diff options
Diffstat (limited to 'src/lib/libssl/src/doc')
-rw-r--r-- | src/lib/libssl/src/doc/crypto/bn_internal.pod | 238 | ||||
-rw-r--r-- | src/lib/libssl/src/doc/crypto/d2i_PKCS8PrivateKey.pod | 58 | ||||
-rw-r--r-- | src/lib/libssl/src/doc/crypto/ecdsa.pod | 205 | ||||
-rw-r--r-- | src/lib/libssl/src/doc/crypto/lhash.pod | 303 | ||||
-rw-r--r-- | src/lib/libssl/src/doc/crypto/ui.pod | 194 | ||||
-rw-r--r-- | src/lib/libssl/src/doc/crypto/ui_compat.pod | 57 |
6 files changed, 0 insertions, 1055 deletions
diff --git a/src/lib/libssl/src/doc/crypto/bn_internal.pod b/src/lib/libssl/src/doc/crypto/bn_internal.pod deleted file mode 100644 index 9c59ed623b..0000000000 --- a/src/lib/libssl/src/doc/crypto/bn_internal.pod +++ /dev/null | |||
@@ -1,238 +0,0 @@ | |||
1 | =pod | ||
2 | |||
3 | =head1 NAME | ||
4 | |||
5 | bn_mul_words, bn_mul_add_words, bn_sqr_words, bn_div_words, | ||
6 | bn_add_words, bn_sub_words, bn_mul_comba4, bn_mul_comba8, | ||
7 | bn_sqr_comba4, bn_sqr_comba8, bn_cmp_words, bn_mul_normal, | ||
8 | bn_mul_low_normal, bn_mul_recursive, bn_mul_part_recursive, | ||
9 | bn_mul_low_recursive, bn_mul_high, bn_sqr_normal, bn_sqr_recursive, | ||
10 | bn_expand, bn_wexpand, bn_expand2, bn_fix_top, bn_check_top, | ||
11 | bn_print, bn_dump, bn_set_max, bn_set_high, bn_set_low, sqr | ||
12 | - BIGNUM library internal functions | ||
13 | |||
14 | =head1 SYNOPSIS | ||
15 | |||
16 | #include <openssl/bn.h> | ||
17 | |||
18 | BN_ULONG bn_mul_words(BN_ULONG *rp, BN_ULONG *ap, int num, BN_ULONG w); | ||
19 | BN_ULONG bn_mul_add_words(BN_ULONG *rp, BN_ULONG *ap, int num, | ||
20 | BN_ULONG w); | ||
21 | void bn_sqr_words(BN_ULONG *rp, BN_ULONG *ap, int num); | ||
22 | BN_ULONG bn_div_words(BN_ULONG h, BN_ULONG l, BN_ULONG d); | ||
23 | BN_ULONG bn_add_words(BN_ULONG *rp, BN_ULONG *ap, BN_ULONG *bp, | ||
24 | int num); | ||
25 | BN_ULONG bn_sub_words(BN_ULONG *rp, BN_ULONG *ap, BN_ULONG *bp, | ||
26 | int num); | ||
27 | |||
28 | void bn_mul_comba4(BN_ULONG *r, BN_ULONG *a, BN_ULONG *b); | ||
29 | void bn_mul_comba8(BN_ULONG *r, BN_ULONG *a, BN_ULONG *b); | ||
30 | void bn_sqr_comba4(BN_ULONG *r, BN_ULONG *a); | ||
31 | void bn_sqr_comba8(BN_ULONG *r, BN_ULONG *a); | ||
32 | |||
33 | int bn_cmp_words(BN_ULONG *a, BN_ULONG *b, int n); | ||
34 | |||
35 | void bn_mul_normal(BN_ULONG *r, BN_ULONG *a, int na, BN_ULONG *b, | ||
36 | int nb); | ||
37 | void bn_mul_low_normal(BN_ULONG *r, BN_ULONG *a, BN_ULONG *b, int n); | ||
38 | void bn_mul_recursive(BN_ULONG *r, BN_ULONG *a, BN_ULONG *b, int n2, | ||
39 | int dna,int dnb,BN_ULONG *tmp); | ||
40 | void bn_mul_part_recursive(BN_ULONG *r, BN_ULONG *a, BN_ULONG *b, | ||
41 | int n, int tna,int tnb, BN_ULONG *tmp); | ||
42 | void bn_mul_low_recursive(BN_ULONG *r, BN_ULONG *a, BN_ULONG *b, | ||
43 | int n2, BN_ULONG *tmp); | ||
44 | void bn_mul_high(BN_ULONG *r, BN_ULONG *a, BN_ULONG *b, BN_ULONG *l, | ||
45 | int n2, BN_ULONG *tmp); | ||
46 | |||
47 | void bn_sqr_normal(BN_ULONG *r, BN_ULONG *a, int n, BN_ULONG *tmp); | ||
48 | void bn_sqr_recursive(BN_ULONG *r, BN_ULONG *a, int n2, BN_ULONG *tmp); | ||
49 | |||
50 | void mul(BN_ULONG r, BN_ULONG a, BN_ULONG w, BN_ULONG c); | ||
51 | void mul_add(BN_ULONG r, BN_ULONG a, BN_ULONG w, BN_ULONG c); | ||
52 | void sqr(BN_ULONG r0, BN_ULONG r1, BN_ULONG a); | ||
53 | |||
54 | BIGNUM *bn_expand(BIGNUM *a, int bits); | ||
55 | BIGNUM *bn_wexpand(BIGNUM *a, int n); | ||
56 | BIGNUM *bn_expand2(BIGNUM *a, int n); | ||
57 | void bn_fix_top(BIGNUM *a); | ||
58 | |||
59 | void bn_check_top(BIGNUM *a); | ||
60 | void bn_print(BIGNUM *a); | ||
61 | void bn_dump(BN_ULONG *d, int n); | ||
62 | void bn_set_max(BIGNUM *a); | ||
63 | void bn_set_high(BIGNUM *r, BIGNUM *a, int n); | ||
64 | void bn_set_low(BIGNUM *r, BIGNUM *a, int n); | ||
65 | |||
66 | =head1 DESCRIPTION | ||
67 | |||
68 | This page documents the internal functions used by the OpenSSL | ||
69 | B<BIGNUM> implementation. They are described here to facilitate | ||
70 | debugging and extending the library. They are I<not> to be used by | ||
71 | applications. | ||
72 | |||
73 | =head2 The BIGNUM structure | ||
74 | |||
75 | typedef struct bignum_st BIGNUM; | ||
76 | |||
77 | struct bignum_st | ||
78 | { | ||
79 | BN_ULONG *d; /* Pointer to an array of 'BN_BITS2' bit chunks. */ | ||
80 | int top; /* Index of last used d +1. */ | ||
81 | /* The next are internal book keeping for bn_expand. */ | ||
82 | int dmax; /* Size of the d array. */ | ||
83 | int neg; /* one if the number is negative */ | ||
84 | int flags; | ||
85 | }; | ||
86 | |||
87 | |||
88 | The integer value is stored in B<d>, a malloc()ed array of words (B<BN_ULONG>), | ||
89 | least significant word first. A B<BN_ULONG> can be either 16, 32 or 64 bits | ||
90 | in size, depending on the 'number of bits' (B<BITS2>) specified in | ||
91 | C<openssl/bn.h>. | ||
92 | |||
93 | B<dmax> is the size of the B<d> array that has been allocated. B<top> | ||
94 | is the number of words being used, so for a value of 4, bn.d[0]=4 and | ||
95 | bn.top=1. B<neg> is 1 if the number is negative. When a B<BIGNUM> is | ||
96 | B<0>, the B<d> field can be B<NULL> and B<top> == B<0>. | ||
97 | |||
98 | B<flags> is a bit field of flags which are defined in C<openssl/bn.h>. The | ||
99 | flags begin with B<BN_FLG_>. The macros BN_set_flags(b,n) and | ||
100 | BN_get_flags(b,n) exist to enable or fetch flag(s) B<n> from B<BIGNUM> | ||
101 | structure B<b>. | ||
102 | |||
103 | Various routines in this library require the use of temporary | ||
104 | B<BIGNUM> variables during their execution. Since dynamic memory | ||
105 | allocation to create B<BIGNUM>s is rather expensive when used in | ||
106 | conjunction with repeated subroutine calls, the B<BN_CTX> structure is | ||
107 | used. This structure contains B<BN_CTX_NUM> B<BIGNUM>s, see | ||
108 | L<BN_CTX_start(3)|BN_CTX_start(3)>. | ||
109 | |||
110 | =head2 Low-level arithmetic operations | ||
111 | |||
112 | These functions are implemented in C and for several platforms in | ||
113 | assembly language: | ||
114 | |||
115 | bn_mul_words(B<rp>, B<ap>, B<num>, B<w>) operates on the B<num> word | ||
116 | arrays B<rp> and B<ap>. It computes B<ap> * B<w>, places the result | ||
117 | in B<rp>, and returns the high word (carry). | ||
118 | |||
119 | bn_mul_add_words(B<rp>, B<ap>, B<num>, B<w>) operates on the B<num> | ||
120 | word arrays B<rp> and B<ap>. It computes B<ap> * B<w> + B<rp>, places | ||
121 | the result in B<rp>, and returns the high word (carry). | ||
122 | |||
123 | bn_sqr_words(B<rp>, B<ap>, B<n>) operates on the B<num> word array | ||
124 | B<ap> and the 2*B<num> word array B<ap>. It computes B<ap> * B<ap> | ||
