// $OpenBSD: s2n_bignum.h,v 1.4 2025/08/12 10:01:37 jsing Exp $ // // Copyright Amazon.com, Inc. or its affiliates. All Rights Reserved. // // Permission to use, copy, modify, and/or distribute this software for any // purpose with or without fee is hereby granted, provided that the above // copyright notice and this permission notice appear in all copies. // // THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES // WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF // MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR // ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES // WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN // ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF // OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE. // ---------------------------------------------------------------------------- // C prototypes for s2n-bignum functions, so you can use them in C programs via // // #include "s2n-bignum.h" // // The functions are listed in alphabetical order with a brief description // in comments for each one. For more detailed documentation see the comment // banner at the top of the corresponding assembly (.S) file, and // for the last word in what properties it satisfies see the spec in the // formal proof (the .ml file in the architecture-specific directory). // // For some functions there are additional variants with names ending in // "_alt". These have the same core mathematical functionality as their // non-"alt" versions, but can be better suited to some microarchitectures: // // - On x86, the "_alt" forms avoid BMI and ADX instruction set // extensions, so will run on any x86_64 machine, even older ones // // - On ARM, the "_alt" forms target machines with higher multiplier // throughput, generally offering higher performance there. // ---------------------------------------------------------------------------- #if defined(_MSC_VER) || !defined(__STDC_VERSION__) || __STDC_VERSION__ < 199901L || defined(__STDC_NO_VLA__) #define S2N_BIGNUM_STATIC #else #define S2N_BIGNUM_STATIC static #endif // Add, z := x + y // Inputs x[m], y[n]; outputs function return (carry-out) and z[p] extern uint64_t bignum_add (uint64_t p, uint64_t *z, uint64_t m, const uint64_t *x, uint64_t n, const uint64_t *y); // Add modulo p_25519, z := (x + y) mod p_25519, assuming x and y reduced // Inputs x[4], y[4]; output z[4] extern void bignum_add_p25519 (uint64_t z[S2N_BIGNUM_STATIC 4], const uint64_t x[S2N_BIGNUM_STATIC 4], const uint64_t y[S2N_BIGNUM_STATIC 4]); // Add modulo p_256, z := (x + y) mod p_256, assuming x and y reduced // Inputs x[4], y[4]; output z[4] extern void bignum_add_p256 (uint64_t z[S2N_BIGNUM_STATIC 4], const uint64_t x[S2N_BIGNUM_STATIC 4], const uint64_t y[S2N_BIGNUM_STATIC 4]); // Add modulo p_256k1, z := (x + y) mod p_256k1, assuming x and y reduced // Inputs x[4], y[4]; output z[4] extern void bignum_add_p256k1 (uint64_t z[S2N_BIGNUM_STATIC 4], const uint64_t x[S2N_BIGNUM_STATIC 4], const uint64_t y[S2N_BIGNUM_STATIC 4]); // Add modulo p_384, z := (x + y) mod p_384, assuming x and y reduced // Inputs x[6], y[6]; output z[6] extern void bignum_add_p384 (uint64_t z[S2N_BIGNUM_STATIC 6], const uint64_t x[S2N_BIGNUM_STATIC 6], const uint64_t y[S2N_BIGNUM_STATIC 6]); // Add modulo p_521, z := (x + y) mod p_521, assuming x and y reduced // Inputs x[9], y[9]; output z[9] extern void bignum_add_p521 (uint64_t z[S2N_BIGNUM_STATIC 9], const uint64_t x[S2N_BIGNUM_STATIC 9], const uint64_t y[S2N_BIGNUM_STATIC 9]); // Add modulo p_sm2, z := (x + y) mod p_sm2, assuming x and y reduced // Inputs x[4], y[4]; output z[4] extern void bignum_add_sm2 (uint64_t z[S2N_BIGNUM_STATIC 4], const uint64_t x[S2N_BIGNUM_STATIC 4], const uint64_t y[S2N_BIGNUM_STATIC 4]); // Compute "amontification" constant z :== 2^{128k} (congruent mod m) // Input m[k]; output z[k]; temporary buffer t[>=k] extern void bignum_amontifier (uint64_t k, uint64_t *z, const uint64_t *m, uint64_t *t); // Almost-Montgomery multiply, z :== (x * y / 2^{64k}) (congruent mod m) // Inputs x[k], y[k], m[k]; output z[k] extern void bignum_amontmul (uint64_t k, uint64_t *z, const uint64_t *x, const uint64_t *y, const uint64_t *m); // Almost-Montgomery reduce, z :== (x' / 2^{64p}) (congruent mod m) // Inputs x[n], m[k], p; output z[k] extern void bignum_amontredc (uint64_t k, uint64_t *z, uint64_t n, const uint64_t *x, const uint64_t *m, uint64_t p); // Almost-Montgomery square, z :== (x^2 / 2^{64k}) (congruent mod m) // Inputs x[k], m[k]; output z[k] extern void bignum_amontsqr (uint64_t k, uint64_t *z, const uint64_t *x, const uint64_t *m); // Convert 4-digit (256-bit) bignum to/from big-endian form // Input x[4]; output z[4] extern void bignum_bigendian_4 (uint64_t z[S2N_BIGNUM_STATIC 4], const uint64_t x[S2N_BIGNUM_STATIC 4]); // Convert 6-digit (384-bit) bignum to/from big-endian form // Input x[6]; output z[6] extern void bignum_bigendian_6 (uint64_t z[S2N_BIGNUM_STATIC 6], const uint64_t x[S2N_BIGNUM_STATIC 6]); // Select bitfield starting at bit n with length l <= 64 // Inputs x[k], n, l; output function return extern uint64_t bignum_bitfield (uint64_t k, const uint64_t *x, uint64_t n, uint64_t l); // Return size of bignum in bits // Input x[k]; output function return extern uint64_t bignum_bitsize (uint64_t k, const uint64_t *x); // Divide by a single (nonzero) word, z := x / m and return x mod m // Inputs x[n], m; outputs function return (remainder) and z[k] extern uint64_t bignum_cdiv (uint64_t k, uint64_t *z, uint64_t n, const uint64_t *x, uint64_t m); // Divide by a single word, z := x / m when known to be exact // Inputs x[n], m; output z[k] extern void bignum_cdiv_exact (uint64_t k, uint64_t *z, uint64_t n, const uint64_t *x, uint64_t m); // Count leading zero digits (64-bit words) // Input x[k]; output function return extern uint64_t bignum_cld (uint64_t k, const uint64_t *x); // Count leading zero bits // Input x[k]; output function return extern uint64_t bignum_clz (uint64_t k, const uint64_t *x); // Multiply-add with single-word multiplier, z := z + c * y // Inputs c, y[n]; outputs function return (carry-out) and z[k] extern uint64_t bignum_cmadd (uint64_t k, uint64_t *z, uint64_t c, uint64_t n, const uint64_t *y); // Negated multiply-add with single-word multiplier, z := z - c * y // Inputs c, y[n]; outputs function return (negative carry-out) and z[k] extern uint64_t bignum_cmnegadd (uint64_t k, uint64_t *z, uint64_t c, uint64_t n, const uint64_t *y); // Find modulus of bignum w.r.t. single nonzero word m, returning x mod m // Input x[k], m; output function return extern uint64_t bignum_cmod (uint64_t k, const uint64_t *x, uint64_t m); // Multiply by a single word, z := c * y // Inputs c, y[n]; outputs function return (carry-out) and z[k] extern uint64_t bignum_cmul (uint64_t k, uint64_t *z, uint64_t c, uint64_t n, const uint64_t *y); // Multiply by a single word modulo p_25519, z := (c * x) mod p_25519, assuming x reduced // Inputs c, x[4]; output z[4] extern void bignum_cmul_p25519 (uint64_t z[S2N_BIGNUM_STATIC 4], uint64_t c, const uint64_t x[S2N_BIGNUM_STATIC 4]); extern void bignum_cmul_p25519_alt (uint64_t z[S2N_BIGNUM_STATIC 4], uint64_t c, const uint64_t x[S2N_BIGNUM_STATIC 4]); // Multiply by a single word modulo p_256, z := (c * x) mod p_256, assuming x reduced // Inputs c, x[4]; output z[4] extern void bignum_cmul_p256 (uint64_t z[S2N_BIGNUM_STATIC 4], uint64_t c, const uint64_t x[S2N_BIGNUM_STATIC 4]); extern void bignum_cmul_p256_alt (uint64_t z[S2N_BIGNUM_STATIC 4], uint64_t c, const uint64_t x[S2N_BIGNUM_STATIC 4]); // Multiply by a single word modulo p_256k1, z := (c * x) mod p_256k1, assuming x reduced // Inputs c, x[4]; output z[4] extern void bignum_cmul_p256k1 (uint64_t z[S2N_BIGNUM_STATIC 4], uint64_t c, const uint64_t x[S2N_BIGNUM_STATIC 4]); extern void bignum_cmul_p256k1_alt (uint64_t z[S2N_BIGNUM_STATIC 4], uint64_t c, const uint64_t x[S2N_BIGNUM_STATIC 4]); // Multiply by a single word modulo p_384, z := (c * x) mod p_384, assuming x reduced // Inputs c, x[6]; output z[6] extern void bignum_cmul_p384 (uint64_t z[S2N_BIGNUM_STATIC 6], uint64_t c, const uint64_t x[S2N_BIGNUM_STATIC 6]); extern void bignum_cmul_p384_alt (uint64_t z[S2N_BIGNUM_STATIC 6], uint64_t c, const uint64_t x[S2N_BIGNUM_STATIC 6]); // Multiply by a single word modulo p_521, z := (c * x) mod p_521, assuming x reduced // Inputs c, x[9]; output z[9] extern void bignum_cmul_p521 (uint64_t z[S2N_BIGNUM_STATIC 9], uint64_t c, const uint64_t x[S2N_BIGNUM_STATIC 9]); extern void bignum_cmul_p521_alt (uint64_t z[S2N_BIGNUM_STATIC 9], uint64_t c, const uint64_t x[S2N_BIGNUM_STATIC 9]); // Multiply by a single word modulo p_sm2, z := (c * x) mod p_sm2, assuming x reduced // Inputs c, x[4]; output z[4] extern void bignum_cmul_sm2 (uint64_t z[S2N_BIGNUM_STATIC 4], uint64_t c, const uint64_t x[S2N_BIGNUM_STATIC 4]); extern void bignum_cmul_sm2_alt (uint64_t z[S2N_BIGNUM_STATIC 4], uint64_t c, const uint64_t x[S2N_BIGNUM_STATIC 4]); // Test bignums for coprimality, gcd(x,y) = 1 // Inputs x[m], y[n]; output function return; temporary buffer t[>=2*max(m,n)] extern uint64_t bignum_coprime (uint64_t m, const uint64_t *x, uint64_t n, const uint64_t *y, uint64_t *t); // Copy bignum with zero-extension or truncation, z := x // Input x[n]; output z[k] extern void bignum_copy (uint64_t k, uint64_t *z, uint64_t n, const uint64_t *x); // Given table: uint64_t[height*width], copy table[idx*width...