diff options
Diffstat (limited to 'src/lib/libcrypto/x509v3/v3_addr.c')
| -rw-r--r-- | src/lib/libcrypto/x509v3/v3_addr.c | 1280 |
1 files changed, 1280 insertions, 0 deletions
diff --git a/src/lib/libcrypto/x509v3/v3_addr.c b/src/lib/libcrypto/x509v3/v3_addr.c new file mode 100644 index 0000000000..ed9847b307 --- /dev/null +++ b/src/lib/libcrypto/x509v3/v3_addr.c | |||
| @@ -0,0 +1,1280 @@ | |||
| 1 | /* | ||
| 2 | * Contributed to the OpenSSL Project by the American Registry for | ||
| 3 | * Internet Numbers ("ARIN"). | ||
| 4 | */ | ||
| 5 | /* ==================================================================== | ||
| 6 | * Copyright (c) 2006 The OpenSSL Project. All rights reserved. | ||
| 7 | * | ||
| 8 | * Redistribution and use in source and binary forms, with or without | ||
| 9 | * modification, are permitted provided that the following conditions | ||
| 10 | * are met: | ||
| 11 | * | ||
| 12 | * 1. Redistributions of source code must retain the above copyright | ||
| 13 | * notice, this list of conditions and the following disclaimer. | ||
| 14 | * | ||
| 15 | * 2. Redistributions in binary form must reproduce the above copyright | ||
| 16 | * notice, this list of conditions and the following disclaimer in | ||
| 17 | * the documentation and/or other materials provided with the | ||
| 18 | * distribution. | ||
| 19 | * | ||
| 20 | * 3. All advertising materials mentioning features or use of this | ||
| 21 | * software must display the following acknowledgment: | ||
| 22 | * "This product includes software developed by the OpenSSL Project | ||
| 23 | * for use in the OpenSSL Toolkit. (http://www.OpenSSL.org/)" | ||
| 24 | * | ||
| 25 | * 4. The names "OpenSSL Toolkit" and "OpenSSL Project" must not be used to | ||
| 26 | * endorse or promote products derived from this software without | ||
| 27 | * prior written permission. For written permission, please contact | ||
| 28 | * licensing@OpenSSL.org. | ||
| 29 | * | ||
| 30 | * 5. Products derived from this software may not be called "OpenSSL" | ||
| 31 | * nor may "OpenSSL" appear in their names without prior written | ||
| 32 | * permission of the OpenSSL Project. | ||
| 33 | * | ||
| 34 | * 6. Redistributions of any form whatsoever must retain the following | ||
| 35 | * acknowledgment: | ||
| 36 | * "This product includes software developed by the OpenSSL Project | ||
| 37 | * for use in the OpenSSL Toolkit (http://www.OpenSSL.org/)" | ||
| 38 | * | ||
| 39 | * THIS SOFTWARE IS PROVIDED BY THE OpenSSL PROJECT ``AS IS'' AND ANY | ||
| 40 | * EXPRESSED OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE | ||
| 41 | * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR | ||
| 42 | * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE OpenSSL PROJECT OR | ||
| 43 | * ITS CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, | ||
| 44 | * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT | ||
| 45 | * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; | ||
| 46 | * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) | ||
| 47 | * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, | ||
| 48 | * STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) | ||
| 49 | * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED | ||
| 50 | * OF THE POSSIBILITY OF SUCH DAMAGE. | ||
| 51 | * ==================================================================== | ||
| 52 | * | ||
| 53 | * This product includes cryptographic software written by Eric Young | ||
| 54 | * (eay@cryptsoft.com). This product includes software written by Tim | ||
| 55 | * Hudson (tjh@cryptsoft.com). | ||
| 56 | */ | ||
| 57 | |||
| 58 | /* | ||
| 59 | * Implementation of RFC 3779 section 2.2. | ||
| 60 | */ | ||
| 61 | |||
| 62 | #include <stdio.h> | ||
| 63 | #include <stdlib.h> | ||
| 64 | #include <assert.h> | ||
| 65 | #include "cryptlib.h" | ||
| 66 | #include <openssl/conf.h> | ||
| 67 | #include <openssl/asn1.h> | ||
| 68 | #include <openssl/asn1t.h> | ||
| 69 | #include <openssl/buffer.h> | ||
| 70 | #include <openssl/x509v3.h> | ||
| 71 | |||
| 72 | #ifndef OPENSSL_NO_RFC3779 | ||
| 73 | |||
| 74 | /* | ||
| 75 | * OpenSSL ASN.1 template translation of RFC 3779 2.2.3. | ||
| 76 | */ | ||
| 77 | |||
| 78 | ASN1_SEQUENCE(IPAddressRange) = { | ||
| 79 | ASN1_SIMPLE(IPAddressRange, min, ASN1_BIT_STRING), | ||
| 80 | ASN1_SIMPLE(IPAddressRange, max, ASN1_BIT_STRING) | ||
| 81 | } ASN1_SEQUENCE_END(IPAddressRange) | ||
| 82 | |||
| 83 | ASN1_CHOICE(IPAddressOrRange) = { | ||
| 84 | ASN1_SIMPLE(IPAddressOrRange, u.addressPrefix, ASN1_BIT_STRING), | ||
| 85 | ASN1_SIMPLE(IPAddressOrRange, u.addressRange, IPAddressRange) | ||
| 86 | } ASN1_CHOICE_END(IPAddressOrRange) | ||
| 87 | |||
| 88 | ASN1_CHOICE(IPAddressChoice) = { | ||
| 89 | ASN1_SIMPLE(IPAddressChoice, u.inherit, ASN1_NULL), | ||
| 90 | ASN1_SEQUENCE_OF(IPAddressChoice, u.addressesOrRanges, IPAddressOrRange) | ||
| 91 | } ASN1_CHOICE_END(IPAddressChoice) | ||
| 92 | |||
| 93 | ASN1_SEQUENCE(IPAddressFamily) = { | ||
| 94 | ASN1_SIMPLE(IPAddressFamily, addressFamily, ASN1_OCTET_STRING), | ||
| 95 | ASN1_SIMPLE(IPAddressFamily, ipAddressChoice, IPAddressChoice) | ||
| 96 | } ASN1_SEQUENCE_END(IPAddressFamily) | ||
| 97 | |||
| 98 | ASN1_ITEM_TEMPLATE(IPAddrBlocks) = | ||
| 99 | ASN1_EX_TEMPLATE_TYPE(ASN1_TFLG_SEQUENCE_OF, 0, | ||
| 100 | IPAddrBlocks, IPAddressFamily) | ||
| 101 | ASN1_ITEM_TEMPLATE_END(IPAddrBlocks) | ||
| 102 | |||
| 103 | IMPLEMENT_ASN1_FUNCTIONS(IPAddressRange) | ||
| 104 | IMPLEMENT_ASN1_FUNCTIONS(IPAddressOrRange) | ||
| 105 | IMPLEMENT_ASN1_FUNCTIONS(IPAddressChoice) | ||
| 106 | IMPLEMENT_ASN1_FUNCTIONS(IPAddressFamily) | ||
| 107 | |||
| 108 | /* | ||
| 109 | * How much buffer space do we need for a raw address? | ||
| 110 | */ | ||
| 111 | #define ADDR_RAW_BUF_LEN 16 | ||
| 112 | |||
| 113 | /* | ||
| 114 | * What's the address length associated with this AFI? | ||
| 115 | */ | ||
| 116 | static int length_from_afi(const unsigned afi) | ||
| 117 | { | ||
| 118 | switch (afi) { | ||
| 119 | case IANA_AFI_IPV4: | ||
| 120 | return 4; | ||
| 121 | case IANA_AFI_IPV6: | ||
