diff options
Diffstat (limited to 'src/lib/libcrypto/x509v3/v3_addr.c')
| -rw-r--r-- | src/lib/libcrypto/x509v3/v3_addr.c | 2068 | 
1 files changed, 1068 insertions, 1000 deletions
| diff --git a/src/lib/libcrypto/x509v3/v3_addr.c b/src/lib/libcrypto/x509v3/v3_addr.c index 179f08d222..084209f5a1 100644 --- a/src/lib/libcrypto/x509v3/v3_addr.c +++ b/src/lib/libcrypto/x509v3/v3_addr.c | |||
| @@ -10,7 +10,7 @@ | |||
| 10 | * are met: | 10 | * are met: | 
| 11 | * | 11 | * | 
| 12 | * 1. Redistributions of source code must retain the above copyright | 12 | * 1. Redistributions of source code must retain the above copyright | 
| 13 | * notice, this list of conditions and the following disclaimer. | 13 | * notice, this list of conditions and the following disclaimer. | 
| 14 | * | 14 | * | 
| 15 | * 2. Redistributions in binary form must reproduce the above copyright | 15 | * 2. Redistributions in binary form must reproduce the above copyright | 
| 16 | * notice, this list of conditions and the following disclaimer in | 16 | * notice, this list of conditions and the following disclaimer in | 
| @@ -76,28 +76,28 @@ | |||
| 76 | */ | 76 | */ | 
| 77 | 77 | ||
| 78 | ASN1_SEQUENCE(IPAddressRange) = { | 78 | ASN1_SEQUENCE(IPAddressRange) = { | 
| 79 | ASN1_SIMPLE(IPAddressRange, min, ASN1_BIT_STRING), | 79 | ASN1_SIMPLE(IPAddressRange, min, ASN1_BIT_STRING), | 
| 80 | ASN1_SIMPLE(IPAddressRange, max, ASN1_BIT_STRING) | 80 | ASN1_SIMPLE(IPAddressRange, max, ASN1_BIT_STRING) | 
| 81 | } ASN1_SEQUENCE_END(IPAddressRange) | 81 | } ASN1_SEQUENCE_END(IPAddressRange) | 
| 82 | 82 | ||
| 83 | ASN1_CHOICE(IPAddressOrRange) = { | 83 | ASN1_CHOICE(IPAddressOrRange) = { | 
| 84 | ASN1_SIMPLE(IPAddressOrRange, u.addressPrefix, ASN1_BIT_STRING), | 84 | ASN1_SIMPLE(IPAddressOrRange, u.addressPrefix, ASN1_BIT_STRING), | 
| 85 | ASN1_SIMPLE(IPAddressOrRange, u.addressRange, IPAddressRange) | 85 | ASN1_SIMPLE(IPAddressOrRange, u.addressRange, IPAddressRange) | 
| 86 | } ASN1_CHOICE_END(IPAddressOrRange) | 86 | } ASN1_CHOICE_END(IPAddressOrRange) | 
| 87 | 87 | ||
| 88 | ASN1_CHOICE(IPAddressChoice) = { | 88 | ASN1_CHOICE(IPAddressChoice) = { | 
| 89 | ASN1_SIMPLE(IPAddressChoice, u.inherit, ASN1_NULL), | 89 | ASN1_SIMPLE(IPAddressChoice, u.inherit, ASN1_NULL), | 
| 90 | ASN1_SEQUENCE_OF(IPAddressChoice, u.addressesOrRanges, IPAddressOrRange) | 90 | ASN1_SEQUENCE_OF(IPAddressChoice, u.addressesOrRanges, IPAddressOrRange) | 
| 91 | } ASN1_CHOICE_END(IPAddressChoice) | 91 | } ASN1_CHOICE_END(IPAddressChoice) | 
| 92 | 92 | ||
| 93 | ASN1_SEQUENCE(IPAddressFamily) = { | 93 | ASN1_SEQUENCE(IPAddressFamily) = { | 
| 94 | ASN1_SIMPLE(IPAddressFamily, addressFamily, ASN1_OCTET_STRING), | 94 | ASN1_SIMPLE(IPAddressFamily, addressFamily, ASN1_OCTET_STRING), | 
| 95 | ASN1_SIMPLE(IPAddressFamily, ipAddressChoice, IPAddressChoice) | 95 | ASN1_SIMPLE(IPAddressFamily, ipAddressChoice, IPAddressChoice) | 
| 96 | } ASN1_SEQUENCE_END(IPAddressFamily) | 96 | } ASN1_SEQUENCE_END(IPAddressFamily) | 
| 97 | 97 | ||
| 98 | ASN1_ITEM_TEMPLATE(IPAddrBlocks) = | 98 | ASN1_ITEM_TEMPLATE(IPAddrBlocks) = | 
| 99 | ASN1_EX_TEMPLATE_TYPE(ASN1_TFLG_SEQUENCE_OF, 0, | 99 | ASN1_EX_TEMPLATE_TYPE(ASN1_TFLG_SEQUENCE_OF, 0, | 
| 100 | IPAddrBlocks, IPAddressFamily) | 100 | IPAddrBlocks, IPAddressFamily) | 
| 101 | ASN1_ITEM_TEMPLATE_END(IPAddrBlocks) | 101 | ASN1_ITEM_TEMPLATE_END(IPAddrBlocks) | 
| 102 | 102 | ||
| 103 | IMPLEMENT_ASN1_FUNCTIONS(IPAddressRange) | 103 | IMPLEMENT_ASN1_FUNCTIONS(IPAddressRange) | 
| @@ -113,54 +113,53 @@ IMPLEMENT_ASN1_FUNCTIONS(IPAddressFamily) | |||
| 113 | /* | 113 | /* | 
| 114 | * What's the address length associated with this AFI? | 114 | * What's the address length associated with this AFI? | 
| 115 | */ | 115 | */ | 
| 116 | static int length_from_afi(const unsigned afi) | 116 | static int | 
| 117 | length_from_afi(const unsigned afi) | ||
| 117 | { | 118 | { | 
| 118 | switch (afi) { | 119 | switch (afi) { | 
| 119 | case IANA_AFI_IPV4: | 120 | case IANA_AFI_IPV4: | 
| 120 | return 4; | 121 | return 4; | 
| 121 | case IANA_AFI_IPV6: | 122 | case IANA_AFI_IPV6: | 
| 122 | return 16; | 123 | return 16; | 
| 123 | default: | 124 | default: | 
| 124 | return 0; | 125 | return 0; | 
| 125 | } | 126 | } | 
| 126 | } | 127 | } | 
| 127 | 128 | ||
| 128 | /* | 129 | /* | 
| 129 | * Extract the AFI from an IPAddressFamily. | 130 | * Extract the AFI from an IPAddressFamily. | 
| 130 | */ | 131 | */ | 
| 131 | unsigned int v3_addr_get_afi(const IPAddressFamily *f) | 132 | unsigned int | 
| 133 | v3_addr_get_afi(const IPAddressFamily *f) | ||
| 132 | { | 134 | { | 
| 133 | return ((f != NULL && | 135 | return ((f != NULL && f->addressFamily != NULL && | 
| 134 | f->addressFamily != NULL && | 136 | f->addressFamily->data != NULL) ? | 
| 135 | f->addressFamily->data != NULL) | 137 | ((f->addressFamily->data[0] << 8) | (f->addressFamily->data[1])) : | 
| 136 | ? ((f->addressFamily->data[0] << 8) | | 138 | 0); | 
| 137 | (f->addressFamily->data[1])) | ||
| 138 | : 0); | ||
| 139 | } | 139 | } | 
| 140 | 140 | ||
| 141 | /* | 141 | /* | 
| 142 | * Expand the bitstring form of an address into a raw byte array. | 142 | * Expand the bitstring form of an address into a raw byte array. | 
| 143 | * At the moment this is coded for simplicity, not speed. | 143 | * At the moment this is coded for simplicity, not speed. | 
| 144 | */ | 144 | */ | 
| 145 | static int addr_expand(unsigned char *addr, | 145 | static int | 
| 146 | const ASN1_BIT_STRING *bs, | 146 | addr_expand(unsigned char *addr, const ASN1_BIT_STRING *bs, const int length, | 
| 147 | const int length, | 147 | const unsigned char fill) | 
| 148 | const unsigned char fill) | ||
| 149 | { | 148 | { | 
| 150 | if (bs->length < 0 || bs->length > length) | 149 | if (bs->length < 0 || bs->length > length) | 
| 151 | return 0; | 150 | return 0; | 
| 152 | if (bs->length > 0) { | 151 | if (bs->length > 0) { | 
| 153 | memcpy(addr, bs->data, bs->length); | 152 | memcpy(addr, bs->data, bs->length); | 
| 154 | if ((bs->flags & 7) != 0) { | 153 | if ((bs->flags & 7) != 0) { | 
| 155 | unsigned char mask = 0xFF >> (8 - (bs->flags & 7)); | 154 | unsigned char mask = 0xFF >> (8 - (bs->flags & 7)); | 
| 156 | if (fill == 0) | 155 | if (fill == 0) | 
| 157 | addr[bs->length - 1] &= ~mask; | 156 | addr[bs->length - 1] &= ~mask; | 
| 158 | else | 157 | else | 
| 159 | addr[bs->length - 1] |= mask; | 158 | addr[bs->length - 1] |= mask; | 
| 160 | } | 159 | } | 
| 161 | } | 160 | } | 
| 162 | memset(addr + bs->length, fill, length - bs->length); | 161 | memset(addr + bs->length, fill, length - bs->length); | 
| 163 | return 1; | 162 | return 1; | 
| 164 | } | 163 | } | 
| 165 | 164 | ||
| 166 | /* | 165 | /* | 
| @@ -171,145 +170,150 @@ static int addr_expand(unsigned char *addr, | |||
| 171 | /* | 170 | /* | 
| 172 | * i2r handler for one address bitstring. | 171 | * i2r handler for one address bitstring. | 
| 173 | */ | 172 | */ | 
| 174 | static int i2r_address(BIO *out, | 173 | static int | 
| 175 | const unsigned afi, | 174 | i2r_address(BIO *out, const unsigned afi, const unsigned char fill, | 
| 176 | const unsigned char fill, | 175 | const ASN1_BIT_STRING *bs) | 
| 177 | const ASN1_BIT_STRING *bs) | ||
| 178 | { | 176 | { | 
| 179 | unsigned char addr[ADDR_RAW_BUF_LEN]; | 177 | unsigned char addr[ADDR_RAW_BUF_LEN]; | 
| 180 | int i, n; | 178 | int i, n; | 
| 181 | 179 | ||
| 182 | if (bs->length < 0) | 180 | if (bs->length < 0) | 
| 183 | return 0; | 181 | return 0; | 
| 184 | switch (afi) { | 182 | switch (afi) { | 
| 185 | case IANA_AFI_IPV4: | 183 | case IANA_AFI_IPV4: | 
| 186 | if (!addr_expand(addr, bs, 4, fill)) | 184 | if (!addr_expand(addr, bs, 4, fill)) | 
| 187 | return 0; | 185 | return 0; | 
| 188 | BIO_printf(out, "%d.%d.%d.%d", addr[0], addr[1], addr[2], addr[3]); | 186 | BIO_printf(out, "%d.%d.%d.%d", | 
| 189 | break; | 187 | addr[0], addr[1], addr[2], addr[3]); | 
| 190 | case IANA_AFI_IPV6: | 188 | break; | 
| 191 | if (!addr_expand(addr, bs, 16, fill)) | 189 | case IANA_AFI_IPV6: | 
| 192 | return 0; | 190 | if (!addr_expand(addr, bs, 16, fill)) | 
| 193 | for (n = 16; n > 1 && addr[n-1] == 0x00 && addr[n-2] == 0x00; n -= 2) | 191 | return 0; | 
| 194 | ; | 192 | for (n = 16; | 
| 195 | for (i = 0; i < n; i += 2) | 193 | n > 1 && addr[n - 1] == 0x00 && addr[n - 2] == 0x00; n -= 2) | 
| 196 | BIO_printf(out, "%x%s", (addr[i] << 8) | addr[i+1], (i < 14 ? ":" : "")); | 194 | ; | 
| 197 | if (i < 16) | 195 | for (i = 0; i < n; i += 2) | 
| 198 | BIO_puts(out, ":"); | 196 | BIO_printf(out, "%x%s", | 
| 199 | if (i == 0) | 197 | (addr[i] << 8) | addr[i + 1], (i < 14 ? ":" : "")); | 
| 200 | BIO_puts(out, ":"); | 198 | if (i < 16) | 
| 201 | break; | 199 | BIO_puts(out, ":"); | 
| 202 | default: | 200 | if (i == 0) | 
| 203 | for (i = 0; i < bs->length; i++) | 201 | BIO_puts(out, ":"); | 
| 204 | BIO_printf(out, "%s%02x", (i > 0 ? ":" : ""), bs->data[i]); | 202 | break; | 
| 205 | BIO_printf(out, "[%d]", (int) (bs->flags & 7)); | 203 | default: | 
| 206 | break; | 204 | for (i = 0; i < bs->length; i++) | 
| 207 | } | 205 | BIO_printf(out, "%s%02x", | 
| 208 | return 1; | 206 | (i > 0 ? ":" : ""), bs->data[i]); | 
| 207 | BIO_printf(out, "[%d]", (int)(bs->flags & 7)); | ||
| 208 | break; | ||
| 209 | } | ||
| 210 | return 1; | ||
| 209 | } | 211 | } | 
| 210 | 212 | ||
| 211 | /* | 213 | /* | 
| 212 | * i2r handler for a sequence of addresses and ranges. | 214 | * i2r handler for a sequence of addresses and ranges. | 
| 213 | */ | 215 | */ | 
| 214 | static int i2r_IPAddressOrRanges(BIO *out, | 216 | static int | 
| 215 | const int indent, | 217 | i2r_IPAddressOrRanges(BIO *out, const int indent, const IPAddressOrRanges *aors, | 
| 216 | const IPAddressOrRanges *aors, | 218 | const unsigned afi) | 
| 217 | const unsigned afi) | ||
| 218 | { | 219 | { | 
| 219 | int i; | 220 | int i; | 
| 220 | for (i = 0; i < sk_IPAddressOrRange_num(aors); i++) { | 221 | |
| 221 | const IPAddressOrRange *aor = sk_IPAddressOrRange_value(aors, i); | 222 | for (i = 0; i < sk_IPAddressOrRange_num(aors); i++) { | 
| 222 | BIO_printf(out, "%*s", indent, ""); | 223 | const IPAddressOrRange *aor = | 
| 223 | switch (aor->type) { | 224 | sk_IPAddressOrRange_value(aors, i); | 
| 224 | case IPAddressOrRange_addressPrefix: | 225 | BIO_printf(out, "%*s", indent, ""); | 
| 225 | if (!i2r_address(out, afi, 0x00, aor->u.addressPrefix)) | 226 | switch (aor->type) { | 
| 226 | return 0; | 227 | case IPAddressOrRange_addressPrefix: | 
| 227 | BIO_printf(out, "/%d\n", addr_prefixlen(aor->u.addressPrefix)); | 228 | if (!i2r_address(out, afi, 0x00, aor->u.addressPrefix)) | 
