diff options
Diffstat (limited to '')
| -rw-r--r-- | src/lib/libssl/src/doc/crypto/bn_internal.pod | 238 | ||||
| -rw-r--r-- | src/lib/libssl/src/doc/crypto/d2i_PKCS8PrivateKey.pod | 58 | ||||
| -rw-r--r-- | src/lib/libssl/src/doc/crypto/ecdsa.pod | 205 | ||||
| -rw-r--r-- | src/lib/libssl/src/doc/crypto/lhash.pod | 303 | ||||
| -rw-r--r-- | src/lib/libssl/src/doc/crypto/ui.pod | 194 | ||||
| -rw-r--r-- | src/lib/libssl/src/doc/crypto/ui_compat.pod | 57 |
6 files changed, 0 insertions, 1055 deletions
diff --git a/src/lib/libssl/src/doc/crypto/bn_internal.pod b/src/lib/libssl/src/doc/crypto/bn_internal.pod deleted file mode 100644 index 9c59ed623b..0000000000 --- a/src/lib/libssl/src/doc/crypto/bn_internal.pod +++ /dev/null | |||
| @@ -1,238 +0,0 @@ | |||
| 1 | =pod | ||
| 2 | |||
| 3 | =head1 NAME | ||
| 4 | |||
| 5 | bn_mul_words, bn_mul_add_words, bn_sqr_words, bn_div_words, | ||
| 6 | bn_add_words, bn_sub_words, bn_mul_comba4, bn_mul_comba8, | ||
| 7 | bn_sqr_comba4, bn_sqr_comba8, bn_cmp_words, bn_mul_normal, | ||
| 8 | bn_mul_low_normal, bn_mul_recursive, bn_mul_part_recursive, | ||
| 9 | bn_mul_low_recursive, bn_mul_high, bn_sqr_normal, bn_sqr_recursive, | ||
| 10 | bn_expand, bn_wexpand, bn_expand2, bn_fix_top, bn_check_top, | ||
| 11 | bn_print, bn_dump, bn_set_max, bn_set_high, bn_set_low, sqr | ||
| 12 | - BIGNUM library internal functions | ||
| 13 | |||
| 14 | =head1 SYNOPSIS | ||
| 15 | |||
| 16 | #include <openssl/bn.h> | ||
| 17 | |||
| 18 | BN_ULONG bn_mul_words(BN_ULONG *rp, BN_ULONG *ap, int num, BN_ULONG w); | ||
| 19 | BN_ULONG bn_mul_add_words(BN_ULONG *rp, BN_ULONG *ap, int num, | ||
| 20 | BN_ULONG w); | ||
| 21 | void bn_sqr_words(BN_ULONG *rp, BN_ULONG *ap, int num); | ||
| 22 | BN_ULONG bn_div_words(BN_ULONG h, BN_ULONG l, BN_ULONG d); | ||
| 23 | BN_ULONG bn_add_words(BN_ULONG *rp, BN_ULONG *ap, BN_ULONG *bp, | ||
| 24 | int num); | ||
| 25 | BN_ULONG bn_sub_words(BN_ULONG *rp, BN_ULONG *ap, BN_ULONG *bp, | ||
| 26 | int num); | ||
| 27 | |||
| 28 | void bn_mul_comba4(BN_ULONG *r, BN_ULONG *a, BN_ULONG *b); | ||
| 29 | void bn_mul_comba8(BN_ULONG *r, BN_ULONG *a, BN_ULONG *b); | ||
| 30 | void bn_sqr_comba4(BN_ULONG *r, BN_ULONG *a); | ||
| 31 | void bn_sqr_comba8(BN_ULONG *r, BN_ULONG *a); | ||
| 32 | |||
| 33 | int bn_cmp_words(BN_ULONG *a, BN_ULONG *b, int n); | ||
| 34 | |||
| 35 | void bn_mul_normal(BN_ULONG *r, BN_ULONG *a, int na, BN_ULONG *b, | ||
| 36 | int nb); | ||
| 37 | void bn_mul_low_normal(BN_ULONG *r, BN_ULONG *a, BN_ULONG *b, int n); | ||
| 38 | void bn_mul_recursive(BN_ULONG *r, BN_ULONG *a, BN_ULONG *b, int n2, | ||
| 39 | int dna,int dnb,BN_ULONG *tmp); | ||
| 40 | void bn_mul_part_recursive(BN_ULONG *r, BN_ULONG *a, BN_ULONG *b, | ||
| 41 | int n, int tna,int tnb, BN_ULONG *tmp); | ||
| 42 | void bn_mul_low_recursive(BN_ULONG *r, BN_ULONG *a, BN_ULONG *b, | ||
| 43 | int n2, BN_ULONG *tmp); | ||
| 44 | void bn_mul_high(BN_ULONG *r, BN_ULONG *a, BN_ULONG *b, BN_ULONG *l, | ||
| 45 | int n2, BN_ULONG *tmp); | ||
| 46 | |||
| 47 | void bn_sqr_normal(BN_ULONG *r, BN_ULONG *a, int n, BN_ULONG *tmp); | ||
| 48 | void bn_sqr_recursive(BN_ULONG *r, BN_ULONG *a, int n2, BN_ULONG *tmp); | ||
| 49 | |||
| 50 | void mul(BN_ULONG r, BN_ULONG a, BN_ULONG w, BN_ULONG c); | ||
| 51 | void mul_add(BN_ULONG r, BN_ULONG a, BN_ULONG w, BN_ULONG c); | ||
| 52 | void sqr(BN_ULONG r0, BN_ULONG r1, BN_ULONG a); | ||
| 53 | |||
| 54 | BIGNUM *bn_expand(BIGNUM *a, int bits); | ||
| 55 | BIGNUM *bn_wexpand(BIGNUM *a, int n); | ||
| 56 | BIGNUM *bn_expand2(BIGNUM *a, int n); | ||
| 57 | void bn_fix_top(BIGNUM *a); | ||
| 58 | |||
| 59 | void bn_check_top(BIGNUM *a); | ||
| 60 | void bn_print(BIGNUM *a); | ||
| 61 | void bn_dump(BN_ULONG *d, int n); | ||
| 62 | void bn_set_max(BIGNUM *a); | ||
| 63 | void bn_set_high(BIGNUM *r, BIGNUM *a, int n); | ||
| 64 | void bn_set_low(BIGNUM *r, BIGNUM *a, int n); | ||
| 65 | |||
| 66 | =head1 DESCRIPTION | ||
| 67 | |||
| 68 | This page documents the internal functions used by the OpenSSL | ||
| 69 | B<BIGNUM> implementation. They are described here to facilitate | ||
| 70 | debugging and extending the library. They are I<not> to be used by | ||
| 71 | applications. | ||
| 72 | |||
| 73 | =head2 The BIGNUM structure | ||
| 74 | |||
| 75 | typedef struct bignum_st BIGNUM; | ||
| 76 | |||
| 77 | struct bignum_st | ||
| 78 | { | ||
| 79 | BN_ULONG *d; /* Pointer to an array of 'BN_BITS2' bit chunks. */ | ||
| 80 | int top; /* Index of last used d +1. */ | ||
| 81 | /* The next are internal book keeping for bn_expand. */ | ||
| 82 | int dmax; /* Size of the d array. */ | ||
| 83 | int neg; /* one if the number is negative */ | ||
| 84 | int flags; | ||
| 85 | }; | ||
| 86 | |||
| 87 | |||
| 88 | The integer value is stored in B<d>, a malloc()ed array of words (B<BN_ULONG>), | ||
| 89 | least significant word first. A B<BN_ULONG> can be either 16, 32 or 64 bits | ||
| 90 | in size, depending on the 'number of bits' (B<BITS2>) specified in | ||
| 91 | C<openssl/bn.h>. | ||
| 92 | |||
| 93 | B<dmax> is the size of the B<d> array that has been allocated. B<top> | ||
| 94 | is the number of words being used, so for a value of 4, bn.d[0]=4 and | ||
| 95 | bn.top=1. B<neg> is 1 if the number is negative. When a B<BIGNUM> is | ||
| 96 | B<0>, the B<d> field can be B<NULL> and B<top> == B<0>. | ||
| 97 | |||
| 98 | B<flags> is a bit field of flags which are defined in C<openssl/bn.h>. The | ||
| 99 | flags begin with B<BN_FLG_>. The macros BN_set_flags(b,n) and | ||
| 100 | BN_get_flags(b,n) exist to enable or fetch flag(s) B<n> from B<BIGNUM> | ||
| 101 | structure B<b>. | ||
| 102 | |||
| 103 | Various routines in this library require the use of temporary | ||
| 104 | B<BIGNUM> variables during their execution. Since dynamic memory | ||
| 105 | allocation to create B<BIGNUM>s is rather expensive when used in | ||
| 106 | conjunction with repeated subroutine calls, the B<BN_CTX> structure is | ||
| 107 | used. This structure contains B<BN_CTX_NUM> B<BIGNUM>s, see | ||
| 108 | L<BN_CTX_start(3)|BN_CTX_start(3)>. | ||
| 109 | |||
| 110 | =head2 Low-level arithmetic operations | ||
| 111 | |||
| 112 | These functions are implemented in C and for several platforms in | ||
| 113 | assembly language: | ||
| 114 | |||
| 115 | bn_mul_words(B<rp>, B<ap>, B<num>, B<w>) operates on the B<num> word | ||
| 116 | arrays B<rp> and B<ap>. It computes B<ap> * B<w>, places the result | ||
| 117 | in B<rp>, and returns the high word (carry). | ||
| 118 | |||
| 119 | bn_mul_add_words(B<rp>, B<ap>, B<num>, B<w>) operates on the B<num> | ||
| 120 | word arrays B<rp> and B<ap>. It computes B<ap> * B<w> + B<rp>, places | ||
| 121 | the result in B<rp>, and returns the high word (carry). | ||
| 122 | |||
| 123 | bn_sqr_words(B<rp>, B<ap>, B<n>) operates on the B<num> word array | ||
| 124 | B<ap> and the 2*B<num> word array B<ap>. It computes B<ap> * B<ap> | ||