125 | word-wise, and places the low and high bytes of the result in B<rp>. | ||
126 | |||
127 | bn_div_words(B<h>, B<l>, B<d>) divides the two word number (B<h>,B<l>) | ||
128 | by B<d> and returns the result. | ||
129 | |||
130 | bn_add_words(B<rp>, B<ap>, B<bp>, B<num>) operates on the B<num> word | ||
131 | arrays B<ap>, B<bp> and B<rp>. It computes B<ap> + B<bp>, places the | ||
132 | result in B<rp>, and returns the high word (carry). | ||
133 | |||
134 | bn_sub_words(B<rp>, B<ap>, B<bp>, B<num>) operates on the B<num> word | ||
135 | arrays B<ap>, B<bp> and B<rp>. It computes B<ap> - B<bp>, places the | ||
136 | result in B<rp>, and returns the carry (1 if B<bp> E<gt> B<ap>, 0 | ||
137 | otherwise). | ||
138 | |||
139 | bn_mul_comba4(B<r>, B<a>, B<b>) operates on the 4 word arrays B<a> and | ||
140 | B<b> and the 8 word array B<r>. It computes B<a>*B<b> and places the | ||
141 | result in B<r>. | ||
142 | |||
143 | bn_mul_comba8(B<r>, B<a>, B<b>) operates on the 8 word arrays B<a> and | ||
144 | B<b> and the 16 word array B<r>. It computes B<a>*B<b> and places the | ||
145 | result in B<r>. | ||
146 | |||
147 | bn_sqr_comba4(B<r>, B<a>, B<b>) operates on the 4 word arrays B<a> and | ||
148 | B<b> and the 8 word array B<r>. | ||
149 | |||
150 | bn_sqr_comba8(B<r>, B<a>, B<b>) operates on the 8 word arrays B<a> and | ||
151 | B<b> and the 16 word array B<r>. | ||
152 | |||
153 | The following functions are implemented in C: | ||
154 | |||
155 | bn_cmp_words(B<a>, B<b>, B<n>) operates on the B<n> word arrays B<a> | ||
156 | and B<b>. It returns 1, 0 and -1 if B<a> is greater than, equal and | ||
157 | less than B<b>. | ||
158 | |||
159 | bn_mul_normal(B<r>, B<a>, B<na>, B<b>, B<nb>) operates on the B<na> | ||
160 | word array B<a>, the B<nb> word array B<b> and the B<na>+B<nb> word | ||
161 | array B<r>. It computes B<a>*B<b> and places the result in B<r>. | ||
162 | |||
163 | bn_mul_low_normal(B<r>, B<a>, B<b>, B<n>) operates on the B<n> word | ||
164 | arrays B<r>, B<a> and B<b>. It computes the B<n> low words of | ||
165 | B<a>*B<b> and places the result in B<r>. | ||
166 | |||
167 | bn_mul_recursive(B<r>, B<a>, B<b>, B<n2>, B<dna>, B<dnb>, B<t>) operates | ||
168 | on the word arrays B<a> and B<b> of length B<n2>+B<dna> and B<n2>+B<dnb> | ||
169 | (B<dna> and B<dnb> are currently allowed to be 0 or negative) and the 2*B<n2> | ||
170 | word arrays B<r> and B<t>. B<n2> must be a power of 2. It computes | ||
171 | B<a>*B<b> and places the result in B<r>. | ||
172 | |||
173 | bn_mul_part_recursive(B<r>, B<a>, B<b>, B<n>, B<tna>, B<tnb>, B<tmp>) | ||
174 | operates on the word arrays B<a> and B<b> of length B<n>+B<tna> and | ||
175 | B<n>+B<tnb> and the 4*B<n> word arrays B<r> and B<tmp>. | ||
176 | |||
177 | bn_mul_low_recursive(B<r>, B<a>, B<b>, B<n2>, B<tmp>) operates on the | ||
178 | B<n2> word arrays B<r> and B<tmp> and the B<n2>/2 word arrays B<a> | ||
179 | and B<b>. | ||
180 | |||
181 | bn_mul_high(B<r>, B<a>, B<b>, B<l>, B<n2>, B<tmp>) operates on the | ||
182 | B<n2> word arrays B<r>, B<a>, B<b> and B<l> (?) and the 3*B<n2> word | ||
183 | array B<tmp>. | ||
184 | |||
185 | BN_mul() calls bn_mul_normal(), or an optimized implementation if the | ||
186 | factors have the same size: bn_mul_comba8() is used if they are 8 | ||
187 | words long, bn_mul_recursive() if they are larger than | ||
188 | B<BN_MULL_SIZE_NORMAL> and the size is an exact multiple of the word | ||
189 | size, and bn_mul_part_recursive() for others that are larger than | ||
190 | B<BN_MULL_SIZE_NORMAL>. | ||
191 | |||
192 | bn_sqr_normal(B<r>, B<a>, B<n>, B<tmp>) operates on the B<n> word array | ||
193 | B<a> and the 2*B<n> word arrays B<tmp> and B<r>. | ||
194 | |||
195 | The implementations use the following macros which, depending on the | ||
196 | architecture, may use "long long" C operations or inline assembler. | ||
197 | They are defined in C<bn_lcl.h>. | ||
198 | |||
199 | mul(B<r>, B<a>, B<w>, B<c>) computes B<w>*B<a>+B<c> and places the | ||
200 | low word of the result in B<r> and the high word in B<c>. | ||
201 | |||
202 | mul_add(B<r>, B<a>, B<w>, B<c>) computes B<w>*B<a>+B<r>+B<c> and | ||
203 | places the low word of the result in B<r> and the high word in B<c>. | ||
204 | |||
205 | sqr(B<r0>, B<r1>, B<a>) computes B<a>*B<a> and places the low word | ||
206 | of the result in B<r0> and the high word in B<r1>. | ||
207 | |||
208 | =head2 Size changes | ||
209 | |||
210 | bn_expand() ensures that B<b> has enough space for a B<bits> bit | ||
211 | number. bn_wexpand() ensures that B<b> has enough space for an | ||
212 | B<n> word number. If the number has to be expanded, both macros | ||
213 | call bn_expand2(), which allocates a new B<d> array and copies the | ||
214 | data. They return B<NULL> on error, B<b> otherwise. | ||
215 | |||
216 | The bn_fix_top() macro reduces B<a-E<gt>top> to point to the most | ||
217 | significant non-zero word plus one when B<a> has shrunk. | ||
218 | |||
219 | =head2 Debugging | ||
220 | |||
221 | bn_check_top() verifies that C<((a)-E<gt>top E<gt>= 0 && (a)-E<gt>top | ||
222 | E<lt>= (a)-E<gt>dmax)>. A violation will cause the program to abort. | ||
223 | |||
224 | bn_print() prints B<a> to stderr. bn_dump() prints B<n> words at B<d> | ||
225 | (in reverse order, i.e. most significant word first) to stderr. | ||
226 | |||
227 | bn_set_max() makes B<a> a static number with a B<dmax> of its current size. | ||
228 | This is used by bn_set_low() and bn_set_high() to make B<r> a read-only | ||
229 | B<BIGNUM> that contains the B<n> low or high words of B<a>. | ||
230 | |||
231 | If B<BN_DEBUG> is not defined, bn_check_top(), bn_print(), bn_dump() | ||
232 | and bn_set_max() are defined as empty macros. | ||
233 | |||
234 | =head1 SEE ALSO | ||
235 | |||
236 | L<bn(3)|bn(3)> | ||
237 | |||
238 | =cut | ||
diff --git a/src/lib/libssl/src/doc/crypto/d2i_PKCS8PrivateKey.pod b/src/lib/libssl/src/doc/crypto/d2i_PKCS8PrivateKey.pod deleted file mode 100644 index fc7335c7a1..0000000000 --- a/src/lib/libssl/src/doc/crypto/d2i_PKCS8PrivateKey.pod +++ /dev/null | |||
@@ -1,58 +0,0 @@ | |||
1 | =pod | ||
2 | |||
3 | =head1 NAME | ||
4 | |||
5 | d2i_PKCS8PrivateKey_bio, d2i_PKCS8PrivateKey_fp, i2d_PKCS8PrivateKey_bio, | ||
6 | i2d_PKCS8PrivateKey_fp, i2d_PKCS8PrivateKey_nid_bio, i2d_PKCS8PrivateKey_nid_fp | ||
7 | - PKCS#8 format private key functions | ||
8 | |||
9 | =head1 SYNOPSIS | ||
10 | |||
11 | #include <openssl/evp.h> | ||
12 | |||
13 | EVP_PKEY *d2i_PKCS8PrivateKey_bio(BIO *bp, EVP_PKEY **x, pem_password_cb *cb, void *u); | ||
14 | EVP_PKEY *d2i_PKCS8PrivateKey_fp(FILE *fp, EVP_PKEY **x, pem_password_cb *cb, void *u); | ||