| 228 | continue; | 229 | return 0; | 
| 229 | case IPAddressOrRange_addressRange: | 230 | BIO_printf(out, "/%d\n", | 
| 230 | if (!i2r_address(out, afi, 0x00, aor->u.addressRange->min)) | 231 | addr_prefixlen(aor->u.addressPrefix)); | 
| 231 | return 0; | 232 | continue; | 
| 232 | BIO_puts(out, "-"); | 233 | case IPAddressOrRange_addressRange: | 
| 233 | if (!i2r_address(out, afi, 0xFF, aor->u.addressRange->max)) | 234 | if (!i2r_address(out, afi, 0x00, | 
| 234 | return 0; | 235 | aor->u.addressRange->min)) | 
| 235 | BIO_puts(out, "\n"); | 236 | return 0; | 
| 236 | continue; | 237 | BIO_puts(out, "-"); | 
| 237 | } | 238 | if (!i2r_address(out, afi, 0xFF, | 
| 238 | } | 239 | aor->u.addressRange->max)) | 
| 239 | return 1; | 240 | return 0; | 
| 241 | BIO_puts(out, "\n"); | ||
| 242 | continue; | ||
| 243 | } | ||
| 244 | } | ||
| 245 | return 1; | ||
| 240 | } | 246 | } | 
| 241 | 247 | ||
| 242 | /* | 248 | /* | 
| 243 | * i2r handler for an IPAddrBlocks extension. | 249 | * i2r handler for an IPAddrBlocks extension. | 
| 244 | */ | 250 | */ | 
| 245 | static int i2r_IPAddrBlocks(const X509V3_EXT_METHOD *method, | 251 | static int | 
| 246 | void *ext, | 252 | i2r_IPAddrBlocks(const X509V3_EXT_METHOD *method, void *ext, BIO *out, | 
| 247 | BIO *out, | 253 | int indent) | 
| 248 | int indent) | ||
| 249 | { | 254 | { | 
| 250 | const IPAddrBlocks *addr = ext; | 255 | const IPAddrBlocks *addr = ext; | 
| 251 | int i; | 256 | int i; | 
| 252 | for (i = 0; i < sk_IPAddressFamily_num(addr); i++) { | 257 | |
| 253 | IPAddressFamily *f = sk_IPAddressFamily_value(addr, i); | 258 | for (i = 0; i < sk_IPAddressFamily_num(addr); i++) { | 
| 254 | const unsigned int afi = v3_addr_get_afi(f); | 259 | IPAddressFamily *f = sk_IPAddressFamily_value(addr, i); | 
| 255 | switch (afi) { | 260 | const unsigned int afi = v3_addr_get_afi(f); | 
| 256 | case IANA_AFI_IPV4: | 261 | switch (afi) { | 
| 257 | BIO_printf(out, "%*sIPv4", indent, ""); | 262 | case IANA_AFI_IPV4: | 
| 258 | break; | 263 | BIO_printf(out, "%*sIPv4", indent, ""); | 
| 259 | case IANA_AFI_IPV6: | 264 | break; | 
| 260 | BIO_printf(out, "%*sIPv6", indent, ""); | 265 | case IANA_AFI_IPV6: | 
| 261 | break; | 266 | BIO_printf(out, "%*sIPv6", indent, ""); | 
| 262 | default: | 267 | break; | 
| 263 | BIO_printf(out, "%*sUnknown AFI %u", indent, "", afi); | 268 | default: | 
| 264 | break; | 269 | BIO_printf(out, "%*sUnknown AFI %u", indent, "", afi); | 
| 265 | } | 270 | break; | 
| 266 | if (f->addressFamily->length > 2) { | 271 | } | 
| 267 | switch (f->addressFamily->data[2]) { | 272 | if (f->addressFamily->length > 2) { | 
| 268 | case 1: | 273 | switch (f->addressFamily->data[2]) { | 
| 269 | BIO_puts(out, " (Unicast)"); | 274 | case 1: | 
| 270 | break; | 275 | BIO_puts(out, " (Unicast)"); | 
| 271 | case 2: | 276 | break; | 
| 272 | BIO_puts(out, " (Multicast)"); | 277 | case 2: | 
| 273 | break; | 278 | BIO_puts(out, " (Multicast)"); | 
| 274 | case 3: | 279 | break; | 
| 275 | BIO_puts(out, " (Unicast/Multicast)"); | 280 | case 3: | 
| 276 | break; | 281 | BIO_puts(out, " (Unicast/Multicast)"); | 
| 277 | case 4: | 282 | break; | 
| 278 | BIO_puts(out, " (MPLS)"); | 283 | case 4: | 
| 279 | break; | 284 | BIO_puts(out, " (MPLS)"); | 
| 280 | case 64: | 285 | break; | 
| 281 | BIO_puts(out, " (Tunnel)"); | 286 | case 64: | 
| 282 | break; | 287 | BIO_puts(out, " (Tunnel)"); | 
| 283 | case 65: | 288 | break; | 
| 284 | BIO_puts(out, " (VPLS)"); | 289 | case 65: | 
| 285 | break; | 290 | BIO_puts(out, " (VPLS)"); | 
| 286 | case 66: | 291 | break; | 
| 287 | BIO_puts(out, " (BGP MDT)"); | 292 | case 66: | 
| 288 | break; | 293 | BIO_puts(out, " (BGP MDT)"); | 
| 289 | case 128: | 294 | break; | 
| 290 | BIO_puts(out, " (MPLS-labeled VPN)"); | 295 | case 128: | 
| 291 | break; | 296 | BIO_puts(out, " (MPLS-labeled VPN)"); | 
| 292 | default: | 297 | break; | 
| 293 | BIO_printf(out, " (Unknown SAFI %u)", | 298 | default: | 
| 294 | (unsigned) f->addressFamily->data[2]); | 299 | BIO_printf(out, " (Unknown SAFI %u)", | 
| 295 | break; | 300 | (unsigned)f->addressFamily->data[2]); | 
| 296 | } | 301 | break; | 
| 297 | } | 302 | } | 
| 298 | switch (f->ipAddressChoice->type) { | 303 | } | 
| 299 | case IPAddressChoice_inherit: | 304 | switch (f->ipAddressChoice->type) { | 
| 300 | BIO_puts(out, ": inherit\n"); | 305 | case IPAddressChoice_inherit: | 
| 301 | break; | 306 | BIO_puts(out, ": inherit\n"); | 
| 302 | case IPAddressChoice_addressesOrRanges: | 307 | break; | 
| 303 | BIO_puts(out, ":\n"); | 308 | case IPAddressChoice_addressesOrRanges: | 
| 304 | if (!i2r_IPAddressOrRanges(out, | 309 | BIO_puts(out, ":\n"); | 
| 305 | indent + 2, | 310 | if (!i2r_IPAddressOrRanges(out, indent + 2, | 
| 306 | f->ipAddressChoice->u.addressesOrRanges, | 311 | f->ipAddressChoice->u.addressesOrRanges, afi)) | 
| 307 | afi)) | 312 | return 0; | 
| 308 | return 0; | 313 | break; | 
| 309 | break; | 314 | } | 
| 310 | } | 315 | } | 
| 311 | } | 316 | return 1; | 
| 312 | return 1; | ||
| 313 | } | 317 | } | 
| 314 | 318 | ||
| 315 | /* | 319 | /* | 
| @@ -322,134 +326,151 @@ static int i2r_IPAddrBlocks(const X509V3_EXT_METHOD *method, | |||
| 322 | * function returns -1. If this messes up your preferred sort order | 326 | * function returns -1. If this messes up your preferred sort order | 
| 323 | * for garbage input, tough noogies. | 327 | * for garbage input, tough noogies. | 
| 324 | */ | 328 | */ | 
| 325 | static int IPAddressOrRange_cmp(const IPAddressOrRange *a, | 329 | static int | 
| 326 | const IPAddressOrRange *b, | 330 | IPAddressOrRange_cmp(const IPAddressOrRange *a, const IPAddressOrRange *b, | 
| 327 | const int length) | 331 | const int length) | 
| 328 | { | 332 | { | 
| 329 | unsigned char addr_a[ADDR_RAW_BUF_LEN], addr_b[ADDR_RAW_BUF_LEN]; | 333 | unsigned char addr_a[ADDR_RAW_BUF_LEN], addr_b[ADDR_RAW_BUF_LEN]; | 
| 330 | int prefixlen_a = 0, prefixlen_b = 0; | 334 | int prefixlen_a = 0, prefixlen_b = 0; | 
| 331 | int r; | 335 | int r; | 
| 332 | 336 | ||
| 333 | switch (a->type) { | 337 | switch (a->type) { | 
| 334 | case IPAddressOrRange_addressPrefix: | 338 | case IPAddressOrRange_addressPrefix: | 
| 335 | if (!addr_expand(addr_a, a->u.addressPrefix, length, 0x00)) | 339 | if (!addr_expand(addr_a, a->u.addressPrefix, length, 0x00)) | 
| 336 | return -1; | 340 | return -1; | 
| 337 | prefixlen_a = addr_prefixlen(a->u.addressPrefix); | 341 | prefixlen_a = addr_prefixlen(a->u.addressPrefix); | 
| 338 | break; | 342 | break; | 
| 339 | case IPAddressOrRange_addressRange: | 343 | case IPAddressOrRange_addressRange: | 
| 340 | if (!addr_expand(addr_a, a->u.addressRange->min, length, 0x00)) | 344 | if (!addr_expand(addr_a, a->u.addressRange->min, length, 0x00)) | 
| 341 | return -1; | 345 | return -1; | 
| 342 | prefixlen_a = length * 8; | 346 | prefixlen_a = length * 8; | 
| 343 | break; | 347 | break; | 
| 344 | } | 348 | } | 
| 345 | 349 | ||
| 346 | switch (b->type) { | 350 | switch (b->type) { | 
| 347 | case IPAddressOrRange_addressPrefix: | 351 | case IPAddressOrRange_addressPrefix: | 
| 348 | if (!addr_expand(addr_b, b->u.addressPrefix, length, 0x00)) | 352 | if (!addr_expand(addr_b, b->u.addressPrefix, length, 0x00)) | 
| 349 | return -1; | 353 | return -1; | 
| 350 | prefixlen_b = addr_prefixlen(b->u.addressPrefix); | 354 | prefixlen_b = addr_prefixlen(b->u.addressPrefix); | 
| 351 | break; | 355 | break; | 
| 352 | case IPAddressOrRange_addressRange: | 356 | case IPAddressOrRange_addressRange: | 
| 353 | if (!addr_expand(addr_b, b->u.addressRange->min, length, 0x00)) | 357 | if (!addr_expand(addr_b, b->u.addressRange->min, length, 0x00)) | 
| 354 | return -1; | 358 | return -1; | 
| 355 | prefixlen_b = length * 8; | 359 | prefixlen_b = length * 8; | 
| 356 | break; | 360 | break; | 
| 357 | } | 361 | } | 
| 358 | 362 | ||
| 359 | if ((r = memcmp(addr_a, addr_b, length)) != 0) | 363 | if ((r = memcmp(addr_a, addr_b, length)) != 0) | 
| 360 | return r; | 364 | return r; | 
| 361 | else | 365 | else | 
| 362 | return prefixlen_a - prefixlen_b; | 366 | return prefixlen_a - prefixlen_b; | 
| 363 | } | 367 | } | 
| 364 | 368 | ||
| 365 | /* | 369 | /* | 
| 366 | * IPv4-specific closure over IPAddressOrRange_cmp, since sk_sort() | 370 | * IPv4-specific closure over IPAddressOrRange_cmp, since sk_sort() | 
| 367 | * comparision routines are only allowed two arguments. | 371 | * comparision routines are only allowed two arguments. | 
| 368 | */ | 372 | */ | 
| 369 | static int v4IPAddressOrRange_cmp(const IPAddressOrRange * const *a, | 373 | static int | 
| 370 | const IPAddressOrRange * const *b) | 374 | v4IPAddressOrRange_cmp(const IPAddressOrRange * const *a, | 
| 375 | const IPAddressOrRange * const *b) | ||
| 371 | { | 376 | { | 
| 372 | return IPAddressOrRange_cmp(*a, *b, 4); | 377 | return IPAddressOrRange_cmp(*a, *b, 4); | 
| 373 | } | 378 | } | 
| 374 | 379 | ||
| 375 | /* | 380 | /* | 
| 376 | * IPv6-specific closure over IPAddressOrRange_cmp, since sk_sort() | 381 | * IPv6-specific closure over IPAddressOrRange_cmp, since sk_sort() | 
| 377 | * comparision routines are only allowed two arguments. | 382 | * comparision routines are only allowed two arguments. | 
| 378 | */ | 383 | */ | 
| 379 | static int v6IPAddressOrRange_cmp(const IPAddressOrRange * const *a, | 384 | static int | 
| 380 | const IPAddressOrRange * const *b) | 385 | v6IPAddressOrRange_cmp(const IPAddressOrRange * const *a, | 
| 386 | const IPAddressOrRange * const *b) | ||
| 381 | { | 387 | { | 
| 382 | return IPAddressOrRange_cmp(*a, *b, 16); | 388 | return IPAddressOrRange_cmp(*a, *b, 16); | 
| 383 | } | 389 | } | 
| 384 | 390 | ||
| 385 | /* | 391 | /* | 
| 386 | * Calculate whether a range collapses to a prefix. | 392 | * Calculate whether a range collapses to a prefix. | 
| 387 | * See last paragraph of RFC 3779 2.2.3.7. | 393 | * See last paragraph of RFC 3779 2.2.3.7. | 
| 388 | */ | 394 | */ | 
| 389 | static int range_should_be_prefix(const unsigned char *min, | 395 | static int | 
| 390 | const unsigned char *max, | 396 | range_should_be_prefix(const unsigned char *min, const unsigned char *max, | 
| 391 | const int length) | 397 | const int length) | 
| 392 | { | 398 | { | 
| 393 | unsigned char mask; | 399 | unsigned char mask; | 
| 394 | int i, j; | 400 | int i, j; | 
| 395 | 401 | ||
| 396 | OPENSSL_assert(memcmp(min, max, length) <= 0); | 402 | OPENSSL_assert(memcmp(min, max, length) <= 0); | 
| 397 | for (i = 0; i < length && min[i] == max[i]; i++) | 403 | for (i = 0; i < length && min[i] == max[i]; i++) | 
| 398 | ; | 404 | ; | 