| 122 | return 16; | ||
| 123 | default: | ||
| 124 | return 0; | ||
| 125 | } | ||
| 126 | } | ||
| 127 | |||
| 128 | /* | ||
| 129 | * Extract the AFI from an IPAddressFamily. | ||
| 130 | */ | ||
| 131 | unsigned v3_addr_get_afi(const IPAddressFamily *f) | ||
| 132 | { | ||
| 133 | return ((f != NULL && | ||
| 134 | f->addressFamily != NULL && | ||
| 135 | f->addressFamily->data != NULL) | ||
| 136 | ? ((f->addressFamily->data[0] << 8) | | ||
| 137 | (f->addressFamily->data[1])) | ||
| 138 | : 0); | ||
| 139 | } | ||
| 140 | |||
| 141 | /* | ||
| 142 | * Expand the bitstring form of an address into a raw byte array. | ||
| 143 | * At the moment this is coded for simplicity, not speed. | ||
| 144 | */ | ||
| 145 | static void addr_expand(unsigned char *addr, | ||
| 146 | const ASN1_BIT_STRING *bs, | ||
| 147 | const int length, | ||
| 148 | const unsigned char fill) | ||
| 149 | { | ||
| 150 | assert(bs->length >= 0 && bs->length <= length); | ||
| 151 | if (bs->length > 0) { | ||
| 152 | memcpy(addr, bs->data, bs->length); | ||
| 153 | if ((bs->flags & 7) != 0) { | ||
| 154 | unsigned char mask = 0xFF >> (8 - (bs->flags & 7)); | ||
| 155 | if (fill == 0) | ||
| 156 | addr[bs->length - 1] &= ~mask; | ||
| 157 | else | ||
| 158 | addr[bs->length - 1] |= mask; | ||
| 159 | } | ||
| 160 | } | ||
| 161 | memset(addr + bs->length, fill, length - bs->length); | ||
| 162 | } | ||
| 163 | |||
| 164 | /* | ||
| 165 | * Extract the prefix length from a bitstring. | ||
| 166 | */ | ||
| 167 | #define addr_prefixlen(bs) ((int) ((bs)->length * 8 - ((bs)->flags & 7))) | ||
| 168 | |||
| 169 | /* | ||
| 170 | * i2r handler for one address bitstring. | ||
| 171 | */ | ||
| 172 | static int i2r_address(BIO *out, | ||
| 173 | const unsigned afi, | ||
| 174 | const unsigned char fill, | ||
| 175 | const ASN1_BIT_STRING *bs) | ||
| 176 | { | ||
| 177 | unsigned char addr[ADDR_RAW_BUF_LEN]; | ||
| 178 | int i, n; | ||
| 179 | |||
| 180 | switch (afi) { | ||
| 181 | case IANA_AFI_IPV4: | ||
| 182 | addr_expand(addr, bs, 4, fill); | ||
| 183 | BIO_printf(out, "%d.%d.%d.%d", addr[0], addr[1], addr[2], addr[3]); | ||
| 184 | break; | ||
| 185 | case IANA_AFI_IPV6: | ||
| 186 | addr_expand(addr, bs, 16, fill); | ||
| 187 | for (n = 16; n > 1 && addr[n-1] == 0x00 && addr[n-2] == 0x00; n -= 2) | ||
| 188 | ; | ||
| 189 | for (i = 0; i < n; i += 2) | ||
| 190 | BIO_printf(out, "%x%s", (addr[i] << 8) | addr[i+1], (i < 14 ? ":" : "")); | ||
| 191 | if (i < 16) | ||
| 192 | BIO_puts(out, ":"); | ||
| 193 | break; | ||
| 194 | default: | ||
| 195 | for (i = 0; i < bs->length; i++) | ||
| 196 | BIO_printf(out, "%s%02x", (i > 0 ? ":" : ""), bs->data[i]); | ||
| 197 | BIO_printf(out, "[%d]", (int) (bs->flags & 7)); | ||
| 198 | break; | ||
| 199 | } | ||
| 200 | return 1; | ||
| 201 | } | ||
| 202 | |||
| 203 | /* | ||
| 204 | * i2r handler for a sequence of addresses and ranges. | ||
| 205 | */ | ||
| 206 | static int i2r_IPAddressOrRanges(BIO *out, | ||
| 207 | const int indent, | ||
| 208 | const IPAddressOrRanges *aors, | ||
| 209 | const unsigned afi) | ||
| 210 | { | ||
| 211 | int i; | ||
| 212 | for (i = 0; i < sk_IPAddressOrRange_num(aors); i++) { | ||
| 213 | const IPAddressOrRange *aor = sk_IPAddressOrRange_value(aors, i); | ||
| 214 | BIO_printf(out, "%*s", indent, ""); | ||
| 215 | switch (aor->type) { | ||
| 216 | case IPAddressOrRange_addressPrefix: | ||
| 217 | if (!i2r_address(out, afi, 0x00, aor->u.addressPrefix)) | ||
| 218 | return 0; | ||
| 219 | BIO_printf(out, "/%d\n", addr_prefixlen(aor->u.addressPrefix)); | ||
| 220 | continue; | ||
| 221 | case IPAddressOrRange_addressRange: | ||
| 222 | if (!i2r_address(out, afi, 0x00, aor->u.addressRange->min)) | ||
| 223 | return 0; | ||
| 224 | BIO_puts(out, "-"); | ||
| 225 | if (!i2r_address(out, afi, 0xFF, aor->u.addressRange->max)) | ||
| 226 | return 0; | ||
| 227 | BIO_puts(out, "\n"); | ||
| 228 | continue; | ||
| 229 | } | ||
| 230 | } | ||
| 231 | return 1; | ||
| 232 | } | ||
| 233 | |||
| 234 | /* | ||
| 235 | * i2r handler for an IPAddrBlocks extension. | ||
| 236 | */ | ||
| 237 | static int i2r_IPAddrBlocks(X509V3_EXT_METHOD *method, | ||
| 238 | void *ext, | ||
| 239 | BIO *out, | ||
| 240 | int indent) | ||
| 241 | { | ||
| 242 | const IPAddrBlocks *addr = ext; | ||
| 243 | int i; | ||
| 244 | for (i = 0; i < sk_IPAddressFamily_num(addr); i++) { | ||
| 245 | IPAddressFamily *f = sk_IPAddressFamily_value(addr, i); | ||
| 246 | const unsigned afi = v3_addr_get_afi(f); | ||
| 247 | switch (afi) { | ||
| 248 | case IANA_AFI_IPV4: | ||
| 249 | BIO_printf(out, "%*sIPv4", indent, ""); | ||
| 250 | break; | ||
| 251 | case IANA_AFI_IPV6: | ||
| 252 | BIO_printf(out, "%*sIPv6", indent, ""); | ||
| 253 | break; | ||
| 254 | default: | ||
| 255 | BIO_printf(out, "%*sUnknown AFI %u", indent, "", afi); | ||
| 256 | break; | ||
| 257 | } | ||
| 258 | if (f->addressFamily->length > 2) { | ||
| 259 | switch (f->addressFamily->data[2]) { | ||
| 260 | case 1: | ||
| 261 | BIO_puts(out, " (Unicast)"); | ||
| 262 | break; | ||
| 263 | case 2: | ||
| 264 | BIO_puts(out, " (Multicast)"); | ||
| 265 | break; | ||
| 266 | case 3: | ||
| 267 | BIO_puts(out, " (Unicast/Multicast)"); | ||
| 268 | break; | ||
| 269 | case 4: | ||
| 270 | BIO_puts(out, " (MPLS)"); | ||
| 271 | break; | ||
| 272 | case 64: | ||
| 273 | BIO_puts(out, " (Tunnel)"); | ||
| 274 | break; | ||
| 275 | case 65: | ||
| 276 | BIO_puts(out, " (VPLS)"); | ||
| 277 | break; | ||
| 278 | case 66: | ||
| 279 | BIO_puts(out, " (BGP MDT)"); | ||
| 280 | break; | ||
| 281 | case 128: | ||
| 282 | BIO_puts(out, " (MPLS-labeled VPN)"); | ||
| 283 | break; | ||
| 284 | default: | ||
| 285 | BIO_printf(out, " (Unknown SAFI %u)", | ||
| 286 | (unsigned) f->addressFamily->data[2]); | ||
| 287 | break; | ||
| 288 | } | ||
| 289 | } | ||
| 290 | switch (f->ipAddressChoice->type) { | ||
| 291 | case IPAddressChoice_inherit: | ||
| 292 | BIO_puts(out, ": inherit\n"); | ||
| 293 | break; | ||
| 294 | case IPAddressChoice_addressesOrRanges: | ||
| 295 | BIO_puts(out, ":\n"); | ||
| 296 | if (!i2r_IPAddressOrRanges(out, | ||