| 125 | word-wise, and places the low and high bytes of the result in B<rp>. | ||
| 126 | |||
| 127 | bn_div_words(B<h>, B<l>, B<d>) divides the two word number (B<h>,B<l>) | ||
| 128 | by B<d> and returns the result. | ||
| 129 | |||
| 130 | bn_add_words(B<rp>, B<ap>, B<bp>, B<num>) operates on the B<num> word | ||
| 131 | arrays B<ap>, B<bp> and B<rp>. It computes B<ap> + B<bp>, places the | ||
| 132 | result in B<rp>, and returns the high word (carry). | ||
| 133 | |||
| 134 | bn_sub_words(B<rp>, B<ap>, B<bp>, B<num>) operates on the B<num> word | ||
| 135 | arrays B<ap>, B<bp> and B<rp>. It computes B<ap> - B<bp>, places the | ||
| 136 | result in B<rp>, and returns the carry (1 if B<bp> E<gt> B<ap>, 0 | ||
| 137 | otherwise). | ||
| 138 | |||
| 139 | bn_mul_comba4(B<r>, B<a>, B<b>) operates on the 4 word arrays B<a> and | ||
| 140 | B<b> and the 8 word array B<r>. It computes B<a>*B<b> and places the | ||
| 141 | result in B<r>. | ||
| 142 | |||
| 143 | bn_mul_comba8(B<r>, B<a>, B<b>) operates on the 8 word arrays B<a> and | ||
| 144 | B<b> and the 16 word array B<r>. It computes B<a>*B<b> and places the | ||
| 145 | result in B<r>. | ||
| 146 | |||
| 147 | bn_sqr_comba4(B<r>, B<a>, B<b>) operates on the 4 word arrays B<a> and | ||
| 148 | B<b> and the 8 word array B<r>. | ||
| 149 | |||
| 150 | bn_sqr_comba8(B<r>, B<a>, B<b>) operates on the 8 word arrays B<a> and | ||
| 151 | B<b> and the 16 word array B<r>. | ||
| 152 | |||
| 153 | The following functions are implemented in C: | ||
| 154 | |||
| 155 | bn_cmp_words(B<a>, B<b>, B<n>) operates on the B<n> word arrays B<a> | ||
| 156 | and B<b>. It returns 1, 0 and -1 if B<a> is greater than, equal and | ||
| 157 | less than B<b>. | ||
| 158 | |||
| 159 | bn_mul_normal(B<r>, B<a>, B<na>, B<b>, B<nb>) operates on the B<na> | ||
| 160 | word array B<a>, the B<nb> word array B<b> and the B<na>+B<nb> word | ||
| 161 | array B<r>. It computes B<a>*B<b> and places the result in B<r>. | ||
| 162 | |||
| 163 | bn_mul_low_normal(B<r>, B<a>, B<b>, B<n>) operates on the B<n> word | ||
| 164 | arrays B<r>, B<a> and B<b>. It computes the B<n> low words of | ||
| 165 | B<a>*B<b> and places the result in B<r>. | ||
| 166 | |||
| 167 | bn_mul_recursive(B<r>, B<a>, B<b>, B<n2>, B<dna>, B<dnb>, B<t>) operates | ||
| 168 | on the word arrays B<a> and B<b> of length B<n2>+B<dna> and B<n2>+B<dnb> | ||
| 169 | (B<dna> and B<dnb> are currently allowed to be 0 or negative) and the 2*B<n2> | ||
| 170 | word arrays B<r> and B<t>. B<n2> must be a power of 2. It computes | ||
| 171 | B<a>*B<b> and places the result in B<r>. | ||
| 172 | |||
| 173 | bn_mul_part_recursive(B<r>, B<a>, B<b>, B<n>, B<tna>, B<tnb>, B<tmp>) | ||
| 174 | operates on the word arrays B<a> and B<b> of length B<n>+B<tna> and | ||
| 175 | B<n>+B<tnb> and the 4*B<n> word arrays B<r> and B<tmp>. | ||
| 176 | |||
| 177 | bn_mul_low_recursive(B<r>, B<a>, B<b>, B<n2>, B<tmp>) operates on the | ||
| 178 | B<n2> word arrays B<r> and B<tmp> and the B<n2>/2 word arrays B<a> | ||
| 179 | and B<b>. | ||
| 180 | |||
| 181 | bn_mul_high(B<r>, B<a>, B<b>, B<l>, B<n2>, B<tmp>) operates on the | ||
| 182 | B<n2> word arrays B<r>, B<a>, B<b> and B<l> (?) and the 3*B<n2> word | ||
| 183 | array B<tmp>. | ||
| 184 | |||
| 185 | BN_mul() calls bn_mul_normal(), or an optimized implementation if the | ||
| 186 | factors have the same size: bn_mul_comba8() is used if they are 8 | ||
| 187 | words long, bn_mul_recursive() if they are larger than | ||
| 188 | B<BN_MULL_SIZE_NORMAL> and the size is an exact multiple of the word | ||
| 189 | size, and bn_mul_part_recursive() for others that are larger than | ||
| 190 | B<BN_MULL_SIZE_NORMAL>. | ||
| 191 | |||
| 192 | bn_sqr_normal(B<r>, B<a>, B<n>, B<tmp>) operates on the B<n> word array | ||
| 193 | B<a> and the 2*B<n> word arrays B<tmp> and B<r>. | ||
| 194 | |||
| 195 | The implementations use the following macros which, depending on the | ||
| 196 | architecture, may use "long long" C operations or inline assembler. | ||
| 197 | They are defined in C<bn_lcl.h>. | ||
| 198 | |||
| 199 | mul(B<r>, B<a>, B<w>, B<c>) computes B<w>*B<a>+B<c> and places the | ||
| 200 | low word of the result in B<r> and the high word in B<c>. | ||
| 201 | |||
| 202 | mul_add(B<r>, B<a>, B<w>, B<c>) computes B<w>*B<a>+B<r>+B<c> and | ||
| 203 | places the low word of the result in B<r> and the high word in B<c>. | ||
| 204 | |||
| 205 | sqr(B<r0>, B<r1>, B<a>) computes B<a>*B<a> and places the low word | ||
| 206 | of the result in B<r0> and the high word in B<r1>. | ||
| 207 | |||
| 208 | =head2 Size changes | ||
| 209 | |||
| 210 | bn_expand() ensures that B<b> has enough space for a B<bits> bit | ||
| 211 | number. bn_wexpand() ensures that B<b> has enough space for an | ||
| 212 | B<n> word number. If the number has to be expanded, both macros | ||
| 213 | call bn_expand2(), which allocates a new B<d> array and copies the | ||
| 214 | data. They return B<NULL> on error, B<b> otherwise. | ||
| 215 | |||
| 216 | The bn_fix_top() macro reduces B<a-E<gt>top> to point to the most | ||
| 217 | significant non-zero word plus one when B<a> has shrunk. | ||
| 218 | |||
| 219 | =head2 Debugging | ||
| 220 | |||
| 221 | bn_check_top() verifies that C<((a)-E<gt>top E<gt>= 0 && (a)-E<gt>top | ||
| 222 | E<lt>= (a)-E<gt>dmax)>. A violation will cause the program to abort. | ||
| 223 | |||
| 224 | bn_print() prints B<a> to stderr. bn_dump() prints B<n> words at B<d> | ||
| 225 | (in reverse order, i.e. most significant word first) to stderr. | ||
| 226 | |||
| 227 | bn_set_max() makes B<a> a static number with a B<dmax> of its current size. | ||
| 228 | This is used by bn_set_low() and bn_set_high() to make B<r> a read-only | ||
| 229 | B<BIGNUM> that contains the B<n> low or high words of B<a>. | ||
| 230 | |||
| 231 | If B<BN_DEBUG> is not defined, bn_check_top(), bn_print(), bn_dump() | ||
| 232 | and bn_set_max() are defined as empty macros. | ||
| 233 | |||
| 234 | =head1 SEE ALSO | ||
| 235 | |||
| 236 | L<bn(3)|bn(3)> | ||
| 237 | |||
| 238 | =cut | ||
diff --git a/src/lib/libssl/src/doc/crypto/d2i_PKCS8PrivateKey.pod b/src/lib/libssl/src/doc/crypto/d2i_PKCS8PrivateKey.pod deleted file mode 100644 index fc7335c7a1..0000000000 --- a/src/lib/libssl/src/doc/crypto/d2i_PKCS8PrivateKey.pod +++ /dev/null | |||
| @@ -1,58 +0,0 @@ | |||
| 1 | =pod | ||
| 2 | |||
| 3 | =head1 NAME | ||
| 4 | |||
| 5 | d2i_PKCS8PrivateKey_bio, d2i_PKCS8PrivateKey_fp, i2d_PKCS8PrivateKey_bio, | ||
| 6 | i2d_PKCS8PrivateKey_fp, i2d_PKCS8PrivateKey_nid_bio, i2d_PKCS8PrivateKey_nid_fp | ||
| 7 | - PKCS#8 format private key functions | ||
| 8 | |||
| 9 | =head1 SYNOPSIS | ||
| 10 | |||
| 11 | #include <openssl/evp.h> | ||
| 12 | |||
| 13 | EVP_PKEY *d2i_PKCS8PrivateKey_bio(BIO *bp, EVP_PKEY **x, pem_password_cb *cb, void *u); | ||
| 14 | EVP_PKEY *d2i_PKCS8PrivateKey_fp(FILE *fp, EVP_PKEY **x, pem_password_cb *cb, void *u); | ||
| 15 | |||