(idx+1)*width-1] // into z[0..width-1]. // This function is constant-time with respect to the value of `idx`. This is // achieved by reading the whole table and using the bit-masking to get the // `idx`-th row. // Input table[height*width]; output z[width] extern void bignum_copy_row_from_table (uint64_t *z, const uint64_t *table, uint64_t height, uint64_t width, uint64_t idx); // Given table: uint64_t[height*width], copy table[idx*width...(idx+1)*width-1] // into z[0..width-1]. width must be a multiple of 8. // This function is constant-time with respect to the value of `idx`. This is // achieved by reading the whole table and using the bit-masking to get the // `idx`-th row. // Input table[height*width]; output z[width] extern void bignum_copy_row_from_table_8n (uint64_t *z, const uint64_t *table, uint64_t height, uint64_t width, uint64_t idx); // Given table: uint64_t[height*16], copy table[idx*16...(idx+1)*16-1] into z[0..row-1]. // This function is constant-time with respect to the value of `idx`. This is // achieved by reading the whole table and using the bit-masking to get the // `idx`-th row. // Input table[height*16]; output z[16] extern void bignum_copy_row_from_table_16 (uint64_t *z, const uint64_t *table, uint64_t height, uint64_t idx); // Given table: uint64_t[height*32], copy table[idx*32...(idx+1)*32-1] into z[0..row-1]. // This function is constant-time with respect to the value of `idx`. This is // achieved by reading the whole table and using the bit-masking to get the // `idx`-th row. // Input table[height*32]; output z[32] extern void bignum_copy_row_from_table_32 (uint64_t *z, const uint64_t *table, uint64_t height, uint64_t idx); // Count trailing zero digits (64-bit words) // Input x[k]; output function return extern uint64_t bignum_ctd (uint64_t k, const uint64_t *x); // Count trailing zero bits // Input x[k]; output function return extern uint64_t bignum_ctz (uint64_t k, const uint64_t *x); // Convert from almost-Montgomery form, z := (x / 2^256) mod p_256 // Input x[4]; output z[4] extern void bignum_deamont_p256 (uint64_t z[S2N_BIGNUM_STATIC 4], const uint64_t x[S2N_BIGNUM_STATIC 4]); extern void bignum_deamont_p256_alt (uint64_t z[S2N_BIGNUM_STATIC 4], const uint64_t x[S2N_BIGNUM_STATIC 4]); // Convert from almost-Montgomery form, z := (x / 2^256) mod p_256k1 // Input x[4]; output z[4] extern void bignum_deamont_p256k1 (uint64_t z[S2N_BIGNUM_STATIC 4], const uint64_t x[S2N_BIGNUM_STATIC 4]); // Convert from almost-Montgomery form, z := (x / 2^384) mod p_384 // Input x[6]; output z[6] extern void bignum_deamont_p384 (uint64_t z[S2N_BIGNUM_STATIC 6], const uint64_t x[S2N_BIGNUM_STATIC 6]); extern void bignum_deamont_p384_alt (uint64_t z[S2N_BIGNUM_STATIC 6], const uint64_t x[S2N_BIGNUM_STATIC 6]); // Convert from almost-Montgomery form z := (x / 2^576) mod p_521 // Input x[9]; output z[9] extern void bignum_deamont_p521 (uint64_t z[S2N_BIGNUM_STATIC 9], const uint64_t x[S2N_BIGNUM_STATIC 9]); // Convert from almost-Montgomery form z := (x / 2^256) mod p_sm2 // Input x[4]; output z[4] extern void bignum_deamont_sm2 (uint64_t z[S2N_BIGNUM_STATIC 4], const uint64_t x[S2N_BIGNUM_STATIC 4]); // Convert from (almost-)Montgomery form z := (x / 2^{64k}) mod m // Inputs x[k], m[k]; output z[k] extern void bignum_demont (uint64_t k, uint64_t *z, const uint64_t *x, const uint64_t *m); // Convert from Montgomery form z := (x / 2^256) mod p_256, assuming x reduced // Input x[4]; output z[4] extern void bignum_demont_p256 (uint64_t z[S2N_BIGNUM_STATIC 4], const uint64_t x[S2N_BIGNUM_STATIC 4]); extern void bignum_demont_p256_alt (uint64_t z[S2N_BIGNUM_STATIC 4], const uint64_t x[S2N_BIGNUM_STATIC 4]); // Convert from Montgomery form z := (x / 2^256) mod p_256k1, assuming x reduced // Input x[4]; output z[4] extern void bignum_demont_p256k1 (uint64_t z[S2N_BIGNUM_STATIC 4], const uint64_t x[S2N_BIGNUM_STATIC 4]); // Convert from Montgomery form z := (x / 2^384) mod p_384, assuming x reduced // Input x[6]; output z[6] extern void bignum_demont_p384 (uint64_t z[S2N_BIGNUM_STATIC 6], const uint64_t x[S2N_BIGNUM_STATIC 6]); extern void bignum_demont_p384_alt (uint64_t z[S2N_BIGNUM_STATIC 6], const uint64_t x[S2N_BIGNUM_STATIC 6]); // Convert from Montgomery form z := (x / 2^576) mod p_521, assuming x reduced // Input x[9]; output z[9] extern void bignum_demont_p521 (uint64_t z[S2N_BIGNUM_STATIC 9], const uint64_t x[S2N_BIGNUM_STATIC 9]); // Convert from Montgomery form z := (x / 2^256) mod p_sm2, assuming x reduced // Input x[4]; output z[4] extern void bignum_demont_sm2 (uint64_t z[S2N_BIGNUM_STATIC 4], const uint64_t x[S2N_BIGNUM_STATIC 4]); // Select digit x[n] // Inputs x[k], n; output function return extern uint64_t bignum_digit (uint64_t k, const uint64_t *x, uint64_t n); // Return size of bignum in digits (64-bit word) // Input x[k]; output function return extern uint64_t bignum_digitsize (uint64_t k, const uint64_t *x); // Divide bignum by 10: z' := z div 10, returning remainder z mod 10 // Inputs z[k]; outputs function return (remainder) and z[k] extern uint64_t bignum_divmod10 (uint64_t k, uint64_t *z); // Double modulo p_25519, z := (2 * x) mod p_25519, assuming x reduced // Input x[4]; output z[4] extern void bignum_double_p25519 (uint64_t z[S2N_BIGNUM_STATIC 4], const uint64_t x[S2N_BIGNUM_STATIC 4]); // Double modulo p_256, z := (2 * x) mod p_256, assuming x reduced // Input x[4]; output z[4] extern void bignum_double_p256 (uint64_t z[S2N_BIGNUM_STATIC 4], const uint64_t x[S2N_BIGNUM_STATIC 4]); // Double modulo p_256k1, z := (2 * x) mod p_256k1, assuming x reduced // Input x[4]; output z[4] extern void bignum_double_p256k1 (uint64_t z[S2N_BIGNUM_STATIC 4], const uint64_t x[S2N_BIGNUM_STATIC 4]); // Double modulo p_384, z := (2 * x) mod p_384, assuming x reduced // Input x[6]; output z[6] extern void bignum_double_p384 (uint64_t z[S2N_BIGNUM_STATIC 6], const uint64_t x[S2N_BIGNUM_STATIC 6]); // Double modulo p_521, z := (2 * x) mod p_521, assuming x reduced // Input x[9]; output z[9] extern void bignum_double_p521 (uint64_t z[S2N_BIGNUM_STATIC 9], const uint64_t x[S2N_BIGNUM_STATIC 9]); // Double modulo p_sm2, z := (2 * x) mod p_sm2, assuming x reduced // Input x[4]; output z[4] extern void bignum_double_sm2 (uint64_t z[S2N_BIGNUM_STATIC 4], const uint64_t x[S2N_BIGNUM_STATIC 4]); // Extended Montgomery reduce, returning results in input-output buffer // Inputs z[2*k], m[k], w; outputs function return (extra result bit) and z[2*k] extern uint64_t bignum_emontredc (uint64_t k, uint64_t *z, const uint64_t *m, uint64_t w); // Extended Montgomery reduce in 8-digit blocks, results in input-output buffer // Inputs z[2*k], m[k], w; outputs function return (extra result bit) and z[2*k] extern uint64_t bignum_emontredc_8n (uint64_t k, uint64_t *z, const uint64_t *m, uint64_t w); // Inputs z[2*k], m[k], w; outputs function return (extra result bit) and z[2*k] // Temporary buffer m_precalc[12*(k/4-1)] extern uint64_t bignum_emontredc_8n_cdiff (uint64_t k, uint64_t *z, const uint64_t *m, uint64_t w, uint64_t *m_precalc); // Test bignums for equality, x = y // Inputs x[m], y[n]; output function return extern uint64_t bignum_eq (uint64_t m, const uint64_t *x, uint64_t n, const uint64_t *y); // Test bignum for even-ness // Input x[k]; output function return extern uint64_t bignum_even (uint64_t k, const uint64_t *x); // Convert 4-digit (256-bit) bignum from big-endian bytes // Input x[32] (bytes); output z[4] extern void bignum_frombebytes_4 (uint64_t z[S2N_BIGNUM_STATIC 4], const uint8_t x[S2N_BIGNUM_STATIC 32]); // Convert 6-digit (384-bit) bignum from big-endian bytes // Input x[48] (bytes); output z[6] extern void bignum_frombebytes_6 (uint64_t z[S2N_BIGNUM_STATIC 6], const uint8_t x[S2N_BIGNUM_STATIC 48]); // Convert 4-digit (256-bit) bignum from little-endian bytes // Input x[32] (bytes); output z[4] extern void bignum_fromlebytes_4 (uint64_t z[S2N_BIGNUM_STATIC 4], const uint8_t x[S2N_BIGNUM_STATIC 32]); // Convert 6-digit (384-bit) bignum from little-endian bytes // Input x[48] (bytes); output z[6] extern void bignum_fromlebytes_6 (uint64_t z[S2N_BIGNUM_STATIC 6], const uint8_t x[S2N_BIGNUM_STATIC 48]); // Convert little-endian bytes to 9-digit 528-bit bignum // Input x[66] (bytes); output z[9] extern void bignum_fromlebytes_p521 (uint64_t z[S2N_BIGNUM_STATIC 9],const uint8_t x[S2N_BIGNUM_STATIC 66]); // Compare bignums, x >= y // Inputs x[m], y[n]; output function return extern uint64_t bignum_ge (uint64_t m, const uint64_t *x, uint64_t n, const uint64_t *y); // Compare bignums, x > y // Inputs x[m], y[n]; output function return extern uint64_t bignum_gt (uint64_t m, const uint64_t *x, uint64_t n, const uint64_t *y); // Halve modulo p_256, z := (x / 2) mod p_256, assuming x reduced // Input x[4]; output z[4] extern void bignum_half_p256 (uint64_t z[S2N_BIGNUM_STATIC 4], const uint64_t x[S2N_BIGNUM_STATIC 4]); // Halve modulo p_256k1, z := (x / 2) mod p_256k1, assuming x reduced // Input x[4]; output z[4] extern void bignum_half_p256k1 (uint64_t z[S2N_BIGNUM_STATIC 4], const uint64_t x[S2N_BIGNUM_STATIC 4]); // Halve modulo p_384, z := (x / 2) mod p_384, assuming x reduced // Input x[6]; output z[6] extern void bignum_half_p384 (uint64_t z[S2N_BIGNUM_STATIC 6], const uint64_t x[S2N_BIGNUM_STATIC 6]); // Halve modulo p_521, z := (x / 2) mod p_521, assuming x reduced // Input x[9]; output z[9] extern void bignum_half_p521 (uint64_t z[S2N_BIGNUM_STATIC 9], const uint64_t x[S2N_BIGNUM_STATIC 9]); // Halve modulo p_sm2, z := (x / 2) mod p_sm2, assuming x reduced // Input x[4]; output z[4] extern void bignum_half_sm2 (uint64_t z[S2N_BIGNUM_STATIC 4], const uint64_t x[S2N_BIGNUM_STATIC 4]); // Modular inverse modulo p_25519 = 2^255 - 19 // Input x[4]; output z[4] extern void bignum_inv_p25519(uint64_t z[S2N_BIGNUM_STATIC 4],const uint64_t x[S2N_BIGNUM_STATIC 4]); // Modular inverse modulo p_256 = 2^256 - 2^224 + 2^192 + 2^96 - 1 // Input x[4]; output z[4] extern void bignum_inv_p256(uint64_t z[S2N_BIGNUM_STATIC 4],const uint64_t x[S2N_BIGNUM_STATIC 4]); // Modular inverse modulo p_384 = 2^384 - 2^128 - 2^96 + 2^32 - 1 // Input x[6]; output z[6] extern void bignum_inv_p384(uint64_t z[S2N_BIGNUM_STATIC 6],const uint64_t x[S2N_BIGNUM_STATIC 6]); // Modular inverse modulo p_521 = 2^521 - 1 // Input x[9]; output z[9] extern void bignum_inv_p521(uint64_t z[S2N_BIGNUM_STATIC 9],const uint64_t x[S2N_BIGNUM_STATIC 9]); // Modular inverse modulo p_sm2 = 2^256 - 2^224 - 2^96 + 2^64 - 1 // Input x[4]; output z[4] extern void bignum_inv_sm2(uint64_t z[S2N_BIGNUM_STATIC 4],const uint64_t x[S2N_BIGNUM_STATIC 4]); // Inverse square root modulo p_25519 // Input x[4]; output function return (Legendre symbol) and z[4] extern int64_t bignum_invsqrt_p25519(uint64_t z[S2N_BIGNUM_STATIC 4],const uint64_t x[S2N_BIGNUM_STATIC 4]); extern int64_t bignum_invsqrt_p25519_alt(uint64_t z[S2N_BIGNUM_STATIC 4],const uint64_t x[S2N_BIGNUM_STATIC 4]); // Test bignum for zero-ness, x = 0 // Input x[k]; output function return extern uint64_t bignum_iszero (uint64_t k, const uint64_t *x); // Multiply z := x * y // Inputs x[16], y[16]; output z[32]; temporary buffer t[>=32] extern void bignum_kmul_16_32 (uint64_t z[S2N_BIGNUM_STATIC 32], const uint64_t x[S2N_BIGNUM_STATIC 16], const uint64_t y[S2N_BIGNUM_STATIC 16], uint64_t t[S2N_BIGNUM_STATIC 32]); // Multiply z := x * y // Inputs x[32], y[32]; output z[64]; temporary buffer t[>=96] extern void bignum_kmul_32_64 (uint64_t z[S2N_BIGNUM_STATIC 64], const uint64_t x[S2N_BIGNUM_STATIC 32], const uint64_t y[S2N_BIGNUM_STATIC 32], uint64_t t[S2N_BIGNUM_STATIC 96]); // Square, z := x^2 // Input x[16]; output z[32]; temporary buffer t[>=24] extern void bignum_ksqr_16_32 (uint64_t z[S2N_BIGNUM_STATIC 32], const uint64_t x[S2N_BIGNUM_STATIC 16], uint64_t t[S2N_BIGNUM_STATIC 24]); // Square, z := x^2 // Input x[32]; output z[64]; temporary buffer t[>=72] extern void bignum_ksqr_32_64 (uint64_t z[S2N_BIGNUM_STATIC 64], const uint64_t x[S2N_BIGNUM_STATIC 32], uint64_t t[S2N_BIGNUM_STATIC 72]); // Compare bignums, x <= y // Inputs x[m], y[n]; output function return extern uint64_t bignum_le (uint64_t m, const uint64_t *x, uint64_t n, const uint64_t *y); // Convert 4-digit (256-bit) bignum to/from little-endian form // Input x[4]; output z[4] extern void bignum_littleendian_4 (uint64_t z[S2N_BIGNUM_STATIC 4], const uint64_t x[S2N_BIGNUM_STATIC 4]); // Convert 6-digit (384-bit) bignum to/from little-endian form // Input x[6]; output z[6] extern void bignum_littleendian_6 (uint64_t z[S2N_BIGNUM_STATIC 6], const uint64_t x[S2N_BIGNUM_STATIC 6]); // Compare bignums, x < y // Inputs x[m], y[n]; output function return extern uint64_t bignum_lt (uint64_t m, const uint64_t *x, uint64_t n, const uint64_t *y); // Multiply-add, z := z + x * y // Inputs x[m], y[n]; outputs function return (carry-out) and z[k] extern uint64_t bignum_madd (uint64_t k, uint64_t *z, uint64_t m, const uint64_t *x, uint64_t n, const uint64_t *y); // Multiply-add modulo the order of the curve25519/edwards25519 basepoint // Inputs x[4], y[4], c[4]; output z[4] extern void bignum_madd_n25519 (uint64_t z[S2N_BIGNUM_STATIC 4], const uint64_t x[S2N_BIGNUM_STATIC 4], const uint64_t y[S2N_BIGNUM_STATIC 4], const uint64_t c[S2N_BIGNUM_STATIC 4]); extern void bignum_madd_n25519_alt (uint64_t z[S2N_BIGNUM_STATIC 4], const uint64_t x[S2N_BIGNUM_STATIC 4], const uint64_t y[S2N_BIGNUM_STATIC 4], const uint64_t c[S2N_BIGNUM_STATIC 4]); // Reduce modulo group order, z := x mod m_25519 // Input x[4]; output z[4] extern void bignum_mod_m25519_4 (uint64_t z[S2N_BIGNUM_STATIC 4], const uint64_t x[S2N_BIGNUM_STATIC 4]); // Reduce modulo basepoint order, z := x mod n_25519 // Input x[k]; output z[4] extern void bignum_mod_n25519 (uint64_t z[S2N_BIGNUM_STATIC 4], uint64_t k, const uint64_t *x); // Reduce modulo basepoint order, z := x mod n_25519 // Input x[4]; output z[4] extern void bignum_mod_n25519_4 (uint64_t z[S2N_BIGNUM_STATIC 4], const uint64_t x[S2N_BIGNUM_STATIC 4]); // Reduce modulo group order, z := x mod n_256 // Input x[k]; output z[4] extern void bignum_mod_n256 (uint64_t z[S2N_BIGNUM_STATIC 4], uint64_t k, const uint64_t *x); extern void bignum_mod_n256_alt (uint64_t z[S2N_BIGNUM_STATIC 4], uint64_t k, const uint64_t *x); // Reduce modulo group order, z := x mod n_256 // Input x[4]; output z[4] extern void bignum_mod_n256_4 (uint64_t z[S2N_BIGNUM_STATIC 4], const uint64_t x[S2N_BIGNUM_STATIC 4]); // Reduce modulo group order, z := x mod n_256k1 // Input x[4]; output z[4] extern void bignum_mod_n256k1_4 (uint64_t z[S2N_BIGNUM_STATIC 4], const uint64_t x[S2N_BIGNUM_STATIC 4]); // Reduce modulo group order, z := x mod n_384 // Input x[k]; output z[6] extern void bignum_mod_n384 (uint64_t z[S2N_BIGNUM_STATIC 6], uint64_t k, const uint64_t *x); extern void bignum_mod_n384_alt (uint64_t z[S2N_BIGNUM_STATIC 6], uint64_t k, const uint64_t *x); // Reduce modulo group order, z := x mod n_384 // Input x[6]; output z[6] extern void bignum_mod_n384_6 (uint64_t z[S2N_BIGNUM_STATIC 6], const uint64_t x[S2N_BIGNUM_STATIC 6]); // Reduce modulo group order, z := x mod n_521 // Input x[9]; output z[9] extern void bignum_mod_n521_9 (uint64_t z[S2N_BIGNUM_STATIC 9], const uint64_t x[S2N_BIGNUM_STATIC 9]); extern void bignum_mod_n521_9_alt (uint64_t z[S2N_BIGNUM_STATIC 9], const uint64_t x[S2N_BIGNUM_STATIC 9]); // Reduce modulo group order, z := x mod n_sm2 // Input x[k]; output z[4] extern void bignum_mod_nsm2 (uint64_t z[S2N_BIGNUM_STATIC 4], uint64_t k, const uint64_t *x); extern void bignum_mod_nsm2_alt (uint64_t z[S2N_BIGNUM_STATIC 4], uint64_t k, const uint64_t *x); // Reduce modulo group order, z := x mod n_sm2 // Input x[4]; output z[4] extern void bignum_mod_nsm2_4 (uint64_t z[S2N_BIGNUM_STATIC 4], const uint64_t x[S2N_BIGNUM_STATIC 4]); // Reduce modulo field characteristic, z := x mod p_25519 // Input x[4]; output z[4] extern void bignum_mod_p25519_4 (uint64_t z[S2N_BIGNUM_STATIC 4], const uint64_t x[S2N_BIGNUM_STATIC 4]); // Reduce modulo field characteristic, z := x mod p_256 // Input x[k]; output z[4] extern void bignum_mod_p256 (uint64_t