diff options
Diffstat (limited to 'src/lib/libcrypto/x509v3/v3_addr.c')
| -rw-r--r-- | src/lib/libcrypto/x509v3/v3_addr.c | 1338 | 
1 files changed, 1338 insertions, 0 deletions
diff --git a/src/lib/libcrypto/x509v3/v3_addr.c b/src/lib/libcrypto/x509v3/v3_addr.c new file mode 100644 index 0000000000..df46a4983b --- /dev/null +++ b/src/lib/libcrypto/x509v3/v3_addr.c  | |||
| @@ -0,0 +1,1338 @@ | |||
| 1 | /* | ||
| 2 | * Contributed to the OpenSSL Project by the American Registry for | ||
| 3 | * Internet Numbers ("ARIN"). | ||
| 4 | */ | ||
| 5 | /* ==================================================================== | ||
| 6 | * Copyright (c) 2006 The OpenSSL Project. All rights reserved. | ||
| 7 | * | ||
| 8 | * Redistribution and use in source and binary forms, with or without | ||
| 9 | * modification, are permitted provided that the following conditions | ||
| 10 | * are met: | ||
| 11 | * | ||
| 12 | * 1. Redistributions of source code must retain the above copyright | ||
| 13 | * notice, this list of conditions and the following disclaimer. | ||
| 14 | * | ||
| 15 | * 2. Redistributions in binary form must reproduce the above copyright | ||
| 16 | * notice, this list of conditions and the following disclaimer in | ||
| 17 | * the documentation and/or other materials provided with the | ||
| 18 | * distribution. | ||
| 19 | * | ||
| 20 | * 3. All advertising materials mentioning features or use of this | ||
| 21 | * software must display the following acknowledgment: | ||
| 22 | * "This product includes software developed by the OpenSSL Project | ||
| 23 | * for use in the OpenSSL Toolkit. (http://www.OpenSSL.org/)" | ||
| 24 | * | ||
| 25 | * 4. The names "OpenSSL Toolkit" and "OpenSSL Project" must not be used to | ||
| 26 | * endorse or promote products derived from this software without | ||
| 27 | * prior written permission. For written permission, please contact | ||
| 28 | * licensing@OpenSSL.org. | ||
| 29 | * | ||
| 30 | * 5. Products derived from this software may not be called "OpenSSL" | ||
| 31 | * nor may "OpenSSL" appear in their names without prior written | ||
| 32 | * permission of the OpenSSL Project. | ||
| 33 | * | ||
| 34 | * 6. Redistributions of any form whatsoever must retain the following | ||
| 35 | * acknowledgment: | ||
| 36 | * "This product includes software developed by the OpenSSL Project | ||
| 37 | * for use in the OpenSSL Toolkit (http://www.OpenSSL.org/)" | ||
| 38 | * | ||
| 39 | * THIS SOFTWARE IS PROVIDED BY THE OpenSSL PROJECT ``AS IS'' AND ANY | ||
| 40 | * EXPRESSED OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE | ||
| 41 | * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR | ||
| 42 | * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE OpenSSL PROJECT OR | ||
| 43 | * ITS CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, | ||
| 44 | * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT | ||
| 45 | * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; | ||
| 46 | * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) | ||
| 47 | * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, | ||
| 48 | * STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) | ||
| 49 | * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED | ||
| 50 | * OF THE POSSIBILITY OF SUCH DAMAGE. | ||
| 51 | * ==================================================================== | ||
| 52 | * | ||
| 53 | * This product includes cryptographic software written by Eric Young | ||
| 54 | * (eay@cryptsoft.com). This product includes software written by Tim | ||
| 55 | * Hudson (tjh@cryptsoft.com). | ||
| 56 | */ | ||
| 57 | |||
| 58 | /* | ||
| 59 | * Implementation of RFC 3779 section 2.2. | ||
| 60 | */ | ||
| 61 | |||
| 62 | #include <stdio.h> | ||
| 63 | #include <stdlib.h> | ||
| 64 | |||
| 65 | #include "cryptlib.h" | ||
| 66 | #include <openssl/conf.h> | ||
| 67 | #include <openssl/asn1.h> | ||
| 68 | #include <openssl/asn1t.h> | ||
| 69 | #include <openssl/buffer.h> | ||
| 70 | #include <openssl/x509v3.h> | ||
| 71 | |||
| 72 | #ifndef OPENSSL_NO_RFC3779 | ||
| 73 | |||
| 74 | /* | ||
| 75 | * OpenSSL ASN.1 template translation of RFC 3779 2.2.3. | ||
| 76 | */ | ||
| 77 | |||
| 78 | ASN1_SEQUENCE(IPAddressRange) = { | ||
| 79 | ASN1_SIMPLE(IPAddressRange, min, ASN1_BIT_STRING), | ||
| 80 | ASN1_SIMPLE(IPAddressRange, max, ASN1_BIT_STRING) | ||
| 81 | } ASN1_SEQUENCE_END(IPAddressRange) | ||
| 82 | |||
| 83 | ASN1_CHOICE(IPAddressOrRange) = { | ||
| 84 | ASN1_SIMPLE(IPAddressOrRange, u.addressPrefix, ASN1_BIT_STRING), | ||
| 85 | ASN1_SIMPLE(IPAddressOrRange, u.addressRange, IPAddressRange) | ||
| 86 | } ASN1_CHOICE_END(IPAddressOrRange) | ||
| 87 | |||
| 88 | ASN1_CHOICE(IPAddressChoice) = { | ||
| 89 | ASN1_SIMPLE(IPAddressChoice, u.inherit, ASN1_NULL), | ||
| 90 | ASN1_SEQUENCE_OF(IPAddressChoice, u.addressesOrRanges, IPAddressOrRange) | ||
| 91 | } ASN1_CHOICE_END(IPAddressChoice) | ||
| 92 | |||
| 93 | ASN1_SEQUENCE(IPAddressFamily) = { | ||
| 94 | ASN1_SIMPLE(IPAddressFamily, addressFamily, ASN1_OCTET_STRING), | ||
| 95 | ASN1_SIMPLE(IPAddressFamily, ipAddressChoice, IPAddressChoice) | ||
| 96 | } ASN1_SEQUENCE_END(IPAddressFamily) | ||
| 97 | |||
| 98 | ASN1_ITEM_TEMPLATE(IPAddrBlocks) = | ||
| 99 | ASN1_EX_TEMPLATE_TYPE(ASN1_TFLG_SEQUENCE_OF, 0, | ||
| 100 | IPAddrBlocks, IPAddressFamily) | ||
| 101 | ASN1_ITEM_TEMPLATE_END(IPAddrBlocks) | ||
| 102 | |||
| 103 | IMPLEMENT_ASN1_FUNCTIONS(IPAddressRange) | ||
| 104 | IMPLEMENT_ASN1_FUNCTIONS(IPAddressOrRange) | ||
| 105 | IMPLEMENT_ASN1_FUNCTIONS(IPAddressChoice) | ||
| 106 | IMPLEMENT_ASN1_FUNCTIONS(IPAddressFamily) | ||
| 107 | |||
| 108 | /* | ||
| 109 | * How much buffer space do we need for a raw address? | ||
| 110 | */ | ||
| 111 | #define ADDR_RAW_BUF_LEN 16 | ||
| 112 | |||
| 113 | /* | ||
| 114 | * What's the address length associated with this AFI? | ||
| 115 | */ | ||
| 116 | static int length_from_afi(const unsigned afi) | ||
| 117 | { | ||
| 118 | switch (afi) { | ||
| 119 | case IANA_AFI_IPV4: | ||
| 120 | return 4; | ||
| 121 | case IANA_AFI_IPV6: | ||
| 122 | return 16; | ||
| 123 | default: | ||
| 124 | return 0; | ||
| 125 | } | ||
| 126 | } | ||
| 127 | |||
| 128 | /* | ||
| 129 | * Extract the AFI from an IPAddressFamily. | ||
| 130 | */ | ||
| 131 | unsigned int v3_addr_get_afi(const IPAddressFamily *f) | ||
| 132 | { | ||
| 133 | return ((f != NULL && | ||
