diff options
Diffstat (limited to 'src/lib/libssl/s3_cbc.c')
| -rw-r--r-- | src/lib/libssl/s3_cbc.c | 686 |
1 files changed, 0 insertions, 686 deletions
diff --git a/src/lib/libssl/s3_cbc.c b/src/lib/libssl/s3_cbc.c deleted file mode 100644 index 57485caacf..0000000000 --- a/src/lib/libssl/s3_cbc.c +++ /dev/null | |||
| @@ -1,686 +0,0 @@ | |||
| 1 | /* $OpenBSD: s3_cbc.c,v 1.10 2015/07/17 07:04:40 doug Exp $ */ | ||
| 2 | /* ==================================================================== | ||
| 3 | * Copyright (c) 2012 The OpenSSL Project. All rights reserved. | ||
| 4 | * | ||
| 5 | * Redistribution and use in source and binary forms, with or without | ||
| 6 | * modification, are permitted provided that the following conditions | ||
| 7 | * are met: | ||
| 8 | * | ||
| 9 | * 1. Redistributions of source code must retain the above copyright | ||
| 10 | * notice, this list of conditions and the following disclaimer. | ||
| 11 | * | ||
| 12 | * 2. Redistributions in binary form must reproduce the above copyright | ||
| 13 | * notice, this list of conditions and the following disclaimer in | ||
| 14 | * the documentation and/or other materials provided with the | ||
| 15 | * distribution. | ||
| 16 | * | ||
| 17 | * 3. All advertising materials mentioning features or use of this | ||
| 18 | * software must display the following acknowledgment: | ||
| 19 | * "This product includes software developed by the OpenSSL Project | ||
| 20 | * for use in the OpenSSL Toolkit. (http://www.openssl.org/)" | ||
| 21 | * | ||
| 22 | * 4. The names "OpenSSL Toolkit" and "OpenSSL Project" must not be used to | ||
| 23 | * endorse or promote products derived from this software without | ||
| 24 | * prior written permission. For written permission, please contact | ||
| 25 | * openssl-core@openssl.org. | ||
| 26 | * | ||
| 27 | * 5. Products derived from this software may not be called "OpenSSL" | ||
| 28 | * nor may "OpenSSL" appear in their names without prior written | ||
| 29 | * permission of the OpenSSL Project. | ||
| 30 | * | ||
| 31 | * 6. Redistributions of any form whatsoever must retain the following | ||
| 32 | * acknowledgment: | ||
| 33 | * "This product includes software developed by the OpenSSL Project | ||
| 34 | * for use in the OpenSSL Toolkit (http://www.openssl.org/)" | ||
| 35 | * | ||
| 36 | * THIS SOFTWARE IS PROVIDED BY THE OpenSSL PROJECT ``AS IS'' AND ANY | ||
| 37 | * EXPRESSED OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE | ||
| 38 | * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR | ||
| 39 | * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE OpenSSL PROJECT OR | ||
| 40 | * ITS CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, | ||
| 41 | * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT | ||
| 42 | * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; | ||
| 43 | * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) | ||
| 44 | * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, | ||
| 45 | * STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) | ||
| 46 | * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED | ||
| 47 | * OF THE POSSIBILITY OF SUCH DAMAGE. | ||
| 48 | * ==================================================================== | ||
| 49 | * | ||
| 50 | * This product includes cryptographic software written by Eric Young | ||
| 51 | * (eay@cryptsoft.com). This product includes software written by Tim | ||
| 52 | * Hudson (tjh@cryptsoft.com). | ||
| 53 | * | ||
| 54 | */ | ||
| 55 | |||
| 56 | #include "ssl_locl.h" | ||
| 57 | |||
| 58 | #include <openssl/md5.h> | ||
| 59 | #include <openssl/sha.h> | ||
| 60 | |||
| 61 | /* MAX_HASH_BIT_COUNT_BYTES is the maximum number of bytes in the hash's length | ||
| 62 | * field. (SHA-384/512 have 128-bit length.) */ | ||
| 63 | #define MAX_HASH_BIT_COUNT_BYTES 16 | ||
| 64 | |||
| 65 | /* MAX_HASH_BLOCK_SIZE is the maximum hash block size that we'll support. | ||
| 66 | * Currently SHA-384/512 has a 128-byte block size and that's the largest | ||
| 67 | * supported by TLS.) */ | ||
| 68 | #define MAX_HASH_BLOCK_SIZE 128 | ||
| 69 | |||
| 70 | /* Some utility functions are needed: | ||