| 16 | int i2d_PKCS8PrivateKey_bio(BIO *bp, EVP_PKEY *x, const EVP_CIPHER *enc, | ||
| 17 | char *kstr, int klen, | ||
| 18 | pem_password_cb *cb, void *u); | ||
| 19 | |||
| 20 | int i2d_PKCS8PrivateKey_fp(FILE *fp, EVP_PKEY *x, const EVP_CIPHER *enc, | ||
| 21 | char *kstr, int klen, | ||
| 22 | pem_password_cb *cb, void *u); | ||
| 23 | |||
| 24 | int i2d_PKCS8PrivateKey_nid_bio(BIO *bp, EVP_PKEY *x, int nid, | ||
| 25 | char *kstr, int klen, | ||
| 26 | pem_password_cb *cb, void *u); | ||
| 27 | |||
| 28 | int i2d_PKCS8PrivateKey_nid_fp(FILE *fp, EVP_PKEY *x, int nid, | ||
| 29 | char *kstr, int klen, | ||
| 30 | pem_password_cb *cb, void *u); | ||
| 31 | |||
| 32 | =head1 DESCRIPTION | ||
| 33 | |||
| 34 | The PKCS#8 functions encode and decode private keys in PKCS#8 format using both | ||
| 35 | PKCS#5 v1.5 and PKCS#5 v2.0 password based encryption algorithms. | ||
| 36 | |||
| 37 | Other than the use of DER as opposed to PEM these functions are identical to the | ||
| 38 | corresponding B<PEM> function as described in the L<pem(3)|pem(3)> manual page. | ||
| 39 | |||
| 40 | =head1 NOTES | ||
| 41 | |||
| 42 | Before using these functions | ||
| 43 | L<OpenSSL_add_all_algorithms(3)|OpenSSL_add_all_algorithms(3)> should be called | ||
| 44 | to initialize the internal algorithm lookup tables otherwise errors about | ||
| 45 | unknown algorithms will occur if an attempt is made to decrypt a private key. | ||
| 46 | |||
| 47 | These functions are currently the only way to store encrypted private keys | ||
| 48 | using DER format. | ||
| 49 | |||
| 50 | Currently all the functions use BIOs or FILE pointers, there are no functions | ||
| 51 | which work directly on memory: this can be readily worked around by converting | ||
| 52 | the buffers to memory BIOs, see L<BIO_s_mem(3)|BIO_s_mem(3)> for details. | ||
| 53 | |||
| 54 | =head1 SEE ALSO | ||
| 55 | |||
| 56 | L<pem(3)|pem(3)> | ||
| 57 | |||
| 58 | =cut | ||
diff --git a/src/lib/libssl/src/doc/crypto/ecdsa.pod b/src/lib/libssl/src/doc/crypto/ecdsa.pod deleted file mode 100644 index 9e9608155a..0000000000 --- a/src/lib/libssl/src/doc/crypto/ecdsa.pod +++ /dev/null | |||
| @@ -1,205 +0,0 @@ | |||
| 1 | =pod | ||
| 2 | |||
| 3 | =head1 NAME | ||
| 4 | |||
| 5 | ECDSA_SIG_new, ECDSA_SIG_free, i2d_ECDSA_SIG, d2i_ECDSA_SIG, | ||
| 6 | ECDSA_size, ECDSA_sign_setup, ECDSA_sign, ECDSA_sign_ex, | ||
| 7 | ECDSA_verify, ECDSA_do_sign, ECDSA_do_sign_ex, ECDSA_do_verify, | ||
| 8 | ECDSA_OpenSSL, ECDSA_get_default_method, ECDSA_get_ex_data, | ||
| 9 | ECDSA_get_ex_new_index, ECDSA_set_default_method, ECDSA_set_ex_data, | ||
| 10 | ECDSA_set_method - Elliptic Curve Digital Signature Algorithm | ||
| 11 | |||
| 12 | =head1 SYNOPSIS | ||
| 13 | |||
| 14 | #include <openssl/ecdsa.h> | ||
| 15 | |||
| 16 | ECDSA_SIG* ECDSA_SIG_new(void); | ||
| 17 | void ECDSA_SIG_free(ECDSA_SIG *sig); | ||
| 18 | int i2d_ECDSA_SIG(const ECDSA_SIG *sig, unsigned char **pp); | ||
| 19 | ECDSA_SIG* d2i_ECDSA_SIG(ECDSA_SIG **sig, const unsigned char **pp, | ||
| 20 | long len); | ||
| 21 | |||
| 22 | ECDSA_SIG* ECDSA_do_sign(const unsigned char *dgst, int dgst_len, | ||
| 23 | EC_KEY *eckey); | ||
| 24 | ECDSA_SIG* ECDSA_do_sign_ex(const unsigned char *dgst, int dgstlen, | ||
| 25 | const BIGNUM *kinv, const BIGNUM *rp, | ||
| 26 | EC_KEY *eckey); | ||
| 27 | int ECDSA_do_verify(const unsigned char *dgst, int dgst_len, | ||
| 28 | const ECDSA_SIG *sig, EC_KEY* eckey); | ||
| 29 | int ECDSA_sign_setup(EC_KEY *eckey, BN_CTX *ctx, | ||
| 30 | BIGNUM **kinv, BIGNUM **rp); | ||
| 31 | int ECDSA_sign(int type, const unsigned char *dgst, | ||
| 32 | int dgstlen, unsigned char *sig, | ||
| 33 | unsigned int *siglen, EC_KEY *eckey); | ||
| 34 | int ECDSA_sign_ex(int type, const unsigned char *dgst, | ||
| 35 | int dgstlen, unsigned char *sig, | ||
| 36 | unsigned int *siglen, const BIGNUM *kinv, | ||
| 37 | const BIGNUM *rp, EC_KEY *eckey); | ||
| 38 | int ECDSA_verify(int type, const unsigned char *dgst, | ||
| 39 | int dgstlen, const unsigned char *sig, | ||
| 40 | int siglen, EC_KEY *eckey); | ||
| 41 | int ECDSA_size(const EC_KEY *eckey); | ||
| 42 | |||
| 43 | const ECDSA_METHOD* ECDSA_OpenSSL(void); | ||
| 44 | void ECDSA_set_default_method(const ECDSA_METHOD *meth); | ||
| 45 | const ECDSA_METHOD* ECDSA_get_default_method(void); | ||
| 46 | int ECDSA_set_method(EC_KEY *eckey,const ECDSA_METHOD *meth); | ||
| 47 | |||
| 48 | int ECDSA_get_ex_new_index(long argl, void *argp, | ||
| 49 | CRYPTO_EX_new *new_func, | ||
| 50 | CRYPTO_EX_dup *dup_func, | ||
| 51 | CRYPTO_EX_free *free_func); | ||
| 52 | int ECDSA_set_ex_data(EC_KEY *d, int idx, void *arg); | ||
| 53 | void* ECDSA_get_ex_data(EC_KEY *d, int idx); | ||
| 54 | |||
| 55 | =head1 DESCRIPTION | ||
| 56 | |||
| 57 | The B<ECDSA_SIG> structure consists of two BIGNUMs for the | ||
| 58 | r and s value of a ECDSA signature (see X9.62 or FIPS 186-2). | ||
| 59 | |||
| 60 | struct | ||
| 61 | { | ||
| 62 | BIGNUM *r; | ||
| 63 | BIGNUM *s; | ||
| 64 | } ECDSA_SIG; | ||
| 65 | |||
| 66 | ECDSA_SIG_new() allocates a new B<ECDSA_SIG> structure (note: this | ||
| 67 | function also allocates the BIGNUMs) and initialize it. | ||
| 68 | |||
| 69 | ECDSA_SIG_free() frees the B<ECDSA_SIG> structure B<sig>. | ||
| 70 | |||
| 71 | i2d_ECDSA_SIG() creates the DER encoding of the ECDSA signature | ||
| 72 | B<sig> and writes the encoded signature to B<*pp> (note: if B<pp> | ||
| 73 | is NULL B<i2d_ECDSA_SIG> returns the expected length in bytes of | ||
| 74 | the DER encoded signature). B<i2d_ECDSA_SIG> returns the length | ||
| 75 | of the DER encoded signature (or 0 on error). | ||
| 76 | |||
| 77 | d2i_ECDSA_SIG() decodes a DER encoded ECDSA signature and returns | ||
| 78 | the decoded signature in a newly allocated B<ECDSA_SIG> structure. | ||
| 79 | B<*sig> points to the buffer containing the DER encoded signature | ||
| 80 | of size B<len>. | ||
| 81 | |||
| 82 | ECDSA_size() returns the maximum length of a DER encoded | ||
| 83 | ECDSA signature created with the private EC key B<eckey>. | ||
| 84 | |||
| 85 | ECDSA_sign_setup() may be used to precompute parts of the | ||
| 86 | signing operation. B<eckey> is the private EC key and B<ctx> | ||
| 87 | is a pointer to B<BN_CTX> structure (or NULL). The precomputed | ||
| 88 | values or returned in B<kinv> and B<rp> and can be used in a | ||
| 89 | later call to B<ECDSA_sign_ex> or B<ECDSA_do_sign_ex>. | ||
| 90 | |||
| 91 | ECDSA_sign() is wrapper function for ECDSA_sign_ex with B<kinv> | ||
| 92 | and B<rp> set to NULL. | ||
| 93 | |||
| 94 | ECDSA_sign_ex() computes a digital signature of the B<dgstlen> bytes | ||
| 95 | hash value B<dgst> using the private EC key B<eckey> and the optional | ||
| 96 | pre-computed values B<kinv> and B<rp>. The DER encoded signatures is | ||
| 97 | stored in B<sig> and it's length is returned in B<sig_len>. Note: B<sig> | ||