| 134 | f->addressFamily != NULL && | ||
| 135 | f->addressFamily->data != NULL) | ||
| 136 | ? ((f->addressFamily->data[0] << 8) | | ||
| 137 | (f->addressFamily->data[1])) | ||
| 138 | : 0); | ||
| 139 | } | ||
| 140 | |||
| 141 | /* | ||
| 142 | * Expand the bitstring form of an address into a raw byte array. | ||
| 143 | * At the moment this is coded for simplicity, not speed. | ||
| 144 | */ | ||
| 145 | static int addr_expand(unsigned char *addr, | ||
| 146 | const ASN1_BIT_STRING *bs, | ||
| 147 | const int length, | ||
| 148 | const unsigned char fill) | ||
| 149 | { | ||
| 150 | if (bs->length < 0 || bs->length > length) | ||
| 151 | return 0; | ||
| 152 | if (bs->length > 0) { | ||
| 153 | memcpy(addr, bs->data, bs->length); | ||
| 154 | if ((bs->flags & 7) != 0) { | ||
| 155 | unsigned char mask = 0xFF >> (8 - (bs->flags & 7)); | ||
| 156 | if (fill == 0) | ||
| 157 | addr[bs->length - 1] &= ~mask; | ||
| 158 | else | ||
| 159 | addr[bs->length - 1] |= mask; | ||
| 160 | } | ||
| 161 | } | ||
| 162 | memset(addr + bs->length, fill, length - bs->length); | ||
| 163 | return 1; | ||
| 164 | } | ||
| 165 | |||
| 166 | /* | ||
| 167 | * Extract the prefix length from a bitstring. | ||
| 168 | */ | ||
| 169 | #define addr_prefixlen(bs) ((int) ((bs)->length * 8 - ((bs)->flags & 7))) | ||
| 170 | |||
| 171 | /* | ||
| 172 | * i2r handler for one address bitstring. | ||
| 173 | */ | ||
| 174 | static int i2r_address(BIO *out, | ||
| 175 | const unsigned afi, | ||
| 176 | const unsigned char fill, | ||
| 177 | const ASN1_BIT_STRING *bs) | ||
| 178 | { | ||
| 179 | unsigned char addr[ADDR_RAW_BUF_LEN]; | ||
| 180 | int i, n; | ||
| 181 | |||
| 182 | if (bs->length < 0) | ||
| 183 | return 0; | ||
| 184 | switch (afi) { | ||
| 185 | case IANA_AFI_IPV4: | ||
| 186 | if (!addr_expand(addr, bs, 4, fill)) | ||
| 187 | return 0; | ||
| 188 | BIO_printf(out, "%d.%d.%d.%d", addr[0], addr[1], addr[2], addr[3]); | ||
| 189 | break; | ||
| 190 | case IANA_AFI_IPV6: | ||
| 191 | if (!addr_expand(addr, bs, 16, fill)) | ||
| 192 | return 0; | ||
| 193 | for (n = 16; n > 1 && addr[n-1] == 0x00 && addr[n-2] == 0x00; n -= 2) | ||
| 194 | ; | ||
| 195 | for (i = 0; i < n; i += 2) | ||
| 196 | BIO_printf(out, "%x%s", (addr[i] << 8) | addr[i+1], (i < 14 ? ":" : "")); | ||
| 197 | if (i < 16) | ||
| 198 | BIO_puts(out, ":"); | ||
| 199 | if (i == 0) | ||
| 200 | BIO_puts(out, ":"); | ||
| 201 | break; | ||
| 202 | default: | ||
| 203 | for (i = 0; i < bs->length; i++) | ||
| 204 | BIO_printf(out, "%s%02x", (i > 0 ? ":" : ""), bs->data[i]); | ||
| 205 | BIO_printf(out, "[%d]", (int) (bs->flags & 7)); | ||
| 206 | break; | ||
| 207 | } | ||
| 208 | return 1; | ||
| 209 | } | ||
| 210 | |||
| 211 | /* | ||
| 212 | * i2r handler for a sequence of addresses and ranges. | ||
| 213 | */ | ||
| 214 | static int i2r_IPAddressOrRanges(BIO *out, | ||
| 215 | const int indent, | ||
| 216 | const IPAddressOrRanges *aors, | ||
| 217 | const unsigned afi) | ||
| 218 | { | ||
| 219 | int i; | ||
| 220 | for (i = 0; i < sk_IPAddressOrRange_num(aors); i++) { | ||
| 221 | const IPAddressOrRange *aor = sk_IPAddressOrRange_value(aors, i); | ||
| 222 | BIO_printf(out, "%*s", indent, ""); | ||
| 223 | switch (aor->type) { | ||
| 224 | case IPAddressOrRange_addressPrefix: | ||
| 225 | if (!i2r_address(out, afi, 0x00, aor->u.addressPrefix)) | ||
| 226 | return 0; | ||
| 227 | BIO_printf(out, "/%d\n", addr_prefixlen(aor->u.addressPrefix)); | ||
| 228 | continue; | ||
| 229 | case IPAddressOrRange_addressRange: | ||
| 230 | if (!i2r_address(out, afi, 0x00, aor->u.addressRange->min)) | ||
| 231 | return 0; | ||
| 232 | BIO_puts(out, "-"); | ||
| 233 | if (!i2r_address(out, afi, 0xFF, aor->u.addressRange->max)) | ||
| 234 | return 0; | ||
| 235 | BIO_puts(out, "\n"); | ||
| 236 | continue; | ||
| 237 | } | ||
| 238 | } | ||
| 239 | return 1; | ||
| 240 | } | ||
| 241 | |||
| 242 | /* | ||
| 243 | * i2r handler for an IPAddrBlocks extension. | ||
| 244 | */ | ||
| 245 | static int i2r_IPAddrBlocks(const X509V3_EXT_METHOD *method, | ||
| 246 | void *ext, | ||
| 247 | BIO *out, | ||
| 248 | int indent) | ||
| 249 | { | ||
| 250 | const IPAddrBlocks *addr = ext; | ||
| 251 | int i; | ||
| 252 | for (i = 0; i < sk_IPAddressFamily_num(addr); i++) { | ||
| 253 | IPAddressFamily *f = sk_IPAddressFamily_value(addr, i); | ||
| 254 | const unsigned int afi = v3_addr_get_afi(f); | ||
| 255 | switch (afi) { | ||
| 256 | case IANA_AFI_IPV4: | ||
| 257 | BIO_printf(out, "%*sIPv4", indent, ""); | ||
| 258 | break; | ||
| 259 | case IANA_AFI_IPV6: | ||
| 260 | BIO_printf(out, "%*sIPv6", indent, ""); | ||
| 261 | break; | ||
| 262 | default: | ||
| 263 | BIO_printf(out, "%*sUnknown AFI %u", indent, "", afi); | ||
| 264 | break; | ||
| 265 | } | ||
| 266 | if (f->addressFamily->length > 2) { | ||
| 267 | switch (f->addressFamily->data[2]) { | ||
| 268 | case 1: | ||
| 269 | BIO_puts(out, " (Unicast)"); | ||
| 270 | break; | ||
| 271 | case 2: | ||
| 272 | BIO_puts(out, " (Multicast)"); | ||
| 273 | break; | ||
| 274 | case 3: | ||
| 275 | BIO_puts(out, " (Unicast/Multicast)"); | ||
| 276 | break; | ||
| 277 | case 4: | ||
| 278 | BIO_puts(out, " (MPLS)"); | ||
| 279 | break; | ||
| 280 | case 64: | ||
| 281 | BIO_puts(out, " (Tunnel)"); | ||
| 282 | break; | ||
| 283 | case 65: | ||
| 284 | BIO_puts(out, " (VPLS)"); | ||
| 285 | break; | ||
| 286 | case 66: | ||
| 287 | BIO_puts(out, " (BGP MDT)"); | ||
| 288 | break; | ||
| 289 | case 128: | ||
| 290 | BIO_puts(out, " (MPLS-labeled VPN)"); | ||
| 291 | break; | ||
| 292 | default: | ||
| 293 | BIO_printf(out, " (Unknown SAFI %u)", | ||
| 294 | (unsigned) f->addressFamily->data[2]); | ||
| 295 | break; | ||
| 296 | } | ||
| 297 | } | ||
| 298 | switch (f->ipAddressChoice->type) { | ||
| 299 | case IPAddressChoice_inherit: | ||
| 300 | BIO_puts(out, ": inherit\n"); | ||
| 301 | break; | ||
| 302 | case IPAddressChoice_addressesOrRanges: | ||
| 303 | BIO_puts(out, ":\n"); | ||
| 304 | if (!i2r_IPAddressOrRanges(out, | ||
| 305 | indent + 2, | ||
| 306 | f->ipAddressChoice->u.addressesOrRanges, | ||
| 307 | afi)) | ||
| 308 | return 0; | ||
| 309 | break; | ||
| 310 | } | ||
| 311 | } | ||
| 312 | return 1; | ||
| 313 | } | ||
| 314 | |||
| 315 | /* | ||
| 316 | * Sort comparison function for a sequence of IPAddressOrRange | ||
| 317 | * elements. | ||
| 318 | * | ||
