,c4,c5,c6,c7) c0,c1,c2,c3,c4,c5,c6,c7 | ||
| 150 | # define C0(K,i) (Cx.q[K.c[(i)*8+0]]) | ||
| 151 | # define C1(K,i) ROTATE(Cx.q[K.c[(i)*8+1]],8) | ||
| 152 | # define C2(K,i) ROTATE(Cx.q[K.c[(i)*8+2]],16) | ||
| 153 | # define C3(K,i) ROTATE(Cx.q[K.c[(i)*8+3]],24) | ||
| 154 | # define C4(K,i) ROTATE(Cx.q[K.c[(i)*8+4]],32) | ||
| 155 | # define C5(K,i) ROTATE(Cx.q[K.c[(i)*8+5]],40) | ||
| 156 | # define C6(K,i) ROTATE(Cx.q[K.c[(i)*8+6]],48) | ||
| 157 | # define C7(K,i) ROTATE(Cx.q[K.c[(i)*8+7]],56) | ||
| 158 | # else | ||
| 159 | # define N 8 | ||
| 160 | # define LL(c0,c1,c2,c3,c4,c5,c6,c7) c0,c1,c2,c3,c4,c5,c6,c7, \ | ||
| 161 | c7,c0,c1,c2,c3,c4,c5,c6, \ | ||
| 162 | c6,c7,c0,c1,c2,c3,c4,c5, \ | ||
| 163 | c5,c6,c7,c0,c1,c2,c3,c4, \ | ||
| 164 | c4,c5,c6,c7,c0,c1,c2,c3, \ | ||
| 165 | c3,c4,c5,c6,c7,c0,c1,c2, \ | ||
| 166 | c2,c3,c4,c5,c6,c7,c0,c1, \ | ||
| 167 | c1,c2,c3,c4,c5,c6,c7,c0 | ||
| 168 | # define C0(K,i) (Cx.q[0+8*K.c[(i)*8+0]]) | ||
| 169 | # define C1(K,i) (Cx.q[1+8*K.c[(i)*8+1]]) | ||
| 170 | # define C2(K,i) (Cx.q[2+8*K.c[(i)*8+2]]) | ||
| 171 | # define C3(K,i) (Cx.q[3+8*K.c[(i)*8+3]]) | ||
| 172 | # define C4(K,i) (Cx.q[4+8*K.c[(i)*8+4]]) | ||
| 173 | # define C5(K,i) (Cx.q[5+8*K.c[(i)*8+5]]) | ||
| 174 | # define C6(K,i) (Cx.q[6+8*K.c[(i)*8+6]]) | ||
| 175 | # define C7(K,i) (Cx.q[7+8*K.c[(i)*8+7]]) | ||
| 176 | # endif | ||
| 177 | #else | ||
| 178 | # define N 2 | ||
| 179 | # define LL(c0,c1,c2,c3,c4,c5,c6,c7) c0,c1,c2,c3,c4,c5,c6,c7, \ | ||
| 180 | c0,c1,c2,c3,c4,c5,c6,c7 | ||
| 181 | # define C0(K,i) (((u64*)(Cx.c+0))[2*K.c[(i)*8+0]]) | ||
| 182 | # define C1(K,i) (((u64*)(Cx.c+7))[2*K.c[(i)*8+1]]) | ||
| 183 | # define C2(K,i) (((u64*)(Cx.c+6))[2*K.c[(i)*8+2]]) | ||
| 184 | # define C3(K,i) (((u64*)(Cx.c+5))[2*K.c[(i)*8+3]]) | ||
| 185 | # define C4(K,i) (((u64*)(Cx.c+4))[2*K.c[(i)*8+4]]) | ||
| 186 | # define C5(K,i) (((u64*)(Cx.c+3))[2*K.c[(i)*8+5]]) | ||
| 187 | # define C6(K,i) (((u64*)(Cx.c+2))[2*K.c[(i)*8+6]]) | ||
| 188 | # define C7(K,i) (((u64*)(Cx.c+1))[2*K.c[(i)*8+7]]) | ||
| 189 | #endif | ||
| 190 | |||
| 191 | static const | ||
| 192 | union { | ||
| 193 | u8 c[(256*N+ROUNDS)*sizeof(u64)]; | ||
| 194 | u64 q[(256*N+ROUNDS)]; | ||
| 195 | } Cx = { { | ||
| 196 | /* Note endian-neutral representation:-) */ | ||
| 197 | LL(0x18,0x18,0x60,0x18,0xc0,0x78,0x30,0xd8), | ||
| 198 | LL(0x23,0x23,0x8c,0x23,0x05,0xaf,0x46,0x26), | ||
| 199 | LL(0xc6,0xc6,0x3f,0xc6,0x7e,0xf9,0x91,0xb8), | ||
| 200 | LL(0xe8,0xe8,0x87,0xe8,0x13,0x6f,0xcd,0xfb), | ||
| 201 | LL(0x87,0x87,0x26,0x87,0x4c,0xa1,0x13,0xcb), | ||
| 202 | LL(0xb8,0xb8,0xda,0xb8,0xa9,0x62,0x6d,0x11), | ||
| 203 | LL(0x01,0x01,0x04,0x01,0x08,0x05,0x02,0x09), | ||
| 204 | LL(0x4f,0x4f,0x21,0x4f,0x42,0x6e,0x9e,0x0d), | ||
| 205 | LL(0x36,0x36,0xd8,0x36,0xad,0xee,0x6c,0x9b), | ||
| 206 | LL(0xa6,0xa6,0xa2,0xa6,0x59,0x04,0x51,0xff), | ||
| 207 | LL(0xd2,0xd2,0x6f,0xd2,0xde,0xbd,0xb9,0x0c), | ||
| 208 | LL(0xf5,0xf5,0xf3,0xf5,0xfb,0x06,0xf7,0x0e), | ||
| 209 | LL(0x79,0x79,0xf9,0x79,0xef,0x80,0xf2,0x96), | ||
| 210 | LL(0x6f,0x6f,0xa1,0x6f,0x5f,0xce,0xde,0x30), | ||
| 211 | LL(0x91,0x91,0x7e,0x91,0xfc,0xef,0x3f,0x6d), | ||
| 212 | LL(0x52,0x52,0x55,0x52,0xaa,0x07,0xa4,0xf8), | ||