15 | |||
16 | int i2d_PKCS8PrivateKey_bio(BIO *bp, EVP_PKEY *x, const EVP_CIPHER *enc, | ||
17 | char *kstr, int klen, | ||
18 | pem_password_cb *cb, void *u); | ||
19 | |||
20 | int i2d_PKCS8PrivateKey_fp(FILE *fp, EVP_PKEY *x, const EVP_CIPHER *enc, | ||
21 | char *kstr, int klen, | ||
22 | pem_password_cb *cb, void *u); | ||
23 | |||
24 | int i2d_PKCS8PrivateKey_nid_bio(BIO *bp, EVP_PKEY *x, int nid, | ||
25 | char *kstr, int klen, | ||
26 | pem_password_cb *cb, void *u); | ||
27 | |||
28 | int i2d_PKCS8PrivateKey_nid_fp(FILE *fp, EVP_PKEY *x, int nid, | ||
29 | char *kstr, int klen, | ||
30 | pem_password_cb *cb, void *u); | ||
31 | |||
32 | =head1 DESCRIPTION | ||
33 | |||
34 | The PKCS#8 functions encode and decode private keys in PKCS#8 format using both | ||
35 | PKCS#5 v1.5 and PKCS#5 v2.0 password based encryption algorithms. | ||
36 | |||
37 | Other than the use of DER as opposed to PEM these functions are identical to the | ||
38 | corresponding B<PEM> function as described in the L<pem(3)|pem(3)> manual page. | ||
39 | |||
40 | =head1 NOTES | ||
41 | |||
42 | Before using these functions | ||
43 | L<OpenSSL_add_all_algorithms(3)|OpenSSL_add_all_algorithms(3)> should be called | ||
44 | to initialize the internal algorithm lookup tables otherwise errors about | ||
45 | unknown algorithms will occur if an attempt is made to decrypt a private key. | ||
46 | |||
47 | These functions are currently the only way to store encrypted private keys | ||
48 | using DER format. | ||
49 | |||
50 | Currently all the functions use BIOs or FILE pointers, there are no functions | ||
51 | which work directly on memory: this can be readily worked around by converting | ||
52 | the buffers to memory BIOs, see L<BIO_s_mem(3)|BIO_s_mem(3)> for details. | ||
53 | |||
54 | =head1 SEE ALSO | ||
55 | |||
56 | L<pem(3)|pem(3)> | ||
57 | |||
58 | =cut | ||
diff --git a/src/lib/libssl/src/doc/crypto/ecdsa.pod b/src/lib/libssl/src/doc/crypto/ecdsa.pod deleted file mode 100644 index 9e9608155a..0000000000 --- a/src/lib/libssl/src/doc/crypto/ecdsa.pod +++ /dev/null | |||
@@ -1,205 +0,0 @@ | |||
1 | =pod | ||
2 | |||
3 | =head1 NAME | ||
4 | |||
5 | ECDSA_SIG_new, ECDSA_SIG_free, i2d_ECDSA_SIG, d2i_ECDSA_SIG, | ||
6 | ECDSA_size, ECDSA_sign_setup, ECDSA_sign, ECDSA_sign_ex, | ||
7 | ECDSA_verify, ECDSA_do_sign, ECDSA_do_sign_ex, ECDSA_do_verify, | ||
8 | ECDSA_OpenSSL, ECDSA_get_default_method, ECDSA_get_ex_data, | ||
9 | ECDSA_get_ex_new_index, ECDSA_set_default_method, ECDSA_set_ex_data, | ||
10 | ECDSA_set_method - Elliptic Curve Digital Signature Algorithm | ||
11 | |||
12 | =head1 SYNOPSIS | ||
13 | |||
14 | #include <openssl/ecdsa.h> | ||
15 | |||
16 | ECDSA_SIG* ECDSA_SIG_new(void); | ||
17 | void ECDSA_SIG_free(ECDSA_SIG *sig); | ||
18 | int i2d_ECDSA_SIG(const ECDSA_SIG *sig, unsigned char **pp); | ||
19 | ECDSA_SIG* d2i_ECDSA_SIG(ECDSA_SIG **sig, const unsigned char **pp, | ||
20 | long len); | ||
21 | |||
22 | ECDSA_SIG* ECDSA_do_sign(const unsigned char *dgst, int dgst_len, | ||
23 | EC_KEY *eckey); | ||
24 | ECDSA_SIG* ECDSA_do_sign_ex(const unsigned char *dgst, int dgstlen, | ||
25 | const BIGNUM *kinv, const BIGNUM *rp, | ||
26 | EC_KEY *eckey); | ||
27 | int ECDSA_do_verify(const unsigned char *dgst, int dgst_len, | ||
28 | const ECDSA_SIG *sig, EC_KEY* eckey); | ||
29 | int ECDSA_sign_setup(EC_KEY *eckey, BN_CTX *ctx, | ||
30 | BIGNUM **kinv, BIGNUM **rp); | ||
31 | int ECDSA_sign(int type, const unsigned char *dgst, | ||
32 | int dgstlen, unsigned char *sig, | ||
33 | unsigned int *siglen, EC_KEY *eckey); | ||
34 | int ECDSA_sign_ex(int type, const unsigned char *dgst, | ||
35 | int dgstlen, unsigned char *sig, | ||
36 | unsigned int *siglen, const BIGNUM *kinv, | ||
37 | const BIGNUM *rp, EC_KEY *eckey); | ||
38 | int ECDSA_verify(int type, const unsigned char *dgst, | ||
39 | int dgstlen, const unsigned char *sig, | ||
40 | int siglen, EC_KEY *eckey); | ||
41 | int ECDSA_size(const EC_KEY *eckey); | ||
42 | |||
43 | const ECDSA_METHOD* ECDSA_OpenSSL(void); | ||
44 | void ECDSA_set_default_method(const ECDSA_METHOD *meth); | ||
45 | const ECDSA_METHOD* ECDSA_get_default_method(void); | ||
46 | int ECDSA_set_method(EC_KEY *eckey,const ECDSA_METHOD *meth); | ||
47 | |||
48 | int ECDSA_get_ex_new_index(long argl, void *argp, | ||
49 | CRYPTO_EX_new *new_func, | ||
50 | CRYPTO_EX_dup *dup_func, | ||
51 | CRYPTO_EX_free *free_func); | ||
52 | int ECDSA_set_ex_data(EC_KEY *d, int idx, void *arg); | ||
53 | void* ECDSA_get_ex_data(EC_KEY *d, int idx); | ||
54 | |||
55 | =head1 DESCRIPTION | ||
56 | |||
57 | The B<ECDSA_SIG> structure consists of two BIGNUMs for the | ||
58 | r and s value of a ECDSA signature (see X9.62 or FIPS 186-2). | ||
59 | |||
60 | struct | ||
61 | { | ||
62 | BIGNUM *r; | ||
63 | BIGNUM *s; | ||
64 | } ECDSA_SIG; | ||
65 | |||
66 | ECDSA_SIG_new() allocates a new B<ECDSA_SIG> structure (note: this | ||
67 | function also allocates the BIGNUMs) and initialize it. | ||
68 | |||
69 | ECDSA_SIG_free() frees the B<ECDSA_SIG> structure B<sig>. | ||
70 | |||
71 | i2d_ECDSA_SIG() creates the DER encoding of the ECDSA signature | ||
72 | B<sig> and writes the encoded signature to B<*pp> (note: if B<pp> | ||
73 | is NULL B<i2d_ECDSA_SIG> returns the expected length in bytes of | ||
74 | the DER encoded signature). B<i2d_ECDSA_SIG> returns the length | ||
75 | of the DER encoded signature (or 0 on error). | ||
76 | |||
77 | d2i_ECDSA_SIG() decodes a DER encoded ECDSA signature and returns | ||
78 | the decoded signature in a newly allocated B<ECDSA_SIG> structure. | ||
79 | B<*sig> points to the buffer containing the DER encoded signature | ||
80 | of size B<len>. | ||
81 | |||
82 | ECDSA_size() returns the maximum length of a DER encoded | ||
83 | ECDSA signature created with the private EC key B<eckey>. | ||
84 | |||
85 | ECDSA_sign_setup() may be used to precompute parts of the | ||
86 | signing operation. B<eckey> is the private EC key and B<ctx> | ||
87 | is a pointer to B<BN_CTX> structure (or NULL). The precomputed | ||
88 | values or returned in B<kinv> and B<rp> and can be used in a | ||
89 | later call to B<ECDSA_sign_ex> or B<ECDSA_do_sign_ex>. | ||
90 | |||
91 | ECDSA_sign() is wrapper function for ECDSA_sign_ex with B<kinv> | ||
92 | and B<rp> set to NULL. | ||
93 | |||
94 | ECDSA_sign_ex() computes a digital signature of the B<dgstlen> bytes | ||
95 | hash value B<dgst> using the private EC key B<eckey> and the optional | ||
96 | pre-computed values B<kinv> and B<rp>. The DER encoded signatures is | ||
97 | stored in B<sig> and it's length is returned in B<sig_len>. Note: B<sig> | ||
