summaryrefslogtreecommitdiff
path: root/src/lib/libssl/s3_cbc.c
diff options
context:
space:
mode:
Diffstat (limited to '')
-rw-r--r--src/lib/libssl/s3_cbc.c686
1 files changed, 0 insertions, 686 deletions
diff --git a/src/lib/libssl/s3_cbc.c b/src/lib/libssl/s3_cbc.c
deleted file mode 100644
index 57485caacf..0000000000
--- a/src/lib/libssl/s3_cbc.c
+++ /dev/null
@@ -1,686 +0,0 @@
1/* $OpenBSD: s3_cbc.c,v 1.10 2015/07/17 07:04:40 doug Exp $ */
2/* ====================================================================
3 * Copyright (c) 2012 The OpenSSL Project. All rights reserved.
4 *
5 * Redistribution and use in source and binary forms, with or without
6 * modification, are permitted provided that the following conditions
7 * are met:
8 *
9 * 1. Redistributions of source code must retain the above copyright
10 * notice, this list of conditions and the following disclaimer.
11 *
12 * 2. Redistributions in binary form must reproduce the above copyright
13 * notice, this list of conditions and the following disclaimer in
14 * the documentation and/or other materials provided with the
15 * distribution.
16 *
17 * 3. All advertising materials mentioning features or use of this
18 * software must display the following acknowledgment:
19 * "This product includes software developed by the OpenSSL Project
20 * for use in the OpenSSL Toolkit. (http://www.openssl.org/)"
21 *
22 * 4. The names "OpenSSL Toolkit" and "OpenSSL Project" must not be used to
23 * endorse or promote products derived from this software without
24 * prior written permission. For written permission, please contact
25 * openssl-core@openssl.org.
26 *
27 * 5. Products derived from this software may not be called "OpenSSL"
28 * nor may "OpenSSL" appear in their names without prior written
29 * permission of the OpenSSL Project.
30 *
31 * 6. Redistributions of any form whatsoever must retain the following
32 * acknowledgment:
33 * "This product includes software developed by the OpenSSL Project
34 * for use in the OpenSSL Toolkit (http://www.openssl.org/)"
35 *
36 * THIS SOFTWARE IS PROVIDED BY THE OpenSSL PROJECT ``AS IS'' AND ANY
37 * EXPRESSED OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
38 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
39 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE OpenSSL PROJECT OR
40 * ITS CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
41 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
42 * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
43 * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
44 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
45 * STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
46 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED
47 * OF THE POSSIBILITY OF SUCH DAMAGE.
48 * ====================================================================
49 *
50 * This product includes cryptographic software written by Eric Young
51 * (eay@cryptsoft.com). This product includes software written by Tim
52 * Hudson (tjh@cryptsoft.com).
53 *
54 */
55
56#include "ssl_locl.h"
57
58#include <openssl/md5.h>
59#include <openssl/sha.h>
60
61/* MAX_HASH_BIT_COUNT_BYTES is the maximum number of bytes in the hash's length
62 * field. (SHA-384/512 have 128-bit length.) */
63#define MAX_HASH_BIT_COUNT_BYTES 16
64
65/* MAX_HASH_BLOCK_SIZE is the maximum hash block size that we'll support.
66 * Currently SHA-384/512 has a 128-byte block size and that's the largest
67 * supported by TLS.) */
68#define MAX_HASH_BLOCK_SIZE 128
69
70/* Some utility functions are needed:
71 *
72 * These macros return the given value with the MSB copied to all the other
73 * bits. They use the fact that arithmetic shift shifts-in the sign bit.