| 213 | LL(0x60,0x60,0x9d,0x60,0x27,0xfd,0xc0,0x47), | ||
| 214 | LL(0xbc,0xbc,0xca,0xbc,0x89,0x76,0x65,0x35), | ||
| 215 | LL(0x9b,0x9b,0x56,0x9b,0xac,0xcd,0x2b,0x37), | ||
| 216 | LL(0x8e,0x8e,0x02,0x8e,0x04,0x8c,0x01,0x8a), | ||
| 217 | LL(0xa3,0xa3,0xb6,0xa3,0x71,0x15,0x5b,0xd2), | ||
| 218 | LL(0x0c,0x0c,0x30,0x0c,0x60,0x3c,0x18,0x6c), | ||
| 219 | LL(0x7b,0x7b,0xf1,0x7b,0xff,0x8a,0xf6,0x84), | ||
| 220 | LL(0x35,0x35,0xd4,0x35,0xb5,0xe1,0x6a,0x80), | ||
| 221 | LL(0x1d,0x1d,0x74,0x1d,0xe8,0x69,0x3a,0xf5), | ||
| 222 | LL(0xe0,0xe0,0xa7,0xe0,0x53,0x47,0xdd,0xb3), | ||
| 223 | LL(0xd7,0xd7,0x7b,0xd7,0xf6,0xac,0xb3,0x21), | ||
| 224 | LL(0xc2,0xc2,0x2f,0xc2,0x5e,0xed,0x99,0x9c), | ||
| 225 | LL(0x2e,0x2e,0xb8,0x2e,0x6d,0x96,0x5c,0x43), | ||
| 226 | LL(0x4b,0x4b,0x31,0x4b,0x62,0x7a,0x96,0x29), | ||
| 227 | LL(0xfe,0xfe,0xdf,0xfe,0xa3,0x21,0xe1,0x5d), | ||
| 228 | LL(0x57,0x57,0x41,0x57,0x82,0x16,0xae,0xd5), | ||
| 229 | LL(0x15,0x15,0x54,0x15,0xa8,0x41,0x2a,0xbd), | ||
| 230 | LL(0x77,0x77,0xc1,0x77,0x9f,0xb6,0xee,0xe8), | ||
| 231 | LL(0x37,0x37,0xdc,0x37,0xa5,0xeb,0x6e,0x92), | ||
| 232 | LL(0xe5,0xe5,0xb3,0xe5,0x7b,0x56,0xd7,0x9e), | ||
| 233 | LL(0x9f,0x9f,0x46,0x9f,0x8c,0xd9,0x23,0x13), | ||
| 234 | LL(0xf0,0xf0,0xe7,0xf0,0xd3,0x17,0xfd,0x23), | ||
| 235 | LL(0x4a,0x4a,0x35,0x4a,0x6a,0x7f,0x94,0x20), | ||
| 236 | LL(0xda,0xda,0x4f,0xda,0x9e,0x95,0xa9,0x44), | ||
| 237 | LL(0x58,0x58,0x7d,0x58,0xfa,0x25,0xb0,0xa2), | ||
| 238 | LL(0xc9,0xc9,0x03,0xc9,0x06,0xca,0x8f,0xcf), | ||
| 239 | LL(0x29,0x29,0xa4,0x29,0x55,0x8d,0x52,0x7c), | ||
| 240 | LL(0x0a,0x0a,0x28,0x0a,0x50,0x22,0x14,0x5a), | ||
| 241 | LL(0xb1,0xb1,0xfe,0xb1,0xe1,0x4f,0x7f,0x50), | ||
| 242 | LL(0xa0,0xa0,0xba,0xa0,0x69,0x1a,0x5d,0xc9), | ||
| 243 | LL(0x6b,0x6b,0xb1,0x6b,0x7f,0xda,0xd6,0x14), | ||
| 244 | LL(0x85,0x85,0x2e,0x85,0x5c,0xab,0x17,0xd9), | ||
| 245 | LL(0xbd,0xbd,0xce,0xbd,0x81,0x73,0x67,0x3c), | ||
| 246 | LL(0x5d,0x5d,0x69,0x5d,0xd2,0x34,0xba,0x8f), | ||
| 247 | LL(0x10,0x10,0x40,0x10,0x80,0x50,0x20,0x90), | ||
| 248 | LL(0xf4,0xf4,0xf7,0xf4,0xf3,0x03,0xf5,0x07), | ||
| 249 | LL(0xcb,0xcb,0x0b,0xcb,0x16,0xc0,0x8b,0xdd), | ||
| 250 | LL(0x3e,0x3e,0xf8,0x3e,0xed,0xc6,0x7c,0xd3), | ||
| 251 | LL(0x05,0x05,0x14,0x05,0x28,0x11,0x0a,0x2d), | ||
| 252 | LL(0x67,0x67,0x81,0x67,0x1f,0xe6,0xce,0x78), | ||
| 253 | LL(0xe4,0xe4,0xb7,0xe4,0x73,0x53,0xd5,0x97), | ||
| 254 | LL(0x27,0x27,0x9c,0x27,0x25,0xbb,0x4e,0x02), | ||
| 255 | LL(0x41,0x41,0x19,0x41,0x32,0x58,0x82,0x73), | ||
| 256 | LL(0x8b,0x8b,0x16,0x8b,0x2c,0x9d,0x0b,0xa7), | ||
| 257 | LL(0xa7,0xa7,0xa6,0xa7,0x51,0x01,0x53,0xf6), | ||
| 258 | LL(0x7d,0x7d,0xe9,0x7d,0xcf,0x94,0xfa,0xb2), | ||
| 259 | LL(0x95,0x95,0x6e,0x95,0xdc,0xfb,0x37,0x49), | ||
| 260 | LL(0xd8,0xd8,0x47,0xd8,0x8e,0x9f,0xad,0x56), | ||
| 261 | LL(0xfb,0xfb,0xcb,0xfb,0x8b,0x30,0xeb,0x70), | ||
| 262 | LL(0xee,0xee,0x9f,0xee,0x23,0x71,0xc1,0xcd), | ||
| 263 | LL(0x7c,0x7c,0xed,0x7c,0xc7,0x91,0xf8,0xbb), | ||
| 264 | LL(0x66,0x66,0x85,0x66,0x17,0xe3,0xcc,0x71), | ||
| 265 | LL(0xdd,0xdd,0x53,0xdd,0xa6,0x8e,0xa7,0x7b), | ||
| 266 | LL(0x17,0x17,0x5c,0x17,0xb8,0x4b,0x2e,0xaf), | ||
| 267 | LL(0x47,0x47,0x01,0x47,0x02,0x46,0x8e,0x45), | ||
| 268 | LL(0x9e,0x9e,0x42,0x9e,0x84,0xdc,0x21,0x1a), | ||
