diff options
Diffstat (limited to 'src/lib/libcrypto/x509v3/v3_addr.c')
-rw-r--r-- | src/lib/libcrypto/x509v3/v3_addr.c | 1338 |
1 files changed, 1338 insertions, 0 deletions
diff --git a/src/lib/libcrypto/x509v3/v3_addr.c b/src/lib/libcrypto/x509v3/v3_addr.c new file mode 100644 index 0000000000..df46a4983b --- /dev/null +++ b/src/lib/libcrypto/x509v3/v3_addr.c | |||
@@ -0,0 +1,1338 @@ | |||
1 | /* | ||
2 | * Contributed to the OpenSSL Project by the American Registry for | ||
3 | * Internet Numbers ("ARIN"). | ||
4 | */ | ||
5 | /* ==================================================================== | ||
6 | * Copyright (c) 2006 The OpenSSL Project. All rights reserved. | ||
7 | * | ||
8 | * Redistribution and use in source and binary forms, with or without | ||
9 | * modification, are permitted provided that the following conditions | ||
10 | * are met: | ||
11 | * | ||
12 | * 1. Redistributions of source code must retain the above copyright | ||
13 | * notice, this list of conditions and the following disclaimer. | ||
14 | * | ||
15 | * 2. Redistributions in binary form must reproduce the above copyright | ||
16 | * notice, this list of conditions and the following disclaimer in | ||
17 | * the documentation and/or other materials provided with the | ||
18 | * distribution. | ||
19 | * | ||
20 | * 3. All advertising materials mentioning features or use of this | ||
21 | * software must display the following acknowledgment: | ||
22 | * "This product includes software developed by the OpenSSL Project | ||
23 | * for use in the OpenSSL Toolkit. (http://www.OpenSSL.org/)" | ||
24 | * | ||
25 | * 4. The names "OpenSSL Toolkit" and "OpenSSL Project" must not be used to | ||
26 | * endorse or promote products derived from this software without | ||
27 | * prior written permission. For written permission, please contact | ||
28 | * licensing@OpenSSL.org. | ||
29 | * | ||
30 | * 5. Products derived from this software may not be called "OpenSSL" | ||
31 | * nor may "OpenSSL" appear in their names without prior written | ||
32 | * permission of the OpenSSL Project. | ||
33 | * | ||
34 | * 6. Redistributions of any form whatsoever must retain the following | ||
35 | * acknowledgment: | ||
36 | * "This product includes software developed by the OpenSSL Project | ||
37 | * for use in the OpenSSL Toolkit (http://www.OpenSSL.org/)" | ||
38 | * | ||
39 | * THIS SOFTWARE IS PROVIDED BY THE OpenSSL PROJECT ``AS IS'' AND ANY | ||
40 | * EXPRESSED OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE | ||
41 | * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR | ||
42 | * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE OpenSSL PROJECT OR | ||
43 | * ITS CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, | ||
44 | * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT | ||
45 | * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; | ||
46 | * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) | ||
47 | * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, | ||
48 | * STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) | ||
49 | * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED | ||
50 | * OF THE POSSIBILITY OF SUCH DAMAGE. | ||
51 | * ==================================================================== | ||
52 | * | ||
53 | * This product includes cryptographic software written by Eric Young | ||
54 | * (eay@cryptsoft.com). This product includes software written by Tim | ||
55 | * Hudson (tjh@cryptsoft.com). | ||
56 | */ | ||
57 | |||
58 | /* | ||
59 | * Implementation of RFC 3779 section 2.2. | ||
60 | */ | ||
61 | |||
62 | #include <stdio.h> | ||
63 | #include <stdlib.h> | ||
64 | |||
65 | #include "cryptlib.h" | ||
66 | #include <openssl/conf.h> | ||
67 | #include <openssl/asn1.h> | ||
68 | #include <openssl/asn1t.h> | ||
69 | #include <openssl/buffer.h> | ||
70 | #include <openssl/x509v3.h> | ||
71 | |||
72 | #ifndef OPENSSL_NO_RFC3779 | ||
73 | |||
74 | /* | ||
75 | * OpenSSL ASN.1 template translation of RFC 3779 2.2.3. | ||
76 | */ | ||
77 | |||
78 | ASN1_SEQUENCE(IPAddressRange) = { | ||
79 | ASN1_SIMPLE(IPAddressRange, min, ASN1_BIT_STRING), | ||
80 | ASN1_SIMPLE(IPAddressRange, max, ASN1_BIT_STRING) | ||
81 | } ASN1_SEQUENCE_END(IPAddressRange) | ||
82 | |||
83 | ASN1_CHOICE(IPAddressOrRange) = { | ||
84 | ASN1_SIMPLE(IPAddressOrRange, u.addressPrefix, ASN1_BIT_STRING), | ||
85 | ASN1_SIMPLE(IPAddressOrRange, u.addressRange, IPAddressRange) | ||
86 | } ASN1_CHOICE_END(IPAddressOrRange) | ||
87 | |||
88 | ASN1_CHOICE(IPAddressChoice) = { | ||
89 | ASN1_SIMPLE(IPAddressChoice, u.inherit, ASN1_NULL), | ||
90 | ASN1_SEQUENCE_OF(IPAddressChoice, u.addressesOrRanges, IPAddressOrRange) | ||
91 | } ASN1_CHOICE_END(IPAddressChoice) | ||
92 | |||
93 | ASN1_SEQUENCE(IPAddressFamily) = { | ||
94 | ASN1_SIMPLE(IPAddressFamily, addressFamily, ASN1_OCTET_STRING), | ||
95 | ASN1_SIMPLE(IPAddressFamily, ipAddressChoice, IPAddressChoice) | ||
96 | } ASN1_SEQUENCE_END(IPAddressFamily) | ||
97 | |||
98 | ASN1_ITEM_TEMPLATE(IPAddrBlocks) = | ||
99 | ASN1_EX_TEMPLATE_TYPE(ASN1_TFLG_SEQUENCE_OF, 0, | ||
100 | IPAddrBlocks, IPAddressFamily) | ||
101 | ASN1_ITEM_TEMPLATE_END(IPAddrBlocks) | ||
102 | |||
103 | IMPLEMENT_ASN1_FUNCTIONS(IPAddressRange) | ||
104 | IMPLEMENT_ASN1_FUNCTIONS(IPAddressOrRange) | ||
105 | IMPLEMENT_ASN1_FUNCTIONS(IPAddressChoice) | ||
106 | IMPLEMENT_ASN1_FUNCTIONS(IPAddressFamily) | ||
107 | |||
108 | /* | ||
109 | * How much buffer space do we need for a raw address? | ||
110 | */ | ||
111 | #define ADDR_RAW_BUF_LEN 16 | ||
112 | |||
113 | /* | ||
114 | * What's the address length associated with this AFI? | ||
115 | */ | ||
116 | static int length_from_afi(const unsigned afi) | ||
117 | { | ||
118 | switch (afi) { | ||
119 | case IANA_AFI_IPV4: | ||
120 | return 4; | ||
121 | case IANA_AFI_IPV6: | ||
122 | return 16; | ||
123 | default: | ||
124 | return 0; | ||
125 | } | ||
126 | } | ||
127 | |||
128 | /* | ||
129 | * Extract the AFI from an IPAddressFamily. | ||
130 | */ | ||
131 | unsigned int v3_addr_get_afi(const IPAddressFamily *f) | ||
