From 690af28bdf827ab9c81648f507eb492c9076d5d3 Mon Sep 17 00:00:00 2001 From: cvs2svn Date: Wed, 25 Oct 2000 15:23:17 +0000 Subject: This commit was manufactured by cvs2git to create branch 'OPENBSD_2_8'. --- src/lib/libcrypto/bn/bn_mul.c | 794 ------------------------------------------ 1 file changed, 794 deletions(-) delete mode 100644 src/lib/libcrypto/bn/bn_mul.c (limited to 'src/lib/libcrypto/bn/bn_mul.c') diff --git a/src/lib/libcrypto/bn/bn_mul.c b/src/lib/libcrypto/bn/bn_mul.c deleted file mode 100644 index 3e8baaad9a..0000000000 --- a/src/lib/libcrypto/bn/bn_mul.c +++ /dev/null @@ -1,794 +0,0 @@ -/* crypto/bn/bn_mul.c */ -/* Copyright (C) 1995-1998 Eric Young (eay@cryptsoft.com) - * All rights reserved. - * - * This package is an SSL implementation written - * by Eric Young (eay@cryptsoft.com). - * The implementation was written so as to conform with Netscapes SSL. - * - * This library is free for commercial and non-commercial use as long as - * the following conditions are aheared to. The following conditions - * apply to all code found in this distribution, be it the RC4, RSA, - * lhash, DES, etc., code; not just the SSL code. The SSL documentation - * included with this distribution is covered by the same copyright terms - * except that the holder is Tim Hudson (tjh@cryptsoft.com). - * - * Copyright remains Eric Young's, and as such any Copyright notices in - * the code are not to be removed. - * If this package is used in a product, Eric Young should be given attribution - * as the author of the parts of the library used. - * This can be in the form of a textual message at program startup or - * in documentation (online or textual) provided with the package. - * - * Redistribution and use in source and binary forms, with or without - * modification, are permitted provided that the following conditions - * are met: - * 1. Redistributions of source code must retain the copyright - * notice, this list of conditions and the following disclaimer. - * 2. Redistributions in binary form must reproduce the above copyright - * notice, this list of conditions and the following disclaimer in the - * documentation and/or other materials provided with the distribution. - * 3. All advertising materials mentioning features or use of this software - * must display the following acknowledgement: - * "This product includes cryptographic software written by - * Eric Young (eay@cryptsoft.com)" - * The word 'cryptographic' can be left out if the rouines from the library - * being used are not cryptographic related :-). - * 4. If you include any Windows specific code (or a derivative thereof) from - * the apps directory (application code) you must include an acknowledgement: - * "This product includes software written by Tim Hudson (tjh@cryptsoft.com)" - * - * THIS SOFTWARE