diff options
Diffstat (limited to 'src/lib/libssl/src/doc/crypto/bn_internal.pod')
-rw-r--r-- | src/lib/libssl/src/doc/crypto/bn_internal.pod | 225 |
1 files changed, 225 insertions, 0 deletions
diff --git a/src/lib/libssl/src/doc/crypto/bn_internal.pod b/src/lib/libssl/src/doc/crypto/bn_internal.pod new file mode 100644 index 0000000000..5af0c791c8 --- /dev/null +++ b/src/lib/libssl/src/doc/crypto/bn_internal.pod | |||
@@ -0,0 +1,225 @@ | |||
1 | =pod | ||
2 | |||
3 | =head1 NAME | ||
4 | |||
5 | bn_mul_words, bn_mul_add_words, bn_sqr_words, bn_div_words, | ||
6 | bn_add_words, bn_sub_words, bn_mul_comba4, bn_mul_comba8, | ||
7 | bn_sqr_comba4, bn_sqr_comba8, bn_cmp_words, bn_mul_normal, | ||
8 | bn_mul_low_normal, bn_mul_recursive, bn_mul_part_recursive, | ||
9 | bn_mul_low_recursive, bn_mul_high, bn_sqr_normal, bn_sqr_recursive, | ||
10 | bn_expand, bn_wexpand, bn_expand2, bn_fix_top, bn_check_top, | ||
11 | bn_print, bn_dump, bn_set_max, bn_set_high, bn_set_low - BIGNUM | ||
12 | library internal functions | ||
13 | |||
14 | =head1 SYNOPSIS | ||
15 | |||
16 | BN_ULONG bn_mul_words(BN_ULONG *rp, BN_ULONG *ap, int num, BN_ULONG w); | ||
17 | BN_ULONG bn_mul_add_words(BN_ULONG *rp, BN_ULONG *ap, int num, | ||
18 | BN_ULONG w); | ||
19 | void bn_sqr_words(BN_ULONG *rp, BN_ULONG *ap, int num); | ||
20 | BN_ULONG bn_div_words(BN_ULONG h, BN_ULONG l, BN_ULONG d); | ||
21 | BN_ULONG bn_add_words(BN_ULONG *rp, BN_ULONG *ap, BN_ULONG *bp, | ||
22 | int num); | ||
23 | BN_ULONG bn_sub_words(BN_ULONG *rp, BN_ULONG *ap, BN_ULONG *bp, | ||
24 | int num); | ||
25 | |||
26 | void bn_mul_comba4(BN_ULONG *r, BN_ULONG *a, BN_ULONG *b); | ||
27 | void bn_mul_comba8(BN_ULONG *r, BN_ULONG *a, BN_ULONG *b); | ||
28 | void bn_sqr_comba4(BN_ULONG *r, BN_ULONG *a); | ||
29 | void bn_sqr_comba8(BN_ULONG *r, BN_ULONG *a); | ||
30 | |||
31 | int bn_cmp_words(BN_ULONG *a, BN_ULONG *b, int n); | ||
32 | |||
33 | void bn_mul_normal(BN_ULONG *r, BN_ULONG *a, int na, BN_ULONG *b, | ||
34 | int nb); | ||
35 | void bn_mul_low_normal(BN_ULONG *r, BN_ULONG *a, BN_ULONG *b, int n); | ||
36 | void bn_mul_recursive(BN_ULONG *r, BN_ULONG *a, BN_ULONG *b, int n2, | ||
37 | BN_ULONG *tmp); | ||
38 | void bn_mul_part_recursive(BN_ULONG *r, BN_ULONG *a, BN_ULONG *b, | ||
39 | int tn, int n, BN_ULONG *tmp); | ||
40 | void bn_mul_low_recursive(BN_ULONG *r, BN_ULONG *a, BN_ULONG *b, | ||
41 | int n2, BN_ULONG *tmp); | ||
42 | void bn_mul_high(BN_ULONG *r, BN_ULONG *a, BN_ULONG *b, BN_ULONG *l, | ||
43 | int n2, BN_ULONG *tmp); | ||
44 | |||
45 | void bn_sqr_normal(BN_ULONG *r, BN_ULONG *a, int n, BN_ULONG *tmp); | ||
46 | void bn_sqr_recursive(BN_ULONG *r, BN_ULONG *a, int n2, BN_ULONG *tmp); | ||
47 | |||
48 | void mul(BN_ULONG r, BN_ULONG a, BN_ULONG w, BN_ULONG c); | ||
49 | void mul_add(BN_ULONG r, BN_ULONG a, BN_ULONG w, BN_ULONG c); | ||
