summaryrefslogtreecommitdiff
path: root/src/lib/libcrypto/x509v3/v3_addr.c
diff options
context:
space:
mode:
Diffstat (limited to 'src/lib/libcrypto/x509v3/v3_addr.c')
-rw-r--r--src/lib/libcrypto/x509v3/v3_addr.c1287
1 files changed, 1287 insertions, 0 deletions
diff --git a/src/lib/libcrypto/x509v3/v3_addr.c b/src/lib/libcrypto/x509v3/v3_addr.c
new file mode 100644
index 0000000000..9087d66e0a
--- /dev/null
+++ b/src/lib/libcrypto/x509v3/v3_addr.c
@@ -0,0 +1,1287 @@
1/*
2 * Contributed to the OpenSSL Project by the American Registry for
3 * Internet Numbers ("ARIN").
4 */
5/* ====================================================================
6 * Copyright (c) 2006 The OpenSSL Project. All rights reserved.
7 *
8 * Redistribution and use in source and binary forms, with or without
9 * modification, are permitted provided that the following conditions
10 * are met:
11 *
12 * 1. Redistributions of source code must retain the above copyright
13 * notice, this list of conditions and the following disclaimer.
14 *
15 * 2. Redistributions in binary form must reproduce the above copyright
16 * notice, this list of conditions and the following disclaimer in
17 * the documentation and/or other materials provided with the
18 * distribution.
19 *
20 * 3. All advertising materials mentioning features or use of this
21 * software must display the following acknowledgment:
22 * "This product includes software developed by the OpenSSL Project
23 * for use in the OpenSSL Toolkit. (http://www.OpenSSL.org/)"
24 *
25 * 4. The names "OpenSSL Toolkit" and "OpenSSL Project" must not be used to
26 * endorse or promote products derived from this software without
27 * prior written permission. For written permission, please contact
28 * licensing@OpenSSL.org.
29 *
30 * 5. Products derived from this software may not be called "OpenSSL"
31 * nor may "OpenSSL" appear in their names without prior written
32 * permission of the OpenSSL Project.
33 *
34 * 6. Redistributions of any form whatsoever must retain the following
35 * acknowledgment:
36 * "This product includes software developed by the OpenSSL Project
37 * for use in the OpenSSL Toolkit (http://www.OpenSSL.org/)"
38 *
39 * THIS SOFTWARE IS PROVIDED BY THE OpenSSL PROJECT ``AS IS'' AND ANY
40 * EXPRESSED OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
41 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
42 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE OpenSSL PROJECT OR
43 * ITS CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
44 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
45 * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
46 * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
47 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
48 * STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
49 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED
50 * OF THE POSSIBILITY OF SUCH DAMAGE.
51 * ====================================================================
52 *
53 * This product includes cryptographic software written by Eric Young
54 * (eay@cryptsoft.com). This product includes software written by Tim
55 * Hudson (tjh@cryptsoft.com).
56 */
57
58/*
59 * Implementation of RFC 3779 section 2.2.
60 */
61
62#include <stdio.h>
63#include <stdlib.h>
64
65#include "cryptlib.h"
66#include <openssl/conf.h>
67#include <openssl/asn1.h>
68#include <openssl/asn1t.h>
69#include <openssl/buffer.h>
70#include <openssl/x509v3.h>
71
72#ifndef OPENSSL_NO_RFC3779
73
74/*
75 * OpenSSL ASN.1 template translation of RFC 3779 2.2.3.
76 */
77
78ASN1_SEQUENCE(IPAddressRange) = {
79 ASN1_SIMPLE(IPAddressRange, min, ASN1_BIT_STRING),
80 ASN1_SIMPLE(IPAddressRange, max, ASN1_BIT_STRING)
81} ASN1_SEQUENCE_END(IPAddressRange)
82
83ASN1_CHOICE(IPAddressOrRange) = {
84 ASN1_SIMPLE(IPAddressOrRange, u.addressPrefix, ASN1_BIT_STRING),
85 ASN1_SIMPLE(IPAddressOrRange, u.addressRange, IPAddressRange)
86} ASN1_CHOICE_END(IPAddressOrRange)
87
88ASN1_CHOICE(IPAddressChoice) = {
89 ASN1_SIMPLE(IPAddressChoice, u.inherit, ASN1_NULL),
90 ASN1_SEQUENCE_OF(IPAddressChoice, u.addressesOrRanges, IPAddressOrRange)
91} ASN1_CHOICE_END(IPAddressChoice)
92
93ASN1_SEQUENCE(IPAddressFamily) = {
94 ASN1_SIMPLE(IPAddressFamily, addressFamily, ASN1_OCTET_STRING),
95 ASN1_SIMPLE(IPAddressFamily, ipAddressChoice, IPAddressChoice)
96} ASN1_SEQUENCE_END(IPAddressFamily)
97
98ASN1_ITEM_TEMPLATE(IPAddrBlocks) =
99 ASN1_EX_TEMPLATE_TYPE(ASN1_TFLG_SEQUENCE_OF, 0,
100 IPAddrBlocks, IPAddressFamily)
101ASN1_ITEM_TEMPLATE_END(IPAddrBlocks)
102
103IMPLEMENT_ASN1_FUNCTIONS(IPAddressRange)
104IMPLEMENT_ASN1_FUNCTIONS(IPAddressOrRange)
105IMPLEMENT_ASN1_FUNCTIONS(IPAddressChoice)
106IMPLEMENT_ASN1_FUNCTIONS(IPAddressFamily)
107
108/*
109 * How much buffer space do we need for a raw address?
110 */
111#define ADDR_RAW_BUF_LEN 16
112
113/*
114 * What's the address length associated with this AFI?
115 */
116static int length_from_afi(const unsigned afi)
117{
118 switch (afi) {
119 case IANA_AFI_IPV4:
120 return 4;
121 case IANA_AFI_IPV6:
122 return 16;
123 default:
124 return 0;
125 }
126}
127
128/*
129 * Extract the AFI from an IPAddressFamily.
130 */
131unsigned int v3_addr_get_afi(const IPAddressFamily *f)
132{
133 return ((f != NULL &&
134 f->addressFamily != NULL &&
135 f->addressFamily->data != NULL)
136 ? ((f->addressFamily->data[0] << 8) |
137 (f->addressFamily->data[1]))
138 : 0);
139}
140
141/*
142 * Expand the bitstring form of an address into a raw byte array.