| 297 | indent + 2, | ||
| 298 | f->ipAddressChoice->u.addressesOrRanges, | ||
| 299 | afi)) | ||
| 300 | return 0; | ||
| 301 | break; | ||
| 302 | } | ||
| 303 | } | ||
| 304 | return 1; | ||
| 305 | } | ||
| 306 | |||
| 307 | /* | ||
| 308 | * Sort comparison function for a sequence of IPAddressOrRange | ||
| 309 | * elements. | ||
| 310 | */ | ||
| 311 | static int IPAddressOrRange_cmp(const IPAddressOrRange *a, | ||
| 312 | const IPAddressOrRange *b, | ||
| 313 | const int length) | ||
| 314 | { | ||
| 315 | unsigned char addr_a[ADDR_RAW_BUF_LEN], addr_b[ADDR_RAW_BUF_LEN]; | ||
| 316 | int prefixlen_a = 0; | ||
| 317 | int prefixlen_b = 0; | ||
| 318 | int r; | ||
| 319 | |||
| 320 | switch (a->type) { | ||
| 321 | case IPAddressOrRange_addressPrefix: | ||
| 322 | addr_expand(addr_a, a->u.addressPrefix, length, 0x00); | ||
| 323 | prefixlen_a = addr_prefixlen(a->u.addressPrefix); | ||
| 324 | break; | ||
| 325 | case IPAddressOrRange_addressRange: | ||
| 326 | addr_expand(addr_a, a->u.addressRange->min, length, 0x00); | ||
| 327 | prefixlen_a = length * 8; | ||
| 328 | break; | ||
| 329 | } | ||
| 330 | |||
| 331 | switch (b->type) { | ||
| 332 | case IPAddressOrRange_addressPrefix: | ||
| 333 | addr_expand(addr_b, b->u.addressPrefix, length, 0x00); | ||
| 334 | prefixlen_b = addr_prefixlen(b->u.addressPrefix); | ||
| 335 | break; | ||
| 336 | case IPAddressOrRange_addressRange: | ||
| 337 | addr_expand(addr_b, b->u.addressRange->min, length, 0x00); | ||
| 338 | prefixlen_b = length * 8; | ||
| 339 | break; | ||
| 340 | } | ||
| 341 | |||
| 342 | if ((r = memcmp(addr_a, addr_b, length)) != 0) | ||
| 343 | return r; | ||
| 344 | else | ||
| 345 | return prefixlen_a - prefixlen_b; | ||
| 346 | } | ||
| 347 | |||
| 348 | /* | ||
| 349 | * IPv4-specific closure over IPAddressOrRange_cmp, since sk_sort() | ||
| 350 | * comparision routines are only allowed two arguments. | ||
| 351 | */ | ||
| 352 | static int v4IPAddressOrRange_cmp(const IPAddressOrRange * const *a, | ||
| 353 | const IPAddressOrRange * const *b) | ||
| 354 | { | ||
| 355 | return IPAddressOrRange_cmp(*a, *b, 4); | ||
| 356 | } | ||
| 357 | |||
| 358 | /* | ||
| 359 | * IPv6-specific closure over IPAddressOrRange_cmp, since sk_sort() | ||
| 360 | * comparision routines are only allowed two arguments. | ||
| 361 | */ | ||
| 362 | static int v6IPAddressOrRange_cmp(const IPAddressOrRange * const *a, | ||
| 363 | const IPAddressOrRange * const *b) | ||
| 364 | { | ||
| 365 | return IPAddressOrRange_cmp(*a, *b, 16); | ||
| 366 | } | ||
| 367 | |||
| 368 | /* | ||
| 369 | * Calculate whether a range collapses to a prefix. | ||
| 370 | * See last paragraph of RFC 3779 2.2.3.7. | ||
| 371 | */ | ||
| 372 | static int range_should_be_prefix(const unsigned char *min, | ||
| 373 | const unsigned char *max, | ||
| 374 | const int length) | ||
| 375 | { | ||
| 376 | unsigned char mask; | ||
| 377 | int i, j; | ||
| 378 | |||
| 379 | for (i = 0; i < length && min[i] == max[i]; i++) | ||
| 380 | ; | ||
| 381 | for (j = length - 1; j >= 0 && min[j] == 0x00 && max[j] == 0xFF; j--) | ||
| 382 | ; | ||
| 383 | if (i < j) | ||
| 384 | return -1; | ||
| 385 | if (i > j) | ||
| 386 | return i * 8; | ||
| 387 | mask = min[i] ^ max[i]; | ||
| 388 | switch (mask) { | ||
| 389 | case 0x01: j = 7; break; | ||
| 390 | case 0x03: j = 6; break; | ||
| 391 | case 0x07: j = 5; break; | ||
| 392 | case 0x0F: j = 4; break; | ||
| 393 | case 0x1F: j = 3; break; | ||
| 394 | case 0x3F: j = 2; break; | ||
| 395 | case 0x7F: j = 1; break; | ||
| 396 | default: return -1; | ||
| 397 | } | ||
| 398 | if ((min[i] & mask) != 0 || (max[i] & mask) != mask) | ||
| 399 | return -1; | ||
| 400 | else | ||
| 401 | return i * 8 + j; | ||
| 402 | } | ||
| 403 | |||
| 404 | /* | ||
| 405 | * Construct a prefix. | ||
| 406 | */ | ||
| 407 | static int make_addressPrefix(IPAddressOrRange **result, | ||
| 408 | unsigned char *addr, | ||
| 409 | const int prefixlen) | ||
| 410 | { | ||
| 411 | int bytelen = (prefixlen + 7) / 8, bitlen = prefixlen % 8; | ||
| 412 | IPAddressOrRange *aor = IPAddressOrRange_new(); | ||
| 413 | |||
| 414 | if (aor == NULL) | ||
| 415 | return 0; | ||
| 416 | aor->type = IPAddressOrRange_addressPrefix; | ||
| 417 | if (aor->u.addressPrefix == NULL && | ||
| 418 | (aor->u.addressPrefix = ASN1_BIT_STRING_new()) == NULL) | ||
| 419 | goto err; | ||
| 420 | if (!ASN1_BIT_STRING_set(aor->u.addressPrefix, addr, bytelen)) | ||
| 421 | goto err; | ||
| 422 | aor->u.addressPrefix->flags &= ~7; | ||
| 423 | aor->u.addressPrefix->flags |= ASN1_STRING_FLAG_BITS_LEFT; | ||
| 424 | if (bitlen > 0) { | ||
| 425 | aor->u.addressPrefix->data[bytelen - 1] &= ~(0xFF >> bitlen); | ||
| 426 | aor->u.addressPrefix->flags |= 8 - bitlen; | ||
| 427 | } | ||
| 428 | |||
| 429 | *result = aor; | ||
| 430 | return 1; | ||
| 431 | |||
| 432 | err: | ||
| 433 | IPAddressOrRange_free(aor); | ||
| 434 | return 0; | ||
| 435 | } | ||
| 436 | |||
| 437 | /* | ||
| 438 | * Construct a range. If it can be expressed as a prefix, | ||
| 439 | * return a prefix instead. Doing this here simplifies | ||
| 440 | * the rest of the code considerably. | ||
| 441 | */ | ||
| 442 | static int make_addressRange(IPAddressOrRange **result, | ||
| 443 | unsigned char *min, | ||
| 444 | unsigned char *max, | ||
| 445 | const int length) | ||
| 446 | { | ||
| 447 | IPAddressOrRange *aor; | ||
| 448 | int i, prefixlen; | ||
| 449 | |||
| 450 | if ((prefixlen = range_should_be_prefix(min, max, length)) >= 0) | ||
| 451 | return make_addressPrefix(result, min, prefixlen); | ||
| 452 | |||
| 453 | if ((aor = IPAddressOrRange_new()) == NULL) | ||
| 454 | return 0; | ||
| 455 | aor->type = IPAddressOrRange_addressRange; | ||
| 456 | assert(aor->u.addressRange == NULL); | ||
| 457 | if ((aor->u.addressRange = IPAddressRange_new()) == NULL) | ||
| 458 | goto err; | ||
| 459 | if (aor->u.addressRange->min == NULL && | ||
| 460 | (aor->u.addressRange->min = ASN1_BIT_STRING_new()) == NULL) | ||
| 461 | goto err; | ||
| 462 | if (aor->u.addressRange->max == NULL && | ||
| 463 | (aor->u.addressRange->max = ASN1_BIT_STRING_new()) == NULL) | ||