132 | { | ||
133 | return ((f != NULL && | ||
134 | f->addressFamily != NULL && | ||
135 | f->addressFamily->data != NULL) | ||
136 | ? ((f->addressFamily->data[0] << 8) | | ||
137 | (f->addressFamily->data[1])) | ||
138 | : 0); | ||
139 | } | ||
140 | |||
141 | /* | ||
142 | * Expand the bitstring form of an address into a raw byte array. | ||
143 | * At the moment this is coded for simplicity, not speed. | ||
144 | */ | ||
145 | static int addr_expand(unsigned char *addr, | ||
146 | const ASN1_BIT_STRING *bs, | ||
147 | const int length, | ||
148 | const unsigned char fill) | ||
149 | { | ||
150 | if (bs->length < 0 || bs->length > length) | ||
151 | return 0; | ||
152 | if (bs->length > 0) { | ||
153 | memcpy(addr, bs->data, bs->length); | ||
154 | if ((bs->flags & 7) != 0) { | ||
155 | unsigned char mask = 0xFF >> (8 - (bs->flags & 7)); | ||
156 | if (fill == 0) | ||
157 | addr[bs->length - 1] &= ~mask; | ||
158 | else | ||
159 | addr[bs->length - 1] |= mask; | ||
160 | } | ||
161 | } | ||
162 | memset(addr + bs->length, fill, length - bs->length); | ||
163 | return 1; | ||
164 | } | ||
165 | |||
166 | /* | ||
167 | * Extract the prefix length from a bitstring. | ||
168 | */ | ||
169 | #define addr_prefixlen(bs) ((int) ((bs)->length * 8 - ((bs)->flags & 7))) | ||
170 | |||
171 | /* | ||
172 | * i2r handler for one address bitstring. | ||
173 | */ | ||
174 | static int i2r_address(BIO *out, | ||
175 | const unsigned afi, | ||
176 | const unsigned char fill, | ||
177 | const ASN1_BIT_STRING *bs) | ||
178 | { | ||
179 | unsigned char addr[ADDR_RAW_BUF_LEN]; | ||
180 | int i, n; | ||
181 | |||
182 | if (bs->length < 0) | ||
183 | return 0; | ||
184 | switch (afi) { | ||
185 | case IANA_AFI_IPV4: | ||
186 | if (!addr_expand(addr, bs, 4, fill)) | ||
187 | return 0; | ||
188 | BIO_printf(out, "%d.%d.%d.%d", addr[0], addr[1], addr[2], addr[3]); | ||
189 | break; | ||
190 | case IANA_AFI_IPV6: | ||
191 | if (!addr_expand(addr, bs, 16, fill)) | ||
192 | return 0; | ||
193 | for (n = 16; n > 1 && addr[n-1] == 0x00 && addr[n-2] == 0x00; n -= 2) | ||
194 | ; | ||
195 | for (i = 0; i < n; i += 2) | ||
196 | BIO_printf(out, "%x%s", (addr[i] << 8) | addr[i+1], (i < 14 ? ":" : "")); | ||
197 | if (i < 16) | ||
198 | BIO_puts(out, ":"); | ||
199 | if (i == 0) | ||
200 | BIO_puts(out, ":"); | ||
201 | break; | ||
202 | default: | ||
203 | for (i = 0; i < bs->length; i++) | ||
204 | BIO_printf(out, "%s%02x", (i > 0 ? ":" : ""), bs->data[i]); | ||
205 | BIO_printf(out, "[%d]", (int) (bs->flags & 7)); | ||
206 | break; | ||
207 | } | ||
208 | return 1; | ||
209 | } | ||
210 | |||
211 | /* | ||
212 | * i2r handler for a sequence of addresses and ranges. | ||
213 | */ | ||
214 | static int i2r_IPAddressOrRanges(BIO *out, | ||
215 | const int indent, | ||
216 | const IPAddressOrRanges *aors, | ||
217 | const unsigned afi) | ||
218 | { | ||
219 | int i; | ||
220 | for (i = 0; i < sk_IPAddressOrRange_num(aors); i++) { | ||
221 | const IPAddressOrRange *aor = sk_IPAddressOrRange_value(aors, i); | ||
222 | BIO_printf(out, "%*s", indent, ""); | ||
223 | switch (aor->type) { | ||
224 | case IPAddressOrRange_addressPrefix: | ||
225 | if (!i2r_address(out, afi, 0x00, aor->u.addressPrefix)) | ||
226 | return 0; | ||
227 | BIO_printf(out, "/%d\n", addr_prefixlen(aor->u.addressPrefix)); | ||
228 | continue; | ||
229 | case IPAddressOrRange_addressRange: | ||
230 | if (!i2r_address(out, afi, 0x00, aor->u.addressRange->min)) | ||
231 | return 0; | ||
232 | BIO_puts(out, "-"); | ||
233 | if (!i2r_address(out, afi, 0xFF, aor->u.addressRange->max)) | ||
234 | return 0; | ||
235 | BIO_puts(out, "\n"); | ||
236 | continue; | ||
237 | } | ||
238 | } | ||
239 | return 1; | ||
240 | } | ||
241 | |||
242 | /* | ||
243 | * i2r handler for an IPAddrBlocks extension. | ||
244 | */ | ||
245 | static int i2r_IPAddrBlocks(const X509V3_EXT_METHOD *method, | ||
246 | void *ext, | ||
247 | BIO *out, | ||
248 | int indent) | ||
249 | { | ||
250 | const IPAddrBlocks *addr = ext; | ||
251 | int i; | ||
252 | for (i = 0; i < sk_IPAddressFamily_num(addr); i++) { | ||
253 | IPAddressFamily *f = sk_IPAddressFamily_value(addr, i); | ||
254 | const unsigned int afi = v3_addr_get_afi(f); | ||
255 | switch (afi) { | ||
256 | case IANA_AFI_IPV4: | ||
257 | BIO_printf(out, "%*sIPv4", indent, ""); | ||
258 | break; | ||
259 | case IANA_AFI_IPV6: | ||
260 | BIO_printf(out, "%*sIPv6", indent, ""); | ||
261 | break; | ||
262 | default: | ||
263 | BIO_printf(out, "%*sUnknown AFI %u", indent, "", afi); | ||
264 | break; | ||
265 | } | ||
266 | if (f->addressFamily->length > 2) { | ||
267 | switch (f->addressFamily->data[2]) { | ||
268 | case 1: | ||
269 | BIO_puts(out, " (Unicast)"); | ||
270 | break; | ||
271 | case 2: | ||
272 | BIO_puts(out, " (Multicast)"); | ||
273 | break; | ||
274 | case 3: | ||
275 | BIO_puts(out, " (Unicast/Multicast)"); | ||
276 | break; | ||
277 | case 4: | ||
278 | BIO_puts(out, " (MPLS)"); | ||
279 | break; | ||
280 | case 64: | ||
281 | BIO_puts(out, " (Tunnel)"); | ||
282 | break; | ||
283 | case 65: | ||
284 | BIO_puts(out, " (VPLS)"); | ||
285 | break; | ||
286 | case 66: | ||
287 | BIO_puts(out, " (BGP MDT)"); | ||
288 | break; | ||
289 | case 128: | ||
290 | BIO_puts(out, " (MPLS-labeled VPN)"); | ||
291 | break; | ||
292 | default: | ||
293 | BIO_printf(out, " (Unknown SAFI %u)", | ||
294 | (unsigned) f->addressFamily->data[2]); | ||
295 | break; | ||
296 | } | ||
297 | } | ||
298 | switch (f->ipAddressChoice->type) { | ||
299 | case IPAddressChoice_inherit: | ||
300 | BIO_puts(out, ": inherit\n"); | ||
301 | break; | ||
302 | case IPAddressChoice_addressesOrRanges: | ||
303 | BIO_puts(out, ":\n"); | ||
304 | if (!i2r_IPAddressOrRanges(out, | ||
305 | indent + 2, | ||
306 | f->ipAddressChoice->u.addressesOrRanges, | ||
307 | afi)) | ||
308 | return 0; | ||
309 | break; | ||
310 | } | ||
311 | } | ||
312 | return 1; | ||
313 | } | ||
314 | |||
315 | /* | ||
316 | * Sort comparison function for a sequence of IPAddressOrRange | ||
317 | * elements. | ||
318 | * | ||