143 * At the moment this is coded for simplicity, not speed.
144 */
145static void addr_expand(unsigned char *addr,
146 const ASN1_BIT_STRING *bs,
147 const int length,
148 const unsigned char fill)
149{
150 OPENSSL_assert(bs->length >= 0 && bs->length <= length);
151 if (bs->length > 0) {
152 memcpy(addr, bs->data, bs->length);
153 if ((bs->flags & 7) != 0) {
154 unsigned char mask = 0xFF >> (8 - (bs->flags & 7));
155 if (fill == 0)
156 addr[bs->length - 1] &= ~mask;
157 else
158 addr[bs->length - 1] |= mask;
159 }
160 }
161 memset(addr + bs->length, fill, length - bs->length);
162}
163
164/*
165 * Extract the prefix length from a bitstring.
166 */
167#define addr_prefixlen(bs) ((int) ((bs)->length * 8 - ((bs)->flags & 7)))
168
169/*
170 * i2r handler for one address bitstring.
171 */
172static int i2r_address(BIO *out,
173 const unsigned afi,
174 const unsigned char fill,
175 const ASN1_BIT_STRING *bs)
176{
177 unsigned char addr[ADDR_RAW_BUF_LEN];
178 int i, n;
179
180 switch (afi) {
181 case IANA_AFI_IPV4:
182 addr_expand(addr, bs, 4, fill);
183 BIO_printf(out, "%d.%d.%d.%d", addr[0], addr[1], addr[2], addr[3]);
184 break;
185 case IANA_AFI_IPV6:
186 addr_expand(addr, bs, 16, fill);
187 for (n = 16; n > 1 && addr[n-1] == 0x00 && addr[n-2] == 0x00; n -= 2)
188 ;
189 for (i = 0; i < n; i += 2)
190 BIO_printf(out, "%x%s", (addr[i] << 8) | addr[i+1], (i < 14 ? ":" : ""));
191 if (i < 16)
192 BIO_puts(out, ":");
193 if (i == 0)
194 BIO_puts(out, ":");
195 break;
196 default:
197 for (i = 0; i < bs->length; i++)
198 BIO_printf(out, "%s%02x", (i > 0 ? ":" : ""), bs->data[i]);
199 BIO_printf(out, "[%d]", (int) (bs->flags & 7));
200 break;
201 }
202 return 1;
203}
204
205/*
206 * i2r handler for a sequence of addresses and ranges.
207 */
208static int i2r_IPAddressOrRanges(BIO *out,
209 const int indent,
210 const IPAddressOrRanges *aors,
211 const unsigned afi)
212{
213 int i;
214 for (i = 0; i < sk_IPAddressOrRange_num(aors); i++) {
215 const IPAddressOrRange *aor = sk_IPAddressOrRange_value(aors, i);
216 BIO_printf(out, "%*s", indent, "");
217 switch (aor->type) {
218 case IPAddressOrRange_addressPrefix:
219 if (!i2r_address(out, afi, 0x00, aor->u.addressPrefix))
220 return 0;
221 BIO_printf(out, "/%d\n", addr_prefixlen(aor->u.addressPrefix));
222 continue;
223 case IPAddressOrRange_addressRange:
224 if (!i2r_address(out, afi, 0x00, aor->u.addressRange->min))
225 return 0;
226 BIO_puts(out, "-");
227 if (!i2r_address(out, afi, 0xFF, aor->u.addressRange->max))
228 return 0;
229 BIO_puts(out, "\n");
230 continue;
231 }
232 }
233 return 1;
234}
235
236/*
237 * i2r handler for an IPAddrBlocks extension.
238 */
239static int i2r_IPAddrBlocks(const X509V3_EXT_METHOD *method,
240 void *ext,
241 BIO *out,
242 int indent)
243{
244 const IPAddrBlocks *addr = ext;
245 int i;
246 for (i = 0; i < sk_IPAddressFamily_num(addr); i++) {
247 IPAddressFamily *f = sk_IPAddressFamily_value(addr, i);
248 const unsigned int afi = v3_addr_get_afi(f);
249 switch (afi) {
250 case IANA_AFI_IPV4:
251 BIO_printf(out, "%*sIPv4", indent, "");
252 break;
253 case IANA_AFI_IPV6:
254 BIO_printf(out, "%*sIPv6", indent, "");
255 break;
256 default:
257 BIO_printf(out, "%*sUnknown AFI %u", indent, "", afi);
258 break;
259 }
260 if (f->addressFamily->length > 2) {
261 switch (f->addressFamily->data[2]) {
262 case 1:
263 BIO_puts(out, " (Unicast)");
264 break;
265 case 2:
266 BIO_puts(out, " (Multicast)");
267 break;
268 case 3:
269 BIO_puts(out, " (Unicast/Multicast)");
270 break;
271 case 4:
272 BIO_puts(out, " (MPLS)");
273 break;
274 case 64:
275 BIO_puts(out, " (Tunnel)");
276 break;
277 case 65:
278 BIO_puts(out, " (VPLS)");
279 break;
280 case 66:
281 BIO_puts(out, " (BGP MDT)");
282 break;
283 case 128:
284 BIO_puts(out, " (MPLS-labeled VPN)");
285 break;
286 default:
287 BIO_printf(out, " (Unknown SAFI %u)",
288 (unsigned) f->addressFamily->data[2]);
289 break;
290 }
291 }
292 switch (f->ipAddressChoice->type) {
293 case IPAddressChoice_inherit:
294 BIO_puts(out, ": inherit\n");
295 break;
296 case IPAddressChoice_addressesOrRanges:
297 BIO_puts(out, ":\n");
298 if (!i2r_IPAddressOrRanges(out,
299 indent + 2,
300 f->ipAddressChoice->u.addressesOrRanges,
301 afi))
302 return 0;
303 break;
304 }
305 }
306 return 1;
307}
308
309/*
310 * Sort comparison function for a sequence of IPAddressOrRange
311 * elements.