| 71 | * | ||
| 72 | * These macros return the given value with the MSB copied to all the other | ||
| 73 | * bits. They use the fact that arithmetic shift shifts-in the sign bit. | ||
| 74 | * However, this is not ensured by the C standard so you may need to replace | ||
| 75 | * them with something else on odd CPUs. */ | ||
| 76 | #define DUPLICATE_MSB_TO_ALL(x) ((unsigned)((int)(x) >> (sizeof(int) * 8 - 1))) | ||
| 77 | #define DUPLICATE_MSB_TO_ALL_8(x) ((unsigned char)(DUPLICATE_MSB_TO_ALL(x))) | ||
| 78 | |||
| 79 | /* constant_time_lt returns 0xff if a<b and 0x00 otherwise. */ | ||
| 80 | static unsigned | ||
| 81 | constant_time_lt(unsigned a, unsigned b) | ||
| 82 | { | ||
| 83 | a -= b; | ||
| 84 | return DUPLICATE_MSB_TO_ALL(a); | ||
| 85 | } | ||
| 86 | |||
| 87 | /* constant_time_ge returns 0xff if a>=b and 0x00 otherwise. */ | ||
| 88 | static unsigned | ||
| 89 | constant_time_ge(unsigned a, unsigned b) | ||
| 90 | { | ||
| 91 | a -= b; | ||
| 92 | return DUPLICATE_MSB_TO_ALL(~a); | ||
| 93 | } | ||
| 94 | |||
| 95 | /* constant_time_eq_8 returns 0xff if a==b and 0x00 otherwise. */ | ||
| 96 | static unsigned char | ||
| 97 | constant_time_eq_8(unsigned a, unsigned b) | ||
| 98 | { | ||
| 99 | unsigned c = a ^ b; | ||
| 100 | c--; | ||
| 101 | return DUPLICATE_MSB_TO_ALL_8(c); | ||
| 102 | } | ||
| 103 | |||
| 104 | /* ssl3_cbc_remove_padding removes padding from the decrypted, SSLv3, CBC | ||
| 105 | * record in |rec| by updating |rec->length| in constant time. | ||
| 106 | * | ||
| 107 | * block_size: the block size of the cipher used to encrypt the record. | ||
| 108 | * returns: | ||
| 109 | * 0: (in non-constant time) if the record is publicly invalid. | ||
| 110 | * 1: if the padding was valid | ||
| 111 | * -1: otherwise. */ | ||
| 112 | int | ||
| 113 | ssl3_cbc_remove_padding(const SSL* s, SSL3_RECORD *rec, unsigned block_size, | ||
| 114 | unsigned mac_size) | ||
| 115 | { | ||
| 116 | unsigned padding_length, good; | ||
| 117 | const unsigned overhead = 1 /* padding length byte */ + mac_size; | ||
| 118 | |||
| 119 | /* These lengths are all public so we can test them in non-constant | ||
| 120 | * time. */ | ||
| 121 | if (overhead > rec->length) | ||
| 122 | return 0; | ||
| 123 | |||
| 124 | padding_length = rec->data[rec->length - 1]; | ||
| 125 | good = constant_time_ge(rec->length, padding_length + overhead); | ||
| 126 | /* SSLv3 requires that the padding is minimal. */ | ||
| 127 | good &= constant_time_ge(block_size, padding_length + 1); | ||
| 128 | padding_length = good & (padding_length + 1); | ||
| 129 | rec->length -= padding_length; | ||
| 130 | rec->type |= padding_length << 8; /* kludge: pass padding length */ | ||
| 131 | return (int)((good & 1) | (~good & -1)); | ||
| 132 | } | ||
| 133 | |||
| 134 | /* tls1_cbc_remove_padding removes the CBC padding from the decrypted, TLS, CBC | ||
| 135 | * record in |rec| in constant time and returns 1 if the padding is valid and | ||
| 136 | * -1 otherwise. It also removes any explicit IV from the start of the record | ||
| 137 | * without leaking any timing about whether there was enough space after the | ||
| 138 | * padding was removed. | ||
| 139 | * | ||
| 140 | * block_size: the block size of the cipher used to encrypt the record. | ||
| 141 | * returns: | ||
| 142 | * 0: (in non-constant time) if the record is publicly invalid. | ||
| 143 | * 1: if the padding was valid | ||
| 144 | * -1: otherwise. */ | ||
| 145 | int | ||
| 146 | tls1_cbc_remove_padding(const SSL* s, SSL3_RECORD *rec, unsigned block_size, | ||
| 147 | unsigned mac_size) | ||
| 148 | { | ||
| 149 | unsigned padding_length, good, to_check, i; | ||
| 150 | const unsigned overhead = 1 /* padding length byte */ + mac_size; | ||
| 151 | |||
| 152 | /* Check if version requires explicit IV */ | ||
| 153 | if (SSL_USE_EXPLICIT_IV(s)) { | ||
| 154 | /* These lengths are all public so we can test them in | ||
| 155 | * non-constant time. | ||
| 156 | */ | ||
| 157 | if (overhead + block_size > rec->length) | ||
| 158 | return 0; | ||
| 159 | /* We can now safely skip explicit IV */ | ||
| 160 | rec->data += block_size; | ||
| 161 | rec->input += block_size; | ||