z[S2N_BIGNUM_STATIC 4], uint64_t k, const uint64_t *x); extern void bignum_mod_p256_alt (uint64_t z[S2N_BIGNUM_STATIC 4], uint64_t k, const uint64_t *x); // Reduce modulo field characteristic, z := x mod p_256 // Input x[4]; output z[4] extern void bignum_mod_p256_4 (uint64_t z[S2N_BIGNUM_STATIC 4], const uint64_t x[S2N_BIGNUM_STATIC 4]); // Reduce modulo field characteristic, z := x mod p_256k1 // Input x[4]; output z[4] extern void bignum_mod_p256k1_4 (uint64_t z[S2N_BIGNUM_STATIC 4], const uint64_t x[S2N_BIGNUM_STATIC 4]); // Reduce modulo field characteristic, z := x mod p_384 // Input x[k]; output z[6] extern void bignum_mod_p384 (uint64_t z[S2N_BIGNUM_STATIC 6], uint64_t k, const uint64_t *x); extern void bignum_mod_p384_alt (uint64_t z[S2N_BIGNUM_STATIC 6], uint64_t k, const uint64_t *x); // Reduce modulo field characteristic, z := x mod p_384 // Input x[6]; output z[6] extern void bignum_mod_p384_6 (uint64_t z[S2N_BIGNUM_STATIC 6], const uint64_t x[S2N_BIGNUM_STATIC 6]); // Reduce modulo field characteristic, z := x mod p_521 // Input x[9]; output z[9] extern void bignum_mod_p521_9 (uint64_t z[S2N_BIGNUM_STATIC 9], const uint64_t x[S2N_BIGNUM_STATIC 9]); // Reduce modulo field characteristic, z := x mod p_sm2 // Input x[k]; output z[4] extern void bignum_mod_sm2 (uint64_t z[S2N_BIGNUM_STATIC 4], uint64_t k, const uint64_t *x); // Reduce modulo field characteristic, z := x mod p_sm2 // Input x[4]; output z[4] extern void bignum_mod_sm2_4 (uint64_t z[S2N_BIGNUM_STATIC 4], const uint64_t x[S2N_BIGNUM_STATIC 4]); // Add modulo m, z := (x + y) mod m, assuming x and y reduced // Inputs x[k], y[k], m[k]; output z[k] extern void bignum_modadd (uint64_t k, uint64_t *z, const uint64_t *x, const uint64_t *y, const uint64_t *m); // Double modulo m, z := (2 * x) mod m, assuming x reduced // Inputs x[k], m[k]; output z[k] extern void bignum_moddouble (uint64_t k, uint64_t *z, const uint64_t *x, const uint64_t *m); // Modular exponentiation for arbitrary odd modulus, z := (a^p) mod m // Inputs a[k], p[k], m[k]; output z[k], temporary buffer t[>=3*k] extern void bignum_modexp(uint64_t k,uint64_t *z, const uint64_t *a,const uint64_t *p,const uint64_t *m,uint64_t *t); // Compute "modification" constant z := 2^{64k} mod m // Input m[k]; output z[k]; temporary buffer t[>=k] extern void bignum_modifier (uint64_t k, uint64_t *z, const uint64_t *m, uint64_t *t); // Invert modulo m, z = (1/a) mod b, assuming b is an odd number > 1, a coprime to b // Inputs a[k], b[k]; output z[k]; temporary buffer t[>=3*k] extern void bignum_modinv (uint64_t k, uint64_t *z, const uint64_t *a, const uint64_t *b, uint64_t *t); // Optionally negate modulo m, z := (-x) mod m (if p nonzero) or z := x (if p zero), assuming x reduced // Inputs p, x[k], m[k]; output z[k] extern void bignum_modoptneg (uint64_t k, uint64_t *z, uint64_t p, const uint64_t *x, const uint64_t *m); // Subtract modulo m, z := (x - y) mod m, assuming x and y reduced // Inputs x[k], y[k], m[k]; output z[k] extern void bignum_modsub (uint64_t k, uint64_t *z, const uint64_t *x, const uint64_t *y, const uint64_t *m); // Compute "montification" constant z := 2^{128k} mod m // Input m[k]; output z[k]; temporary buffer t[>=k] extern void bignum_montifier (uint64_t k, uint64_t *z, const uint64_t *m, uint64_t *t); // Montgomery inverse modulo p_256 = 2^256 - 2^224 + 2^192 + 2^96 - 1 // Input x[4]; output z[4] extern void bignum_montinv_p256(uint64_t z[S2N_BIGNUM_STATIC 4],const uint64_t x[S2N_BIGNUM_STATIC 4]); // Montgomery inverse modulo p_384 = 2^384 - 2^128 - 2^96 + 2^32 - 1 // Input x[6]; output z[6] extern void bignum_montinv_p384(uint64_t z[S2N_BIGNUM_STATIC 6],const uint64_t x[S2N_BIGNUM_STATIC 6]); // Montgomery inverse modulo p_sm2 = 2^256 - 2^224 - 2^96 + 2^64 - 1 // Input x[4]; output z[4] extern void bignum_montinv_sm2(uint64_t z[S2N_BIGNUM_STATIC 4],const uint64_t x[S2N_BIGNUM_STATIC 4]); // Montgomery multiply, z := (x * y / 2^{64k}) mod m // Inputs x[k], y[k], m[k]; output z[k] extern void bignum_montmul (uint64_t k, uint64_t *z, const uint64_t *x, const uint64_t *y, const uint64_t *m); // Montgomery multiply, z := (x * y / 2^256) mod p_256 // Inputs x[4], y[4]; output z[4] extern void bignum_montmul_p256 (uint64_t z[S2N_BIGNUM_STATIC 4], const uint64_t x[S2N_BIGNUM_STATIC 4], const uint64_t y[S2N_BIGNUM_STATIC 4]); extern void bignum_montmul_p256_alt (uint64_t z[S2N_BIGNUM_STATIC 4], const uint64_t x[S2N_BIGNUM_STATIC 4], const uint64_t y[S2N_BIGNUM_STATIC 4]); // Montgomery multiply, z := (x * y / 2^256) mod p_256k1 // Inputs x[4], y[4]; output z[4] extern void bignum_montmul_p256k1 (uint64_t z[S2N_BIGNUM_STATIC 4], const uint64_t x[S2N_BIGNUM_STATIC 4], const uint64_t y[S2N_BIGNUM_STATIC 4]); extern void bignum_montmul_p256k1_alt (uint64_t z[S2N_BIGNUM_STATIC 4], const uint64_t x[S2N_BIGNUM_STATIC 4], const uint64_t y[S2N_BIGNUM_STATIC 4]); // Montgomery multiply, z := (x * y / 2^384) mod p_384 // Inputs x[6], y[6]; output z[6] extern void bignum_montmul_p384 (uint64_t z[S2N_BIGNUM_STATIC 6], const uint64_t x[S2N_BIGNUM_STATIC 6], const uint64_t y[S2N_BIGNUM_STATIC 6]); extern void bignum_montmul_p384_alt (uint64_t z[S2N_BIGNUM_STATIC 6], const uint64_t x[S2N_BIGNUM_STATIC 6], const uint64_t y[S2N_BIGNUM_STATIC 6]); // Montgomery multiply, z := (x * y / 2^576) mod p_521 // Inputs x[9], y[9]; output z[9] extern void bignum_montmul_p521 (uint64_t z[S2N_BIGNUM_STATIC 9], const uint64_t x[S2N_BIGNUM_STATIC 9], const uint64_t y[S2N_BIGNUM_STATIC 9]); extern void bignum_montmul_p521_alt (uint64_t z[S2N_BIGNUM_STATIC 9], const uint64_t x[S2N_BIGNUM_STATIC 9], const uint64_t y[S2N_BIGNUM_STATIC 9]); // Montgomery multiply, z := (x * y / 2^256) mod p_sm2 // Inputs x[4], y[4]; output z[4] extern void bignum_montmul_sm2 (uint64_t z[S2N_BIGNUM_STATIC 4], const uint64_t x[S2N_BIGNUM_STATIC 4], const uint64_t y[S2N_BIGNUM_STATIC 4]); extern void bignum_montmul_sm2_alt (uint64_t z[S2N_BIGNUM_STATIC 4], const uint64_t x[S2N_BIGNUM_STATIC 4], const uint64_t y[S2N_BIGNUM_STATIC 4]); // Montgomery reduce, z := (x' / 2^{64p}) MOD m // Inputs x[n], m[k], p; output z[k] extern void bignum_montredc (uint64_t k, uint64_t *z, uint64_t n, const uint64_t *x, const uint64_t *m, uint64_t p); // Montgomery square, z := (x^2 / 2^{64k}) mod m // Inputs x[k], m[k]; output z[k] extern void bignum_montsqr (uint64_t k, uint64_t *z, const uint64_t *x, const uint64_t *m); // Montgomery square, z := (x^2 / 2^256) mod p_256 // Input x[4]; output z[4] extern void bignum_montsqr_p256 (uint64_t z[S2N_BIGNUM_STATIC 4], const uint64_t x[S2N_BIGNUM_STATIC 4]); extern void bignum_montsqr_p256_alt (uint64_t z[S2N_BIGNUM_STATIC 4], const uint64_t x[S2N_BIGNUM_STATIC 4]); // Montgomery square, z := (x^2 / 2^256) mod p_256k1 // Input x[4]; output z[4] extern void bignum_montsqr_p256k1 (uint64_t z[S2N_BIGNUM_STATIC 4], const uint64_t x[S2N_BIGNUM_STATIC 4]); extern void bignum_montsqr_p256k1_alt (uint64_t z[S2N_BIGNUM_STATIC 4], const uint64_t x[S2N_BIGNUM_STATIC 4]); // Montgomery square, z := (x^2 / 2^384) mod p_384 // Input x[6]; output z[6] extern void bignum_montsqr_p384 (uint64_t z[S2N_BIGNUM_STATIC 6], const uint64_t x[S2N_BIGNUM_STATIC 6]); extern void bignum_montsqr_p384_alt (uint64_t z[S2N_BIGNUM_STATIC 6], const uint64_t x[S2N_BIGNUM_STATIC 6]); // Montgomery square, z := (x^2 / 2^576) mod p_521 // Input x[9]; output z[9] extern void bignum_montsqr_p521 (uint64_t z[S2N_BIGNUM_STATIC 9], const uint64_t x[S2N_BIGNUM_STATIC 9]); extern void bignum_montsqr_p521_alt (uint64_t z[S2N_BIGNUM_STATIC 9], const uint64_t x[S2N_BIGNUM_STATIC 9]); // Montgomery square, z := (x^2 / 2^256) mod p_sm2 // Input x[4]; output z[4] extern void bignum_montsqr_sm2 (uint64_t z[S2N_BIGNUM_STATIC 4], const uint64_t x[S2N_BIGNUM_STATIC 4]); extern void bignum_montsqr_sm2_alt (uint64_t z[S2N_BIGNUM_STATIC 4], const uint64_t x[S2N_BIGNUM_STATIC 4]); // Multiply z := x * y // Inputs x[m], y[n]; output z[k] extern void bignum_mul (uint64_t k, uint64_t *z, uint64_t m, const uint64_t *x, uint64_t n, const uint64_t *y); // Multiply z := x * y // Inputs x[4], y[4]; output z[8] extern void bignum_mul_4_8 (uint64_t z[S2N_BIGNUM_STATIC 8], const uint64_t x[S2N_BIGNUM_STATIC 4], const uint64_t y[S2N_BIGNUM_STATIC 4]); extern void bignum_mul_4_8_alt (uint64_t z[S2N_BIGNUM_STATIC 8], const uint64_t x[S2N_BIGNUM_STATIC 4], const uint64_t y[S2N_BIGNUM_STATIC 4]); // Multiply z := x * y // Inputs x[6], y[6]; output z[12] extern void bignum_mul_6_12 (uint64_t z[S2N_BIGNUM_STATIC 12], const uint64_t