74 * However, this is not ensured by the C standard so you may need to replace
75 * them with something else on odd CPUs. */
76#define DUPLICATE_MSB_TO_ALL(x) ((unsigned)((int)(x) >> (sizeof(int) * 8 - 1)))
77#define DUPLICATE_MSB_TO_ALL_8(x) ((unsigned char)(DUPLICATE_MSB_TO_ALL(x)))
78
79/* constant_time_lt returns 0xff if a<b and 0x00 otherwise. */
80static unsigned
81constant_time_lt(unsigned a, unsigned b)
82{
83 a -= b;
84 return DUPLICATE_MSB_TO_ALL(a);
85}
86
87/* constant_time_ge returns 0xff if a>=b and 0x00 otherwise. */
88static unsigned
89constant_time_ge(unsigned a, unsigned b)
90{
91 a -= b;
92 return DUPLICATE_MSB_TO_ALL(~a);
93}
94
95/* constant_time_eq_8 returns 0xff if a==b and 0x00 otherwise. */
96static unsigned char
97constant_time_eq_8(unsigned a, unsigned b)
98{
99 unsigned c = a ^ b;
100 c--;
101 return DUPLICATE_MSB_TO_ALL_8(c);
102}
103
104/* ssl3_cbc_remove_padding removes padding from the decrypted, SSLv3, CBC
105 * record in |rec| by updating |rec->length| in constant time.
106 *
107 * block_size: the block size of the cipher used to encrypt the record.
108 * returns:
109 * 0: (in non-constant time) if the record is publicly invalid.
110 * 1: if the padding was valid
111 * -1: otherwise. */
112int
113ssl3_cbc_remove_padding(const SSL* s, SSL3_RECORD *rec, unsigned block_size,
114 unsigned mac_size)
115{
116 unsigned padding_length, good;
117 const unsigned overhead = 1 /* padding length byte */ + mac_size;
118
119 /* These lengths are all public so we can test them in non-constant
120 * time. */
121 if (overhead > rec->length)
122 return 0;
123
124 padding_length = rec->data[rec->length - 1];
125 good = constant_time_ge(rec->length, padding_length + overhead);
126 /* SSLv3 requires that the padding is minimal. */
127 good &= constant_time_ge(block_size, padding_length + 1);
128 padding_length = good & (padding_length + 1);
129 rec->length -= padding_length;
130 rec->type |= padding_length << 8; /* kludge: pass padding length */
131 return (int)((good & 1) | (~good & -1));
132}
133
134/* tls1_cbc_remove_padding removes the CBC padding from the decrypted, TLS, CBC
135 * record in |rec| in constant time and returns 1 if the padding is valid and
136 * -1 otherwise. It also removes any explicit IV from the start of the record
137 * without leaking any timing about whether there was enough space after the
138 * padding was removed.
139 *
140 * block_size: the block size of the cipher used to encrypt the record.
141 * returns:
142 * 0: (in non-constant time) if the record is publicly invalid.
143 * 1: if the padding was valid
144 * -1: otherwise. */
145int
146tls1_cbc_remove_padding(const SSL* s, SSL3_RECORD *rec, unsigned block_size,
147 unsigned mac_size)
148{
149 unsigned padding_length, good, to_check, i;
150 const unsigned overhead = 1 /* padding length byte */ + mac_size;
151
152 /* Check if version requires explicit IV */
153 if (SSL_USE_EXPLICIT_IV(s)) {
154 /* These lengths are all public so we can test them in
155 * non-constant time.
156 */
157 if (overhead + block_size > rec->length)
158 return 0;
159 /* We can now safely skip explicit IV */
160 rec->data += block_size;
161 rec->input += block_size;
162 rec->length -= block_size;
163 } else if (overhead > rec->length)
164 return 0;
165
166 padding_length = rec->data[rec->length - 1];
167
168 if (EVP_CIPHER_flags(s->enc_read_ctx->cipher) & EVP_CIPH_FLAG_AEAD_CIPHER) {
169 /* padding is already verified */
170 rec->length -= padding_length + 1;
171 return 1;
172 }
173
174 good = constant_time_ge(rec->length, overhead + padding_length);
175 /* The padding consists of a length byte at the end of the record and
176 * then that many bytes of padding, all with the same value as the
177 * length byte. Thus, with the length byte included, there are i+1
178 * bytes of padding.