312 */
313static int IPAddressOrRange_cmp(const IPAddressOrRange *a,
314 const IPAddressOrRange *b,
315 const int length)
316{
317 unsigned char addr_a[ADDR_RAW_BUF_LEN], addr_b[ADDR_RAW_BUF_LEN];
318 int prefixlen_a = 0, prefixlen_b = 0;
319 int r;
320
321 switch (a->type) {
322 case IPAddressOrRange_addressPrefix:
323 addr_expand(addr_a, a->u.addressPrefix, length, 0x00);
324 prefixlen_a = addr_prefixlen(a->u.addressPrefix);
325 break;
326 case IPAddressOrRange_addressRange:
327 addr_expand(addr_a, a->u.addressRange->min, length, 0x00);
328 prefixlen_a = length * 8;
329 break;
330 }
331
332 switch (b->type) {
333 case IPAddressOrRange_addressPrefix:
334 addr_expand(addr_b, b->u.addressPrefix, length, 0x00);
335 prefixlen_b = addr_prefixlen(b->u.addressPrefix);
336 break;
337 case IPAddressOrRange_addressRange:
338 addr_expand(addr_b, b->u.addressRange->min, length, 0x00);
339 prefixlen_b = length * 8;
340 break;
341 }
342
343 if ((r = memcmp(addr_a, addr_b, length)) != 0)
344 return r;
345 else
346 return prefixlen_a - prefixlen_b;
347}
348
349/*
350 * IPv4-specific closure over IPAddressOrRange_cmp, since sk_sort()
351 * comparision routines are only allowed two arguments.
352 */
353static int v4IPAddressOrRange_cmp(const IPAddressOrRange * const *a,
354 const IPAddressOrRange * const *b)
355{
356 return IPAddressOrRange_cmp(*a, *b, 4);
357}
358
359/*
360 * IPv6-specific closure over IPAddressOrRange_cmp, since sk_sort()
361 * comparision routines are only allowed two arguments.
362 */
363static int v6IPAddressOrRange_cmp(const IPAddressOrRange * const *a,
364 const IPAddressOrRange * const *b)
365{
366 return IPAddressOrRange_cmp(*a, *b, 16);
367}
368
369/*
370 * Calculate whether a range collapses to a prefix.
371 * See last paragraph of RFC 3779 2.2.3.7.
372 */
373static int range_should_be_prefix(const unsigned char *min,
374 const unsigned char *max,
375 const int length)
376{
377 unsigned char mask;
378 int i, j;
379
380 for (i = 0; i < length && min[i] == max[i]; i++)
381 ;
382 for (j = length - 1; j >= 0 && min[j] == 0x00 && max[j] == 0xFF; j--)
383 ;
384 if (i < j)
385 return -1;
386 if (i > j)
387 return i * 8;
388 mask = min[i] ^ max[i];
389 switch (mask) {
390 case 0x01: j = 7; break;
391 case 0x03: j = 6; break;
392 case 0x07: j = 5; break;
393 case 0x0F: j = 4; break;
394 case 0x1F: j = 3; break;
395 case 0x3F: j = 2; break;
396 case 0x7F: j = 1; break;
397 default: return -1;
398 }
399 if ((min[i] & mask) != 0 || (max[i] & mask) != mask)
400 return -1;
401 else
402 return i * 8 + j;
403}
404
405/*
406 * Construct a prefix.
407 */
408static int make_addressPrefix(IPAddressOrRange **result,
409 unsigned char *addr,
410 const int prefixlen)
411{
412 int bytelen = (prefixlen + 7) / 8, bitlen = prefixlen % 8;
413 IPAddressOrRange *aor = IPAddressOrRange_new();
414
415 if (aor == NULL)
416 return 0;
417 aor->type = IPAddressOrRange_addressPrefix;
418 if (aor->u.addressPrefix == NULL &&
419 (aor->u.addressPrefix = ASN1_BIT_STRING_new()) == NULL)
420 goto err;
421 if (!ASN1_BIT_STRING_set(aor->u.addressPrefix, addr, bytelen))
422 goto err;
423 aor->u.addressPrefix->flags &= ~7;
424 aor->u.addressPrefix->flags |= ASN1_STRING_FLAG_BITS_LEFT;
425 if (bitlen > 0) {
426 aor->u.addressPrefix->data[bytelen - 1] &= ~(0xFF >> bitlen);
427 aor->u.addressPrefix->flags |= 8 - bitlen;
428 }
429
430 *result = aor;
431 return 1;
432
433 err:
434 IPAddressOrRange_free(aor);
435 return 0;
436}
437
438/*
439 * Construct a range. If it can be expressed as a prefix,
440 * return a prefix instead. Doing this here simplifies
441 * the rest of the code considerably.
442 */
443static int make_addressRange(IPAddressOrRange **result,
444 unsigned char *min,
445 unsigned char *max,
446 const int length)
447{
448 IPAddressOrRange *aor;
449 int i, prefixlen;
450
451 if ((prefixlen = range_should_be_prefix(min, max, length)) >= 0)
452 return make_addressPrefix(result, min, prefixlen);
453
454 if ((aor = IPAddressOrRange_new()) == NULL)
455 return 0;
456 aor->type = IPAddressOrRange_addressRange;
457 OPENSSL_assert(aor->u.addressRange == NULL);
458 if ((aor->u.addressRange = IPAddressRange_new()) == NULL)
459 goto err;
460 if (aor->u.addressRange->min == NULL &&
461 (aor->u.addressRange->min = ASN1_BIT_STRING_new()) == NULL)
462 goto err;
463 if (aor->u.addressRange->max == NULL &&
464 (aor->u.addressRange->max = ASN1_BIT_STRING_new()) == NULL)
465 goto err;
466
467 for (i = length; i > 0 && min[i - 1] == 0x00; --i)
468 ;
469 if (!ASN1_BIT_STRING_set(aor->u.addressRange->min, min, i))
470 goto err;
471 aor->u.addressRange->min->flags &= ~7;
472 aor->u.addressRange->min->flags |= ASN1_STRING_FLAG_BITS_LEFT;
473 if (i > 0) {
474 unsigned char b = min[i - 1];
475 int j = 1;
476 while ((b & (0xFFU >> j)) != 0)
477 ++j;
478 aor->u.addressRange->min->flags |= 8 - j;
479 }
480
481 for (i = length; i > 0 && max[i - 1] == 0xFF; --i)
482 ;
483 if (!ASN1_BIT_STRING_set(aor->u.addressRange->max, max, i))
484 goto err;
485 aor->u.addressRange->max->flags &= ~7;
486 aor->u.addressRange->max->flags |= ASN1_STRING_FLAG_BITS_LEFT;
487 if (i > 0) {
488 unsigned char b = max[i - 1];
489 int j = 1;
490 while ((b & (0xFFU >> j)) != (0xFFU >> j))
491 ++j;
492 aor->u.addressRange->max->flags |= 8 - j;
493 }
494
495 *result = aor;
496 return 1;
497
498 err:
499 IPAddressOrRange_free(aor);
500 return 0;
501}
502
503/*
504 * Construct a new address family or find an existing one.