50 | void sqr(BN_ULONG r0, BN_ULONG r1, BN_ULONG a); | ||
51 | |||
52 | BIGNUM *bn_expand(BIGNUM *a, int bits); | ||
53 | BIGNUM *bn_wexpand(BIGNUM *a, int n); | ||
54 | BIGNUM *bn_expand2(BIGNUM *a, int n); | ||
55 | void bn_fix_top(BIGNUM *a); | ||
56 | |||
57 | void bn_check_top(BIGNUM *a); | ||
58 | void bn_print(BIGNUM *a); | ||
59 | void bn_dump(BN_ULONG *d, int n); | ||
60 | void bn_set_max(BIGNUM *a); | ||
61 | void bn_set_high(BIGNUM *r, BIGNUM *a, int n); | ||
62 | void bn_set_low(BIGNUM *r, BIGNUM *a, int n); | ||
63 | |||
64 | =head1 DESCRIPTION | ||
65 | |||
66 | This page documents the internal functions used by the OpenSSL | ||
67 | B<BIGNUM> implementation. They are described here to facilitate | ||
68 | debugging and extending the library. They are I<not> to be used by | ||
69 | applications. | ||
70 | |||
71 | =head2 The BIGNUM structure | ||
72 | |||
73 | typedef struct bignum_st | ||
74 | { | ||
75 | int top; /* index of last used d (most significant word) */ | ||
76 | BN_ULONG *d; /* pointer to an array of 'BITS2' bit chunks */ | ||
77 | int max; /* size of the d array */ | ||
78 | int neg; /* sign */ | ||
79 | } BIGNUM; | ||
80 | |||
81 | The big number is stored in B<d>, a malloc()ed array of B<BN_ULONG>s, | ||
82 | least significant first. A B<BN_ULONG> can be either 16, 32 or 64 bits | ||
83 | in size (B<BITS2>), depending on the 'number of bits' specified in | ||
84 | C<openssl/bn.h>. | ||
85 | |||
86 | B<max> is the size of the B<d> array that has been allocated. B<top> | ||
87 | is the 'last' entry being used, so for a value of 4, bn.d[0]=4 and | ||
88 | bn.top=1. B<neg> is 1 if the number is negative. When a B<BIGNUM> is | ||
89 | B<0>, the B<d> field can be B<NULL> and B<top> == B<0>. | ||
90 | |||
91 | Various routines in this library require the use of temporary | ||
92 | B<BIGNUM> variables during their execution. Since dynamic memory | ||
93 | allocation to create B<BIGNUM>s is rather expensive when used in | ||
94 | conjunction with repeated subroutine calls, the B<BN_CTX> structure is | ||
95 | used. This structure contains B<BN_CTX_NUM> B<BIGNUM>s, see | ||
96 | L<BN_CTX_start(3)|BN_CTX_start(3)>. | ||
97 | |||
98 | =head2 Low-level arithmetic operations | ||
99 | |||
100 | These functions are implemented in C and for several platforms in | ||
101 | assembly language: | ||
102 | |||
103 | bn_mul_words(B<rp>, B<ap>, B<num>, B<w>) operates on the B<num> word | ||
104 | arrays B<rp> and B<ap>. It computes B<ap> * B<w>, places the result | ||
105 | in B<rp>, and returns the high word (carry). | ||
106 | |||
107 | bn_mul_add_words(B<rp>, B<ap>, B<num>, B<w>) operates on the B<num> | ||
108 | word arrays B<rp> and B<ap>. It computes B<ap> * B<w> + B<rp>, places | ||
109 | the result in B<rp>, and returns the high word (carry). | ||
110 | |||
111 | bn_sqr_words(B<rp>, B<ap>, B<n>) operates on the B<num> word array | ||