179 *
180 * We can't check just |padding_length+1| bytes because that leaks
181 * decrypted information. Therefore we always have to check the maximum
182 * amount of padding possible. (Again, the length of the record is
183 * public information so we can use it.) */
184 to_check = 255; /* maximum amount of padding. */
185 if (to_check > rec->length - 1)
186 to_check = rec->length - 1;
187
188 for (i = 0; i < to_check; i++) {
189 unsigned char mask = constant_time_ge(padding_length, i);
190 unsigned char b = rec->data[rec->length - 1 - i];
191 /* The final |padding_length+1| bytes should all have the value
192 * |padding_length|. Therefore the XOR should be zero. */
193 good &= ~(mask&(padding_length ^ b));
194 }
195
196 /* If any of the final |padding_length+1| bytes had the wrong value,
197 * one or more of the lower eight bits of |good| will be cleared. We
198 * AND the bottom 8 bits together and duplicate the result to all the
199 * bits. */
200 good &= good >> 4;
201 good &= good >> 2;
202 good &= good >> 1;
203 good <<= sizeof(good)*8 - 1;
204 good = DUPLICATE_MSB_TO_ALL(good);
205
206 padding_length = good & (padding_length + 1);
207 rec->length -= padding_length;
208 rec->type |= padding_length<<8; /* kludge: pass padding length */
209
210 return (int)((good & 1) | (~good & -1));
211}
212
213/* ssl3_cbc_copy_mac copies |md_size| bytes from the end of |rec| to |out| in
214 * constant time (independent of the concrete value of rec->length, which may
215 * vary within a 256-byte window).
216 *
217 * ssl3_cbc_remove_padding or tls1_cbc_remove_padding must be called prior to
218 * this function.
219 *
220 * On entry:
221 * rec->orig_len >= md_size
222 * md_size <= EVP_MAX_MD_SIZE
223 *
224 * If CBC_MAC_ROTATE_IN_PLACE is defined then the rotation is performed with
225 * variable accesses in a 64-byte-aligned buffer. Assuming that this fits into
226 * a single or pair of cache-lines, then the variable memory accesses don't
227 * actually affect the timing. CPUs with smaller cache-lines [if any] are
228 * not multi-core and are not considered vulnerable to cache-timing attacks.
229 */
230#define CBC_MAC_ROTATE_IN_PLACE
231
232void
233ssl3_cbc_copy_mac(unsigned char* out, const SSL3_RECORD *rec,
234 unsigned md_size, unsigned orig_len)
235{
236#if defined(CBC_MAC_ROTATE_IN_PLACE)
237 unsigned char rotated_mac_buf[64 + EVP_MAX_MD_SIZE];
238 unsigned char *rotated_mac;
239#else
240 unsigned char rotated_mac[EVP_MAX_MD_SIZE];
241#endif
242
243 /* mac_end is the index of |rec->data| just after the end of the MAC. */
244 unsigned mac_end = rec->length;
245 unsigned mac_start = mac_end - md_size;
246 /* scan_start contains the number of bytes that we can ignore because
247 * the MAC's position can only vary by 255 bytes. */
248 unsigned scan_start = 0;
249 unsigned i, j;
250 unsigned div_spoiler;
251 unsigned rotate_offset;
252
253 OPENSSL_assert(orig_len >= md_size);
254 OPENSSL_assert(md_size <= EVP_MAX_MD_SIZE);
255
256#if defined(CBC_MAC_ROTATE_IN_PLACE)
257 rotated_mac = rotated_mac_buf + ((0 - (size_t)rotated_mac_buf)&63);
258#endif
259
260 /* This information is public so it's safe to branch based on it. */
261 if (orig_len > md_size + 255 + 1)
262 scan_start = orig_len - (md_size + 255 + 1);
263 /* div_spoiler contains a multiple of md_size that is used to cause the
264 * modulo operation to be constant time. Without this, the time varies
265 * based on the amount of padding when running on Intel chips at least.