505 */
506static IPAddressFamily *make_IPAddressFamily(IPAddrBlocks *addr,
507 const unsigned afi,
508 const unsigned *safi)
509{
510 IPAddressFamily *f;
511 unsigned char key[3];
512 unsigned keylen;
513 int i;
514
515 key[0] = (afi >> 8) & 0xFF;
516 key[1] = afi & 0xFF;
517 if (safi != NULL) {
518 key[2] = *safi & 0xFF;
519 keylen = 3;
520 } else {
521 keylen = 2;
522 }
523
524 for (i = 0; i < sk_IPAddressFamily_num(addr); i++) {
525 f = sk_IPAddressFamily_value(addr, i);
526 OPENSSL_assert(f->addressFamily->data != NULL);
527 if (f->addressFamily->length == keylen &&
528 !memcmp(f->addressFamily->data, key, keylen))
529 return f;
530 }
531
532 if ((f = IPAddressFamily_new()) == NULL)
533 goto err;
534 if (f->ipAddressChoice == NULL &&
535 (f->ipAddressChoice = IPAddressChoice_new()) == NULL)
536 goto err;
537 if (f->addressFamily == NULL &&
538 (f->addressFamily = ASN1_OCTET_STRING_new()) == NULL)
539 goto err;
540 if (!ASN1_OCTET_STRING_set(f->addressFamily, key, keylen))
541 goto err;
542 if (!sk_IPAddressFamily_push(addr, f))
543 goto err;
544
545 return f;
546
547 err:
548 IPAddressFamily_free(f);
549 return NULL;
550}
551
552/*
553 * Add an inheritance element.
554 */
555int v3_addr_add_inherit(IPAddrBlocks *addr,
556 const unsigned afi,
557 const unsigned *safi)
558{
559 IPAddressFamily *f = make_IPAddressFamily(addr, afi, safi);
560 if (f == NULL ||
561 f->ipAddressChoice == NULL ||
562 (f->ipAddressChoice->type == IPAddressChoice_addressesOrRanges &&
563 f->ipAddressChoice->u.addressesOrRanges != NULL))
564 return 0;
565 if (f->ipAddressChoice->type == IPAddressChoice_inherit &&
566 f->ipAddressChoice->u.inherit != NULL)
567 return 1;
568 if (f->ipAddressChoice->u.inherit == NULL &&
569 (f->ipAddressChoice->u.inherit = ASN1_NULL_new()) == NULL)
570 return 0;
571 f->ipAddressChoice->type = IPAddressChoice_inherit;
572 return 1;
573}
574
575/*
576 * Construct an IPAddressOrRange sequence, or return an existing one.
577 */
578static IPAddressOrRanges *make_prefix_or_range(IPAddrBlocks *addr,
579 const unsigned afi,
580 const unsigned *safi)
581{
582 IPAddressFamily *f = make_IPAddressFamily(addr, afi, safi);
583 IPAddressOrRanges *aors = NULL;
584
585 if (f == NULL ||
586 f->ipAddressChoice == NULL ||
587 (f->ipAddressChoice->type == IPAddressChoice_inherit &&
588 f->ipAddressChoice->u.inherit != NULL))
589 return NULL;
590 if (f->ipAddressChoice->type == IPAddressChoice_addressesOrRanges)
591 aors = f->ipAddressChoice->u.addressesOrRanges;
592 if (aors != NULL)
593 return aors;
594 if ((aors = sk_IPAddressOrRange_new_null()) == NULL)
595 return NULL;
596 switch (afi) {
597 case IANA_AFI_IPV4:
598 sk_IPAddressOrRange_set_cmp_func(aors, v4IPAddressOrRange_cmp);
599 break;
600 case IANA_AFI_IPV6:
601 sk_IPAddressOrRange_set_cmp_func(aors, v6IPAddressOrRange_cmp);
602 break;
603 }
604 f->ipAddressChoice->type = IPAddressChoice_addressesOrRanges;
605 f->ipAddressChoice->u.addressesOrRanges = aors;
606 return aors;
607}
608
609/*
610 * Add a prefix.
611 */
612int v3_addr_add_prefix(IPAddrBlocks *addr,
613 const unsigned afi,
614 const unsigned *safi,
615 unsigned char *a,
616 const int prefixlen)
617{
618 IPAddressOrRanges *aors = make_prefix_or_range(addr, afi, safi);
619 IPAddressOrRange *aor;
620 if (aors == NULL || !make_addressPrefix(&aor, a, prefixlen))
621 return 0;
622 if (sk_IPAddressOrRange_push(aors, aor))
623 return 1;
624 IPAddressOrRange_free(aor);
625 return 0;
626}
627
628/*
629 * Add a range.
630 */
631int v3_addr_add_range(IPAddrBlocks *addr,
632 const unsigned afi,
633 const unsigned *safi,
634 unsigned char *min,
635 unsigned char *max)
636{
637 IPAddressOrRanges *aors = make_prefix_or_range(addr, afi, safi);
638 IPAddressOrRange *aor;
639 int length = length_from_afi(afi);
640 if (aors == NULL)
641 return 0;
642 if (!make_addressRange(&aor, min, max, length))
643 return 0;
644 if (sk_IPAddressOrRange_push(aors, aor))
645 return 1;
646 IPAddressOrRange_free(aor);
647 return 0;
648}
649
650/*
651 * Extract min and max values from an IPAddressOrRange.