| 399 | for (j = length - 1; j >= 0 && min[j] == 0x00 && max[j] == 0xFF; j--) | 405 | for (j = length - 1; j >= 0 && min[j] == 0x00 && max[j] == 0xFF; j--) | 
| 400 | ; | 406 | ; | 
| 401 | if (i < j) | 407 | if (i < j) | 
| 402 | return -1; | 408 | return -1; | 
| 403 | if (i > j) | 409 | if (i > j) | 
| 404 | return i * 8; | 410 | return i * 8; | 
| 405 | mask = min[i] ^ max[i]; | 411 | mask = min[i] ^ max[i]; | 
| 406 | switch (mask) { | 412 | switch (mask) { | 
| 407 | case 0x01: j = 7; break; | 413 | case 0x01: | 
| 408 | case 0x03: j = 6; break; | 414 | j = 7; | 
| 409 | case 0x07: j = 5; break; | 415 | break; | 
| 410 | case 0x0F: j = 4; break; | 416 | case 0x03: | 
| 411 | case 0x1F: j = 3; break; | 417 | j = 6; | 
| 412 | case 0x3F: j = 2; break; | 418 | break; | 
| 413 | case 0x7F: j = 1; break; | 419 | case 0x07: | 
| 414 | default: return -1; | 420 | j = 5; | 
| 415 | } | 421 | break; | 
| 416 | if ((min[i] & mask) != 0 || (max[i] & mask) != mask) | 422 | case 0x0F: | 
| 417 | return -1; | 423 | j = 4; | 
| 418 | else | 424 | break; | 
| 419 | return i * 8 + j; | 425 | case 0x1F: | 
| 426 | j = 3; | ||
| 427 | break; | ||
| 428 | case 0x3F: | ||
| 429 | j = 2; | ||
| 430 | break; | ||
| 431 | case 0x7F: | ||
| 432 | j = 1; | ||
| 433 | break; | ||
| 434 | default: | ||
| 435 | return -1; | ||
| 436 | } | ||
| 437 | if ((min[i] & mask) != 0 || (max[i] & mask) != mask) | ||
| 438 | return -1; | ||
| 439 | else | ||
| 440 | return i * 8 + j; | ||
| 420 | } | 441 | } | 
| 421 | 442 | ||
| 422 | /* | 443 | /* | 
| 423 | * Construct a prefix. | 444 | * Construct a prefix. | 
| 424 | */ | 445 | */ | 
| 425 | static int make_addressPrefix(IPAddressOrRange **result, | 446 | static int | 
| 426 | unsigned char *addr, | 447 | make_addressPrefix(IPAddressOrRange **result, unsigned char *addr, | 
| 427 | const int prefixlen) | 448 | const int prefixlen) | 
| 428 | { | 449 | { | 
| 429 | int bytelen = (prefixlen + 7) / 8, bitlen = prefixlen % 8; | 450 | int bytelen = (prefixlen + 7) / 8, bitlen = prefixlen % 8; | 
| 430 | IPAddressOrRange *aor = IPAddressOrRange_new(); | 451 | IPAddressOrRange *aor = IPAddressOrRange_new(); | 
| 431 | 452 | ||
| 432 | if (aor == NULL) | 453 | if (aor == NULL) | 
| 433 | return 0; | 454 | return 0; | 
| 434 | aor->type = IPAddressOrRange_addressPrefix; | 455 | aor->type = IPAddressOrRange_addressPrefix; | 
| 435 | if (aor->u.addressPrefix == NULL && | 456 | if (aor->u.addressPrefix == NULL && | 
| 436 | (aor->u.addressPrefix = ASN1_BIT_STRING_new()) == NULL) | 457 | (aor->u.addressPrefix = ASN1_BIT_STRING_new()) == NULL) | 
| 437 | goto err; | 458 | goto err; | 
| 438 | if (!ASN1_BIT_STRING_set(aor->u.addressPrefix, addr, bytelen)) | 459 | if (!ASN1_BIT_STRING_set(aor->u.addressPrefix, addr, bytelen)) | 
| 439 | goto err; | 460 | goto err; | 
| 440 | aor->u.addressPrefix->flags &= ~7; | 461 | aor->u.addressPrefix->flags &= ~7; | 
| 441 | aor->u.addressPrefix->flags |= ASN1_STRING_FLAG_BITS_LEFT; | 462 | aor->u.addressPrefix->flags |= ASN1_STRING_FLAG_BITS_LEFT; | 
| 442 | if (bitlen > 0) { | 463 | if (bitlen > 0) { | 
| 443 | aor->u.addressPrefix->data[bytelen - 1] &= ~(0xFF >> bitlen); | 464 | aor->u.addressPrefix->data[bytelen - 1] &= ~(0xFF >> bitlen); | 
| 444 | aor->u.addressPrefix->flags |= 8 - bitlen; | 465 | aor->u.addressPrefix->flags |= 8 - bitlen; | 
| 445 | } | 466 | } | 
| 446 | 467 | ||
| 447 | *result = aor; | 468 | *result = aor; | 
| 448 | return 1; | 469 | return 1; | 
| 449 | 470 | ||
| 450 | err: | 471 | err: | 
| 451 | IPAddressOrRange_free(aor); | 472 | IPAddressOrRange_free(aor); | 
| 452 | return 0; | 473 | return 0; | 
| 453 | } | 474 | } | 
| 454 | 475 | ||
| 455 | /* | 476 | /* | 
| @@ -457,252 +478,251 @@ static int make_addressPrefix(IPAddressOrRange **result, | |||
| 457 | * return a prefix instead. Doing this here simplifies | 478 | * return a prefix instead. Doing this here simplifies | 
| 458 | * the rest of the code considerably. | 479 | * the rest of the code considerably. | 
| 459 | */ | 480 | */ | 
| 460 | static int make_addressRange(IPAddressOrRange **result, | 481 | static int | 
| 461 | unsigned char *min, | 482 | make_addressRange(IPAddressOrRange **result, unsigned char *min, | 
| 462 | unsigned char *max, | 483 | unsigned char *max, const int length) | 
| 463 | const int length) | ||
| 464 | { | 484 | { | 
| 465 | IPAddressOrRange *aor; | 485 | IPAddressOrRange *aor; | 
| 466 | int i, prefixlen; | 486 | int i, prefixlen; | 
| 467 | 487 | ||
| 468 | if ((prefixlen = range_should_be_prefix(min, max, length)) >= 0) | 488 | if ((prefixlen = range_should_be_prefix(min, max, length)) >= 0) | 
| 469 | return make_addressPrefix(result, min, prefixlen); | 489 | return make_addressPrefix(result, min, prefixlen); | 
| 470 | 490 | ||
| 471 | if ((aor = IPAddressOrRange_new()) == NULL) | 491 | if ((aor = IPAddressOrRange_new()) == NULL) | 
| 472 | return 0; | 492 | return 0; | 
| 473 | aor->type = IPAddressOrRange_addressRange; | 493 | aor->type = IPAddressOrRange_addressRange; | 
| 474 | OPENSSL_assert(aor->u.addressRange == NULL); | 494 | OPENSSL_assert(aor->u.addressRange == NULL); | 
| 475 | if ((aor->u.addressRange = IPAddressRange_new()) == NULL) | 495 | if ((aor->u.addressRange = IPAddressRange_new()) == NULL) | 
| 476 | goto err; | 496 | goto err; | 
| 477 | if (aor->u.addressRange->min == NULL && | 497 | if (aor->u.addressRange->min == NULL && | 
| 478 | (aor->u.addressRange->min = ASN1_BIT_STRING_new()) == NULL) | 498 | (aor->u.addressRange->min = ASN1_BIT_STRING_new()) == NULL) | 
| 479 | goto err; | 499 | goto err; | 
| 480 | if (aor->u.addressRange->max == NULL && | 500 | if (aor->u.addressRange->max == NULL && | 
| 481 | (aor->u.addressRange->max = ASN1_BIT_STRING_new()) == NULL) | 501 | (aor->u.addressRange->max = ASN1_BIT_STRING_new()) == NULL) | 
| 482 | goto err; | 502 | goto err; | 
| 483 | 503 | ||
| 484 | for (i = length; i > 0 && min[i - 1] == 0x00; --i) | 504 | for (i = length; i > 0 && min[i - 1] == 0x00; --i) | 
| 485 | ; | 505 | ; | 
| 486 | if (!ASN1_BIT_STRING_set(aor->u.addressRange->min, min, i)) | 506 | if (!ASN1_BIT_STRING_set(aor->u.addressRange->min, min, i)) | 
| 487 | goto err; | 507 | goto err; | 
| 488 | aor->u.addressRange->min->flags &= ~7; | 508 | aor->u.addressRange->min->flags &= ~7; | 
| 489 | aor->u.addressRange->min->flags |= ASN1_STRING_FLAG_BITS_LEFT; | 509 | aor->u.addressRange->min->flags |= ASN1_STRING_FLAG_BITS_LEFT; | 
| 490 | if (i > 0) { | 510 | if (i > 0) { | 
| 491 | unsigned char b = min[i - 1]; | 511 | unsigned char b = min[i - 1]; | 
| 492 | int j = 1; | 512 | int j = 1; | 
| 493 | while ((b & (0xFFU >> j)) != 0) | 513 | while ((b & (0xFFU >> j)) != 0) | 
| 494 | ++j; | 514 | ++j; | 
| 495 | aor->u.addressRange->min->flags |= 8 - j; | 515 | aor->u.addressRange->min->flags |= 8 - j; | 
| 496 | } | 516 | } | 
| 497 | 517 | ||
| 498 | for (i = length; i > 0 && max[i - 1] == 0xFF; --i) | 518 | for (i = length; i > 0 && max[i - 1] == 0xFF; --i) | 
| 499 | ; | 519 | ; | 
| 500 | if (!ASN1_BIT_STRING_set(aor->u.addressRange->max, max, i)) | 520 | if (!ASN1_BIT_STRING_set(aor->u.addressRange->max, max, i)) | 
| 501 | goto err; | 521 | goto err; | 
| 502 | aor->u.addressRange->max->flags &= ~7; | 522 | aor->u.addressRange->max->flags &= ~7; | 
| 503 | aor->u.addressRange->max->flags |= ASN1_STRING_FLAG_BITS_LEFT; | 523 | aor->u.addressRange->max->flags |= ASN1_STRING_FLAG_BITS_LEFT; | 
| 504 | if (i > 0) { | 524 | if (i > 0) { | 
| 505 | unsigned char b = max[i - 1]; | 525 | unsigned char b = max[i - 1]; | 
| 506 | int j = 1; | 526 | int j = 1; | 
| 507 | while ((b & (0xFFU >> j)) != (0xFFU >> j)) | 527 | while ((b & (0xFFU >> j)) != (0xFFU >> j)) | 
| 508 | ++j; | 528 | ++j; | 
| 509 | aor->u.addressRange->max->flags |= 8 - j; | 529 | aor->u.addressRange->max->flags |= 8 - j; | 
| 510 | } | 530 | } | 
| 511 | 531 | ||
| 512 | *result = aor; | 532 | *result = aor; | 
| 513 | return 1; | 533 | return 1; | 
| 514 | 534 | ||
| 515 | err: | 535 | err: | 
| 516 | IPAddressOrRange_free(aor); | 536 | IPAddressOrRange_free(aor); | 
| 517 | return 0; | 537 | return 0; | 
| 518 | } | 538 | } | 
| 519 | 539 | ||
| 520 | /* | 540 | /* | 
| 521 | * Construct a new address family or find an existing one. | 541 | * Construct a new address family or find an existing one. | 
| 522 | */ | 542 | */ | 
| 523 | static IPAddressFamily *make_IPAddressFamily(IPAddrBlocks *addr, | 543 | static IPAddressFamily * | 
| 524 | const unsigned afi, | 544 | make_IPAddressFamily(IPAddrBlocks *addr, const unsigned afi, | 
| 525 | const unsigned *safi) | 545 | const unsigned *safi) | 
| 526 | { | 546 | { | 
| 527 | IPAddressFamily *f; | 547 | IPAddressFamily *f; | 
| 528 | unsigned char key[3]; | 548 | unsigned char key[3]; | 
| 529 | unsigned keylen; | 549 | unsigned keylen; | 
| 530 | int i; | 550 | int i; | 
| 531 | 551 | ||
| 532 | key[0] = (afi >> 8) & 0xFF; | 552 | key[0] = (afi >> 8) & 0xFF; | 
| 533 | key[1] = afi & 0xFF; | 553 | key[1] = afi & 0xFF; | 
| 534 | if (safi != NULL) { | 554 | if (safi != NULL) { | 
| 535 | key[2] = *safi & 0xFF; | 555 | key[2] = *safi & 0xFF; | 
| 536 | keylen = 3; | 556 | keylen = 3; | 
| 537 | } else { | 557 | } else { | 
| 538 | keylen = 2; | 558 | keylen = 2; | 
| 539 | } | 559 | } | 
| 540 | 560 | ||
| 541 | for (i = 0; i < sk_IPAddressFamily_num(addr); i++) { | 561 | for (i = 0; i < sk_IPAddressFamily_num(addr); i++) { | 
| 542 | f = sk_IPAddressFamily_value(addr, i); | 562 | f = sk_IPAddressFamily_value(addr, i); | 
| 543 | OPENSSL_assert(f->addressFamily->data != NULL); | 563 | OPENSSL_assert(f->addressFamily->data != NULL); | 
| 544 | if (f->addressFamily->length == keylen && | 564 | if (f->addressFamily->length == keylen && | 
| 545 | !memcmp(f->addressFamily->data, key, keylen)) | 565 | !memcmp(f->addressFamily->data, key, keylen)) | 
| 546 | return f; | 566 | return f; | 
| 547 | } | 567 | } | 
| 548 | 568 | ||
| 549 | if ((f = IPAddressFamily_new()) == NULL) | 569 | if ((f = IPAddressFamily_new()) == NULL) | 
| 550 | goto err; | 570 | goto err; | 
| 551 | if (f->ipAddressChoice == NULL && | 571 | if (f->ipAddressChoice == NULL && | 
| 552 | (f->ipAddressChoice = IPAddressChoice_new()) == NULL) | 572 | (f->ipAddressChoice = IPAddressChoice_new()) == NULL) | 
| 553 | goto err; | 573 | goto err; | 
| 554 | if (f->addressFamily == NULL && | 574 | if (f->addressFamily == NULL && | 
| 555 | (f->addressFamily = ASN1_OCTET_STRING_new()) == NULL) | 575 | (f->addressFamily = ASN1_OCTET_STRING_new()) == NULL) | 
| 556 | goto err; | 576 | goto err; | 
| 557 | if (!ASN1_OCTET_STRING_set(f->addressFamily, key, keylen)) | 577 | if (!ASN1_OCTET_STRING_set(f->addressFamily, key, keylen)) | 
| 558 | goto err; | 578 | goto err; | 