| 162 | rec->length -= block_size; | ||
| 163 | } else if (overhead > rec->length) | ||
| 164 | return 0; | ||
| 165 | |||
| 166 | padding_length = rec->data[rec->length - 1]; | ||
| 167 | |||
| 168 | if (EVP_CIPHER_flags(s->enc_read_ctx->cipher) & EVP_CIPH_FLAG_AEAD_CIPHER) { | ||
| 169 | /* padding is already verified */ | ||
| 170 | rec->length -= padding_length + 1; | ||
| 171 | return 1; | ||
| 172 | } | ||
| 173 | |||
| 174 | good = constant_time_ge(rec->length, overhead + padding_length); | ||
| 175 | /* The padding consists of a length byte at the end of the record and | ||
| 176 | * then that many bytes of padding, all with the same value as the | ||
| 177 | * length byte. Thus, with the length byte included, there are i+1 | ||
| 178 | * bytes of padding. | ||
| 179 | * | ||
| 180 | * We can't check just |padding_length+1| bytes because that leaks | ||
| 181 | * decrypted information. Therefore we always have to check the maximum | ||
| 182 | * amount of padding possible. (Again, the length of the record is | ||
| 183 | * public information so we can use it.) */ | ||
| 184 | to_check = 255; /* maximum amount of padding. */ | ||
| 185 | if (to_check > rec->length - 1) | ||
| 186 | to_check = rec->length - 1; | ||
| 187 | |||
| 188 | for (i = 0; i < to_check; i++) { | ||
| 189 | unsigned char mask = constant_time_ge(padding_length, i); | ||
| 190 | unsigned char b = rec->data[rec->length - 1 - i]; | ||
| 191 | /* The final |padding_length+1| bytes should all have the value | ||
| 192 | * |padding_length|. Therefore the XOR should be zero. */ | ||
| 193 | good &= ~(mask&(padding_length ^ b)); | ||
| 194 | } | ||
| 195 | |||
| 196 | /* If any of the final |padding_length+1| bytes had the wrong value, | ||
| 197 | * one or more of the lower eight bits of |good| will be cleared. We | ||
| 198 | * AND the bottom 8 bits together and duplicate the result to all the | ||
| 199 | * bits. */ | ||
| 200 | good &= good >> 4; | ||
| 201 | good &= good >> 2; | ||
| 202 | good &= good >> 1; | ||
| 203 | good <<= sizeof(good)*8 - 1; | ||
| 204 | good = DUPLICATE_MSB_TO_ALL(good); | ||
| 205 | |||
| 206 | padding_length = good & (padding_length + 1); | ||
| 207 | rec->length -= padding_length; | ||
| 208 | rec->type |= padding_length<<8; /* kludge: pass padding length */ | ||
| 209 | |||
| 210 | return (int)((good & 1) | (~good & -1)); | ||
| 211 | } | ||
| 212 | |||
| 213 | /* ssl3_cbc_copy_mac copies |md_size| bytes from the end of |rec| to |out| in | ||
| 214 | * constant time (independent of the concrete value of rec->length, which may | ||
| 215 | * vary within a 256-byte window). | ||
| 216 | * | ||
| 217 | * ssl3_cbc_remove_padding or tls1_cbc_remove_padding must be called prior to | ||
| 218 | * this function. | ||
| 219 | * | ||
| 220 | * On entry: | ||
| 221 | * rec->orig_len >= md_size | ||
| 222 | * md_size <= EVP_MAX_MD_SIZE | ||
| 223 | * | ||
| 224 | * If CBC_MAC_ROTATE_IN_PLACE is defined then the rotation is performed with | ||
| 225 | * variable accesses in a 64-byte-aligned buffer. Assuming that this fits into | ||
| 226 | * a single or pair of cache-lines, then the variable memory accesses don't | ||
| 227 | * actually affect the timing. CPUs with smaller cache-lines [if any] are | ||
| 228 | * not multi-core and are not considered vulnerable to cache-timing attacks. | ||
| 229 | */ | ||
| 230 | #define CBC_MAC_ROTATE_IN_PLACE | ||
| 231 | |||
| 232 | void | ||
| 233 | ssl3_cbc_copy_mac(unsigned char* out, const SSL3_RECORD *rec, | ||
| 234 | unsigned md_size, unsigned orig_len) | ||
| 235 | { | ||
| 236 | #if defined(CBC_MAC_ROTATE_IN_PLACE) | ||
| 237 | unsigned char rotated_mac_buf[64 + EVP_MAX_MD_SIZE]; | ||
| 238 | unsigned char *rotated_mac; | ||
| 239 | #else | ||
| 240 | unsigned char rotated_mac[EVP_MAX_MD_SIZE]; | ||
| 241 | #endif | ||
| 242 | |||
| 243 | /* mac_end is the index of |rec->data| just after the end of the MAC. */ | ||
| 244 | unsigned mac_end = rec->length; | ||
| 245 | unsigned mac_start = mac_end - md_size; | ||
| 246 | /* scan_start contains the number of bytes that we can ignore because | ||
| 247 | * the MAC's position can only vary by 255 bytes. */ | ||