319 | * There's no sane answer we can give if addr_expand() fails, and an | ||
320 | * assertion failure on externally supplied data is seriously uncool, | ||
321 | * so we just arbitrarily declare that if given invalid inputs this | ||
322 | * function returns -1. If this messes up your preferred sort order | ||
323 | * for garbage input, tough noogies. | ||
324 | */ | ||
325 | static int IPAddressOrRange_cmp(const IPAddressOrRange *a, | ||
326 | const IPAddressOrRange *b, | ||
327 | const int length) | ||
328 | { | ||
329 | unsigned char addr_a[ADDR_RAW_BUF_LEN], addr_b[ADDR_RAW_BUF_LEN]; | ||
330 | int prefixlen_a = 0, prefixlen_b = 0; | ||
331 | int r; | ||
332 | |||
333 | switch (a->type) { | ||
334 | case IPAddressOrRange_addressPrefix: | ||
335 | if (!addr_expand(addr_a, a->u.addressPrefix, length, 0x00)) | ||
336 | return -1; | ||
337 | prefixlen_a = addr_prefixlen(a->u.addressPrefix); | ||
338 | break; | ||
339 | case IPAddressOrRange_addressRange: | ||
340 | if (!addr_expand(addr_a, a->u.addressRange->min, length, 0x00)) | ||
341 | return -1; | ||
342 | prefixlen_a = length * 8; | ||
343 | break; | ||
344 | } | ||
345 | |||
346 | switch (b->type) { | ||
347 | case IPAddressOrRange_addressPrefix: | ||
348 | if (!addr_expand(addr_b, b->u.addressPrefix, length, 0x00)) | ||
349 | return -1; | ||
350 | prefixlen_b = addr_prefixlen(b->u.addressPrefix); | ||
351 | break; | ||
352 | case IPAddressOrRange_addressRange: | ||
353 | if (!addr_expand(addr_b, b->u.addressRange->min, length, 0x00)) | ||
354 | return -1; | ||
355 | prefixlen_b = length * 8; | ||
356 | break; | ||
357 | } | ||
358 | |||
359 | if ((r = memcmp(addr_a, addr_b, length)) != 0) | ||
360 | return r; | ||
361 | else | ||
362 | return prefixlen_a - prefixlen_b; | ||
363 | } | ||
364 | |||
365 | /* | ||
366 | * IPv4-specific closure over IPAddressOrRange_cmp, since sk_sort() | ||
367 | * comparision routines are only allowed two arguments. | ||
368 | */ | ||
369 | static int v4IPAddressOrRange_cmp(const IPAddressOrRange * const *a, | ||
370 | const IPAddressOrRange * const *b) | ||
371 | { | ||
372 | return IPAddressOrRange_cmp(*a, *b, 4); | ||
373 | } | ||
374 | |||
375 | /* | ||
376 | * IPv6-specific closure over IPAddressOrRange_cmp, since sk_sort() | ||
377 | * comparision routines are only allowed two arguments. | ||
378 | */ | ||
379 | static int v6IPAddressOrRange_cmp(const IPAddressOrRange * const *a, | ||
380 | const IPAddressOrRange * const *b) | ||
381 | { | ||
382 | return IPAddressOrRange_cmp(*a, *b, 16); | ||
383 | } | ||
384 | |||
385 | /* | ||
386 | * Calculate whether a range collapses to a prefix. | ||
387 | * See last paragraph of RFC 3779 2.2.3.7. | ||
388 | */ | ||
389 | static int range_should_be_prefix(const unsigned char *min, | ||
390 | const unsigned char *max, | ||
391 | const int length) | ||
392 | { | ||
393 | unsigned char mask; | ||
394 | int i, j; | ||
395 | |||
396 | OPENSSL_assert(memcmp(min, max, length) <= 0); | ||
397 | for (i = 0; i < length && min[i] == max[i]; i++) | ||
398 | ; | ||
399 | for (j = length - 1; j >= 0 && min[j] == 0x00 && max[j] == 0xFF; j--) | ||
400 | ; | ||
401 | if (i < j) | ||
402 | return -1; | ||
403 | if (i > j) | ||
404 | return i * 8; | ||
405 | mask = min[i] ^ max[i]; | ||
406 | switch (mask) { | ||
407 | case 0x01: j = 7; break; | ||
408 | case 0x03: j = 6; break; | ||
409 | case 0x07: j = 5; break; | ||
410 | case 0x0F: j = 4; break; | ||
411 | case 0x1F: j = 3; break; | ||
412 | case 0x3F: j = 2; break; | ||
413 | case 0x7F: j = 1; break; | ||
414 | default: return -1; | ||
415 | } | ||
416 | if ((min[i] & mask) != 0 || (max[i] & mask) != mask) | ||
417 | return -1; | ||
418 | else | ||
419 | return i * 8 + j; | ||
420 | } | ||
421 | |||
422 | /* | ||
423 | * Construct a prefix. | ||
424 | */ | ||
425 | static int make_addressPrefix(IPAddressOrRange **result, | ||
426 | unsigned char *addr, | ||
427 | const int prefixlen) | ||
428 | { | ||
429 | int bytelen = (prefixlen + 7) / 8, bitlen = prefixlen % 8; | ||
430 | IPAddressOrRange *aor = IPAddressOrRange_new(); | ||
431 | |||
432 | if (aor == NULL) | ||
433 | return 0; | ||
434 | aor->type = IPAddressOrRange_addressPrefix; | ||
435 | if (aor->u.addressPrefix == NULL && | ||
436 | (aor->u.addressPrefix = ASN1_BIT_STRING_new()) == NULL) | ||
437 | goto err; | ||
438 | if (!ASN1_BIT_STRING_set(aor->u.addressPrefix, addr, bytelen)) | ||
439 | goto err; | ||
440 | aor->u.addressPrefix->flags &= ~7; | ||
441 | aor->u.addressPrefix->flags |= ASN1_STRING_FLAG_BITS_LEFT; | ||
442 | if (bitlen > 0) { | ||
443 | aor->u.addressPrefix->data[bytelen - 1] &= ~(0xFF >> bitlen); | ||
444 | aor->u.addressPrefix->flags |= 8 - bitlen; | ||
445 | } | ||
446 | |||
447 | *result = aor; | ||
448 | return 1; | ||
449 | |||
450 | err: | ||
451 | IPAddressOrRange_free(aor); | ||
452 | return 0; | ||
453 | } | ||
454 | |||
455 | /* | ||
456 | * Construct a range. If it can be expressed as a prefix, | ||
457 | * return a prefix instead. Doing this here simplifies | ||
458 | * the rest of the code considerably. | ||
459 | */ | ||
460 | static int make_addressRange(IPAddressOrRange **result, | ||
461 | unsigned char *min, | ||
462 | unsigned char *max, | ||
463 | const int length) | ||
464 | { | ||
465 | IPAddressOrRange *aor; | ||
466 | int i, prefixlen; | ||
467 | |||
468 | if ((prefixlen = range_should_be_prefix(min, max, length)) >= 0) | ||
469 | return make_addressPrefix(result, min, prefixlen); | ||
470 | |||
471 | if ((aor = IPAddressOrRange_new()) == NULL) | ||
472 | return 0; | ||
473 | aor->type = IPAddressOrRange_addressRange; | ||
474 | OPENSSL_assert(aor->u.addressRange == NULL); | ||
475 | if ((aor->u.addressRange = IPAddressRange_new()) == NULL) | ||
476 | goto err; | ||
477 | if (aor->u.addressRange->min == NULL && | ||
478 | (aor->u.addressRange->min = ASN1_BIT_STRING_new()) == NULL) | ||
479 | goto err; | ||
480 | if (aor->u.addressRange->max == NULL && | ||
481 | (aor->u.addressRange->max = ASN1_BIT_STRING_new()) == NULL) | ||
482 | goto err; | ||
483 | |||