266 *
267 * The aim of right-shifting md_size is so that the compiler doesn't
268 * figure out that it can remove div_spoiler as that would require it
269 * to prove that md_size is always even, which I hope is beyond it. */
270 div_spoiler = md_size >> 1;
271 div_spoiler <<= (sizeof(div_spoiler) - 1) * 8;
272 rotate_offset = (div_spoiler + mac_start - scan_start) % md_size;
273
274 memset(rotated_mac, 0, md_size);
275 for (i = scan_start, j = 0; i < orig_len; i++) {
276 unsigned char mac_started = constant_time_ge(i, mac_start);
277 unsigned char mac_ended = constant_time_ge(i, mac_end);
278 unsigned char b = rec->data[i];
279 rotated_mac[j++] |= b & mac_started & ~mac_ended;
280 j &= constant_time_lt(j, md_size);
281 }
282
283 /* Now rotate the MAC */
284#if defined(CBC_MAC_ROTATE_IN_PLACE)
285 j = 0;
286 for (i = 0; i < md_size; i++) {
287 /* in case cache-line is 32 bytes, touch second line */
288 ((volatile unsigned char *)rotated_mac)[rotate_offset^32];
289 out[j++] = rotated_mac[rotate_offset++];
290 rotate_offset &= constant_time_lt(rotate_offset, md_size);
291 }
292#else
293 memset(out, 0, md_size);
294 rotate_offset = md_size - rotate_offset;
295 rotate_offset &= constant_time_lt(rotate_offset, md_size);
296 for (i = 0; i < md_size; i++) {
297 for (j = 0; j < md_size; j++)
298 out[j] |= rotated_mac[i] & constant_time_eq_8(j, rotate_offset);
299 rotate_offset++;
300 rotate_offset &= constant_time_lt(rotate_offset, md_size);
301 }
302#endif
303}
304
305/* u32toLE serialises an unsigned, 32-bit number (n) as four bytes at (p) in
306 * little-endian order. The value of p is advanced by four. */
307#define u32toLE(n, p) \
308 (*((p)++)=(unsigned char)(n), \
309 *((p)++)=(unsigned char)(n>>8), \
310 *((p)++)=(unsigned char)(n>>16), \
311 *((p)++)=(unsigned char)(n>>24))
312
313/* These functions serialize the state of a hash and thus perform the standard
314 * "final" operation without adding the padding and length that such a function
315 * typically does. */
316static void
317tls1_md5_final_raw(void* ctx, unsigned char *md_out)
318{
319 MD5_CTX *md5 = ctx;
320 u32toLE(md5->A, md_out);
321 u32toLE(md5->B, md_out);
322 u32toLE(md5->C, md_out);
323 u32toLE(md5->D, md_out);
324}
325
326static void
327tls1_sha1_final_raw(void* ctx, unsigned char *md_out)
328{
329 SHA_CTX *sha1 = ctx;
330 l2n(sha1->h0, md_out);
331 l2n(sha1->h1, md_out);
332 l2n(sha1->h2, md_out);
333 l2n(sha1->h3, md_out);
334 l2n(sha1->h4, md_out);
335}
336#define LARGEST_DIGEST_CTX SHA_CTX
337
338static void
339tls1_sha256_final_raw(void* ctx, unsigned char *md_out)
340{
341 SHA256_CTX *sha256 = ctx;
342 unsigned i;
343
344 for (i = 0; i < 8; i++) {
345 l2n(sha256->h[i], md_out);
346 }
347}
348#undef LARGEST_DIGEST_CTX
349#define LARGEST_DIGEST_CTX SHA256_CTX
350
351static void
352tls1_sha512_final_raw(void* ctx, unsigned char *md_out)
353{
354 SHA512_CTX *sha512 = ctx;
355 unsigned i;
356
357 for (i = 0; i < 8; i++) {
358 l2n8(sha512->h[i], md_out);
359 }
360}
361#undef LARGEST_DIGEST_CTX
362#define LARGEST_DIGEST_CTX SHA512_CTX
363
364/* ssl3_cbc_record_digest_supported returns 1 iff |ctx| uses a hash function
365 * which ssl3_cbc_digest_record supports. */
366char
367ssl3_cbc_record_digest_supported(const EVP_MD_CTX *ctx)
368{
369 switch (EVP_MD_CTX_type(ctx)) {
370 case NID_md5:
371 case NID_sha1:
372 case NID_sha224:
373 case NID_sha256:
374 case NID_sha384:
375 case NID_sha512:
376 return 1;
377 default:
378 return 0;
379 }
380}
381
382/* ssl3_cbc_digest_record computes the MAC of a decrypted, padded SSLv3/TLS
383 * record.