| 248 | unsigned scan_start = 0; | ||
| 249 | unsigned i, j; | ||
| 250 | unsigned div_spoiler; | ||
| 251 | unsigned rotate_offset; | ||
| 252 | |||
| 253 | OPENSSL_assert(orig_len >= md_size); | ||
| 254 | OPENSSL_assert(md_size <= EVP_MAX_MD_SIZE); | ||
| 255 | |||
| 256 | #if defined(CBC_MAC_ROTATE_IN_PLACE) | ||
| 257 | rotated_mac = rotated_mac_buf + ((0 - (size_t)rotated_mac_buf)&63); | ||
| 258 | #endif | ||
| 259 | |||
| 260 | /* This information is public so it's safe to branch based on it. */ | ||
| 261 | if (orig_len > md_size + 255 + 1) | ||
| 262 | scan_start = orig_len - (md_size + 255 + 1); | ||
| 263 | /* div_spoiler contains a multiple of md_size that is used to cause the | ||
| 264 | * modulo operation to be constant time. Without this, the time varies | ||
| 265 | * based on the amount of padding when running on Intel chips at least. | ||
| 266 | * | ||
| 267 | * The aim of right-shifting md_size is so that the compiler doesn't | ||
| 268 | * figure out that it can remove div_spoiler as that would require it | ||
| 269 | * to prove that md_size is always even, which I hope is beyond it. */ | ||
| 270 | div_spoiler = md_size >> 1; | ||
| 271 | div_spoiler <<= (sizeof(div_spoiler) - 1) * 8; | ||
| 272 | rotate_offset = (div_spoiler + mac_start - scan_start) % md_size; | ||
| 273 | |||
| 274 | memset(rotated_mac, 0, md_size); | ||
| 275 | for (i = scan_start, j = 0; i < orig_len; i++) { | ||
| 276 | unsigned char mac_started = constant_time_ge(i, mac_start); | ||
| 277 | unsigned char mac_ended = constant_time_ge(i, mac_end); | ||
| 278 | unsigned char b = rec->data[i]; | ||
| 279 | rotated_mac[j++] |= b & mac_started & ~mac_ended; | ||
| 280 | j &= constant_time_lt(j, md_size); | ||
| 281 | } | ||
| 282 | |||
| 283 | /* Now rotate the MAC */ | ||
| 284 | #if defined(CBC_MAC_ROTATE_IN_PLACE) | ||
| 285 | j = 0; | ||
| 286 | for (i = 0; i < md_size; i++) { | ||
| 287 | /* in case cache-line is 32 bytes, touch second line */ | ||
| 288 | ((volatile unsigned char *)rotated_mac)[rotate_offset^32]; | ||
| 289 | out[j++] = rotated_mac[rotate_offset++]; | ||
| 290 | rotate_offset &= constant_time_lt(rotate_offset, md_size); | ||
| 291 | } | ||
| 292 | #else | ||
| 293 | memset(out, 0, md_size); | ||
| 294 | rotate_offset = md_size - rotate_offset; | ||
| 295 | rotate_offset &= constant_time_lt(rotate_offset, md_size); | ||
| 296 | for (i = 0; i < md_size; i++) { | ||
| 297 | for (j = 0; j < md_size; j++) | ||
| 298 | out[j] |= rotated_mac[i] & constant_time_eq_8(j, rotate_offset); | ||
| 299 | rotate_offset++; | ||
| 300 | rotate_offset &= constant_time_lt(rotate_offset, md_size); | ||
| 301 | } | ||
| 302 | #endif | ||
| 303 | } | ||
| 304 | |||
| 305 | /* u32toLE serialises an unsigned, 32-bit number (n) as four bytes at (p) in | ||
| 306 | * little-endian order. The value of p is advanced by four. */ | ||
| 307 | #define u32toLE(n, p) \ | ||
| 308 | (*((p)++)=(unsigned char)(n), \ | ||
| 309 | *((p)++)=(unsigned char)(n>>8), \ | ||
| 310 | *((p)++)=(unsigned char)(n>>16), \ | ||
| 311 | *((p)++)=(unsigned char)(n>>24)) | ||
| 312 | |||
| 313 | /* These functions serialize the state of a hash and thus perform the standard | ||
| 314 | * "final" operation without adding the padding and length that such a function | ||
| 315 | * typically does. */ | ||
| 316 | static void | ||
| 317 | tls1_md5_final_raw(void* ctx, unsigned char *md_out) | ||
| 318 | { | ||
| 319 | MD5_CTX *md5 = ctx; | ||
| 320 | u32toLE(md5->A, md_out); | ||
| 321 | u32toLE(md5->B, md_out); | ||
| 322 | u32toLE(md5->C, md_out); | ||
| 323 | u32toLE(md5->D, md_out); | ||
| 324 | } | ||
| 325 | |||
| 326 | static void | ||
| 327 | tls1_sha1_final_raw(void* ctx, unsigned char *md_out) | ||
| 328 | { | ||
| 329 | SHA_CTX *sha1 = ctx; | ||
| 330 | l2n(sha1->h0, md_out); | ||
| 331 | l2n(sha1->h1, md_out); | ||
| 332 | l2n(sha1->h2, md_out); | ||
| 333 | l2n(sha1->h3, md_out); | ||
| 334 | l2n(sha1->h4, md_out); | ||
| 335 | } | ||
| 336 | #define LARGEST_DIGEST_CTX SHA_CTX | ||
| 337 | |||
| 338 | static void | ||
| 339 | tls1_sha256_final_raw(void* ctx, unsigned char *md_out) | ||
| 340 | { | ||
| 341 | SHA256_CTX *sha256 = ctx; | ||