652 */
653static void extract_min_max(IPAddressOrRange *aor,
654 unsigned char *min,
655 unsigned char *max,
656 int length)
657{
658 OPENSSL_assert(aor != NULL && min != NULL && max != NULL);
659 switch (aor->type) {
660 case IPAddressOrRange_addressPrefix:
661 addr_expand(min, aor->u.addressPrefix, length, 0x00);
662 addr_expand(max, aor->u.addressPrefix, length, 0xFF);
663 return;
664 case IPAddressOrRange_addressRange:
665 addr_expand(min, aor->u.addressRange->min, length, 0x00);
666 addr_expand(max, aor->u.addressRange->max, length, 0xFF);
667 return;
668 }
669}
670
671/*
672 * Public wrapper for extract_min_max().
673 */
674int v3_addr_get_range(IPAddressOrRange *aor,
675 const unsigned afi,
676 unsigned char *min,
677 unsigned char *max,
678 const int length)
679{
680 int afi_length = length_from_afi(afi);
681 if (aor == NULL || min == NULL || max == NULL ||
682 afi_length == 0 || length < afi_length ||
683 (aor->type != IPAddressOrRange_addressPrefix &&
684 aor->type != IPAddressOrRange_addressRange))
685 return 0;
686 extract_min_max(aor, min, max, afi_length);
687 return afi_length;
688}
689
690/*
691 * Sort comparision function for a sequence of IPAddressFamily.
692 *
693 * The last paragraph of RFC 3779 2.2.3.3 is slightly ambiguous about
694 * the ordering: I can read it as meaning that IPv6 without a SAFI
695 * comes before IPv4 with a SAFI, which seems pretty weird. The
696 * examples in appendix B suggest that the author intended the
697 * null-SAFI rule to apply only within a single AFI, which is what I
698 * would have expected and is what the following code implements.
699 */
700static int IPAddressFamily_cmp(const IPAddressFamily * const *a_,
701 const IPAddressFamily * const *b_)
702{
703 const ASN1_OCTET_STRING *a = (*a_)->addressFamily;
704 const ASN1_OCTET_STRING *b = (*b_)->addressFamily;
705 int len = ((a->length <= b->length) ? a->length : b->length);
706 int cmp = memcmp(a->data, b->data, len);
707 return cmp ? cmp : a->length - b->length;
708}
709
710/*
711 * Check whether an IPAddrBLocks is in canonical form.
712 */
713int v3_addr_is_canonical(IPAddrBlocks *addr)
714{
715 unsigned char a_min[ADDR_RAW_BUF_LEN], a_max[ADDR_RAW_BUF_LEN];
716 unsigned char b_min[ADDR_RAW_BUF_LEN], b_max[ADDR_RAW_BUF_LEN];
717 IPAddressOrRanges *aors;
718 int i, j, k;
719
720 /*
721 * Empty extension is cannonical.
722 */
723 if (addr == NULL)
724 return 1;
725
726 /*
727 * Check whether the top-level list is in order.
728 */
729 for (i = 0; i < sk_IPAddressFamily_num(addr) - 1; i++) {
730 const IPAddressFamily *a = sk_IPAddressFamily_value(addr, i);
731 const IPAddressFamily *b = sk_IPAddressFamily_value(addr, i + 1);
732 if (IPAddressFamily_cmp(&a, &b) >= 0)
733 return 0;
734 }
735
736 /*
737 * Top level's ok, now check each address family.
738 */
739 for (i = 0; i < sk_IPAddressFamily_num(addr); i++) {
740 IPAddressFamily *f = sk_IPAddressFamily_value(addr, i);
741 int length = length_from_afi(v3_addr_get_afi(f));
742
743 /*
744 * Inheritance is canonical. Anything other than inheritance or
745 * a SEQUENCE OF IPAddressOrRange is an ASN.1 error or something.
746 */
747 if (f == NULL || f->ipAddressChoice == NULL)
748 return 0;
749 switch (f->ipAddressChoice->type) {
750 case IPAddressChoice_inherit:
751 continue;
752 case IPAddressChoice_addressesOrRanges:
753 break;
754 default:
755 return 0;
756 }
757
758 /*
759 * It's an IPAddressOrRanges sequence, check it.
760 */
761 aors = f->ipAddressChoice->u.addressesOrRanges;
762 if (sk_IPAddressOrRange_num(aors) == 0)
763 return 0;
764 for (j = 0; j < sk_IPAddressOrRange_num(aors) - 1; j++) {
765 IPAddressOrRange *a = sk_IPAddressOrRange_value(aors, j);
766 IPAddressOrRange *b = sk_IPAddressOrRange_value(aors, j + 1);
767
768 extract_min_max(a, a_min, a_max, length);
769 extract_min_max(b, b_min, b_max, length);
770
771 /*
772 * Punt misordered list, overlapping start, or inverted range.
773 */
774 if (memcmp(a_min, b_min, length) >= 0 ||
775 memcmp(a_min, a_max, length) > 0 ||
776 memcmp(b_min, b_max, length) > 0)
777 return 0;
778
779 /*
780 * Punt if adjacent or overlapping. Check for adjacency by
781 * subtracting one from b_min first.
782 */
783 for (k = length - 1; k >= 0 && b_min[k]-- == 0x00; k--)
784 ;
785 if (memcmp(a_max, b_min, length) >= 0)
786 return 0;
787
788 /*
789 * Check for range that should be expressed as a prefix.
790 */
791 if (a->type == IPAddressOrRange_addressRange &&
792 range_should_be_prefix(a_min, a_max, length) >= 0)
793 return 0;
794 }
795
796 /*
797 * Check final range to see if it should be a prefix.
798 */
799 j = sk_IPAddressOrRange_num(aors) - 1;
800 {
801 IPAddressOrRange *a = sk_IPAddressOrRange_value(aors, j);
802 if (a->type == IPAddressOrRange_addressRange) {
803 extract_min_max(a, a_min, a_max, length);
804 if (range_should_be_prefix(a_min, a_max, length) >= 0)
805 return 0;
806 }
807 }
808 }
809
810 /*
811 * If we made it through all that, we're happy.
812 */
813 return 1;
814}
815
816/*
817 * Whack an IPAddressOrRanges into canonical form.
818 */
819static int IPAddressOrRanges_canonize(IPAddressOrRanges *aors,
820 const unsigned afi)
821{
822 int i, j, length = length_from_afi(afi);
823
824 /*
825 * Sort the IPAddressOrRanges sequence.