| 98 | must point to B<ECDSA_size> bytes of memory. The parameter B<type> | ||
| 99 | is ignored. | ||
| 100 | |||
| 101 | ECDSA_verify() verifies that the signature in B<sig> of size | ||
| 102 | B<siglen> is a valid ECDSA signature of the hash value | ||
| 103 | B<dgst> of size B<dgstlen> using the public key B<eckey>. | ||
| 104 | The parameter B<type> is ignored. | ||
| 105 | |||
| 106 | ECDSA_do_sign() is wrapper function for ECDSA_do_sign_ex with B<kinv> | ||
| 107 | and B<rp> set to NULL. | ||
| 108 | |||
| 109 | ECDSA_do_sign_ex() computes a digital signature of the B<dgst_len> | ||
| 110 | bytes hash value B<dgst> using the private key B<eckey> and the | ||
| 111 | optional pre-computed values B<kinv> and B<rp>. The signature is | ||
| 112 | returned in a newly allocated B<ECDSA_SIG> structure (or NULL on error). | ||
| 113 | |||
| 114 | ECDSA_do_verify() verifies that the signature B<sig> is a valid | ||
| 115 | ECDSA signature of the hash value B<dgst> of size B<dgst_len> | ||
| 116 | using the public key B<eckey>. | ||
| 117 | |||
| 118 | =head1 RETURN VALUES | ||
| 119 | |||
| 120 | ECDSA_size() returns the maximum length signature or 0 on error. | ||
| 121 | |||
| 122 | ECDSA_sign_setup() and ECDSA_sign() return 1 if successful or 0 | ||
| 123 | on error. | ||
| 124 | |||
| 125 | ECDSA_verify() and ECDSA_do_verify() return 1 for a valid | ||
| 126 | signature, 0 for an invalid signature and -1 on error. | ||
| 127 | The error codes can be obtained by L<ERR_get_error(3)|ERR_get_error(3)>. | ||
| 128 | |||
| 129 | =head1 EXAMPLES | ||
| 130 | |||
| 131 | Creating a ECDSA signature of given SHA-1 hash value using the | ||
| 132 | named curve secp192k1. | ||
| 133 | |||
| 134 | First step: create a EC_KEY object (note: this part is B<not> ECDSA | ||
| 135 | specific) | ||
| 136 | |||
| 137 | int ret; | ||
| 138 | ECDSA_SIG *sig; | ||
| 139 | EC_KEY *eckey; | ||
| 140 | |||
| 141 | eckey = EC_KEY_new_by_curve_name(NID_secp192k1); | ||
| 142 | if (eckey == NULL) { | ||
| 143 | /* error */ | ||
| 144 | } | ||
| 145 | if (!EC_KEY_generate_key(eckey)) { | ||
| 146 | /* error */ | ||
| 147 | } | ||
| 148 | |||
| 149 | Second step: compute the ECDSA signature of a SHA-1 hash value | ||
| 150 | using B<ECDSA_do_sign> | ||
| 151 | |||
| 152 | sig = ECDSA_do_sign(digest, 20, eckey); | ||
| 153 | if (sig == NULL) { | ||
| 154 | /* error */ | ||
| 155 | } | ||
| 156 | |||
| 157 | or using B<ECDSA_sign> | ||
| 158 | |||
| 159 | unsigned char *buffer, *pp; | ||
| 160 | int buf_len; | ||
| 161 | |||
| 162 | buf_len = ECDSA_size(eckey); | ||
| 163 | buffer = malloc(buf_len); | ||
| 164 | pp = buffer; | ||
| 165 | if (!ECDSA_sign(0, dgst, dgstlen, pp, &buf_len, eckey) { | ||
| 166 | /* error */ | ||
| 167 | } | ||
| 168 | |||
| 169 | Third step: verify the created ECDSA signature using B<ECDSA_do_verify> | ||
| 170 | |||
| 171 | ret = ECDSA_do_verify(digest, 20, sig, eckey); | ||
| 172 | |||
| 173 | or using B<ECDSA_verify> | ||
| 174 | |||
| 175 | ret = ECDSA_verify(0, digest, 20, buffer, buf_len, eckey); | ||
| 176 | |||
| 177 | and finally evaluate the return value: | ||
| 178 | |||
| 179 | if (ret == -1) { | ||
| 180 | /* error */ | ||
| 181 | } else if (ret == 0) { | ||
| 182 | /* incorrect signature */ | ||
| 183 | } else { | ||
| 184 | /* ret == 1 */ | ||
| 185 | /* signature ok */ | ||
| 186 | } | ||
| 187 | |||
| 188 | =head1 CONFORMING TO | ||
| 189 | |||
| 190 | ANSI X9.62, US Federal Information Processing Standard FIPS 186-2 | ||
| 191 | (Digital Signature Standard, DSS) | ||
| 192 | |||
| 193 | =head1 SEE ALSO | ||
| 194 | |||
| 195 | L<dsa(3)|dsa(3)>, L<rsa(3)|rsa(3)> | ||
| 196 | |||
| 197 | =head1 HISTORY | ||
| 198 | |||
| 199 | The ecdsa implementation was first introduced in OpenSSL 0.9.8 | ||
| 200 | |||
| 201 | =head1 AUTHOR | ||
| 202 | |||
| 203 | Nils Larsch for the OpenSSL project (http://www.openssl.org). | ||
| 204 | |||
| 205 | =cut | ||
diff --git a/src/lib/libssl/src/doc/crypto/lhash.pod b/src/lib/libssl/src/doc/crypto/lhash.pod deleted file mode 100644 index a9c44dd9ef..0000000000 --- a/src/lib/libssl/src/doc/crypto/lhash.pod +++ /dev/null | |||
| @@ -1,303 +0,0 @@ | |||
| 1 | =pod | ||
| 2 | |||
| 3 | =head1 NAME | ||
| 4 | |||
| 5 | lh_new, lh_free, lh_insert, lh_delete, lh_retrieve, lh_doall, lh_doall_arg, | ||
| 6 | lh_error - dynamic hash table | ||
| 7 | |||
| 8 | =head1 SYNOPSIS | ||
| 9 | |||
| 10 | #include <openssl/lhash.h> | ||
| 11 | |||
| 12 | DECLARE_LHASH_OF(<type>); | ||
| 13 | |||
| 14 | LHASH *lh_<type>_new(); | ||
| 15 | void lh_<type>_free(LHASH_OF(<type> *table); | ||
| 16 | |||
| 17 | <type> *lh_<type>_insert(LHASH_OF(<type> *table, <type> *data); | ||
| 18 | <type> *lh_<type>_delete(LHASH_OF(<type> *table, <type> *data); | ||
| 19 | <type> *lh_retrieve(LHASH_OF<type> *table, <type> *data); | ||
| 20 | |||
| 21 | void lh_<type>_doall(LHASH_OF(<type> *table, LHASH_DOALL_FN_TYPE func); | ||
| 22 | void lh_<type>_doall_arg(LHASH_OF(<type> *table, LHASH_DOALL_ARG_FN_TYPE func, | ||
| 23 | <type2>, <type2> *arg); | ||
| 24 | |||
| 25 | int lh_<type>_error(LHASH_OF(<type> *table); | ||
| 26 | |||
| 27 | typedef int (*LHASH_COMP_FN_TYPE)(const void *, const void *); | ||
| 28 | typedef unsigned long (*LHASH_HASH_FN_TYPE)(const void *); | ||
| 29 | typedef void (*LHASH_DOALL_FN_TYPE)(const void *); | ||
| 30 | typedef void (*LHASH_DOALL_ARG_FN_TYPE)(const void *, const void *); | ||
| 31 | |||
| 32 | =head1 DESCRIPTION | ||
| 33 | |||
| 34 | This library implements type-checked dynamic hash tables. The hash | ||
| 35 | table entries can be arbitrary structures. Usually they consist of key | ||
| 36 | and value fields. | ||
| 37 | |||
| 38 | lh_<type>_new() creates a new B<LHASH_OF(<type>> structure to store | ||
| 39 | arbitrary data entries, and provides the 'hash' and 'compare' | ||
| 40 | callbacks to be used in organising the table's entries. The B<hash> | ||
| 41 | callback takes a pointer to a table entry as its argument and returns | ||
| 42 | an unsigned long hash value for its key field. The hash value is | ||
| 43 | normally truncated to a power of 2, so make sure that your hash | ||
| 44 | function returns well mixed low order bits. The B<compare> callback | ||
| 45 | takes two arguments (pointers to two hash table entries), and returns | ||
| 46 | 0 if their keys are equal, non-zero otherwise. If your hash table | ||
| 47 | will contain items of some particular type and the B<hash> and | ||
| 48 | B<compare> callbacks hash/compare these types, then the | ||
| 49 | B<DECLARE_LHASH_HASH_FN> and B<IMPLEMENT_LHASH_COMP_FN> macros can be | ||
| 50 | used to create callback wrappers of the prototypes required by | ||
| 51 | lh_<type>_new(). These provide per-variable casts before calling the | ||
| 52 | type-specific callbacks written by the application author. These | ||
| 53 | macros, as well as those used for the "doall" callbacks, are defined | ||
| 54 | as; | ||
| 55 | |||