| 342 | unsigned i; | ||
| 343 | |||
| 344 | for (i = 0; i < 8; i++) { | ||
| 345 | l2n(sha256->h[i], md_out); | ||
| 346 | } | ||
| 347 | } | ||
| 348 | #undef LARGEST_DIGEST_CTX | ||
| 349 | #define LARGEST_DIGEST_CTX SHA256_CTX | ||
| 350 | |||
| 351 | static void | ||
| 352 | tls1_sha512_final_raw(void* ctx, unsigned char *md_out) | ||
| 353 | { | ||
| 354 | SHA512_CTX *sha512 = ctx; | ||
| 355 | unsigned i; | ||
| 356 | |||
| 357 | for (i = 0; i < 8; i++) { | ||
| 358 | l2n8(sha512->h[i], md_out); | ||
| 359 | } | ||
| 360 | } | ||
| 361 | #undef LARGEST_DIGEST_CTX | ||
| 362 | #define LARGEST_DIGEST_CTX SHA512_CTX | ||
| 363 | |||
| 364 | /* ssl3_cbc_record_digest_supported returns 1 iff |ctx| uses a hash function | ||
| 365 | * which ssl3_cbc_digest_record supports. */ | ||
| 366 | char | ||
| 367 | ssl3_cbc_record_digest_supported(const EVP_MD_CTX *ctx) | ||
| 368 | { | ||
| 369 | switch (EVP_MD_CTX_type(ctx)) { | ||
| 370 | case NID_md5: | ||
| 371 | case NID_sha1: | ||
| 372 | case NID_sha224: | ||
| 373 | case NID_sha256: | ||
| 374 | case NID_sha384: | ||
| 375 | case NID_sha512: | ||
| 376 | return 1; | ||
| 377 | default: | ||
| 378 | return 0; | ||
| 379 | } | ||
| 380 | } | ||
| 381 | |||
| 382 | /* ssl3_cbc_digest_record computes the MAC of a decrypted, padded SSLv3/TLS | ||
| 383 | * record. | ||
| 384 | * | ||
| 385 | * ctx: the EVP_MD_CTX from which we take the hash function. | ||
| 386 | * ssl3_cbc_record_digest_supported must return true for this EVP_MD_CTX. | ||
| 387 | * md_out: the digest output. At most EVP_MAX_MD_SIZE bytes will be written. | ||
| 388 | * md_out_size: if non-NULL, the number of output bytes is written here. | ||
| 389 | * header: the 13-byte, TLS record header. | ||
| 390 | * data: the record data itself, less any preceeding explicit IV. | ||
| 391 | * data_plus_mac_size: the secret, reported length of the data and MAC | ||
| 392 | * once the padding has been removed. | ||
| 393 | * data_plus_mac_plus_padding_size: the public length of the whole | ||
| 394 | * record, including padding. | ||
| 395 | * is_sslv3: non-zero if we are to use SSLv3. Otherwise, TLS. | ||
| 396 | * | ||
| 397 | * On entry: by virtue of having been through one of the remove_padding | ||
| 398 | * functions, above, we know that data_plus_mac_size is large enough to contain | ||
| 399 | * a padding byte and MAC. (If the padding was invalid, it might contain the | ||
| 400 | * padding too. ) */ | ||
| 401 | int | ||
| 402 | ssl3_cbc_digest_record(const EVP_MD_CTX *ctx, unsigned char* md_out, | ||
| 403 | size_t* md_out_size, const unsigned char header[13], | ||
| 404 | const unsigned char *data, size_t data_plus_mac_size, | ||
| 405 | size_t data_plus_mac_plus_padding_size, const unsigned char *mac_secret, | ||
| 406 | unsigned mac_secret_length, char is_sslv3) | ||
| 407 | { | ||
| 408 | union { double align; | ||
| 409 | unsigned char c[sizeof(LARGEST_DIGEST_CTX)]; | ||
| 410 | } md_state; | ||
| 411 | void (*md_final_raw)(void *ctx, unsigned char *md_out); | ||
| 412 | void (*md_transform)(void *ctx, const unsigned char *block); | ||
| 413 | unsigned md_size, md_block_size = 64; | ||
| 414 | unsigned sslv3_pad_length = 40, header_length, variance_blocks, | ||
| 415 | len, max_mac_bytes, num_blocks, | ||
| 416 | num_starting_blocks, k, mac_end_offset, c, index_a, index_b; | ||
| 417 | unsigned int bits; /* at most 18 bits */ | ||
| 418 | unsigned char length_bytes[MAX_HASH_BIT_COUNT_BYTES]; | ||
| 419 | /* hmac_pad is the masked HMAC key. */ | ||
| 420 | unsigned char hmac_pad[MAX_HASH_BLOCK_SIZE]; | ||
| 421 | unsigned char first_block[MAX_HASH_BLOCK_SIZE]; | ||
| 422 | unsigned char mac_out[EVP_MAX_MD_SIZE]; | ||
| 423 | unsigned i, j, md_out_size_u; | ||
| 424 | EVP_MD_CTX md_ctx; | ||
| 425 | /* mdLengthSize is the number of bytes in the length field that terminates | ||
| 426 | * the hash. */ | ||
| 427 | unsigned md_length_size = 8; | ||
| 428 | char length_is_big_endian = 1; | ||
| 429 | |||
| 430 | /* This is a, hopefully redundant, check that allows us to forget about | ||
| 431 | * many possible overflows later in this function. */ | ||