| 559 | if (!sk_IPAddressFamily_push(addr, f)) | 579 | if (!sk_IPAddressFamily_push(addr, f)) | 
| 560 | goto err; | 580 | goto err; | 
| 561 | 581 | ||
| 562 | return f; | 582 | return f; | 
| 563 | 583 | ||
| 564 | err: | 584 | err: | 
| 565 | IPAddressFamily_free(f); | 585 | IPAddressFamily_free(f); | 
| 566 | return NULL; | 586 | return NULL; | 
| 567 | } | 587 | } | 
| 568 | 588 | ||
| 569 | /* | 589 | /* | 
| 570 | * Add an inheritance element. | 590 | * Add an inheritance element. | 
| 571 | */ | 591 | */ | 
| 572 | int v3_addr_add_inherit(IPAddrBlocks *addr, | 592 | int | 
| 573 | const unsigned afi, | 593 | v3_addr_add_inherit(IPAddrBlocks *addr, const unsigned afi, | 
| 574 | const unsigned *safi) | 594 | const unsigned *safi) | 
| 575 | { | 595 | { | 
| 576 | IPAddressFamily *f = make_IPAddressFamily(addr, afi, safi); | 596 | IPAddressFamily *f = make_IPAddressFamily(addr, afi, safi); | 
| 577 | if (f == NULL || | 597 | |
| 578 | f->ipAddressChoice == NULL || | 598 | if (f == NULL || | 
| 579 | (f->ipAddressChoice->type == IPAddressChoice_addressesOrRanges && | 599 | f->ipAddressChoice == NULL || | 
| 580 | f->ipAddressChoice->u.addressesOrRanges != NULL)) | 600 | (f->ipAddressChoice->type == IPAddressChoice_addressesOrRanges && | 
| 581 | return 0; | 601 | f->ipAddressChoice->u.addressesOrRanges != NULL)) | 
| 582 | if (f->ipAddressChoice->type == IPAddressChoice_inherit && | 602 | return 0; | 
| 583 | f->ipAddressChoice->u.inherit != NULL) | 603 | if (f->ipAddressChoice->type == IPAddressChoice_inherit && | 
| 584 | return 1; | 604 | f->ipAddressChoice->u.inherit != NULL) | 
| 585 | if (f->ipAddressChoice->u.inherit == NULL && | 605 | return 1; | 
| 586 | (f->ipAddressChoice->u.inherit = ASN1_NULL_new()) == NULL) | 606 | if (f->ipAddressChoice->u.inherit == NULL && | 
| 587 | return 0; | 607 | (f->ipAddressChoice->u.inherit = ASN1_NULL_new()) == NULL) | 
| 588 | f->ipAddressChoice->type = IPAddressChoice_inherit; | 608 | return 0; | 
| 589 | return 1; | 609 | f->ipAddressChoice->type = IPAddressChoice_inherit; | 
| 610 | return 1; | ||
| 590 | } | 611 | } | 
| 591 | 612 | ||
| 592 | /* | 613 | /* | 
| 593 | * Construct an IPAddressOrRange sequence, or return an existing one. | 614 | * Construct an IPAddressOrRange sequence, or return an existing one. | 
| 594 | */ | 615 | */ | 
| 595 | static IPAddressOrRanges *make_prefix_or_range(IPAddrBlocks *addr, | 616 | static IPAddressOrRanges * | 
| 596 | const unsigned afi, | 617 | make_prefix_or_range(IPAddrBlocks *addr, const unsigned afi, | 
| 597 | const unsigned *safi) | 618 | const unsigned *safi) | 
| 598 | { | 619 | { | 
| 599 | IPAddressFamily *f = make_IPAddressFamily(addr, afi, safi); | 620 | IPAddressFamily *f = make_IPAddressFamily(addr, afi, safi); | 
| 600 | IPAddressOrRanges *aors = NULL; | 621 | IPAddressOrRanges *aors = NULL; | 
| 601 | 622 | ||
| 602 | if (f == NULL || | 623 | if (f == NULL || | 
| 603 | f->ipAddressChoice == NULL || | 624 | f->ipAddressChoice == NULL || | 
| 604 | (f->ipAddressChoice->type == IPAddressChoice_inherit && | 625 | (f->ipAddressChoice->type == IPAddressChoice_inherit && | 
| 605 | f->ipAddressChoice->u.inherit != NULL)) | 626 | f->ipAddressChoice->u.inherit != NULL)) | 
| 606 | return NULL; | 627 | return NULL; | 
| 607 | if (f->ipAddressChoice->type == IPAddressChoice_addressesOrRanges) | 628 | if (f->ipAddressChoice->type == IPAddressChoice_addressesOrRanges) | 
| 608 | aors = f->ipAddressChoice->u.addressesOrRanges; | 629 | aors = f->ipAddressChoice->u.addressesOrRanges; | 
| 609 | if (aors != NULL) | 630 | if (aors != NULL) | 
| 610 | return aors; | 631 | return aors; | 
| 611 | if ((aors = sk_IPAddressOrRange_new_null()) == NULL) | 632 | if ((aors = sk_IPAddressOrRange_new_null()) == NULL) | 
| 612 | return NULL; | 633 | return NULL; | 
| 613 | switch (afi) { | 634 | switch (afi) { | 
| 614 | case IANA_AFI_IPV4: | 635 | case IANA_AFI_IPV4: | 
| 615 | (void) sk_IPAddressOrRange_set_cmp_func(aors, v4IPAddressOrRange_cmp); | 636 | (void) sk_IPAddressOrRange_set_cmp_func(aors, | 
| 616 | break; | 637 | v4IPAddressOrRange_cmp); | 
| 617 | case IANA_AFI_IPV6: | 638 | break; | 
| 618 | (void) sk_IPAddressOrRange_set_cmp_func(aors, v6IPAddressOrRange_cmp); | 639 | case IANA_AFI_IPV6: | 
| 619 | break; | 640 | (void) sk_IPAddressOrRange_set_cmp_func(aors, | 
| 620 | } | 641 | v6IPAddressOrRange_cmp); | 
| 621 | f->ipAddressChoice->type = IPAddressChoice_addressesOrRanges; | 642 | break; | 
| 622 | f->ipAddressChoice->u.addressesOrRanges = aors; | 643 | } | 
| 623 | return aors; | 644 | f->ipAddressChoice->type = IPAddressChoice_addressesOrRanges; | 
| 645 | f->ipAddressChoice->u.addressesOrRanges = aors; | ||
| 646 | return aors; | ||
| 624 | } | 647 | } | 
| 625 | 648 | ||
| 626 | /* | 649 | /* | 
| 627 | * Add a prefix. | 650 | * Add a prefix. | 
| 628 | */ | 651 | */ | 
| 629 | int v3_addr_add_prefix(IPAddrBlocks *addr, | 652 | int | 
| 630 | const unsigned afi, | 653 | v3_addr_add_prefix(IPAddrBlocks *addr, const unsigned afi, | 
| 631 | const unsigned *safi, | 654 | const unsigned *safi, unsigned char *a, const int prefixlen) | 
| 632 | unsigned char *a, | ||
| 633 | const int prefixlen) | ||
| 634 | { | 655 | { | 
| 635 | IPAddressOrRanges *aors = make_prefix_or_range(addr, afi, safi); | 656 | IPAddressOrRanges *aors = make_prefix_or_range(addr, afi, safi); | 
| 636 | IPAddressOrRange *aor; | 657 | IPAddressOrRange *aor; | 
| 637 | if (aors == NULL || !make_addressPrefix(&aor, a, prefixlen)) | 658 | |
| 638 | return 0; | 659 | if (aors == NULL || !make_addressPrefix(&aor, a, prefixlen)) | 
| 639 | if (sk_IPAddressOrRange_push(aors, aor)) | 660 | return 0; | 
| 640 | return 1; | 661 | if (sk_IPAddressOrRange_push(aors, aor)) | 
| 641 | IPAddressOrRange_free(aor); | 662 | return 1; | 
| 642 | return 0; | 663 | IPAddressOrRange_free(aor); | 
| 664 | return 0; | ||
| 643 | } | 665 | } | 
| 644 | 666 | ||
| 645 | /* | 667 | /* | 
| 646 | * Add a range. | 668 | * Add a range. | 
| 647 | */ | 669 | */ | 
| 648 | int v3_addr_add_range(IPAddrBlocks *addr, | 670 | int | 
| 649 | const unsigned afi, | 671 | v3_addr_add_range(IPAddrBlocks *addr, const unsigned afi, const unsigned *safi, | 
| 650 | const unsigned *safi, | 672 | unsigned char *min, unsigned char *max) | 
| 651 | unsigned char *min, | ||
| 652 | unsigned char *max) | ||
| 653 | { | 673 | { | 
| 654 | IPAddressOrRanges *aors = make_prefix_or_range(addr, afi, safi); | 674 | IPAddressOrRanges *aors = make_prefix_or_range(addr, afi, safi); | 
| 655 | IPAddressOrRange *aor; | 675 | IPAddressOrRange *aor; | 
| 656 | int length = length_from_afi(afi); | 676 | int length = length_from_afi(afi); | 
| 657 | if (aors == NULL) | 677 | |
| 658 | return 0; | 678 | if (aors == NULL) | 
| 659 | if (!make_addressRange(&aor, min, max, length)) | 679 | return 0; | 
| 660 | return 0; | 680 | if (!make_addressRange(&aor, min, max, length)) | 
| 661 | if (sk_IPAddressOrRange_push(aors, aor)) | 681 | return 0; | 
| 662 | return 1; | 682 | if (sk_IPAddressOrRange_push(aors, aor)) | 
| 663 | IPAddressOrRange_free(aor); | 683 | return 1; | 
| 664 | return 0; | 684 | IPAddressOrRange_free(aor); | 
| 685 | return 0; | ||
| 665 | } | 686 | } | 
| 666 | 687 | ||
| 667 | /* | 688 | /* | 
| 668 | * Extract min and max values from an IPAddressOrRange. | 689 | * Extract min and max values from an IPAddressOrRange. | 
| 669 | */ | 690 | */ | 
| 670 | static int extract_min_max(IPAddressOrRange *aor, | 691 | static int | 
| 671 | unsigned char *min, | 692 | extract_min_max(IPAddressOrRange *aor, unsigned char *min, unsigned char *max, | 
| 672 | unsigned char *max, | 693 | int length) | 
| 673 | int length) | ||
| 674 | { | 694 | { | 
| 675 | if (aor == NULL || min == NULL || max == NULL) | 695 | if (aor == NULL || min == NULL || max == NULL) | 
| 676 | return 0; | 696 | return 0; | 
| 677 | switch (aor->type) { | 697 | switch (aor->type) { | 
| 678 | case IPAddressOrRange_addressPrefix: | 698 | case IPAddressOrRange_addressPrefix: | 
| 679 | return (addr_expand(min, aor->u.addressPrefix, length, 0x00) && | 699 | return (addr_expand(min, aor->u.addressPrefix, length, 0x00) && | 
| 680 | addr_expand(max, aor->u.addressPrefix, length, 0xFF)); | 700 | addr_expand(max, aor->u.addressPrefix, length, 0xFF)); | 
| 681 | case IPAddressOrRange_addressRange: | 701 | case IPAddressOrRange_addressRange: | 
| 682 | return (addr_expand(min, aor->u.addressRange->min, length, 0x00) && | 702 | return ( | 
| 683 | addr_expand(max, aor->u.addressRange->max, length, 0xFF)); | 703 | addr_expand(min, aor->u.addressRange->min, length, 0x00) && | 
| 684 | } | 704 | addr_expand(max, aor->u.addressRange->max, length, 0xFF)); | 
| 685 | return 0; | 705 | } | 
| 706 | return 0; | ||
| 686 | } | 707 | } | 
| 687 | 708 | ||
| 688 | /* | 709 | /* | 
| 689 | * Public wrapper for extract_min_max(). | 710 | * Public wrapper for extract_min_max(). | 
| 690 | */ | 711 | */ | 
| 691 | int v3_addr_get_range(IPAddressOrRange *aor, | 712 | int | 
| 692 | const unsigned afi, | 713 | v3_addr_get_range(IPAddressOrRange *aor, const unsigned afi, | 
| 693 | unsigned char *min, | 714 | unsigned char *min, unsigned char *max, const int length) | 
| 694 | unsigned char *max, | ||
| 695 | const int length) | ||
| 696 | { | 715 | { | 
| 697 | int afi_length = length_from_afi(afi); | 716 | int afi_length = length_from_afi(afi); | 
| 698 | if (aor == NULL || min == NULL || max == NULL || | 717 | |
| 699 | afi_length == 0 || length < afi_length || | 718 | if (aor == NULL || min == NULL || max == NULL || | 
| 700 | (aor->type != IPAddressOrRange_addressPrefix && | 719 | afi_length == 0 || length < afi_length || | 
| 701 | aor->type != IPAddressOrRange_addressRange) || | 720 | (aor->type != IPAddressOrRange_addressPrefix && | 
| 702 | !extract_min_max(aor, min, max, afi_length)) | 721 | aor->type != IPAddressOrRange_addressRange) || | 
| 703 | return 0; | 722 | !extract_min_max(aor, min, max, afi_length)) | 
| 704 | 723 | return 0; | |
| 705 | return afi_length; | 724 | |
| 725 | return afi_length; | ||
| 706 | } | 726 | } | 
| 707 | 727 | ||
| 708 | /* | 728 | /* | 
| @@ -715,480 +735,513 @@ int v3_addr_get_range(IPAddressOrRange *aor, | |||
| 715 | * null-SAFI rule to apply only within a single AFI, which is what I | 735 | * null-SAFI rule to apply only within a single AFI, which is what I | 
| 716 | * would have expected and is what the following code implements. | 736 | * would have expected and is what the following code implements. | 
| 717 | */ | 737 | */ | 
| 718 | static int IPAddressFamily_cmp(const IPAddressFamily * const *a_, | 738 | static int | 