| 464 | goto err; | ||
| 465 | |||
| 466 | for (i = length; i > 0 && min[i - 1] == 0x00; --i) | ||
| 467 | ; | ||
| 468 | if (!ASN1_BIT_STRING_set(aor->u.addressRange->min, min, i)) | ||
| 469 | goto err; | ||
| 470 | aor->u.addressRange->min->flags &= ~7; | ||
| 471 | aor->u.addressRange->min->flags |= ASN1_STRING_FLAG_BITS_LEFT; | ||
| 472 | if (i > 0) { | ||
| 473 | unsigned char b = min[i - 1]; | ||
| 474 | int j = 1; | ||
| 475 | while ((b & (0xFFU >> j)) != 0) | ||
| 476 | ++j; | ||
| 477 | aor->u.addressRange->min->flags |= 8 - j; | ||
| 478 | } | ||
| 479 | |||
| 480 | for (i = length; i > 0 && max[i - 1] == 0xFF; --i) | ||
| 481 | ; | ||
| 482 | if (!ASN1_BIT_STRING_set(aor->u.addressRange->max, max, i)) | ||
| 483 | goto err; | ||
| 484 | aor->u.addressRange->max->flags &= ~7; | ||
| 485 | aor->u.addressRange->max->flags |= ASN1_STRING_FLAG_BITS_LEFT; | ||
| 486 | if (i > 0) { | ||
| 487 | unsigned char b = max[i - 1]; | ||
| 488 | int j = 1; | ||
| 489 | while ((b & (0xFFU >> j)) != (0xFFU >> j)) | ||
| 490 | ++j; | ||
| 491 | aor->u.addressRange->max->flags |= 8 - j; | ||
| 492 | } | ||
| 493 | |||
| 494 | *result = aor; | ||
| 495 | return 1; | ||
| 496 | |||
| 497 | err: | ||
| 498 | IPAddressOrRange_free(aor); | ||
| 499 | return 0; | ||
| 500 | } | ||
| 501 | |||
| 502 | /* | ||
| 503 | * Construct a new address family or find an existing one. | ||
| 504 | */ | ||
| 505 | static IPAddressFamily *make_IPAddressFamily(IPAddrBlocks *addr, | ||
| 506 | const unsigned afi, | ||
| 507 | const unsigned *safi) | ||
| 508 | { | ||
| 509 | IPAddressFamily *f; | ||
| 510 | unsigned char key[3]; | ||
| 511 | unsigned keylen; | ||
| 512 | int i; | ||
| 513 | |||
| 514 | key[0] = (afi >> 8) & 0xFF; | ||
| 515 | key[1] = afi & 0xFF; | ||
| 516 | if (safi != NULL) { | ||
| 517 | key[2] = *safi & 0xFF; | ||
| 518 | keylen = 3; | ||
| 519 | } else { | ||
| 520 | keylen = 2; | ||
| 521 | } | ||
| 522 | |||
| 523 | for (i = 0; i < sk_IPAddressFamily_num(addr); i++) { | ||
| 524 | f = sk_IPAddressFamily_value(addr, i); | ||
| 525 | assert(f->addressFamily->data != NULL); | ||
| 526 | if (f->addressFamily->length == keylen && | ||
| 527 | !memcmp(f->addressFamily->data, key, keylen)) | ||
| 528 | return f; | ||
| 529 | } | ||
| 530 | |||
| 531 | if ((f = IPAddressFamily_new()) == NULL) | ||
| 532 | goto err; | ||
| 533 | if (f->ipAddressChoice == NULL && | ||
| 534 | (f->ipAddressChoice = IPAddressChoice_new()) == NULL) | ||
| 535 | goto err; | ||
| 536 | if (f->addressFamily == NULL && | ||
| 537 | (f->addressFamily = ASN1_OCTET_STRING_new()) == NULL) | ||
| 538 | goto err; | ||
| 539 | if (!ASN1_OCTET_STRING_set(f->addressFamily, key, keylen)) | ||
| 540 | goto err; | ||
| 541 | if (!sk_IPAddressFamily_push(addr, f)) | ||
| 542 | goto err; | ||
| 543 | |||
| 544 | return f; | ||
| 545 | |||
| 546 | err: | ||
| 547 | IPAddressFamily_free(f); | ||
| 548 | return NULL; | ||
| 549 | } | ||
| 550 | |||
| 551 | /* | ||
| 552 | * Add an inheritance element. | ||
| 553 | */ | ||
| 554 | int v3_addr_add_inherit(IPAddrBlocks *addr, | ||
| 555 | const unsigned afi, | ||
| 556 | const unsigned *safi) | ||
| 557 | { | ||
| 558 | IPAddressFamily *f = make_IPAddressFamily(addr, afi, safi); | ||
| 559 | if (f == NULL || | ||
| 560 | f->ipAddressChoice == NULL || | ||
| 561 | (f->ipAddressChoice->type == IPAddressChoice_addressesOrRanges && | ||
| 562 | f->ipAddressChoice->u.addressesOrRanges != NULL)) | ||
| 563 | return 0; | ||
| 564 | if (f->ipAddressChoice->type == IPAddressChoice_inherit && | ||
| 565 | f->ipAddressChoice->u.inherit != NULL) | ||
| 566 | return 1; | ||
| 567 | if (f->ipAddressChoice->u.inherit == NULL && | ||
| 568 | (f->ipAddressChoice->u.inherit = ASN1_NULL_new()) == NULL) | ||
| 569 | return 0; | ||
| 570 | f->ipAddressChoice->type = IPAddressChoice_inherit; | ||
| 571 | return 1; | ||
| 572 | } | ||
| 573 | |||
| 574 | /* | ||
| 575 | * Construct an IPAddressOrRange sequence, or return an existing one. | ||
| 576 | */ | ||
| 577 | static IPAddressOrRanges *make_prefix_or_range(IPAddrBlocks *addr, | ||
| 578 | const unsigned afi, | ||
| 579 | const unsigned *safi) | ||
| 580 | { | ||
| 581 | IPAddressFamily *f = make_IPAddressFamily(addr, afi, safi); | ||
| 582 | IPAddressOrRanges *aors = NULL; | ||
| 583 | |||
| 584 | if (f == NULL || | ||
| 585 | f->ipAddressChoice == NULL || | ||
| 586 | (f->ipAddressChoice->type == IPAddressChoice_inherit && | ||
| 587 | f->ipAddressChoice->u.inherit != NULL)) | ||
| 588 | return NULL; | ||
| 589 | if (f->ipAddressChoice->type == IPAddressChoice_addressesOrRanges) | ||
| 590 | aors = f->ipAddressChoice->u.addressesOrRanges; | ||
| 591 | if (aors != NULL) | ||
| 592 | return aors; | ||
| 593 | if ((aors = sk_IPAddressOrRange_new_null()) == NULL) | ||
| 594 | return NULL; | ||
| 595 | switch (afi) { | ||
| 596 | case IANA_AFI_IPV4: | ||
| 597 | sk_IPAddressOrRange_set_cmp_func(aors, v4IPAddressOrRange_cmp); | ||
| 598 | break; | ||
| 599 | case IANA_AFI_IPV6: | ||
| 600 | sk_IPAddressOrRange_set_cmp_func(aors, v6IPAddressOrRange_cmp); | ||
| 601 | break; | ||
| 602 | } | ||
| 603 | f->ipAddressChoice->type = IPAddressChoice_addressesOrRanges; | ||
| 604 | f->ipAddressChoice->u.addressesOrRanges = aors; | ||
| 605 | return aors; | ||
| 606 | } | ||
| 607 | |||
| 608 | /* | ||
| 609 | * Add a prefix. | ||
| 610 | */ | ||
| 611 | int v3_addr_add_prefix(IPAddrBlocks *addr, | ||
| 612 | const unsigned afi, | ||
| 613 | const unsigned *safi, | ||
| 614 | unsigned char *a, | ||
| 615 | const int prefixlen) | ||
| 616 | { | ||
| 617 | IPAddressOrRanges *aors = make_prefix_or_range(addr, afi, safi); | ||
| 618 | IPAddressOrRange *aor; | ||
| 619 | if (aors == NULL || !make_addressPrefix(&aor, a, prefixlen)) | ||
| 620 | return 0; | ||
| 621 | if (sk_IPAddressOrRange_push(aors, aor)) | ||
| 622 | return 1; | ||
| 623 | IPAddressOrRange_free(aor); | ||
| 624 | return 0; | ||
| 625 | } | ||
| 626 | |||
| 627 | /* | ||
| 628 | * Add a range. | ||
| 629 | */ | ||
| 630 | int v3_addr_add_range(IPAddrBlocks *addr, | ||
| 631 | const unsigned afi, | ||