826 */
827 sk_IPAddressOrRange_sort(aors);
828
829 /*
830 * Clean up representation issues, punt on duplicates or overlaps.
831 */
832 for (i = 0; i < sk_IPAddressOrRange_num(aors) - 1; i++) {
833 IPAddressOrRange *a = sk_IPAddressOrRange_value(aors, i);
834 IPAddressOrRange *b = sk_IPAddressOrRange_value(aors, i + 1);
835 unsigned char a_min[ADDR_RAW_BUF_LEN], a_max[ADDR_RAW_BUF_LEN];
836 unsigned char b_min[ADDR_RAW_BUF_LEN], b_max[ADDR_RAW_BUF_LEN];
837
838 extract_min_max(a, a_min, a_max, length);
839 extract_min_max(b, b_min, b_max, length);
840
841 /*
842 * Punt overlaps.
843 */
844 if (memcmp(a_max, b_min, length) >= 0)
845 return 0;
846
847 /*
848 * Merge if a and b are adjacent. We check for
849 * adjacency by subtracting one from b_min first.
850 */
851 for (j = length - 1; j >= 0 && b_min[j]-- == 0x00; j--)
852 ;
853 if (memcmp(a_max, b_min, length) == 0) {
854 IPAddressOrRange *merged;
855 if (!make_addressRange(&merged, a_min, b_max, length))
856 return 0;
857 sk_IPAddressOrRange_set(aors, i, merged);
858 sk_IPAddressOrRange_delete(aors, i + 1);
859 IPAddressOrRange_free(a);
860 IPAddressOrRange_free(b);
861 --i;
862 continue;
863 }
864 }
865
866 return 1;
867}
868
869/*
870 * Whack an IPAddrBlocks extension into canonical form.
871 */
872int v3_addr_canonize(IPAddrBlocks *addr)
873{
874 int i;
875 for (i = 0; i < sk_IPAddressFamily_num(addr); i++) {
876 IPAddressFamily *f = sk_IPAddressFamily_value(addr, i);
877 if (f->ipAddressChoice->type == IPAddressChoice_addressesOrRanges &&
878 !IPAddressOrRanges_canonize(f->ipAddressChoice->u.addressesOrRanges,
879 v3_addr_get_afi(f)))
880 return 0;
881 }
882 sk_IPAddressFamily_set_cmp_func(addr, IPAddressFamily_cmp);
883 sk_IPAddressFamily_sort(addr);
884 OPENSSL_assert(v3_addr_is_canonical(addr));
885 return 1;
886}
887
888/*
889 * v2i handler for the IPAddrBlocks extension.
890 */
891static void *v2i_IPAddrBlocks(const struct v3_ext_method *method,
892 struct v3_ext_ctx *ctx,
893 STACK_OF(CONF_VALUE) *values)
894{
895 static const char v4addr_chars[] = "0123456789.";
896 static const char v6addr_chars[] = "0123456789.:abcdefABCDEF";
897 IPAddrBlocks *addr = NULL;
898 char *s = NULL, *t;
899 int i;
900
901 if ((addr = sk_IPAddressFamily_new(IPAddressFamily_cmp)) == NULL) {
902 X509V3err(X509V3_F_V2I_IPADDRBLOCKS, ERR_R_MALLOC_FAILURE);
903 return NULL;
904 }
905
906 for (i = 0; i < sk_CONF_VALUE_num(values); i++) {
907 CONF_VALUE *val = sk_CONF_VALUE_value(values, i);
908 unsigned char min[ADDR_RAW_BUF_LEN], max[ADDR_RAW_BUF_LEN];
909 unsigned afi, *safi = NULL, safi_;
910 const char *addr_chars;
911 int prefixlen, i1, i2, delim, length;
912
913 if ( !name_cmp(val->name, "IPv4")) {
914 afi = IANA_AFI_IPV4;
915 } else if (!name_cmp(val->name, "IPv6")) {
916 afi = IANA_AFI_IPV6;
917 } else if (!name_cmp(val->name, "IPv4-SAFI")) {
918 afi = IANA_AFI_IPV4;
919 safi = &safi_;
920 } else if (!name_cmp(val->name, "IPv6-SAFI")) {
921 afi = IANA_AFI_IPV6;
922 safi = &safi_;
923 } else {
924 X509V3err(X509V3_F_V2I_IPADDRBLOCKS, X509V3_R_EXTENSION_NAME_ERROR);
925 X509V3_conf_err(val);
926 goto err;
927 }
928
929 switch (afi) {
930 case IANA_AFI_IPV4:
931 addr_chars = v4addr_chars;
932 break;
933 case IANA_AFI_IPV6:
934 addr_chars = v6addr_chars;
935 break;
936 }
937
938 length = length_from_afi(afi);
939
940 /*
941 * Handle SAFI, if any, and BUF_strdup() so we can null-terminate
942 * the other input values.
943 */
944 if (safi != NULL) {
945 *safi = strtoul(val->value, &t, 0);
946 t += strspn(t, " \t");
947 if (*safi > 0xFF || *t++ != ':') {
948 X509V3err(X509V3_F_V2I_IPADDRBLOCKS, X509V3_R_INVALID_SAFI);
949 X509V3_conf_err(val);
950 goto err;
951 }
952 t += strspn(t, " \t");
953 s = BUF_strdup(t);
954 } else {
955 s = BUF_strdup(val->value);
956 }
957 if (s == NULL) {
958 X509V3err(X509V3_F_V2I_IPADDRBLOCKS, ERR_R_MALLOC_FAILURE);
959 goto err;
960 }
961
962 /*
963 * Check for inheritance. Not worth additional complexity to
964 * optimize this (seldom-used) case.