| 269 | LL(0xca,0xca,0x0f,0xca,0x1e,0xc5,0x89,0xd4), | ||
| 270 | LL(0x2d,0x2d,0xb4,0x2d,0x75,0x99,0x5a,0x58), | ||
| 271 | LL(0xbf,0xbf,0xc6,0xbf,0x91,0x79,0x63,0x2e), | ||
| 272 | LL(0x07,0x07,0x1c,0x07,0x38,0x1b,0x0e,0x3f), | ||
| 273 | LL(0xad,0xad,0x8e,0xad,0x01,0x23,0x47,0xac), | ||
| 274 | LL(0x5a,0x5a,0x75,0x5a,0xea,0x2f,0xb4,0xb0), | ||
| 275 | LL(0x83,0x83,0x36,0x83,0x6c,0xb5,0x1b,0xef), | ||
| 276 | LL(0x33,0x33,0xcc,0x33,0x85,0xff,0x66,0xb6), | ||
| 277 | LL(0x63,0x63,0x91,0x63,0x3f,0xf2,0xc6,0x5c), | ||
| 278 | LL(0x02,0x02,0x08,0x02,0x10,0x0a,0x04,0x12), | ||
| 279 | LL(0xaa,0xaa,0x92,0xaa,0x39,0x38,0x49,0x93), | ||
| 280 | LL(0x71,0x71,0xd9,0x71,0xaf,0xa8,0xe2,0xde), | ||
| 281 | LL(0xc8,0xc8,0x07,0xc8,0x0e,0xcf,0x8d,0xc6), | ||
| 282 | LL(0x19,0x19,0x64,0x19,0xc8,0x7d,0x32,0xd1), | ||
| 283 | LL(0x49,0x49,0x39,0x49,0x72,0x70,0x92,0x3b), | ||
| 284 | LL(0xd9,0xd9,0x43,0xd9,0x86,0x9a,0xaf,0x5f), | ||
| 285 | LL(0xf2,0xf2,0xef,0xf2,0xc3,0x1d,0xf9,0x31), | ||
| 286 | LL(0xe3,0xe3,0xab,0xe3,0x4b,0x48,0xdb,0xa8), | ||
| 287 | LL(0x5b,0x5b,0x71,0x5b,0xe2,0x2a,0xb6,0xb9), | ||
| 288 | LL(0x88,0x88,0x1a,0x88,0x34,0x92,0x0d,0xbc), | ||
| 289 | LL(0x9a,0x9a,0x52,0x9a,0xa4,0xc8,0x29,0x3e), | ||
| 290 | LL(0x26,0x26,0x98,0x26,0x2d,0xbe,0x4c,0x0b), | ||
| 291 | LL(0x32,0x32,0xc8,0x32,0x8d,0xfa,0x64,0xbf), | ||
| 292 | LL(0xb0,0xb0,0xfa,0xb0,0xe9,0x4a,0x7d,0x59), | ||
| 293 | LL(0xe9,0xe9,0x83,0xe9,0x1b,0x6a,0xcf,0xf2), | ||
| 294 | LL(0x0f,0x0f,0x3c,0x0f,0x78,0x33,0x1e,0x77), | ||
| 295 | LL(0xd5,0xd5,0x73,0xd5,0xe6,0xa6,0xb7,0x33), | ||
| 296 | LL(0x80,0x80,0x3a,0x80,0x74,0xba,0x1d,0xf4), | ||
| 297 | LL(0xbe,0xbe,0xc2,0xbe,0x99,0x7c,0x61,0x27), | ||
| 298 | LL(0xcd,0xcd,0x13,0xcd,0x26,0xde,0x87,0xeb), | ||
| 299 | LL(0x34,0x34,0xd0,0x34,0xbd,0xe4,0x68,0x89), | ||
| 300 | LL(0x48,0x48,0x3d,0x48,0x7a,0x75,0x90,0x32), | ||
| 301 | LL(0xff,0xff,0xdb,0xff,0xab,0x24,0xe3,0x54), | ||
| 302 | LL(0x7a,0x7a,0xf5,0x7a,0xf7,0x8f,0xf4,0x8d), | ||
| 303 | LL(0x90,0x90,0x7a,0x90,0xf4,0xea,0x3d,0x64), | ||
| 304 | LL(0x5f,0x5f,0x61,0x5f,0xc2,0x3e,0xbe,0x9d), | ||
| 305 | LL(0x20,0x20,0x80,0x20,0x1d,0xa0,0x40,0x3d), | ||
| 306 | LL(0x68,0x68,0xbd,0x68,0x67,0xd5,0xd0,0x0f), | ||
| 307 | LL(0x1a,0x1a,0x68,0x1a,0xd0,0x72,0x34,0xca), | ||
| 308 | LL(0xae,0xae,0x82,0xae,0x19,0x2c,0x41,0xb7), | ||
| 309 | LL(0xb4,0xb4,0xea,0xb4,0xc9,0x5e,0x75,0x7d), | ||
| 310 | LL(0x54,0x54,0x4d,0x54,0x9a,0x19,0xa8,0xce), | ||
| 311 | LL(0x93,0x93,0x76,0x93,0xec,0xe5,0x3b,0x7f), | ||
| 312 | LL(0x22,0x22,0x88,0x22,0x0d,0xaa,0x44,0x2f), | ||
| 313 | LL(0x64,0x64,0x8d,0x64,0x07,0xe9,0xc8,0x63), | ||
| 314 | LL(0xf1,0xf1,0xe3,0xf1,0xdb,0x12,0xff,0x2a), | ||
| 315 | LL(0x73,0x73,0xd1,0x73,0xbf,0xa2,0xe6,0xcc), | ||
| 316 | LL(0x12,0x12,0x48,0x12,0x90,0x5a,0x24,0x82), | ||
| 317 | LL(0x40,0x40,0x1d,0x40,0x3a,0x5d,0x80,0x7a), | ||
| 318 | LL(0x08,0x08,0x20,0x08,0x40,0x28,0x10,0x48), | ||
| 319 | LL(0xc3,0xc3,0x2b,0xc3,0x56,0xe8,0x9b,0x95), | ||
| 320 | LL(0xec,0xec,0x97,0xec,0x33,0x7b,0xc5,0xdf), | ||
| 321 | LL(0xdb,0xdb,0x4b,0xdb,0x96,0x90,0xab,0x4d), | ||
| 322 | LL(0xa1,0xa1,0xbe,0xa1,0x61,0x1f,0x5f,0xc0), | ||
| 323 | LL(0x8d,0x8d,0x0e,0x8d,0x1c,0x83,0x07,0x91), | ||