384 *
385 * ctx: the EVP_MD_CTX from which we take the hash function.
386 * ssl3_cbc_record_digest_supported must return true for this EVP_MD_CTX.
387 * md_out: the digest output. At most EVP_MAX_MD_SIZE bytes will be written.
388 * md_out_size: if non-NULL, the number of output bytes is written here.
389 * header: the 13-byte, TLS record header.
390 * data: the record data itself, less any preceeding explicit IV.
391 * data_plus_mac_size: the secret, reported length of the data and MAC
392 * once the padding has been removed.
393 * data_plus_mac_plus_padding_size: the public length of the whole
394 * record, including padding.
395 * is_sslv3: non-zero if we are to use SSLv3. Otherwise, TLS.
396 *
397 * On entry: by virtue of having been through one of the remove_padding
398 * functions, above, we know that data_plus_mac_size is large enough to contain
399 * a padding byte and MAC. (If the padding was invalid, it might contain the
400 * padding too. ) */
401int
402ssl3_cbc_digest_record(const EVP_MD_CTX *ctx, unsigned char* md_out,
403 size_t* md_out_size, const unsigned char header[13],
404 const unsigned char *data, size_t data_plus_mac_size,
405 size_t data_plus_mac_plus_padding_size, const unsigned char *mac_secret,
406 unsigned mac_secret_length, char is_sslv3)
407{
408 union { double align;
409 unsigned char c[sizeof(LARGEST_DIGEST_CTX)];
410 } md_state;
411 void (*md_final_raw)(void *ctx, unsigned char *md_out);
412 void (*md_transform)(void *ctx, const unsigned char *block);
413 unsigned md_size, md_block_size = 64;
414 unsigned sslv3_pad_length = 40, header_length, variance_blocks,
415 len, max_mac_bytes, num_blocks,
416 num_starting_blocks, k, mac_end_offset, c, index_a, index_b;
417 unsigned int bits; /* at most 18 bits */
418 unsigned char length_bytes[MAX_HASH_BIT_COUNT_BYTES];
419 /* hmac_pad is the masked HMAC key. */
420 unsigned char hmac_pad[MAX_HASH_BLOCK_SIZE];
421 unsigned char first_block[MAX_HASH_BLOCK_SIZE];
422 unsigned char mac_out[EVP_MAX_MD_SIZE];
423 unsigned i, j, md_out_size_u;
424 EVP_MD_CTX md_ctx;
425 /* mdLengthSize is the number of bytes in the length field that terminates
426 * the hash. */
427 unsigned md_length_size = 8;
428 char length_is_big_endian = 1;
429
430 /* This is a, hopefully redundant, check that allows us to forget about
431 * many possible overflows later in this function. */
432 OPENSSL_assert(data_plus_mac_plus_padding_size < 1024*1024);
433
434 switch (EVP_MD_CTX_type(ctx)) {
435 case NID_md5:
436 MD5_Init((MD5_CTX*)md_state.c);
437 md_final_raw = tls1_md5_final_raw;
438 md_transform = (void(*)(void *ctx, const unsigned char *block)) MD5_Transform;
