/* $OpenBSD: bn_sqr.c,v 1.29 2023/03/30 14:28:56 tb Exp $ */ /* Copyright (C) 1995-1998 Eric Young (eay@cryptsoft.com) * All rights reserved. * * This package is an SSL implementation written * by Eric Young (eay@cryptsoft.com). * The implementation was written so as to conform with Netscapes SSL. * * This library is free for commercial and non-commercial use as long as * the following conditions are aheared to. The following conditions * apply to all code found in this distribution, be it the RC4, RSA, * lhash, DES, etc., code; not just the SSL code. The SSL documentation * included with this distribution is covered by the same copyright terms * except that the holder is Tim Hudson (tjh@cryptsoft.com). * * Copyright remains Eric Young's, and as such any Copyright notices in * the code are not to be removed. * If this package is used in a product, Eric Young should be given attribution * as the author of the parts of the library used. * This can be in the form of a textual message at program startup or * in documentation (online or textual) provided with the package. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the copyright * notice, this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * 3. All advertising materials mentioning features or use of this software * must display the following acknowledgement: * "This product includes cryptographic software written by * Eric Young (eay@cryptsoft.com)" * The word 'cryptographic' can be left out if the rouines from the library * being used are not cryptographic related :-). * 4. If you include any Windows specific code (or a derivative thereof) from * the apps directory (application code) you must include an acknowledgement: * "This product includes software written by Tim Hudson (tjh@cryptsoft.com)" * * THIS SOFTWARE IS PROVIDED BY ERIC YOUNG ``AS IS'' AND * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF * SUCH DAMAGE. * * The licence and distribution terms for any publically available version or * derivative of this code cannot be changed. i.e. this code cannot simply be * copied and put under another distribution licence * [including the GNU Public Licence.] */ #include #include #include #include "bn_arch.h" #include "bn_local.h" #include "bn_internal.h" int bn_sqr(BIGNUM *r, const BIGNUM *a, int max, BN_CTX *ctx); /* * bn_sqr_comba4() computes r[] = a[] * a[] using Comba multiplication * (https://everything2.com/title/Comba+multiplication), where a is a * four word array, producing an eight word array result. */ #ifndef HAVE_BN_SQR_COMBA4 void bn_sqr_comba4(BN_ULONG *r, const BN_ULONG *a) { BN_ULONG c2, c1, c0; bn_mulw_addtw(a[0], a[0], 0, 0, 0, &c2, &c1, &r[0]); bn_mul2_mulw_addtw(a[1], a[0], 0, c2, c1, &c2, &c1, &r[1]); bn_mulw_addtw(a[1], a[1], 0, c2, c1, &c2, &c1, &c0); bn_mul2_mulw_addtw(a[2], a[0], c2, c1, c0, &c2, &c1, &r[2]); bn_mul2_mulw_addtw(a[3], a[0], 0, c2, c1, &c2, &c1, &c0); bn_mul2_mulw_addtw(a[2], a[1], c2, c1, c0, &c2, &c1, &r[3]); bn_mulw_addtw(a[2], a[2], 0, c2, c1, &c2, &c1, &c0); bn_mul2_mulw_addtw(a[3], a[1], c2, c1, c0, &c2, &c1, &r[4]); bn_mul2_mulw_addtw(a[3], a[2], 0, c2, c1, &c2, &c1, &r[5]); bn_mulw_addtw(a[3], a[3], 0, c2, c1, &c2, &r[7], &r[6]); } #endif /* * bn_sqr_comba8() computes r[] = a[] * a[] using Comba multiplication * (https://everything2.com/title/Comba+multiplication), where a is an * eight word array, producing an 16 word array result. */ #ifndef HAVE_BN_SQR_COMBA8 void bn_sqr_comba8(BN_ULONG *r, const BN_ULONG *a) { BN_ULONG c2, c1, c0; bn_mulw_addtw(a[0], a[0], 0, 0, 0, &c2, &c1, &r[0]); bn_mul2_mulw_addtw(a[1], a[0], 0, c2, c1, &c2, &c1, &r[1]); bn_mulw_addtw(a[1], a[1], 0, c2, c1, &c2, &c1, &c0); bn_mul2_mulw_addtw(a[2], a[0], c2, c1, c0, &c2, &c1, &r[2]); bn_mul2_mulw_addtw(a[3], a[0], 0, c2, c1, &c2, &c1, &c0); bn_mul2_mulw_addtw(a[2], a[1], c2, c1, c0, &c2, &c1, &r[3]); bn_mulw_addtw(a[2], a[2], 0, c2, c1, &c2, &c1, &c0); bn_mul2_mulw_addtw(a[3], a[1], c2, c1, c0, &c2, &c1, &c0); bn_mul2_mulw_addtw(a[4], a[0], c2, c1, c0, &c2, &c1, &r[4]); bn_mul2_mulw_addtw(a[5], a[0], 0, c2, c1, &c2, &c1, &c0); bn_mul2_mulw_addtw(a[4], a[1], c2, c1, c0, &c2, &c1, &c0); bn_mul2_mulw_addtw(a[3], a[2], c2, c1, c0, &c2, &c1, &r[5]); bn_mulw_addtw(a[3], a[3], 0, c2, c1, &c2, &c1, &c0); bn_mul2_mulw_addtw(a[4], a[2], c2, c1, c0, &c2, &c1, &c0); bn_mul2_mulw_addtw(a[5], a[1], c2, c1, c0, &c2, &c1, &c0); bn_mul2_mulw_addtw(a[6], a[0], c2, c1, c0, &c2, &c1, &r[6]); bn_mul2_mulw_addtw(a[7], a[0], 0, c2, c1, &c2, &c1, &c0); bn_mul2_mulw_addtw(a[6], a[1], c2, c1, c0, &c2, &c1, &c0); bn_mul2_mulw_addtw(a[5], a[2], c2, c1, c0, &c2, &c1, &c0); bn_mul2_mulw_addtw(a[4], a[3], c2, c1, c0, &c2, &c1, &r[7]); bn_mulw_addtw(a[4], a[4], 0, c2, c1, &c2, &c1, &c0); bn_mul2_mulw_addtw(a[5], a[3], c2, c1, c0, &c2, &c1, &c0); bn_mul2_mulw_addtw(a[6], a[2], c2, c1, c0, &c2, &c1, &c0); bn_mul2_mulw_addtw(a[7], a[1], c2, c1, c0, &c2, &c1, &r[8]); bn_mul2_mulw_addtw(a[7], a[2], 0, c2, c1, &c2, &c1, &c0); bn_mul2_mulw_addtw(a[6], a[3], c2, c1, c0, &c2, &c1, &c0); bn_mul2_mulw_addtw(a[5], a[4], c2, c1, c0, &c2, &c1, &r[9]); bn_mulw_addtw(a[5], a[5], 0, c2, c1, &c2, &c1, &c0); bn_mul2_mulw_addtw(a[6], a[4], c2, c1, c0, &c2, &c1, &c0); bn_mul2_mulw_addtw(a[7], a[3], c2, c1, c0, &c2, &c1, &r[10]); bn_mul2_mulw_addtw(a[7], a[4], 0, c2, c1, &c2, &c1, &c0); bn_mul2_mulw_addtw(a[6], a[5], c2, c1, c0, &c2, &c1, &r[11]); bn_mulw_addtw(a[6], a[6], 0, c2, c1, &c2, &c1, &c0); bn_mul2_mulw_addtw(a[7], a[5], c2, c1, c0, &c2, &c1, &r[12]); bn_mul2_mulw_addtw(a[7], a[6], 0, c2, c1, &c2, &c1, &r[13]); bn_mulw_addtw(a[7], a[7], 0, c2, c1, &c2, &r[15], &r[14]); } #endif #ifndef HAVE_BN_SQR_WORDS /* * bn_sqr_words() computes (r[i*2+1]:r[i*2]) = a[i] * a[i]. */ void bn_sqr_words(BN_ULONG *r, const BN_ULONG *a, int n) { assert(n >= 0); if (n <= 0) return; #ifndef OPENSSL_SMALL_FOOTPRINT while (n & ~3) { bn_mulw(a[0], a[0], &r[1], &r[0]); bn_mulw(a[1], a[1], &r[3], &r[2]); bn_mulw(a[2], a[2], &r[5], &r[4]); bn_mulw(a[3], a[3], &r[7], &r[6]); a += 4; r += 8; n -= 4; } #endif while (n) { bn_mulw(a[0], a[0], &r[1], &r[0]); a++; r += 2; n--; } } #endif /* tmp must have 2*n words */ void bn_sqr_normal(BN_ULONG *r, const BN_ULONG *a, int n, BN_ULONG *tmp) { int i, j, max; const BN_ULONG *ap; BN_ULONG *rp; max = n * 2; ap = a; rp = r; rp[0] = rp[max - 1] = 0; rp++; j = n; if (--j > 0) { ap++; rp[j] = bn_mul_words(rp, ap, j, ap[-1]); rp += 2; } for (i = n - 2; i > 0; i--) { j--; ap++; rp[j] = bn_mul_add_words(rp, ap, j, ap[-1]); rp += 2; } bn_add_words(r, r, r, max); /* There will not be a carry */ bn_sqr_words(tmp, a, n); bn_add_words(r, r, tmp, max); } #ifdef BN_RECURSION /* r is 2*n words in size, * a and b are both n words in size. (There's not actually a 'b' here ...) * n must be a power of 2. * We multiply and return the result. * t must be 2*n words in size * We calculate * a[0]*b[0] * a[0]*b[0]+a[1]*b[1]+(a[0]-a[1])*(b[1]-b[0]) * a[1]*b[1] */ void bn_sqr_recursive(BN_ULONG *r, const BN_ULONG *a, int n2, BN_ULONG *t) { int n = n2 / 2; int zero, c1; BN_ULONG ln, lo, *p; if (n2 == 4) { bn_sqr_comba4(r, a); return; } else if (n2 == 8) { bn_sqr_comba8(r, a); return; } if (n2 < BN_SQR_RECURSIVE_SIZE_NORMAL) { bn_sqr_normal(r, a, n2, t); return; } /* r=(a[0]-a[1])*(a[1]-a[0]) */ c1 = bn_cmp_words(a, &(a[n]), n); zero = 0; if (c1 > 0) bn_sub_words(t, a, &(a[n]), n); else if (c1 < 0) bn_sub_words(t, &(a[n]), a, n); else zero = 1; /* The result will always be negative unless it is zero */ p = &(t[n2*2]); if (!zero) bn_sqr_recursive(&(t[n2]), t, n, p); else memset(&(t[n2]), 0, n2 * sizeof(BN_ULONG)); bn_sqr_recursive(r, a, n, p); bn_sqr_recursive(&(r[n2]), &(a[n]), n, p); /* t[32] holds (a[0]-a[1])*(a[1]-a[0]), it is negative or zero * r[10] holds (a[0]*b[0]) * r[32] holds (b[1]*b[1]) */ c1 = (int)(bn_add_words(t, r, &(r[n2]), n2)); /* t[32] is negative */ c1 -= (int)(bn_sub_words(&(t[n2]), t, &(t[n2]), n2)); /* t[32] holds (a[0]-a[1])*(a[1]-a[0])+(a[0]*a[0])+(a[1]*a[1]) * r[10] holds (a[0]*a[0]) * r[32] holds (a[1]*a[1]) * c1 holds the carry bits */ c1 += (int)(bn_add_words(&(r[n]), &(r[n]), &(t[n2]), n2)); if (c1) { p = &(r[n + n2]); lo= *p; ln = (lo + c1) & BN_MASK2; *p = ln; /* The overflow will stop before we over write * words we should not overwrite */ if (ln < (BN_ULONG)c1) { do { p++; lo= *p; ln = (lo + 1) & BN_MASK2; *p = ln; } while (ln == 0); } } } #endif /* * bn_sqr() computes a * a, storing the result in r. The caller must ensure that * r is not the same BIGNUM as a and that r has been expanded to rn = a->top * 2 * words. */ #ifndef HAVE_BN_SQR int bn_sqr(BIGNUM *r, const BIGNUM *a, int rn, BN_CTX *ctx) { BIGNUM *tmp; int ret = 0; BN_CTX_start(ctx); if ((tmp = BN_CTX_get(ctx)) == NULL) goto err; #if defined(BN_RECURSION) if (a->top < BN_SQR_RECURSIVE_SIZE_NORMAL) { BN_ULONG t[BN_SQR_RECURSIVE_SIZE_NORMAL*2]; bn_sqr_normal(r->d, a->d, a->top, t); } else { int j, k; j = BN_num_bits_word((BN_ULONG)a->top); j = 1 << (j - 1); k = j + j; if (a->top == j) { if (!bn_wexpand(tmp, k * 2)) goto err; bn_sqr_recursive(r->d, a->d, a->top, tmp->d); } else { if (!bn_wexpand(tmp, rn)) goto err; bn_sqr_normal(r->d, a->d, a->top, tmp->d); } } #else if (!bn_wexpand(tmp, rn)) goto err; bn_sqr_normal(r->d, a->d, a->top, tmp->d); #endif ret = 1; err: BN_CTX_end(ctx); return ret; } #endif int BN_sqr(BIGNUM *r, const BIGNUM *a, BN_CTX *ctx) { BIGNUM *rr; int rn; int ret = 1; BN_CTX_start(ctx); if (BN_is_zero(a)) { BN_zero(r); goto done; } if ((rr = r) == a) rr = BN_CTX_get(ctx); if (rr == NULL) goto err; rn = a->top * 2; if (rn < a->top) goto err; if (!bn_wexpand(rr, rn)) goto err; if (a->top == 4) { bn_sqr_comba4(rr->d, a->d); } else if (a->top == 8) { bn_sqr_comba8(rr->d, a->d); } else { if (!bn_sqr(rr, a, rn, ctx)) goto err; } rr->top = rn; bn_correct_top(rr); rr->neg = 0; if (!bn_copy(r, rr)) goto err; done: ret = 1; err: BN_CTX_end(ctx); return ret; }