IS PROVIDED BY ERIC YOUNG ``AS IS'' AND - * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE - * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE - * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE - * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL - * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS - * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) - * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT - * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY - * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF - * SUCH DAMAGE. - * - * The licence and distribution terms for any publically available version or - * derivative of this code cannot be changed. i.e. this code cannot simply be - * copied and put under another distribution licence - * [including the GNU Public Licence.] - */ - -#include -#include "cryptlib.h" -#include "bn_lcl.h" - -#ifdef BN_RECURSION -/* Karatsuba recursive multiplication algorithm - * (cf. Knuth, The Art of Computer Programming, Vol. 2) */ - -/* r is 2*n2 words in size, - * a and b are both n2 words in size. - * n2 must be a power of 2. - * We multiply and return the result. - * t must be 2*n2 words in size - * We calculate - * a[0]*b[0] - * a[0]*b[0]+a[1]*b[1]+(a[0]-a[1])*(b[1]-b[0]) - * a[1]*b[1] - */ -void bn_mul_recursive(BN_ULONG *r, BN_ULONG *a, BN_ULONG *b, int n2, - BN_ULONG *t) - { - int n=n2/2,c1,c2; - unsigned int neg,zero; - BN_ULONG ln,lo,*p; - -# ifdef BN_COUNT - printf(" bn_mul_recursive %d * %d\n",n2,n2); -# endif -# ifdef BN_MUL_COMBA -# if 0 - if (n2 == 4) - { - bn_mul_comba4(r,a,b); - return; - } -# endif - if (n2 == 8) - { - bn_mul_comba8(r,a,b); - return; - } -# endif /* BN_MUL_COMBA */ - if (n2 < BN_MUL_RECURSIVE_SIZE_NORMAL) - { - /* This should not happen */ - bn_mul_normal(r,a,n2,b,n2); - return; - } - /* r=(a[0]-a[1])*(b[1]-b[0]) */ - c1=bn_cmp_words(a,&(a[n]),n); - c2=bn_cmp_words(&(b[n]),b,n); - zero=neg=0; - switch (c1*3+c2) - { - case -4: - bn_sub_words(t, &(a[n]),a, n); /* - */ - bn_sub_words(&(t[n]),b, &(b[n]),n); /* - */ - break; - case -3: - zero=1; - break; - case -2: - bn_sub_words(t, &(a[n]),a, n); /* - */ - bn_sub_words(&(t[n]),&(b[n]),b, n); /* + */ - neg=1; - break; - case -1: - case 0: - case 1: - zero=1; - break; - case 2: - bn_sub_words(t, a, &(a[n]),n); /* + */ - bn_sub_words(&(t[n]),b, &(b[n]),n); /* - */ - neg=1; - break; - case 3: - zero=1; - break; - case 4: - bn_sub_words(t, a, &(a[n]),n); - bn_sub_words(&(t[n]),&(b[n]),b, n); - break; - } - -# ifdef BN_MUL_COMBA - if (n == 4) - { - if (!zero) - bn_mul_comba4(&(t[n2]),t,&(t[n])); - else - memset(&(t[n2]),0,8*sizeof(BN_ULONG)); - - bn_mul_comba4(r,a,b); - bn_mul_comba4(&(r[n2]),&(a[n]),&(b[n])); - } - else if (n == 8) - { - if (!zero) - bn_mul_comba8(&(t[n2]),t,&(t[n])); - else - memset(&(t[n2]),0,16*sizeof(BN_ULONG)); - - bn_mul_comba8(r,a,b); - bn_mul_comba8(&(r[n2]),&(a[n]),&(b[n])); - } - else -# endif /* BN_MUL_COMBA */ - { - p= &(t[n2*2]); - if (!zero) - bn_mul_recursive(&(t[n2]),t,&(t[n]),n,p); - else - memset(&(t[n2]),0,n2*sizeof(BN_ULONG)); - bn_mul_recursive(r,a,b,n,p); - bn_mul_recursive(&(r[n2]),&(a[n]),&(b[n]),n,p); - } - - /* t[32] holds (a[0]-a[1])*(b[1]-b[0]), c1 is the sign - * r[10] holds (a[0]*b[0]) - * r[32] holds (b[1]*b[1]) - */ - - c1=(int)(bn_add_words(t,r,&(r[n2]),n2)); - - if (neg) /* if t[32] is negative */ - { - c1-=(int)(bn_sub_words(&(t[n2]),t,&(t[n2]),n2)); - } - else - { - /* Might have a carry */ - c1+=(int)(bn_add_words(&(t[n2]),&(t[n2]),t,n2)); - } - - /* t[32] holds (a[0]-a[1])*(b[1]-b[0])+(a[0]*b[0])+(a[1]*b[1]) - * r[10] holds (a[0]*b[0]) - * r[32] holds (b[1]*b[1]) - * c1 holds the carry bits - */ - c1+=(int)(bn_add_words(&(r[n]),&(r[n]),&(t[n2]),n2)); - if (c1) - { - p= &(r[n+n2]); - lo= *p; - ln=(lo+c1)&BN_MASK2; - *p=ln; - - /* The overflow will stop before we over write - * words we should not overwrite */ - if (ln < (BN_ULONG)c1) - { - do { - p++; - lo= *p; - ln=(lo+1)&BN_MASK2; - *p=ln; - } while (ln == 0); - } - } - } - -/* n+tn is the word length - * t needs to be n*4 is size, as does r */ -void bn_mul_part_recursive(BN_ULONG *r, BN_ULONG *a, BN_ULONG *b, int tn, - int n, BN_ULONG *t) - { - int i,j,n2=n*2; - unsigned int c1,c2,neg,zero; - BN_ULONG ln,lo,*p; - -# ifdef BN_COUNT - printf(" bn_mul_part_recursive %d * %d\n",tn+n,tn+n); -# endif - if (n < 8) - { - i=tn+n; - bn_mul_normal(r,a,i,b,i); - return; - } - - /* r=(a[0]-a[1])*(b[1]-b[0]) */ - c1=bn_cmp_words(a,&(a[n]),n); - c2=bn_cmp_words(&(b[n]),b,n); - zero=neg=0; - switch (c1*3+c2) - { - case -4: - bn_sub_words(t, &(a[n]),a, n); /* - */ - bn_sub_words(&(t[n]),b, &(b[n]),n); /* - */ - break; - case -3: - zero=1; - /* break; */ - case -2: - bn_sub_words(t, &(a[n]),a, n); /* - */ - bn_sub_words(&(t[n]),&(b[n]),b, n); /* + */ - neg=1; - break; - case -1: - case 0: - case 1: - zero=1; - /* break; */ - case 2: - bn_sub_words(t, a, &(a[n]),n); /* + */ - bn_sub_words(&(t[n]),b, &(b[n]),n); /* - */ - neg=1; - break; - case 3: - zero=1; - /* break; */ - case 4: - bn_sub_words(t, a, &(a[n]),n); - bn_sub_words(&(t[n]),&(b[n]),b, n); - break; - } - /* The zero case isn't yet implemented here. The speedup - would probably be negligible. */ -# if 0 - if (n == 4) - { - bn_mul_comba4(&(t[n2]),t,&(t[n])); - bn_mul_comba4(r,a,b); - bn_mul_normal(&(r[n2]),&(a[n]),tn,&(b[n]),tn); - memset(&(r[n2+tn*2]),0,sizeof(BN_ULONG)*(n2-tn*2)); - } - else -# endif - if (n == 8) - { - bn_mul_comba8(&(t[n2]),t,&(t[n])); - bn_mul_comba8(r,a,b); - bn_mul_normal(&(r[n2]),&(a[n]),tn,&(b[n]),tn); - memset(&(r[n2+tn*2]),0,sizeof(BN_ULONG)*(n2-tn*2)); - } - else - { - p= &(t[n2*2]); - bn_mul_recursive(&(t[n2]),t,&(t[n]),n,p); - bn_mul_recursive(r,a,b,n,p); - i=n/2; - /* If there is only a bottom half to the number, - * just do it */ - j=tn-i; - if (j == 0) - { - bn_mul_recursive(&(r[n2]),&(a[n]),&(b[n]),i,p); - memset(&(r[n2+i*2]),0,sizeof(BN_ULONG)*(n2-i*2)); - } - else if (j > 0) /* eg, n == 16, i == 8 and tn == 11 */ - { - bn_mul_part_recursive(&(r[n2]),&(a[n]),&(b[n]), - j,i,p); - memset(&(r[n2+tn*2]),0, - sizeof(BN_ULONG)*(n2-tn*2)); - } - else /* (j < 0) eg, n == 16, i == 8 and tn == 5 */ - { - memset(&(r[n2]),0,sizeof(BN_ULONG)*n2); - if (tn < BN_MUL_RECURSIVE_SIZE_NORMAL) - { - bn_mul_normal(&(r[n2]),&(a[n]),tn,&(b[n]),tn); - } - else - { - for (;;) - { - i/=2; - if (i < tn) - { - bn_mul_part_recursive(&(r[n2]), - &(a[n]),&(b[n]), - tn-i,i,p); - break; - } - else if (i == tn) - { - bn_mul_recursive(&(r[n2]), - &(a[n]),&(b[n]), - i,p); - break; - } - } - } - } - } - - /* t[32] holds (a[0]-a[1])*(b[1]-b[0]), c1 is the sign - * r[10] holds (a[0]*b[0]) - * r[32] holds (b[1]*b[1]) - */ - - c1=(int)(bn_add_words(t,r,&(r[n2]),n2)); - - if (neg) /* if t[32] is negative */ - { - c1-=(int)(bn_sub_words(&(t[n2]),t,&(t[n2]),n2)); - } - else - { - /* Might have a carry */ - c1+=(int)(bn_add_words(&(t[n2]),&(t[n2]),t,n2)); - } - - /* t[32] holds (a[0]-a[1])*(b[1]-b[0])+(a[0]*b[0])+(a[1]*b[1]) - * r[10] holds (a[0]*b[0]) - * r[32] holds (b[1]*b[1]) - * c1 holds the carry bits - */ - c1+=(int)(bn_add_words(&(r[n]),&(r[n]),&(t[n2]),n2)); - if (c1) - { - p= &(r[n+n2]); - lo= *p; - ln=(lo+c1)&BN_MASK2; - *p=ln; - - /* The overflow will stop before we over write - * words we should not overwrite */ - if (ln < c1) - { - do { - p++; - lo= *p; - ln=(lo+1)&BN_MASK2; - *p=ln; - } while (ln == 0); - } - } - } - -/* a and b must be the same size, which is n2. - * r needs to be n2 words and t needs to be n2*2 - */ -void bn_mul_low_recursive(BN_ULONG *r, BN_ULONG *a, BN_ULONG *b, int n2, - BN_ULONG *t) - { - int n=n2/2; - -# ifdef BN_COUNT - printf(" bn_mul_low_recursive %d * %d\n",n2,n2); -# endif - - bn_mul_recursive(r,a,b,n,&(t[0])); - if (n >= BN_MUL_LOW_RECURSIVE_SIZE_NORMAL) - { - bn_mul_low_recursive(&(t[0]),&(a[0]),&(b[n]),n,&(t[n2])); - bn_add_words(&(r[n]),&(r[n]),&(t[0]),n); - bn_mul_low_recursive(&(t[0]),&(a[n]),&(b[0]),n,&(t[n2])); - bn_add_words(&(r[n]),&(r[n]),&(t[0]),n); - } - else - { - bn_mul_low_normal(&(t[0]),&(a[0]),&(b[n]),n); - bn_mul_low_normal(&(t[n]),&(a[n]),&(b[0]),n); - bn_add_words(&(r[n]),&(r[n]),&(t[0]),n); - bn_add_words(&(r[n]),&(r[n]),&(t[n]),n); - } - } - -/* a and b must be the same size, which is n2. - * r needs to be n2 words and t needs to be n2*2 - * l is the low words of the output. - * t needs to be n2*3 - */ -void bn_mul_high(BN_ULONG *r, BN_ULONG *a, BN_ULONG *b, BN_ULONG *l, int n2, - BN_ULONG *t) - { - int