| 632 | const unsigned *safi, | ||
| 633 | unsigned char *min, | ||
| 634 | unsigned char *max) | ||
| 635 | { | ||
| 636 | IPAddressOrRanges *aors = make_prefix_or_range(addr, afi, safi); | ||
| 637 | IPAddressOrRange *aor; | ||
| 638 | int length = length_from_afi(afi); | ||
| 639 | if (aors == NULL) | ||
| 640 | return 0; | ||
| 641 | if (!make_addressRange(&aor, min, max, length)) | ||
| 642 | return 0; | ||
| 643 | if (sk_IPAddressOrRange_push(aors, aor)) | ||
| 644 | return 1; | ||
| 645 | IPAddressOrRange_free(aor); | ||
| 646 | return 0; | ||
| 647 | } | ||
| 648 | |||
| 649 | /* | ||
| 650 | * Extract min and max values from an IPAddressOrRange. | ||
| 651 | */ | ||
| 652 | static void extract_min_max(IPAddressOrRange *aor, | ||
| 653 | unsigned char *min, | ||
| 654 | unsigned char *max, | ||
| 655 | int length) | ||
| 656 | { | ||
| 657 | assert(aor != NULL && min != NULL && max != NULL); | ||
| 658 | switch (aor->type) { | ||
| 659 | case IPAddressOrRange_addressPrefix: | ||
| 660 | addr_expand(min, aor->u.addressPrefix, length, 0x00); | ||
| 661 | addr_expand(max, aor->u.addressPrefix, length, 0xFF); | ||
| 662 | return; | ||
| 663 | case IPAddressOrRange_addressRange: | ||
| 664 | addr_expand(min, aor->u.addressRange->min, length, 0x00); | ||
| 665 | addr_expand(max, aor->u.addressRange->max, length, 0xFF); | ||
| 666 | return; | ||
| 667 | } | ||
| 668 | } | ||
| 669 | |||
| 670 | /* | ||
| 671 | * Public wrapper for extract_min_max(). | ||
| 672 | */ | ||
| 673 | int v3_addr_get_range(IPAddressOrRange *aor, | ||
| 674 | const unsigned afi, | ||
| 675 | unsigned char *min, | ||
| 676 | unsigned char *max, | ||
| 677 | const int length) | ||
| 678 | { | ||
| 679 | int afi_length = length_from_afi(afi); | ||
| 680 | if (aor == NULL || min == NULL || max == NULL || | ||
| 681 | afi_length == 0 || length < afi_length || | ||
| 682 | (aor->type != IPAddressOrRange_addressPrefix && | ||
| 683 | aor->type != IPAddressOrRange_addressRange)) | ||
| 684 | return 0; | ||
| 685 | extract_min_max(aor, min, max, afi_length); | ||
| 686 | return afi_length; | ||
| 687 | } | ||
| 688 | |||
| 689 | /* | ||
| 690 | * Sort comparision function for a sequence of IPAddressFamily. | ||
| 691 | * | ||
| 692 | * The last paragraph of RFC 3779 2.2.3.3 is slightly ambiguous about | ||
| 693 | * the ordering: I can read it as meaning that IPv6 without a SAFI | ||
| 694 | * comes before IPv4 with a SAFI, which seems pretty weird. The | ||
| 695 | * examples in appendix B suggest that the author intended the | ||
| 696 | * null-SAFI rule to apply only within a single AFI, which is what I | ||
| 697 | * would have expected and is what the following code implements. | ||
| 698 | */ | ||
| 699 | static int IPAddressFamily_cmp(const IPAddressFamily * const *a_, | ||
| 700 | const IPAddressFamily * const *b_) | ||
| 701 | { | ||
| 702 | const ASN1_OCTET_STRING *a = (*a_)->addressFamily; | ||
| 703 | const ASN1_OCTET_STRING *b = (*b_)->addressFamily; | ||
| 704 | int len = ((a->length <= b->length) ? a->length : b->length); | ||
| 705 | int cmp = memcmp(a->data, b->data, len); | ||
| 706 | return cmp ? cmp : a->length - b->length; | ||
| 707 | } | ||
| 708 | |||
| 709 | /* | ||
| 710 | * Check whether an IPAddrBLocks is in canonical form. | ||
| 711 | */ | ||
| 712 | int v3_addr_is_canonical(IPAddrBlocks *addr) | ||
| 713 | { | ||
| 714 | unsigned char a_min[ADDR_RAW_BUF_LEN], a_max[ADDR_RAW_BUF_LEN]; | ||
| 715 | unsigned char b_min[ADDR_RAW_BUF_LEN], b_max[ADDR_RAW_BUF_LEN]; | ||
| 716 | IPAddressOrRanges *aors; | ||
| 717 | int i, j, k; | ||
| 718 | |||
| 719 | /* | ||
| 720 | * Empty extension is cannonical. | ||
| 721 | */ | ||
| 722 | if (addr == NULL) | ||
| 723 | return 1; | ||
| 724 | |||
| 725 | /* | ||
| 726 | * Check whether the top-level list is in order. | ||
| 727 | */ | ||
| 728 | for (i = 0; i < sk_IPAddressFamily_num(addr) - 1; i++) { | ||
| 729 | const IPAddressFamily *a = sk_IPAddressFamily_value(addr, i); | ||
| 730 | const IPAddressFamily *b = sk_IPAddressFamily_value(addr, i + 1); | ||
| 731 | if (IPAddressFamily_cmp(&a, &b) >= 0) | ||
| 732 | return 0; | ||
| 733 | } | ||
| 734 | |||
| 735 | /* | ||
| 736 | * Top level's ok, now check each address family. | ||
| 737 | */ | ||
| 738 | for (i = 0; i < sk_IPAddressFamily_num(addr); i++) { | ||
| 739 | IPAddressFamily *f = sk_IPAddressFamily_value(addr, i); | ||
| 740 | int length = length_from_afi(v3_addr_get_afi(f)); | ||
| 741 | |||
| 742 | /* | ||
| 743 | * Inheritance is canonical. Anything other than inheritance or | ||
| 744 | * a SEQUENCE OF IPAddressOrRange is an ASN.1 error or something. | ||
| 745 | */ | ||
| 746 | if (f == NULL || f->ipAddressChoice == NULL) | ||
| 747 | return 0; | ||
| 748 | switch (f->ipAddressChoice->type) { | ||
| 749 | case IPAddressChoice_inherit: | ||
| 750 | continue; | ||
| 751 | case IPAddressChoice_addressesOrRanges: | ||
| 752 | break; | ||
| 753 | default: | ||
| 754 | return 0; | ||
| 755 | } | ||
| 756 | |||
| 757 | /* | ||
| 758 | * It's an IPAddressOrRanges sequence, check it. | ||
| 759 | */ | ||
| 760 | aors = f->ipAddressChoice->u.addressesOrRanges; | ||
| 761 | if (sk_IPAddressOrRange_num(aors) == 0) | ||
| 762 | return 0; | ||
| 763 | for (j = 0; j < sk_IPAddressOrRange_num(aors) - 1; j++) { | ||
| 764 | IPAddressOrRange *a = sk_IPAddressOrRange_value(aors, j); | ||
| 765 | IPAddressOrRange *b = sk_IPAddressOrRange_value(aors, j + 1); | ||
| 766 | |||
| 767 | extract_min_max(a, a_min, a_max, length); | ||
| 768 | extract_min_max(b, b_min, b_max, length); | ||
| 769 | |||
| 770 | /* | ||
| 771 | * Punt misordered list, overlapping start, or inverted range. | ||
| 772 | */ | ||
| 773 | if (memcmp(a_min, b_min, length) >= 0 || | ||
| 774 | memcmp(a_min, a_max, length) > 0 || | ||
| 775 | memcmp(b_min, b_max, length) > 0) | ||
| 776 | return 0; | ||
| 777 | |||
| 778 | /* | ||
| 779 | * Punt if adjacent or overlapping. Check for adjacency by | ||
| 780 | * subtracting one from b_min first. | ||
| 781 | */ | ||
| 782 | for (k = length - 1; k >= 0 && b_min[k]-- == 0x00; k--) | ||
| 783 | ; | ||