| 324 | LL(0x3d,0x3d,0xf4,0x3d,0xf5,0xc9,0x7a,0xc8), | ||
| 325 | LL(0x97,0x97,0x66,0x97,0xcc,0xf1,0x33,0x5b), | ||
| 326 | LL(0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00), | ||
| 327 | LL(0xcf,0xcf,0x1b,0xcf,0x36,0xd4,0x83,0xf9), | ||
| 328 | LL(0x2b,0x2b,0xac,0x2b,0x45,0x87,0x56,0x6e), | ||
| 329 | LL(0x76,0x76,0xc5,0x76,0x97,0xb3,0xec,0xe1), | ||
| 330 | LL(0x82,0x82,0x32,0x82,0x64,0xb0,0x19,0xe6), | ||
| 331 | LL(0xd6,0xd6,0x7f,0xd6,0xfe,0xa9,0xb1,0x28), | ||
| 332 | LL(0x1b,0x1b,0x6c,0x1b,0xd8,0x77,0x36,0xc3), | ||
| 333 | LL(0xb5,0xb5,0xee,0xb5,0xc1,0x5b,0x77,0x74), | ||
| 334 | LL(0xaf,0xaf,0x86,0xaf,0x11,0x29,0x43,0xbe), | ||
| 335 | LL(0x6a,0x6a,0xb5,0x6a,0x77,0xdf,0xd4,0x1d), | ||
| 336 | LL(0x50,0x50,0x5d,0x50,0xba,0x0d,0xa0,0xea), | ||
| 337 | LL(0x45,0x45,0x09,0x45,0x12,0x4c,0x8a,0x57), | ||
| 338 | LL(0xf3,0xf3,0xeb,0xf3,0xcb,0x18,0xfb,0x38), | ||
| 339 | LL(0x30,0x30,0xc0,0x30,0x9d,0xf0,0x60,0xad), | ||
| 340 | LL(0xef,0xef,0x9b,0xef,0x2b,0x74,0xc3,0xc4), | ||
| 341 | LL(0x3f,0x3f,0xfc,0x3f,0xe5,0xc3,0x7e,0xda), | ||
| 342 | LL(0x55,0x55,0x49,0x55,0x92,0x1c,0xaa,0xc7), | ||
| 343 | LL(0xa2,0xa2,0xb2,0xa2,0x79,0x10,0x59,0xdb), | ||
| 344 | LL(0xea,0xea,0x8f,0xea,0x03,0x65,0xc9,0xe9), | ||
| 345 | LL(0x65,0x65,0x89,0x65,0x0f,0xec,0xca,0x6a), | ||
| 346 | LL(0xba,0xba,0xd2,0xba,0xb9,0x68,0x69,0x03), | ||
| 347 | LL(0x2f,0x2f,0xbc,0x2f,0x65,0x93,0x5e,0x4a), | ||
| 348 | LL(0xc0,0xc0,0x27,0xc0,0x4e,0xe7,0x9d,0x8e), | ||
| 349 | LL(0xde,0xde,0x5f,0xde,0xbe,0x81,0xa1,0x60), | ||
| 350 | LL(0x1c,0x1c,0x70,0x1c,0xe0,0x6c,0x38,0xfc), | ||
| 351 | LL(0xfd,0xfd,0xd3,0xfd,0xbb,0x2e,0xe7,0x46), | ||
| 352 | LL(0x4d,0x4d,0x29,0x4d,0x52,0x64,0x9a,0x1f), | ||
| 353 | LL(0x92,0x92,0x72,0x92,0xe4,0xe0,0x39,0x76), | ||
| 354 | LL(0x75,0x75,0xc9,0x75,0x8f,0xbc,0xea,0xfa), | ||
| 355 | LL(0x06,0x06,0x18,0x06,0x30,0x1e,0x0c,0x36), | ||
| 356 | LL(0x8a,0x8a,0x12,0x8a,0x24,0x98,0x09,0xae), | ||
| 357 | LL(0xb2,0xb2,0xf2,0xb2,0xf9,0x40,0x79,0x4b), | ||
| 358 | LL(0xe6,0xe6,0xbf,0xe6,0x63,0x59,0xd1,0x85), | ||
| 359 | LL(0x0e,0x0e,0x38,0x0e,0x70,0x36,0x1c,0x7e), | ||
| 360 | LL(0x1f,0x1f,0x7c,0x1f,0xf8,0x63,0x3e,0xe7), | ||
| 361 | LL(0x62,0x62,0x95,0x62,0x37,0xf7,0xc4,0x55), | ||
| 362 | LL(0xd4,0xd4,0x77,0xd4,0xee,0xa3,0xb5,0x3a), | ||
| 363 | LL(0xa8,0xa8,0x9a,0xa8,0x29,0x32,0x4d,0x81), | ||
| 364 | LL(0x96,0x96,0x62,0x96,0xc4,0xf4,0x31,0x52), | ||
| 365 | LL(0xf9,0xf9,0xc3,0xf9,0x9b,0x3a,0xef,0x62), | ||
| 366 | LL(0xc5,0xc5,0x33,0xc5,0x66,0xf6,0x97,0xa3), | ||
| 367 | LL(0x25,0x25,0x94,0x25,0x35,0xb1,0x4a,0x10), | ||
| 368 | LL(0x59,0x59,0x79,0x59,0xf2,0x20,0xb2,0xab), | ||
| 369 | LL(0x84,0x84,0x2a,0x84,0x54,0xae,0x15,0xd0), | ||
| 370 | LL(0x72,0x72,0xd5,0x72,0xb7,0xa7,0xe4,0xc5), | ||
| 371 | LL(0x39,0x39,0xe4,0x39,0xd5,0xdd,0x72,0xec), | ||
| 372 | LL(0x4c,0x4c,0x2d,0x4c,0x5a,0x61,0x98,0x16), | ||
| 373 | LL(0x5e,0x5e,0x65,0x5e,0xca,0x3b,0xbc,0x94), | ||
| 374 | LL(0x78,0x78,0xfd,0x78,0xe7,0x85,0xf0,0x9f), | ||
| 375 | LL(0x38,0x38,0xe0,0x38,0xdd,0xd8,0x70,0xe5), | ||
| 376 | LL(0x8c,0x8c,0x0a,0x8c,0x14,0x86,0x05,0x98), | ||
| 377 | LL(0xd1,0xd1,0x63,0xd1,0xc6,0xb2,0xbf,0x17), | ||
| 378 | LL(0xa5,0xa5,0xae,0xa5,0x41,0x0b,0x57,0xe4), | ||
| 379 | LL(0xe2,0xe2,0xaf,0xe2,0x43,0x4d,0xd9,0xa1), | ||