965 */
966 if (!strcmp(s, "inherit")) {
967 if (!v3_addr_add_inherit(addr, afi, safi)) {
968 X509V3err(X509V3_F_V2I_IPADDRBLOCKS, X509V3_R_INVALID_INHERITANCE);
969 X509V3_conf_err(val);
970 goto err;
971 }
972 OPENSSL_free(s);
973 s = NULL;
974 continue;
975 }
976
977 i1 = strspn(s, addr_chars);
978 i2 = i1 + strspn(s + i1, " \t");
979 delim = s[i2++];
980 s[i1] = '\0';
981
982 if (a2i_ipadd(min, s) != length) {
983 X509V3err(X509V3_F_V2I_IPADDRBLOCKS, X509V3_R_INVALID_IPADDRESS);
984 X509V3_conf_err(val);
985 goto err;
986 }
987
988 switch (delim) {
989 case '/':
990 prefixlen = (int) strtoul(s + i2, &t, 10);
991 if (t == s + i2 || *t != '\0') {
992 X509V3err(X509V3_F_V2I_IPADDRBLOCKS, X509V3_R_EXTENSION_VALUE_ERROR);
993 X509V3_conf_err(val);
994 goto err;
995 }
996 if (!v3_addr_add_prefix(addr, afi, safi, min, prefixlen)) {
997 X509V3err(X509V3_F_V2I_IPADDRBLOCKS, ERR_R_MALLOC_FAILURE);
998 goto err;
999 }
1000 break;
1001 case '-':
1002 i1 = i2 + strspn(s + i2, " \t");
1003 i2 = i1 + strspn(s + i1, addr_chars);
1004 if (i1 == i2 || s[i2] != '\0') {
1005 X509V3err(X509V3_F_V2I_IPADDRBLOCKS, X509V3_R_EXTENSION_VALUE_ERROR);
1006 X509V3_conf_err(val);
1007 goto err;
1008 }
1009 if (a2i_ipadd(max, s + i1) != length) {
1010 X509V3err(X509V3_F_V2I_IPADDRBLOCKS, X509V3_R_INVALID_IPADDRESS);
1011 X509V3_conf_err(val);
1012 goto err;
1013 }
1014 if (!v3_addr_add_range(addr, afi, safi, min, max)) {
1015 X509V3err(X509V3_F_V2I_IPADDRBLOCKS, ERR_R_MALLOC_FAILURE);
1016 goto err;
1017 }
1018 break;
1019 case '\0':
1020 if (!v3_addr_add_prefix(addr, afi, safi, min, length * 8)) {
1021 X509V3err(X509V3_F_V2I_IPADDRBLOCKS, ERR_R_MALLOC_FAILURE);
1022 goto err;
1023 }
1024 break;
1025 default:
1026 X509V3err(X509V3_F_V2I_IPADDRBLOCKS, X509V3_R_EXTENSION_VALUE_ERROR);
1027 X509V3_conf_err(val);
1028 goto err;
1029 }
1030
1031 OPENSSL_free(s);
1032 s = NULL;
1033 }
1034
1035 /*
1036 * Canonize the result, then we're done.
1037 */
1038 if (!v3_addr_canonize(addr))
1039 goto err;
1040 return addr;
1041
1042 err:
1043 OPENSSL_free(s);
1044 sk_IPAddressFamily_pop_free(addr, IPAddressFamily_free);
1045 return NULL;
1046}
1047
1048/*
1049 * OpenSSL dispatch
1050 */
1051const X509V3_EXT_METHOD v3_addr = {
1052 NID_sbgp_ipAddrBlock, /* nid */
1053 0, /* flags */
1054 ASN1_ITEM_ref(IPAddrBlocks), /* template */
1055 0, 0, 0, 0, /* old functions, ignored */
1056 0, /* i2s */
1057 0, /* s2i */
1058 0, /* i2v */
1059 v2i_IPAddrBlocks, /* v2i */
1060 i2r_IPAddrBlocks, /* i2r */
1061 0, /* r2i */
1062 NULL /* extension-specific data */
1063};
1064
1065/*
1066 * Figure out whether extension sues inheritance.
1067 */
1068int v3_addr_inherits(IPAddrBlocks *addr)
1069{
1070 int i;
1071 if (addr == NULL)
1072 return 0;
1073 for (i = 0; i < sk_IPAddressFamily_num(addr); i++) {
1074 IPAddressFamily *f = sk_IPAddressFamily_value(addr, i);
1075 if (f->ipAddressChoice->type == IPAddressChoice_inherit)
1076 return 1;
1077 }
1078 return 0;
1079}
1080
1081/*
1082 * Figure out whether parent contains child.
1083 */
1084static int addr_contains(IPAddressOrRanges *parent,
1085 IPAddressOrRanges *child,
1086 int length)
1087{
1088 unsigned char p_min[ADDR_RAW_BUF_LEN], p_max[ADDR_RAW_BUF_LEN];
1089 unsigned char c_min[ADDR_RAW_BUF_LEN], c_max[ADDR_RAW_BUF_LEN];
1090 int p, c;
1091
1092 if (child == NULL || parent == child)
1093 return 1;
1094 if (parent == NULL)
1095 return 0;
1096
1097 p = 0;
1098 for (c = 0; c < sk_IPAddressOrRange_num(child); c++) {
1099 extract_min_max(sk_IPAddressOrRange_value(child, c),
1100 c_min, c_max, length);
1101 for (;; p++) {
1102 if (p >= sk_IPAddressOrRange_num(parent))
1103 return 0;
1104 extract_min_max(sk_IPAddressOrRange_value(parent, p),
1105 p_min, p_max, length);
1106 if (memcmp(p_max, c_max, length) < 0)
1107 continue;
1108 if (memcmp(p_min, c_min, length) > 0)
1109 return 0;
1110 break;
1111 }
1112 }
1113
1114 return 1;
1115}
1116
1117/*
1118 * Test whether a is a subset of b.
1119 */
1120int v3_addr_subset(IPAddrBlocks *a, IPAddrBlocks *b)
1121{
1122 int i;
1123 if (a == NULL || a == b)
1124 return 1;
1125 if (b == NULL || v3_addr_inherits(a) || v3_addr_inherits(b))
1126 return 0;
1127 sk_IPAddressFamily_set_cmp_func(b, IPAddressFamily_cmp);
1128 for (i = 0; i < sk_IPAddressFamily_num(a); i++) {
1129 IPAddressFamily *fa = sk_IPAddressFamily_value(a, i);
1130 int j = sk_IPAddressFamily_find(b, fa);
1131 IPAddressFamily *fb;
1132 fb = sk_IPAddressFamily_value(b, j);
1133 if (fb == NULL)
1134 return 0;
1135 if (!addr_contains(fb->ipAddressChoice->u.addressesOrRanges,
1136 fa->ipAddressChoice->u.addressesOrRanges,
1137 length_from_afi(v3_addr_get_afi(fb))))
1138 return 0;
1139 }
1140 return 1;
1141}
1142
1143/*
1144 * Validation error handling via callback.