98 | must point to B<ECDSA_size> bytes of memory. The parameter B<type> | ||
99 | is ignored. | ||
100 | |||
101 | ECDSA_verify() verifies that the signature in B<sig> of size | ||
102 | B<siglen> is a valid ECDSA signature of the hash value | ||
103 | B<dgst> of size B<dgstlen> using the public key B<eckey>. | ||
104 | The parameter B<type> is ignored. | ||
105 | |||
106 | ECDSA_do_sign() is wrapper function for ECDSA_do_sign_ex with B<kinv> | ||
107 | and B<rp> set to NULL. | ||
108 | |||
109 | ECDSA_do_sign_ex() computes a digital signature of the B<dgst_len> | ||
110 | bytes hash value B<dgst> using the private key B<eckey> and the | ||
111 | optional pre-computed values B<kinv> and B<rp>. The signature is | ||
112 | returned in a newly allocated B<ECDSA_SIG> structure (or NULL on error). | ||
113 | |||
114 | ECDSA_do_verify() verifies that the signature B<sig> is a valid | ||
115 | ECDSA signature of the hash value B<dgst> of size B<dgst_len> | ||
116 | using the public key B<eckey>. | ||
117 | |||
118 | =head1 RETURN VALUES | ||
119 | |||
120 | ECDSA_size() returns the maximum length signature or 0 on error. | ||
121 | |||
122 | ECDSA_sign_setup() and ECDSA_sign() return 1 if successful or 0 | ||
123 | on error. | ||
124 | |||
125 | ECDSA_verify() and ECDSA_do_verify() return 1 for a valid | ||
126 | signature, 0 for an invalid signature and -1 on error. | ||
127 | The error codes can be obtained by L<ERR_get_error(3)|ERR_get_error(3)>. | ||
128 | |||
129 | =head1 EXAMPLES | ||
130 | |||
131 | Creating a ECDSA signature of given SHA-1 hash value using the | ||
132 | named curve secp192k1. | ||
133 | |||
134 | First step: create a EC_KEY object (note: this part is B<not> ECDSA | ||
135 | specific) | ||
136 | |||
137 | int ret; | ||
138 | ECDSA_SIG *sig; | ||
139 | EC_KEY *eckey; | ||
140 | |||
141 | eckey = EC_KEY_new_by_curve_name(NID_secp192k1); | ||
142 | if (eckey == NULL) { | ||
143 | /* error */ | ||
144 | } | ||
145 | if (!EC_KEY_generate_key(eckey)) { | ||
146 | /* error */ | ||
147 | } | ||
148 | |||
149 | Second step: compute the ECDSA signature of a SHA-1 hash value | ||
150 | using B<ECDSA_do_sign> | ||
151 | |||
152 | sig = ECDSA_do_sign(digest, 20, eckey); | ||
153 | if (sig == NULL) { | ||
154 | /* error */ | ||
155 | } | ||
156 | |||
157 | or using B<ECDSA_sign> | ||
158 | |||
159 | unsigned char *buffer, *pp; | ||
160 | int buf_len; | ||
161 | |||
162 | buf_len = ECDSA_size(eckey); | ||
163 | buffer = malloc(buf_len); | ||
164 | pp = buffer; | ||
165 | if (!ECDSA_sign(0, dgst, dgstlen, pp, &buf_len, eckey) { | ||
166 | /* error */ | ||
167 | } | ||
168 | |||
169 | Third step: verify the created ECDSA signature using B<ECDSA_do_verify> | ||
170 | |||
171 | ret = ECDSA_do_verify(digest, 20, sig, eckey); | ||
172 | |||
173 | or using B<ECDSA_verify> | ||
174 | |||
175 | ret = ECDSA_verify(0, digest, 20, buffer, buf_len, eckey); | ||
176 | |||
177 | and finally evaluate the return value: | ||
178 | |||
179 | if (ret == -1) { | ||
180 | /* error */ | ||
181 | } else if (ret == 0) { | ||
182 | /* incorrect signature */ | ||
183 | } else { | ||
184 | /* ret == 1 */ | ||
185 | /* signature ok */ | ||
186 | } | ||
187 | |||
188 | =head1 CONFORMING TO | ||
189 | |||
190 | ANSI X9.62, US Federal Information Processing Standard FIPS 186-2 | ||
191 | (Digital Signature Standard, DSS) | ||
192 | |||
193 | =head1 SEE ALSO | ||
194 | |||
195 | L<dsa(3)|dsa(3)>, L<rsa(3)|rsa(3)> | ||
196 | |||
197 | =head1 HISTORY | ||
198 | |||
199 | The ecdsa implementation was first introduced in OpenSSL 0.9.8 | ||
200 | |||
201 | =head1 AUTHOR | ||
202 | |||
203 | Nils Larsch for the OpenSSL project (http://www.openssl.org). | ||
204 | |||
205 | =cut | ||
diff --git a/src/lib/libssl/src/doc/crypto/lhash.pod b/src/lib/libssl/src/doc/crypto/lhash.pod deleted file mode 100644 index a9c44dd9ef..0000000000 --- a/src/lib/libssl/src/doc/crypto/lhash.pod +++ /dev/null | |||
@@ -1,303 +0,0 @@ | |||
1 | =pod | ||
2 | |||
3 | =head1 NAME | ||
4 | |||
5 | lh_new, lh_free, lh_insert, lh_delete, lh_retrieve, lh_doall, lh_doall_arg, | ||
6 | lh_error - dynamic hash table | ||
7 | |||
8 | =head1 SYNOPSIS | ||
9 | |||
10 | #include <openssl/lhash.h> | ||
11 | |||
12 | DECLARE_LHASH_OF(<type>); | ||
13 | |||
14 | LHASH *lh_<type>_new(); | ||
15 | void lh_<type>_free(LHASH_OF(<type> *table); | ||
16 | |||
17 | <type> *lh_<type>_insert(LHASH_OF(<type> *table, <type> *data); | ||
18 | <type> *lh_<type>_delete(LHASH_OF(<type> *table, <type> *data); | ||
19 | <type> *lh_retrieve(LHASH_OF<type> *table, <type> *data); | ||
20 | |||
21 | void lh_<type>_doall(LHASH_OF(<type> *table, LHASH_DOALL_FN_TYPE func); | ||
22 | void lh_<type>_doall_arg(LHASH_OF(<type> *table, LHASH_DOALL_ARG_FN_TYPE func, | ||
23 | <type2>, <type2> *arg); | ||
24 | |||
25 | int lh_<type>_error(LHASH_OF(<type> *table); | ||
26 | |||
27 | typedef int (*LHASH_COMP_FN_TYPE)(const void *, const void *); | ||
28 | typedef unsigned long (*LHASH_HASH_FN_TYPE)(const void *); | ||
29 | typedef void (*LHASH_DOALL_FN_TYPE)(const void *); | ||
30 | typedef void (*LHASH_DOALL_ARG_FN_TYPE)(const void *, const void *); | ||
31 | |||
32 | =head1 DESCRIPTION | ||
33 | |||
34 | This library implements type-checked dynamic hash tables. The hash | ||
35 | table entries can be arbitrary structures. Usually they consist of key | ||
36 | and value fields. | ||
37 | |||
38 | lh_<type>_new() creates a new B<LHASH_OF(<type>> structure to store | ||
39 | arbitrary data entries, and provides the 'hash' and 'compare' | ||
40 | callbacks to be used in organising the table's entries. The B<hash> | ||
41 | callback takes a pointer to a table entry as its argument and returns | ||
42 | an unsigned long hash value for its key field. The hash value is | ||
43 | normally truncated to a power of 2, so make sure that your hash | ||
44 | function returns well mixed low order bits. The B<compare> callback | ||
45 | takes two arguments (pointers to two hash table entries), and returns | ||
46 | 0 if their keys are equal, non-zero otherwise. If your hash table | ||
47 | will contain items of some particular type and the B<hash> and | ||
48 | B<compare> callbacks hash/compare these types, then the | ||
49 | B<DECLARE_LHASH_HASH_FN> and B<IMPLEMENT_LHASH_COMP_FN> macros can be | ||
50 | used to create callback wrappers of the prototypes required by | ||
51 | lh_<type>_new(). These provide per-variable casts before calling the | ||
52 | type-specific callbacks written by the application author. These | ||
53 | macros, as well as those used for the "doall" callbacks, are defined | ||
54 | as; | ||
55 | |||
56 | #define DECLARE_LHASH_HASH_FN(name, o_type) \ | ||