| 380 | LL(0x61,0x61,0x99,0x61,0x2f,0xf8,0xc2,0x4e), | ||
| 381 | LL(0xb3,0xb3,0xf6,0xb3,0xf1,0x45,0x7b,0x42), | ||
| 382 | LL(0x21,0x21,0x84,0x21,0x15,0xa5,0x42,0x34), | ||
| 383 | LL(0x9c,0x9c,0x4a,0x9c,0x94,0xd6,0x25,0x08), | ||
| 384 | LL(0x1e,0x1e,0x78,0x1e,0xf0,0x66,0x3c,0xee), | ||
| 385 | LL(0x43,0x43,0x11,0x43,0x22,0x52,0x86,0x61), | ||
| 386 | LL(0xc7,0xc7,0x3b,0xc7,0x76,0xfc,0x93,0xb1), | ||
| 387 | LL(0xfc,0xfc,0xd7,0xfc,0xb3,0x2b,0xe5,0x4f), | ||
| 388 | LL(0x04,0x04,0x10,0x04,0x20,0x14,0x08,0x24), | ||
| 389 | LL(0x51,0x51,0x59,0x51,0xb2,0x08,0xa2,0xe3), | ||
| 390 | LL(0x99,0x99,0x5e,0x99,0xbc,0xc7,0x2f,0x25), | ||
| 391 | LL(0x6d,0x6d,0xa9,0x6d,0x4f,0xc4,0xda,0x22), | ||
| 392 | LL(0x0d,0x0d,0x34,0x0d,0x68,0x39,0x1a,0x65), | ||
| 393 | LL(0xfa,0xfa,0xcf,0xfa,0x83,0x35,0xe9,0x79), | ||
| 394 | LL(0xdf,0xdf,0x5b,0xdf,0xb6,0x84,0xa3,0x69), | ||
| 395 | LL(0x7e,0x7e,0xe5,0x7e,0xd7,0x9b,0xfc,0xa9), | ||
| 396 | LL(0x24,0x24,0x90,0x24,0x3d,0xb4,0x48,0x19), | ||
| 397 | LL(0x3b,0x3b,0xec,0x3b,0xc5,0xd7,0x76,0xfe), | ||
| 398 | LL(0xab,0xab,0x96,0xab,0x31,0x3d,0x4b,0x9a), | ||
| 399 | LL(0xce,0xce,0x1f,0xce,0x3e,0xd1,0x81,0xf0), | ||
| 400 | LL(0x11,0x11,0x44,0x11,0x88,0x55,0x22,0x99), | ||
| 401 | LL(0x8f,0x8f,0x06,0x8f,0x0c,0x89,0x03,0x83), | ||
| 402 | LL(0x4e,0x4e,0x25,0x4e,0x4a,0x6b,0x9c,0x04), | ||
| 403 | LL(0xb7,0xb7,0xe6,0xb7,0xd1,0x51,0x73,0x66), | ||
| 404 | LL(0xeb,0xeb,0x8b,0xeb,0x0b,0x60,0xcb,0xe0), | ||
| 405 | LL(0x3c,0x3c,0xf0,0x3c,0xfd,0xcc,0x78,0xc1), | ||
| 406 | LL(0x81,0x81,0x3e,0x81,0x7c,0xbf,0x1f,0xfd), | ||
| 407 | LL(0x94,0x94,0x6a,0x94,0xd4,0xfe,0x35,0x40), | ||
| 408 | LL(0xf7,0xf7,0xfb,0xf7,0xeb,0x0c,0xf3,0x1c), | ||
| 409 | LL(0xb9,0xb9,0xde,0xb9,0xa1,0x67,0x6f,0x18), | ||
| 410 | LL(0x13,0x13,0x4c,0x13,0x98,0x5f,0x26,0x8b), | ||
| 411 | LL(0x2c,0x2c,0xb0,0x2c,0x7d,0x9c,0x58,0x51), | ||
| 412 | LL(0xd3,0xd3,0x6b,0xd3,0xd6,0xb8,0xbb,0x05), | ||
| 413 | LL(0xe7,0xe7,0xbb,0xe7,0x6b,0x5c,0xd3,0x8c), | ||
| 414 | LL(0x6e,0x6e,0xa5,0x6e,0x57,0xcb,0xdc,0x39), | ||
| 415 | LL(0xc4,0xc4,0x37,0xc4,0x6e,0xf3,0x95,0xaa), | ||
| 416 | LL(0x03,0x03,0x0c,0x03,0x18,0x0f,0x06,0x1b), | ||
| 417 | LL(0x56,0x56,0x45,0x56,0x8a,0x13,0xac,0xdc), | ||
| 418 | LL(0x44,0x44,0x0d,0x44,0x1a,0x49,0x88,0x5e), | ||
| 419 | LL(0x7f,0x7f,0xe1,0x7f,0xdf,0x9e,0xfe,0xa0), | ||
| 420 | LL(0xa9,0xa9,0x9e,0xa9,0x21,0x37,0x4f,0x88), | ||
| 421 | LL(0x2a,0x2a,0xa8,0x2a,0x4d,0x82,0x54,0x67), | ||
| 422 | LL(0xbb,0xbb,0xd6,0xbb,0xb1,0x6d,0x6b,0x0a), | ||
| 423 | LL(0xc1,0xc1,0x23,0xc1,0x46,0xe2,0x9f,0x87), | ||
| 424 | LL(0x53,0x53,0x51,0x53,0xa2,0x02,0xa6,0xf1), | ||
| 425 | LL(0xdc,0xdc,0x57,0xdc,0xae,0x8b,0xa5,0x72), | ||
| 426 | LL(0x0b,0x0b,0x2c,0x0b,0x58,0x27,0x16,0x53), | ||
| 427 | LL(0x9d,0x9d,0x4e,0x9d,0x9c,0xd3,0x27,0x01), | ||
| 428 | LL(0x6c,0x6c,0xad,0x6c,0x47,0xc1,0xd8,0x2b), | ||
| 429 | LL(0x31,0x31,0xc4,0x31,0x95,0xf5,0x62,0xa4), | ||
| 430 | LL(0x74,0x74,0xcd,0x74,0x87,0xb9,0xe8,0xf3), | ||
| 431 | LL(0xf6,0xf6,0xff,0xf6,0xe3,0x09,0xf1,0x15), | ||
| 432 | LL(0x46,0x46,0x05,0x46,0x0a,0x43,0x8c,0x4c), | ||
| 433 | LL(0xac,0xac,0x8a,0xac,0x09,0x26,0x45,0xa5), | ||
| 434 | LL(0x89,0x89,0x1e,0x89,0x3c,0x97,0x0f,0xb5), | ||