| 784 | if (memcmp(a_max, b_min, length) >= 0) | ||
| 785 | return 0; | ||
| 786 | |||
| 787 | /* | ||
| 788 | * Check for range that should be expressed as a prefix. | ||
| 789 | */ | ||
| 790 | if (a->type == IPAddressOrRange_addressRange && | ||
| 791 | range_should_be_prefix(a_min, a_max, length) >= 0) | ||
| 792 | return 0; | ||
| 793 | } | ||
| 794 | |||
| 795 | /* | ||
| 796 | * Check final range to see if it should be a prefix. | ||
| 797 | */ | ||
| 798 | j = sk_IPAddressOrRange_num(aors) - 1; | ||
| 799 | { | ||
| 800 | IPAddressOrRange *a = sk_IPAddressOrRange_value(aors, j); | ||
| 801 | if (a->type == IPAddressOrRange_addressRange) { | ||
| 802 | extract_min_max(a, a_min, a_max, length); | ||
| 803 | if (range_should_be_prefix(a_min, a_max, length) >= 0) | ||
| 804 | return 0; | ||
| 805 | } | ||
| 806 | } | ||
| 807 | } | ||
| 808 | |||
| 809 | /* | ||
| 810 | * If we made it through all that, we're happy. | ||
| 811 | */ | ||
| 812 | return 1; | ||
| 813 | } | ||
| 814 | |||
| 815 | /* | ||
| 816 | * Whack an IPAddressOrRanges into canonical form. | ||
| 817 | */ | ||
| 818 | static int IPAddressOrRanges_canonize(IPAddressOrRanges *aors, | ||
| 819 | const unsigned afi) | ||
| 820 | { | ||
| 821 | int i, j, length = length_from_afi(afi); | ||
| 822 | |||
| 823 | /* | ||
| 824 | * Sort the IPAddressOrRanges sequence. | ||
| 825 | */ | ||
| 826 | sk_IPAddressOrRange_sort(aors); | ||
| 827 | |||
| 828 | /* | ||
| 829 | * Clean up representation issues, punt on duplicates or overlaps. | ||
| 830 | */ | ||
| 831 | for (i = 0; i < sk_IPAddressOrRange_num(aors) - 1; i++) { | ||
| 832 | IPAddressOrRange *a = sk_IPAddressOrRange_value(aors, i); | ||
| 833 | IPAddressOrRange *b = sk_IPAddressOrRange_value(aors, i + 1); | ||
| 834 | unsigned char a_min[ADDR_RAW_BUF_LEN], a_max[ADDR_RAW_BUF_LEN]; | ||
| 835 | unsigned char b_min[ADDR_RAW_BUF_LEN], b_max[ADDR_RAW_BUF_LEN]; | ||
| 836 | |||
| 837 | extract_min_max(a, a_min, a_max, length); | ||
| 838 | extract_min_max(b, b_min, b_max, length); | ||
| 839 | |||
| 840 | /* | ||
| 841 | * Punt overlaps. | ||
| 842 | */ | ||
| 843 | if (memcmp(a_max, b_min, length) >= 0) | ||
| 844 | return 0; | ||
| 845 | |||
| 846 | /* | ||
| 847 | * Merge if a and b are adjacent. We check for | ||
| 848 | * adjacency by subtracting one from b_min first. | ||
| 849 | */ | ||
| 850 | for (j = length - 1; j >= 0 && b_min[j]-- == 0x00; j--) | ||
| 851 | ; | ||
| 852 | if (memcmp(a_max, b_min, length) == 0) { | ||
| 853 | IPAddressOrRange *merged; | ||
| 854 | if (!make_addressRange(&merged, a_min, b_max, length)) | ||
| 855 | return 0; | ||
| 856 | sk_IPAddressOrRange_set(aors, i, merged); | ||
| 857 | sk_IPAddressOrRange_delete(aors, i + 1); | ||
| 858 | IPAddressOrRange_free(a); | ||
| 859 | IPAddressOrRange_free(b); | ||
| 860 | --i; | ||
| 861 | continue; | ||
| 862 | } | ||
| 863 | } | ||
| 864 | |||
| 865 | return 1; | ||
| 866 | } | ||
| 867 | |||
| 868 | /* | ||
| 869 | * Whack an IPAddrBlocks extension into canonical form. | ||
| 870 | */ | ||
| 871 | int v3_addr_canonize(IPAddrBlocks *addr) | ||
| 872 | { | ||
| 873 | int i; | ||
| 874 | for (i = 0; i < sk_IPAddressFamily_num(addr); i++) { | ||
| 875 | IPAddressFamily *f = sk_IPAddressFamily_value(addr, i); | ||
| 876 | if (f->ipAddressChoice->type == IPAddressChoice_addressesOrRanges && | ||
| 877 | !IPAddressOrRanges_canonize(f->ipAddressChoice->u.addressesOrRanges, | ||
| 878 | v3_addr_get_afi(f))) | ||
| 879 | return 0; | ||
| 880 | } | ||
| 881 | sk_IPAddressFamily_sort(addr); | ||
| 882 | assert(v3_addr_is_canonical(addr)); | ||
| 883 | return 1; | ||
| 884 | } | ||
| 885 | |||
| 886 | /* | ||
| 887 | * v2i handler for the IPAddrBlocks extension. | ||
| 888 | */ | ||
| 889 | static void *v2i_IPAddrBlocks(struct v3_ext_method *method, | ||
| 890 | struct v3_ext_ctx *ctx, | ||
| 891 | STACK_OF(CONF_VALUE) *values) | ||
| 892 | { | ||
| 893 | static const char v4addr_chars[] = "0123456789."; | ||
| 894 | static const char v6addr_chars[] = "0123456789.:abcdefABCDEF"; | ||
| 895 | IPAddrBlocks *addr = NULL; | ||
| 896 | char *s = NULL, *t; | ||
| 897 | int i; | ||
| 898 | |||
| 899 | if ((addr = sk_IPAddressFamily_new(IPAddressFamily_cmp)) == NULL) { | ||
| 900 | X509V3err(X509V3_F_V2I_IPADDRBLOCKS, ERR_R_MALLOC_FAILURE); | ||
| 901 | return NULL; | ||
| 902 | } | ||
| 903 | |||
| 904 | for (i = 0; i < sk_CONF_VALUE_num(values); i++) { | ||
| 905 | CONF_VALUE *val = sk_CONF_VALUE_value(values, i); | ||
| 906 | unsigned char min[ADDR_RAW_BUF_LEN], max[ADDR_RAW_BUF_LEN]; | ||
| 907 | unsigned afi, *safi = NULL, safi_; | ||
| 908 | const char *addr_chars; | ||
| 909 | int prefixlen, i1, i2, delim, length; | ||
| 910 | |||
| 911 | if ( !name_cmp(val->name, "IPv4")) { | ||
| 912 | afi = IANA_AFI_IPV4; | ||
| 913 | } else if (!name_cmp(val->name, "IPv6")) { | ||
| 914 | afi = IANA_AFI_IPV6; | ||
| 915 | } else if (!name_cmp(val->name, "IPv4-SAFI")) { | ||
| 916 | afi = IANA_AFI_IPV4; | ||
| 917 | safi = &safi_; | ||
| 918 | } else if (!name_cmp(val->name, "IPv6-SAFI")) { | ||
| 919 | afi = IANA_AFI_IPV6; | ||
| 920 | safi = &safi_; | ||
| 921 | } else { | ||
| 922 | X509V3err(X509V3_F_V2I_IPADDRBLOCKS, X509V3_R_EXTENSION_NAME_ERROR); | ||
| 923 | X509V3_conf_err(val); | ||
| 924 | goto err; | ||
| 925 | } | ||
| 926 | |||
| 927 | switch (afi) { | ||
| 928 | case IANA_AFI_IPV4: | ||
| 929 | addr_chars = v4addr_chars; | ||
| 930 | break; | ||
| 931 | case IANA_AFI_IPV6: | ||
| 932 | addr_chars = v6addr_chars; | ||
| 933 | break; | ||
| 934 | } | ||
| 935 | |||
| 936 | length = length_from_afi(afi); | ||
| 937 | |||
| 938 | /* | ||
| 939 | * Handle SAFI, if any, and BUF_strdup() so we can null-terminate | ||
| 940 | * the other input values. | ||
| 941 | */ | ||
| 942 | if (safi != NULL) { | ||
| 943 | *safi = strtoul(val->value, &t, 0); | ||
| 944 | t += strspn(t, " \t"); | ||
| 945 | if (*safi > 0xFF || *t++ != ':') { | ||
| 946 | X509V3err(X509V3_F_V2I_IPADDRBLOCKS, X509V3_R_INVALID_SAFI); | ||
| 947 | X509V3_conf_err(val); | ||
| 948 | goto err; | ||
| 949 | } | ||
| 950 | t += strspn(t, " \t"); | ||