439 md_size = 16;
440 sslv3_pad_length = 48;
441 length_is_big_endian = 0;
442 break;
443 case NID_sha1:
444 SHA1_Init((SHA_CTX*)md_state.c);
445 md_final_raw = tls1_sha1_final_raw;
446 md_transform = (void(*)(void *ctx, const unsigned char *block)) SHA1_Transform;
447 md_size = 20;
448 break;
449 case NID_sha224:
450 SHA224_Init((SHA256_CTX*)md_state.c);
451 md_final_raw = tls1_sha256_final_raw;
452 md_transform = (void(*)(void *ctx, const unsigned char *block)) SHA256_Transform;
453 md_size = 224/8;
454 break;
455 case NID_sha256:
456 SHA256_Init((SHA256_CTX*)md_state.c);
457 md_final_raw = tls1_sha256_final_raw;
458 md_transform = (void(*)(void *ctx, const unsigned char *block)) SHA256_Transform;
459 md_size = 32;
460 break;
461 case NID_sha384:
462 SHA384_Init((SHA512_CTX*)md_state.c);
463 md_final_raw = tls1_sha512_final_raw;
464 md_transform = (void(*)(void *ctx, const unsigned char *block)) SHA512_Transform;
465 md_size = 384/8;
466 md_block_size = 128;
467 md_length_size = 16;
468 break;
469 case NID_sha512:
470 SHA512_Init((SHA512_CTX*)md_state.c);
471 md_final_raw = tls1_sha512_final_raw;
472 md_transform = (void(*)(void *ctx, const unsigned char *block)) SHA512_Transform;
473 md_size = 64;
474 md_block_size = 128;
475 md_length_size = 16;
476 break;
477 default:
478 /* ssl3_cbc_record_digest_supported should have been
479 * called first to check that the hash function is
480 * supported. */
481 OPENSSL_assert(0);
482 if (md_out_size)
483 *md_out_size = 0;
484 return 0;
485 }
486
487 OPENSSL_assert(md_length_size <= MAX_HASH_BIT_COUNT_BYTES);
488 OPENSSL_assert(md_block_size <= MAX_HASH_BLOCK_SIZE);
489 OPENSSL_assert(md_size <= EVP_MAX_MD_SIZE);
490
491 header_length = 13;
492 if (is_sslv3) {
493 header_length = mac_secret_length + sslv3_pad_length +
494 8 /* sequence number */ +
495 1 /* record type */ +
496 2 /* record length */;
497 }
498
499 /* variance_blocks is the number of blocks of the hash that we have to
500 * calculate in constant time because they could be altered by the
501 * padding value.
502 *
503 * In SSLv3, the padding must be minimal so the end of the plaintext
504 * varies by, at most, 15+20 = 35 bytes. (We conservatively assume that
505 * the MAC size varies from 0..20 bytes.) In case the 9 bytes of hash
506 * termination (0x80 + 64-bit length) don't fit in the final block, we
507 * say that the final two blocks can vary based on the padding.
508 *
509 * TLSv1 has MACs up to 48 bytes long (SHA-384) and the padding is not
510 * required to be minimal. Therefore we say that the final six blocks
511 * can vary based on the padding.