| 319 | * There's no sane answer we can give if addr_expand() fails, and an | ||
| 320 | * assertion failure on externally supplied data is seriously uncool, | ||
| 321 | * so we just arbitrarily declare that if given invalid inputs this | ||
| 322 | * function returns -1. If this messes up your preferred sort order | ||
| 323 | * for garbage input, tough noogies. | ||
| 324 | */ | ||
| 325 | static int IPAddressOrRange_cmp(const IPAddressOrRange *a, | ||
| 326 | const IPAddressOrRange *b, | ||
| 327 | const int length) | ||
| 328 | { | ||
| 329 | unsigned char addr_a[ADDR_RAW_BUF_LEN], addr_b[ADDR_RAW_BUF_LEN]; | ||
| 330 | int prefixlen_a = 0, prefixlen_b = 0; | ||
| 331 | int r; | ||
| 332 | |||
| 333 | switch (a->type) { | ||
| 334 | case IPAddressOrRange_addressPrefix: | ||
| 335 | if (!addr_expand(addr_a, a->u.addressPrefix, length, 0x00)) | ||
| 336 | return -1; | ||
| 337 | prefixlen_a = addr_prefixlen(a->u.addressPrefix); | ||
| 338 | break; | ||
| 339 | case IPAddressOrRange_addressRange: | ||
| 340 | if (!addr_expand(addr_a, a->u.addressRange->min, length, 0x00)) | ||
| 341 | return -1; | ||
| 342 | prefixlen_a = length * 8; | ||
| 343 | break; | ||
| 344 | } | ||
| 345 | |||
| 346 | switch (b->type) { | ||
| 347 | case IPAddressOrRange_addressPrefix: | ||
| 348 | if (!addr_expand(addr_b, b->u.addressPrefix, length, 0x00)) | ||
| 349 | return -1; | ||
| 350 | prefixlen_b = addr_prefixlen(b->u.addressPrefix); | ||
| 351 | break; | ||
| 352 | case IPAddressOrRange_addressRange: | ||
| 353 | if (!addr_expand(addr_b, b->u.addressRange->min, length, 0x00)) | ||
| 354 | return -1; | ||
| 355 | prefixlen_b = length * 8; | ||
| 356 | break; | ||
| 357 | } | ||
| 358 | |||
| 359 | if ((r = memcmp(addr_a, addr_b, length)) != 0) | ||
| 360 | return r; | ||
| 361 | else | ||
| 362 | return prefixlen_a - prefixlen_b; | ||
| 363 | } | ||
| 364 | |||
| 365 | /* | ||
| 366 | * IPv4-specific closure over IPAddressOrRange_cmp, since sk_sort() | ||
| 367 | * comparision routines are only allowed two arguments. | ||
| 368 | */ | ||
| 369 | static int v4IPAddressOrRange_cmp(const IPAddressOrRange * const *a, | ||
| 370 | const IPAddressOrRange * const *b) | ||
| 371 | { | ||
| 372 | return IPAddressOrRange_cmp(*a, *b, 4); | ||
| 373 | } | ||
| 374 | |||
| 375 | /* | ||
| 376 | * IPv6-specific closure over IPAddressOrRange_cmp, since sk_sort() | ||
| 377 | * comparision routines are only allowed two arguments. | ||
| 378 | */ | ||
| 379 | static int v6IPAddressOrRange_cmp(const IPAddressOrRange * const *a, | ||
| 380 | const IPAddressOrRange * const *b) | ||
| 381 | { | ||
| 382 | return IPAddressOrRange_cmp(*a, *b, 16); | ||
| 383 | } | ||
| 384 | |||
| 385 | /* | ||
| 386 | * Calculate whether a range collapses to a prefix. | ||
| 387 | * See last paragraph of RFC 3779 2.2.3.7. | ||
| 388 | */ | ||
| 389 | static int range_should_be_prefix(const unsigned char *min, | ||
| 390 | const unsigned char *max, | ||
| 391 | const int length) | ||
| 392 | { | ||
| 393 | unsigned char mask; | ||
| 394 | int i, j; | ||
| 395 | |||
| 396 | OPENSSL_assert(memcmp(min, max, length) <= 0); | ||
| 397 | for (i = 0; i < length && min[i] == max[i]; i++) | ||
| 398 | ; | ||
| 399 | for (j = length - 1; j >= 0 && min[j] == 0x00 && max[j] == 0xFF; j--) | ||
| 400 | ; | ||
| 401 | if (i < j) | ||
| 402 | return -1; | ||
| 403 | if (i > j) | ||
| 404 | return i * 8; | ||
| 405 | mask = min[i] ^ max[i]; | ||
| 406 | switch (mask) { | ||
| 407 | case 0x01: j = 7; break; | ||
| 408 | case 0x03: j = 6; break; | ||
| 409 | case 0x07: j = 5; break; | ||
| 410 | case 0x0F: j = 4; break; | ||
| 411 | case 0x1F: j = 3; break; | ||
| 412 | case 0x3F: j = 2; break; | ||
| 413 | case 0x7F: j = 1; break; | ||
| 414 | default: return -1; | ||
| 415 | } | ||
| 416 | if ((min[i] & mask) != 0 || (max[i] & mask) != mask) | ||
| 417 | return -1; | ||
| 418 | else | ||
| 419 | return i * 8 + j; | ||
| 420 | } | ||
| 421 | |||
| 422 | /* | ||
| 423 | * Construct a prefix. | ||
| 424 | */ | ||
| 425 | static int make_addressPrefix(IPAddressOrRange **result, | ||
| 426 | unsigned char *addr, | ||
| 427 | const int prefixlen) | ||
| 428 | { | ||
| 429 | int bytelen = (prefixlen + 7) / 8, bitlen = prefixlen % 8; | ||
| 430 | IPAddressOrRange *aor = IPAddressOrRange_new(); | ||
| 431 | |||
| 432 | if (aor == NULL) | ||
| 433 | return 0; | ||
| 434 | aor->type = IPAddressOrRange_addressPrefix; | ||
| 435 | if (aor->u.addressPrefix == NULL && | ||
| 436 | (aor->u.addressPrefix = ASN1_BIT_STRING_new()) == NULL) | ||
| 437 | goto err; | ||
| 438 | if (!ASN1_BIT_STRING_set(aor->u.addressPrefix, addr, bytelen)) | ||
| 439 | goto err; | ||
| 440 | aor->u.addressPrefix->flags &= ~7; | ||
| 441 | aor->u.addressPrefix->flags |= ASN1_STRING_FLAG_BITS_LEFT; | ||
| 442 | if (bitlen > 0) { | ||
| 443 | aor->u.addressPrefix->data[bytelen - 1] &= ~(0xFF >> bitlen); | ||
| 444 | aor->u.addressPrefix->flags |= 8 - bitlen; | ||
| 445 | } | ||
| 446 | |||
| 447 | *result = aor; | ||
| 448 | return 1; | ||
| 449 | |||
| 450 | err: | ||
| 451 | IPAddressOrRange_free(aor); | ||
| 452 | return 0; | ||
| 453 | } | ||
| 454 | |||
| 455 | /* | ||
| 456 | * Construct a range. If it can be expressed as a prefix, | ||
| 457 | * return a prefix instead. Doing this here simplifies | ||
| 458 | * the rest of the code considerably. | ||
| 459 | */ | ||
| 460 | static int make_addressRange(IPAddressOrRange **result, | ||
| 461 | unsigned char *min, | ||
| 462 | unsigned char *max, | ||
| 463 | const int length) | ||
| 464 | { | ||
| 465 | IPAddressOrRange *aor; | ||
| 466 | int i, prefixlen; | ||
| 467 | |||
| 468 | if ((prefixlen = range_should_be_prefix(min, max, length)) >= 0) | ||
| 469 | return make_addressPrefix(result, min, prefixlen); | ||
| 470 | |||
| 471 | if ((aor = IPAddressOrRange_new()) == NULL) | ||
| 472 | return 0; | ||
| 473 | aor->type = IPAddressOrRange_addressRange; | ||
| 474 | OPENSSL_assert(aor->u.addressRange == NULL); | ||
| 475 | if ((aor->u.addressRange = IPAddressRange_new()) == NULL) | ||
| 476 | goto err; | ||
| 477 | if (aor->u.addressRange->min == NULL && | ||
| 478 | (aor->u.addressRange->min = ASN1_BIT_STRING_new()) == NULL) | ||
| 479 | goto err; | ||
| 480 | if (aor->u.addressRange->max == NULL && | ||
| 481 | (aor->u.addressRange->max = ASN1_BIT_STRING_new()) == NULL) | ||
| 482 | goto err; | ||
| 483 | |||
| 484 | for (i = length; i > 0 && min[i - 1] == 0x00; --i) | ||