| 56 | #define DECLARE_LHASH_HASH_FN(name, o_type) \ | ||
| 57 | unsigned long name##_LHASH_HASH(const void *); | ||
| 58 | #define IMPLEMENT_LHASH_HASH_FN(name, o_type) \ | ||
| 59 | unsigned long name##_LHASH_HASH(const void *arg) { \ | ||
| 60 | const o_type *a = arg; \ | ||
| 61 | return name##_hash(a); } | ||
| 62 | #define LHASH_HASH_FN(name) name##_LHASH_HASH | ||
| 63 | |||
| 64 | #define DECLARE_LHASH_COMP_FN(name, o_type) \ | ||
| 65 | int name##_LHASH_COMP(const void *, const void *); | ||
| 66 | #define IMPLEMENT_LHASH_COMP_FN(name, o_type) \ | ||
| 67 | int name##_LHASH_COMP(const void *arg1, const void *arg2) { \ | ||
| 68 | const o_type *a = arg1; \ | ||
| 69 | const o_type *b = arg2; \ | ||
| 70 | return name##_cmp(a,b); } | ||
| 71 | #define LHASH_COMP_FN(name) name##_LHASH_COMP | ||
| 72 | |||
| 73 | #define DECLARE_LHASH_DOALL_FN(name, o_type) \ | ||
| 74 | void name##_LHASH_DOALL(void *); | ||
| 75 | #define IMPLEMENT_LHASH_DOALL_FN(name, o_type) \ | ||
| 76 | void name##_LHASH_DOALL(void *arg) { \ | ||
| 77 | o_type *a = arg; \ | ||
| 78 | name##_doall(a); } | ||
| 79 | #define LHASH_DOALL_FN(name) name##_LHASH_DOALL | ||
| 80 | |||
| 81 | #define DECLARE_LHASH_DOALL_ARG_FN(name, o_type, a_type) \ | ||
| 82 | void name##_LHASH_DOALL_ARG(void *, void *); | ||
| 83 | #define IMPLEMENT_LHASH_DOALL_ARG_FN(name, o_type, a_type) \ | ||
| 84 | void name##_LHASH_DOALL_ARG(void *arg1, void *arg2) { \ | ||
| 85 | o_type *a = arg1; \ | ||
| 86 | a_type *b = arg2; \ | ||
| 87 | name##_doall_arg(a, b); } | ||
| 88 | #define LHASH_DOALL_ARG_FN(name) name##_LHASH_DOALL_ARG | ||
| 89 | |||
| 90 | An example of a hash table storing (pointers to) structures of type 'STUFF' | ||
| 91 | could be defined as follows; | ||
| 92 | |||
| 93 | /* Calculates the hash value of 'tohash' (implemented elsewhere) */ | ||
| 94 | unsigned long STUFF_hash(const STUFF *tohash); | ||
| 95 | /* Orders 'arg1' and 'arg2' (implemented elsewhere) */ | ||
| 96 | int stuff_cmp(const STUFF *arg1, const STUFF *arg2); | ||
| 97 | /* Create the type-safe wrapper functions for use in the LHASH internals */ | ||
| 98 | static IMPLEMENT_LHASH_HASH_FN(stuff, STUFF); | ||
| 99 | static IMPLEMENT_LHASH_COMP_FN(stuff, STUFF); | ||
| 100 | /* ... */ | ||
| 101 | int main(int argc, char *argv[]) { | ||
| 102 | /* Create the new hash table using the hash/compare wrappers */ | ||
| 103 | LHASH_OF(STUFF) *hashtable = lh_STUFF_new(LHASH_HASH_FN(STUFF_hash), | ||
| 104 | LHASH_COMP_FN(STUFF_cmp)); | ||
| 105 | /* ... */ | ||
| 106 | } | ||
| 107 | |||
| 108 | lh_<type>_free() frees the B<LHASH_OF(<type>> structure | ||
| 109 | B<table>. Allocated hash table entries will not be freed; consider | ||
| 110 | using lh_<type>_doall() to deallocate any remaining entries in the | ||
| 111 | hash table (see below). | ||
| 112 | |||
| 113 | lh_<type>_insert() inserts the structure pointed to by B<data> into | ||
| 114 | B<table>. If there already is an entry with the same key, the old | ||
| 115 | value is replaced. Note that lh_<type>_insert() stores pointers, the | ||
| 116 | data are not copied. | ||
| 117 | |||
| 118 | lh_<type>_delete() deletes an entry from B<table>. | ||
| 119 | |||
| 120 | lh_<type>_retrieve() looks up an entry in B<table>. Normally, B<data> | ||
| 121 | is a structure with the key field(s) set; the function will return a | ||
| 122 | pointer to a fully populated structure. | ||
| 123 | |||
| 124 | lh_<type>_doall() will, for every entry in the hash table, call | ||
| 125 | B<func> with the data item as its parameter. For lh_<type>_doall() | ||
| 126 | and lh_<type>_doall_arg(), function pointer casting should be avoided | ||
| 127 | in the callbacks (see B<NOTE>) - instead use the declare/implement | ||
| 128 | macros to create type-checked wrappers that cast variables prior to | ||
| 129 | calling your type-specific callbacks. An example of this is | ||
| 130 | illustrated here where the callback is used to cleanup resources for | ||
| 131 | items in the hash table prior to the hashtable itself being | ||
| 132 | deallocated: | ||
| 133 | |||
| 134 | /* Cleans up resources belonging to 'a' (this is implemented elsewhere) */ | ||
| 135 | void STUFF_cleanup_doall(STUFF *a); | ||
| 136 | /* Implement a prototype-compatible wrapper for "STUFF_cleanup" */ | ||
| 137 | IMPLEMENT_LHASH_DOALL_FN(STUFF_cleanup, STUFF) | ||
| 138 | /* ... then later in the code ... */ | ||
| 139 | /* So to run "STUFF_cleanup" against all items in a hash table ... */ | ||
| 140 | lh_STUFF_doall(hashtable, LHASH_DOALL_FN(STUFF_cleanup)); | ||
| 141 | /* Then the hash table itself can be deallocated */ | ||
| 142 | lh_STUFF_free(hashtable); | ||
| 143 | |||
| 144 | When doing this, be careful if you delete entries from the hash table | ||
| 145 | in your callbacks: the table may decrease in size, moving the item | ||
| 146 | that you are currently on down lower in the hash table - this could | ||
| 147 | cause some entries to be skipped during the iteration. The second | ||
| 148 | best solution to this problem is to set hash-E<gt>down_load=0 before | ||
| 149 | you start (which will stop the hash table ever decreasing in size). | ||
| 150 | The best solution is probably to avoid deleting items from the hash | ||
| 151 | table inside a "doall" callback! | ||
| 152 | |||
| 153 | lh_<type>_doall_arg() is the same as lh_<type>_doall() except that | ||
| 154 | B<func> will be called with B<arg> as the second argument and B<func> | ||
| 155 | should be of type B<LHASH_DOALL_ARG_FN_TYPE> (a callback prototype | ||
| 156 | that is passed both the table entry and an extra argument). As with | ||
| 157 | lh_doall(), you can instead choose to declare your callback with a | ||
| 158 | prototype matching the types you are dealing with and use the | ||
| 159 | declare/implement macros to create compatible wrappers that cast | ||
| 160 | variables before calling your type-specific callbacks. An example of | ||
| 161 | this is demonstrated here (printing all hash table entries to a BIO | ||
| 162 | that is provided by the caller): | ||
| 163 | |||
| 164 | /* Prints item 'a' to 'output_bio' (this is implemented elsewhere) */ | ||
| 165 | void STUFF_print_doall_arg(const STUFF *a, BIO *output_bio); | ||
| 166 | /* Implement a prototype-compatible wrapper for "STUFF_print" */ | ||
| 167 | static IMPLEMENT_LHASH_DOALL_ARG_FN(STUFF, const STUFF, BIO) | ||
| 168 | /* ... then later in the code ... */ | ||
| 169 | /* Print out the entire hashtable to a particular BIO */ | ||
| 170 | lh_STUFF_doall_arg(hashtable, LHASH_DOALL_ARG_FN(STUFF_print), BIO, | ||
| 171 | logging_bio); | ||
| 172 | |||
| 173 | lh_<type>_error() can be used to determine if an error occurred in the last | ||
| 174 | operation. lh_<type>_error() is a macro. | ||
| 175 | |||
| 176 | =head1 RETURN VALUES | ||
| 177 | |||
| 178 | lh_<type>_new() returns B<NULL> on error, otherwise a pointer to the new | ||