112 | B<ap> and the 2*B<num> word array B<ap>. It computes B<ap> * B<ap> | ||
113 | word-wise, and places the low and high bytes of the result in B<rp>. | ||
114 | |||
115 | bn_div_words(B<h>, B<l>, B<d>) divides the two word number (B<h>,B<l>) | ||
116 | by B<d> and returns the result. | ||
117 | |||
118 | bn_add_words(B<rp>, B<ap>, B<bp>, B<num>) operates on the B<num> word | ||
119 | arrays B<ap>, B<bp> and B<rp>. It computes B<ap> + B<bp>, places the | ||
120 | result in B<rp>, and returns the high word (carry). | ||
121 | |||
122 | bn_sub_words(B<rp>, B<ap>, B<bp>, B<num>) operates on the B<num> word | ||
123 | arrays B<ap>, B<bp> and B<rp>. It computes B<ap> - B<bp>, places the | ||
124 | result in B<rp>, and returns the carry (1 if B<bp> E<gt> B<ap>, 0 | ||
125 | otherwise). | ||
126 | |||
127 | bn_mul_comba4(B<r>, B<a>, B<b>) operates on the 4 word arrays B<a> and | ||
128 | B<b> and the 8 word array B<r>. It computes B<a>*B<b> and places the | ||
129 | result in B<r>. | ||
130 | |||
131 | bn_mul_comba8(B<r>, B<a>, B<b>) operates on the 8 word arrays B<a> and | ||
132 | B<b> and the 16 word array B<r>. It computes B<a>*B<b> and places the | ||
133 | result in B<r>. | ||
134 | |||
135 | bn_sqr_comba4(B<r>, B<a>, B<b>) operates on the 4 word arrays B<a> and | ||
136 | B<b> and the 8 word array B<r>. | ||
137 | |||
138 | bn_sqr_comba8(B<r>, B<a>, B<b>) operates on the 8 word arrays B<a> and | ||
139 | B<b> and the 16 word array B<r>. | ||
140 | |||
141 | The following functions are implemented in C: | ||
142 | |||
143 | bn_cmp_words(B<a>, B<b>, B<n>) operates on the B<n> word arrays B<a> | ||
144 | and B<b>. It returns 1, 0 and -1 if B<a> is greater than, equal and | ||
145 | less than B<b>. | ||
146 | |||
147 | bn_mul_normal(B<r>, B<a>, B<na>, B<b>, B<nb>) operates on the B<na> | ||
148 | word array B<a>, the B<nb> word array B<b> and the B<na>+B<nb> word | ||
149 | array B<r>. It computes B<a>*B<b> and places the result in B<r>. | ||
150 | |||
151 | bn_mul_low_normal(B<r>, B<a>, B<b>, B<n>) operates on the B<n> word | ||
152 | arrays B<r>, B<a> und B<b>. It computes the B<n> low words of | ||
153 | B<a>*B<b> and places the result in B<r>. | ||
154 | |||
155 | bn_mul_recursive(B<r>, B<a>, B<b>, B<n2>, B<t>) operates on the B<n2> | ||
156 | word arrays B<a> and B<b> and the 2*B<n2> word arrays B<r> and B<t>. | ||
157 | B<n2> must be a power of 2. It computes B<a>*B<b> and places the | ||
158 | result in B<r>. | ||
159 | |||
160 | bn_mul_part_recursive(B<r>, B<a>, B<b>, B<tn>, B<n>, B<tmp>) operates | ||
161 | on the B<n>+B<tn> word arrays B<a> and B<b> and the 4*B<n> word arrays | ||
162 | B<r> and B<tmp>. | ||
163 | |||
164 | bn_mul_low_recursive(B<r>, B<a>, B<b>, B<n2>, B<tmp>) operates on the | ||
165 | B<n2> word arrays B<r> and B<tmp> and the B<n2>/2 word arrays B<a> | ||
166 | and B<b>. | ||
167 | |||