| 432 | OPENSSL_assert(data_plus_mac_plus_padding_size < 1024*1024); | ||
| 433 | |||
| 434 | switch (EVP_MD_CTX_type(ctx)) { | ||
| 435 | case NID_md5: | ||
| 436 | MD5_Init((MD5_CTX*)md_state.c); | ||
| 437 | md_final_raw = tls1_md5_final_raw; | ||
| 438 | md_transform = (void(*)(void *ctx, const unsigned char *block)) MD5_Transform; | ||
| 439 | md_size = 16; | ||
| 440 | sslv3_pad_length = 48; | ||
| 441 | length_is_big_endian = 0; | ||
| 442 | break; | ||
| 443 | case NID_sha1: | ||
| 444 | SHA1_Init((SHA_CTX*)md_state.c); | ||
| 445 | md_final_raw = tls1_sha1_final_raw; | ||
| 446 | md_transform = (void(*)(void *ctx, const unsigned char *block)) SHA1_Transform; | ||
| 447 | md_size = 20; | ||
| 448 | break; | ||
| 449 | case NID_sha224: | ||
| 450 | SHA224_Init((SHA256_CTX*)md_state.c); | ||
| 451 | md_final_raw = tls1_sha256_final_raw; | ||
| 452 | md_transform = (void(*)(void *ctx, const unsigned char *block)) SHA256_Transform; | ||
| 453 | md_size = 224/8; | ||
| 454 | break; | ||
| 455 | case NID_sha256: | ||
| 456 | SHA256_Init((SHA256_CTX*)md_state.c); | ||
| 457 | md_final_raw = tls1_sha256_final_raw; | ||
| 458 | md_transform = (void(*)(void *ctx, const unsigned char *block)) SHA256_Transform; | ||
| 459 | md_size = 32; | ||
| 460 | break; | ||
| 461 | case NID_sha384: | ||
| 462 | SHA384_Init((SHA512_CTX*)md_state.c); | ||
| 463 | md_final_raw = tls1_sha512_final_raw; | ||
| 464 | md_transform = (void(*)(void *ctx, const unsigned char *block)) SHA512_Transform; | ||
| 465 | md_size = 384/8; | ||
| 466 | md_block_size = 128; | ||
| 467 | md_length_size = 16; | ||
| 468 | break; | ||
| 469 | case NID_sha512: | ||
| 470 | SHA512_Init((SHA512_CTX*)md_state.c); | ||
| 471 | md_final_raw = tls1_sha512_final_raw; | ||
| 472 | md_transform = (void(*)(void *ctx, const unsigned char *block)) SHA512_Transform; | ||
| 473 | md_size = 64; | ||
| 474 | md_block_size = 128; | ||
| 475 | md_length_size = 16; | ||
| 476 | break; | ||
| 477 | default: | ||
| 478 | /* ssl3_cbc_record_digest_supported should have been | ||
| 479 | * called first to check that the hash function is | ||
| 480 | * supported. */ | ||
| 481 | OPENSSL_assert(0); | ||
| 482 | if (md_out_size) | ||
| 483 | *md_out_size = 0; | ||
| 484 | return 0; | ||
| 485 | } | ||
| 486 | |||
| 487 | OPENSSL_assert(md_length_size <= MAX_HASH_BIT_COUNT_BYTES); | ||
| 488 | OPENSSL_assert(md_block_size <= MAX_HASH_BLOCK_SIZE); | ||
| 489 | OPENSSL_assert(md_size <= EVP_MAX_MD_SIZE); | ||
| 490 | |||
| 491 | header_length = 13; | ||
| 492 | if (is_sslv3) { | ||
| 493 | header_length = mac_secret_length + sslv3_pad_length + | ||
| 494 | 8 /* sequence number */ + | ||
| 495 | 1 /* record type */ + | ||
| 496 | 2 /* record length */; | ||
| 497 | } | ||
| 498 | |||
| 499 | /* variance_blocks is the number of blocks of the hash that we have to | ||
| 500 | * calculate in constant time because they could be altered by the | ||
| 501 | * padding value. | ||
| 502 | * | ||
| 503 | * In SSLv3, the padding must be minimal so the end of the plaintext | ||
| 504 | * varies by, at most, 15+20 = 35 bytes. (We conservatively assume that | ||
| 505 | * the MAC size varies from 0..20 bytes.) In case the 9 bytes of hash | ||
| 506 | * termination (0x80 + 64-bit length) don't fit in the final block, we | ||
| 507 | * say that the final two blocks can vary based on the padding. | ||
| 508 | * | ||
| 509 | * TLSv1 has MACs up to 48 bytes long (SHA-384) and the padding is not | ||
| 510 | * required to be minimal. Therefore we say that the final six blocks | ||
| 511 | * can vary based on the padding. | ||
| 512 | * | ||
| 513 | * Later in the function, if the message is short and there obviously | ||
| 514 | * cannot be this many blocks then variance_blocks can be reduced. */ | ||
| 515 | variance_blocks = is_sslv3 ? 2 : 6; | ||
| 516 | /* From now on we're dealing with the MAC, which conceptually has 13 | ||
| 517 | * bytes of `header' before the start of the data (TLS) or 71/75 bytes | ||
| 518 | * (SSLv3) */ | ||
| 519 | len = data_plus_mac_plus_padding_size + header_length; | ||
| 520 | /* max_mac_bytes contains the maximum bytes of bytes in the MAC, including | ||