484 | for (i = length; i > 0 && min[i - 1] == 0x00; --i) | ||
485 | ; | ||
486 | if (!ASN1_BIT_STRING_set(aor->u.addressRange->min, min, i)) | ||
487 | goto err; | ||
488 | aor->u.addressRange->min->flags &= ~7; | ||
489 | aor->u.addressRange->min->flags |= ASN1_STRING_FLAG_BITS_LEFT; | ||
490 | if (i > 0) { | ||
491 | unsigned char b = min[i - 1]; | ||
492 | int j = 1; | ||
493 | while ((b & (0xFFU >> j)) != 0) | ||
494 | ++j; | ||
495 | aor->u.addressRange->min->flags |= 8 - j; | ||
496 | } | ||
497 | |||
498 | for (i = length; i > 0 && max[i - 1] == 0xFF; --i) | ||
499 | ; | ||
500 | if (!ASN1_BIT_STRING_set(aor->u.addressRange->max, max, i)) | ||
501 | goto err; | ||
502 | aor->u.addressRange->max->flags &= ~7; | ||
503 | aor->u.addressRange->max->flags |= ASN1_STRING_FLAG_BITS_LEFT; | ||
504 | if (i > 0) { | ||
505 | unsigned char b = max[i - 1]; | ||
506 | int j = 1; | ||
507 | while ((b & (0xFFU >> j)) != (0xFFU >> j)) | ||
508 | ++j; | ||
509 | aor->u.addressRange->max->flags |= 8 - j; | ||
510 | } | ||
511 | |||
512 | *result = aor; | ||
513 | return 1; | ||
514 | |||
515 | err: | ||
516 | IPAddressOrRange_free(aor); | ||
517 | return 0; | ||
518 | } | ||
519 | |||
520 | /* | ||
521 | * Construct a new address family or find an existing one. | ||
522 | */ | ||
523 | static IPAddressFamily *make_IPAddressFamily(IPAddrBlocks *addr, | ||
524 | const unsigned afi, | ||
525 | const unsigned *safi) | ||
526 | { | ||
527 | IPAddressFamily *f; | ||
528 | unsigned char key[3]; | ||
529 | unsigned keylen; | ||
530 | int i; | ||
531 | |||
532 | key[0] = (afi >> 8) & 0xFF; | ||
533 | key[1] = afi & 0xFF; | ||
534 | if (safi != NULL) { | ||
535 | key[2] = *safi & 0xFF; | ||
536 | keylen = 3; | ||
537 | } else { | ||
538 | keylen = 2; | ||
539 | } | ||
540 | |||
541 | for (i = 0; i < sk_IPAddressFamily_num(addr); i++) { | ||
542 | f = sk_IPAddressFamily_value(addr, i); | ||
543 | OPENSSL_assert(f->addressFamily->data != NULL); | ||
544 | if (f->addressFamily->length == keylen && | ||
545 | !memcmp(f->addressFamily->data, key, keylen)) | ||
546 | return f; | ||
547 | } | ||
548 | |||
549 | if ((f = IPAddressFamily_new()) == NULL) | ||
550 | goto err; | ||
551 | if (f->ipAddressChoice == NULL && | ||
552 | (f->ipAddressChoice = IPAddressChoice_new()) == NULL) | ||
553 | goto err; | ||
554 | if (f->addressFamily == NULL && | ||
555 | (f->addressFamily = ASN1_OCTET_STRING_new()) == NULL) | ||
556 | goto err; | ||
557 | if (!ASN1_OCTET_STRING_set(f->addressFamily, key, keylen)) | ||
558 | goto err; | ||
559 | if (!sk_IPAddressFamily_push(addr, f)) | ||
560 | goto err; | ||
561 | |||
562 | return f; | ||
563 | |||
564 | err: | ||
565 | IPAddressFamily_free(f); | ||
566 | return NULL; | ||
567 | } | ||
568 | |||
569 | /* | ||
570 | * Add an inheritance element. | ||
571 | */ | ||
572 | int v3_addr_add_inherit(IPAddrBlocks *addr, | ||
573 | const unsigned afi, | ||
574 | const unsigned *safi) | ||
575 | { | ||
576 | IPAddressFamily *f = make_IPAddressFamily(addr, afi, safi); | ||
577 | if (f == NULL || | ||
578 | f->ipAddressChoice == NULL || | ||
579 | (f->ipAddressChoice->type == IPAddressChoice_addressesOrRanges && | ||
580 | f->ipAddressChoice->u.addressesOrRanges != NULL)) | ||
581 | return 0; | ||
582 | if (f->ipAddressChoice->type == IPAddressChoice_inherit && | ||
583 | f->ipAddressChoice->u.inherit != NULL) | ||
584 | return 1; | ||
585 | if (f->ipAddressChoice->u.inherit == NULL && | ||
586 | (f->ipAddressChoice->u.inherit = ASN1_NULL_new()) == NULL) | ||
587 | return 0; | ||
588 | f->ipAddressChoice->type = IPAddressChoice_inherit; | ||
589 | return 1; | ||
590 | } | ||
591 | |||
592 | /* | ||
593 | * Construct an IPAddressOrRange sequence, or return an existing one. | ||
594 | */ | ||
595 | static IPAddressOrRanges *make_prefix_or_range(IPAddrBlocks *addr, | ||
596 | const unsigned afi, | ||
597 | const unsigned *safi) | ||
598 | { | ||
599 | IPAddressFamily *f = make_IPAddressFamily(addr, afi, safi); | ||
600 | IPAddressOrRanges *aors = NULL; | ||
601 | |||
602 | if (f == NULL || | ||
603 | f->ipAddressChoice == NULL || | ||
604 | (f->ipAddressChoice->type == IPAddressChoice_inherit && | ||
605 | f->ipAddressChoice->u.inherit != NULL)) | ||
606 | return NULL; | ||
607 | if (f->ipAddressChoice->type == IPAddressChoice_addressesOrRanges) | ||
608 | aors = f->ipAddressChoice->u.addressesOrRanges; | ||
609 | if (aors != NULL) | ||
610 | return aors; | ||
611 | if ((aors = sk_IPAddressOrRange_new_null()) == NULL) | ||
612 | return NULL; | ||
613 | switch (afi) { | ||
614 | case IANA_AFI_IPV4: | ||
615 | (void) sk_IPAddressOrRange_set_cmp_func(aors, v4IPAddressOrRange_cmp); | ||
616 | break; | ||
617 | case IANA_AFI_IPV6: | ||
618 | (void) sk_IPAddressOrRange_set_cmp_func(aors, v6IPAddressOrRange_cmp); | ||
619 | break; | ||
620 | } | ||
621 | f->ipAddressChoice->type = IPAddressChoice_addressesOrRanges; | ||
622 | f->ipAddressChoice->u.addressesOrRanges = aors; | ||
623 | return aors; | ||
624 | } | ||
625 | |||
626 | /* | ||
627 | * Add a prefix. | ||
628 | */ | ||
629 | int v3_addr_add_prefix(IPAddrBlocks *addr, | ||
630 | const unsigned afi, | ||
631 | const unsigned *safi, | ||
632 | unsigned char *a, | ||
633 | const int prefixlen) | ||
634 | { | ||
635 | IPAddressOrRanges *aors = make_prefix_or_range(addr, afi, safi); | ||
636 | IPAddressOrRange *aor; | ||
637 | if (aors == NULL || !make_addressPrefix(&aor, a, prefixlen)) | ||
638 | return 0; | ||
639 | if (sk_IPAddressOrRange_push(aors, aor)) | ||
640 | return 1; | ||
641 | IPAddressOrRange_free(aor); | ||
642 | return 0; | ||
643 | } | ||
644 | |||
645 | /* | ||
646 | * Add a range. | ||
647 | */ | ||
648 | int v3_addr_add_range(IPAddrBlocks *addr, | ||
649 | const unsigned afi, | ||
650 | const unsigned *safi, | ||
651 | unsigned char *min, | ||
652 | unsigned char *max) | ||
653 | { | ||
654 | IPAddressOrRanges *aors = make_prefix_or_range(addr, afi, safi); | ||
655 | IPAddressOrRange *aor; | ||
656 | int length = length_from_afi(afi); | ||
657 | if (aors == NULL) | ||
658 | return 0; | ||
659 | if (!make_addressRange(&aor, min, max, length)) | ||