512 *
513 * Later in the function, if the message is short and there obviously
514 * cannot be this many blocks then variance_blocks can be reduced. */
515 variance_blocks = is_sslv3 ? 2 : 6;
516 /* From now on we're dealing with the MAC, which conceptually has 13
517 * bytes of `header' before the start of the data (TLS) or 71/75 bytes
518 * (SSLv3) */
519 len = data_plus_mac_plus_padding_size + header_length;
520 /* max_mac_bytes contains the maximum bytes of bytes in the MAC, including
521 * |header|, assuming that there's no padding. */
522 max_mac_bytes = len - md_size - 1;
523 /* num_blocks is the maximum number of hash blocks. */
524 num_blocks = (max_mac_bytes + 1 + md_length_size + md_block_size - 1) / md_block_size;
525 /* In order to calculate the MAC in constant time we have to handle
526 * the final blocks specially because the padding value could cause the
527 * end to appear somewhere in the final |variance_blocks| blocks and we
528 * can't leak where. However, |num_starting_blocks| worth of data can
529 * be hashed right away because no padding value can affect whether
530 * they are plaintext. */
531 num_starting_blocks = 0;
532 /* k is the starting byte offset into the conceptual header||data where
533 * we start processing. */
534 k = 0;
535 /* mac_end_offset is the index just past the end of the data to be
536 * MACed. */
537 mac_end_offset = data_plus_mac_size + header_length - md_size;
538 /* c is the index of the 0x80 byte in the final hash block that
539 * contains application data. */
540 c = mac_end_offset % md_block_size;
541 /* index_a is the hash block number that contains the 0x80 terminating
542 * value. */
543 index_a = mac_end_offset / md_block_size;
544 /* index_b is the hash block number that contains the 64-bit hash
545 * length, in bits. */
546 index_b = (mac_end_offset + md_length_size) / md_block_size;
547 /* bits is the hash-length in bits. It includes the additional hash
548 * block for the masked HMAC key, or whole of |header| in the case of
549 * SSLv3. */
550
551 /* For SSLv3, if we're going to have any starting blocks then we need
552 * at least two because the header is larger than a single block. */
553 if (num_blocks > variance_blocks + (is_sslv3 ? 1 : 0)) {
554 num_starting_blocks = num_blocks - variance_blocks;
555 k = md_block_size*num_starting_blocks;
556 }
557
558 bits = 8*mac_end_offset;
559 if (!is_sslv3) {
560 /* Compute the initial HMAC block. For SSLv3, the padding and
561 * secret bytes are included in |header| because they take more
562 * than a single block. */
563 bits += 8*md_block_size;
564 memset(hmac_pad, 0, md_block_size);
565 OPENSSL_assert(mac_secret_length <= sizeof(hmac_pad));
566 memcpy(hmac_pad, mac_secret, mac_secret_length);
567 for (i = 0; i < md_block_size; i++)
568 hmac_pad[i] ^= 0x36;
569
570 md_transform(md_state.c, hmac_pad);
571 }
572
573 if (length_is_big_endian) {
574 memset(length_bytes, 0, md_length_size - 4);
575 length_bytes[md_length_size - 4] = (unsigned char)(bits >> 24);
576 length_bytes[md_length_size - 3] = (unsigned char)(bits >> 16);
577 length_bytes[md_length_size - 2] = (unsigned char)(bits >> 8);
578 length_bytes[md_length_size - 1] = (unsigned char)bits;
579 } else {
580 memset(length_bytes, 0, md_length_size);
581 length_bytes[md_length_size - 5] = (unsigned char)(bits >> 24);
582 length_bytes[md_length_size - 6] = (unsigned char)(bits >> 16);
583 length_bytes[md_length_size - 7] = (unsigned char)(bits >> 8);
584 length_bytes[md_length_size - 8] = (unsigned char)bits;
585 }
586
587 if (k > 0) {
588 if (is_sslv3) {
589 /* The SSLv3 header is larger than a single block.