| 485 | ; | ||
| 486 | if (!ASN1_BIT_STRING_set(aor->u.addressRange->min, min, i)) | ||
| 487 | goto err; | ||
| 488 | aor->u.addressRange->min->flags &= ~7; | ||
| 489 | aor->u.addressRange->min->flags |= ASN1_STRING_FLAG_BITS_LEFT; | ||
| 490 | if (i > 0) { | ||
| 491 | unsigned char b = min[i - 1]; | ||
| 492 | int j = 1; | ||
| 493 | while ((b & (0xFFU >> j)) != 0) | ||
| 494 | ++j; | ||
| 495 | aor->u.addressRange->min->flags |= 8 - j; | ||
| 496 | } | ||
| 497 | |||
| 498 | for (i = length; i > 0 && max[i - 1] == 0xFF; --i) | ||
| 499 | ; | ||
| 500 | if (!ASN1_BIT_STRING_set(aor->u.addressRange->max, max, i)) | ||
| 501 | goto err; | ||
| 502 | aor->u.addressRange->max->flags &= ~7; | ||
| 503 | aor->u.addressRange->max->flags |= ASN1_STRING_FLAG_BITS_LEFT; | ||
| 504 | if (i > 0) { | ||
| 505 | unsigned char b = max[i - 1]; | ||
| 506 | int j = 1; | ||
| 507 | while ((b & (0xFFU >> j)) != (0xFFU >> j)) | ||
| 508 | ++j; | ||
| 509 | aor->u.addressRange->max->flags |= 8 - j; | ||
| 510 | } | ||
| 511 | |||
| 512 | *result = aor; | ||
| 513 | return 1; | ||
| 514 | |||
| 515 | err: | ||
| 516 | IPAddressOrRange_free(aor); | ||
| 517 | return 0; | ||
| 518 | } | ||
| 519 | |||
| 520 | /* | ||
| 521 | * Construct a new address family or find an existing one. | ||
| 522 | */ | ||
| 523 | static IPAddressFamily *make_IPAddressFamily(IPAddrBlocks *addr, | ||
| 524 | const unsigned afi, | ||
| 525 | const unsigned *safi) | ||
| 526 | { | ||
| 527 | IPAddressFamily *f; | ||
| 528 | unsigned char key[3]; | ||
| 529 | unsigned keylen; | ||
| 530 | int i; | ||
| 531 | |||
| 532 | key[0] = (afi >> 8) & 0xFF; | ||
| 533 | key[1] = afi & 0xFF; | ||
| 534 | if (safi != NULL) { | ||
| 535 | key[2] = *safi & 0xFF; | ||
| 536 | keylen = 3; | ||
| 537 | } else { | ||
| 538 | keylen = 2; | ||
| 539 | } | ||
| 540 | |||
| 541 | for (i = 0; i < sk_IPAddressFamily_num(addr); i++) { | ||
| 542 | f = sk_IPAddressFamily_value(addr, i); | ||
| 543 | OPENSSL_assert(f->addressFamily->data != NULL); | ||
| 544 | if (f->addressFamily->length == keylen && | ||
| 545 | !memcmp(f->addressFamily->data, key, keylen)) | ||
| 546 | return f; | ||
| 547 | } | ||
| 548 | |||
| 549 | if ((f = IPAddressFamily_new()) == NULL) | ||
| 550 | goto err; | ||
| 551 | if (f->ipAddressChoice == NULL && | ||
| 552 | (f->ipAddressChoice = IPAddressChoice_new()) == NULL) | ||
| 553 | goto err; | ||
| 554 | if (f->addressFamily == NULL && | ||
| 555 | (f->addressFamily = ASN1_OCTET_STRING_new()) == NULL) | ||
| 556 | goto err; | ||
| 557 | if (!ASN1_OCTET_STRING_set(f->addressFamily, key, keylen)) | ||
| 558 | goto err; | ||
| 559 | if (!sk_IPAddressFamily_push(addr, f)) | ||
| 560 | goto err; | ||
| 561 | |||
| 562 | return f; | ||
| 563 | |||
| 564 | err: | ||
| 565 | IPAddressFamily_free(f); | ||
| 566 | return NULL; | ||
| 567 | } | ||
| 568 | |||
| 569 | /* | ||
| 570 | * Add an inheritance element. | ||
| 571 | */ | ||
| 572 | int v3_addr_add_inherit(IPAddrBlocks *addr, | ||
| 573 | const unsigned afi, | ||
| 574 | const unsigned *safi) | ||
| 575 | { | ||
| 576 | IPAddressFamily *f = make_IPAddressFamily(addr, afi, safi); | ||
| 577 | if (f == NULL || | ||
| 578 | f->ipAddressChoice == NULL || | ||
| 579 | (f->ipAddressChoice->type == IPAddressChoice_addressesOrRanges && | ||
| 580 | f->ipAddressChoice->u.addressesOrRanges != NULL)) | ||
| 581 | return 0; | ||
| 582 | if (f->ipAddressChoice->type == IPAddressChoice_inherit && | ||
| 583 | f->ipAddressChoice->u.inherit != NULL) | ||
| 584 | return 1; | ||
| 585 | if (f->ipAddressChoice->u.inherit == NULL && | ||
| 586 | (f->ipAddressChoice->u.inherit = ASN1_NULL_new()) == NULL) | ||
| 587 | return 0; | ||
| 588 | f->ipAddressChoice->type = IPAddressChoice_inherit; | ||
| 589 | return 1; | ||
| 590 | } | ||
| 591 | |||
| 592 | /* | ||
| 593 | * Construct an IPAddressOrRange sequence, or return an existing one. | ||
| 594 | */ | ||
| 595 | static IPAddressOrRanges *make_prefix_or_range(IPAddrBlocks *addr, | ||
| 596 | const unsigned afi, | ||
| 597 | const unsigned *safi) | ||
| 598 | { | ||
| 599 | IPAddressFamily *f = make_IPAddressFamily(addr, afi, safi); | ||
| 600 | IPAddressOrRanges *aors = NULL; | ||
| 601 | |||
| 602 | if (f == NULL || | ||
| 603 | f->ipAddressChoice == NULL || | ||
| 604 | (f->ipAddressChoice->type == IPAddressChoice_inherit && | ||
| 605 | f->ipAddressChoice->u.inherit != NULL)) | ||
| 606 | return NULL; | ||
| 607 | if (f->ipAddressChoice->type == IPAddressChoice_addressesOrRanges) | ||
| 608 | aors = f->ipAddressChoice->u.addressesOrRanges; | ||
| 609 | if (aors != NULL) | ||
| 610 | return aors; | ||
| 611 | if ((aors = sk_IPAddressOrRange_new_null()) == NULL) | ||
| 612 | return NULL; | ||
| 613 | switch (afi) { | ||
| 614 | case IANA_AFI_IPV4: | ||
| 615 | (void) sk_IPAddressOrRange_set_cmp_func(aors, v4IPAddressOrRange_cmp); | ||
| 616 | break; | ||
| 617 | case IANA_AFI_IPV6: | ||
| 618 | (void) sk_IPAddressOrRange_set_cmp_func(aors, v6IPAddressOrRange_cmp); | ||
| 619 | break; | ||
| 620 | } | ||
| 621 | f->ipAddressChoice->type = IPAddressChoice_addressesOrRanges; | ||
| 622 | f->ipAddressChoice->u.addressesOrRanges = aors; | ||
| 623 | return aors; | ||
| 624 | } | ||
| 625 | |||
| 626 | /* | ||
| 627 | * Add a prefix. | ||
| 628 | */ | ||
| 629 | int v3_addr_add_prefix(IPAddrBlocks *addr, | ||
| 630 | const unsigned afi, | ||
| 631 | const unsigned *safi, | ||
| 632 | unsigned char *a, | ||
| 633 | const int prefixlen) | ||
| 634 | { | ||
| 635 | IPAddressOrRanges *aors = make_prefix_or_range(addr, afi, safi); | ||
| 636 | IPAddressOrRange *aor; | ||
| 637 | if (aors == NULL || !make_addressPrefix(&aor, a, prefixlen)) | ||
| 638 | return 0; | ||
| 639 | if (sk_IPAddressOrRange_push(aors, aor)) | ||
| 640 | return 1; | ||
| 641 | IPAddressOrRange_free(aor); | ||
| 642 | return 0; | ||
| 643 | } | ||
| 644 | |||
| 645 | /* | ||
| 646 | * Add a range. | ||
| 647 | */ | ||
| 648 | int v3_addr_add_range(IPAddrBlocks *addr, | ||
| 649 | const unsigned afi, | ||
| 650 | const unsigned *safi, | ||
| 651 | unsigned char *min, | ||
| 652 | unsigned char *max) | ||
| 653 | { | ||
| 654 | IPAddressOrRanges *aors = make_prefix_or_range(addr, afi, safi); | ||
| 655 | IPAddressOrRange *aor; | ||
| 656 | int length = length_from_afi(afi); | ||
| 657 | if (aors == NULL) | ||
| 658 | return 0; | ||
| 659 | if (!make_addressRange(&aor, min, max, length)) | ||