| 719 | const IPAddressFamily * const *b_) | 739 | IPAddressFamily_cmp(const IPAddressFamily * const *a_, | 
| 740 | const IPAddressFamily * const *b_) | ||
| 720 | { | 741 | { | 
| 721 | const ASN1_OCTET_STRING *a = (*a_)->addressFamily; | 742 | const ASN1_OCTET_STRING *a = (*a_)->addressFamily; | 
| 722 | const ASN1_OCTET_STRING *b = (*b_)->addressFamily; | 743 | const ASN1_OCTET_STRING *b = (*b_)->addressFamily; | 
| 723 | int len = ((a->length <= b->length) ? a->length : b->length); | 744 | int len = ((a->length <= b->length) ? a->length : b->length); | 
| 724 | int cmp = memcmp(a->data, b->data, len); | 745 | int cmp = memcmp(a->data, b->data, len); | 
| 725 | return cmp ? cmp : a->length - b->length; | 746 | |
| 747 | return cmp ? cmp : a->length - b->length; | ||
| 726 | } | 748 | } | 
| 727 | 749 | ||
| 728 | /* | 750 | /* | 
| 729 | * Check whether an IPAddrBLocks is in canonical form. | 751 | * Check whether an IPAddrBLocks is in canonical form. | 
| 730 | */ | 752 | */ | 
| 731 | int v3_addr_is_canonical(IPAddrBlocks *addr) | 753 | int | 
| 754 | v3_addr_is_canonical(IPAddrBlocks *addr) | ||
| 732 | { | 755 | { | 
| 733 | unsigned char a_min[ADDR_RAW_BUF_LEN], a_max[ADDR_RAW_BUF_LEN]; | 756 | unsigned char a_min[ADDR_RAW_BUF_LEN], a_max[ADDR_RAW_BUF_LEN]; | 
| 734 | unsigned char b_min[ADDR_RAW_BUF_LEN], b_max[ADDR_RAW_BUF_LEN]; | 757 | unsigned char b_min[ADDR_RAW_BUF_LEN], b_max[ADDR_RAW_BUF_LEN]; | 
| 735 | IPAddressOrRanges *aors; | 758 | IPAddressOrRanges *aors; | 
| 736 | int i, j, k; | 759 | int i, j, k; | 
| 737 | 760 | ||
| 738 | /* | 761 | /* | 
| 739 | * Empty extension is cannonical. | 762 | * Empty extension is cannonical. | 
| 740 | */ | 763 | */ | 
| 741 | if (addr == NULL) | 764 | if (addr == NULL) | 
| 742 | return 1; | 765 | return 1; | 
| 743 | 766 | ||
| 744 | /* | 767 | /* | 
| 745 | * Check whether the top-level list is in order. | 768 | * Check whether the top-level list is in order. | 
| 746 | */ | 769 | */ | 
| 747 | for (i = 0; i < sk_IPAddressFamily_num(addr) - 1; i++) { | 770 | for (i = 0; i < sk_IPAddressFamily_num(addr) - 1; i++) { | 
| 748 | const IPAddressFamily *a = sk_IPAddressFamily_value(addr, i); | 771 | const IPAddressFamily *a = | 
| 749 | const IPAddressFamily *b = sk_IPAddressFamily_value(addr, i + 1); | 772 | sk_IPAddressFamily_value(addr, i); | 
| 750 | if (IPAddressFamily_cmp(&a, &b) >= 0) | 773 | const IPAddressFamily *b = | 
| 751 | return 0; | 774 | sk_IPAddressFamily_value(addr, i + 1); | 
| 752 | } | 775 | if (IPAddressFamily_cmp(&a, &b) >= 0) | 
| 753 | 776 | return 0; | |
| 754 | /* | 777 | } | 
| 755 | * Top level's ok, now check each address family. | ||
| 756 | */ | ||
| 757 | for (i = 0; i < sk_IPAddressFamily_num(addr); i++) { | ||
| 758 | IPAddressFamily *f = sk_IPAddressFamily_value(addr, i); | ||
| 759 | int length = length_from_afi(v3_addr_get_afi(f)); | ||
| 760 | |||
| 761 | /* | ||
| 762 | * Inheritance is canonical. Anything other than inheritance or | ||
| 763 | * a SEQUENCE OF IPAddressOrRange is an ASN.1 error or something. | ||
| 764 | */ | ||
| 765 | if (f == NULL || f->ipAddressChoice == NULL) | ||
| 766 | return 0; | ||
| 767 | switch (f->ipAddressChoice->type) { | ||
| 768 | case IPAddressChoice_inherit: | ||
| 769 | continue; | ||
| 770 | case IPAddressChoice_addressesOrRanges: | ||
| 771 | break; | ||
| 772 | default: | ||
| 773 | return 0; | ||
| 774 | } | ||
| 775 | |||
| 776 | /* | ||
| 777 | * It's an IPAddressOrRanges sequence, check it. | ||
| 778 | */ | ||
| 779 | aors = f->ipAddressChoice->u.addressesOrRanges; | ||
| 780 | if (sk_IPAddressOrRange_num(aors) == 0) | ||
| 781 | return 0; | ||
| 782 | for (j = 0; j < sk_IPAddressOrRange_num(aors) - 1; j++) { | ||
| 783 | IPAddressOrRange *a = sk_IPAddressOrRange_value(aors, j); | ||
| 784 | IPAddressOrRange *b = sk_IPAddressOrRange_value(aors, j + 1); | ||
| 785 | |||
| 786 | if (!extract_min_max(a, a_min, a_max, length) || | ||
| 787 | !extract_min_max(b, b_min, b_max, length)) | ||
| 788 | return 0; | ||
| 789 | |||
| 790 | /* | ||
| 791 | * Punt misordered list, overlapping start, or inverted range. | ||
| 792 | */ | ||
| 793 | if (memcmp(a_min, b_min, length) >= 0 || | ||
| 794 | memcmp(a_min, a_max, length) > 0 || | ||
| 795 | memcmp(b_min, b_max, length) > 0) | ||
| 796 | return 0; | ||
| 797 | 778 | ||
| 798 | /* | 779 | /* | 
| 799 | * Punt if adjacent or overlapping. Check for adjacency by | 780 | * Top level's ok, now check each address family. | 
| 800 | * subtracting one from b_min first. | 781 | */ | 
| 801 | */ | 782 | for (i = 0; i < sk_IPAddressFamily_num(addr); i++) { | 
| 802 | for (k = length - 1; k >= 0 && b_min[k]-- == 0x00; k--) | 783 | IPAddressFamily *f = sk_IPAddressFamily_value(addr, i); | 
| 803 | ; | 784 | int length = length_from_afi(v3_addr_get_afi(f)); | 
| 804 | if (memcmp(a_max, b_min, length) >= 0) | 785 | |
| 805 | return 0; | 786 | /* | 
| 787 | * Inheritance is canonical. Anything other than inheritance or | ||
| 788 | * a SEQUENCE OF IPAddressOrRange is an ASN.1 error or something. | ||
| 789 | */ | ||
| 790 | if (f == NULL || f->ipAddressChoice == NULL) | ||
| 791 | return 0; | ||
| 792 | switch (f->ipAddressChoice->type) { | ||
| 793 | case IPAddressChoice_inherit: | ||
| 794 | continue; | ||
| 795 | case IPAddressChoice_addressesOrRanges: | ||
| 796 | break; | ||
| 797 | default: | ||
| 798 | return 0; | ||
| 799 | } | ||
| 800 | |||
| 801 | /* | ||
| 802 | * It's an IPAddressOrRanges sequence, check it. | ||
| 803 | */ | ||
| 804 | aors = f->ipAddressChoice->u.addressesOrRanges; | ||
| 805 | if (sk_IPAddressOrRange_num(aors) == 0) | ||
| 806 | return 0; | ||
| 807 | for (j = 0; j < sk_IPAddressOrRange_num(aors) - 1; j++) { | ||
| 808 | IPAddressOrRange *a = | ||
| 809 | sk_IPAddressOrRange_value(aors, j); | ||
| 810 | IPAddressOrRange *b = | ||
| 811 | sk_IPAddressOrRange_value(aors, j + 1); | ||
| 812 | |||
| 813 | if (!extract_min_max(a, a_min, a_max, length) || | ||
| 814 | !extract_min_max(b, b_min, b_max, length)) | ||
| 815 | return 0; | ||
| 816 | |||
| 817 | /* | ||
| 818 | * Punt misordered list, overlapping start, or inverted range. | ||
| 819 | */ | ||
| 820 | if (memcmp(a_min, b_min, length) >= 0 || | ||
| 821 | memcmp(a_min, a_max, length) > 0 || | ||
| 822 | memcmp(b_min, b_max, length) > 0) | ||
| 823 | return 0; | ||
| 824 | |||
| 825 | /* | ||
| 826 | * Punt if adjacent or overlapping. Check for adjacency by | ||
| 827 | * subtracting one from b_min first. | ||
| 828 | */ | ||
| 829 | for (k = length - 1; k >= 0 && b_min[k]-- == 0x00; k--) | ||
| 830 | ; | ||
| 831 | if (memcmp(a_max, b_min, length) >= 0) | ||
| 832 | return 0; | ||
| 833 | |||
| 834 | /* | ||
| 835 | * Check for range that should be expressed as a prefix. | ||
| 836 | */ | ||
| 837 | if (a->type == IPAddressOrRange_addressRange && | ||
| 838 | range_should_be_prefix(a_min, a_max, length) >= 0) | ||
| 839 | return 0; | ||
| 840 | } | ||
| 841 | |||
| 842 | /* | ||
| 843 | * Check range to see if it's inverted or should be a | ||
| 844 | * prefix. | ||
| 845 | */ | ||
| 846 | j = sk_IPAddressOrRange_num(aors) - 1; | ||
| 847 | { | ||
| 848 | IPAddressOrRange *a = | ||
| 849 | sk_IPAddressOrRange_value(aors, j); | ||
| 850 | if (a != NULL && | ||
| 851 | a->type == IPAddressOrRange_addressRange) { | ||
| 852 | if (!extract_min_max(a, a_min, a_max, length)) | ||
| 853 | return 0; | ||
| 854 | if (memcmp(a_min, a_max, length) > 0 || | ||
| 855 | range_should_be_prefix(a_min, a_max, | ||
| 856 | length) >= 0) | ||
| 857 | return 0; | ||
| 858 | } | ||
| 859 | } | ||
| 860 | } | ||
| 806 | 861 | ||
| 807 | /* | 862 | /* | 
| 808 | * Check for range that should be expressed as a prefix. | 863 | * If we made it through all that, we're happy. | 
| 809 | */ | 864 | */ | 
| 810 | if (a->type == IPAddressOrRange_addressRange && | 865 | return 1; | 
| 811 | range_should_be_prefix(a_min, a_max, length) >= 0) | ||
| 812 | return 0; | ||
| 813 | } | ||
| 814 | |||
| 815 | /* | ||
| 816 | * Check range to see if it's inverted or should be a | ||
| 817 | * prefix. | ||
| 818 | */ | ||
| 819 | j = sk_IPAddressOrRange_num(aors) - 1; | ||
| 820 | { | ||
| 821 | IPAddressOrRange *a = sk_IPAddressOrRange_value(aors, j); | ||
| 822 | if (a != NULL && a->type == IPAddressOrRange_addressRange) { | ||
| 823 | if (!extract_min_max(a, a_min, a_max, length)) | ||
| 824 | return 0; | ||
| 825 | if (memcmp(a_min, a_max, length) > 0 || | ||
| 826 | range_should_be_prefix(a_min, a_max, length) >= 0) | ||
| 827 | return 0; | ||
| 828 | } | ||
| 829 | } | ||
| 830 | } | ||
| 831 | |||
| 832 | /* | ||
| 833 | * If we made it through all that, we're happy. | ||
| 834 | */ | ||
| 835 | return 1; | ||
| 836 | } | 866 | } | 
| 837 | 867 | ||
| 838 | /* | 868 | /* | 
| 839 | * Whack an IPAddressOrRanges into canonical form. | 869 | * Whack an IPAddressOrRanges into canonical form. | 
| 840 | */ | 870 | */ | 
| 841 | static int IPAddressOrRanges_canonize(IPAddressOrRanges *aors, | 871 | static int | 
| 842 | const unsigned afi) | 872 | IPAddressOrRanges_canonize(IPAddressOrRanges *aors, const unsigned afi) | 
| 843 | { | 873 | { | 
| 844 | int i, j, length = length_from_afi(afi); | 874 | int i, j, length = length_from_afi(afi); | 
| 845 | 875 | ||
| 846 | /* | 876 | /* | 
| 847 | * Sort the IPAddressOrRanges sequence. | 877 | * Sort the IPAddressOrRanges sequence. | 
| 848 | */ | 878 | */ | 
| 849 | sk_IPAddressOrRange_sort(aors); | 879 | sk_IPAddressOrRange_sort(aors); | 
| 850 | 880 | ||
| 851 | /* | 881 | /* | 
| 852 | * Clean up representation issues, punt on duplicates or overlaps. | 882 | * Clean up representation issues, punt on duplicates or overlaps. | 
| 853 | */ | 883 | */ | 
| 854 | for (i = 0; i < sk_IPAddressOrRange_num(aors) - 1; i++) { | 884 | for (i = 0; i < sk_IPAddressOrRange_num(aors) - 1; i++) { | 
| 855 | IPAddressOrRange *a = sk_IPAddressOrRange_value(aors, i); | 885 | IPAddressOrRange *a = sk_IPAddressOrRange_value(aors, i); | 
| 856 | IPAddressOrRange *b = sk_IPAddressOrRange_value(aors, i + 1); | 886 | IPAddressOrRange *b = sk_IPAddressOrRange_value(aors, i + 1); | 
| 857 | unsigned char a_min[ADDR_RAW_BUF_LEN], a_max[ADDR_RAW_BUF_LEN]; | 887 | unsigned char a_min[ADDR_RAW_BUF_LEN], a_max[ADDR_RAW_BUF_LEN]; | 
| 858 | unsigned char b_min[ADDR_RAW_BUF_LEN], b_max[ADDR_RAW_BUF_LEN]; | 888 | unsigned char b_min[ADDR_RAW_BUF_LEN], b_max[ADDR_RAW_BUF_LEN]; | 
| 859 | 889 | ||
| 860 | if (!extract_min_max(a, a_min, a_max, length) || | 890 | if (!extract_min_max(a, a_min, a_max, length) || | 
| 861 | !extract_min_max(b, b_min, b_max, length)) | 891 | !extract_min_max(b, b_min, b_max, length)) | 
| 862 | return 0; | 892 | return 0; | 
| 863 | 893 | ||