660 | return 0; | ||
661 | if (sk_IPAddressOrRange_push(aors, aor)) | ||
662 | return 1; | ||
663 | IPAddressOrRange_free(aor); | ||
664 | return 0; | ||
665 | } | ||
666 | |||
667 | /* | ||
668 | * Extract min and max values from an IPAddressOrRange. | ||
669 | */ | ||
670 | static int extract_min_max(IPAddressOrRange *aor, | ||
671 | unsigned char *min, | ||
672 | unsigned char *max, | ||
673 | int length) | ||
674 | { | ||
675 | if (aor == NULL || min == NULL || max == NULL) | ||
676 | return 0; | ||
677 | switch (aor->type) { | ||
678 | case IPAddressOrRange_addressPrefix: | ||
679 | return (addr_expand(min, aor->u.addressPrefix, length, 0x00) && | ||
680 | addr_expand(max, aor->u.addressPrefix, length, 0xFF)); | ||
681 | case IPAddressOrRange_addressRange: | ||
682 | return (addr_expand(min, aor->u.addressRange->min, length, 0x00) && | ||
683 | addr_expand(max, aor->u.addressRange->max, length, 0xFF)); | ||
684 | } | ||
685 | return 0; | ||
686 | } | ||
687 | |||
688 | /* | ||
689 | * Public wrapper for extract_min_max(). | ||
690 | */ | ||
691 | int v3_addr_get_range(IPAddressOrRange *aor, | ||
692 | const unsigned afi, | ||
693 | unsigned char *min, | ||
694 | unsigned char *max, | ||
695 | const int length) | ||
696 | { | ||
697 | int afi_length = length_from_afi(afi); | ||
698 | if (aor == NULL || min == NULL || max == NULL || | ||
699 | afi_length == 0 || length < afi_length || | ||
700 | (aor->type != IPAddressOrRange_addressPrefix && | ||
701 | aor->type != IPAddressOrRange_addressRange) || | ||
702 | !extract_min_max(aor, min, max, afi_length)) | ||
703 | return 0; | ||
704 | |||
705 | return afi_length; | ||
706 | } | ||
707 | |||
708 | /* | ||
709 | * Sort comparision function for a sequence of IPAddressFamily. | ||
710 | * | ||
711 | * The last paragraph of RFC 3779 2.2.3.3 is slightly ambiguous about | ||
712 | * the ordering: I can read it as meaning that IPv6 without a SAFI | ||
713 | * comes before IPv4 with a SAFI, which seems pretty weird. The | ||
714 | * examples in appendix B suggest that the author intended the | ||
715 | * null-SAFI rule to apply only within a single AFI, which is what I | ||
716 | * would have expected and is what the following code implements. | ||
717 | */ | ||
718 | static int IPAddressFamily_cmp(const IPAddressFamily * const *a_, | ||
719 | const IPAddressFamily * const *b_) | ||
720 | { | ||
721 | const ASN1_OCTET_STRING *a = (*a_)->addressFamily; | ||
722 | const ASN1_OCTET_STRING *b = (*b_)->addressFamily; | ||
723 | int len = ((a->length <= b->length) ? a->length : b->length); | ||
724 | int cmp = memcmp(a->data, b->data, len); | ||
725 | return cmp ? cmp : a->length - b->length; | ||
726 | } | ||
727 | |||
728 | /* | ||
729 | * Check whether an IPAddrBLocks is in canonical form. | ||
730 | */ | ||
731 | int v3_addr_is_canonical(IPAddrBlocks *addr) | ||
732 | { | ||
733 | unsigned char a_min[ADDR_RAW_BUF_LEN], a_max[ADDR_RAW_BUF_LEN]; | ||
734 | unsigned char b_min[ADDR_RAW_BUF_LEN], b_max[ADDR_RAW_BUF_LEN]; | ||
735 | IPAddressOrRanges *aors; | ||
736 | int i, j, k; | ||
737 | |||
738 | /* | ||
739 | * Empty extension is cannonical. | ||
740 | */ | ||
741 | if (addr == NULL) | ||
742 | return 1; | ||
743 | |||
744 | /* | ||
745 | * Check whether the top-level list is in order. | ||
746 | */ | ||
747 | for (i = 0; i < sk_IPAddressFamily_num(addr) - 1; i++) { | ||
748 | const IPAddressFamily *a = sk_IPAddressFamily_value(addr, i); | ||
749 | const IPAddressFamily *b = sk_IPAddressFamily_value(addr, i + 1); | ||
750 | if (IPAddressFamily_cmp(&a, &b) >= 0) | ||
751 | return 0; | ||
752 | } | ||
753 | |||
754 | /* | ||
755 | * Top level's ok, now check each address family. | ||
756 | */ | ||
757 | for (i = 0; i < sk_IPAddressFamily_num(addr); i++) { | ||
758 | IPAddressFamily *f = sk_IPAddressFamily_value(addr, i); | ||
759 | int length = length_from_afi(v3_addr_get_afi(f)); | ||
760 | |||
761 | /* | ||
762 | * Inheritance is canonical. Anything other than inheritance or | ||
763 | * a SEQUENCE OF IPAddressOrRange is an ASN.1 error or something. | ||
764 | */ | ||
765 | if (f == NULL || f->ipAddressChoice == NULL) | ||
766 | return 0; | ||
767 | switch (f->ipAddressChoice->type) { | ||
768 | case IPAddressChoice_inherit: | ||
769 | continue; | ||
770 | case IPAddressChoice_addressesOrRanges: | ||
771 | break; | ||
772 | default: | ||
773 | return 0; | ||
774 | } | ||
775 | |||
776 | /* | ||
777 | * It's an IPAddressOrRanges sequence, check it. | ||
778 | */ | ||
779 | aors = f->ipAddressChoice->u.addressesOrRanges; | ||
780 | if (sk_IPAddressOrRange_num(aors) == 0) | ||
781 | return 0; | ||
782 | for (j = 0; j < sk_IPAddressOrRange_num(aors) - 1; j++) { | ||
783 | IPAddressOrRange *a = sk_IPAddressOrRange_value(aors, j); | ||
784 | IPAddressOrRange *b = sk_IPAddressOrRange_value(aors, j + 1); | ||
785 | |||
786 | if (!extract_min_max(a, a_min, a_max, length) || | ||
787 | !extract_min_max(b, b_min, b_max, length)) | ||
788 | return 0; | ||
789 | |||
790 | /* | ||
791 | * Punt misordered list, overlapping start, or inverted range. | ||
792 | */ | ||
793 | if (memcmp(a_min, b_min, length) >= 0 || | ||
794 | memcmp(a_min, a_max, length) > 0 || | ||
795 | memcmp(b_min, b_max, length) > 0) | ||
796 | return 0; | ||
797 | |||
798 | /* | ||
799 | * Punt if adjacent or overlapping. Check for adjacency by | ||
800 | * subtracting one from b_min first. | ||
801 | */ | ||
802 | for (k = length - 1; k >= 0 && b_min[k]-- == 0x00; k--) | ||
803 | ; | ||
804 | if (memcmp(a_max, b_min, length) >= 0) | ||
805 | return 0; | ||
806 | |||
807 | /* | ||
808 | * Check for range that should be expressed as a prefix. | ||
809 | */ | ||
810 | if (a->type == IPAddressOrRange_addressRange && | ||
811 | range_should_be_prefix(a_min, a_max, length) >= 0) | ||
812 | return 0; | ||
813 | } | ||
814 | |||
815 | /* | ||
816 | * Check range to see if it's inverted or should be a | ||
817 | * prefix. | ||
818 | */ | ||
819 | j = sk_IPAddressOrRange_num(aors) - 1; | ||
820 | { | ||
821 | IPAddressOrRange *a = sk_IPAddressOrRange_value(aors, j); | ||