| 179 | B<LHASH> structure. | ||
| 180 | |||
| 181 | When a hash table entry is replaced, lh_<type>_insert() returns the value | ||
| 182 | being replaced. B<NULL> is returned on normal operation and on error. | ||
| 183 | |||
| 184 | lh_<type>_delete() returns the entry being deleted. B<NULL> is returned if | ||
| 185 | there is no such value in the hash table. | ||
| 186 | |||
| 187 | lh_<type>_retrieve() returns the hash table entry if it has been found, | ||
| 188 | B<NULL> otherwise. | ||
| 189 | |||
| 190 | lh_<type>_error() returns 1 if an error occurred in the last operation, 0 | ||
| 191 | otherwise. | ||
| 192 | |||
| 193 | lh_<type>_free(), lh_<type>_doall() and lh_<type>_doall_arg() return no values. | ||
| 194 | |||
| 195 | =head1 NOTE | ||
| 196 | |||
| 197 | The various LHASH macros and callback types exist to make it possible | ||
| 198 | to write type-checked code without resorting to function-prototype | ||
| 199 | casting - an evil that makes application code much harder to | ||
| 200 | audit/verify and also opens the window of opportunity for stack | ||
| 201 | corruption and other hard-to-find bugs. It also, apparently, violates | ||
| 202 | ANSI-C. | ||
| 203 | |||
| 204 | The LHASH code regards table entries as constant data. As such, it | ||
| 205 | internally represents lh_insert()'d items with a "const void *" | ||
| 206 | pointer type. This is why callbacks such as those used by lh_doall() | ||
| 207 | and lh_doall_arg() declare their prototypes with "const", even for the | ||
| 208 | parameters that pass back the table items' data pointers - for | ||
| 209 | consistency, user-provided data is "const" at all times as far as the | ||
| 210 | LHASH code is concerned. However, as callers are themselves providing | ||
| 211 | these pointers, they can choose whether they too should be treating | ||
| 212 | all such parameters as constant. | ||
| 213 | |||
| 214 | As an example, a hash table may be maintained by code that, for | ||
| 215 | reasons of encapsulation, has only "const" access to the data being | ||
| 216 | indexed in the hash table (ie. it is returned as "const" from | ||
| 217 | elsewhere in their code) - in this case the LHASH prototypes are | ||
| 218 | appropriate as-is. Conversely, if the caller is responsible for the | ||
| 219 | life-time of the data in question, then they may well wish to make | ||
| 220 | modifications to table item passed back in the lh_doall() or | ||
| 221 | lh_doall_arg() callbacks (see the "STUFF_cleanup" example above). If | ||
| 222 | so, the caller can either cast the "const" away (if they're providing | ||
| 223 | the raw callbacks themselves) or use the macros to declare/implement | ||
| 224 | the wrapper functions without "const" types. | ||
| 225 | |||
| 226 | Callers that only have "const" access to data they're indexing in a | ||
| 227 | table, yet declare callbacks without constant types (or cast the | ||
| 228 | "const" away themselves), are therefore creating their own risks/bugs | ||
| 229 | without being encouraged to do so by the API. On a related note, | ||
| 230 | those auditing code should pay special attention to any instances of | ||
| 231 | DECLARE/IMPLEMENT_LHASH_DOALL_[ARG_]_FN macros that provide types | ||
| 232 | without any "const" qualifiers. | ||
| 233 | |||
| 234 | =head1 BUGS | ||
| 235 | |||
| 236 | lh_<type>_insert() returns B<NULL> both for success and error. | ||
| 237 | |||
| 238 | =head1 INTERNALS | ||
| 239 | |||
| 240 | The following description is based on the SSLeay documentation: | ||
| 241 | |||
| 242 | The B<lhash> library implements a hash table described in the | ||
| 243 | I<Communications of the ACM> in 1991. What makes this hash table | ||
| 244 | different is that as the table fills, the hash table is increased (or | ||
| 245 | decreased) in size via OPENSSL_realloc(). When a 'resize' is done, instead of | ||
| 246 | all hashes being redistributed over twice as many 'buckets', one | ||
| 247 | bucket is split. So when an 'expand' is done, there is only a minimal | ||
| 248 | cost to redistribute some values. Subsequent inserts will cause more | ||
| 249 | single 'bucket' redistributions but there will never be a sudden large | ||
| 250 | cost due to redistributing all the 'buckets'. | ||
| 251 | |||
| 252 | The state for a particular hash table is kept in the B<LHASH> structure. | ||
| 253 | The decision to increase or decrease the hash table size is made | ||
| 254 | depending on the 'load' of the hash table. The load is the number of | ||
| 255 | items in the hash table divided by the size of the hash table. The | ||
| 256 | default values are as follows. If (hash->up_load E<lt> load) =E<gt> | ||
| 257 | expand. if (hash-E<gt>down_load E<gt> load) =E<gt> contract. The | ||
| 258 | B<up_load> has a default value of 1 and B<down_load> has a default value | ||
| 259 | of 2. These numbers can be modified by the application by just | ||
| 260 | playing with the B<up_load> and B<down_load> variables. The 'load' is | ||
| 261 | kept in a form which is multiplied by 256. So | ||
| 262 | hash-E<gt>up_load=8*256; will cause a load of 8 to be set. | ||
| 263 | |||
| 264 | If you are interested in performance the field to watch is | ||
| 265 | num_comp_calls. The hash library keeps track of the 'hash' value for | ||
| 266 | each item so when a lookup is done, the 'hashes' are compared, if | ||
| 267 | there is a match, then a full compare is done, and | ||
| 268 | hash-E<gt>num_comp_calls is incremented. If num_comp_calls is not equal | ||
| 269 | to num_delete plus num_retrieve it means that your hash function is | ||
| 270 | generating hashes that are the same for different values. It is | ||
| 271 | probably worth changing your hash function if this is the case because | ||
| 272 | even if your hash table has 10 items in a 'bucket', it can be searched | ||
| 273 | with 10 B<unsigned long> compares and 10 linked list traverses. This | ||
| 274 | will be much less expensive that 10 calls to your compare function. | ||
| 275 | |||
| 276 | lh_strhash() is a demo string hashing function: | ||
| 277 | |||
| 278 | unsigned long lh_strhash(const char *c); | ||
| 279 | |||
| 280 | Since the B<LHASH> routines would normally be passed structures, this | ||
| 281 | routine would not normally be passed to lh_<type>_new(), rather it would be | ||
| 282 | used in the function passed to lh_<type>_new(). | ||
| 283 | |||
| 284 | =head1 SEE ALSO | ||
| 285 | |||
| 286 | L<lh_stats(3)|lh_stats(3)> | ||
| 287 | |||
| 288 | =head1 HISTORY | ||
| 289 | |||
| 290 | The B<lhash> library is available in all versions of SSLeay and OpenSSL. | ||
| 291 | lh_error() was added in SSLeay 0.9.1b. | ||
| 292 | |||
| 293 | This manpage is derived from the SSLeay documentation. | ||
| 294 | |||
| 295 | In OpenSSL 0.9.7, all lhash functions that were passed function pointers | ||