| 864 | /* | 894 | /* | 
| 865 | * Punt inverted ranges. | 895 | * Punt inverted ranges. | 
| 866 | */ | 896 | */ | 
| 867 | if (memcmp(a_min, a_max, length) > 0 || | 897 | if (memcmp(a_min, a_max, length) > 0 || | 
| 868 | memcmp(b_min, b_max, length) > 0) | 898 | memcmp(b_min, b_max, length) > 0) | 
| 869 | return 0; | 899 | return 0; | 
| 870 | 900 | ||
| 871 | /* | 901 | /* | 
| 872 | * Punt overlaps. | 902 | * Punt overlaps. | 
| 873 | */ | 903 | */ | 
| 874 | if (memcmp(a_max, b_min, length) >= 0) | 904 | if (memcmp(a_max, b_min, length) >= 0) | 
| 875 | return 0; | 905 | return 0; | 
| 876 | 906 | ||
| 877 | /* | 907 | /* | 
| 878 | * Merge if a and b are adjacent. We check for | 908 | * Merge if a and b are adjacent. We check for | 
| 879 | * adjacency by subtracting one from b_min first. | 909 | * adjacency by subtracting one from b_min first. | 
| 880 | */ | 910 | */ | 
| 881 | for (j = length - 1; j >= 0 && b_min[j]-- == 0x00; j--) | 911 | for (j = length - 1; j >= 0 && b_min[j]-- == 0x00; j--) | 
| 882 | ; | 912 | ; | 
| 883 | if (memcmp(a_max, b_min, length) == 0) { | 913 | if (memcmp(a_max, b_min, length) == 0) { | 
| 884 | IPAddressOrRange *merged; | 914 | IPAddressOrRange *merged; | 
| 885 | if (!make_addressRange(&merged, a_min, b_max, length)) | 915 | if (!make_addressRange(&merged, a_min, b_max, length)) | 
| 886 | return 0; | 916 | return 0; | 
| 887 | (void) sk_IPAddressOrRange_set(aors, i, merged); | 917 | (void) sk_IPAddressOrRange_set(aors, i, merged); | 
| 888 | (void) sk_IPAddressOrRange_delete(aors, i + 1); | 918 | (void) sk_IPAddressOrRange_delete(aors, i + 1); | 
| 889 | IPAddressOrRange_free(a); | 919 | IPAddressOrRange_free(a); | 
| 890 | IPAddressOrRange_free(b); | 920 | IPAddressOrRange_free(b); | 
| 891 | --i; | 921 | --i; | 
| 892 | continue; | 922 | continue; | 
| 893 | } | 923 | } | 
| 894 | } | 924 | } | 
| 895 | 925 | ||
| 896 | /* | 926 | /* | 
| 897 | * Check for inverted final range. | 927 | * Check for inverted final range. | 
| 898 | */ | 928 | */ | 
| 899 | j = sk_IPAddressOrRange_num(aors) - 1; | 929 | j = sk_IPAddressOrRange_num(aors) - 1; | 
| 900 | { | 930 | { | 
| 901 | IPAddressOrRange *a = sk_IPAddressOrRange_value(aors, j); | 931 | IPAddressOrRange *a = sk_IPAddressOrRange_value(aors, j); | 
| 902 | if (a != NULL && a->type == IPAddressOrRange_addressRange) { | 932 | if (a != NULL && a->type == IPAddressOrRange_addressRange) { | 
| 903 | unsigned char a_min[ADDR_RAW_BUF_LEN], a_max[ADDR_RAW_BUF_LEN]; | 933 | unsigned char a_min[ADDR_RAW_BUF_LEN], | 
| 904 | extract_min_max(a, a_min, a_max, length); | 934 | a_max[ADDR_RAW_BUF_LEN]; | 
| 905 | if (memcmp(a_min, a_max, length) > 0) | 935 | extract_min_max(a, a_min, a_max, length); | 
| 906 | return 0; | 936 | if (memcmp(a_min, a_max, length) > 0) | 
| 907 | } | 937 | return 0; | 
| 908 | } | 938 | } | 
| 939 | } | ||
| 909 | 940 | ||
| 910 | return 1; | 941 | return 1; | 
| 911 | } | 942 | } | 
| 912 | 943 | ||
| 913 | /* | 944 | /* | 
| 914 | * Whack an IPAddrBlocks extension into canonical form. | 945 | * Whack an IPAddrBlocks extension into canonical form. | 
| 915 | */ | 946 | */ | 
| 916 | int v3_addr_canonize(IPAddrBlocks *addr) | 947 | int | 
| 948 | v3_addr_canonize(IPAddrBlocks *addr) | ||
| 917 | { | 949 | { | 
| 918 | int i; | 950 | int i; | 
| 919 | for (i = 0; i < sk_IPAddressFamily_num(addr); i++) { | 951 | for (i = 0; i < sk_IPAddressFamily_num(addr); i++) { | 
| 920 | IPAddressFamily *f = sk_IPAddressFamily_value(addr, i); | 952 | IPAddressFamily *f = sk_IPAddressFamily_value(addr, i); | 
| 921 | if (f->ipAddressChoice->type == IPAddressChoice_addressesOrRanges && | 953 | if (f->ipAddressChoice->type == | 
| 922 | !IPAddressOrRanges_canonize(f->ipAddressChoice->u.addressesOrRanges, | 954 | IPAddressChoice_addressesOrRanges && | 
| 923 | v3_addr_get_afi(f))) | 955 | !IPAddressOrRanges_canonize( | 
| 924 | return 0; | 956 | f->ipAddressChoice->u.addressesOrRanges, | 
| 925 | } | 957 | v3_addr_get_afi(f))) | 
| 926 | (void) sk_IPAddressFamily_set_cmp_func(addr, IPAddressFamily_cmp); | 958 | return 0; | 
| 927 | sk_IPAddressFamily_sort(addr); | 959 | } | 
| 928 | OPENSSL_assert(v3_addr_is_canonical(addr)); | 960 | (void) sk_IPAddressFamily_set_cmp_func(addr, IPAddressFamily_cmp); | 
| 929 | return 1; | 961 | sk_IPAddressFamily_sort(addr); | 
| 962 | OPENSSL_assert(v3_addr_is_canonical(addr)); | ||
| 963 | return 1; | ||
| 930 | } | 964 | } | 
| 931 | 965 | ||
| 932 | /* | 966 | /* | 
| 933 | * v2i handler for the IPAddrBlocks extension. | 967 | * v2i handler for the IPAddrBlocks extension. | 
| 934 | */ | 968 | */ | 
| 935 | static void *v2i_IPAddrBlocks(const struct v3_ext_method *method, | 969 | static void * | 
| 936 | struct v3_ext_ctx *ctx, | 970 | v2i_IPAddrBlocks(const struct v3_ext_method *method, struct v3_ext_ctx *ctx, | 
| 937 | STACK_OF(CONF_VALUE) *values) | 971 | STACK_OF(CONF_VALUE) *values) | 
| 938 | { | 972 | { | 
| 939 | static const char v4addr_chars[] = "0123456789."; | 973 | static const char v4addr_chars[] = "0123456789."; | 
| 940 | static const char v6addr_chars[] = "0123456789.:abcdefABCDEF"; | 974 | static const char v6addr_chars[] = "0123456789.:abcdefABCDEF"; | 
| 941 | IPAddrBlocks *addr = NULL; | 975 | IPAddrBlocks *addr = NULL; | 
| 942 | char *s = NULL, *t; | 976 | char *s = NULL, *t; | 
| 943 | int i; | 977 | int i; | 
| 944 | 978 | ||
| 945 | if ((addr = sk_IPAddressFamily_new(IPAddressFamily_cmp)) == NULL) { | 979 | if ((addr = sk_IPAddressFamily_new(IPAddressFamily_cmp)) == NULL) { | 
| 946 | X509V3err(X509V3_F_V2I_IPADDRBLOCKS, ERR_R_MALLOC_FAILURE); | 980 | X509V3err(X509V3_F_V2I_IPADDRBLOCKS, ERR_R_MALLOC_FAILURE); | 
| 947 | return NULL; | 981 | return NULL; | 
| 948 | } | 982 | } | 
| 949 | 983 | ||
| 950 | for (i = 0; i < sk_CONF_VALUE_num(values); i++) { | 984 | for (i = 0; i < sk_CONF_VALUE_num(values); i++) { | 
| 951 | CONF_VALUE *val = sk_CONF_VALUE_value(values, i); | 985 | CONF_VALUE *val = sk_CONF_VALUE_value(values, i); | 
| 952 | unsigned char min[ADDR_RAW_BUF_LEN], max[ADDR_RAW_BUF_LEN]; | 986 | unsigned char min[ADDR_RAW_BUF_LEN], max[ADDR_RAW_BUF_LEN]; | 
| 953 | unsigned afi, *safi = NULL, safi_; | 987 | unsigned afi, *safi = NULL, safi_; | 
| 954 | const char *addr_chars; | 988 | const char *addr_chars; | 
| 955 | int prefixlen, i1, i2, delim, length; | 989 | int prefixlen, i1, i2, delim, length; | 
| 956 | 990 | ||
| 957 | if ( !name_cmp(val->name, "IPv4")) { | 991 | if (!name_cmp(val->name, "IPv4")) { | 
| 958 | afi = IANA_AFI_IPV4; | 992 | afi = IANA_AFI_IPV4; | 
| 959 | } else if (!name_cmp(val->name, "IPv6")) { | 993 | } else if (!name_cmp(val->name, "IPv6")) { | 
| 960 | afi = IANA_AFI_IPV6; | 994 | afi = IANA_AFI_IPV6; | 
| 961 | } else if (!name_cmp(val->name, "IPv4-SAFI")) { | 995 | } else if (!name_cmp(val->name, "IPv4-SAFI")) { | 
| 962 | afi = IANA_AFI_IPV4; | 996 | afi = IANA_AFI_IPV4; | 
| 963 | safi = &safi_; | 997 | safi = &safi_; | 
| 964 | } else if (!name_cmp(val->name, "IPv6-SAFI")) { | 998 | } else if (!name_cmp(val->name, "IPv6-SAFI")) { | 
| 965 | afi = IANA_AFI_IPV6; | 999 | afi = IANA_AFI_IPV6; | 
| 966 | safi = &safi_; | 1000 | safi = &safi_; | 
| 967 | } else { | 1001 | } else { | 
| 968 | X509V3err(X509V3_F_V2I_IPADDRBLOCKS, X509V3_R_EXTENSION_NAME_ERROR); | 1002 | X509V3err(X509V3_F_V2I_IPADDRBLOCKS, | 
| 969 | X509V3_conf_err(val); | 1003 | X509V3_R_EXTENSION_NAME_ERROR); | 
| 970 | goto err; | 1004 | X509V3_conf_err(val); | 
| 971 | } | 1005 | goto err; | 
| 972 | 1006 | } | |
| 973 | switch (afi) { | 1007 | |
| 974 | case IANA_AFI_IPV4: | 1008 | switch (afi) { | 
| 975 | addr_chars = v4addr_chars; | 1009 | case IANA_AFI_IPV4: | 
| 976 | break; | 1010 | addr_chars = v4addr_chars; | 
| 977 | case IANA_AFI_IPV6: | 1011 | break; | 
| 978 | addr_chars = v6addr_chars; | 1012 | case IANA_AFI_IPV6: | 
| 979 | break; | 1013 | addr_chars = v6addr_chars; | 
| 980 | } | 1014 | break; | 
| 981 | 1015 | } | |
| 982 | length = length_from_afi(afi); | 1016 | |
| 983 | 1017 | length = length_from_afi(afi); | |
| 984 | /* | 1018 | |
| 985 | * Handle SAFI, if any, and BUF_strdup() so we can null-terminate | 1019 | /* | 
| 986 | * the other input values. | 1020 | * Handle SAFI, if any, and BUF_strdup() so we can null-terminate | 
| 987 | */ | 1021 | * the other input values. | 
| 988 | if (safi != NULL) { | 1022 | */ | 
| 989 | *safi = strtoul(val->value, &t, 0); | 1023 | if (safi != NULL) { | 
| 990 | t += strspn(t, " \t"); | 1024 | *safi = strtoul(val->value, &t, 0); | 
| 991 | if (*safi > 0xFF || *t++ != ':') { | 1025 | t += strspn(t, " \t"); | 
| 992 | X509V3err(X509V3_F_V2I_IPADDRBLOCKS, X509V3_R_INVALID_SAFI); | 1026 | if (*safi > 0xFF || *t++ != ':') { | 
| 993 | X509V3_conf_err(val); | 1027 | X509V3err(X509V3_F_V2I_IPADDRBLOCKS, | 
| 994 | goto err; | 1028 | X509V3_R_INVALID_SAFI); | 
| 995 | } | 1029 | X509V3_conf_err(val); | 
| 996 | t += strspn(t, " \t"); | 1030 | goto err; | 
| 997 | s = BUF_strdup(t); | 1031 | } | 
| 998 | } else { | 1032 | t += strspn(t, " \t"); | 
| 999 | s = BUF_strdup(val->value); | 1033 | s = BUF_strdup(t); | 
| 1000 | } | 1034 | } else { | 
| 1001 | if (s == NULL) { | 1035 | s = BUF_strdup(val->value); | 
| 1002 | X509V3err(X509V3_F_V2I_IPADDRBLOCKS, ERR_R_MALLOC_FAILURE); | 1036 | } | 
| 1003 | goto err; | 1037 | if (s == NULL) { | 
| 1004 | } | 1038 | X509V3err(X509V3_F_V2I_IPADDRBLOCKS, | 
| 1005 | 1039 | ERR_R_MALLOC_FAILURE); | |
| 1006 | /* | 1040 | goto err; | 
| 1007 | * Check for inheritance. Not worth additional complexity to | 1041 | } | 
| 1008 | * optimize this (seldom-used) case. | 1042 | |
| 1009 | */ | 1043 | /* | 
| 1010 | if (!strcmp(s, "inherit")) { | 1044 | * Check for inheritance. Not worth additional complexity to | 
| 1011 | if (!v3_addr_add_inherit(addr, afi, safi)) { | 1045 | * optimize this (seldom-used) case. | 
| 1012 | X509V3err(X509V3_F_V2I_IPADDRBLOCKS, X509V3_R_INVALID_INHERITANCE); | 1046 | */ | 
| 1013 | X509V3_conf_err(val); | 1047 | if (!strcmp(s, "inherit")) { | 
| 1014 | goto err; | 1048 | if (!v3_addr_add_inherit(addr, afi, safi)) { | 
| 1015 | } | 1049 | X509V3err(X509V3_F_V2I_IPADDRBLOCKS, | 
| 1016 | free(s); | 1050 | X509V3_R_INVALID_INHERITANCE); | 
| 1017 | s = NULL; | 1051 | X509V3_conf_err(val); | 
| 1018 | continue; | 1052 | goto err; | 
| 1019 | } | 1053 | } | 
| 1020 | 1054 | free(s); | |
| 1021 | i1 = strspn(s, addr_chars); | 1055 | s = NULL; | 
| 1022 | i2 = i1 + strspn(s + i1, " \t"); | 1056 | continue; | 
| 1023 | delim = s[i2++]; | 1057 | } | 
| 1024 | s[i1] = '\0'; | 1058 | |
| 1025 | 1059 | i1 = strspn(s, addr_chars); | |
| 1026 | if (a2i_ipadd(min, s) != length) { | 1060 | i2 = i1 + strspn(s + i1, " \t"); | 