i,n; - int c1,c2; - int neg,oneg,zero; - BN_ULONG ll,lc,*lp,*mp; - -# ifdef BN_COUNT - printf(" bn_mul_high %d * %d\n",n2,n2); -# endif - n=n2/2; - - /* Calculate (al-ah)*(bh-bl) */ - neg=zero=0; - c1=bn_cmp_words(&(a[0]),&(a[n]),n); - c2=bn_cmp_words(&(b[n]),&(b[0]),n); - switch (c1*3+c2) - { - case -4: - bn_sub_words(&(r[0]),&(a[n]),&(a[0]),n); - bn_sub_words(&(r[n]),&(b[0]),&(b[n]),n); - break; - case -3: - zero=1; - break; - case -2: - bn_sub_words(&(r[0]),&(a[n]),&(a[0]),n); - bn_sub_words(&(r[n]),&(b[n]),&(b[0]),n); - neg=1; - break; - case -1: - case 0: - case 1: - zero=1; - break; - case 2: - bn_sub_words(&(r[0]),&(a[0]),&(a[n]),n); - bn_sub_words(&(r[n]),&(b[0]),&(b[n]),n); - neg=1; - break; - case 3: - zero=1; - break; - case 4: - bn_sub_words(&(r[0]),&(a[0]),&(a[n]),n); - bn_sub_words(&(r[n]),&(b[n]),&(b[0]),n); - break; - } - - oneg=neg; - /* t[10] = (a[0]-a[1])*(b[1]-b[0]) */ - /* r[10] = (a[1]*b[1]) */ -# ifdef BN_MUL_COMBA - if (n == 8) - { - bn_mul_comba8(&(t[0]),&(r[0]),&(r[n])); - bn_mul_comba8(r,&(a[n]),&(b[n])); - } - else -# endif - { - bn_mul_recursive(&(t[0]),&(r[0]),&(r[n]),n,&(t[n2])); - bn_mul_recursive(r,&(a[n]),&(b[n]),n,&(t[n2])); - } - - /* s0 == low(al*bl) - * s1 == low(ah*bh)+low((al-ah)*(bh-bl))+low(al*bl)+high(al*bl) - * We know s0 and s1 so the only unknown is high(al*bl) - * high(al*bl) == s1 - low(ah*bh+s0+(al-ah)*(bh-bl)) - * high(al*bl) == s1 - (r[0]+l[0]+t[0]) - */ - if (l != NULL) - { - lp= &(t[n2+n]); - c1=(int)(bn_add_words(lp,&(r[0]),&(l[0]),n)); - } - else - { - c1=0; - lp= &(r[0]); - } - - if (neg) - neg=(int)(bn_sub_words(&(t[n2]),lp,&(t[0]),n)); - else - { - bn_add_words(&(t[n2]),lp,&(t[0]),n); - neg=0; - } - - if (l != NULL) - { - bn_sub_words(&(t[n2+n]),&(l[n]),&(t[n2]),n); - } - else - { - lp= &(t[n2+n]); - mp= &(t[n2]); - for (i=0; i 0) - { - lc=c1; - do { - ll=(r[i]+lc)&BN_MASK2; - r[i++]=ll; - lc=(lc > ll); - } while (lc); - } - else - { - lc= -c1; - do { - ll=r[i]; - r[i++]=(ll-lc)&BN_MASK2; - lc=(lc > ll); - } while (lc); - } - } - if (c2 != 0) /* Add starting at r[1] */ - { - i=n; - if (c2 > 0) - { - lc=c2; - do { - ll=(r[i]+lc)&BN_MASK2; - r[i++]=ll; - lc=(lc > ll); - } while (lc); - } - else - { - lc= -c2; - do { - ll=r[i]; - r[i++]=(ll-lc)&BN_MASK2; - lc=(lc > ll); - } while (lc); - } - } - } -#endif /* BN_RECURSION */ - -int BN_mul(BIGNUM *r, BIGNUM *a, BIGNUM *b, BN_CTX *ctx) - { - int top,al,bl; - BIGNUM *rr; - int ret = 0; -#if defined(BN_MUL_COMBA) || defined(BN_RECURSION) - int i; -#endif -#ifdef BN_RECURSION - BIGNUM *t; - int j,k; -#endif - -#ifdef BN_COUNT - printf("BN_mul %d * %d\n",a->top,b->top); -#endif - - bn_check_top(a); - bn_check_top(b); - bn_check_top(r); - - al=a->top; - bl=b->top; - r->neg=a->neg^b->neg; - - if ((al == 0) || (bl == 0)) - { - BN_zero(r); - return(1); - } - top=al+bl; - - BN_CTX_start(ctx); - if ((r == a) || (r == b)) - { - if ((rr = BN_CTX_get(ctx)) == NULL) goto err; - } - else - rr = r; - -#if defined(BN_MUL_COMBA) || defined(BN_RECURSION) - i = al-bl; -#endif -#ifdef BN_MUL_COMBA - if (i == 0) - { -# if 0 - if (al == 4) - { - if (bn_wexpand(rr,8) == NULL) goto err; - rr->top=8; - bn_mul_comba4(rr->d,a->d,b->d); - goto end; - } -# endif - if (al == 8) - { - if (bn_wexpand(rr,16) == NULL) goto err; - rr->top=16; - bn_mul_comba8(rr->d,a->d,b->d); - goto end; - } - } -#endif /* BN_MUL_COMBA */ -#ifdef BN_RECURSION - if ((al >= BN_MULL_SIZE_NORMAL) && (bl >= BN_MULL_SIZE_NORMAL)) - { - if (i == 1 && !BN_get_flags(b,BN_FLG_STATIC_DATA)) - { - bn_wexpand(b,al); - b->d[bl]=0; - bl++; - i--; - } - else if (i == -1 && !BN_get_flags(a,BN_FLG_STATIC_DATA)) - { - bn_wexpand(a,bl); - a->d[al]=0; - al++; - i++; - } - if (i == 0) - { - /* symmetric and > 4 */ - /* 16 or larger */ - j=BN_num_bits_word((BN_ULONG)al); - j=1<<(j-1); - k=j+j; - t = BN_CTX_get(ctx); - if (al == j) /* exact multiple */ - { - bn_wexpand(t,k*2); - bn_wexpand(rr,k*2); - bn_mul_recursive(rr->d,a->d,b->d,al,t->d); - } - else - { - bn_wexpand(a,k); - bn_wexpand(b,k); - bn_wexpand(t,k*4); - bn_wexpand(rr,k*4); - for (i=a->top; id[i]=0; - for (i=b->top; id[i]=0; - bn_mul_part_recursive(rr->d,a->d,b->d,al-j,j,t->d); - } - rr->top=top; - goto end; - } - } -#endif /* BN_RECURSION */ - if (bn_wexpand(rr,top) == NULL) goto err; - rr->top=top; - bn_mul_normal(rr->d,a->d,al,b->d,bl); - -#if defined(BN_MUL_COMBA) || defined(BN_RECURSION) -end: -#endif - bn_fix_top(rr); - if (r != rr) BN_copy(r,rr); - ret=1; -err: - BN_CTX_end(ctx); - return(ret); - } - -void bn_mul_normal(BN_ULONG *r, BN_ULONG *a, int na, BN_ULONG *b, int nb) - { - BN_ULONG *rr; - -#ifdef BN_COUNT - printf(" bn_mul_normal %d * %d\n",na,nb); -#endif - - if (na < nb) - { - int itmp; - BN_ULONG *ltmp; - - itmp=na; na=nb; nb=itmp; - ltmp=a; a=b; b=ltmp; - - } - rr= &(r[na]); - rr[0]=bn_mul_words(r,a,na,b[0]); - - for (;;) - { - if (--nb <= 0) return; - rr[1]=bn_mul_add_words(&(r[1]),a,na,b[1]); - if (--nb <= 0) return; - rr[2]=bn_mul_add_words(&(r[2]),a,na,b[2]); - if (--nb <= 0) return; - rr[3]=bn_mul_add_words(&(r[3]),a,na,b[3]); - if (--nb <= 0) return; - rr[4]=bn_mul_add_words(&(r[4]),a,na,b[4]); - rr+=4; - r+=4; - b+=4; - } - } - -void bn_mul_low_normal(BN_ULONG *r, BN_ULONG *a, BN_ULONG *b, int n) - { -#ifdef BN_COUNT - printf(" bn_mul_low_normal %d * %d\n",n,n); -#endif - bn_mul_words(r,a,n,b[0]); - - for (;;) - { - if (--n <= 0) return; - bn_mul_add_words(&(r[1]),a,n,b[1]); - if (--n <= 0) return; - bn_mul_add_words(&(r[2]),a,n,b[2]); - if (--n <= 0) return; - bn_mul_add_words(&(r[3]),a,n,b[3]); - if (--n <= 0) return; - bn_mul_add_words(&(r[4]),a,n,b[4]); - r+=4; - b+=4; - } - } -- cgit v1.2.3-55-g6feb