57 | unsigned long name##_LHASH_HASH(const void *); | ||
58 | #define IMPLEMENT_LHASH_HASH_FN(name, o_type) \ | ||
59 | unsigned long name##_LHASH_HASH(const void *arg) { \ | ||
60 | const o_type *a = arg; \ | ||
61 | return name##_hash(a); } | ||
62 | #define LHASH_HASH_FN(name) name##_LHASH_HASH | ||
63 | |||
64 | #define DECLARE_LHASH_COMP_FN(name, o_type) \ | ||
65 | int name##_LHASH_COMP(const void *, const void *); | ||
66 | #define IMPLEMENT_LHASH_COMP_FN(name, o_type) \ | ||
67 | int name##_LHASH_COMP(const void *arg1, const void *arg2) { \ | ||
68 | const o_type *a = arg1; \ | ||
69 | const o_type *b = arg2; \ | ||
70 | return name##_cmp(a,b); } | ||
71 | #define LHASH_COMP_FN(name) name##_LHASH_COMP | ||
72 | |||
73 | #define DECLARE_LHASH_DOALL_FN(name, o_type) \ | ||
74 | void name##_LHASH_DOALL(void *); | ||
75 | #define IMPLEMENT_LHASH_DOALL_FN(name, o_type) \ | ||
76 | void name##_LHASH_DOALL(void *arg) { \ | ||
77 | o_type *a = arg; \ | ||
78 | name##_doall(a); } | ||
79 | #define LHASH_DOALL_FN(name) name##_LHASH_DOALL | ||
80 | |||
81 | #define DECLARE_LHASH_DOALL_ARG_FN(name, o_type, a_type) \ | ||
82 | void name##_LHASH_DOALL_ARG(void *, void *); | ||
83 | #define IMPLEMENT_LHASH_DOALL_ARG_FN(name, o_type, a_type) \ | ||
84 | void name##_LHASH_DOALL_ARG(void *arg1, void *arg2) { \ | ||
85 | o_type *a = arg1; \ | ||
86 | a_type *b = arg2; \ | ||
87 | name##_doall_arg(a, b); } | ||
88 | #define LHASH_DOALL_ARG_FN(name) name##_LHASH_DOALL_ARG | ||
89 | |||
90 | An example of a hash table storing (pointers to) structures of type 'STUFF' | ||
91 | could be defined as follows; | ||
92 | |||
93 | /* Calculates the hash value of 'tohash' (implemented elsewhere) */ | ||
94 | unsigned long STUFF_hash(const STUFF *tohash); | ||
95 | /* Orders 'arg1' and 'arg2' (implemented elsewhere) */ | ||
96 | int stuff_cmp(const STUFF *arg1, const STUFF *arg2); | ||
97 | /* Create the type-safe wrapper functions for use in the LHASH internals */ | ||
98 | static IMPLEMENT_LHASH_HASH_FN(stuff, STUFF); | ||
99 | static IMPLEMENT_LHASH_COMP_FN(stuff, STUFF); | ||
100 | /* ... */ | ||
101 | int main(int argc, char *argv[]) { | ||
102 | /* Create the new hash table using the hash/compare wrappers */ | ||
103 | LHASH_OF(STUFF) *hashtable = lh_STUFF_new(LHASH_HASH_FN(STUFF_hash), | ||
104 | LHASH_COMP_FN(STUFF_cmp)); | ||
105 | /* ... */ | ||
106 | } | ||
107 | |||
108 | lh_<type>_free() frees the B<LHASH_OF(<type>> structure | ||
109 | B<table>. Allocated hash table entries will not be freed; consider | ||
110 | using lh_<type>_doall() to deallocate any remaining entries in the | ||
111 | hash table (see below). | ||
112 | |||
113 | lh_<type>_insert() inserts the structure pointed to by B<data> into | ||
114 | B<table>. If there already is an entry with the same key, the old | ||
115 | value is replaced. Note that lh_<type>_insert() stores pointers, the | ||
116 | data are not copied. | ||
117 | |||
118 | lh_<type>_delete() deletes an entry from B<table>. | ||
119 | |||
120 | lh_<type>_retrieve() looks up an entry in B<table>. Normally, B<data> | ||
121 | is a structure with the key field(s) set; the function will return a | ||
122 | pointer to a fully populated structure. | ||
123 | |||
124 | lh_<type>_doall() will, for every entry in the hash table, call | ||
125 | B<func> with the data item as its parameter. For lh_<type>_doall() | ||
126 | and lh_<type>_doall_arg(), function pointer casting should be avoided | ||
127 | in the callbacks (see B<NOTE>) - instead use the declare/implement | ||
128 | macros to create type-checked wrappers that cast variables prior to | ||
129 | calling your type-specific callbacks. An example of this is | ||
130 | illustrated here where the callback is used to cleanup resources for | ||
131 | items in the hash table prior to the hashtable itself being | ||
132 | deallocated: | ||
133 | |||
134 | /* Cleans up resources belonging to 'a' (this is implemented elsewhere) */ | ||
135 | void STUFF_cleanup_doall(STUFF *a); | ||
136 | /* Implement a prototype-compatible wrapper for "STUFF_cleanup" */ | ||
137 | IMPLEMENT_LHASH_DOALL_FN(STUFF_cleanup, STUFF) | ||
138 | /* ... then later in the code ... */ | ||
139 | /* So to run "STUFF_cleanup" against all items in a hash table ... */ | ||
140 | lh_STUFF_doall(hashtable, LHASH_DOALL_FN(STUFF_cleanup)); | ||
141 | /* Then the hash table itself can be deallocated */ | ||
142 | lh_STUFF_free(hashtable); | ||
143 | |||
144 | When doing this, be careful if you delete entries from the hash table | ||
145 | in your callbacks: the table may decrease in size, moving the item | ||
146 | that you are currently on down lower in the hash table - this could | ||
147 | cause some entries to be skipped during the iteration. The second | ||
148 | best solution to this problem is to set hash-E<gt>down_load=0 before | ||
149 | you start (which will stop the hash table ever decreasing in size). | ||
150 | The best solution is probably to avoid deleting items from the hash | ||
151 | table inside a "doall" callback! | ||
152 | |||
153 | lh_<type>_doall_arg() is the same as lh_<type>_doall() except that | ||
154 | B<func> will be called with B<arg> as the second argument and B<func> | ||
155 | should be of type B<LHASH_DOALL_ARG_FN_TYPE> (a callback prototype | ||
156 | that is passed both the table entry and an extra argument). As with | ||
157 | lh_doall(), you can instead choose to declare your callback with a | ||
158 | prototype matching the types you are dealing with and use the | ||
159 | declare/implement macros to create compatible wrappers that cast | ||
160 | variables before calling your type-specific callbacks. An example of | ||
161 | this is demonstrated here (printing all hash table entries to a BIO | ||
162 | that is provided by the caller): | ||
163 | |||
164 | /* Prints item 'a' to 'output_bio' (this is implemented elsewhere) */ | ||
165 | void STUFF_print_doall_arg(const STUFF *a, BIO *output_bio); | ||
166 | /* Implement a prototype-compatible wrapper for "STUFF_print" */ | ||
167 | static IMPLEMENT_LHASH_DOALL_ARG_FN(STUFF, const STUFF, BIO) | ||
168 | /* ... then later in the code ... */ | ||
169 | /* Print out the entire hashtable to a particular BIO */ | ||
170 | lh_STUFF_doall_arg(hashtable, LHASH_DOALL_ARG_FN(STUFF_print), BIO, | ||
171 | logging_bio); | ||
172 | |||
173 | lh_<type>_error() can be used to determine if an error occurred in the last | ||
174 | operation. lh_<type>_error() is a macro. | ||
175 | |||
176 | =head1 RETURN VALUES | ||
177 | |||
178 | lh_<type>_new() returns B<NULL> on error, otherwise a pointer to the new | ||
179 | B<LHASH> structure. | ||