822 | if (a != NULL && a->type == IPAddressOrRange_addressRange) { | ||
823 | if (!extract_min_max(a, a_min, a_max, length)) | ||
824 | return 0; | ||
825 | if (memcmp(a_min, a_max, length) > 0 || | ||
826 | range_should_be_prefix(a_min, a_max, length) >= 0) | ||
827 | return 0; | ||
828 | } | ||
829 | } | ||
830 | } | ||
831 | |||
832 | /* | ||
833 | * If we made it through all that, we're happy. | ||
834 | */ | ||
835 | return 1; | ||
836 | } | ||
837 | |||
838 | /* | ||
839 | * Whack an IPAddressOrRanges into canonical form. | ||
840 | */ | ||
841 | static int IPAddressOrRanges_canonize(IPAddressOrRanges *aors, | ||
842 | const unsigned afi) | ||
843 | { | ||
844 | int i, j, length = length_from_afi(afi); | ||
845 | |||
846 | /* | ||
847 | * Sort the IPAddressOrRanges sequence. | ||
848 | */ | ||
849 | sk_IPAddressOrRange_sort(aors); | ||
850 | |||
851 | /* | ||
852 | * Clean up representation issues, punt on duplicates or overlaps. | ||
853 | */ | ||
854 | for (i = 0; i < sk_IPAddressOrRange_num(aors) - 1; i++) { | ||
855 | IPAddressOrRange *a = sk_IPAddressOrRange_value(aors, i); | ||
856 | IPAddressOrRange *b = sk_IPAddressOrRange_value(aors, i + 1); | ||
857 | unsigned char a_min[ADDR_RAW_BUF_LEN], a_max[ADDR_RAW_BUF_LEN]; | ||
858 | unsigned char b_min[ADDR_RAW_BUF_LEN], b_max[ADDR_RAW_BUF_LEN]; | ||
859 | |||
860 | if (!extract_min_max(a, a_min, a_max, length) || | ||
861 | !extract_min_max(b, b_min, b_max, length)) | ||
862 | return 0; | ||
863 | |||
864 | /* | ||
865 | * Punt inverted ranges. | ||
866 | */ | ||
867 | if (memcmp(a_min, a_max, length) > 0 || | ||
868 | memcmp(b_min, b_max, length) > 0) | ||
869 | return 0; | ||
870 | |||
871 | /* | ||
872 | * Punt overlaps. | ||
873 | */ | ||
874 | if (memcmp(a_max, b_min, length) >= 0) | ||
875 | return 0; | ||
876 | |||
877 | /* | ||
878 | * Merge if a and b are adjacent. We check for | ||
879 | * adjacency by subtracting one from b_min first. | ||
880 | */ | ||
881 | for (j = length - 1; j >= 0 && b_min[j]-- == 0x00; j--) | ||
882 | ; | ||
883 | if (memcmp(a_max, b_min, length) == 0) { | ||
884 | IPAddressOrRange *merged; | ||
885 | if (!make_addressRange(&merged, a_min, b_max, length)) | ||
886 | return 0; | ||
887 | (void) sk_IPAddressOrRange_set(aors, i, merged); | ||
888 | (void) sk_IPAddressOrRange_delete(aors, i + 1); | ||
889 | IPAddressOrRange_free(a); | ||
890 | IPAddressOrRange_free(b); | ||
891 | --i; | ||
892 | continue; | ||
893 | } | ||
894 | } | ||
895 | |||
896 | /* | ||
897 | * Check for inverted final range. | ||
898 | */ | ||
899 | j = sk_IPAddressOrRange_num(aors) - 1; | ||
900 | { | ||
901 | IPAddressOrRange *a = sk_IPAddressOrRange_value(aors, j); | ||
902 | if (a != NULL && a->type == IPAddressOrRange_addressRange) { | ||
903 | unsigned char a_min[ADDR_RAW_BUF_LEN], a_max[ADDR_RAW_BUF_LEN]; | ||
904 | extract_min_max(a, a_min, a_max, length); | ||
905 | if (memcmp(a_min, a_max, length) > 0) | ||
906 | return 0; | ||
907 | } | ||
908 | } | ||
909 | |||
910 | return 1; | ||
911 | } | ||
912 | |||
913 | /* | ||
914 | * Whack an IPAddrBlocks extension into canonical form. | ||
915 | */ | ||
916 | int v3_addr_canonize(IPAddrBlocks *addr) | ||
917 | { | ||
918 | int i; | ||
919 | for (i = 0; i < sk_IPAddressFamily_num(addr); i++) { | ||
920 | IPAddressFamily *f = sk_IPAddressFamily_value(addr, i); | ||
921 | if (f->ipAddressChoice->type == IPAddressChoice_addressesOrRanges && | ||
922 | !IPAddressOrRanges_canonize(f->ipAddressChoice->u.addressesOrRanges, | ||
923 | v3_addr_get_afi(f))) | ||
924 | return 0; | ||
925 | } | ||
926 | (void) sk_IPAddressFamily_set_cmp_func(addr, IPAddressFamily_cmp); | ||
927 | sk_IPAddressFamily_sort(addr); | ||
928 | OPENSSL_assert(v3_addr_is_canonical(addr)); | ||
929 | return 1; | ||
930 | } | ||
931 | |||
932 | /* | ||
933 | * v2i handler for the IPAddrBlocks extension. | ||
934 | */ | ||
935 | static void *v2i_IPAddrBlocks(const struct v3_ext_method *method, | ||
936 | struct v3_ext_ctx *ctx, | ||
937 | STACK_OF(CONF_VALUE) *values) | ||
938 | { | ||
939 | static const char v4addr_chars[] = "0123456789."; | ||
940 | static const char v6addr_chars[] = "0123456789.:abcdefABCDEF"; | ||
941 | IPAddrBlocks *addr = NULL; | ||
942 | char *s = NULL, *t; | ||
943 | int i; | ||
944 | |||
945 | if ((addr = sk_IPAddressFamily_new(IPAddressFamily_cmp)) == NULL) { | ||
946 | X509V3err(X509V3_F_V2I_IPADDRBLOCKS, ERR_R_MALLOC_FAILURE); | ||
947 | return NULL; | ||
948 | } | ||
949 | |||
950 | for (i = 0; i < sk_CONF_VALUE_num(values); i++) { | ||
951 | CONF_VALUE *val = sk_CONF_VALUE_value(values, i); | ||
952 | unsigned char min[ADDR_RAW_BUF_LEN], max[ADDR_RAW_BUF_LEN]; | ||
953 | unsigned afi, *safi = NULL, safi_; | ||
954 | const char *addr_chars; | ||
955 | int prefixlen, i1, i2, delim, length; | ||
956 | |||
957 | if ( !name_cmp(val->name, "IPv4")) { | ||
958 | afi = IANA_AFI_IPV4; | ||
959 | } else if (!name_cmp(val->name, "IPv6")) { | ||
960 | afi = IANA_AFI_IPV6; | ||
961 | } else if (!name_cmp(val->name, "IPv4-SAFI")) { | ||
962 | afi = IANA_AFI_IPV4; | ||
963 | safi = &safi_; | ||
964 | } else if (!name_cmp(val->name, "IPv6-SAFI")) { | ||
965 | afi = IANA_AFI_IPV6; | ||
966 | safi = &safi_; | ||
967 | } else { | ||
968 | X509V3err(X509V3_F_V2I_IPADDRBLOCKS, X509V3_R_EXTENSION_NAME_ERROR); | ||
969 | X509V3_conf_err(val); | ||
970 | goto err; | ||
971 | } | ||
972 | |||
973 | switch (afi) { | ||
974 | case IANA_AFI_IPV4: | ||
975 | addr_chars = v4addr_chars; | ||
976 | break; | ||
977 | case IANA_AFI_IPV6: | ||
978 | addr_chars = v6addr_chars; | ||
979 | break; | ||
980 | } | ||
981 | |||
982 | length = length_from_afi(afi); | ||
983 | |||
984 | /* | ||
985 | * Handle SAFI, if any, and BUF_strdup() so we can null-terminate | ||
986 | * the other input values. | ||
987 | */ | ||
988 | if (safi != NULL) { | ||
989 | *safi = strtoul(val->value, &t, 0); | ||
990 | t += strspn(t, " \t"); | ||
991 | if (*safi > 0xFF || *t++ != ':') { | ||
992 | X509V3err(X509V3_F_V2I_IPADDRBLOCKS, X509V3_R_INVALID_SAFI); | ||
993 | X509V3_conf_err(val); | ||