| 951 | s = BUF_strdup(t); | ||
| 952 | } else { | ||
| 953 | s = BUF_strdup(val->value); | ||
| 954 | } | ||
| 955 | if (s == NULL) { | ||
| 956 | X509V3err(X509V3_F_V2I_IPADDRBLOCKS, ERR_R_MALLOC_FAILURE); | ||
| 957 | goto err; | ||
| 958 | } | ||
| 959 | |||
| 960 | /* | ||
| 961 | * Check for inheritance. Not worth additional complexity to | ||
| 962 | * optimize this (seldom-used) case. | ||
| 963 | */ | ||
| 964 | if (!strcmp(s, "inherit")) { | ||
| 965 | if (!v3_addr_add_inherit(addr, afi, safi)) { | ||
| 966 | X509V3err(X509V3_F_V2I_IPADDRBLOCKS, X509V3_R_INVALID_INHERITANCE); | ||
| 967 | X509V3_conf_err(val); | ||
| 968 | goto err; | ||
| 969 | } | ||
| 970 | OPENSSL_free(s); | ||
| 971 | s = NULL; | ||
| 972 | continue; | ||
| 973 | } | ||
| 974 | |||
| 975 | i1 = strspn(s, addr_chars); | ||
| 976 | i2 = i1 + strspn(s + i1, " \t"); | ||
| 977 | delim = s[i2++]; | ||
| 978 | s[i1] = '\0'; | ||
| 979 | |||
| 980 | if (a2i_ipadd(min, s) != length) { | ||
| 981 | X509V3err(X509V3_F_V2I_IPADDRBLOCKS, X509V3_R_INVALID_IPADDRESS); | ||
| 982 | X509V3_conf_err(val); | ||
| 983 | goto err; | ||
| 984 | } | ||
| 985 | |||
| 986 | switch (delim) { | ||
| 987 | case '/': | ||
| 988 | prefixlen = (int) strtoul(s + i2, &t, 10); | ||
| 989 | if (t == s + i2 || *t != '\0') { | ||
| 990 | X509V3err(X509V3_F_V2I_IPADDRBLOCKS, X509V3_R_EXTENSION_VALUE_ERROR); | ||
| 991 | X509V3_conf_err(val); | ||
| 992 | goto err; | ||
| 993 | } | ||
| 994 | if (!v3_addr_add_prefix(addr, afi, safi, min, prefixlen)) { | ||
| 995 | X509V3err(X509V3_F_V2I_IPADDRBLOCKS, ERR_R_MALLOC_FAILURE); | ||
| 996 | goto err; | ||
| 997 | } | ||
| 998 | break; | ||
| 999 | case '-': | ||
| 1000 | i1 = i2 + strspn(s + i2, " \t"); | ||
| 1001 | i2 = i1 + strspn(s + i1, addr_chars); | ||
| 1002 | if (i1 == i2 || s[i2] != '\0') { | ||
| 1003 | X509V3err(X509V3_F_V2I_IPADDRBLOCKS, X509V3_R_EXTENSION_VALUE_ERROR); | ||
| 1004 | X509V3_conf_err(val); | ||
| 1005 | goto err; | ||
| 1006 | } | ||
| 1007 | if (a2i_ipadd(max, s + i1) != length) { | ||
| 1008 | X509V3err(X509V3_F_V2I_IPADDRBLOCKS, X509V3_R_INVALID_IPADDRESS); | ||
| 1009 | X509V3_conf_err(val); | ||
| 1010 | goto err; | ||
| 1011 | } | ||
| 1012 | if (!v3_addr_add_range(addr, afi, safi, min, max)) { | ||
| 1013 | X509V3err(X509V3_F_V2I_IPADDRBLOCKS, ERR_R_MALLOC_FAILURE); | ||
| 1014 | goto err; | ||
| 1015 | } | ||
| 1016 | break; | ||
| 1017 | case '\0': | ||
| 1018 | if (!v3_addr_add_prefix(addr, afi, safi, min, length * 8)) { | ||
| 1019 | X509V3err(X509V3_F_V2I_IPADDRBLOCKS, ERR_R_MALLOC_FAILURE); | ||
| 1020 | goto err; | ||
| 1021 | } | ||
| 1022 | break; | ||
| 1023 | default: | ||
| 1024 | X509V3err(X509V3_F_V2I_IPADDRBLOCKS, X509V3_R_EXTENSION_VALUE_ERROR); | ||
| 1025 | X509V3_conf_err(val); | ||
| 1026 | goto err; | ||
| 1027 | } | ||
| 1028 | |||
| 1029 | OPENSSL_free(s); | ||
| 1030 | s = NULL; | ||
| 1031 | } | ||
| 1032 | |||
| 1033 | /* | ||
| 1034 | * Canonize the result, then we're done. | ||
| 1035 | */ | ||
| 1036 | if (!v3_addr_canonize(addr)) | ||
| 1037 | goto err; | ||
| 1038 | return addr; | ||
| 1039 | |||
| 1040 | err: | ||
| 1041 | OPENSSL_free(s); | ||
| 1042 | sk_IPAddressFamily_pop_free(addr, IPAddressFamily_free); | ||
| 1043 | return NULL; | ||
| 1044 | } | ||
| 1045 | |||
| 1046 | /* | ||
| 1047 | * OpenSSL dispatch | ||
| 1048 | */ | ||
| 1049 | const X509V3_EXT_METHOD v3_addr = { | ||
| 1050 | NID_sbgp_ipAddrBlock, /* nid */ | ||
| 1051 | 0, /* flags */ | ||
| 1052 | ASN1_ITEM_ref(IPAddrBlocks), /* template */ | ||
| 1053 | 0, 0, 0, 0, /* old functions, ignored */ | ||
| 1054 | 0, /* i2s */ | ||
| 1055 | 0, /* s2i */ | ||
| 1056 | 0, /* i2v */ | ||
| 1057 | v2i_IPAddrBlocks, /* v2i */ | ||
| 1058 | i2r_IPAddrBlocks, /* i2r */ | ||
| 1059 | 0, /* r2i */ | ||
| 1060 | NULL /* extension-specific data */ | ||
| 1061 | }; | ||
| 1062 | |||
| 1063 | /* | ||
| 1064 | * Figure out whether extension sues inheritance. | ||
| 1065 | */ | ||
| 1066 | int v3_addr_inherits(IPAddrBlocks *addr) | ||
| 1067 | { | ||
| 1068 | int i; | ||
| 1069 | if (addr == NULL) | ||
| 1070 | return 0; | ||
| 1071 | for (i = 0; i < sk_IPAddressFamily_num(addr); i++) { | ||
| 1072 | IPAddressFamily *f = sk_IPAddressFamily_value(addr, i); | ||
| 1073 | if (f->ipAddressChoice->type == IPAddressChoice_inherit) | ||
| 1074 | return 1; | ||
| 1075 | } | ||
| 1076 | return 0; | ||
| 1077 | } | ||
| 1078 | |||
| 1079 | /* | ||
| 1080 | * Figure out whether parent contains child. | ||
| 1081 | */ | ||
| 1082 | static int addr_contains(IPAddressOrRanges *parent, | ||
| 1083 | IPAddressOrRanges *child, | ||
| 1084 | int length) | ||
| 1085 | { | ||
| 1086 | unsigned char p_min[ADDR_RAW_BUF_LEN], p_max[ADDR_RAW_BUF_LEN]; | ||
| 1087 | unsigned char c_min[ADDR_RAW_BUF_LEN], c_max[ADDR_RAW_BUF_LEN]; | ||
| 1088 | int p, c; | ||
| 1089 | |||
| 1090 | if (child == NULL || parent == child) | ||
| 1091 | return 1; | ||
| 1092 | if (parent == NULL) | ||
| 1093 | return 0; | ||
| 1094 | |||
| 1095 | p = 0; | ||
| 1096 | for (c = 0; c < sk_IPAddressOrRange_num(child); c++) { | ||
| 1097 | extract_min_max(sk_IPAddressOrRange_value(child, c), | ||
| 1098 | c_min, c_max, length); | ||
| 1099 | for (;; p++) { | ||
| 1100 | if (p >= sk_IPAddressOrRange_num(parent)) | ||
| 1101 | return 0; | ||
| 1102 | extract_min_max(sk_IPAddressOrRange_value(parent, p), | ||
| 1103 | p_min, p_max, length); | ||
| 1104 | if (memcmp(p_max, c_max, length) < 0) | ||
| 1105 | continue; | ||
| 1106 | if (memcmp(p_min, c_min, length) > 0) | ||
| 1107 | return 0; | ||
| 1108 | break; | ||
| 1109 | } | ||
| 1110 | } | ||
| 1111 | |||
| 1112 | return 1; | ||
| 1113 | } | ||
| 1114 | |||
| 1115 | /* | ||
| 1116 | * Test whether a is a subset of b. | ||
| 1117 | */ | ||
| 1118 | int v3_addr_subset(IPAddrBlocks *a, IPAddrBlocks *b) | ||
| 1119 | { | ||
| 1120 | int i; | ||
| 1121 | if (a == NULL || a == b) | ||
| 1122 | return 1; | ||
| 1123 | if (b == NULL || v3_addr_inherits(a) || v3_addr_inherits(b)) | ||
| 1124 | return 0; | ||
| 1125 | sk_IPAddressFamily_set_cmp_func(b, IPAddressFamily_cmp); | ||