590 * overhang is the number of bytes beyond a single
591 * block that the header consumes: either 7 bytes
592 * (SHA1) or 11 bytes (MD5). */
593 unsigned overhang = header_length - md_block_size;
594 md_transform(md_state.c, header);
595 memcpy(first_block, header + md_block_size, overhang);
596 memcpy(first_block + overhang, data, md_block_size - overhang);
597 md_transform(md_state.c, first_block);
598 for (i = 1; i < k/md_block_size - 1; i++)
599 md_transform(md_state.c, data + md_block_size*i - overhang);
600 } else {
601 /* k is a multiple of md_block_size. */
602 memcpy(first_block, header, 13);
603 memcpy(first_block + 13, data, md_block_size - 13);
604 md_transform(md_state.c, first_block);
605 for (i = 1; i < k/md_block_size; i++)
606 md_transform(md_state.c, data + md_block_size*i - 13);
607 }
608 }
609
610 memset(mac_out, 0, sizeof(mac_out));
611
612 /* We now process the final hash blocks. For each block, we construct
613 * it in constant time. If the |i==index_a| then we'll include the 0x80
614 * bytes and zero pad etc. For each block we selectively copy it, in
615 * constant time, to |mac_out|. */
616 for (i = num_starting_blocks; i <= num_starting_blocks + variance_blocks; i++) {
617 unsigned char block[MAX_HASH_BLOCK_SIZE];
618 unsigned char is_block_a = constant_time_eq_8(i, index_a);
619 unsigned char is_block_b = constant_time_eq_8(i, index_b);
620 for (j = 0; j < md_block_size; j++) {
621 unsigned char b = 0, is_past_c, is_past_cp1;
622 if (k < header_length)
623 b = header[k];
624 else if (k < data_plus_mac_plus_padding_size + header_length)
625 b = data[k - header_length];
626 k++;
627
628 is_past_c = is_block_a & constant_time_ge(j, c);
629 is_past_cp1 = is_block_a & constant_time_ge(j, c + 1);
630 /* If this is the block containing the end of the
631 * application data, and we are at the offset for the
632 * 0x80 value, then overwrite b with 0x80. */
633 b = (b&~is_past_c) | (0x80&is_past_c);
634 /* If this the the block containing the end of the
635 * application data and we're past the 0x80 value then
636 * just write zero. */
637 b = b&~is_past_cp1;
638 /* If this is index_b (the final block), but not
639 * index_a (the end of the data), then the 64-bit
640 * length didn't fit into index_a and we're having to
641 * add an extra block of zeros. */
642 b &= ~is_block_b | is_block_a;
643
644 /* The final bytes of one of the blocks contains the
645 * length. */
646 if (j >= md_block_size - md_length_size) {
647 /* If this is index_b, write a length byte. */
648 b = (b&~is_block_b) | (is_block_b&length_bytes[j - (md_block_size - md_length_size)]);
649 }
650 block[j] = b;
651 }
652
653 md_transform(md_state.c, block);
654 md_final_raw(md_state.c, block);
655 /* If this is index_b, copy the hash value to |mac_out|. */
656 for (j = 0; j < md_size; j++)
657 mac_out[j] |= block[j]&is_block_b;
658 }
659
660 EVP_MD_CTX_init(&md_ctx);
661 if (!EVP_DigestInit_ex(&md_ctx, ctx->digest, NULL /* engine */)) {
662 EVP_MD_CTX_cleanup(&md_ctx);
663 return 0;
664 }
665 if (is_sslv3) {
666 /* We repurpose |hmac_pad| to contain the SSLv3 pad2 block. */
667 memset(hmac_pad, 0x5c, sslv3_pad_length);
668
669 EVP_DigestUpdate(&md_ctx, mac_secret, mac_secret_length);
670 EVP_DigestUpdate(&md_ctx, hmac_pad, sslv3_pad_length);
671 EVP_DigestUpdate(&md_ctx, mac_out, md_size);
672 } else {
673 /* Complete the HMAC in the standard manner. */
674 for (i = 0; i < md_block_size; i++)
675 hmac_pad[i] ^= 0x6a;
676
677 EVP_DigestUpdate(&md_ctx, hmac_pad, md_block_size);
678 EVP_DigestUpdate(&md_ctx, mac_out, md_size);
679 }
680 EVP_DigestFinal(&md_ctx, md_out, &md_out_size_u);
681 if (md_out_size)
682 *md_out_size = md_out_size_u;
683 EVP_MD_CTX_cleanup(&md_ctx);
684
685 return 1;
686}