| 296 | were changed for better type safety, and the function types LHASH_COMP_FN_TYPE, | ||
| 297 | LHASH_HASH_FN_TYPE, LHASH_DOALL_FN_TYPE and LHASH_DOALL_ARG_FN_TYPE | ||
| 298 | became available. | ||
| 299 | |||
| 300 | In OpenSSL 1.0.0, the lhash interface was revamped for even better | ||
| 301 | type checking. | ||
| 302 | |||
| 303 | =cut | ||
diff --git a/src/lib/libssl/src/doc/crypto/ui.pod b/src/lib/libssl/src/doc/crypto/ui.pod deleted file mode 100644 index 6df68d604a..0000000000 --- a/src/lib/libssl/src/doc/crypto/ui.pod +++ /dev/null | |||
| @@ -1,194 +0,0 @@ | |||
| 1 | =pod | ||
| 2 | |||
| 3 | =head1 NAME | ||
| 4 | |||
| 5 | UI_new, UI_new_method, UI_free, UI_add_input_string, UI_dup_input_string, | ||
| 6 | UI_add_verify_string, UI_dup_verify_string, UI_add_input_boolean, | ||
| 7 | UI_dup_input_boolean, UI_add_info_string, UI_dup_info_string, | ||
| 8 | UI_add_error_string, UI_dup_error_string, UI_construct_prompt, | ||
| 9 | UI_add_user_data, UI_get0_user_data, UI_get0_result, UI_process, | ||
| 10 | UI_ctrl, UI_set_default_method, UI_get_default_method, UI_get_method, | ||
| 11 | UI_set_method, UI_OpenSSL, ERR_load_UI_strings - New User Interface | ||
| 12 | |||
| 13 | =head1 SYNOPSIS | ||
| 14 | |||
| 15 | #include <openssl/ui.h> | ||
| 16 | |||
| 17 | typedef struct ui_st UI; | ||
| 18 | typedef struct ui_method_st UI_METHOD; | ||
| 19 | |||
| 20 | UI *UI_new(void); | ||
| 21 | UI *UI_new_method(const UI_METHOD *method); | ||
| 22 | void UI_free(UI *ui); | ||
| 23 | |||
| 24 | int UI_add_input_string(UI *ui, const char *prompt, int flags, | ||
| 25 | char *result_buf, int minsize, int maxsize); | ||
| 26 | int UI_dup_input_string(UI *ui, const char *prompt, int flags, | ||
| 27 | char *result_buf, int minsize, int maxsize); | ||
| 28 | int UI_add_verify_string(UI *ui, const char *prompt, int flags, | ||
| 29 | char *result_buf, int minsize, int maxsize, const char *test_buf); | ||
| 30 | int UI_dup_verify_string(UI *ui, const char *prompt, int flags, | ||
| 31 | char *result_buf, int minsize, int maxsize, const char *test_buf); | ||
| 32 | int UI_add_input_boolean(UI *ui, const char *prompt, const char *action_desc, | ||
| 33 | const char *ok_chars, const char *cancel_chars, | ||
| 34 | int flags, char *result_buf); | ||
| 35 | int UI_dup_input_boolean(UI *ui, const char *prompt, const char *action_desc, | ||
| 36 | const char *ok_chars, const char *cancel_chars, | ||
| 37 | int flags, char *result_buf); | ||
| 38 | int UI_add_info_string(UI *ui, const char *text); | ||
| 39 | int UI_dup_info_string(UI *ui, const char *text); | ||
| 40 | int UI_add_error_string(UI *ui, const char *text); | ||
| 41 | int UI_dup_error_string(UI *ui, const char *text); | ||
| 42 | |||
| 43 | /* These are the possible flags. They can be or'ed together. */ | ||
| 44 | #define UI_INPUT_FLAG_ECHO 0x01 | ||
| 45 | #define UI_INPUT_FLAG_DEFAULT_PWD 0x02 | ||
| 46 | |||
| 47 | char *UI_construct_prompt(UI *ui_method, | ||
| 48 | const char *object_desc, const char *object_name); | ||
| 49 | |||
| 50 | void *UI_add_user_data(UI *ui, void *user_data); | ||
| 51 | void *UI_get0_user_data(UI *ui); | ||
| 52 | |||
| 53 | const char *UI_get0_result(UI *ui, int i); | ||
| 54 | |||
| 55 | int UI_process(UI *ui); | ||
| 56 | |||
| 57 | int UI_ctrl(UI *ui, int cmd, long i, void *p, void (*f)()); | ||
| 58 | #define UI_CTRL_PRINT_ERRORS 1 | ||
| 59 | #define UI_CTRL_IS_REDOABLE 2 | ||
| 60 | |||
| 61 | void UI_set_default_method(const UI_METHOD *meth); | ||
| 62 | const UI_METHOD *UI_get_default_method(void); | ||
| 63 | const UI_METHOD *UI_get_method(UI *ui); | ||
| 64 | const UI_METHOD *UI_set_method(UI *ui, const UI_METHOD *meth); | ||
| 65 | |||
| 66 | UI_METHOD *UI_OpenSSL(void); | ||
| 67 | |||
| 68 | =head1 DESCRIPTION | ||
| 69 | |||
| 70 | UI stands for User Interface, and is general purpose set of routines to | ||
| 71 | prompt the user for text-based information. Through user-written methods | ||
| 72 | (see L<ui_create(3)|ui_create(3)>), prompting can be done in any way | ||
| 73 | imaginable, be it plain text prompting, through dialog boxes or from a | ||
| 74 | cell phone. | ||
| 75 | |||
| 76 | All the functions work through a context of the type UI. This context | ||
| 77 | contains all the information needed to prompt correctly as well as a | ||
| 78 | reference to a UI_METHOD, which is an ordered vector of functions that | ||
| 79 | carry out the actual prompting. | ||
| 80 | |||
| 81 | The first thing to do is to create a UI with UI_new() or UI_new_method(), | ||
| 82 | then add information to it with the UI_add or UI_dup functions. Also, | ||
| 83 | user-defined random data can be passed down to the underlying method | ||
| 84 | through calls to UI_add_user_data. The default UI method doesn't care | ||
| 85 | about these data, but other methods might. Finally, use UI_process() | ||
| 86 | to actually perform the prompting and UI_get0_result() to find the result | ||
| 87 | to the prompt. | ||
| 88 | |||
| 89 | A UI can contain more than one prompt, which are performed in the given | ||
| 90 | sequence. Each prompt gets an index number which is returned by the | ||
| 91 | UI_add and UI_dup functions, and has to be used to get the corresponding | ||
| 92 | result with UI_get0_result(). | ||
| 93 | |||
| 94 | The functions are as follows: | ||
| 95 | |||
| 96 | UI_new() creates a new UI using the default UI method. When done with | ||
| 97 | this UI, it should be freed using UI_free(). | ||
| 98 | |||
| 99 | UI_new_method() creates a new UI using the given UI method. When done with | ||
| 100 | this UI, it should be freed using UI_free(). | ||
| 101 | |||
| 102 | UI_OpenSSL() returns the built-in UI method (note: not the default one, | ||
| 103 | since the default can be changed. See further on). This method is the | ||
| 104 | most machine/OS dependent part of OpenSSL and normally generates the | ||
| 105 | most problems when porting. | ||
| 106 | |||
| 107 | UI_free() removes a UI from memory, along with all other pieces of memory | ||
| 108 | that's connected to it, like duplicated input strings, results and others. | ||
| 109 | |||
| 110 | UI_add_input_string() and UI_add_verify_string() add a prompt to the UI, | ||
| 111 | as well as flags and a result buffer and the desired minimum and maximum | ||
| 112 | sizes of the result. The given information is used to prompt for | ||
| 113 | information, for example a password, and to verify a password (i.e. having | ||
| 114 | the user enter it twice and check that the same string was entered twice). | ||
| 115 | UI_add_verify_string() takes and extra argument that should be a pointer | ||
| 116 | to the result buffer of the input string that it's supposed to verify, or | ||
| 117 | verification will fail. | ||
| 118 | |||
| 119 | UI_add_input_boolean() adds a prompt to the UI that's supposed to be answered | ||
| 120 | in a boolean way, with a single character for yes and a different character | ||