| 1126 | for (i = 0; i < sk_IPAddressFamily_num(a); i++) { | ||
| 1127 | IPAddressFamily *fa = sk_IPAddressFamily_value(a, i); | ||
| 1128 | int j = sk_IPAddressFamily_find(b, fa); | ||
| 1129 | IPAddressFamily *fb = sk_IPAddressFamily_value(b, j); | ||
| 1130 | if (!addr_contains(fb->ipAddressChoice->u.addressesOrRanges, | ||
| 1131 | fa->ipAddressChoice->u.addressesOrRanges, | ||
| 1132 | length_from_afi(v3_addr_get_afi(fb)))) | ||
| 1133 | return 0; | ||
| 1134 | } | ||
| 1135 | return 1; | ||
| 1136 | } | ||
| 1137 | |||
| 1138 | /* | ||
| 1139 | * Validation error handling via callback. | ||
| 1140 | */ | ||
| 1141 | #define validation_err(_err_) \ | ||
| 1142 | do { \ | ||
| 1143 | if (ctx != NULL) { \ | ||
| 1144 | ctx->error = _err_; \ | ||
| 1145 | ctx->error_depth = i; \ | ||
| 1146 | ctx->current_cert = x; \ | ||
| 1147 | ret = ctx->verify_cb(0, ctx); \ | ||
| 1148 | } else { \ | ||
| 1149 | ret = 0; \ | ||
| 1150 | } \ | ||
| 1151 | if (!ret) \ | ||
| 1152 | goto done; \ | ||
| 1153 | } while (0) | ||
| 1154 | |||
| 1155 | /* | ||
| 1156 | * Core code for RFC 3779 2.3 path validation. | ||
| 1157 | */ | ||
| 1158 | static int v3_addr_validate_path_internal(X509_STORE_CTX *ctx, | ||
| 1159 | STACK_OF(X509) *chain, | ||
| 1160 | IPAddrBlocks *ext) | ||
| 1161 | { | ||
| 1162 | IPAddrBlocks *child = NULL; | ||
| 1163 | int i, j, ret = 1; | ||
| 1164 | X509 *x = NULL; | ||
| 1165 | |||
| 1166 | assert(chain != NULL && sk_X509_num(chain) > 0); | ||
| 1167 | assert(ctx != NULL || ext != NULL); | ||
| 1168 | assert(ctx == NULL || ctx->verify_cb != NULL); | ||
| 1169 | |||
| 1170 | /* | ||
| 1171 | * Figure out where to start. If we don't have an extension to | ||
| 1172 | * check, we're done. Otherwise, check canonical form and | ||
| 1173 | * set up for walking up the chain. | ||
| 1174 | */ | ||
| 1175 | if (ext != NULL) { | ||
| 1176 | i = -1; | ||
| 1177 | } else { | ||
| 1178 | i = 0; | ||
| 1179 | x = sk_X509_value(chain, i); | ||
| 1180 | assert(x != NULL); | ||
| 1181 | if ((ext = x->rfc3779_addr) == NULL) | ||
| 1182 | goto done; | ||
| 1183 | } | ||
| 1184 | if (!v3_addr_is_canonical(ext)) | ||
| 1185 | validation_err(X509_V_ERR_INVALID_EXTENSION); | ||
| 1186 | sk_IPAddressFamily_set_cmp_func(ext, IPAddressFamily_cmp); | ||
| 1187 | if ((child = sk_IPAddressFamily_dup(ext)) == NULL) { | ||
| 1188 | X509V3err(X509V3_F_V3_ADDR_VALIDATE_PATH_INTERNAL, ERR_R_MALLOC_FAILURE); | ||
| 1189 | ret = 0; | ||
| 1190 | goto done; | ||
| 1191 | } | ||
| 1192 | |||
| 1193 | /* | ||
| 1194 | * Now walk up the chain. No cert may list resources that its | ||
| 1195 | * parent doesn't list. | ||
| 1196 | */ | ||
| 1197 | for (i++; i < sk_X509_num(chain); i++) { | ||
| 1198 | x = sk_X509_value(chain, i); | ||
| 1199 | assert(x != NULL); | ||
| 1200 | if (!v3_addr_is_canonical(x->rfc3779_addr)) | ||
| 1201 | validation_err(X509_V_ERR_INVALID_EXTENSION); | ||
| 1202 | if (x->rfc3779_addr == NULL) { | ||
| 1203 | for (j = 0; j < sk_IPAddressFamily_num(child); j++) { | ||
| 1204 | IPAddressFamily *fc = sk_IPAddressFamily_value(child, j); | ||
| 1205 | if (fc->ipAddressChoice->type != IPAddressChoice_inherit) { | ||
| 1206 | validation_err(X509_V_ERR_UNNESTED_RESOURCE); | ||
| 1207 | break; | ||
| 1208 | } | ||
| 1209 | } | ||
| 1210 | continue; | ||
| 1211 | } | ||
| 1212 | sk_IPAddressFamily_set_cmp_func(x->rfc3779_addr, IPAddressFamily_cmp); | ||
| 1213 | for (j = 0; j < sk_IPAddressFamily_num(child); j++) { | ||
| 1214 | IPAddressFamily *fc = sk_IPAddressFamily_value(child, j); | ||
| 1215 | int k = sk_IPAddressFamily_find(x->rfc3779_addr, fc); | ||
| 1216 | IPAddressFamily *fp = sk_IPAddressFamily_value(x->rfc3779_addr, k); | ||
| 1217 | if (fp == NULL) { | ||
| 1218 | if (fc->ipAddressChoice->type == IPAddressChoice_addressesOrRanges) { | ||
| 1219 | validation_err(X509_V_ERR_UNNESTED_RESOURCE); | ||
| 1220 | break; | ||
| 1221 | } | ||
| 1222 | continue; | ||
| 1223 | } | ||
| 1224 | if (fp->ipAddressChoice->type == IPAddressChoice_addressesOrRanges) { | ||
| 1225 | if (fc->ipAddressChoice->type == IPAddressChoice_inherit || | ||
| 1226 | addr_contains(fp->ipAddressChoice->u.addressesOrRanges, | ||
| 1227 | fc->ipAddressChoice->u.addressesOrRanges, | ||
| 1228 | length_from_afi(v3_addr_get_afi(fc)))) | ||
| 1229 | sk_IPAddressFamily_set(child, j, fp); | ||
| 1230 | else | ||
| 1231 | validation_err(X509_V_ERR_UNNESTED_RESOURCE); | ||
| 1232 | } | ||
| 1233 | } | ||
| 1234 | } | ||
| 1235 | |||
| 1236 | /* | ||
| 1237 | * Trust anchor can't inherit. | ||
| 1238 | */ | ||
| 1239 | if (x->rfc3779_addr != NULL) { | ||
| 1240 | for (j = 0; j < sk_IPAddressFamily_num(x->rfc3779_addr); j++) { | ||
| 1241 | IPAddressFamily *fp = sk_IPAddressFamily_value(x->rfc3779_addr, j); | ||
| 1242 | if (fp->ipAddressChoice->type == IPAddressChoice_inherit && | ||
| 1243 | sk_IPAddressFamily_find(child, fp) >= 0) | ||
| 1244 | validation_err(X509_V_ERR_UNNESTED_RESOURCE); | ||
| 1245 | } | ||
| 1246 | } | ||
| 1247 | |||
| 1248 | done: | ||
| 1249 | sk_IPAddressFamily_free(child); | ||
| 1250 | return ret; | ||
| 1251 | } | ||
| 1252 | |||
| 1253 | #undef validation_err | ||
| 1254 | |||
| 1255 | /* | ||
| 1256 | * RFC 3779 2.3 path validation -- called from X509_verify_cert(). | ||
| 1257 | */ | ||
| 1258 | int v3_addr_validate_path(X509_STORE_CTX *ctx) | ||
| 1259 | { | ||
| 1260 | return v3_addr_validate_path_internal(ctx, ctx->chain, NULL); | ||
| 1261 | } | ||
| 1262 | |||
| 1263 | /* | ||
| 1264 | * RFC 3779 2.3 path validation of an extension. | ||
| 1265 | * Test whether chain covers extension. | ||
| 1266 | */ | ||
| 1267 | int v3_addr_validate_resource_set(STACK_OF(X509) *chain, | ||
| 1268 | IPAddrBlocks *ext, | ||
| 1269 | int allow_inheritance) | ||
| 1270 | { | ||
| 1271 | if (ext == NULL) | ||
| 1272 | return 1; | ||
| 1273 | if (chain == NULL || sk_X509_num(chain) == 0) | ||
| 1274 | return 0; | ||
| 1275 | if (!allow_inheritance && v3_addr_inherits(ext)) | ||
| 1276 | return 0; | ||
| 1277 | return v3_addr_validate_path_internal(NULL, chain, ext); | ||
| 1278 | } | ||
| 1279 | |||
| 1280 | #endif /* OPENSSL_NO_RFC3779 */ | ||