x[S2N_BIGNUM_STATIC 6], const uint64_t y[S2N_BIGNUM_STATIC 6]); extern void bignum_mul_6_12_alt (uint64_t z[S2N_BIGNUM_STATIC 12], const uint64_t x[S2N_BIGNUM_STATIC 6], const uint64_t y[S2N_BIGNUM_STATIC 6]); // Multiply z := x * y // Inputs x[8], y[8]; output z[16] extern void bignum_mul_8_16 (uint64_t z[S2N_BIGNUM_STATIC 16], const uint64_t x[S2N_BIGNUM_STATIC 8], const uint64_t y[S2N_BIGNUM_STATIC 8]); extern void bignum_mul_8_16_alt (uint64_t z[S2N_BIGNUM_STATIC 16], const uint64_t x[S2N_BIGNUM_STATIC 8], const uint64_t y[S2N_BIGNUM_STATIC 8]); // Multiply modulo p_25519, z := (x * y) mod p_25519 // Inputs x[4], y[4]; output z[4] extern void bignum_mul_p25519 (uint64_t z[S2N_BIGNUM_STATIC 4], const uint64_t x[S2N_BIGNUM_STATIC 4], const uint64_t y[S2N_BIGNUM_STATIC 4]); extern void bignum_mul_p25519_alt (uint64_t z[S2N_BIGNUM_STATIC 4], const uint64_t x[S2N_BIGNUM_STATIC 4], const uint64_t y[S2N_BIGNUM_STATIC 4]); // Multiply modulo p_256k1, z := (x * y) mod p_256k1 // Inputs x[4], y[4]; output z[4] extern void bignum_mul_p256k1 (uint64_t z[S2N_BIGNUM_STATIC 4], const uint64_t x[S2N_BIGNUM_STATIC 4], const uint64_t y[S2N_BIGNUM_STATIC 4]); extern void bignum_mul_p256k1_alt (uint64_t z[S2N_BIGNUM_STATIC 4], const uint64_t x[S2N_BIGNUM_STATIC 4], const uint64_t y[S2N_BIGNUM_STATIC 4]); // Multiply modulo p_521, z := (x * y) mod p_521, assuming x and y reduced // Inputs x[9], y[9]; output z[9] extern void bignum_mul_p521 (uint64_t z[S2N_BIGNUM_STATIC 9], const uint64_t x[S2N_BIGNUM_STATIC 9], const uint64_t y[S2N_BIGNUM_STATIC 9]); extern void bignum_mul_p521_alt (uint64_t z[S2N_BIGNUM_STATIC 9], const uint64_t x[S2N_BIGNUM_STATIC 9], const uint64_t y[S2N_BIGNUM_STATIC 9]); // Multiply bignum by 10 and add word: z := 10 * z + d // Inputs z[k], d; outputs function return (carry) and z[k] extern uint64_t bignum_muladd10 (uint64_t k, uint64_t *z, uint64_t d); // Multiplex/select z := x (if p nonzero) or z := y (if p zero) // Inputs p, x[k], y[k]; output z[k] extern void bignum_mux (uint64_t p, uint64_t k, uint64_t *z, const uint64_t *x, const uint64_t *y); // 256-bit multiplex/select z := x (if p nonzero) or z := y (if p zero) // Inputs p, x[4], y[4]; output z[4] extern void bignum_mux_4 (uint64_t p, uint64_t z[S2N_BIGNUM_STATIC 4],const uint64_t x[S2N_BIGNUM_STATIC 4], const uint64_t y[S2N_BIGNUM_STATIC 4]); // 384-bit multiplex/select z := x (if p nonzero) or z := y (if p zero) // Inputs p, x[6], y[6]; output z[6] extern void bignum_mux_6 (uint64_t p, uint64_t z[S2N_BIGNUM_STATIC 6],const uint64_t x[S2N_BIGNUM_STATIC 6], const uint64_t y[S2N_BIGNUM_STATIC 6]); // Select element from 16-element table, z := xs[k*i] // Inputs xs[16*k], i; output z[k] extern void bignum_mux16 (uint64_t k, uint64_t *z, const uint64_t *xs, uint64_t i); // Negate modulo p_25519, z := (-x) mod p_25519, assuming x reduced // Input x[4]; output z[4] extern void bignum_neg_p25519 (uint64_t z[S2N_BIGNUM_STATIC 4], const uint64_t x[S2N_BIGNUM_STATIC 4]); // Negate modulo p_256, z := (-x) mod p_256, assuming x reduced // Input x[4]; output z[4] extern void bignum_neg_p256 (uint64_t z[S2N_BIGNUM_STATIC 4], const uint64_t x[S2N_BIGNUM_STATIC 4]); // Negate modulo p_256k1, z := (-x) mod p_256k1, assuming x reduced // Input x[4]; output z[4] extern void bignum_neg_p256k1 (uint64_t z[S2N_BIGNUM_STATIC 4], const uint64_t x[S2N_BIGNUM_STATIC 4]); // Negate modulo p_384, z := (-x) mod p_384, assuming x reduced // Input x[6]; output z[6] extern void bignum_neg_p384 (uint64_t z[S2N_BIGNUM_STATIC 6], const uint64_t x[S2N_BIGNUM_STATIC 6]); // Negate modulo p_521, z := (-x) mod p_521, assuming x reduced // Input x[9]; output z[9] extern void bignum_neg_p521 (uint64_t z[S2N_BIGNUM_STATIC 9], const uint64_t x[S2N_BIGNUM_STATIC 9]); // Negate modulo p_sm2, z := (-x) mod p_sm2, assuming x reduced // Input x[4]; output z[4] extern void bignum_neg_sm2 (uint64_t z[S2N_BIGNUM_STATIC 4], const uint64_t x[S2N_BIGNUM_STATIC 4]); // Negated modular inverse, z := (-1/x) mod 2^{64k} // Input x[k]; output z[k] extern void bignum_negmodinv (uint64_t k, uint64_t *z, const uint64_t *x); // Test bignum for nonzero-ness x =/= 0 // Input x[k]; output function return extern uint64_t bignum_nonzero (uint64_t k, const uint64_t *x); // Test 256-bit bignum for nonzero-ness x =/= 0 // Input x[4]; output function return extern uint64_t bignum_nonzero_4(const uint64_t x[S2N_BIGNUM_STATIC 4]); // Test 384-bit bignum for nonzero-ness x =/= 0 // Input x[6]; output function return extern uint64_t bignum_nonzero_6(const uint64_t x[S2N_BIGNUM_STATIC 6]); // Normalize bignum in-place by shifting left till top bit is 1 // Input z[k]; outputs function return (bits shifted left) and z[k] extern uint64_t bignum_normalize (uint64_t k, uint64_t *z); // Test bignum for odd-ness // Input x[k]; output function return extern uint64_t bignum_odd (uint64_t k, const uint64_t *x); // Convert single digit to bignum, z := n // Input n; output z[k] extern void bignum_of_word (uint64_t k, uint64_t *z, uint64_t n); // Optionally add, z := x + y (if p nonzero) or z := x (if p zero) // Inputs x[k], p, y[k]; outputs function return (carry-out) and z[k] extern uint64_t bignum_optadd (uint64_t k, uint64_t *z, const uint64_t *x, uint64_t p, const uint64_t *y); // Optionally negate, z := -x (if p nonzero) or z := x (if p zero) // Inputs p, x[k]; outputs function return (nonzero input) and z[k] extern uint64_t bignum_optneg (uint64_t k, uint64_t *z, uint64_t p, const uint64_t *x); // Optionally negate modulo p_25519, z := (-x) mod p_25519 (if p nonzero) or z := x (if p zero), assuming x reduced // Inputs p, x[4]; output z[4] extern void bignum_optneg_p25519 (uint64_t z[S2N_BIGNUM_STATIC 4], uint64_t p, const uint64_t x[S2N_BIGNUM_STATIC 4]); // Optionally negate modulo p_256, z := (-x) mod p_256 (if p nonzero) or z := x (if p zero), assuming x reduced // Inputs p, x[4]; output z[4] extern void bignum_optneg_p256 (uint64_t z[S2N_BIGNUM_STATIC 4], uint64_t p, const uint64_t x[S2N_BIGNUM_STATIC 4]); // Optionally negate modulo p_256k1, z := (-x) mod p_256k1 (if p nonzero) or z := x (if p zero), assuming x reduced // Inputs p, x[4]; output z[4] extern void bignum_optneg_p256k1 (uint64_t z[S2N_BIGNUM_STATIC 4], uint64_t p, const uint64_t x[S2N_BIGNUM_STATIC 4]); // Optionally negate modulo p_384, z := (-x) mod p_384 (if p nonzero) or z := x (if p zero), assuming x reduced // Inputs p, x[6]; output z[6] extern void bignum_optneg_p384 (uint64_t z[S2N_BIGNUM_STATIC 6], uint64_t p, const uint64_t x[S2N_BIGNUM_STATIC 6]); // Optionally negate modulo p_521, z := (-x) mod p_521 (if p nonzero) or z := x (if p zero), assuming x reduced // Inputs p, x[9]; output z[9] extern void bignum_optneg_p521 (uint64_t z[S2N_BIGNUM_STATIC 9], uint64_t p, const uint64_t x[S2N_BIGNUM_STATIC 9]); // Optionally negate modulo p_sm2, z := (-x) mod p_sm2 (if p nonzero) or z := x (if p zero), assuming x reduced // Inputs p, x[4]; output z[4] extern void bignum_optneg_sm2 (uint64_t z[S2N_BIGNUM_STATIC 4], uint64_t p, const uint64_t x[S2N_BIGNUM_STATIC 4]); // Optionally subtract, z := x - y (if p nonzero) or z := x (if p zero) // Inputs x[k], p, y[k]; outputs function return (carry-out) and z[k] extern uint64_t bignum_optsub (uint64_t k, uint64_t *z, const uint64_t *x, uint64_t p, const uint64_t *y); // Optionally subtract or add, z := x + sgn(p) * y interpreting p as signed // Inputs x[k], p, y[k]; outputs function return (carry-out) and z[k] extern uint64_t bignum_optsubadd (uint64_t k, uint64_t *z, const uint64_t *x, uint64_t p, const uint64_t *y); // Return bignum of power of 2, z := 2^n // Input n; output z[k] extern void bignum_pow2 (uint64_t k, uint64_t *z, uint64_t n); // Shift bignum left by c < 64 bits z := x * 2^c // Inputs x[n], c; outputs function return (carry-out) and z[k] extern uint64_t bignum_shl_small (uint64_t k, uint64_t *z, uint64_t n, const uint64_t *x, uint64_t c); // Shift bignum right by c < 64 bits z := floor(x / 2^c) // Inputs x[n], c; outputs function return (bits shifted out) and z[k] extern uint64_t bignum_shr_small (uint64_t k, uint64_t *z, uint64_t n, const uint64_t *x, uint64_t c); // Square, z := x^2 // Input x[n]; output z[k] extern void bignum_sqr (uint64_t k, uint64_t *z, uint64_t n, const uint64_t *x); // Square, z := x^2 // Input x[4]; output z[8] extern void bignum_sqr_4_8 (uint64_t z[S2N_BIGNUM_STATIC 8], const uint64_t x[S2N_BIGNUM_STATIC 4]); extern void bignum_sqr_4_8_alt (uint64_t z[S2N_BIGNUM_STATIC 8], const uint64_t x[S2N_BIGNUM_STATIC 4]); // Square, z := x^2 // Input x[6]; output z[12] extern void bignum_sqr_6_12 (uint64_t z[S2N_BIGNUM_STATIC 12], const uint64_t x[S2N_BIGNUM_STATIC 6]); extern void bignum_sqr_6_12_alt (uint64_t z[S2N_BIGNUM_STATIC 12], const uint64_t x[S2N_BIGNUM_STATIC 6]); // Square, z := x^2 // Input x[8]; output z[16] extern void bignum_sqr_8_16 (uint64_t z[S2N_BIGNUM_STATIC 16], const uint64_t x[S2N_BIGNUM_STATIC 8]); extern void bignum_sqr_8_16_alt (uint64_t z[S2N_BIGNUM_STATIC 16], const uint64_t x[S2N_BIGNUM_STATIC 8]); // Square modulo p_25519, z := (x^2) mod p_25519 // Input x[4]; output z[4] extern void bignum_sqr_p25519 (uint64_t z[S2N_BIGNUM_STATIC 4], const uint64_t x[S2N_BIGNUM_STATIC 4]); extern void bignum_sqr_p25519_alt (uint64_t z[S2N_BIGNUM_STATIC 4], const uint64_t x[S2N_BIGNUM_STATIC 4]); // Square modulo p_256k1, z := (x^2) mod p_256k1 // Input x[4]; output z[4] extern void bignum_sqr_p256k1 (uint64_t z[S2N_BIGNUM_STATIC 4], const uint64_t x[S2N_BIGNUM_STATIC 4]); extern void bignum_sqr_p256k1_alt (uint64_t z[S2N_BIGNUM_STATIC 4], const uint64_t x[S2N_BIGNUM_STATIC 4]); // Square modulo p_521, z := (x^2) mod p_521, assuming x reduced // Input x[9]; output z[9] extern void bignum_sqr_p521 (uint64_t z[S2N_BIGNUM_STATIC 9], const uint64_t x[S2N_BIGNUM_STATIC 9]); extern void bignum_sqr_p521_alt (uint64_t z[S2N_BIGNUM_STATIC 9], const uint64_t x[S2N_BIGNUM_STATIC 9]); // Square root modulo p_25519 // Input x[4]; output function return (Legendre symbol) and z[4] extern int64_t bignum_sqrt_p25519(uint64_t z[S2N_BIGNUM_STATIC 4],const uint64_t x[S2N_BIGNUM_STATIC 4]); extern int64_t bignum_sqrt_p25519_alt(uint64_t z[S2N_BIGNUM_STATIC 4],const uint64_t x[S2N_BIGNUM_STATIC 4]); // Subtract, z := x - y // Inputs x[m], y[n]; outputs function return (carry-out) and z[p] extern uint64_t bignum_sub (uint64_t p, uint64_t *z, uint64_t m, const uint64_t *x, uint64_t n, const uint64_t *y); // Subtract modulo p_25519, z := (x - y) mod p_25519, assuming x and y reduced // Inputs x[4], y[4]; output z[4] extern void bignum_sub_p25519 (uint64_t z[S2N_BIGNUM_STATIC 4], const uint64_t x[S2N_BIGNUM_STATIC 4], const uint64_t y[S2N_BIGNUM_STATIC 4]); // Subtract modulo p_256, z := (x - y) mod p_256, assuming x and y reduced // Inputs x[4], y[4]; output z[4] extern void bignum_sub_p256 (uint64_t z[S2N_BIGNUM_STATIC 4], const uint64_t x[S2N_BIGNUM_STATIC 4], const uint64_t y[S2N_BIGNUM_STATIC 4]); // Subtract modulo p_256k1, z := (x - y) mod p_256k1, assuming x and y reduced // Inputs x[4], y[4]; output z[4] extern void bignum_sub_p256k1 (uint64_t z[S2N_BIGNUM_STATIC 4], const uint64_t x[S2N_BIGNUM_STATIC 4], const uint64_t y[S2N_BIGNUM_STATIC 4]); // Subtract modulo p_384, z := (x - y) mod p_384, assuming x and y reduced // Inputs x[6], y[6]; output z[6] extern void bignum_sub_p384 (uint64_t z[S2N_BIGNUM_STATIC 6], const uint64_t x[S2N_BIGNUM_STATIC 6], const uint64_t y[S2N_BIGNUM_STATIC 6]); // Subtract modulo p_521, z := (x - y) mod p_521, assuming x and y reduced // Inputs x[9], y[9]; output z[9] extern void bignum_sub_p521 (uint64_t z[S2N_BIGNUM_STATIC 9], const uint64_t x[S2N_BIGNUM_STATIC 9], const uint64_t y[S2N_BIGNUM_STATIC 9]); // Subtract modulo p_sm2, z := (x - y) mod p_sm2, assuming x and y reduced // Inputs x[4], y[4]; output z[4] extern void bignum_sub_sm2 (uint64_t z[S2N_BIGNUM_STATIC 4], const uint64_t x[S2N_BIGNUM_STATIC 4], const uint64_t y[S2N_BIGNUM_STATIC 4]); // Convert 4-digit (256-bit) bignum to big-endian bytes // Input x[4]; output z[32] (bytes) extern void bignum_tobebytes_4 (uint8_t z[S2N_BIGNUM_STATIC 32], const uint64_t x[S2N_BIGNUM_STATIC 4]); // Convert 6-digit (384-bit) bignum to big-endian bytes // Input x[6]; output z[48] (bytes) extern void bignum_tobebytes_6 (uint8_t z[S2N_BIGNUM_STATIC 48], const uint64_t x[S2N_BIGNUM_STATIC 6]); // Convert 4-digit (256-bit) bignum to little-endian bytes // Input x[4]; output z[32] (bytes) extern void bignum_tolebytes_4 (uint8_t z[S2N_BIGNUM_STATIC 32], const uint64_t x[S2N_BIGNUM_STATIC 4]); // Convert 6-digit (384-bit) bignum to little-endian bytes // Input x[6]; output z[48] (bytes) extern void bignum_tolebytes_6 (uint8_t z[S2N_BIGNUM_STATIC 48], const uint64_t x[S2N_BIGNUM_STATIC 6]); // Convert 9-digit 528-bit bignum to little-endian bytes // Input x[6]; output z[66] (bytes) extern void bignum_tolebytes_p521 (uint8_t z[S2N_BIGNUM_STATIC 66], const uint64_t x[S2N_BIGNUM_STATIC 9]); // Convert to Montgomery form z := (2^256 * x) mod p_256 // Input x[4]; output z[4] extern void bignum_tomont_p256 (uint64_t z[S2N_BIGNUM_STATIC 4], const uint64_t x[S2N_BIGNUM_STATIC 4]); extern void bignum_tomont_p256_alt (uint64_t z[S2N_BIGNUM_STATIC 4], const uint64_t x[S2N_BIGNUM_STATIC 4]); // Convert to Montgomery form z := (2^256 * x) mod p_256k1 // Input x[4]; output z[4] extern void bignum_tomont_p256k1 (uint64_t z[S2N_BIGNUM_STATIC 4], const uint64_t x[S2N_BIGNUM_STATIC 4]); extern void bignum_tomont_p256k1_alt (uint64_t z[S2N_BIGNUM_STATIC 4], const uint64_t x[S2N_BIGNUM_STATIC 4]); // Convert to Montgomery form z := (2^384 * x) mod p_384 // Input x[6]; output z[6] extern void bignum_tomont_p384 (uint64_t z[S2N_BIGNUM_STATIC 6], const uint64_t x[S2N_BIGNUM_STATIC 6]); extern void bignum_tomont_p384_alt (uint64_t z[S2N_BIGNUM_STATIC 6], const uint64_t x[S2N_BIGNUM_STATIC 6]); // Convert to Montgomery form z := (2^576 * x) mod p_521 // Input x[9]; output z[9] extern void bignum_tomont_p521 (uint64_t z[S2N_BIGNUM_STATIC 9], const uint64_t x[S2N_BIGNUM_STATIC 9]); // Convert to Montgomery form z := (2^256 * x) mod p_sm2 // Input x[4]; output z[4] extern void bignum_tomont_sm2 (uint64_t z[S2N_BIGNUM_STATIC 4], const uint64_t x[S2N_BIGNUM_STATIC 4]); // Triple modulo p_256, z := (3 * x) mod p_256 // Input x[4]; output z[4] extern void bignum_triple_p256 (uint64_t z[S2N_BIGNUM_STATIC 4], const uint64_t x[S2N_BIGNUM_STATIC 4]); extern void bignum_triple_p256_alt (uint64_t z[S2N_BIGNUM_STATIC 4], const uint64_t x[S2N_BIGNUM_STATIC 4]); // Triple modulo p_256k1, z := (3 * x) mod p_256k1 // Input x[4]; output z[4] extern void bignum_triple_p256k1 (uint64_t z[S2N_BIGNUM_STATIC 4], const uint64_t x[S2N_BIGNUM_STATIC 4]); extern void bignum_triple_p256k1_alt (uint64_t z[S2N_BIGNUM_STATIC 4], const uint64_t x[S2N_BIGNUM_STATIC 4]); // Triple modulo p_384, z := (3 * x) mod p_384 // Input x[6]; output z[6] extern void bignum_triple_p384 (uint64_t z[S2N_BIGNUM_STATIC 6], const uint64_t x[S2N_BIGNUM_STATIC 6]); extern void bignum_triple_p384_alt (uint64_t z[S2N_BIGNUM_STATIC 6], const uint64_t x[S2N_BIGNUM_STATIC 6]); // Triple modulo p_521, z := (3 * x) mod p_521, assuming x reduced // Input x[9]; output z[9] extern void bignum_triple_p521 (uint64_t z[S2N_BIGNUM_STATIC 9], const uint64_t x[S2N_BIGNUM_STATIC 9]); extern void bignum_triple_p521_alt (uint64_t z[S2N_BIGNUM_STATIC 9], const uint64_t x[S2N_BIGNUM_STATIC 9]); // Triple modulo p_sm2, z := (3 * x) mod p_sm2 // Input x[4]; output z[4] extern void bignum_triple_sm2 (uint64_t z[S2N_BIGNUM_STATIC 4], const uint64_t x[S2N_BIGNUM_STATIC 4]); extern void bignum_triple_sm2_alt (uint64_t z[S2N_BIGNUM_STATIC 4], const uint64_t x[S2N_BIGNUM_STATIC 4]); // Montgomery ladder step for curve25519 // Inputs point[8], pp[16], b; output rr[16] extern void curve25519_ladderstep(uint64_t rr[16],const uint64_t point[8],const uint64_t pp[16],uint64_t b); extern void curve25519_ladderstep_alt(uint64_t rr[16],const uint64_t point[8],const uint64_t pp[16],uint64_t b); // Projective scalar multiplication, x coordinate only, for curve25519 // Inputs scalar[4], point[4]; output res[8] extern void curve25519_pxscalarmul(uint64_t res[S2N_BIGNUM_STATIC 8],const uint64_t scalar[S2N_BIGNUM_STATIC 4],const uint64_t point[S2N_BIGNUM_STATIC 4]); extern void curve25519_pxscalarmul_alt(uint64_t res[S2N_BIGNUM_STATIC 8],const uint64_t scalar[S2N_BIGNUM_STATIC 4],const uint64_t point[S2N_BIGNUM_STATIC 4]); // x25519 function for curve25519 // Inputs scalar[4], point[4]; output res[4] extern void curve25519_x25519(uint64_t res[S2N_BIGNUM_STATIC 4],const uint64_t scalar[S2N_BIGNUM_STATIC 4],const uint64_t point[S2N_BIGNUM_STATIC 4]); extern void curve25519_x25519_alt(uint64_t res[S2N_BIGNUM_STATIC 4],const uint64_t scalar[S2N_BIGNUM_STATIC 4],const uint64_t point[S2N_BIGNUM_STATIC 4]); // x25519 function for curve25519 (byte array arguments) // Inputs scalar[32] (bytes), point[32] (bytes); output res[32] (bytes) extern void curve25519_x25519_byte(uint8_t res[S2N_BIGNUM_STATIC 32],const uint8_t scalar[S2N_BIGNUM_STATIC 32],const uint8_t