| 521 | * |header|, assuming that there's no padding. */ | ||
| 522 | max_mac_bytes = len - md_size - 1; | ||
| 523 | /* num_blocks is the maximum number of hash blocks. */ | ||
| 524 | num_blocks = (max_mac_bytes + 1 + md_length_size + md_block_size - 1) / md_block_size; | ||
| 525 | /* In order to calculate the MAC in constant time we have to handle | ||
| 526 | * the final blocks specially because the padding value could cause the | ||
| 527 | * end to appear somewhere in the final |variance_blocks| blocks and we | ||
| 528 | * can't leak where. However, |num_starting_blocks| worth of data can | ||
| 529 | * be hashed right away because no padding value can affect whether | ||
| 530 | * they are plaintext. */ | ||
| 531 | num_starting_blocks = 0; | ||
| 532 | /* k is the starting byte offset into the conceptual header||data where | ||
| 533 | * we start processing. */ | ||
| 534 | k = 0; | ||
| 535 | /* mac_end_offset is the index just past the end of the data to be | ||
| 536 | * MACed. */ | ||
| 537 | mac_end_offset = data_plus_mac_size + header_length - md_size; | ||
| 538 | /* c is the index of the 0x80 byte in the final hash block that | ||
| 539 | * contains application data. */ | ||
| 540 | c = mac_end_offset % md_block_size; | ||
| 541 | /* index_a is the hash block number that contains the 0x80 terminating | ||
| 542 | * value. */ | ||
| 543 | index_a = mac_end_offset / md_block_size; | ||
| 544 | /* index_b is the hash block number that contains the 64-bit hash | ||
| 545 | * length, in bits. */ | ||
| 546 | index_b = (mac_end_offset + md_length_size) / md_block_size; | ||
| 547 | /* bits is the hash-length in bits. It includes the additional hash | ||
| 548 | * block for the masked HMAC key, or whole of |header| in the case of | ||
| 549 | * SSLv3. */ | ||
| 550 | |||
| 551 | /* For SSLv3, if we're going to have any starting blocks then we need | ||
| 552 | * at least two because the header is larger than a single block. */ | ||
| 553 | if (num_blocks > variance_blocks + (is_sslv3 ? 1 : 0)) { | ||
| 554 | num_starting_blocks = num_blocks - variance_blocks; | ||
| 555 | k = md_block_size*num_starting_blocks; | ||
| 556 | } | ||
| 557 | |||
| 558 | bits = 8*mac_end_offset; | ||
| 559 | if (!is_sslv3) { | ||
| 560 | /* Compute the initial HMAC block. For SSLv3, the padding and | ||
| 561 | * secret bytes are included in |header| because they take more | ||
| 562 | * than a single block. */ | ||
| 563 | bits += 8*md_block_size; | ||
| 564 | memset(hmac_pad, 0, md_block_size); | ||
| 565 | OPENSSL_assert(mac_secret_length <= sizeof(hmac_pad)); | ||
| 566 | memcpy(hmac_pad, mac_secret, mac_secret_length); | ||
| 567 | for (i = 0; i < md_block_size; i++) | ||
| 568 | hmac_pad[i] ^= 0x36; | ||
| 569 | |||
| 570 | md_transform(md_state.c, hmac_pad); | ||
| 571 | } | ||
| 572 | |||
| 573 | if (length_is_big_endian) { | ||
| 574 | memset(length_bytes, 0, md_length_size - 4); | ||
| 575 | length_bytes[md_length_size - 4] = (unsigned char)(bits >> 24); | ||
| 576 | length_bytes[md_length_size - 3] = (unsigned char)(bits >> 16); | ||
| 577 | length_bytes[md_length_size - 2] = (unsigned char)(bits >> 8); | ||
| 578 | length_bytes[md_length_size - 1] = (unsigned char)bits; | ||
| 579 | } else { | ||
| 580 | memset(length_bytes, 0, md_length_size); | ||
| 581 | length_bytes[md_length_size - 5] = (unsigned char)(bits >> 24); | ||
| 582 | length_bytes[md_length_size - 6] = (unsigned char)(bits >> 16); | ||
| 583 | length_bytes[md_length_size - 7] = (unsigned char)(bits >> 8); | ||
| 584 | length_bytes[md_length_size - 8] = (unsigned char)bits; | ||
| 585 | } | ||
| 586 | |||
| 587 | if (k > 0) { | ||
| 588 | if (is_sslv3) { | ||
| 589 | /* The SSLv3 header is larger than a single block. | ||
| 590 | * overhang is the number of bytes beyond a single | ||
| 591 | * block that the header consumes: either 7 bytes | ||
| 592 | * (SHA1) or 11 bytes (MD5). */ | ||
| 593 | unsigned overhang = header_length - md_block_size; | ||
| 594 | md_transform(md_state.c, header); | ||
| 595 | memcpy(first_block, header + md_block_size, overhang); | ||
| 596 | memcpy(first_block + overhang, data, md_block_size - overhang); | ||