| 660 | return 0; | ||
| 661 | if (sk_IPAddressOrRange_push(aors, aor)) | ||
| 662 | return 1; | ||
| 663 | IPAddressOrRange_free(aor); | ||
| 664 | return 0; | ||
| 665 | } | ||
| 666 | |||
| 667 | /* | ||
| 668 | * Extract min and max values from an IPAddressOrRange. | ||
| 669 | */ | ||
| 670 | static int extract_min_max(IPAddressOrRange *aor, | ||
| 671 | unsigned char *min, | ||
| 672 | unsigned char *max, | ||
| 673 | int length) | ||
| 674 | { | ||
| 675 | if (aor == NULL || min == NULL || max == NULL) | ||
| 676 | return 0; | ||
| 677 | switch (aor->type) { | ||
| 678 | case IPAddressOrRange_addressPrefix: | ||
| 679 | return (addr_expand(min, aor->u.addressPrefix, length, 0x00) && | ||
| 680 | addr_expand(max, aor->u.addressPrefix, length, 0xFF)); | ||
| 681 | case IPAddressOrRange_addressRange: | ||
| 682 | return (addr_expand(min, aor->u.addressRange->min, length, 0x00) && | ||
| 683 | addr_expand(max, aor->u.addressRange->max, length, 0xFF)); | ||
| 684 | } | ||
| 685 | return 0; | ||
| 686 | } | ||
| 687 | |||
| 688 | /* | ||
| 689 | * Public wrapper for extract_min_max(). | ||
| 690 | */ | ||
| 691 | int v3_addr_get_range(IPAddressOrRange *aor, | ||
| 692 | const unsigned afi, | ||
| 693 | unsigned char *min, | ||
| 694 | unsigned char *max, | ||
| 695 | const int length) | ||
| 696 | { | ||
| 697 | int afi_length = length_from_afi(afi); | ||
| 698 | if (aor == NULL || min == NULL || max == NULL || | ||
| 699 | afi_length == 0 || length < afi_length || | ||
| 700 | (aor->type != IPAddressOrRange_addressPrefix && | ||
| 701 | aor->type != IPAddressOrRange_addressRange) || | ||
| 702 | !extract_min_max(aor, min, max, afi_length)) | ||
| 703 | return 0; | ||
| 704 | |||
| 705 | return afi_length; | ||
| 706 | } | ||
| 707 | |||
| 708 | /* | ||
| 709 | * Sort comparision function for a sequence of IPAddressFamily. | ||
| 710 | * | ||
| 711 | * The last paragraph of RFC 3779 2.2.3.3 is slightly ambiguous about | ||
| 712 | * the ordering: I can read it as meaning that IPv6 without a SAFI | ||
| 713 | * comes before IPv4 with a SAFI, which seems pretty weird. The | ||
| 714 | * examples in appendix B suggest that the author intended the | ||
| 715 | * null-SAFI rule to apply only within a single AFI, which is what I | ||
| 716 | * would have expected and is what the following code implements. | ||
| 717 | */ | ||
| 718 | static int IPAddressFamily_cmp(const IPAddressFamily * const *a_, | ||
| 719 | const IPAddressFamily * const *b_) | ||
| 720 | { | ||
| 721 | const ASN1_OCTET_STRING *a = (*a_)->addressFamily; | ||
| 722 | const ASN1_OCTET_STRING *b = (*b_)->addressFamily; | ||
| 723 | int len = ((a->length <= b->length) ? a->length : b->length); | ||
| 724 | int cmp = memcmp(a->data, b->data, len); | ||
| 725 | return cmp ? cmp : a->length - b->length; | ||
| 726 | } | ||
| 727 | |||
| 728 | /* | ||
| 729 | * Check whether an IPAddrBLocks is in canonical form. | ||
| 730 | */ | ||
| 731 | int v3_addr_is_canonical(IPAddrBlocks *addr) | ||
| 732 | { | ||
| 733 | unsigned char a_min[ADDR_RAW_BUF_LEN], a_max[ADDR_RAW_BUF_LEN]; | ||
| 734 | unsigned char b_min[ADDR_RAW_BUF_LEN], b_max[ADDR_RAW_BUF_LEN]; | ||
| 735 | IPAddressOrRanges *aors; | ||
| 736 | int i, j, k; | ||
| 737 | |||
| 738 | /* | ||
| 739 | * Empty extension is cannonical. | ||
| 740 | */ | ||
| 741 | if (addr == NULL) | ||
| 742 | return 1; | ||
| 743 | |||
| 744 | /* | ||
| 745 | * Check whether the top-level list is in order. | ||
| 746 | */ | ||
| 747 | for (i = 0; i < sk_IPAddressFamily_num(addr) - 1; i++) { | ||
| 748 | const IPAddressFamily *a = sk_IPAddressFamily_value(addr, i); | ||
| 749 | const IPAddressFamily *b = sk_IPAddressFamily_value(addr, i + 1); | ||
| 750 | if (IPAddressFamily_cmp(&a, &b) >= 0) | ||
| 751 | return 0; | ||
| 752 | } | ||
| 753 | |||
| 754 | /* | ||
| 755 | * Top level's ok, now check each address family. | ||
| 756 | */ | ||
| 757 | for (i = 0; i < sk_IPAddressFamily_num(addr); i++) { | ||
| 758 | IPAddressFamily *f = sk_IPAddressFamily_value(addr, i); | ||
| 759 | int length = length_from_afi(v3_addr_get_afi(f)); | ||
| 760 | |||
| 761 | /* | ||
| 762 | * Inheritance is canonical. Anything other than inheritance or | ||
| 763 | * a SEQUENCE OF IPAddressOrRange is an ASN.1 error or something. | ||
| 764 | */ | ||
| 765 | if (f == NULL || f->ipAddressChoice == NULL) | ||
| 766 | return 0; | ||
| 767 | switch (f->ipAddressChoice->type) { | ||
| 768 | case IPAddressChoice_inherit: | ||
| 769 | continue; | ||
| 770 | case IPAddressChoice_addressesOrRanges: | ||
| 771 | break; | ||
| 772 | default: | ||
| 773 | return 0; | ||
| 774 | } | ||
| 775 | |||
| 776 | /* | ||
| 777 | * It's an IPAddressOrRanges sequence, check it. | ||
| 778 | */ | ||
| 779 | aors = f->ipAddressChoice->u.addressesOrRanges; | ||
| 780 | if (sk_IPAddressOrRange_num(aors) == 0) | ||
| 781 | return 0; | ||
| 782 | for (j = 0; j < sk_IPAddressOrRange_num(aors) - 1; j++) { | ||
| 783 | IPAddressOrRange *a = sk_IPAddressOrRange_value(aors, j); | ||
| 784 | IPAddressOrRange *b = sk_IPAddressOrRange_value(aors, j + 1); | ||
| 785 | |||
| 786 | if (!extract_min_max(a, a_min, a_max, length) || | ||
| 787 | !extract_min_max(b, b_min, b_max, length)) | ||
| 788 | return 0; | ||
| 789 | |||
| 790 | /* | ||
| 791 | * Punt misordered list, overlapping start, or inverted range. | ||
| 792 | */ | ||
| 793 | if (memcmp(a_min, b_min, length) >= 0 || | ||
| 794 | memcmp(a_min, a_max, length) > 0 || | ||
| 795 | memcmp(b_min, b_max, length) > 0) | ||
| 796 | return 0; | ||
| 797 | |||
| 798 | /* | ||
| 799 | * Punt if adjacent or overlapping. Check for adjacency by | ||
| 800 | * subtracting one from b_min first. | ||
| 801 | */ | ||
| 802 | for (k = length - 1; k >= 0 && b_min[k]-- == 0x00; k--) | ||
| 803 | ; | ||
| 804 | if (memcmp(a_max, b_min, length) >= 0) | ||
| 805 | return 0; | ||
| 806 | |||
| 807 | /* | ||
| 808 | * Check for range that should be expressed as a prefix. | ||
| 809 | */ | ||
| 810 | if (a->type == IPAddressOrRange_addressRange && | ||
| 811 | range_should_be_prefix(a_min, a_max, length) >= 0) | ||
| 812 | return 0; | ||
| 813 | } | ||
| 814 | |||
| 815 | /* | ||
| 816 | * Check range to see if it's inverted or should be a | ||
| 817 | * prefix. | ||
| 818 | */ | ||
| 819 | j = sk_IPAddressOrRange_num(aors) - 1; | ||
| 820 | { | ||
| 821 | IPAddressOrRange *a = sk_IPAddressOrRange_value(aors, j); | ||