| 121 | for no. A set of characters that can be used to cancel the prompt is given | ||
| 122 | as well. The prompt itself is really divided in two, one part being the | ||
| 123 | descriptive text (given through the I<prompt> argument) and one describing | ||
| 124 | the possible answers (given through the I<action_desc> argument). | ||
| 125 | |||
| 126 | UI_add_info_string() and UI_add_error_string() add strings that are shown at | ||
| 127 | the same time as the prompt for extra information or to show an error string. | ||
| 128 | The difference between the two is only conceptual. With the builtin method, | ||
| 129 | there's no technical difference between them. Other methods may make a | ||
| 130 | difference between them, however. | ||
| 131 | |||
| 132 | The flags currently supported are UI_INPUT_FLAG_ECHO, which is relevant for | ||
| 133 | UI_add_input_string() and will have the users response be echoed (when | ||
| 134 | prompting for a password, this flag should obviously not be used, and | ||
| 135 | UI_INPUT_FLAG_DEFAULT_PWD, which means that a default password of some | ||
| 136 | sort will be used (completely depending on the application and the UI | ||
| 137 | method). | ||
| 138 | |||
| 139 | UI_dup_input_string(), UI_dup_verify_string(), UI_dup_input_boolean(), | ||
| 140 | UI_dup_info_string() and UI_dup_error_string() are basically the same | ||
| 141 | as their UI_add counterparts, except that they make their own copies | ||
| 142 | of all strings. | ||
| 143 | |||
| 144 | UI_construct_prompt() is a helper function that can be used to create | ||
| 145 | a prompt from two pieces of information: an description and a name. | ||
| 146 | The default constructor (if there is none provided by the method used) | ||
| 147 | creates a string "Enter I<description> for I<name>:". With the | ||
| 148 | description "pass phrase" and the file name "foo.key", that becomes | ||
| 149 | "Enter pass phrase for foo.key:". Other methods may create whatever | ||
| 150 | string and may include encodings that will be processed by the other | ||
| 151 | method functions. | ||
| 152 | |||
| 153 | UI_add_user_data() adds a piece of memory for the method to use at any | ||
| 154 | time. The builtin UI method doesn't care about this info. Note that several | ||
| 155 | calls to this function doesn't add data, it replaces the previous blob | ||
| 156 | with the one given as argument. | ||
| 157 | |||
| 158 | UI_get0_user_data() retrieves the data that has last been given to the | ||
| 159 | UI with UI_add_user_data(). | ||
| 160 | |||
| 161 | UI_get0_result() returns a pointer to the result buffer associated with | ||
| 162 | the information indexed by I<i>. | ||
| 163 | |||
| 164 | UI_process() goes through the information given so far, does all the printing | ||
| 165 | and prompting and returns. | ||
| 166 | |||
| 167 | UI_ctrl() adds extra control for the application author. For now, it | ||
| 168 | understands two commands: UI_CTRL_PRINT_ERRORS, which makes UI_process() | ||
| 169 | print the OpenSSL error stack as part of processing the UI, and | ||
| 170 | UI_CTRL_IS_REDOABLE, which returns a flag saying if the used UI can | ||
| 171 | be used again or not. | ||
| 172 | |||
| 173 | UI_set_default_method() changes the default UI method to the one given. | ||
| 174 | |||
| 175 | UI_get_default_method() returns a pointer to the current default UI method. | ||
| 176 | |||
| 177 | UI_get_method() returns the UI method associated with a given UI. | ||
| 178 | |||
| 179 | UI_set_method() changes the UI method associated with a given UI. | ||
| 180 | |||
| 181 | =head1 SEE ALSO | ||
| 182 | |||
| 183 | L<ui_create(3)|ui_create(3)>, L<ui_compat(3)|ui_compat(3)> | ||
| 184 | |||
| 185 | =head1 HISTORY | ||
| 186 | |||
| 187 | The UI section was first introduced in OpenSSL 0.9.7. | ||
| 188 | |||
| 189 | =head1 AUTHOR | ||
| 190 | |||
| 191 | Richard Levitte (richard@levitte.org) for the OpenSSL project | ||
| 192 | (http://www.openssl.org). | ||
| 193 | |||
| 194 | =cut | ||
diff --git a/src/lib/libssl/src/doc/crypto/ui_compat.pod b/src/lib/libssl/src/doc/crypto/ui_compat.pod deleted file mode 100644 index 4ef5465539..0000000000 --- a/src/lib/libssl/src/doc/crypto/ui_compat.pod +++ /dev/null | |||
| @@ -1,57 +0,0 @@ | |||
| 1 | =pod | ||
| 2 | |||
| 3 | =head1 NAME | ||
| 4 | |||
| 5 | des_read_password, des_read_2passwords, des_read_pw_string, des_read_pw - | ||
| 6 | Compatibility user interface functions | ||
| 7 | |||
| 8 | =head1 SYNOPSIS | ||
| 9 | |||
| 10 | #include <openssl/des_old.h> | ||
| 11 | |||
| 12 | int des_read_password(DES_cblock *key,const char *prompt,int verify); | ||
| 13 | int des_read_2passwords(DES_cblock *key1,DES_cblock *key2, | ||
| 14 | const char *prompt,int verify); | ||
| 15 | |||
| 16 | int des_read_pw_string(char *buf,int length,const char *prompt,int verify); | ||
| 17 | int des_read_pw(char *buf,char *buff,int size,const char *prompt,int verify); | ||
| 18 | |||
| 19 | =head1 DESCRIPTION | ||
| 20 | |||
| 21 | The DES library contained a few routines to prompt for passwords. These | ||
| 22 | aren't necessarily dependent on DES, and have therefore become part of the | ||
| 23 | UI compatibility library. | ||
| 24 | |||
| 25 | des_read_pw() writes the string specified by I<prompt> to standard output | ||
| 26 | turns echo off and reads an input string from the terminal. The string is | ||
| 27 | returned in I<buf>, which must have space for at least I<size> bytes. | ||
| 28 | If I<verify> is set, the user is asked for the password twice and unless | ||
| 29 | the two copies match, an error is returned. The second password is stored | ||
| 30 | in I<buff>, which must therefore also be at least I<size> bytes. A return | ||
| 31 | code of -1 indicates a system error, 1 failure due to use interaction, and | ||
| 32 | 0 is success. All other functions described here use des_read_pw() to do | ||
| 33 | the work. | ||
| 34 | |||
| 35 | des_read_pw_string() is a variant of des_read_pw() that provides a buffer | ||
| 36 | for you if I<verify> is set. | ||
| 37 | |||
| 38 | des_read_password() calls des_read_pw() and converts the password to a | ||
| 39 | DES key by calling DES_string_to_key(); des_read_2password() operates in | ||
| 40 | the same way as des_read_password() except that it generates two keys | ||
| 41 | by using the DES_string_to_2key() function. | ||
| 42 | |||
| 43 | =head1 NOTES | ||
| 44 | |||
| 45 | des_read_pw_string() is available in the MIT Kerberos library as well, and | ||
| 46 | is also available under the name EVP_read_pw_string(). | ||
| 47 | |||
| 48 | =head1 SEE ALSO | ||
| 49 | |||
| 50 | L<ui(3)|ui(3)>, L<ui_create(3)|ui_create(3)> | ||
| 51 | |||
| 52 | =head1 AUTHOR | ||
| 53 | |||
| 54 | Richard Levitte (richard@levitte.org) for the OpenSSL project | ||
| 55 | (http://www.openssl.org). | ||
| 56 | |||
| 57 | =cut | ||