994 | goto err; | ||
995 | } | ||
996 | t += strspn(t, " \t"); | ||
997 | s = BUF_strdup(t); | ||
998 | } else { | ||
999 | s = BUF_strdup(val->value); | ||
1000 | } | ||
1001 | if (s == NULL) { | ||
1002 | X509V3err(X509V3_F_V2I_IPADDRBLOCKS, ERR_R_MALLOC_FAILURE); | ||
1003 | goto err; | ||
1004 | } | ||
1005 | |||
1006 | /* | ||
1007 | * Check for inheritance. Not worth additional complexity to | ||
1008 | * optimize this (seldom-used) case. | ||
1009 | */ | ||
1010 | if (!strcmp(s, "inherit")) { | ||
1011 | if (!v3_addr_add_inherit(addr, afi, safi)) { | ||
1012 | X509V3err(X509V3_F_V2I_IPADDRBLOCKS, X509V3_R_INVALID_INHERITANCE); | ||
1013 | X509V3_conf_err(val); | ||
1014 | goto err; | ||
1015 | } | ||
1016 | OPENSSL_free(s); | ||
1017 | s = NULL; | ||
1018 | continue; | ||
1019 | } | ||
1020 | |||
1021 | i1 = strspn(s, addr_chars); | ||
1022 | i2 = i1 + strspn(s + i1, " \t"); | ||
1023 | delim = s[i2++]; | ||
1024 | s[i1] = '\0'; | ||
1025 | |||
1026 | if (a2i_ipadd(min, s) != length) { | ||
1027 | X509V3err(X509V3_F_V2I_IPADDRBLOCKS, X509V3_R_INVALID_IPADDRESS); | ||
1028 | X509V3_conf_err(val); | ||
1029 | goto err; | ||
1030 | } | ||
1031 | |||
1032 | switch (delim) { | ||
1033 | case '/': | ||
1034 | prefixlen = (int) strtoul(s + i2, &t, 10); | ||
1035 | if (t == s + i2 || *t != '\0') { | ||
1036 | X509V3err(X509V3_F_V2I_IPADDRBLOCKS, X509V3_R_EXTENSION_VALUE_ERROR); | ||
1037 | X509V3_conf_err(val); | ||
1038 | goto err; | ||
1039 | } | ||
1040 | if (!v3_addr_add_prefix(addr, afi, safi, min, prefixlen)) { | ||
1041 | X509V3err(X509V3_F_V2I_IPADDRBLOCKS, ERR_R_MALLOC_FAILURE); | ||
1042 | goto err; | ||
1043 | } | ||
1044 | break; | ||
1045 | case '-': | ||
1046 | i1 = i2 + strspn(s + i2, " \t"); | ||
1047 | i2 = i1 + strspn(s + i1, addr_chars); | ||
1048 | if (i1 == i2 || s[i2] != '\0') { | ||
1049 | X509V3err(X509V3_F_V2I_IPADDRBLOCKS, X509V3_R_EXTENSION_VALUE_ERROR); | ||
1050 | X509V3_conf_err(val); | ||
1051 | goto err; | ||
1052 | } | ||
1053 | if (a2i_ipadd(max, s + i1) != length) { | ||
1054 | X509V3err(X509V3_F_V2I_IPADDRBLOCKS, X509V3_R_INVALID_IPADDRESS); | ||
1055 | X509V3_conf_err(val); | ||
1056 | goto err; | ||
1057 | } | ||
1058 | if (memcmp(min, max, length_from_afi(afi)) > 0) { | ||
1059 | X509V3err(X509V3_F_V2I_IPADDRBLOCKS, X509V3_R_EXTENSION_VALUE_ERROR); | ||
1060 | X509V3_conf_err(val); | ||
1061 | goto err; | ||
1062 | } | ||
1063 | if (!v3_addr_add_range(addr, afi, safi, min, max)) { | ||
1064 | X509V3err(X509V3_F_V2I_IPADDRBLOCKS, ERR_R_MALLOC_FAILURE); | ||
1065 | goto err; | ||
1066 | } | ||
1067 | break; | ||
1068 | case '\0': | ||
1069 | if (!v3_addr_add_prefix(addr, afi, safi, min, length * 8)) { | ||
1070 | X509V3err(X509V3_F_V2I_IPADDRBLOCKS, ERR_R_MALLOC_FAILURE); | ||
1071 | goto err; | ||
1072 | } | ||
1073 | break; | ||
1074 | default: | ||
1075 | X509V3err(X509V3_F_V2I_IPADDRBLOCKS, X509V3_R_EXTENSION_VALUE_ERROR); | ||
1076 | X509V3_conf_err(val); | ||
1077 | goto err; | ||
1078 | } | ||
1079 | |||
1080 | OPENSSL_free(s); | ||
1081 | s = NULL; | ||
1082 | } | ||
1083 | |||
1084 | /* | ||
1085 | * Canonize the result, then we're done. | ||
1086 | */ | ||
1087 | if (!v3_addr_canonize(addr)) | ||
1088 | goto err; | ||
1089 | return addr; | ||
1090 | |||
1091 | err: | ||
1092 | OPENSSL_free(s); | ||
1093 | sk_IPAddressFamily_pop_free(addr, IPAddressFamily_free); | ||
1094 | return NULL; | ||
1095 | } | ||
1096 | |||
1097 | /* | ||
1098 | * OpenSSL dispatch | ||
1099 | */ | ||
1100 | const X509V3_EXT_METHOD v3_addr = { | ||
1101 | NID_sbgp_ipAddrBlock, /* nid */ | ||
1102 | 0, /* flags */ | ||
1103 | ASN1_ITEM_ref(IPAddrBlocks), /* template */ | ||
1104 | 0, 0, 0, 0, /* old functions, ignored */ | ||
1105 | 0, /* i2s */ | ||
1106 | 0, /* s2i */ | ||
1107 | 0, /* i2v */ | ||
1108 | v2i_IPAddrBlocks, /* v2i */ | ||
1109 | i2r_IPAddrBlocks, /* i2r */ | ||
1110 | 0, /* r2i */ | ||
1111 | NULL /* extension-specific data */ | ||
1112 | }; | ||
1113 | |||
1114 | /* | ||
1115 | * Figure out whether extension sues inheritance. | ||
1116 | */ | ||
1117 | int v3_addr_inherits(IPAddrBlocks *addr) | ||
1118 | { | ||
1119 | int i; | ||
1120 | if (addr == NULL) | ||
1121 | return 0; | ||
1122 | for (i = 0; i < sk_IPAddressFamily_num(addr); i++) { | ||
1123 | IPAddressFamily *f = sk_IPAddressFamily_value(addr, i); | ||
1124 | if (f->ipAddressChoice->type == IPAddressChoice_inherit) | ||
1125 | return 1; | ||
1126 | } | ||
1127 | return 0; | ||
1128 | } | ||
1129 | |||
1130 | /* | ||
1131 | * Figure out whether parent contains child. | ||
1132 | */ | ||
1133 | static int addr_contains(IPAddressOrRanges *parent, | ||
1134 | IPAddressOrRanges *child, | ||
1135 | int length) | ||
1136 | { | ||
1137 | unsigned char p_min[ADDR_RAW_BUF_LEN], p_max[ADDR_RAW_BUF_LEN]; | ||
1138 | unsigned char c_min[ADDR_RAW_BUF_LEN], c_max[ADDR_RAW_BUF_LEN]; | ||
1139 | int p, c; | ||
1140 | |||
1141 | if (child == NULL || parent == child) | ||
1142 | return 1; | ||
1143 | if (parent == NULL) | ||
1144 | return 0; | ||
1145 | |||
1146 | p = 0; | ||
1147 | for (c = 0; c < sk_IPAddressOrRange_num(child); c++) { | ||
1148 | if (!extract_min_max(sk_IPAddressOrRange_value(child, c), | ||
1149 | c_min, c_max, length)) | ||
1150 | return -1; | ||
1151 | for (;; p++) { | ||
1152 | if (p >= sk_IPAddressOrRange_num(parent)) | ||
1153 | return 0; | ||
1154 | if (!extract_min_max(sk_IPAddressOrRange_value(parent, p), | ||
1155 | p_min, p_max, length)) | ||
1156 | return 0; | ||
1157 | if (memcmp(p_max, c_max, length) < 0) | ||
1158 | continue; | ||
1159 | if (memcmp(p_min, c_min, length) > 0) | ||
1160 | return 0; | ||
1161 | break; | ||
1162 | } | ||
1163 | } | ||
1164 | |||
1165 | return 1; | ||
1166 | } | ||
1167 | |||
1168 | /* | ||
1169 | * Test whether a is a subset of b. | ||
1170 | */ | ||
1171 | int v3_addr_subset(IPAddrBlocks *a, IPAddrBlocks *b) | ||
1172 | { | ||
1173 | int i; | ||
1174 | if (a == NULL || a == b) | ||
1175 | return 1; | ||
1176 | if (b == NULL || v3_addr_inherits(a) || v3_addr_inherits(b)) | ||
1177 | return 0; | ||