| 822 | if (a != NULL && a->type == IPAddressOrRange_addressRange) { | ||
| 823 | if (!extract_min_max(a, a_min, a_max, length)) | ||
| 824 | return 0; | ||
| 825 | if (memcmp(a_min, a_max, length) > 0 || | ||
| 826 | range_should_be_prefix(a_min, a_max, length) >= 0) | ||
| 827 | return 0; | ||
| 828 | } | ||
| 829 | } | ||
| 830 | } | ||
| 831 | |||
| 832 | /* | ||
| 833 | * If we made it through all that, we're happy. | ||
| 834 | */ | ||
| 835 | return 1; | ||
| 836 | } | ||
| 837 | |||
| 838 | /* | ||
| 839 | * Whack an IPAddressOrRanges into canonical form. | ||
| 840 | */ | ||
| 841 | static int IPAddressOrRanges_canonize(IPAddressOrRanges *aors, | ||
| 842 | const unsigned afi) | ||
| 843 | { | ||
| 844 | int i, j, length = length_from_afi(afi); | ||
| 845 | |||
| 846 | /* | ||
| 847 | * Sort the IPAddressOrRanges sequence. | ||
| 848 | */ | ||
| 849 | sk_IPAddressOrRange_sort(aors); | ||
| 850 | |||
| 851 | /* | ||
| 852 | * Clean up representation issues, punt on duplicates or overlaps. | ||
| 853 | */ | ||
| 854 | for (i = 0; i < sk_IPAddressOrRange_num(aors) - 1; i++) { | ||
| 855 | IPAddressOrRange *a = sk_IPAddressOrRange_value(aors, i); | ||
| 856 | IPAddressOrRange *b = sk_IPAddressOrRange_value(aors, i + 1); | ||
| 857 | unsigned char a_min[ADDR_RAW_BUF_LEN], a_max[ADDR_RAW_BUF_LEN]; | ||
| 858 | unsigned char b_min[ADDR_RAW_BUF_LEN], b_max[ADDR_RAW_BUF_LEN]; | ||
| 859 | |||
| 860 | if (!extract_min_max(a, a_min, a_max, length) || | ||
| 861 | !extract_min_max(b, b_min, b_max, length)) | ||
| 862 | return 0; | ||
| 863 | |||
| 864 | /* | ||
| 865 | * Punt inverted ranges. | ||
| 866 | */ | ||
| 867 | if (memcmp(a_min, a_max, length) > 0 || | ||
| 868 | memcmp(b_min, b_max, length) > 0) | ||
| 869 | return 0; | ||
| 870 | |||
| 871 | /* | ||
| 872 | * Punt overlaps. | ||
| 873 | */ | ||
| 874 | if (memcmp(a_max, b_min, length) >= 0) | ||
| 875 | return 0; | ||
| 876 | |||
| 877 | /* | ||
| 878 | * Merge if a and b are adjacent. We check for | ||
| 879 | * adjacency by subtracting one from b_min first. | ||
| 880 | */ | ||
| 881 | for (j = length - 1; j >= 0 && b_min[j]-- == 0x00; j--) | ||
| 882 | ; | ||
| 883 | if (memcmp(a_max, b_min, length) == 0) { | ||
| 884 | IPAddressOrRange *merged; | ||
| 885 | if (!make_addressRange(&merged, a_min, b_max, length)) | ||
| 886 | return 0; | ||
| 887 | (void) sk_IPAddressOrRange_set(aors, i, merged); | ||
| 888 | (void) sk_IPAddressOrRange_delete(aors, i + 1); | ||
| 889 | IPAddressOrRange_free(a); | ||
| 890 | IPAddressOrRange_free(b); | ||
| 891 | --i; | ||
| 892 | continue; | ||
| 893 | } | ||
| 894 | } | ||
| 895 | |||
| 896 | /* | ||
| 897 | * Check for inverted final range. | ||
| 898 | */ | ||
| 899 | j = sk_IPAddressOrRange_num(aors) - 1; | ||
| 900 | { | ||
| 901 | IPAddressOrRange *a = sk_IPAddressOrRange_value(aors, j); | ||
| 902 | if (a != NULL && a->type == IPAddressOrRange_addressRange) { | ||
| 903 | unsigned char a_min[ADDR_RAW_BUF_LEN], a_max[ADDR_RAW_BUF_LEN]; | ||
| 904 | extract_min_max(a, a_min, a_max, length); | ||
| 905 | if (memcmp(a_min, a_max, length) > 0) | ||
| 906 | return 0; | ||
| 907 | } | ||
| 908 | } | ||
| 909 | |||
| 910 | return 1; | ||
| 911 | } | ||
| 912 | |||
| 913 | /* | ||
| 914 | * Whack an IPAddrBlocks extension into canonical form. | ||
| 915 | */ | ||
| 916 | int v3_addr_canonize(IPAddrBlocks *addr) | ||
| 917 | { | ||
| 918 | int i; | ||
| 919 | for (i = 0; i < sk_IPAddressFamily_num(addr); i++) { | ||
| 920 | IPAddressFamily *f = sk_IPAddressFamily_value(addr, i); | ||
| 921 | if (f->ipAddressChoice->type == IPAddressChoice_addressesOrRanges && | ||
| 922 | !IPAddressOrRanges_canonize(f->ipAddressChoice->u.addressesOrRanges, | ||
| 923 | v3_addr_get_afi(f))) | ||
| 924 | return 0; | ||
| 925 | } | ||
| 926 | (void) sk_IPAddressFamily_set_cmp_func(addr, IPAddressFamily_cmp); | ||
| 927 | sk_IPAddressFamily_sort(addr); | ||
| 928 | OPENSSL_assert(v3_addr_is_canonical(addr)); | ||
| 929 | return 1; | ||
| 930 | } | ||
| 931 | |||
| 932 | /* | ||
| 933 | * v2i handler for the IPAddrBlocks extension. | ||
| 934 | */ | ||
| 935 | static void *v2i_IPAddrBlocks(const struct v3_ext_method *method, | ||
| 936 | struct v3_ext_ctx *ctx, | ||
| 937 | STACK_OF(CONF_VALUE) *values) | ||
| 938 | { | ||
| 939 | static const char v4addr_chars[] = "0123456789."; | ||
| 940 | static const char v6addr_chars[] = "0123456789.:abcdefABCDEF"; | ||
| 941 | IPAddrBlocks *addr = NULL; | ||
| 942 | char *s = NULL, *t; | ||
| 943 | int i; | ||
| 944 | |||
| 945 | if ((addr = sk_IPAddressFamily_new(IPAddressFamily_cmp)) == NULL) { | ||
| 946 | X509V3err(X509V3_F_V2I_IPADDRBLOCKS, ERR_R_MALLOC_FAILURE); | ||
| 947 | return NULL; | ||
| 948 | } | ||
| 949 | |||
| 950 | for (i = 0; i < sk_CONF_VALUE_num(values); i++) { | ||
| 951 | CONF_VALUE *val = sk_CONF_VALUE_value(values, i); | ||
| 952 | unsigned char min[ADDR_RAW_BUF_LEN], max[ADDR_RAW_BUF_LEN]; | ||
| 953 | unsigned afi, *safi = NULL, safi_; | ||
| 954 | const char *addr_chars; | ||
| 955 | int prefixlen, i1, i2, delim, length; | ||
| 956 | |||
| 957 | if ( !name_cmp(val->name, "IPv4")) { | ||
| 958 | afi = IANA_AFI_IPV4; | ||
| 959 | } else if (!name_cmp(val->name, "IPv6")) { | ||
| 960 | afi = IANA_AFI_IPV6; | ||
| 961 | } else if (!name_cmp(val->name, "IPv4-SAFI")) { | ||
| 962 | afi = IANA_AFI_IPV4; | ||
| 963 | safi = &safi_; | ||
| 964 | } else if (!name_cmp(val->name, "IPv6-SAFI")) { | ||
| 965 | afi = IANA_AFI_IPV6; | ||
| 966 | safi = &safi_; | ||
| 967 | } else { | ||
| 968 | X509V3err(X509V3_F_V2I_IPADDRBLOCKS, X509V3_R_EXTENSION_NAME_ERROR); | ||
| 969 | X509V3_conf_err(val); | ||
| 970 | goto err; | ||
| 971 | } | ||
| 972 | |||
| 973 | switch (afi) { | ||
| 974 | case IANA_AFI_IPV4: | ||
| 975 | addr_chars = v4addr_chars; | ||
| 976 | break; | ||
| 977 | case IANA_AFI_IPV6: | ||
| 978 | addr_chars = v6addr_chars; | ||
| 979 | break; | ||
| 980 | } | ||
| 981 | |||
| 982 | length = length_from_afi(afi); | ||
| 983 | |||
| 984 | /* | ||
| 985 | * Handle SAFI, if any, and BUF_strdup() so we can null-terminate | ||
| 986 | * the other input values. | ||
| 987 | */ | ||
| 988 | if (safi != NULL) { | ||
| 989 | *safi = strtoul(val->value, &t, 0); | ||
| 990 | t += strspn(t, " \t"); | ||
| 991 | if (*safi > 0xFF || *t++ != ':') { | ||
| 992 | X509V3err(X509V3_F_V2I_IPADDRBLOCKS, X509V3_R_INVALID_SAFI); | ||
| 993 | X509V3_conf_err(val); | ||