point[S2N_BIGNUM_STATIC 32]); extern void curve25519_x25519_byte_alt(uint8_t res[S2N_BIGNUM_STATIC 32],const uint8_t scalar[S2N_BIGNUM_STATIC 32],const uint8_t point[S2N_BIGNUM_STATIC 32]); // x25519 function for curve25519 on base element 9 // Input scalar[4]; output res[4] extern void curve25519_x25519base(uint64_t res[S2N_BIGNUM_STATIC 4],const uint64_t scalar[S2N_BIGNUM_STATIC 4]); extern void curve25519_x25519base_alt(uint64_t res[S2N_BIGNUM_STATIC 4],const uint64_t scalar[S2N_BIGNUM_STATIC 4]); // x25519 function for curve25519 on base element 9 (byte array arguments) // Input scalar[32] (bytes); output res[32] (bytes) extern void curve25519_x25519base_byte(uint8_t res[S2N_BIGNUM_STATIC 32],const uint8_t scalar[S2N_BIGNUM_STATIC 32]); extern void curve25519_x25519base_byte_alt(uint8_t res[S2N_BIGNUM_STATIC 32],const uint8_t scalar[S2N_BIGNUM_STATIC 32]); // Decode compressed 256-bit form of edwards25519 point // Input c[32] (bytes); output function return and z[8] extern uint64_t edwards25519_decode(uint64_t z[S2N_BIGNUM_STATIC 8], const uint8_t c[S2N_BIGNUM_STATIC 32]); extern uint64_t edwards25519_decode_alt(uint64_t z[S2N_BIGNUM_STATIC 8], const uint8_t c[S2N_BIGNUM_STATIC 32]); // Encode edwards25519 point into compressed form as 256-bit number // Input p[8]; output z[32] (bytes) extern void edwards25519_encode(uint8_t z[S2N_BIGNUM_STATIC 32], const uint64_t p[S2N_BIGNUM_STATIC 8]); // Extended projective addition for edwards25519 // Inputs p1[16], p2[16]; output p3[16] extern void edwards25519_epadd(uint64_t p3[S2N_BIGNUM_STATIC 16],const uint64_t p1[S2N_BIGNUM_STATIC 16],const uint64_t p2[S2N_BIGNUM_STATIC 16]); extern void edwards25519_epadd_alt(uint64_t p3[S2N_BIGNUM_STATIC 16],const uint64_t p1[S2N_BIGNUM_STATIC 16],const uint64_t p2[S2N_BIGNUM_STATIC 16]); // Extended projective doubling for edwards25519 // Inputs p1[12]; output p3[16] extern void edwards25519_epdouble(uint64_t p3[S2N_BIGNUM_STATIC 16],const uint64_t p1[S2N_BIGNUM_STATIC 12]); extern void edwards25519_epdouble_alt(uint64_t p3[S2N_BIGNUM_STATIC 16],const uint64_t p1[S2N_BIGNUM_STATIC 12]); // Projective doubling for edwards25519 // Inputs p1[12]; output p3[12] extern void edwards25519_pdouble(uint64_t p3[S2N_BIGNUM_STATIC 12],const uint64_t p1[S2N_BIGNUM_STATIC 12]); extern void edwards25519_pdouble_alt(uint64_t p3[S2N_BIGNUM_STATIC 12],const uint64_t p1[S2N_BIGNUM_STATIC 12]); // Extended projective + precomputed mixed addition for edwards25519 // Inputs p1[16], p2[12]; output p3[16] extern void edwards25519_pepadd(uint64_t p3[S2N_BIGNUM_STATIC 16],const uint64_t p1[S2N_BIGNUM_STATIC 16],const uint64_t p2[S2N_BIGNUM_STATIC 12]); extern void edwards25519_pepadd_alt(uint64_t p3[S2N_BIGNUM_STATIC 16],const uint64_t p1[S2N_BIGNUM_STATIC 16],const uint64_t p2[S2N_BIGNUM_STATIC 12]); // Scalar multiplication by standard basepoint for edwards25519 (Ed25519) // Input scalar[4]; output res[8] extern void edwards25519_scalarmulbase(uint64_t res[S2N_BIGNUM_STATIC 8],const uint64_t scalar[S2N_BIGNUM_STATIC 4]); extern void edwards25519_scalarmulbase_alt(uint64_t res[S2N_BIGNUM_STATIC 8],const uint64_t scalar[S2N_BIGNUM_STATIC 4]); // Double scalar multiplication for edwards25519, fresh and base point // Input scalar[4], point[8], bscalar[4]; output res[8] extern void edwards25519_scalarmuldouble(uint64_t res[S2N_BIGNUM_STATIC 8],const uint64_t scalar[S2N_BIGNUM_STATIC 4], const uint64_t point[S2N_BIGNUM_STATIC 8],const uint64_t bscalar[S2N_BIGNUM_STATIC 4]); extern void edwards25519_scalarmuldouble_alt(uint64_t res[S2N_BIGNUM_STATIC 8],const uint64_t scalar[S2N_BIGNUM_STATIC 4], const uint64_t point[S2N_BIGNUM_STATIC 8],const uint64_t bscalar[S2N_BIGNUM_STATIC 4]); // Scalar product of 2-element polynomial vectors in NTT domain, with mulcache // Inputs a[512], b[512], bt[256] (signed 16-bit words); output r[256] (signed 16-bit words) extern void mlkem_basemul_k2(int16_t r[S2N_BIGNUM_STATIC 256],const int16_t a[S2N_BIGNUM_STATIC 512],const int16_t b[S2N_BIGNUM_STATIC 512],const int16_t bt[S2N_BIGNUM_STATIC 256]); // Scalar product of 3-element polynomial vectors in NTT domain, with mulcache // Inputs a[768], b[768], bt[384] (signed 16-bit words); output r[256] (signed 16-bit words) extern void mlkem_basemul_k3(int16_t r[S2N_BIGNUM_STATIC 256],const int16_t a[S2N_BIGNUM_STATIC 768],const int16_t b[S2N_BIGNUM_STATIC 768],const int16_t bt[S2N_BIGNUM_STATIC 384]); // Scalar product of 4-element polynomial vectors in NTT domain, with mulcache // Inputs a[1024], b[1024], bt[512] (signed 16-bit words); output r[256] (signed 16-bit words) extern void mlkem_basemul_k4(int16_t r[S2N_BIGNUM_STATIC 256],const int16_t a[S2N_BIGNUM_STATIC 1024],const int16_t b[S2N_BIGNUM_STATIC 1024],const int16_t bt[S2N_BIGNUM_STATIC 512]); // Inverse number-theoretic transform from ML-KEM // Input a[256] (signed 16-bit words), z_01234[80] (signed 16-bit words), z_56[384] (signed 16-bit words); output a[256] (signed 16-bit words) extern void mlkem_intt(int16_t a[S2N_BIGNUM_STATIC 256],const int16_t z_01234[S2N_BIGNUM_STATIC 80],const int16_t z_56[S2N_BIGNUM_STATIC 384]); // Precompute the mulcache data for a polynomial in the NTT domain // Inputs a[256], z[128] and t[128] (signed 16-bit words); output x[128] (signed 16-bit words) extern void mlkem_mulcache_compute(int16_t x[S2N_BIGNUM_STATIC 128],const int16_t a[S2N_BIGNUM_STATIC 256],const int16_t z[S2N_BIGNUM_STATIC 128],const int16_t t[S2N_BIGNUM_STATIC 128]); // Forward number-theoretic transform from ML-KEM // Input a[256] (signed 16-bit words), z_01234[80] (signed 16-bit words), z_56[384] (signed 16-bit words); output a[256] (signed 16-bit words) extern void mlkem_ntt(int16_t a[S2N_BIGNUM_STATIC 256],const int16_t z_01234[S2N_BIGNUM_STATIC 80],const int16_t z_56[S2N_BIGNUM_STATIC 384]); // Canonical modular reduction of polynomial coefficients for ML-KEM // Input a[256] (signed 16-bit words); output a[256] (signed 16-bit words) extern void mlkem_reduce(int16_t a[S2N_BIGNUM_STATIC 256]); // Pack ML-KEM polynomial coefficients as 12-bit numbers // Input a[256] (signed 16-bit words); output r[384] (bytes) extern void mlkem_tobytes(uint8_t r[S2N_BIGNUM_STATIC 384],const int16_t a[S2N_BIGNUM_STATIC 256]); // Conversion of ML-KEM polynomial coefficients to Montgomery form // Input a[256] (signed 16-bit words); output a[256] (signed 16-bit words) extern void mlkem_tomont(int16_t a[S2N_BIGNUM_STATIC 256]); // Uniform rejection sampling for ML-KEM // Inputs *buf (unsigned bytes), buflen, table (unsigned bytes); output r[256] (signed 16-bit words), return extern uint64_t mlkem_rej_uniform_VARIABLE_TIME(int16_t r[S2N_BIGNUM_STATIC 256],const uint8_t *buf,uint64_t buflen,const uint8_t *table); // Point addition on NIST curve P-256 in Montgomery-Jacobian coordinates // Inputs p1[12], p2[12]; output p3[12] extern void p256_montjadd(uint64_t p3[S2N_BIGNUM_STATIC 12],const uint64_t p1[S2N_BIGNUM_STATIC 12],const uint64_t p2[S2N_BIGNUM_STATIC 12]); extern void p256_montjadd_alt(uint64_t p3[S2N_BIGNUM_STATIC 12],const uint64_t p1[S2N_BIGNUM_STATIC 12],const uint64_t p2[S2N_BIGNUM_STATIC 12]); // Point doubling on NIST curve P-256 in Montgomery-Jacobian coordinates // Inputs p1[12]; output p3[12] extern void p256_montjdouble(uint64_t p3[S2N_BIGNUM_STATIC 12],const uint64_t p1[S2N_BIGNUM_STATIC 12]); extern void p256_montjdouble_alt(uint64_t p3[S2N_BIGNUM_STATIC 12],const uint64_t p1[S2N_BIGNUM_STATIC 12]); // Point mixed addition on NIST curve P-256 in Montgomery-Jacobian coordinates // Inputs p1[12], p2[8]; output p3[12] extern void p256_montjmixadd(uint64_t p3[S2N_BIGNUM_STATIC 12],const uint64_t p1[S2N_BIGNUM_STATIC 12],const uint64_t p2[S2N_BIGNUM_STATIC 8]); extern void p256_montjmixadd_alt(uint64_t p3[S2N_BIGNUM_STATIC 12],const uint64_t p1[S2N_BIGNUM_STATIC 12],const uint64_t p2[S2N_BIGNUM_STATIC 8]); // Montgomery-Jacobian form scalar multiplication for P-256 // Input scalar[4], point[12]; output res[12] extern void p256_montjscalarmul(uint64_t res[S2N_BIGNUM_STATIC 12],const uint64_t scalar[S2N_BIGNUM_STATIC 4],const uint64_t point[S2N_BIGNUM_STATIC 12]); extern void p256_montjscalarmul_alt(uint64_t res[S2N_BIGNUM_STATIC 12],const uint64_t scalar[S2N_BIGNUM_STATIC 4],const uint64_t point[S2N_BIGNUM_STATIC 12]); // Scalar multiplication for NIST curve P-256 // Input scalar[4], point[8]; output res[8] extern void p256_scalarmul(uint64_t res[S2N_BIGNUM_STATIC 8],const uint64_t scalar[S2N_BIGNUM_STATIC 4],const uint64_t point[S2N_BIGNUM_STATIC 8]); extern void p256_scalarmul_alt(uint64_t