| 435 | LL(0x14,0x14,0x50,0x14,0xa0,0x44,0x28,0xb4), | ||
| 436 | LL(0xe1,0xe1,0xa3,0xe1,0x5b,0x42,0xdf,0xba), | ||
| 437 | LL(0x16,0x16,0x58,0x16,0xb0,0x4e,0x2c,0xa6), | ||
| 438 | LL(0x3a,0x3a,0xe8,0x3a,0xcd,0xd2,0x74,0xf7), | ||
| 439 | LL(0x69,0x69,0xb9,0x69,0x6f,0xd0,0xd2,0x06), | ||
| 440 | LL(0x09,0x09,0x24,0x09,0x48,0x2d,0x12,0x41), | ||
| 441 | LL(0x70,0x70,0xdd,0x70,0xa7,0xad,0xe0,0xd7), | ||
| 442 | LL(0xb6,0xb6,0xe2,0xb6,0xd9,0x54,0x71,0x6f), | ||
| 443 | LL(0xd0,0xd0,0x67,0xd0,0xce,0xb7,0xbd,0x1e), | ||
| 444 | LL(0xed,0xed,0x93,0xed,0x3b,0x7e,0xc7,0xd6), | ||
| 445 | LL(0xcc,0xcc,0x17,0xcc,0x2e,0xdb,0x85,0xe2), | ||
| 446 | LL(0x42,0x42,0x15,0x42,0x2a,0x57,0x84,0x68), | ||
| 447 | LL(0x98,0x98,0x5a,0x98,0xb4,0xc2,0x2d,0x2c), | ||
| 448 | LL(0xa4,0xa4,0xaa,0xa4,0x49,0x0e,0x55,0xed), | ||
| 449 | LL(0x28,0x28,0xa0,0x28,0x5d,0x88,0x50,0x75), | ||
| 450 | LL(0x5c,0x5c,0x6d,0x5c,0xda,0x31,0xb8,0x86), | ||
| 451 | LL(0xf8,0xf8,0xc7,0xf8,0x93,0x3f,0xed,0x6b), | ||
| 452 | LL(0x86,0x86,0x22,0x86,0x44,0xa4,0x11,0xc2), | ||
| 453 | #define RC (&(Cx.q[256*N])) | ||
| 454 | 0x18,0x23,0xc6,0xe8,0x87,0xb8,0x01,0x4f, /* rc[ROUNDS] */ | ||
| 455 | 0x36,0xa6,0xd2,0xf5,0x79,0x6f,0x91,0x52, | ||
| 456 | 0x60,0xbc,0x9b,0x8e,0xa3,0x0c,0x7b,0x35, | ||
| 457 | 0x1d,0xe0,0xd7,0xc2,0x2e,0x4b,0xfe,0x57, | ||
| 458 | 0x15,0x77,0x37,0xe5,0x9f,0xf0,0x4a,0xda, | ||
| 459 | 0x58,0xc9,0x29,0x0a,0xb1,0xa0,0x6b,0x85, | ||
| 460 | 0xbd,0x5d,0x10,0xf4,0xcb,0x3e,0x05,0x67, | ||
| 461 | 0xe4,0x27,0x41,0x8b,0xa7,0x7d,0x95,0xd8, | ||
| 462 | 0xfb,0xee,0x7c,0x66,0xdd,0x17,0x47,0x9e, | ||
| 463 | 0xca,0x2d,0xbf,0x07,0xad,0x5a,0x83,0x33 | ||
| 464 | } | ||
| 465 | }; | ||
| 466 | |||
| 467 | void whirlpool_block(WHIRLPOOL_CTX *ctx,const void *inp,size_t n) | ||
| 468 | { | ||
| 469 | int r; | ||
| 470 | const u8 *p=inp; | ||
| 471 | union { u64 q[8]; u8 c[64]; } S,K,*H=(void *)ctx->H.q; | ||
| 472 | |||
| 473 | #ifdef GO_FOR_MMX | ||
| 474 | GO_FOR_MMX(ctx,inp,n); | ||
| 475 | #endif | ||
| 476 | do { | ||
| 477 | #ifdef OPENSSL_SMALL_FOOTPRINT | ||
| 478 | u64 L[8]; | ||
| 479 | int i; | ||
| 480 | |||
| 481 | for (i=0;i<64;i++) S.c[i] = (K.c[i] = H->c[i]) ^ p[i]; | ||
| 482 | for (r=0;r<ROUNDS;r++) | ||
| 483 | { | ||
| 484 | for (i=0;i<8;i++) | ||
| 485 | { | ||
| 486 | L[i] = i ? 0 : RC[r]; | ||
| 487 | L[i] ^= C0(K,i) ^ C1(K,(i-1)&7) ^ | ||
| 488 | C2(K,(i-2)&7) ^ C3(K,(i-3)&7) ^ | ||
| 489 | C4(K,(i-4)&7) ^ C5(K,(i-5)&7) ^ | ||
| 490 | C6(K,(i-6)&7) ^ C7(K,(i-7)&7); | ||
| 491 | } | ||
| 492 | memcpy (K.q,L,64); | ||
| 493 | for (i=0;i<8;i++) | ||
| 494 | { | ||
| 495 | L[i] ^= C0(S,i) ^ C1(S,(i-1)&7) ^ | ||
| 496 | C2(S,(i-2)&7) ^ C3(S,(i-3)&7) ^ | ||
| 497 | C4(S,(i-4)&7) ^ C5(S,(i-5)&7) ^ | ||
| 498 | C6(S,(i-6)&7) ^ C7(S,(i-7)&7); | ||
| 499 | } | ||
| 500 | memcpy (S.q,L,64); | ||
| 501 | } | ||
| 502 | for (i=0;i<64;i++) H->c[i] ^= S.c[i] ^ p[i]; | ||
| 503 | #else | ||
| 504 | u64 L0,L1,L2,L3,L4,L5,L6,L7; | ||
| 505 | |||
| 506 | #ifdef STRICT_ALIGNMENT | ||
| 507 | if ((size_t)p & 7) | ||
| 508 | { | ||
| 509 | memcpy (S.c,p,64); | ||
| 510 | S.q[0] ^= (K.q[0] = H->q[0]); | ||
| 511 | S.q[1] ^= (K.q[1] = H->q[1]); | ||
| 512 | S.q[2] ^= (K.q[2] = H->q[2]); | ||
| 513 | S.q[3] ^= (K.q[3] = H->q[3]); | ||