1178 | (void) sk_IPAddressFamily_set_cmp_func(b, IPAddressFamily_cmp); | ||
1179 | for (i = 0; i < sk_IPAddressFamily_num(a); i++) { | ||
1180 | IPAddressFamily *fa = sk_IPAddressFamily_value(a, i); | ||
1181 | int j = sk_IPAddressFamily_find(b, fa); | ||
1182 | IPAddressFamily *fb; | ||
1183 | fb = sk_IPAddressFamily_value(b, j); | ||
1184 | if (fb == NULL) | ||
1185 | return 0; | ||
1186 | if (!addr_contains(fb->ipAddressChoice->u.addressesOrRanges, | ||
1187 | fa->ipAddressChoice->u.addressesOrRanges, | ||
1188 | length_from_afi(v3_addr_get_afi(fb)))) | ||
1189 | return 0; | ||
1190 | } | ||
1191 | return 1; | ||
1192 | } | ||
1193 | |||
1194 | /* | ||
1195 | * Validation error handling via callback. | ||
1196 | */ | ||
1197 | #define validation_err(_err_) \ | ||
1198 | do { \ | ||
1199 | if (ctx != NULL) { \ | ||
1200 | ctx->error = _err_; \ | ||
1201 | ctx->error_depth = i; \ | ||
1202 | ctx->current_cert = x; \ | ||
1203 | ret = ctx->verify_cb(0, ctx); \ | ||
1204 | } else { \ | ||
1205 | ret = 0; \ | ||
1206 | } \ | ||
1207 | if (!ret) \ | ||
1208 | goto done; \ | ||
1209 | } while (0) | ||
1210 | |||
1211 | /* | ||
1212 | * Core code for RFC 3779 2.3 path validation. | ||
1213 | */ | ||
1214 | static int v3_addr_validate_path_internal(X509_STORE_CTX *ctx, | ||
1215 | STACK_OF(X509) *chain, | ||
1216 | IPAddrBlocks *ext) | ||
1217 | { | ||
1218 | IPAddrBlocks *child = NULL; | ||
1219 | int i, j, ret = 1; | ||
1220 | X509 *x; | ||
1221 | |||
1222 | OPENSSL_assert(chain != NULL && sk_X509_num(chain) > 0); | ||
1223 | OPENSSL_assert(ctx != NULL || ext != NULL); | ||
1224 | OPENSSL_assert(ctx == NULL || ctx->verify_cb != NULL); | ||
1225 | |||
1226 | /* | ||
1227 | * Figure out where to start. If we don't have an extension to | ||
1228 | * check, we're done. Otherwise, check canonical form and | ||
1229 | * set up for walking up the chain. | ||
1230 | */ | ||
1231 | if (ext != NULL) { | ||
1232 | i = -1; | ||
1233 | x = NULL; | ||
1234 | } else { | ||
1235 | i = 0; | ||
1236 | x = sk_X509_value(chain, i); | ||
1237 | OPENSSL_assert(x != NULL); | ||
1238 | if ((ext = x->rfc3779_addr) == NULL) | ||
1239 | goto done; | ||
1240 | } | ||
1241 | if (!v3_addr_is_canonical(ext)) | ||
1242 | validation_err(X509_V_ERR_INVALID_EXTENSION); | ||
1243 | (void) sk_IPAddressFamily_set_cmp_func(ext, IPAddressFamily_cmp); | ||
1244 | if ((child = sk_IPAddressFamily_dup(ext)) == NULL) { | ||
1245 | X509V3err(X509V3_F_V3_ADDR_VALIDATE_PATH_INTERNAL, ERR_R_MALLOC_FAILURE); | ||
1246 | ret = 0; | ||
1247 | goto done; | ||
1248 | } | ||
1249 | |||
1250 | /* | ||
1251 | * Now walk up the chain. No cert may list resources that its | ||
1252 | * parent doesn't list. | ||
1253 | */ | ||
1254 | for (i++; i < sk_X509_num(chain); i++) { | ||
1255 | x = sk_X509_value(chain, i); | ||
1256 | OPENSSL_assert(x != NULL); | ||
1257 | if (!v3_addr_is_canonical(x->rfc3779_addr)) | ||
1258 | validation_err(X509_V_ERR_INVALID_EXTENSION); | ||
1259 | if (x->rfc3779_addr == NULL) { | ||
1260 | for (j = 0; j < sk_IPAddressFamily_num(child); j++) { | ||
1261 | IPAddressFamily *fc = sk_IPAddressFamily_value(child, j); | ||
1262 | if (fc->ipAddressChoice->type != IPAddressChoice_inherit) { | ||
1263 | validation_err(X509_V_ERR_UNNESTED_RESOURCE); | ||
1264 | break; | ||
1265 | } | ||
1266 | } | ||
1267 | continue; | ||
1268 | } | ||
1269 | (void) sk_IPAddressFamily_set_cmp_func(x->rfc3779_addr, IPAddressFamily_cmp); | ||
1270 | for (j = 0; j < sk_IPAddressFamily_num(child); j++) { | ||
1271 | IPAddressFamily *fc = sk_IPAddressFamily_value(child, j); | ||
1272 | int k = sk_IPAddressFamily_find(x->rfc3779_addr, fc); | ||
1273 | IPAddressFamily *fp = sk_IPAddressFamily_value(x->rfc3779_addr, k); | ||
1274 | if (fp == NULL) { | ||
1275 | if (fc->ipAddressChoice->type == IPAddressChoice_addressesOrRanges) { | ||
1276 | validation_err(X509_V_ERR_UNNESTED_RESOURCE); | ||
1277 | break; | ||
1278 | } | ||
1279 | continue; | ||
1280 | } | ||
1281 | if (fp->ipAddressChoice->type == IPAddressChoice_addressesOrRanges) { | ||
1282 | if (fc->ipAddressChoice->type == IPAddressChoice_inherit || | ||
1283 | addr_contains(fp->ipAddressChoice->u.addressesOrRanges, | ||
1284 | fc->ipAddressChoice->u.addressesOrRanges, | ||
1285 | length_from_afi(v3_addr_get_afi(fc)))) | ||
1286 | sk_IPAddressFamily_set(child, j, fp); | ||
1287 | else | ||
1288 | validation_err(X509_V_ERR_UNNESTED_RESOURCE); | ||
1289 | } | ||
1290 | } | ||
1291 | } | ||
1292 | |||
1293 | /* | ||
1294 | * Trust anchor can't inherit. | ||
1295 | */ | ||
1296 | OPENSSL_assert(x != NULL); | ||
1297 | if (x->rfc3779_addr != NULL) { | ||
1298 | for (j = 0; j < sk_IPAddressFamily_num(x->rfc3779_addr); j++) { | ||
1299 | IPAddressFamily *fp = sk_IPAddressFamily_value(x->rfc3779_addr, j); | ||
1300 | if (fp->ipAddressChoice->type == IPAddressChoice_inherit && | ||
1301 | sk_IPAddressFamily_find(child, fp) >= 0) | ||
1302 | validation_err(X509_V_ERR_UNNESTED_RESOURCE); | ||
1303 | } | ||
1304 | } | ||
1305 | |||
1306 | done: | ||
1307 | sk_IPAddressFamily_free(child); | ||
1308 | return ret; | ||
1309 | } | ||
1310 | |||
1311 | #undef validation_err | ||
1312 | |||
1313 | /* | ||
1314 | * RFC 3779 2.3 path validation -- called from X509_verify_cert(). | ||
1315 | */ | ||
1316 | int v3_addr_validate_path(X509_STORE_CTX *ctx) | ||
1317 | { | ||
1318 | return v3_addr_validate_path_internal(ctx, ctx->chain, NULL); | ||
1319 | } | ||
1320 | |||
1321 | /* | ||
1322 | * RFC 3779 2.3 path validation of an extension. | ||
1323 | * Test whether chain covers extension. | ||
1324 | */ | ||
1325 | int v3_addr_validate_resource_set(STACK_OF(X509) *chain, | ||
1326 | IPAddrBlocks *ext, | ||
1327 | int allow_inheritance) | ||
1328 | { | ||
1329 | if (ext == NULL) | ||
1330 | return 1; | ||
1331 | if (chain == NULL || sk_X509_num(chain) == 0) | ||
1332 | return 0; | ||
1333 | if (!allow_inheritance && v3_addr_inherits(ext)) | ||
1334 | return 0; | ||
1335 | return v3_addr_validate_path_internal(NULL, chain, ext); | ||
1336 | } | ||
1337 | |||
1338 | #endif /* OPENSSL_NO_RFC3779 */ | ||