| 994 | goto err; | ||
| 995 | } | ||
| 996 | t += strspn(t, " \t"); | ||
| 997 | s = BUF_strdup(t); | ||
| 998 | } else { | ||
| 999 | s = BUF_strdup(val->value); | ||
| 1000 | } | ||
| 1001 | if (s == NULL) { | ||
| 1002 | X509V3err(X509V3_F_V2I_IPADDRBLOCKS, ERR_R_MALLOC_FAILURE); | ||
| 1003 | goto err; | ||
| 1004 | } | ||
| 1005 | |||
| 1006 | /* | ||
| 1007 | * Check for inheritance. Not worth additional complexity to | ||
| 1008 | * optimize this (seldom-used) case. | ||
| 1009 | */ | ||
| 1010 | if (!strcmp(s, "inherit")) { | ||
| 1011 | if (!v3_addr_add_inherit(addr, afi, safi)) { | ||
| 1012 | X509V3err(X509V3_F_V2I_IPADDRBLOCKS, X509V3_R_INVALID_INHERITANCE); | ||
| 1013 | X509V3_conf_err(val); | ||
| 1014 | goto err; | ||
| 1015 | } | ||
| 1016 | OPENSSL_free(s); | ||
| 1017 | s = NULL; | ||
| 1018 | continue; | ||
| 1019 | } | ||
| 1020 | |||
| 1021 | i1 = strspn(s, addr_chars); | ||
| 1022 | i2 = i1 + strspn(s + i1, " \t"); | ||
| 1023 | delim = s[i2++]; | ||
| 1024 | s[i1] = '\0'; | ||
| 1025 | |||
| 1026 | if (a2i_ipadd(min, s) != length) { | ||
| 1027 | X509V3err(X509V3_F_V2I_IPADDRBLOCKS, X509V3_R_INVALID_IPADDRESS); | ||
| 1028 | X509V3_conf_err(val); | ||
| 1029 | goto err; | ||
| 1030 | } | ||
| 1031 | |||
| 1032 | switch (delim) { | ||
| 1033 | case '/': | ||
| 1034 | prefixlen = (int) strtoul(s + i2, &t, 10); | ||
| 1035 | if (t == s + i2 || *t != '\0') { | ||
| 1036 | X509V3err(X509V3_F_V2I_IPADDRBLOCKS, X509V3_R_EXTENSION_VALUE_ERROR); | ||
| 1037 | X509V3_conf_err(val); | ||
| 1038 | goto err; | ||
| 1039 | } | ||
| 1040 | if (!v3_addr_add_prefix(addr, afi, safi, min, prefixlen)) { | ||
| 1041 | X509V3err(X509V3_F_V2I_IPADDRBLOCKS, ERR_R_MALLOC_FAILURE); | ||
| 1042 | goto err; | ||
| 1043 | } | ||
| 1044 | break; | ||
| 1045 | case '-': | ||
| 1046 | i1 = i2 + strspn(s + i2, " \t"); | ||
| 1047 | i2 = i1 + strspn(s + i1, addr_chars); | ||
| 1048 | if (i1 == i2 || s[i2] != '\0') { | ||
| 1049 | X509V3err(X509V3_F_V2I_IPADDRBLOCKS, X509V3_R_EXTENSION_VALUE_ERROR); | ||
| 1050 | X509V3_conf_err(val); | ||
| 1051 | goto err; | ||
| 1052 | } | ||
| 1053 | if (a2i_ipadd(max, s + i1) != length) { | ||
| 1054 | X509V3err(X509V3_F_V2I_IPADDRBLOCKS, X509V3_R_INVALID_IPADDRESS); | ||
| 1055 | X509V3_conf_err(val); | ||
| 1056 | goto err; | ||
| 1057 | } | ||
| 1058 | if (memcmp(min, max, length_from_afi(afi)) > 0) { | ||
| 1059 | X509V3err(X509V3_F_V2I_IPADDRBLOCKS, X509V3_R_EXTENSION_VALUE_ERROR); | ||
| 1060 | X509V3_conf_err(val); | ||
| 1061 | goto err; | ||
| 1062 | } | ||
| 1063 | if (!v3_addr_add_range(addr, afi, safi, min, max)) { | ||
| 1064 | X509V3err(X509V3_F_V2I_IPADDRBLOCKS, ERR_R_MALLOC_FAILURE); | ||
| 1065 | goto err; | ||
| 1066 | } | ||
| 1067 | break; | ||
| 1068 | case '\0': | ||
| 1069 | if (!v3_addr_add_prefix(addr, afi, safi, min, length * 8)) { | ||
| 1070 | X509V3err(X509V3_F_V2I_IPADDRBLOCKS, ERR_R_MALLOC_FAILURE); | ||
| 1071 | goto err; | ||
| 1072 | } | ||
| 1073 | break; | ||
| 1074 | default: | ||
| 1075 | X509V3err(X509V3_F_V2I_IPADDRBLOCKS, X509V3_R_EXTENSION_VALUE_ERROR); | ||
| 1076 | X509V3_conf_err(val); | ||
| 1077 | goto err; | ||
| 1078 | } | ||
| 1079 | |||
| 1080 | OPENSSL_free(s); | ||
| 1081 | s = NULL; | ||
| 1082 | } | ||
| 1083 | |||
| 1084 | /* | ||
| 1085 | * Canonize the result, then we're done. | ||
| 1086 | */ | ||
| 1087 | if (!v3_addr_canonize(addr)) | ||
| 1088 | goto err; | ||
| 1089 | return addr; | ||
| 1090 | |||
| 1091 | err: | ||
| 1092 | OPENSSL_free(s); | ||
| 1093 | sk_IPAddressFamily_pop_free(addr, IPAddressFamily_free); | ||
| 1094 | return NULL; | ||
| 1095 | } | ||
| 1096 | |||
| 1097 | /* | ||
| 1098 | * OpenSSL dispatch | ||
| 1099 | */ | ||
| 1100 | const X509V3_EXT_METHOD v3_addr = { | ||
| 1101 | NID_sbgp_ipAddrBlock, /* nid */ | ||
| 1102 | 0, /* flags */ | ||
| 1103 | ASN1_ITEM_ref(IPAddrBlocks), /* template */ | ||
| 1104 | 0, 0, 0, 0, /* old functions, ignored */ | ||
| 1105 | 0, /* i2s */ | ||
| 1106 | 0, /* s2i */ | ||
| 1107 | 0, /* i2v */ | ||
| 1108 | v2i_IPAddrBlocks, /* v2i */ | ||
| 1109 | i2r_IPAddrBlocks, /* i2r */ | ||
| 1110 | 0, /* r2i */ | ||
| 1111 | NULL /* extension-specific data */ | ||
| 1112 | }; | ||
| 1113 | |||
| 1114 | /* | ||
| 1115 | * Figure out whether extension sues inheritance. | ||
| 1116 | */ | ||
| 1117 | int v3_addr_inherits(IPAddrBlocks *addr) | ||
| 1118 | { | ||
| 1119 | int i; | ||
| 1120 | if (addr == NULL) | ||
| 1121 | return 0; | ||
| 1122 | for (i = 0; i < sk_IPAddressFamily_num(addr); i++) { | ||
| 1123 | IPAddressFamily *f = sk_IPAddressFamily_value(addr, i); | ||
| 1124 | if (f->ipAddressChoice->type == IPAddressChoice_inherit) | ||
| 1125 | return 1; | ||
| 1126 | } | ||
| 1127 | return 0; | ||
| 1128 | } | ||
| 1129 | |||
| 1130 | /* | ||
| 1131 | * Figure out whether parent contains child. | ||
| 1132 | */ | ||
| 1133 | static int addr_contains(IPAddressOrRanges *parent, | ||
| 1134 | IPAddressOrRanges *child, | ||
| 1135 | int length) | ||
| 1136 | { | ||
| 1137 | unsigned char p_min[ADDR_RAW_BUF_LEN], p_max[ADDR_RAW_BUF_LEN]; | ||
| 1138 | unsigned char c_min[ADDR_RAW_BUF_LEN], c_max[ADDR_RAW_BUF_LEN]; | ||
| 1139 | int p, c; | ||
| 1140 | |||
| 1141 | if (child == NULL || parent == child) | ||
| 1142 | return 1; | ||
| 1143 | if (parent == NULL) | ||
| 1144 | return 0; | ||
| 1145 | |||
| 1146 | p = 0; | ||
| 1147 | for (c = 0; c < sk_IPAddressOrRange_num(child); c++) { | ||
| 1148 | if (!extract_min_max(sk_IPAddressOrRange_value(child, c), | ||
| 1149 | c_min, c_max, length)) | ||
| 1150 | return -1; | ||
| 1151 | for (;; p++) { | ||
| 1152 | if (p >= sk_IPAddressOrRange_num(parent)) | ||
| 1153 | return 0; | ||
| 1154 | if (!extract_min_max(sk_IPAddressOrRange_value(parent, p), | ||
| 1155 | p_min, p_max, length)) | ||
| 1156 | return 0; | ||
| 1157 | if (memcmp(p_max, c_max, length) < 0) | ||
| 1158 | continue; | ||
| 1159 | if (memcmp(p_min, c_min, length) > 0) | ||
| 1160 | return 0; | ||
| 1161 | break; | ||
| 1162 | } | ||
| 1163 | } | ||
| 1164 | |||
| 1165 | return 1; | ||
| 1166 | } | ||
| 1167 | |||
| 1168 | /* | ||
| 1169 | * Test whether a is a subset of b. | ||
| 1170 | */ | ||
| 1171 | int v3_addr_subset(IPAddrBlocks *a, IPAddrBlocks *b) | ||
| 1172 | { | ||
| 1173 | int i; | ||
| 1174 | if (a == NULL || a == b) | ||
| 1175 | return 1; | ||
| 1176 | if (b == NULL || v3_addr_inherits(a) || v3_addr_inherits(b)) | ||
| 1177 | return 0; | ||