180 | |||
181 | When a hash table entry is replaced, lh_<type>_insert() returns the value | ||
182 | being replaced. B<NULL> is returned on normal operation and on error. | ||
183 | |||
184 | lh_<type>_delete() returns the entry being deleted. B<NULL> is returned if | ||
185 | there is no such value in the hash table. | ||
186 | |||
187 | lh_<type>_retrieve() returns the hash table entry if it has been found, | ||
188 | B<NULL> otherwise. | ||
189 | |||
190 | lh_<type>_error() returns 1 if an error occurred in the last operation, 0 | ||
191 | otherwise. | ||
192 | |||
193 | lh_<type>_free(), lh_<type>_doall() and lh_<type>_doall_arg() return no values. | ||
194 | |||
195 | =head1 NOTE | ||
196 | |||
197 | The various LHASH macros and callback types exist to make it possible | ||
198 | to write type-checked code without resorting to function-prototype | ||
199 | casting - an evil that makes application code much harder to | ||
200 | audit/verify and also opens the window of opportunity for stack | ||
201 | corruption and other hard-to-find bugs. It also, apparently, violates | ||
202 | ANSI-C. | ||
203 | |||
204 | The LHASH code regards table entries as constant data. As such, it | ||
205 | internally represents lh_insert()'d items with a "const void *" | ||
206 | pointer type. This is why callbacks such as those used by lh_doall() | ||
207 | and lh_doall_arg() declare their prototypes with "const", even for the | ||
208 | parameters that pass back the table items' data pointers - for | ||
209 | consistency, user-provided data is "const" at all times as far as the | ||
210 | LHASH code is concerned. However, as callers are themselves providing | ||
211 | these pointers, they can choose whether they too should be treating | ||
212 | all such parameters as constant. | ||
213 | |||
214 | As an example, a hash table may be maintained by code that, for | ||
215 | reasons of encapsulation, has only "const" access to the data being | ||
216 | indexed in the hash table (ie. it is returned as "const" from | ||
217 | elsewhere in their code) - in this case the LHASH prototypes are | ||
218 | appropriate as-is. Conversely, if the caller is responsible for the | ||
219 | life-time of the data in question, then they may well wish to make | ||
220 | modifications to table item passed back in the lh_doall() or | ||
221 | lh_doall_arg() callbacks (see the "STUFF_cleanup" example above). If | ||
222 | so, the caller can either cast the "const" away (if they're providing | ||
223 | the raw callbacks themselves) or use the macros to declare/implement | ||
224 | the wrapper functions without "const" types. | ||
225 | |||
226 | Callers that only have "const" access to data they're indexing in a | ||
227 | table, yet declare callbacks without constant types (or cast the | ||
228 | "const" away themselves), are therefore creating their own risks/bugs | ||
229 | without being encouraged to do so by the API. On a related note, | ||
230 | those auditing code should pay special attention to any instances of | ||
231 | DECLARE/IMPLEMENT_LHASH_DOALL_[ARG_]_FN macros that provide types | ||
232 | without any "const" qualifiers. | ||
233 | |||
234 | =head1 BUGS | ||
235 | |||
236 | lh_<type>_insert() returns B<NULL> both for success and error. | ||
237 | |||
238 | =head1 INTERNALS | ||
239 | |||
240 | The following description is based on the SSLeay documentation: | ||
241 | |||
242 | The B<lhash> library implements a hash table described in the | ||
243 | I<Communications of the ACM> in 1991. What makes this hash table | ||
244 | different is that as the table fills, the hash table is increased (or | ||
245 | decreased) in size via OPENSSL_realloc(). When a 'resize' is done, instead of | ||
246 | all hashes being redistributed over twice as many 'buckets', one | ||
247 | bucket is split. So when an 'expand' is done, there is only a minimal | ||
248 | cost to redistribute some values. Subsequent inserts will cause more | ||
249 | single 'bucket' redistributions but there will never be a sudden large | ||
250 | cost due to redistributing all the 'buckets'. | ||
251 | |||
252 | The state for a particular hash table is kept in the B<LHASH> structure. | ||
253 | The decision to increase or decrease the hash table size is made | ||
254 | depending on the 'load' of the hash table. The load is the number of | ||
255 | items in the hash table divided by the size of the hash table. The | ||
256 | default values are as follows. If (hash->up_load E<lt> load) =E<gt> | ||
257 | expand. if (hash-E<gt>down_load E<gt> load) =E<gt> contract. The | ||
258 | B<up_load> has a default value of 1 and B<down_load> has a default value | ||
259 | of 2. These numbers can be modified by the application by just | ||
260 | playing with the B<up_load> and B<down_load> variables. The 'load' is | ||
261 | kept in a form which is multiplied by 256. So | ||
262 | hash-E<gt>up_load=8*256; will cause a load of 8 to be set. | ||
263 | |||
264 | If you are interested in performance the field to watch is | ||
265 | num_comp_calls. The hash library keeps track of the 'hash' value for | ||
266 | each item so when a lookup is done, the 'hashes' are compared, if | ||
267 | there is a match, then a full compare is done, and | ||
268 | hash-E<gt>num_comp_calls is incremented. If num_comp_calls is not equal | ||
269 | to num_delete plus num_retrieve it means that your hash function is | ||
270 | generating hashes that are the same for different values. It is | ||
271 | probably worth changing your hash function if this is the case because | ||
272 | even if your hash table has 10 items in a 'bucket', it can be searched | ||
273 | with 10 B<unsigned long> compares and 10 linked list traverses. This | ||
274 | will be much less expensive that 10 calls to your compare function. | ||
275 | |||
276 | lh_strhash() is a demo string hashing function: | ||
277 | |||
278 | unsigned long lh_strhash(const char *c); | ||
279 | |||
280 | Since the B<LHASH> routines would normally be passed structures, this | ||
281 | routine would not normally be passed to lh_<type>_new(), rather it would be | ||
282 | used in the function passed to lh_<type>_new(). | ||
283 | |||
284 | =head1 SEE ALSO | ||
285 | |||
286 | L<lh_stats(3)|lh_stats(3)> | ||
287 | |||
288 | =head1 HISTORY | ||
289 | |||
290 | The B<lhash> library is available in all versions of SSLeay and OpenSSL. | ||
291 | lh_error() was added in SSLeay 0.9.1b. | ||
292 | |||
293 | This manpage is derived from the SSLeay documentation. | ||
294 | |||
295 | In OpenSSL 0.9.7, all lhash functions that were passed function pointers | ||