168 | bn_mul_high(B<r>, B<a>, B<b>, B<l>, B<n2>, B<tmp>) operates on the | ||
169 | B<n2> word arrays B<r>, B<a>, B<b> and B<l> (?) and the 3*B<n2> word | ||
170 | array B<tmp>. | ||
171 | |||
172 | BN_mul() calls bn_mul_normal(), or an optimized implementation if the | ||
173 | factors have the same size: bn_mul_comba8() is used if they are 8 | ||
174 | words long, bn_mul_recursive() if they are larger than | ||
175 | B<BN_MULL_SIZE_NORMAL> and the size is an exact multiple of the word | ||
176 | size, and bn_mul_part_recursive() for others that are larger than | ||
177 | B<BN_MULL_SIZE_NORMAL>. | ||
178 | |||
179 | bn_sqr_normal(B<r>, B<a>, B<n>, B<tmp>) operates on the B<n> word array | ||
180 | B<a> and the 2*B<n> word arrays B<tmp> and B<r>. | ||
181 | |||
182 | The implementations use the following macros which, depending on the | ||
183 | architecture, may use "long long" C operations or inline assembler. | ||
184 | They are defined in C<bn_lcl.h>. | ||
185 | |||
186 | mul(B<r>, B<a>, B<w>, B<c>) computes B<w>*B<a>+B<c> and places the | ||
187 | low word of the result in B<r> and the high word in B<c>. | ||
188 | |||
189 | mul_add(B<r>, B<a>, B<w>, B<c>) computes B<w>*B<a>+B<r>+B<c> and | ||
190 | places the low word of the result in B<r> and the high word in B<c>. | ||
191 | |||
192 | sqr(B<r0>, B<r1>, B<a>) computes B<a>*B<a> and places the low word | ||
193 | of the result in B<r0> and the high word in B<r1>. | ||
194 | |||
195 | =head2 Size changes | ||
196 | |||
197 | bn_expand() ensures that B<b> has enough space for a B<bits> bit | ||
198 | number. bn_wexpand() ensures that B<b> has enough space for an | ||
199 | B<n> word number. If the number has to be expanded, both macros | ||
200 | call bn_expand2(), which allocates a new B<d> array and copies the | ||
201 | data. They return B<NULL> on error, B<b> otherwise. | ||
202 | |||
203 | The bn_fix_top() macro reduces B<a-E<gt>top> to point to the most | ||
204 | significant non-zero word when B<a> has shrunk. | ||
205 | |||
206 | =head2 Debugging | ||
207 | |||
208 | bn_check_top() verifies that C<((a)-E<gt>top E<gt>= 0 && (a)-E<gt>top | ||
209 | E<lt>= (a)-E<gt>max)>. A violation will cause the program to abort. | ||
210 | |||
211 | bn_print() prints B<a> to stderr. bn_dump() prints B<n> words at B<d> | ||
212 | (in reverse order, i.e. most significant word first) to stderr. | ||
213 | |||
214 | bn_set_max() makes B<a> a static number with a B<max> of its current size. | ||
215 | This is used by bn_set_low() and bn_set_high() to make B<r> a read-only | ||
216 | B<BIGNUM> that contains the B<n> low or high words of B<a>. | ||
217 | |||
218 | If B<BN_DEBUG> is not defined, bn_check_top(), bn_print(), bn_dump() | ||
219 | and bn_set_max() are defined as empty macros. | ||
220 | |||
221 | =head1 SEE ALSO | ||
222 | |||
223 | L<bn(3)|bn(3)> | ||
224 | |||
225 | =cut | ||