| 1178 | (void) sk_IPAddressFamily_set_cmp_func(b, IPAddressFamily_cmp); | ||
| 1179 | for (i = 0; i < sk_IPAddressFamily_num(a); i++) { | ||
| 1180 | IPAddressFamily *fa = sk_IPAddressFamily_value(a, i); | ||
| 1181 | int j = sk_IPAddressFamily_find(b, fa); | ||
| 1182 | IPAddressFamily *fb; | ||
| 1183 | fb = sk_IPAddressFamily_value(b, j); | ||
| 1184 | if (fb == NULL) | ||
| 1185 | return 0; | ||
| 1186 | if (!addr_contains(fb->ipAddressChoice->u.addressesOrRanges, | ||
| 1187 | fa->ipAddressChoice->u.addressesOrRanges, | ||
| 1188 | length_from_afi(v3_addr_get_afi(fb)))) | ||
| 1189 | return 0; | ||
| 1190 | } | ||
| 1191 | return 1; | ||
| 1192 | } | ||
| 1193 | |||
| 1194 | /* | ||
| 1195 | * Validation error handling via callback. | ||
| 1196 | */ | ||
| 1197 | #define validation_err(_err_) \ | ||
| 1198 | do { \ | ||
| 1199 | if (ctx != NULL) { \ | ||
| 1200 | ctx->error = _err_; \ | ||
| 1201 | ctx->error_depth = i; \ | ||
| 1202 | ctx->current_cert = x; \ | ||
| 1203 | ret = ctx->verify_cb(0, ctx); \ | ||
| 1204 | } else { \ | ||
| 1205 | ret = 0; \ | ||
| 1206 | } \ | ||
| 1207 | if (!ret) \ | ||
| 1208 | goto done; \ | ||
| 1209 | } while (0) | ||
| 1210 | |||
| 1211 | /* | ||
| 1212 | * Core code for RFC 3779 2.3 path validation. | ||
| 1213 | */ | ||
| 1214 | static int v3_addr_validate_path_internal(X509_STORE_CTX *ctx, | ||
| 1215 | STACK_OF(X509) *chain, | ||
| 1216 | IPAddrBlocks *ext) | ||
| 1217 | { | ||
| 1218 | IPAddrBlocks *child = NULL; | ||
| 1219 | int i, j, ret = 1; | ||
| 1220 | X509 *x; | ||
| 1221 | |||
| 1222 | OPENSSL_assert(chain != NULL && sk_X509_num(chain) > 0); | ||
| 1223 | OPENSSL_assert(ctx != NULL || ext != NULL); | ||
| 1224 | OPENSSL_assert(ctx == NULL || ctx->verify_cb != NULL); | ||
| 1225 | |||
| 1226 | /* | ||
| 1227 | * Figure out where to start. If we don't have an extension to | ||
| 1228 | * check, we're done. Otherwise, check canonical form and | ||
| 1229 | * set up for walking up the chain. | ||
| 1230 | */ | ||
| 1231 | if (ext != NULL) { | ||
| 1232 | i = -1; | ||
| 1233 | x = NULL; | ||
| 1234 | } else { | ||
| 1235 | i = 0; | ||
| 1236 | x = sk_X509_value(chain, i); | ||
| 1237 | OPENSSL_assert(x != NULL); | ||
| 1238 | if ((ext = x->rfc3779_addr) == NULL) | ||
| 1239 | goto done; | ||
| 1240 | } | ||
| 1241 | if (!v3_addr_is_canonical(ext)) | ||
| 1242 | validation_err(X509_V_ERR_INVALID_EXTENSION); | ||
| 1243 | (void) sk_IPAddressFamily_set_cmp_func(ext, IPAddressFamily_cmp); | ||
| 1244 | if ((child = sk_IPAddressFamily_dup(ext)) == NULL) { | ||
| 1245 | X509V3err(X509V3_F_V3_ADDR_VALIDATE_PATH_INTERNAL, ERR_R_MALLOC_FAILURE); | ||
| 1246 | ret = 0; | ||
| 1247 | goto done; | ||
| 1248 | } | ||
| 1249 | |||
| 1250 | /* | ||
| 1251 | * Now walk up the chain. No cert may list resources that its | ||
| 1252 | * parent doesn't list. | ||
| 1253 | */ | ||
| 1254 | for (i++; i < sk_X509_num(chain); i++) { | ||
| 1255 | x = sk_X509_value(chain, i); | ||
| 1256 | OPENSSL_assert(x != NULL); | ||
| 1257 | if (!v3_addr_is_canonical(x->rfc3779_addr)) | ||
| 1258 | validation_err(X509_V_ERR_INVALID_EXTENSION); | ||
| 1259 | if (x->rfc3779_addr == NULL) { | ||
| 1260 | for (j = 0; j < sk_IPAddressFamily_num(child); j++) { | ||
| 1261 | IPAddressFamily *fc = sk_IPAddressFamily_value(child, j); | ||
| 1262 | if (fc->ipAddressChoice->type != IPAddressChoice_inherit) { | ||
| 1263 | validation_err(X509_V_ERR_UNNESTED_RESOURCE); | ||
| 1264 | break; | ||
| 1265 | } | ||
| 1266 | } | ||
| 1267 | continue; | ||
| 1268 | } | ||
| 1269 | (void) sk_IPAddressFamily_set_cmp_func(x->rfc3779_addr, IPAddressFamily_cmp); | ||
| 1270 | for (j = 0; j < sk_IPAddressFamily_num(child); j++) { | ||
| 1271 | IPAddressFamily *fc = sk_IPAddressFamily_value(child, j); | ||
| 1272 | int k = sk_IPAddressFamily_find(x->rfc3779_addr, fc); | ||
| 1273 | IPAddressFamily *fp = sk_IPAddressFamily_value(x->rfc3779_addr, k); | ||
| 1274 | if (fp == NULL) { | ||
| 1275 | if (fc->ipAddressChoice->type == IPAddressChoice_addressesOrRanges) { | ||
| 1276 | validation_err(X509_V_ERR_UNNESTED_RESOURCE); | ||
| 1277 | break; | ||
| 1278 | } | ||
| 1279 | continue; | ||
| 1280 | } | ||
| 1281 | if (fp->ipAddressChoice->type == IPAddressChoice_addressesOrRanges) { | ||
| 1282 | if (fc->ipAddressChoice->type == IPAddressChoice_inherit || | ||
| 1283 | addr_contains(fp->ipAddressChoice->u.addressesOrRanges, | ||
| 1284 | fc->ipAddressChoice->u.addressesOrRanges, | ||
| 1285 | length_from_afi(v3_addr_get_afi(fc)))) | ||
| 1286 | sk_IPAddressFamily_set(child, j, fp); | ||
| 1287 | else | ||
| 1288 | validation_err(X509_V_ERR_UNNESTED_RESOURCE); | ||
| 1289 | } | ||
| 1290 | } | ||
| 1291 | } | ||
| 1292 | |||
| 1293 | /* | ||
| 1294 | * Trust anchor can't inherit. | ||
| 1295 | */ | ||
| 1296 | OPENSSL_assert(x != NULL); | ||
| 1297 | if (x->rfc3779_addr != NULL) { | ||
| 1298 | for (j = 0; j < sk_IPAddressFamily_num(x->rfc3779_addr); j++) { | ||
| 1299 | IPAddressFamily *fp = sk_IPAddressFamily_value(x->rfc3779_addr, j); | ||
| 1300 | if (fp->ipAddressChoice->type == IPAddressChoice_inherit && | ||
| 1301 | sk_IPAddressFamily_find(child, fp) >= 0) | ||
| 1302 | validation_err(X509_V_ERR_UNNESTED_RESOURCE); | ||
| 1303 | } | ||
| 1304 | } | ||
| 1305 | |||
| 1306 | done: | ||
| 1307 | sk_IPAddressFamily_free(child); | ||
| 1308 | return ret; | ||
| 1309 | } | ||
| 1310 | |||
| 1311 | #undef validation_err | ||
| 1312 | |||
| 1313 | /* | ||
| 1314 | * RFC 3779 2.3 path validation -- called from X509_verify_cert(). | ||
| 1315 | */ | ||
| 1316 | int v3_addr_validate_path(X509_STORE_CTX *ctx) | ||
| 1317 | { | ||
| 1318 | return v3_addr_validate_path_internal(ctx, ctx->chain, NULL); | ||
| 1319 | } | ||
| 1320 | |||
| 1321 | /* | ||
| 1322 | * RFC 3779 2.3 path validation of an extension. | ||
| 1323 | * Test whether chain covers extension. | ||
| 1324 | */ | ||
| 1325 | int v3_addr_validate_resource_set(STACK_OF(X509) *chain, | ||
| 1326 | IPAddrBlocks *ext, | ||
| 1327 | int allow_inheritance) | ||
| 1328 | { | ||
| 1329 | if (ext == NULL) | ||
| 1330 | return 1; | ||
| 1331 | if (chain == NULL || sk_X509_num(chain) == 0) | ||
| 1332 | return 0; | ||
| 1333 | if (!allow_inheritance && v3_addr_inherits(ext)) | ||
| 1334 | return 0; | ||
| 1335 | return v3_addr_validate_path_internal(NULL, chain, ext); | ||
| 1336 | } | ||
| 1337 | |||
| 1338 | #endif /* OPENSSL_NO_RFC3779 */ | ||