| 514 | S.q[4] ^= (K.q[4] = H->q[4]); | ||
| 515 | S.q[5] ^= (K.q[5] = H->q[5]); | ||
| 516 | S.q[6] ^= (K.q[6] = H->q[6]); | ||
| 517 | S.q[7] ^= (K.q[7] = H->q[7]); | ||
| 518 | } | ||
| 519 | else | ||
| 520 | #endif | ||
| 521 | { | ||
| 522 | const u64 *pa = (const u64*)p; | ||
| 523 | S.q[0] = (K.q[0] = H->q[0]) ^ pa[0]; | ||
| 524 | S.q[1] = (K.q[1] = H->q[1]) ^ pa[1]; | ||
| 525 | S.q[2] = (K.q[2] = H->q[2]) ^ pa[2]; | ||
| 526 | S.q[3] = (K.q[3] = H->q[3]) ^ pa[3]; | ||
| 527 | S.q[4] = (K.q[4] = H->q[4]) ^ pa[4]; | ||
| 528 | S.q[5] = (K.q[5] = H->q[5]) ^ pa[5]; | ||
| 529 | S.q[6] = (K.q[6] = H->q[6]) ^ pa[6]; | ||
| 530 | S.q[7] = (K.q[7] = H->q[7]) ^ pa[7]; | ||
| 531 | } | ||
| 532 | |||
| 533 | for(r=0;r<ROUNDS;r++) | ||
| 534 | { | ||
| 535 | #ifdef SMALL_REGISTER_BANK | ||
| 536 | L0 = C0(K,0) ^ C1(K,7) ^ C2(K,6) ^ C3(K,5) ^ | ||
| 537 | C4(K,4) ^ C5(K,3) ^ C6(K,2) ^ C7(K,1) ^ RC[r]; | ||
| 538 | L1 = C0(K,1) ^ C1(K,0) ^ C2(K,7) ^ C3(K,6) ^ | ||
| 539 | C4(K,5) ^ C5(K,4) ^ C6(K,3) ^ C7(K,2); | ||
| 540 | L2 = C0(K,2) ^ C1(K,1) ^ C2(K,0) ^ C3(K,7) ^ | ||
| 541 | C4(K,6) ^ C5(K,5) ^ C6(K,4) ^ C7(K,3); | ||
| 542 | L3 = C0(K,3) ^ C1(K,2) ^ C2(K,1) ^ C3(K,0) ^ | ||
| 543 | C4(K,7) ^ C5(K,6) ^ C6(K,5) ^ C7(K,4); | ||
| 544 | L4 = C0(K,4) ^ C1(K,3) ^ C2(K,2) ^ C3(K,1) ^ | ||
| 545 | C4(K,0) ^ C5(K,7) ^ C6(K,6) ^ C7(K,5); | ||
| 546 | L5 = C0(K,5) ^ C1(K,4) ^ C2(K,3) ^ C3(K,2) ^ | ||
| 547 | C4(K,1) ^ C5(K,0) ^ C6(K,7) ^ C7(K,6); | ||
| 548 | L6 = C0(K,6) ^ C1(K,5) ^ C2(K,4) ^ C3(K,3) ^ | ||
| 549 | C4(K,2) ^ C5(K,1) ^ C6(K,0) ^ C7(K,7); | ||
| 550 | L7 = C0(K,7) ^ C1(K,6) ^ C2(K,5) ^ C3(K,4) ^ | ||
| 551 | C4(K,3) ^ C5(K,2) ^ C6(K,1) ^ C7(K,0); | ||
| 552 | |||
| 553 | K.q[0] = L0; K.q[1] = L1; K.q[2] = L2; K.q[3] = L3; | ||
| 554 | K.q[4] = L4; K.q[5] = L5; K.q[6] = L6; K.q[7] = L7; | ||
| 555 | |||
| 556 | L0 ^= C0(S,0) ^ C1(S,7) ^ C2(S,6) ^ C3(S,5) ^ | ||
| 557 | C4(S,4) ^ C5(S,3) ^ C6(S,2) ^ C7(S,1); | ||
| 558 | L1 ^= C0(S,1) ^ C1(S,0) ^ C2(S,7) ^ C3(S,6) ^ | ||
| 559 | C4(S,5) ^ C5(S,4) ^ C6(S,3) ^ C7(S,2); | ||
| 560 | L2 ^= C0(S,2) ^ C1(S,1) ^ C2(S,0) ^ C3(S,7) ^ | ||
| 561 | C4(S,6) ^ C5(S,5) ^ C6(S,4) ^ C7(S,3); | ||
| 562 | L3 ^= C0(S,3) ^ C1(S,2) ^ C2(S,1) ^ C3(S,0) ^ | ||
| 563 | C4(S,7) ^ C5(S,6) ^ C6(S,5) ^ C7(S,4); | ||
| 564 | L4 ^= C0(S,4) ^ C1(S,3) ^ C2(S,2) ^ C3(S,1) ^ | ||
| 565 | C4(S,0) ^ C5(S,7) ^ C6(S,6) ^ C7(S,5); | ||
| 566 | L5 ^= C0(S,5) ^ C1(S,4) ^ C2(S,3) ^ C3(S,2) ^ | ||
| 567 | C4(S,1) ^ C5(S,0) ^ C6(S,7) ^ C7(S,6); | ||
| 568 | L6 ^= C0(S,6) ^ C1(S,5) ^ C2(S,4) ^ C3(S,3) ^ | ||
| 569 | C4(S,2) ^ C5(S,1) ^ C6(S,0) ^ C7(S,7); | ||
| 570 | L7 ^= C0(S,7) ^ C1(S,6) ^ C2(S,5) ^ C3(S,4) ^ | ||
| 571 | C4(S,3) ^ C5(S,2) ^ C6(S,1) ^ C7(S,0); | ||
| 572 | |||
| 573 | S.q[0] = L0; S.q[1] = L1; S.q[2] = L2; S.q[3] = L3; | ||
| 574 | S.q[4] = L4; S.q[5] = L5; S.q[6] = L6; S.q[7] = L7; | ||
| 575 | #else | ||
| 576 | L0 = C0(K,0); L1 = C1(K,0); L2 = C2(K,0); L3 = C3(K,0); | ||
| 577 | L4 = C4(K,0); L5 = C5(K,0); L6 = C6(K,0); L7 = C7(K,0); | ||
| 578 | L0 ^= RC[r]; | ||
| 579 | |||
| 580 | L1 ^= C0(K,1); L2 ^= C1(K,1); L3 ^= C2(K,1); L4 ^= C3(K,1); | ||
| 581 | L5 ^= C4(K,1); L6 ^= C5(K,1); L7 ^= C6(K,1); L0 ^= C7(K,1); | ||
| 582 | |||