| 597 | md_transform(md_state.c, first_block); | ||
| 598 | for (i = 1; i < k/md_block_size - 1; i++) | ||
| 599 | md_transform(md_state.c, data + md_block_size*i - overhang); | ||
| 600 | } else { | ||
| 601 | /* k is a multiple of md_block_size. */ | ||
| 602 | memcpy(first_block, header, 13); | ||
| 603 | memcpy(first_block + 13, data, md_block_size - 13); | ||
| 604 | md_transform(md_state.c, first_block); | ||
| 605 | for (i = 1; i < k/md_block_size; i++) | ||
| 606 | md_transform(md_state.c, data + md_block_size*i - 13); | ||
| 607 | } | ||
| 608 | } | ||
| 609 | |||
| 610 | memset(mac_out, 0, sizeof(mac_out)); | ||
| 611 | |||
| 612 | /* We now process the final hash blocks. For each block, we construct | ||
| 613 | * it in constant time. If the |i==index_a| then we'll include the 0x80 | ||
| 614 | * bytes and zero pad etc. For each block we selectively copy it, in | ||
| 615 | * constant time, to |mac_out|. */ | ||
| 616 | for (i = num_starting_blocks; i <= num_starting_blocks + variance_blocks; i++) { | ||
| 617 | unsigned char block[MAX_HASH_BLOCK_SIZE]; | ||
| 618 | unsigned char is_block_a = constant_time_eq_8(i, index_a); | ||
| 619 | unsigned char is_block_b = constant_time_eq_8(i, index_b); | ||
| 620 | for (j = 0; j < md_block_size; j++) { | ||
| 621 | unsigned char b = 0, is_past_c, is_past_cp1; | ||
| 622 | if (k < header_length) | ||
| 623 | b = header[k]; | ||
| 624 | else if (k < data_plus_mac_plus_padding_size + header_length) | ||
| 625 | b = data[k - header_length]; | ||
| 626 | k++; | ||
| 627 | |||
| 628 | is_past_c = is_block_a & constant_time_ge(j, c); | ||
| 629 | is_past_cp1 = is_block_a & constant_time_ge(j, c + 1); | ||
| 630 | /* If this is the block containing the end of the | ||
| 631 | * application data, and we are at the offset for the | ||
| 632 | * 0x80 value, then overwrite b with 0x80. */ | ||
| 633 | b = (b&~is_past_c) | (0x80&is_past_c); | ||
| 634 | /* If this the the block containing the end of the | ||
| 635 | * application data and we're past the 0x80 value then | ||
| 636 | * just write zero. */ | ||
| 637 | b = b&~is_past_cp1; | ||
| 638 | /* If this is index_b (the final block), but not | ||
| 639 | * index_a (the end of the data), then the 64-bit | ||
| 640 | * length didn't fit into index_a and we're having to | ||
| 641 | * add an extra block of zeros. */ | ||
| 642 | b &= ~is_block_b | is_block_a; | ||
| 643 | |||
| 644 | /* The final bytes of one of the blocks contains the | ||
| 645 | * length. */ | ||
| 646 | if (j >= md_block_size - md_length_size) { | ||
| 647 | /* If this is index_b, write a length byte. */ | ||
| 648 | b = (b&~is_block_b) | (is_block_b&length_bytes[j - (md_block_size - md_length_size)]); | ||
| 649 | } | ||
| 650 | block[j] = b; | ||
| 651 | } | ||
| 652 | |||
| 653 | md_transform(md_state.c, block); | ||
| 654 | md_final_raw(md_state.c, block); | ||
| 655 | /* If this is index_b, copy the hash value to |mac_out|. */ | ||
| 656 | for (j = 0; j < md_size; j++) | ||
| 657 | mac_out[j] |= block[j]&is_block_b; | ||
| 658 | } | ||
| 659 | |||
| 660 | EVP_MD_CTX_init(&md_ctx); | ||
| 661 | if (!EVP_DigestInit_ex(&md_ctx, ctx->digest, NULL /* engine */)) { | ||
| 662 | EVP_MD_CTX_cleanup(&md_ctx); | ||
| 663 | return 0; | ||
| 664 | } | ||
| 665 | if (is_sslv3) { | ||
| 666 | /* We repurpose |hmac_pad| to contain the SSLv3 pad2 block. */ | ||
| 667 | memset(hmac_pad, 0x5c, sslv3_pad_length); | ||
| 668 | |||
| 669 | EVP_DigestUpdate(&md_ctx, mac_secret, mac_secret_length); | ||
| 670 | EVP_DigestUpdate(&md_ctx, hmac_pad, sslv3_pad_length); | ||
| 671 | EVP_DigestUpdate(&md_ctx, mac_out, md_size); | ||
| 672 | } else { | ||
| 673 | /* Complete the HMAC in the standard manner. */ | ||
| 674 | for (i = 0; i < md_block_size; i++) | ||
| 675 | hmac_pad[i] ^= 0x6a; | ||
| 676 | |||
| 677 | EVP_DigestUpdate(&md_ctx, hmac_pad, md_block_size); | ||
| 678 | EVP_DigestUpdate(&md_ctx, mac_out, md_size); | ||
| 679 | } | ||
| 680 | EVP_DigestFinal(&md_ctx, md_out, &md_out_size_u); | ||
| 681 | if (md_out_size) | ||
| 682 | *md_out_size = md_out_size_u; | ||
| 683 | EVP_MD_CTX_cleanup(&md_ctx); | ||
| 684 | |||
| 685 | return 1; | ||
| 686 | } | ||