| 1027 | X509V3err(X509V3_F_V2I_IPADDRBLOCKS, X509V3_R_INVALID_IPADDRESS); | 1061 | delim = s[i2++]; | 
| 1028 | X509V3_conf_err(val); | 1062 | s[i1] = '\0'; | 
| 1029 | goto err; | 1063 | |
| 1030 | } | 1064 | if (a2i_ipadd(min, s) != length) { | 
| 1031 | 1065 | X509V3err(X509V3_F_V2I_IPADDRBLOCKS, | |
| 1032 | switch (delim) { | 1066 | X509V3_R_INVALID_IPADDRESS); | 
| 1033 | case '/': | 1067 | X509V3_conf_err(val); | 
| 1034 | prefixlen = (int) strtoul(s + i2, &t, 10); | 1068 | goto err; | 
| 1035 | if (t == s + i2 || *t != '\0') { | 1069 | } | 
| 1036 | X509V3err(X509V3_F_V2I_IPADDRBLOCKS, X509V3_R_EXTENSION_VALUE_ERROR); | 1070 | |
| 1037 | X509V3_conf_err(val); | 1071 | switch (delim) { | 
| 1038 | goto err; | 1072 | case '/': | 
| 1039 | } | 1073 | prefixlen = (int) strtoul(s + i2, &t, 10); | 
| 1040 | if (!v3_addr_add_prefix(addr, afi, safi, min, prefixlen)) { | 1074 | if (t == s + i2 || *t != '\0') { | 
| 1041 | X509V3err(X509V3_F_V2I_IPADDRBLOCKS, ERR_R_MALLOC_FAILURE); | 1075 | X509V3err(X509V3_F_V2I_IPADDRBLOCKS, | 
| 1042 | goto err; | 1076 | X509V3_R_EXTENSION_VALUE_ERROR); | 
| 1043 | } | 1077 | X509V3_conf_err(val); | 
| 1044 | break; | 1078 | goto err; | 
| 1045 | case '-': | 1079 | } | 
| 1046 | i1 = i2 + strspn(s + i2, " \t"); | 1080 | if (!v3_addr_add_prefix(addr, afi, safi, min, | 
| 1047 | i2 = i1 + strspn(s + i1, addr_chars); | 1081 | prefixlen)) { | 
| 1048 | if (i1 == i2 || s[i2] != '\0') { | 1082 | X509V3err(X509V3_F_V2I_IPADDRBLOCKS, | 
| 1049 | X509V3err(X509V3_F_V2I_IPADDRBLOCKS, X509V3_R_EXTENSION_VALUE_ERROR); | 1083 | ERR_R_MALLOC_FAILURE); | 
| 1050 | X509V3_conf_err(val); | 1084 | goto err; | 
| 1051 | goto err; | 1085 | } | 
| 1052 | } | 1086 | break; | 
| 1053 | if (a2i_ipadd(max, s + i1) != length) { | 1087 | case '-': | 
| 1054 | X509V3err(X509V3_F_V2I_IPADDRBLOCKS, X509V3_R_INVALID_IPADDRESS); | 1088 | i1 = i2 + strspn(s + i2, " \t"); | 
| 1055 | X509V3_conf_err(val); | 1089 | i2 = i1 + strspn(s + i1, addr_chars); | 
| 1056 | goto err; | 1090 | if (i1 == i2 || s[i2] != '\0') { | 
| 1057 | } | 1091 | X509V3err(X509V3_F_V2I_IPADDRBLOCKS, | 
| 1058 | if (memcmp(min, max, length_from_afi(afi)) > 0) { | 1092 | X509V3_R_EXTENSION_VALUE_ERROR); | 
| 1059 | X509V3err(X509V3_F_V2I_IPADDRBLOCKS, X509V3_R_EXTENSION_VALUE_ERROR); | 1093 | X509V3_conf_err(val); | 
| 1060 | X509V3_conf_err(val); | 1094 | goto err; | 
| 1061 | goto err; | 1095 | } | 
| 1062 | } | 1096 | if (a2i_ipadd(max, s + i1) != length) { | 
| 1063 | if (!v3_addr_add_range(addr, afi, safi, min, max)) { | 1097 | X509V3err(X509V3_F_V2I_IPADDRBLOCKS, | 
| 1064 | X509V3err(X509V3_F_V2I_IPADDRBLOCKS, ERR_R_MALLOC_FAILURE); | 1098 | X509V3_R_INVALID_IPADDRESS); | 
| 1065 | goto err; | 1099 | X509V3_conf_err(val); | 
| 1066 | } | 1100 | goto err; | 
| 1067 | break; | 1101 | } | 
| 1068 | case '\0': | 1102 | if (memcmp(min, max, length_from_afi(afi)) > 0) { | 
| 1069 | if (!v3_addr_add_prefix(addr, afi, safi, min, length * 8)) { | 1103 | X509V3err(X509V3_F_V2I_IPADDRBLOCKS, | 
| 1070 | X509V3err(X509V3_F_V2I_IPADDRBLOCKS, ERR_R_MALLOC_FAILURE); | 1104 | X509V3_R_EXTENSION_VALUE_ERROR); | 
| 1071 | goto err; | 1105 | X509V3_conf_err(val); | 
| 1072 | } | 1106 | goto err; | 
| 1073 | break; | 1107 | } | 
| 1074 | default: | 1108 | if (!v3_addr_add_range(addr, afi, safi, min, max)) { | 
| 1075 | X509V3err(X509V3_F_V2I_IPADDRBLOCKS, X509V3_R_EXTENSION_VALUE_ERROR); | 1109 | X509V3err(X509V3_F_V2I_IPADDRBLOCKS, | 
| 1076 | X509V3_conf_err(val); | 1110 | ERR_R_MALLOC_FAILURE); | 
| 1077 | goto err; | 1111 | goto err; | 
| 1078 | } | 1112 | } | 
| 1079 | 1113 | break; | |
| 1080 | free(s); | 1114 | case '\0': | 
| 1081 | s = NULL; | 1115 | if (!v3_addr_add_prefix(addr, afi, safi, min, | 
| 1082 | } | 1116 | length * 8)) { | 
| 1083 | 1117 | X509V3err(X509V3_F_V2I_IPADDRBLOCKS, | |
| 1084 | /* | 1118 | ERR_R_MALLOC_FAILURE); | 
| 1085 | * Canonize the result, then we're done. | 1119 | goto err; | 
| 1086 | */ | 1120 | } | 
| 1087 | if (!v3_addr_canonize(addr)) | 1121 | break; | 
| 1088 | goto err; | 1122 | default: | 
| 1089 | return addr; | 1123 | X509V3err(X509V3_F_V2I_IPADDRBLOCKS, | 
| 1090 | 1124 | X509V3_R_EXTENSION_VALUE_ERROR); | |
| 1091 | err: | 1125 | X509V3_conf_err(val); | 
| 1092 | free(s); | 1126 | goto err; | 
| 1093 | sk_IPAddressFamily_pop_free(addr, IPAddressFamily_free); | 1127 | } | 
| 1094 | return NULL; | 1128 | |
| 1129 | free(s); | ||
| 1130 | s = NULL; | ||
| 1131 | } | ||
| 1132 | |||
| 1133 | /* | ||
| 1134 | * Canonize the result, then we're done. | ||
| 1135 | */ | ||
| 1136 | if (!v3_addr_canonize(addr)) | ||
| 1137 | goto err; | ||
| 1138 | return addr; | ||
| 1139 | |||
| 1140 | err: | ||
| 1141 | free(s); | ||
| 1142 | sk_IPAddressFamily_pop_free(addr, IPAddressFamily_free); | ||
| 1143 | return NULL; | ||
| 1095 | } | 1144 | } | 
| 1096 | 1145 | ||
| 1097 | /* | 1146 | /* | 
| 1098 | * OpenSSL dispatch | 1147 | * OpenSSL dispatch | 
| 1099 | */ | 1148 | */ | 
| 1100 | const X509V3_EXT_METHOD v3_addr = { | 1149 | const X509V3_EXT_METHOD v3_addr = { | 
| 1101 | NID_sbgp_ipAddrBlock, /* nid */ | 1150 | NID_sbgp_ipAddrBlock, /* nid */ | 
| 1102 | 0, /* flags */ | 1151 | 0, /* flags */ | 
| 1103 | ASN1_ITEM_ref(IPAddrBlocks), /* template */ | 1152 | ASN1_ITEM_ref(IPAddrBlocks), /* template */ | 
| 1104 | 0, 0, 0, 0, /* old functions, ignored */ | 1153 | 0, 0, 0, 0, /* old functions, ignored */ | 
| 1105 | 0, /* i2s */ | 1154 | 0, /* i2s */ | 
| 1106 | 0, /* s2i */ | 1155 | 0, /* s2i */ | 
| 1107 | 0, /* i2v */ | 1156 | 0, /* i2v */ | 
| 1108 | v2i_IPAddrBlocks, /* v2i */ | 1157 | v2i_IPAddrBlocks, /* v2i */ | 
| 1109 | i2r_IPAddrBlocks, /* i2r */ | 1158 | i2r_IPAddrBlocks, /* i2r */ | 
| 1110 | 0, /* r2i */ | 1159 | 0, /* r2i */ | 
| 1111 | NULL /* extension-specific data */ | 1160 | NULL /* extension-specific data */ | 
| 1112 | }; | 1161 | }; | 
| 1113 | 1162 | ||
| 1114 | /* | 1163 | /* | 
| 1115 | * Figure out whether extension sues inheritance. | 1164 | * Figure out whether extension sues inheritance. | 
| 1116 | */ | 1165 | */ | 
| 1117 | int v3_addr_inherits(IPAddrBlocks *addr) | 1166 | int | 
| 1167 | v3_addr_inherits(IPAddrBlocks *addr) | ||
| 1118 | { | 1168 | { | 
| 1119 | int i; | 1169 | int i; | 
| 1120 | if (addr == NULL) | 1170 | |
| 1121 | return 0; | 1171 | if (addr == NULL) | 
| 1122 | for (i = 0; i < sk_IPAddressFamily_num(addr); i++) { | 1172 | return 0; | 
| 1123 | IPAddressFamily *f = sk_IPAddressFamily_value(addr, i); | 1173 | for (i = 0; i < sk_IPAddressFamily_num(addr); i++) { | 
| 1124 | if (f->ipAddressChoice->type == IPAddressChoice_inherit) | 1174 | IPAddressFamily *f = sk_IPAddressFamily_value(addr, i); | 
| 1125 | return 1; | 1175 | if (f->ipAddressChoice->type == IPAddressChoice_inherit) | 
| 1126 | } | 1176 | return 1; | 
| 1127 | return 0; | 1177 | } | 
| 1178 | return 0; | ||
| 1128 | } | 1179 | } | 
| 1129 | 1180 | ||
| 1130 | /* | 1181 | /* | 
| 1131 | * Figure out whether parent contains child. | 1182 | * Figure out whether parent contains child. | 
| 1132 | */ | 1183 | */ | 
| 1133 | static int addr_contains(IPAddressOrRanges *parent, | 1184 | static int | 
| 1134 | IPAddressOrRanges *child, | 1185 | addr_contains(IPAddressOrRanges *parent, IPAddressOrRanges *child, int length) | 
| 1135 | int length) | ||
| 1136 | { | 1186 | { | 
| 1137 | unsigned char p_min[ADDR_RAW_BUF_LEN], p_max[ADDR_RAW_BUF_LEN]; | 1187 | unsigned char p_min[ADDR_RAW_BUF_LEN], p_max[ADDR_RAW_BUF_LEN]; | 
| 1138 | unsigned char c_min[ADDR_RAW_BUF_LEN], c_max[ADDR_RAW_BUF_LEN]; | 1188 | unsigned char c_min[ADDR_RAW_BUF_LEN], c_max[ADDR_RAW_BUF_LEN]; | 
| 1139 | int p, c; | 1189 | int p, c; | 
| 1140 | 1190 | ||
| 1141 | if (child == NULL || parent == child) | 1191 | if (child == NULL || parent == child) | 
| 1142 | return 1; | 1192 | return 1; | 
| 1143 | if (parent == NULL) | 1193 | if (parent == NULL) | 
| 1144 | return 0; | 1194 | return 0; | 
| 1145 | 1195 | ||
| 1146 | p = 0; | 1196 | p = 0; | 
| 1147 | for (c = 0; c < sk_IPAddressOrRange_num(child); c++) { | 1197 | for (c = 0; c < sk_IPAddressOrRange_num(child); c++) { | 
| 1148 | if (!extract_min_max(sk_IPAddressOrRange_value(child, c), | 1198 | if (!extract_min_max(sk_IPAddressOrRange_value(child, c), | 
| 1149 | c_min, c_max, length)) | 1199 | c_min, c_max, length)) | 
| 1150 | return -1; | 1200 | return -1; | 
| 1151 | for (;; p++) { | 1201 | for (; ; p++) { | 
| 1152 | if (p >= sk_IPAddressOrRange_num(parent)) | 1202 | if (p >= sk_IPAddressOrRange_num(parent)) | 
| 1153 | return 0; | 1203 | return 0; | 
| 1154 | if (!extract_min_max(sk_IPAddressOrRange_value(parent, p), | 1204 | if (!extract_min_max( | 
| 1155 | p_min, p_max, length)) | 1205 | sk_IPAddressOrRange_value(parent, p), | 
| 1156 | return 0; | 1206 | p_min, p_max, length)) | 
| 1157 | if (memcmp(p_max, c_max, length) < 0) | 1207 | return 0; | 
| 1158 | continue; | 1208 | if (memcmp(p_max, c_max, length) < 0) | 
| 1159 | if (memcmp(p_min, c_min, length) > 0) | 1209 | continue; | 
| 1160 | return 0; | 1210 | if (memcmp(p_min, c_min, length) > 0) | 
| 1161 | break; | 1211 | return 0; | 
| 1162 | } | 1212 | break; | 
| 1163 | } | 1213 | } | 
| 1214 | } | ||
| 1164 | 1215 | ||
| 1165 | return 1; | 1216 | return 1; | 
| 1166 | } | 1217 | } | 
| 1167 | 1218 | ||
| 1168 | /* | 1219 | /* | 
| 1169 | * Test whether a is a subset of b. | 1220 | * Test whether a is a subset of b. | 
| 1170 | */ | 1221 | */ | 
| 1171 | int v3_addr_subset(IPAddrBlocks *a, IPAddrBlocks *b) | 1222 | int | 
| 1223 | v3_addr_subset(IPAddrBlocks *a, IPAddrBlocks *b) | ||
| 1172 | { | 1224 | { | 
| 1173 | int i; | 1225 | int i; | 
| 1174 | if (a == NULL || a == b) | 1226 | |
| 1175 | return 1; | 1227 | if (a == NULL || a == b) | 
| 1176 | if (b == NULL || v3_addr_inherits(a) || v3_addr_inherits(b)) | 1228 | return 1; | 
| 1177 | return 0; | 1229 | if (b == NULL || v3_addr_inherits(a) || v3_addr_inherits(b)) | 
| 1178 | (void) sk_IPAddressFamily_set_cmp_func(b, IPAddressFamily_cmp); | 1230 | return 0; | 
| 1179 | for (i = 0; i < sk_IPAddressFamily_num(a); i++) { | 1231 | (void) sk_IPAddressFamily_set_cmp_func(b, IPAddressFamily_cmp); | 
| 1180 | IPAddressFamily *fa = sk_IPAddressFamily_value(a, i); | 1232 | for (i = 0; i < sk_IPAddressFamily_num(a); i++) { | 
| 1181 | int j = sk_IPAddressFamily_find(b, fa); | 1233 | IPAddressFamily *fa = sk_IPAddressFamily_value(a, i); | 
| 1182 | IPAddressFamily *fb; | 1234 | int j = sk_IPAddressFamily_find(b, fa); | 
| 1183 | fb = sk_IPAddressFamily_value(b, j); | 1235 | IPAddressFamily *fb; | 
| 1184 | if (fb == NULL) | 1236 | fb = sk_IPAddressFamily_value(b, j); | 
| 1185 | return 0; | 1237 | if (fb == NULL) | 