296 | were changed for better type safety, and the function types LHASH_COMP_FN_TYPE, | ||
297 | LHASH_HASH_FN_TYPE, LHASH_DOALL_FN_TYPE and LHASH_DOALL_ARG_FN_TYPE | ||
298 | became available. | ||
299 | |||
300 | In OpenSSL 1.0.0, the lhash interface was revamped for even better | ||
301 | type checking. | ||
302 | |||
303 | =cut | ||
diff --git a/src/lib/libssl/src/doc/crypto/ui.pod b/src/lib/libssl/src/doc/crypto/ui.pod deleted file mode 100644 index 6df68d604a..0000000000 --- a/src/lib/libssl/src/doc/crypto/ui.pod +++ /dev/null | |||
@@ -1,194 +0,0 @@ | |||
1 | =pod | ||
2 | |||
3 | =head1 NAME | ||
4 | |||
5 | UI_new, UI_new_method, UI_free, UI_add_input_string, UI_dup_input_string, | ||
6 | UI_add_verify_string, UI_dup_verify_string, UI_add_input_boolean, | ||
7 | UI_dup_input_boolean, UI_add_info_string, UI_dup_info_string, | ||
8 | UI_add_error_string, UI_dup_error_string, UI_construct_prompt, | ||
9 | UI_add_user_data, UI_get0_user_data, UI_get0_result, UI_process, | ||
10 | UI_ctrl, UI_set_default_method, UI_get_default_method, UI_get_method, | ||
11 | UI_set_method, UI_OpenSSL, ERR_load_UI_strings - New User Interface | ||
12 | |||
13 | =head1 SYNOPSIS | ||
14 | |||
15 | #include <openssl/ui.h> | ||
16 | |||
17 | typedef struct ui_st UI; | ||
18 | typedef struct ui_method_st UI_METHOD; | ||
19 | |||
20 | UI *UI_new(void); | ||
21 | UI *UI_new_method(const UI_METHOD *method); | ||
22 | void UI_free(UI *ui); | ||
23 | |||
24 | int UI_add_input_string(UI *ui, const char *prompt, int flags, | ||
25 | char *result_buf, int minsize, int maxsize); | ||
26 | int UI_dup_input_string(UI *ui, const char *prompt, int flags, | ||
27 | char *result_buf, int minsize, int maxsize); | ||
28 | int UI_add_verify_string(UI *ui, const char *prompt, int flags, | ||
29 | char *result_buf, int minsize, int maxsize, const char *test_buf); | ||
30 | int UI_dup_verify_string(UI *ui, const char *prompt, int flags, | ||
31 | char *result_buf, int minsize, int maxsize, const char *test_buf); | ||
32 | int UI_add_input_boolean(UI *ui, const char *prompt, const char *action_desc, | ||
33 | const char *ok_chars, const char *cancel_chars, | ||
34 | int flags, char *result_buf); | ||
35 | int UI_dup_input_boolean(UI *ui, const char *prompt, const char *action_desc, | ||
36 | const char *ok_chars, const char *cancel_chars, | ||
37 | int flags, char *result_buf); | ||
38 | int UI_add_info_string(UI *ui, const char *text); | ||
39 | int UI_dup_info_string(UI *ui, const char *text); | ||
40 | int UI_add_error_string(UI *ui, const char *text); | ||
41 | int UI_dup_error_string(UI *ui, const char *text); | ||
42 | |||
43 | /* These are the possible flags. They can be or'ed together. */ | ||
44 | #define UI_INPUT_FLAG_ECHO 0x01 | ||
45 | #define UI_INPUT_FLAG_DEFAULT_PWD 0x02 | ||
46 | |||
47 | char *UI_construct_prompt(UI *ui_method, | ||
48 | const char *object_desc, const char *object_name); | ||
49 | |||
50 | void *UI_add_user_data(UI *ui, void *user_data); | ||
51 | void *UI_get0_user_data(UI *ui); | ||
52 | |||
53 | const char *UI_get0_result(UI *ui, int i); | ||
54 | |||
55 | int UI_process(UI *ui); | ||
56 | |||
57 | int UI_ctrl(UI *ui, int cmd, long i, void *p, void (*f)()); | ||
58 | #define UI_CTRL_PRINT_ERRORS 1 | ||
59 | #define UI_CTRL_IS_REDOABLE 2 | ||
60 | |||
61 | void UI_set_default_method(const UI_METHOD *meth); | ||
62 | const UI_METHOD *UI_get_default_method(void); | ||
63 | const UI_METHOD *UI_get_method(UI *ui); | ||
64 | const UI_METHOD *UI_set_method(UI *ui, const UI_METHOD *meth); | ||
65 | |||
66 | UI_METHOD *UI_OpenSSL(void); | ||
67 | |||
68 | =head1 DESCRIPTION | ||
69 | |||
70 | UI stands for User Interface, and is general purpose set of routines to | ||
71 | prompt the user for text-based information. Through user-written methods | ||
72 | (see L<ui_create(3)|ui_create(3)>), prompting can be done in any way | ||
73 | imaginable, be it plain text prompting, through dialog boxes or from a | ||
74 | cell phone. | ||
75 | |||
76 | All the functions work through a context of the type UI. This context | ||
77 | contains all the information needed to prompt correctly as well as a | ||
78 | reference to a UI_METHOD, which is an ordered vector of functions that | ||
79 | carry out the actual prompting. | ||
80 | |||
81 | The first thing to do is to create a UI with UI_new() or UI_new_method(), | ||
82 | then add information to it with the UI_add or UI_dup functions. Also, | ||
83 | user-defined random data can be passed down to the underlying method | ||
84 | through calls to UI_add_user_data. The default UI method doesn't care | ||
85 | about these data, but other methods might. Finally, use UI_process() | ||
86 | to actually perform the prompting and UI_get0_result() to find the result | ||
87 | to the prompt. | ||
88 | |||
89 | A UI can contain more than one prompt, which are performed in the given | ||
90 | sequence. Each prompt gets an index number which is returned by the | ||
91 | UI_add and UI_dup functions, and has to be used to get the corresponding | ||
92 | result with UI_get0_result(). | ||
93 | |||
94 | The functions are as follows: | ||
95 | |||
96 | UI_new() creates a new UI using the default UI method. When done with | ||
97 | this UI, it should be freed using UI_free(). | ||
98 | |||
99 | UI_new_method() creates a new UI using the given UI method. When done with | ||
100 | this UI, it should be freed using UI_free(). | ||
101 | |||
102 | UI_OpenSSL() returns the built-in UI method (note: not the default one, | ||
103 | since the default can be changed. See further on). This method is the | ||
104 | most machine/OS dependent part of OpenSSL and normally generates the | ||
105 | most problems when porting. | ||
106 | |||
107 | UI_free() removes a UI from memory, along with all other pieces of memory | ||
108 | that's connected to it, like duplicated input strings, results and others. | ||
109 | |||
110 | UI_add_input_string() and UI_add_verify_string() add a prompt to the UI, | ||
111 | as well as flags and a result buffer and the desired minimum and maximum | ||
112 | sizes of the result. The given information is used to prompt for | ||
113 | information, for example a password, and to verify a password (i.e. having | ||
114 | the user enter it twice and check that the same string was entered twice). | ||
115 | UI_add_verify_string() takes and extra argument that should be a pointer | ||
116 | to the result buffer of the input string that it's supposed to verify, or | ||
117 | verification will fail. | ||
118 | |||
119 | UI_add_input_boolean() adds a prompt to the UI that's supposed to be answered | ||
120 | in a boolean way, with a single character for yes and a different character | ||