1145 */
1146#define validation_err(_err_) \
1147 do { \
1148 if (ctx != NULL) { \
1149 ctx->error = _err_; \
1150 ctx->error_depth = i; \
1151 ctx->current_cert = x; \
1152 ret = ctx->verify_cb(0, ctx); \
1153 } else { \
1154 ret = 0; \
1155 } \
1156 if (!ret) \
1157 goto done; \
1158 } while (0)
1159
1160/*
1161 * Core code for RFC 3779 2.3 path validation.
1162 */
1163static int v3_addr_validate_path_internal(X509_STORE_CTX *ctx,
1164 STACK_OF(X509) *chain,
1165 IPAddrBlocks *ext)
1166{
1167 IPAddrBlocks *child = NULL;
1168 int i, j, ret = 1;
1169 X509 *x;
1170
1171 OPENSSL_assert(chain != NULL && sk_X509_num(chain) > 0);
1172 OPENSSL_assert(ctx != NULL || ext != NULL);
1173 OPENSSL_assert(ctx == NULL || ctx->verify_cb != NULL);
1174
1175 /*
1176 * Figure out where to start. If we don't have an extension to
1177 * check, we're done. Otherwise, check canonical form and
1178 * set up for walking up the chain.
1179 */
1180 if (ext != NULL) {
1181 i = -1;
1182 x = NULL;
1183 } else {
1184 i = 0;
1185 x = sk_X509_value(chain, i);
1186 OPENSSL_assert(x != NULL);
1187 if ((ext = x->rfc3779_addr) == NULL)
1188 goto done;
1189 }
1190 if (!v3_addr_is_canonical(ext))
1191 validation_err(X509_V_ERR_INVALID_EXTENSION);
1192 sk_IPAddressFamily_set_cmp_func(ext, IPAddressFamily_cmp);
1193 if ((child = sk_IPAddressFamily_dup(ext)) == NULL) {
1194 X509V3err(X509V3_F_V3_ADDR_VALIDATE_PATH_INTERNAL, ERR_R_MALLOC_FAILURE);
1195 ret = 0;
1196 goto done;
1197 }
1198
1199 /*
1200 * Now walk up the chain. No cert may list resources that its
1201 * parent doesn't list.
1202 */
1203 for (i++; i < sk_X509_num(chain); i++) {
1204 x = sk_X509_value(chain, i);
1205 OPENSSL_assert(x != NULL);
1206 if (!v3_addr_is_canonical(x->rfc3779_addr))
1207 validation_err(X509_V_ERR_INVALID_EXTENSION);
1208 if (x->rfc3779_addr == NULL) {
1209 for (j = 0; j < sk_IPAddressFamily_num(child); j++) {
1210 IPAddressFamily *fc = sk_IPAddressFamily_value(child, j);
1211 if (fc->ipAddressChoice->type != IPAddressChoice_inherit) {
1212 validation_err(X509_V_ERR_UNNESTED_RESOURCE);
1213 break;
1214 }
1215 }
1216 continue;
1217 }
1218 sk_IPAddressFamily_set_cmp_func(x->rfc3779_addr, IPAddressFamily_cmp);
1219 for (j = 0; j < sk_IPAddressFamily_num(child); j++) {
1220 IPAddressFamily *fc = sk_IPAddressFamily_value(child, j);
1221 int k = sk_IPAddressFamily_find(x->rfc3779_addr, fc);
1222 IPAddressFamily *fp = sk_IPAddressFamily_value(x->rfc3779_addr, k);
1223 if (fp == NULL) {
1224 if (fc->ipAddressChoice->type == IPAddressChoice_addressesOrRanges) {
1225 validation_err(X509_V_ERR_UNNESTED_RESOURCE);
1226 break;
1227 }
1228 continue;
1229 }
1230 if (fp->ipAddressChoice->type == IPAddressChoice_addressesOrRanges) {
1231 if (fc->ipAddressChoice->type == IPAddressChoice_inherit ||
1232 addr_contains(fp->ipAddressChoice->u.addressesOrRanges,
1233 fc->ipAddressChoice->u.addressesOrRanges,
1234 length_from_afi(v3_addr_get_afi(fc))))
1235 sk_IPAddressFamily_set(child, j, fp);
1236 else
1237 validation_err(X509_V_ERR_UNNESTED_RESOURCE);
1238 }
1239 }
1240 }
1241
1242 /*
1243 * Trust anchor can't inherit.
1244 */
1245 OPENSSL_assert(x != NULL);
1246 if (x->rfc3779_addr != NULL) {
1247 for (j = 0; j < sk_IPAddressFamily_num(x->rfc3779_addr); j++) {
1248 IPAddressFamily *fp = sk_IPAddressFamily_value(x->rfc3779_addr, j);
1249 if (fp->ipAddressChoice->type == IPAddressChoice_inherit &&
1250 sk_IPAddressFamily_find(child, fp) >= 0)
1251 validation_err(X509_V_ERR_UNNESTED_RESOURCE);
1252 }
1253 }
1254
1255 done:
1256 sk_IPAddressFamily_free(child);
1257 return ret;
1258}
1259
1260#undef validation_err
1261
1262/*
1263 * RFC 3779 2.3 path validation -- called from X509_verify_cert().
1264 */
1265int v3_addr_validate_path(X509_STORE_CTX *ctx)
1266{
1267 return v3_addr_validate_path_internal(ctx, ctx->chain, NULL);
1268}
1269
1270/*
1271 * RFC 3779 2.3 path validation of an extension.
1272 * Test whether chain covers extension.
1273 */
1274int v3_addr_validate_resource_set(STACK_OF(X509) *chain,
1275 IPAddrBlocks *ext,
1276 int allow_inheritance)
1277{
1278 if (ext == NULL)
1279 return 1;
1280 if (chain == NULL || sk_X509_num(chain) == 0)
1281 return 0;
1282 if (!allow_inheritance && v3_addr_inherits(ext))
1283 return 0;
1284 return v3_addr_validate_path_internal(NULL, chain, ext);
1285}
1286
1287#endif /* OPENSSL_NO_RFC3779 */