| 1186 | if (!addr_contains(fb->ipAddressChoice->u.addressesOrRanges, | 1238 | return 0; | 
| 1187 | fa->ipAddressChoice->u.addressesOrRanges, | 1239 | if (!addr_contains(fb->ipAddressChoice->u.addressesOrRanges, | 
| 1188 | length_from_afi(v3_addr_get_afi(fb)))) | 1240 | fa->ipAddressChoice->u.addressesOrRanges, | 
| 1189 | return 0; | 1241 | length_from_afi(v3_addr_get_afi(fb)))) | 
| 1190 | } | 1242 | return 0; | 
| 1191 | return 1; | 1243 | } | 
| 1244 | return 1; | ||
| 1192 | } | 1245 | } | 
| 1193 | 1246 | ||
| 1194 | /* | 1247 | /* | 
| @@ -1211,101 +1264,115 @@ int v3_addr_subset(IPAddrBlocks *a, IPAddrBlocks *b) | |||
| 1211 | /* | 1264 | /* | 
| 1212 | * Core code for RFC 3779 2.3 path validation. | 1265 | * Core code for RFC 3779 2.3 path validation. | 
| 1213 | */ | 1266 | */ | 
| 1214 | static int v3_addr_validate_path_internal(X509_STORE_CTX *ctx, | 1267 | static int | 
| 1215 | STACK_OF(X509) *chain, | 1268 | v3_addr_validate_path_internal(X509_STORE_CTX *ctx, STACK_OF(X509) *chain, | 
| 1216 | IPAddrBlocks *ext) | 1269 | IPAddrBlocks *ext) | 
| 1217 | { | 1270 | { | 
| 1218 | IPAddrBlocks *child = NULL; | 1271 | IPAddrBlocks *child = NULL; | 
| 1219 | int i, j, ret = 1; | 1272 | int i, j, ret = 1; | 
| 1220 | X509 *x; | 1273 | X509 *x; | 
| 1221 | 1274 | ||
| 1222 | OPENSSL_assert(chain != NULL && sk_X509_num(chain) > 0); | 1275 | OPENSSL_assert(chain != NULL && sk_X509_num(chain) > 0); | 
| 1223 | OPENSSL_assert(ctx != NULL || ext != NULL); | 1276 | OPENSSL_assert(ctx != NULL || ext != NULL); | 
| 1224 | OPENSSL_assert(ctx == NULL || ctx->verify_cb != NULL); | 1277 | OPENSSL_assert(ctx == NULL || ctx->verify_cb != NULL); | 
| 1225 | 1278 | ||
| 1226 | /* | 1279 | /* | 
| 1227 | * Figure out where to start. If we don't have an extension to | 1280 | * Figure out where to start. If we don't have an extension to | 
| 1228 | * check, we're done. Otherwise, check canonical form and | 1281 | * check, we're done. Otherwise, check canonical form and | 
| 1229 | * set up for walking up the chain. | 1282 | * set up for walking up the chain. | 
| 1230 | */ | 1283 | */ | 
| 1231 | if (ext != NULL) { | 1284 | if (ext != NULL) { | 
| 1232 | i = -1; | 1285 | i = -1; | 
| 1233 | x = NULL; | 1286 | x = NULL; | 
| 1234 | } else { | 1287 | } else { | 
| 1235 | i = 0; | 1288 | i = 0; | 
| 1236 | x = sk_X509_value(chain, i); | 1289 | x = sk_X509_value(chain, i); | 
| 1237 | OPENSSL_assert(x != NULL); | 1290 | OPENSSL_assert(x != NULL); | 
| 1238 | if ((ext = x->rfc3779_addr) == NULL) | 1291 | if ((ext = x->rfc3779_addr) == NULL) | 
| 1239 | goto done; | 1292 | goto done; | 
| 1240 | } | ||
| 1241 | if (!v3_addr_is_canonical(ext)) | ||
| 1242 | validation_err(X509_V_ERR_INVALID_EXTENSION); | ||
| 1243 | (void) sk_IPAddressFamily_set_cmp_func(ext, IPAddressFamily_cmp); | ||
| 1244 | if ((child = sk_IPAddressFamily_dup(ext)) == NULL) { | ||
| 1245 | X509V3err(X509V3_F_V3_ADDR_VALIDATE_PATH_INTERNAL, ERR_R_MALLOC_FAILURE); | ||
| 1246 | ret = 0; | ||
| 1247 | goto done; | ||
| 1248 | } | ||
| 1249 | |||
| 1250 | /* | ||
| 1251 | * Now walk up the chain. No cert may list resources that its | ||
| 1252 | * parent doesn't list. | ||
| 1253 | */ | ||
| 1254 | for (i++; i < sk_X509_num(chain); i++) { | ||
| 1255 | x = sk_X509_value(chain, i); | ||
| 1256 | OPENSSL_assert(x != NULL); | ||
| 1257 | if (!v3_addr_is_canonical(x->rfc3779_addr)) | ||
| 1258 | validation_err(X509_V_ERR_INVALID_EXTENSION); | ||
| 1259 | if (x->rfc3779_addr == NULL) { | ||
| 1260 | for (j = 0; j < sk_IPAddressFamily_num(child); j++) { | ||
| 1261 | IPAddressFamily *fc = sk_IPAddressFamily_value(child, j); | ||
| 1262 | if (fc->ipAddressChoice->type != IPAddressChoice_inherit) { | ||
| 1263 | validation_err(X509_V_ERR_UNNESTED_RESOURCE); | ||
| 1264 | break; | ||
| 1265 | } | 1293 | } | 
| 1266 | } | 1294 | if (!v3_addr_is_canonical(ext)) | 
| 1267 | continue; | 1295 | validation_err(X509_V_ERR_INVALID_EXTENSION); | 
| 1268 | } | 1296 | (void) sk_IPAddressFamily_set_cmp_func(ext, IPAddressFamily_cmp); | 
| 1269 | (void) sk_IPAddressFamily_set_cmp_func(x->rfc3779_addr, IPAddressFamily_cmp); | 1297 | if ((child = sk_IPAddressFamily_dup(ext)) == NULL) { | 
| 1270 | for (j = 0; j < sk_IPAddressFamily_num(child); j++) { | 1298 | X509V3err(X509V3_F_V3_ADDR_VALIDATE_PATH_INTERNAL, | 
| 1271 | IPAddressFamily *fc = sk_IPAddressFamily_value(child, j); | 1299 | ERR_R_MALLOC_FAILURE); | 
| 1272 | int k = sk_IPAddressFamily_find(x->rfc3779_addr, fc); | 1300 | ret = 0; | 
| 1273 | IPAddressFamily *fp = sk_IPAddressFamily_value(x->rfc3779_addr, k); | 1301 | goto done; | 
| 1274 | if (fp == NULL) { | ||
| 1275 | if (fc->ipAddressChoice->type == IPAddressChoice_addressesOrRanges) { | ||
| 1276 | validation_err(X509_V_ERR_UNNESTED_RESOURCE); | ||
| 1277 | break; | ||
| 1278 | } | 1302 | } | 
| 1279 | continue; | 1303 | |
| 1280 | } | 1304 | /* | 
| 1281 | if (fp->ipAddressChoice->type == IPAddressChoice_addressesOrRanges) { | 1305 | * Now walk up the chain. No cert may list resources that its | 
| 1282 | if (fc->ipAddressChoice->type == IPAddressChoice_inherit || | 1306 | * parent doesn't list. | 
| 1283 | addr_contains(fp->ipAddressChoice->u.addressesOrRanges, | 1307 | */ | 
| 1284 | fc->ipAddressChoice->u.addressesOrRanges, | 1308 | for (i++; i < sk_X509_num(chain); i++) { | 
| 1285 | length_from_afi(v3_addr_get_afi(fc)))) | 1309 | x = sk_X509_value(chain, i); | 
| 1286 | sk_IPAddressFamily_set(child, j, fp); | 1310 | OPENSSL_assert(x != NULL); | 
| 1287 | else | 1311 | if (!v3_addr_is_canonical(x->rfc3779_addr)) | 
| 1288 | validation_err(X509_V_ERR_UNNESTED_RESOURCE); | 1312 | validation_err(X509_V_ERR_INVALID_EXTENSION); | 
| 1289 | } | 1313 | if (x->rfc3779_addr == NULL) { | 
| 1290 | } | 1314 | for (j = 0; j < sk_IPAddressFamily_num(child); j++) { | 
| 1291 | } | 1315 | IPAddressFamily *fc = | 
| 1292 | 1316 | sk_IPAddressFamily_value(child, j); | |
| 1293 | /* | 1317 | if (fc->ipAddressChoice->type != | 
| 1294 | * Trust anchor can't inherit. | 1318 | IPAddressChoice_inherit) { | 
| 1295 | */ | 1319 | validation_err( | 
| 1296 | OPENSSL_assert(x != NULL); | 1320 | X509_V_ERR_UNNESTED_RESOURCE); | 
| 1297 | if (x->rfc3779_addr != NULL) { | 1321 | break; | 
| 1298 | for (j = 0; j < sk_IPAddressFamily_num(x->rfc3779_addr); j++) { | 1322 | } | 
| 1299 | IPAddressFamily *fp = sk_IPAddressFamily_value(x->rfc3779_addr, j); | 1323 | } | 
| 1300 | if (fp->ipAddressChoice->type == IPAddressChoice_inherit && | 1324 | continue; | 
| 1301 | sk_IPAddressFamily_find(child, fp) >= 0) | 1325 | } | 
| 1302 | validation_err(X509_V_ERR_UNNESTED_RESOURCE); | 1326 | (void) sk_IPAddressFamily_set_cmp_func(x->rfc3779_addr, | 
| 1303 | } | 1327 | IPAddressFamily_cmp); | 
| 1304 | } | 1328 | for (j = 0; j < sk_IPAddressFamily_num(child); j++) { | 
| 1305 | 1329 | IPAddressFamily *fc = | |
| 1306 | done: | 1330 | sk_IPAddressFamily_value(child, j); | 
| 1307 | sk_IPAddressFamily_free(child); | 1331 | int k = sk_IPAddressFamily_find(x->rfc3779_addr, fc); | 
| 1308 | return ret; | 1332 | IPAddressFamily *fp = | 
| 1333 | sk_IPAddressFamily_value(x->rfc3779_addr, k); | ||
| 1334 | if (fp == NULL) { | ||
| 1335 | if (fc->ipAddressChoice->type == | ||
| 1336 | IPAddressChoice_addressesOrRanges) { | ||
| 1337 | validation_err( | ||
| 1338 | X509_V_ERR_UNNESTED_RESOURCE); | ||
| 1339 | break; | ||
| 1340 | } | ||
| 1341 | continue; | ||
| 1342 | } | ||
| 1343 | if (fp->ipAddressChoice->type == | ||
| 1344 | IPAddressChoice_addressesOrRanges) { | ||
| 1345 | if (fc->ipAddressChoice->type == | ||
| 1346 | IPAddressChoice_inherit || addr_contains( | ||
| 1347 | fp->ipAddressChoice->u.addressesOrRanges, | ||
| 1348 | fc->ipAddressChoice->u.addressesOrRanges, | ||
| 1349 | length_from_afi(v3_addr_get_afi(fc)))) | ||
| 1350 | sk_IPAddressFamily_set(child, j, fp); | ||
| 1351 | else | ||
| 1352 | validation_err( | ||
| 1353 | X509_V_ERR_UNNESTED_RESOURCE); | ||
| 1354 | } | ||
| 1355 | } | ||
| 1356 | } | ||
| 1357 | |||
| 1358 | /* | ||
| 1359 | * Trust anchor can't inherit. | ||
| 1360 | */ | ||
| 1361 | OPENSSL_assert(x != NULL); | ||
| 1362 | if (x->rfc3779_addr != NULL) { | ||
| 1363 | for (j = 0; j < sk_IPAddressFamily_num(x->rfc3779_addr); j++) { | ||
| 1364 | IPAddressFamily *fp = | ||
| 1365 | sk_IPAddressFamily_value(x->rfc3779_addr, j); | ||
| 1366 | if (fp->ipAddressChoice->type == | ||
| 1367 | IPAddressChoice_inherit && | ||
| 1368 | sk_IPAddressFamily_find(child, fp) >= 0) | ||
| 1369 | validation_err(X509_V_ERR_UNNESTED_RESOURCE); | ||
| 1370 | } | ||
| 1371 | } | ||
| 1372 | |||
| 1373 | done: | ||
| 1374 | sk_IPAddressFamily_free(child); | ||
| 1375 | return ret; | ||
| 1309 | } | 1376 | } | 
| 1310 | 1377 | ||
| 1311 | #undef validation_err | 1378 | #undef validation_err | 
| @@ -1313,26 +1380,27 @@ static int v3_addr_validate_path_internal(X509_STORE_CTX *ctx, | |||
| 1313 | /* | 1380 | /* | 
| 1314 | * RFC 3779 2.3 path validation -- called from X509_verify_cert(). | 1381 | * RFC 3779 2.3 path validation -- called from X509_verify_cert(). | 
| 1315 | */ | 1382 | */ | 
| 1316 | int v3_addr_validate_path(X509_STORE_CTX *ctx) | 1383 | int | 
| 1384 | v3_addr_validate_path(X509_STORE_CTX *ctx) | ||
| 1317 | { | 1385 | { | 
| 1318 | return v3_addr_validate_path_internal(ctx, ctx->chain, NULL); | 1386 | return v3_addr_validate_path_internal(ctx, ctx->chain, NULL); | 
| 1319 | } | 1387 | } | 
| 1320 | 1388 | ||
| 1321 | /* | 1389 | /* | 
| 1322 | * RFC 3779 2.3 path validation of an extension. | 1390 | * RFC 3779 2.3 path validation of an extension. | 
| 1323 | * Test whether chain covers extension. | 1391 | * Test whether chain covers extension. | 
| 1324 | */ | 1392 | */ | 
| 1325 | int v3_addr_validate_resource_set(STACK_OF(X509) *chain, | 1393 | int | 
| 1326 | IPAddrBlocks *ext, | 1394 | v3_addr_validate_resource_set(STACK_OF(X509) *chain, IPAddrBlocks *ext, | 
| 1327 | int allow_inheritance) | 1395 | int allow_inheritance) | 
| 1328 | { | 1396 | { | 
| 1329 | if (ext == NULL) | 1397 | if (ext == NULL) | 
| 1330 | return 1; | 1398 | return 1; | 
| 1331 | if (chain == NULL || sk_X509_num(chain) == 0) | 1399 | if (chain == NULL || sk_X509_num(chain) == 0) | 
| 1332 | return 0; | 1400 | return 0; | 
| 1333 | if (!allow_inheritance && v3_addr_inherits(ext)) | 1401 | if (!allow_inheritance && v3_addr_inherits(ext)) | 
| 1334 | return 0; | 1402 | return 0; | 
| 1335 | return v3_addr_validate_path_internal(NULL, chain, ext); | 1403 | return v3_addr_validate_path_internal(NULL, chain, ext); | 
| 1336 | } | 1404 | } | 
| 1337 | 1405 | ||
| 1338 | #endif /* OPENSSL_NO_RFC3779 */ | 1406 | #endif /* OPENSSL_NO_RFC3779 */ | 