121 | for no. A set of characters that can be used to cancel the prompt is given | ||
122 | as well. The prompt itself is really divided in two, one part being the | ||
123 | descriptive text (given through the I<prompt> argument) and one describing | ||
124 | the possible answers (given through the I<action_desc> argument). | ||
125 | |||
126 | UI_add_info_string() and UI_add_error_string() add strings that are shown at | ||
127 | the same time as the prompt for extra information or to show an error string. | ||
128 | The difference between the two is only conceptual. With the builtin method, | ||
129 | there's no technical difference between them. Other methods may make a | ||
130 | difference between them, however. | ||
131 | |||
132 | The flags currently supported are UI_INPUT_FLAG_ECHO, which is relevant for | ||
133 | UI_add_input_string() and will have the users response be echoed (when | ||
134 | prompting for a password, this flag should obviously not be used, and | ||
135 | UI_INPUT_FLAG_DEFAULT_PWD, which means that a default password of some | ||
136 | sort will be used (completely depending on the application and the UI | ||
137 | method). | ||
138 | |||
139 | UI_dup_input_string(), UI_dup_verify_string(), UI_dup_input_boolean(), | ||
140 | UI_dup_info_string() and UI_dup_error_string() are basically the same | ||
141 | as their UI_add counterparts, except that they make their own copies | ||
142 | of all strings. | ||
143 | |||
144 | UI_construct_prompt() is a helper function that can be used to create | ||
145 | a prompt from two pieces of information: an description and a name. | ||
146 | The default constructor (if there is none provided by the method used) | ||
147 | creates a string "Enter I<description> for I<name>:". With the | ||
148 | description "pass phrase" and the file name "foo.key", that becomes | ||
149 | "Enter pass phrase for foo.key:". Other methods may create whatever | ||
150 | string and may include encodings that will be processed by the other | ||
151 | method functions. | ||
152 | |||
153 | UI_add_user_data() adds a piece of memory for the method to use at any | ||
154 | time. The builtin UI method doesn't care about this info. Note that several | ||
155 | calls to this function doesn't add data, it replaces the previous blob | ||
156 | with the one given as argument. | ||
157 | |||
158 | UI_get0_user_data() retrieves the data that has last been given to the | ||
159 | UI with UI_add_user_data(). | ||
160 | |||
161 | UI_get0_result() returns a pointer to the result buffer associated with | ||
162 | the information indexed by I<i>. | ||
163 | |||
164 | UI_process() goes through the information given so far, does all the printing | ||
165 | and prompting and returns. | ||
166 | |||
167 | UI_ctrl() adds extra control for the application author. For now, it | ||
168 | understands two commands: UI_CTRL_PRINT_ERRORS, which makes UI_process() | ||
169 | print the OpenSSL error stack as part of processing the UI, and | ||
170 | UI_CTRL_IS_REDOABLE, which returns a flag saying if the used UI can | ||
171 | be used again or not. | ||
172 | |||
173 | UI_set_default_method() changes the default UI method to the one given. | ||
174 | |||
175 | UI_get_default_method() returns a pointer to the current default UI method. | ||
176 | |||
177 | UI_get_method() returns the UI method associated with a given UI. | ||
178 | |||
179 | UI_set_method() changes the UI method associated with a given UI. | ||
180 | |||
181 | =head1 SEE ALSO | ||
182 | |||
183 | L<ui_create(3)|ui_create(3)>, L<ui_compat(3)|ui_compat(3)> | ||
184 | |||
185 | =head1 HISTORY | ||
186 | |||
187 | The UI section was first introduced in OpenSSL 0.9.7. | ||
188 | |||
189 | =head1 AUTHOR | ||
190 | |||
191 | Richard Levitte (richard@levitte.org) for the OpenSSL project | ||
192 | (http://www.openssl.org). | ||
193 | |||
194 | =cut | ||
diff --git a/src/lib/libssl/src/doc/crypto/ui_compat.pod b/src/lib/libssl/src/doc/crypto/ui_compat.pod deleted file mode 100644 index 4ef5465539..0000000000 --- a/src/lib/libssl/src/doc/crypto/ui_compat.pod +++ /dev/null | |||
@@ -1,57 +0,0 @@ | |||
1 | =pod | ||
2 | |||
3 | =head1 NAME | ||
4 | |||
5 | des_read_password, des_read_2passwords, des_read_pw_string, des_read_pw - | ||
6 | Compatibility user interface functions | ||
7 | |||
8 | =head1 SYNOPSIS | ||
9 | |||
10 | #include <openssl/des_old.h> | ||
11 | |||
12 | int des_read_password(DES_cblock *key,const char *prompt,int verify); | ||
13 | int des_read_2passwords(DES_cblock *key1,DES_cblock *key2, | ||
14 | const char *prompt,int verify); | ||
15 | |||
16 | int des_read_pw_string(char *buf,int length,const char *prompt,int verify); | ||
17 | int des_read_pw(char *buf,char *buff,int size,const char *prompt,int verify); | ||
18 | |||
19 | =head1 DESCRIPTION | ||
20 | |||
21 | The DES library contained a few routines to prompt for passwords. These | ||
22 | aren't necessarily dependent on DES, and have therefore become part of the | ||
23 | UI compatibility library. | ||
24 | |||
25 | des_read_pw() writes the string specified by I<prompt> to standard output | ||
26 | turns echo off and reads an input string from the terminal. The string is | ||
27 | returned in I<buf>, which must have space for at least I<size> bytes. | ||
28 | If I<verify> is set, the user is asked for the password twice and unless | ||
29 | the two copies match, an error is returned. The second password is stored | ||
30 | in I<buff>, which must therefore also be at least I<size> bytes. A return | ||
31 | code of -1 indicates a system error, 1 failure due to use interaction, and | ||
32 | 0 is success. All other functions described here use des_read_pw() to do | ||
33 | the work. | ||
34 | |||
35 | des_read_pw_string() is a variant of des_read_pw() that provides a buffer | ||
36 | for you if I<verify> is set. | ||
37 | |||
38 | des_read_password() calls des_read_pw() and converts the password to a | ||
39 | DES key by calling DES_string_to_key(); des_read_2password() operates in | ||
40 | the same way as des_read_password() except that it generates two keys | ||
41 | by using the DES_string_to_2key() function. | ||
42 | |||
43 | =head1 NOTES | ||
44 | |||
45 | des_read_pw_string() is available in the MIT Kerberos library as well, and | ||
46 | is also available under the name EVP_read_pw_string(). | ||
47 | |||
48 | =head1 SEE ALSO | ||
49 | |||
50 | L<ui(3)|ui(3)>, L<ui_create(3)|ui_create(3)> | ||
51 | |||
52 | =head1 AUTHOR | ||
53 | |||
54 | Richard Levitte (richard@levitte.org) for the OpenSSL project | ||
55 | (http://www.openssl.org). | ||
56 | |||
57 | =cut | ||