| 583 | L2 ^= C0(K,2); L3 ^= C1(K,2); L4 ^= C2(K,2); L5 ^= C3(K,2); | ||
| 584 | L6 ^= C4(K,2); L7 ^= C5(K,2); L0 ^= C6(K,2); L1 ^= C7(K,2); | ||
| 585 | |||
| 586 | L3 ^= C0(K,3); L4 ^= C1(K,3); L5 ^= C2(K,3); L6 ^= C3(K,3); | ||
| 587 | L7 ^= C4(K,3); L0 ^= C5(K,3); L1 ^= C6(K,3); L2 ^= C7(K,3); | ||
| 588 | |||
| 589 | L4 ^= C0(K,4); L5 ^= C1(K,4); L6 ^= C2(K,4); L7 ^= C3(K,4); | ||
| 590 | L0 ^= C4(K,4); L1 ^= C5(K,4); L2 ^= C6(K,4); L3 ^= C7(K,4); | ||
| 591 | |||
| 592 | L5 ^= C0(K,5); L6 ^= C1(K,5); L7 ^= C2(K,5); L0 ^= C3(K,5); | ||
| 593 | L1 ^= C4(K,5); L2 ^= C5(K,5); L3 ^= C6(K,5); L4 ^= C7(K,5); | ||
| 594 | |||
| 595 | L6 ^= C0(K,6); L7 ^= C1(K,6); L0 ^= C2(K,6); L1 ^= C3(K,6); | ||
| 596 | L2 ^= C4(K,6); L3 ^= C5(K,6); L4 ^= C6(K,6); L5 ^= C7(K,6); | ||
| 597 | |||
| 598 | L7 ^= C0(K,7); L0 ^= C1(K,7); L1 ^= C2(K,7); L2 ^= C3(K,7); | ||
| 599 | L3 ^= C4(K,7); L4 ^= C5(K,7); L5 ^= C6(K,7); L6 ^= C7(K,7); | ||
| 600 | |||
| 601 | K.q[0] = L0; K.q[1] = L1; K.q[2] = L2; K.q[3] = L3; | ||
| 602 | K.q[4] = L4; K.q[5] = L5; K.q[6] = L6; K.q[7] = L7; | ||
| 603 | |||
| 604 | L0 ^= C0(S,0); L1 ^= C1(S,0); L2 ^= C2(S,0); L3 ^= C3(S,0); | ||
| 605 | L4 ^= C4(S,0); L5 ^= C5(S,0); L6 ^= C6(S,0); L7 ^= C7(S,0); | ||
| 606 | |||
| 607 | L1 ^= C0(S,1); L2 ^= C1(S,1); L3 ^= C2(S,1); L4 ^= C3(S,1); | ||
| 608 | L5 ^= C4(S,1); L6 ^= C5(S,1); L7 ^= C6(S,1); L0 ^= C7(S,1); | ||
| 609 | |||
| 610 | L2 ^= C0(S,2); L3 ^= C1(S,2); L4 ^= C2(S,2); L5 ^= C3(S,2); | ||
| 611 | L6 ^= C4(S,2); L7 ^= C5(S,2); L0 ^= C6(S,2); L1 ^= C7(S,2); | ||
| 612 | |||
| 613 | L3 ^= C0(S,3); L4 ^= C1(S,3); L5 ^= C2(S,3); L6 ^= C3(S,3); | ||
| 614 | L7 ^= C4(S,3); L0 ^= C5(S,3); L1 ^= C6(S,3); L2 ^= C7(S,3); | ||
| 615 | |||
| 616 | L4 ^= C0(S,4); L5 ^= C1(S,4); L6 ^= C2(S,4); L7 ^= C3(S,4); | ||
| 617 | L0 ^= C4(S,4); L1 ^= C5(S,4); L2 ^= C6(S,4); L3 ^= C7(S,4); | ||
| 618 | |||
| 619 | L5 ^= C0(S,5); L6 ^= C1(S,5); L7 ^= C2(S,5); L0 ^= C3(S,5); | ||
| 620 | L1 ^= C4(S,5); L2 ^= C5(S,5); L3 ^= C6(S,5); L4 ^= C7(S,5); | ||
| 621 | |||
| 622 | L6 ^= C0(S,6); L7 ^= C1(S,6); L0 ^= C2(S,6); L1 ^= C3(S,6); | ||
| 623 | L2 ^= C4(S,6); L3 ^= C5(S,6); L4 ^= C6(S,6); L5 ^= C7(S,6); | ||
| 624 | |||
| 625 | L7 ^= C0(S,7); L0 ^= C1(S,7); L1 ^= C2(S,7); L2 ^= C3(S,7); | ||
| 626 | L3 ^= C4(S,7); L4 ^= C5(S,7); L5 ^= C6(S,7); L6 ^= C7(S,7); | ||
| 627 | |||
| 628 | S.q[0] = L0; S.q[1] = L1; S.q[2] = L2; S.q[3] = L3; | ||
| 629 | S.q[4] = L4; S.q[5] = L5; S.q[6] = L6; S.q[7] = L7; | ||
| 630 | #endif | ||
| 631 | } | ||
| 632 | |||
| 633 | #ifdef STRICT_ALIGNMENT | ||
| 634 | if ((size_t)p & 7) | ||
| 635 | { | ||
| 636 | int i; | ||
| 637 | for(i=0;i<64;i++) H->c[i] ^= S.c[i] ^ p[i]; | ||
| 638 | } | ||
| 639 | else | ||
| 640 | #endif | ||
| 641 | { | ||
| 642 | const u64 *pa=(const u64 *)p; | ||
| 643 | H->q[0] ^= S.q[0] ^ pa[0]; | ||
| 644 | H->q[1] ^= S.q[1] ^ pa[1]; | ||
| 645 | H->q[2] ^= S.q[2] ^ pa[2]; | ||
| 646 | H->q[3] ^= S.q[3] ^ pa[3]; | ||
| 647 | H->q[4] ^= S.q[4] ^ pa[4]; | ||
| 648 | H->q[5] ^= S.q[5] ^ pa[5]; | ||
| 649 | H->q[6] ^= S.q[6] ^ pa[6]; | ||
| 650 | H->q[7] ^= S.q[7] ^ pa[7]; | ||
| 651 | } | ||
| 652 | #endif | ||
| 653 | p += 64; | ||
| 654 | } while(--n); | ||
| 655 | } | ||