res[S2N_BIGNUM_STATIC 8],const uint64_t scalar[S2N_BIGNUM_STATIC 4],const uint64_t point[S2N_BIGNUM_STATIC 8]); // Scalar multiplication for precomputed point on NIST curve P-256 // Input scalar[4], blocksize, table[]; output res[8] extern void p256_scalarmulbase(uint64_t res[S2N_BIGNUM_STATIC 8],const uint64_t scalar[S2N_BIGNUM_STATIC 4],uint64_t blocksize,const uint64_t *table); extern void p256_scalarmulbase_alt(uint64_t res[S2N_BIGNUM_STATIC 8],const uint64_t scalar[S2N_BIGNUM_STATIC 4],uint64_t blocksize,const uint64_t *table); // Point addition on NIST curve P-384 in Montgomery-Jacobian coordinates // Inputs p1[18], p2[18]; output p3[18] extern void p384_montjadd(uint64_t p3[S2N_BIGNUM_STATIC 18],const uint64_t p1[S2N_BIGNUM_STATIC 18],const uint64_t p2[S2N_BIGNUM_STATIC 18]); extern void p384_montjadd_alt(uint64_t p3[S2N_BIGNUM_STATIC 18],const uint64_t p1[S2N_BIGNUM_STATIC 18],const uint64_t p2[S2N_BIGNUM_STATIC 18]); // Point doubling on NIST curve P-384 in Montgomery-Jacobian coordinates // Inputs p1[18]; output p3[18] extern void p384_montjdouble(uint64_t p3[S2N_BIGNUM_STATIC 18],const uint64_t p1[S2N_BIGNUM_STATIC 18]); extern void p384_montjdouble_alt(uint64_t p3[S2N_BIGNUM_STATIC 18],const uint64_t p1[S2N_BIGNUM_STATIC 18]); // Point mixed addition on NIST curve P-384 in Montgomery-Jacobian coordinates // Inputs p1[18], p2[12]; output p3[18] extern void p384_montjmixadd(uint64_t p3[S2N_BIGNUM_STATIC 18],const uint64_t p1[S2N_BIGNUM_STATIC 18],const uint64_t p2[S2N_BIGNUM_STATIC 12]); extern void p384_montjmixadd_alt(uint64_t p3[S2N_BIGNUM_STATIC 18],const uint64_t p1[S2N_BIGNUM_STATIC 18],const uint64_t p2[S2N_BIGNUM_STATIC 12]); // Montgomery-Jacobian form scalar multiplication for P-384 // Input scalar[6], point[18]; output res[18] extern void p384_montjscalarmul(uint64_t res[S2N_BIGNUM_STATIC 18],const uint64_t scalar[S2N_BIGNUM_STATIC 6],const uint64_t point[S2N_BIGNUM_STATIC 18]); extern void p384_montjscalarmul_alt(uint64_t res[S2N_BIGNUM_STATIC 18],const uint64_t scalar[S2N_BIGNUM_STATIC 6],const uint64_t point[S2N_BIGNUM_STATIC 18]); // Point addition on NIST curve P-521 in Jacobian coordinates // Inputs p1[27], p2[27]; output p3[27] extern void p521_jadd(uint64_t p3[S2N_BIGNUM_STATIC 27],const uint64_t p1[S2N_BIGNUM_STATIC 27],const uint64_t p2[S2N_BIGNUM_STATIC 27]); extern void p521_jadd_alt(uint64_t p3[S2N_BIGNUM_STATIC 27],const uint64_t p1[S2N_BIGNUM_STATIC 27],const uint64_t p2[S2N_BIGNUM_STATIC 27]); // Point doubling on NIST curve P-521 in Jacobian coordinates // Input p1[27]; output p3[27] extern void p521_jdouble(uint64_t p3[S2N_BIGNUM_STATIC 27],const uint64_t p1[S2N_BIGNUM_STATIC 27]); extern void p521_jdouble_alt(uint64_t p3[S2N_BIGNUM_STATIC 27],const uint64_t p1[S2N_BIGNUM_STATIC 27]); // Point mixed addition on NIST curve P-521 in Jacobian coordinates // Inputs p1[27], p2[18]; output p3[27] extern void p521_jmixadd(uint64_t p3[S2N_BIGNUM_STATIC 27],const uint64_t p1[S2N_BIGNUM_STATIC 27],const uint64_t p2[S2N_BIGNUM_STATIC 18]); extern void p521_jmixadd_alt(uint64_t p3[S2N_BIGNUM_STATIC 27],const uint64_t p1[S2N_BIGNUM_STATIC 27],const uint64_t p2[S2N_BIGNUM_STATIC 18]); // Jacobian form scalar multiplication for P-521 // Input scalar[9], point[27]; output res[27] extern void p521_jscalarmul(uint64_t res[S2N_BIGNUM_STATIC 27],const uint64_t scalar[S2N_BIGNUM_STATIC 9],const uint64_t point[S2N_BIGNUM_STATIC 27]); extern void p521_jscalarmul_alt(uint64_t res[S2N_BIGNUM_STATIC 27],const uint64_t scalar[S2N_BIGNUM_STATIC 9],const uint64_t point[S2N_BIGNUM_STATIC 27]); // Point addition on SECG curve secp256k1 in Jacobian coordinates // Inputs p1[12], p2[12]; output p3[12] extern void secp256k1_jadd(uint64_t p3[S2N_BIGNUM_STATIC 12],const uint64_t p1[S2N_BIGNUM_STATIC 12],const uint64_t p2[S2N_BIGNUM_STATIC 12]); extern void secp256k1_jadd_alt(uint64_t p3[S2N_BIGNUM_STATIC 12],const uint64_t p1[S2N_BIGNUM_STATIC 12],const uint64_t p2[S2N_BIGNUM_STATIC 12]); // Point doubling on SECG curve secp256k1 in Jacobian coordinates // Input p1[12]; output p3[12] extern void secp256k1_jdouble(uint64_t p3[S2N_BIGNUM_STATIC 12],const uint64_t p1[S2N_BIGNUM_STATIC 12]); extern void secp256k1_jdouble_alt(uint64_t p3[S2N_BIGNUM_STATIC 12],const uint64_t p1[S2N_BIGNUM_STATIC 12]); // Point mixed addition on SECG curve secp256k1 in Jacobian coordinates // Inputs p1[12], p2[8]; output p3[12] extern void secp256k1_jmixadd(uint64_t p3[S2N_BIGNUM_STATIC 12],const uint64_t p1[S2N_BIGNUM_STATIC 12],const uint64_t p2[S2N_BIGNUM_STATIC 8]); extern void secp256k1_jmixadd_alt(uint64_t p3[S2N_BIGNUM_STATIC 12],const uint64_t p1[S2N_BIGNUM_STATIC 12],const uint64_t p2[S2N_BIGNUM_STATIC 8]); // Keccak-f1600 permutation for SHA3 // Inputs a[25], rc[24]; output a[25] extern void sha3_keccak_f1600(uint64_t a[S2N_BIGNUM_STATIC 25],const uint64_t rc[S2N_BIGNUM_STATIC 24]); extern void sha3_keccak_f1600_alt(uint64_t a[S2N_BIGNUM_STATIC 25],const uint64_t rc[S2N_BIGNUM_STATIC 24]); // Batched 2-way Keccak-f1600 permutation for SHA3 // Inputs a[50], rc[24]; output a[50] extern void sha3_keccak2_f1600(uint64_t a[S2N_BIGNUM_STATIC 50],const uint64_t rc[S2N_BIGNUM_STATIC 24]); extern void sha3_keccak2_f1600_alt(uint64_t a[S2N_BIGNUM_STATIC 50],const uint64_t rc[S2N_BIGNUM_STATIC 24]); // Batched 4-way Keccak-f1600 permutation for SHA3 // Inputs a[100], rc[24]; output a[100] extern void sha3_keccak4_f1600(uint64_t a[S2N_BIGNUM_STATIC 100],const uint64_t rc[S2N_BIGNUM_STATIC 24]); extern void sha3_keccak4_f1600_alt(uint64_t a[S2N_BIGNUM_STATIC 100],const uint64_t rc[S2N_BIGNUM_STATIC 24]); extern void sha3_keccak4_f1600_alt2(uint64_t a[S2N_BIGNUM_STATIC 100],const uint64_t rc[S2N_BIGNUM_STATIC 24]); // Point addition on CC curve SM2 in Montgomery-Jacobian coordinates // Inputs p1[12], p2[12]; output p3[12] extern void sm2_montjadd(uint64_t p3[S2N_BIGNUM_STATIC 12],const uint64_t p1[S2N_BIGNUM_STATIC 12],const uint64_t p2[S2N_BIGNUM_STATIC 12]); extern void sm2_montjadd_alt(uint64_t p3[S2N_BIGNUM_STATIC 12],const uint64_t p1[S2N_BIGNUM_STATIC 12],const uint64_t p2[S2N_BIGNUM_STATIC 12]); // Point doubling on CC curve SM2 in Montgomery-Jacobian coordinates // Inputs p1[12]; output p3[12] extern void sm2_montjdouble(uint64_t p3[S2N_BIGNUM_STATIC 12],const uint64_t p1[S2N_BIGNUM_STATIC 12]); extern void sm2_montjdouble_alt(uint64_t p3[S2N_BIGNUM_STATIC 12],const uint64_t p1[S2N_BIGNUM_STATIC 12]); // Point mixed addition on CC curve SM2 in Montgomery-Jacobian coordinates // Inputs p1[12], p2[8]; output p3[12] extern void sm2_montjmixadd(uint64_t p3[S2N_BIGNUM_STATIC 12],const uint64_t p1[S2N_BIGNUM_STATIC 12],const uint64_t p2[S2N_BIGNUM_STATIC 8]); extern void sm2_montjmixadd_alt(uint64_t p3[S2N_BIGNUM_STATIC 12],const uint64_t p1[S2N_BIGNUM_STATIC 12],const uint64_t p2[S2N_BIGNUM_STATIC 8]); // Montgomery-Jacobian form scalar multiplication for CC curve SM2 // Input scalar[4], point[12]; output res[12] extern void sm2_montjscalarmul(uint64_t res[S2N_BIGNUM_STATIC 12],const uint64_t scalar[S2N_BIGNUM_STATIC 4],const uint64_t point[S2N_BIGNUM_STATIC 12]); extern void sm2_montjscalarmul_alt(uint64_t res[S2N_BIGNUM_STATIC 12],const uint64_t scalar[S2N_BIGNUM_STATIC 4],const uint64_t point[S2N_BIGNUM_STATIC 12]); // Reverse the bytes in a single word // Input a; output function return extern uint64_t word_bytereverse (uint64_t a); // Count leading zero bits in a single word // Input a; output function return extern uint64_t word_clz (uint64_t a); // Count trailing zero bits in a single word // Input a; output function return extern uint64_t word_ctz (uint64_t a); // Perform 59 "divstep" iterations and return signed matrix of updates // Inputs d, f, g; output m[2][2] and function return extern int64_t word_divstep59(int64_t m[2][2],int64_t d,uint64_t f,uint64_t g); // Return maximum of two unsigned 64-bit words // Inputs a, b; output function return extern uint64_t word_max (uint64_t a, uint64_t b); // Return minimum of two unsigned 64-bit words // Inputs a, b; output function return extern uint64_t word_min (uint64_t a, uint64_t b); // Single-word negated modular inverse (-1/a) mod 2^64 // Input a; output function return extern uint64_t word_negmodinv (uint64_t a); // Count number of set bits in a single 64-bit word (population count) // Input a; output function return extern uint64_t word_popcount (uint64_t a); // Single-word reciprocal, 2^64 + ret = ceil(2^128/a) - 1 if MSB of "a" is set // Input a; output function return extern uint64_t word_recip (uint64_t a);