/* $OpenBSD: ec_lib.c,v 1.123 2025/03/24 13:07:04 jsing Exp $ */ /* * Originally written by Bodo Moeller for the OpenSSL project. */ /* ==================================================================== * Copyright (c) 1998-2003 The OpenSSL Project. All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in * the documentation and/or other materials provided with the * distribution. * * 3. All advertising materials mentioning features or use of this * software must display the following acknowledgment: * "This product includes software developed by the OpenSSL Project * for use in the OpenSSL Toolkit. (http://www.openssl.org/)" * * 4. The names "OpenSSL Toolkit" and "OpenSSL Project" must not be used to * endorse or promote products derived from this software without * prior written permission. For written permission, please contact * openssl-core@openssl.org. * * 5. Products derived from this software may not be called "OpenSSL" * nor may "OpenSSL" appear in their names without prior written * permission of the OpenSSL Project. * * 6. Redistributions of any form whatsoever must retain the following * acknowledgment: * "This product includes software developed by the OpenSSL Project * for use in the OpenSSL Toolkit (http://www.openssl.org/)" * * THIS SOFTWARE IS PROVIDED BY THE OpenSSL PROJECT ``AS IS'' AND ANY * EXPRESSED OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE OpenSSL PROJECT OR * ITS CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, * STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED * OF THE POSSIBILITY OF SUCH DAMAGE. * ==================================================================== * * This product includes cryptographic software written by Eric Young * (eay@cryptsoft.com). This product includes software written by Tim * Hudson (tjh@cryptsoft.com). * */ /* ==================================================================== * Copyright 2002 Sun Microsystems, Inc. ALL RIGHTS RESERVED. * Binary polynomial ECC support in OpenSSL originally developed by * SUN MICROSYSTEMS, INC., and contributed to the OpenSSL project. */ #include #include #include #include #include #include #include #include #include "bn_local.h" #include "ec_local.h" EC_GROUP * EC_GROUP_new(const EC_METHOD *meth) { EC_GROUP *group = NULL; if (meth == NULL) { ECerror(EC_R_SLOT_FULL); goto err; } if ((group = calloc(1, sizeof(*group))) == NULL) { ECerror(ERR_R_MALLOC_FAILURE); goto err; } group->meth = meth; group->asn1_flag = OPENSSL_EC_NAMED_CURVE; group->asn1_form = POINT_CONVERSION_UNCOMPRESSED; if ((group->p = BN_new()) == NULL) goto err; if ((group->a = BN_new()) == NULL) goto err; if ((group->b = BN_new()) == NULL) goto err; if ((group->order = BN_new()) == NULL) goto err; if ((group->cofactor = BN_new()) == NULL) goto err; /* * generator, seed and mont_ctx are optional. */ return group; err: EC_GROUP_free(group); return NULL; } void EC_GROUP_free(EC_GROUP *group) { if (group == NULL) return; BN_free(group->p); BN_free(group->a); BN_free(group->b); BN_MONT_CTX_free(group->mont_ctx); EC_POINT_free(group->generator); BN_free(group->order); BN_free(group->cofactor); freezero(group->seed, group->seed_len); freezero(group, sizeof *group); } LCRYPTO_ALIAS(EC_GROUP_free); void EC_GROUP_clear_free(EC_GROUP *group) { EC_GROUP_free(group); } LCRYPTO_ALIAS(EC_GROUP_clear_free); static int EC_GROUP_copy(EC_GROUP *dst, const EC_GROUP *src) { if (dst->meth != src->meth) { ECerror(EC_R_INCOMPATIBLE_OBJECTS); return 0; } if (dst == src) return 1; if (!bn_copy(dst->p, src->p)) return 0; if (!bn_copy(dst->a, src->a)) return 0; if (!bn_copy(dst->b, src->b)) return 0; dst->a_is_minus3 = src->a_is_minus3; BN_MONT_CTX_free(dst->mont_ctx); dst->mont_ctx = NULL; if (src->mont_ctx != NULL) { if ((dst->mont_ctx = BN_MONT_CTX_new()) == NULL) return 0; if (!BN_MONT_CTX_copy(dst->mont_ctx, src->mont_ctx)) return 0; } EC_POINT_free(dst->generator); dst->generator = NULL; if (src->generator != NULL) { if (!EC_GROUP_set_generator(dst, src->generator, src->order, src->cofactor)) return 0; } else { /* XXX - should do the sanity checks as in set_generator() */ if (!bn_copy(dst->order, src->order)) return 0; if (!bn_copy(dst->cofactor, src->cofactor)) return 0; } dst->nid = src->nid; dst->asn1_flag = src->asn1_flag; dst->asn1_form = src->asn1_form; if (!EC_GROUP_set_seed(dst, src->seed, src->seed_len)) return 0; return 1; } EC_GROUP * EC_GROUP_dup(const EC_GROUP *in_group) { EC_GROUP *group = NULL; if (in_group == NULL) goto err; if ((group = EC_GROUP_new(in_group->meth)) == NULL) goto err; if (!EC_GROUP_copy(group, in_group)) goto err; return group; err: EC_GROUP_free(group); return NULL; } LCRYPTO_ALIAS(EC_GROUP_dup); /* * If there is a user-provided cofactor, sanity check and use it. Otherwise * try computing the cofactor from generator order n and field cardinality p. * This works for all curves of cryptographic interest. * * Hasse's theorem: | h * n - (p + 1) | <= 2 * sqrt(p) * * So: h_min = (p + 1 - 2*sqrt(p)) / n and h_max = (p + 1 + 2*sqrt(p)) / n and * therefore h_max - h_min = 4*sqrt(p) / n. So if n > 4*sqrt(p) holds, there is * only one possible value for h: * * h = \lfloor (h_min + h_max)/2 \rceil = \lfloor (p + 1)/n \rceil * * Otherwise, zero cofactor and return success. */ static int ec_set_cofactor(EC_GROUP *group, const BIGNUM *in_cofactor) { BN_CTX *ctx = NULL; BIGNUM *cofactor; int ret = 0; BN_zero(group->cofactor); if ((ctx = BN_CTX_new()) == NULL) goto err; BN_CTX_start(ctx); if ((cofactor = BN_CTX_get(ctx)) == NULL) goto err; /* * Unfortunately, the cofactor is an optional field in many standards. * Internally, the library uses a 0 cofactor as a marker for "unknown * cofactor". So accept in_cofactor == NULL or in_cofactor >= 0. */ if (in_cofactor != NULL && !BN_is_zero(in_cofactor)) { if (BN_is_negative(in_cofactor)) { ECerror(EC_R_UNKNOWN_COFACTOR); goto err; } if (!bn_copy(cofactor, in_cofactor)) goto err; goto done; } /* * If the cofactor is too large, we cannot guess it and default to zero. * The RHS of below is a strict overestimate of log(4 * sqrt(p)). */ if (BN_num_bits(group->order) <= (BN_num_bits(group->p) + 1) / 2 + 3) goto done; /* * Compute * h = \lfloor (p + 1)/n \rceil = \lfloor (p + 1 + n/2) / n \rfloor. */ /* h = n/2 */ if (!BN_rshift1(cofactor, group->order)) goto err; /* h = 1 + n/2 */ if (!BN_add_word(cofactor, 1)) goto err; /* h = p + 1 + n/2 */ if (!BN_add(cofactor, cofactor, group->p)) goto err; /* h = (p + 1 + n/2) / n */ if (!BN_div_ct(cofactor, NULL, cofactor, group->order, ctx)) goto err; done: /* Use Hasse's theorem to bound the cofactor. */ if (BN_num_bits(cofactor) > BN_num_bits(group->p) + 1) { ECerror(EC_R_INVALID_GROUP_ORDER); goto err; } if (!bn_copy(group->cofactor, cofactor)) goto err; ret = 1; err: BN_CTX_end(ctx); BN_CTX_free(ctx); return ret; } int EC_GROUP_set_generator(EC_GROUP *group, const EC_POINT *generator, const BIGNUM *order, const BIGNUM *cofactor) { if (generator == NULL) { ECerror(ERR_R_PASSED_NULL_PARAMETER); return 0; } /* Require p >= 1. */ if (BN_is_zero(group->p) || BN_is_negative(group->p)) { ECerror(EC_R_INVALID_FIELD); return 0; } /* * Require order > 1 and enforce an upper bound of at most one bit more * than the field cardinality due to Hasse's theorem. */ if (order == NULL || BN_cmp(order, BN_value_one()) <= 0 || BN_num_bits(order) > BN_num_bits(group->p) + 1) { ECerror(EC_R_INVALID_GROUP_ORDER); return 0; } if (group->generator == NULL) group->generator = EC_POINT_new(group); if (group->generator == NULL) return 0; if (!EC_POINT_copy(group->generator, generator)) return 0; if (!bn_copy(group->order, order)) return 0; if (!ec_set_cofactor(group, cofactor)) return 0; return 1; } LCRYPTO_ALIAS(EC_GROUP_set_generator); const EC_POINT * EC_GROUP_get0_generator(const EC_GROUP *group) { return group->generator; } LCRYPTO_ALIAS(EC_GROUP_get0_generator); int EC_GROUP_get_order(const EC_GROUP *group, BIGNUM *order, BN_CTX *ctx) { if (!bn_copy(order, group->order)) return 0; return !BN_is_zero(order); } LCRYPTO_ALIAS(EC_GROUP_get_order); const BIGNUM * EC_GROUP_get0_order(const EC_GROUP *group) { return group->order; } int EC_GROUP_order_bits(const EC_GROUP *group) { return BN_num_bits(group->order); } LCRYPTO_ALIAS(EC_GROUP_order_bits); int EC_GROUP_get_cofactor(const EC_GROUP *group, BIGNUM *cofactor, BN_CTX *ctx) { if (!bn_copy(cofactor, group->cofactor)) return 0; return !BN_is_zero(group->cofactor); } LCRYPTO_ALIAS(EC_GROUP_get_cofactor); const BIGNUM * EC_GROUP_get0_cofactor(const EC_GROUP *group) { return group->cofactor; } void EC_GROUP_set_curve_name(EC_GROUP *group, int nid) { group->nid = nid; } LCRYPTO_ALIAS(EC_GROUP_set_curve_name); int EC_GROUP_get_curve_name(const EC_GROUP *group) { return group->nid; } LCRYPTO_ALIAS(EC_GROUP_get_curve_name); void EC_GROUP_set_asn1_flag(EC_GROUP *group, int flag) { group->asn1_flag = flag; } LCRYPTO_ALIAS(EC_GROUP_set_asn1_flag); int EC_GROUP_get_asn1_flag(const EC_GROUP *group) { return group->asn1_flag; } LCRYPTO_ALIAS(EC_GROUP_get_asn1_flag); void EC_GROUP_set_point_conversion_form(EC_GROUP *group, point_conversion_form_t form) { group->asn1_form = form; } LCRYPTO_ALIAS(EC_GROUP_set_point_conversion_form); point_conversion_form_t EC_GROUP_get_point_conversion_form(const EC_GROUP *group) { return group->asn1_form; } LCRYPTO_ALIAS(EC_GROUP_get_point_conversion_form); size_t EC_GROUP_set_seed(EC_GROUP *group, const unsigned char *seed, size_t len) { free(group->seed); group->seed = NULL; group->seed_len = 0; if (seed == NULL || len == 0) return 1; if ((group->seed = malloc(len)) == NULL) return 0; memcpy(group->seed, seed, len); group->seed_len = len; return len; } LCRYPTO_ALIAS(EC_GROUP_set_seed); unsigned char * EC_GROUP_get0_seed(const EC_GROUP *group) { return group->seed; } LCRYPTO_ALIAS(EC_GROUP_get0_seed); size_t EC_GROUP_get_seed_len(const EC_GROUP *group) { return group->seed_len; } LCRYPTO_ALIAS(EC_GROUP_get_seed_len); int EC_GROUP_set_curve(EC_GROUP *group, const BIGNUM *p, const BIGNUM *a, const BIGNUM *b, BN_CTX *ctx_in) { BN_CTX *ctx; int ret = 0; if ((ctx = ctx_in) == NULL) ctx = BN_CTX_new(); if (ctx == NULL) goto err; if (group->meth->group_set_curve == NULL) { ECerror(ERR_R_SHOULD_NOT_HAVE_BEEN_CALLED); goto err; } ret = group->meth->group_set_curve(group, p, a, b, ctx); err: if (ctx != ctx_in) BN_CTX_free(ctx); return ret; } LCRYPTO_ALIAS(EC_GROUP_set_curve); int EC_GROUP_get_curve(const EC_GROUP *group, BIGNUM *p, BIGNUM *a, BIGNUM *b, BN_CTX *ctx_in) { BN_CTX *ctx; int ret = 0; if ((ctx = ctx_in) == NULL) ctx = BN_CTX_new(); if (ctx == NULL) goto err; if (group->meth->group_get_curve == NULL) { ECerror(ERR_R_SHOULD_NOT_HAVE_BEEN_CALLED); goto err; } ret = group->meth->group_get_curve(group, p, a, b, ctx); err: if (ctx != ctx_in) BN_CTX_free(ctx); return ret; } LCRYPTO_ALIAS(EC_GROUP_get_curve); int EC_GROUP_set_curve_GFp(EC_GROUP *group, const BIGNUM *p, const BIGNUM *a, const BIGNUM *b, BN_CTX *ctx) { return EC_GROUP_set_curve(group, p, a, b, ctx); } LCRYPTO_ALIAS(EC_GROUP_set_curve_GFp); int EC_GROUP_get_curve_GFp(const EC_GROUP *group, BIGNUM *p, BIGNUM *a, BIGNUM *b, BN_CTX *ctx) { return EC_GROUP_get_curve(group, p, a, b, ctx); } LCRYPTO_ALIAS(EC_GROUP_get_curve_GFp); EC_GROUP * EC_GROUP_new_curve_GFp(const BIGNUM *p, const BIGNUM *a, const BIGNUM *b, BN_CTX *ctx) { EC_GROUP *group; if ((group = EC_GROUP_new(EC_GFp_mont_method())) == NULL) goto err; if (!EC_GROUP_set_curve(group, p, a, b, ctx)) goto err; return group; err: EC_GROUP_free(group); return NULL; } LCRYPTO_ALIAS(EC_GROUP_new_curve_GFp); int EC_GROUP_get_degree(const EC_GROUP *group) { return BN_num_bits(group->p); } LCRYPTO_ALIAS(EC_GROUP_get_degree); int EC_GROUP_check_discriminant(const EC_GROUP *group, BN_CTX *ctx_in) { BN_CTX *ctx; BIGNUM *p, *a, *b, *discriminant; int ret = 0; if ((ctx = ctx_in) == NULL) ctx = BN_CTX_new(); if (ctx == NULL) goto err; BN_CTX_start(ctx); if ((p = BN_CTX_get(ctx)) == NULL) goto err; if ((a = BN_CTX_get(ctx)) == NULL) goto err; if ((b = BN_CTX_get(ctx)) == NULL) goto err; if ((discriminant = BN_CTX_get(ctx)) == NULL) goto err; if (!EC_GROUP_get_curve(group, p, a, b, ctx)) goto err; /* * Check that the discriminant 4a^3 + 27b^2 is non-zero modulo p * assuming that p > 3 is prime and that a and b are in [0, p). */ if (BN_is_zero(a) && BN_is_zero(b)) goto err; if (BN_is_zero(a) || BN_is_zero(b)) goto done; /* Compute the discriminant: first 4a^3, then 27b^2, then their sum. */ if (!BN_mod_sqr(discriminant, a, p, ctx)) goto err; if (!BN_mod_mul(discriminant, discriminant, a, p, ctx)) goto err; if (!BN_lshift(discriminant, discriminant, 2)) goto err; if (!BN_mod_sqr(b, b, p, ctx)) goto err; if (!BN_mul_word(b, 27)) goto err; if (!BN_mod_add(discriminant, discriminant, b, p, ctx)) goto err; if (BN_is_zero(discriminant)) goto err; done: ret = 1; err: if (ctx != ctx_in) BN_CTX_free(ctx); return ret; } LCRYPTO_ALIAS(EC_GROUP_check_discriminant); int EC_GROUP_check(const EC_GROUP *group, BN_CTX *ctx_in) { BN_CTX *ctx; EC_POINT *point = NULL; const EC_POINT *generator; const BIGNUM *order; int ret = 0; if ((ctx = ctx_in) == NULL) ctx = BN_CTX_new(); if (ctx == NULL) goto err; if (!EC_GROUP_check_discriminant(group, ctx)) { ECerror(EC_R_DISCRIMINANT_IS_ZERO); goto err; } if ((generator = EC_GROUP_get0_generator(group)) == NULL) { ECerror(EC_R_UNDEFINED_GENERATOR); goto err; } if (EC_POINT_is_on_curve(group, generator, ctx) <= 0) { ECerror(EC_R_POINT_IS_NOT_ON_CURVE); goto err; } if ((point = EC_POINT_new(group)) == NULL) goto err; if ((order = EC_GROUP_get0_order(group)) == NULL) goto err; if (BN_is_zero(order)) { ECerror(EC_R_UNDEFINED_ORDER); goto err; } if (!EC_POINT_mul(group, point, order, NULL, NULL, ctx)) goto err; if (!EC_POINT_is_at_infinity(group, point)) { ECerror(EC_R_INVALID_GROUP_ORDER); goto err; } ret = 1; err: if (ctx != ctx_in) BN_CTX_free(ctx); EC_POINT_free(point); return ret; } LCRYPTO_ALIAS(EC_GROUP_check); /* * Returns -1 on error, 0 if the groups are equal, 1 if they are distinct. */ int EC_GROUP_cmp(const EC_GROUP *group1, const EC_GROUP *group2, BN_CTX *ctx_in) { BN_CTX *ctx = NULL; BIGNUM *p1, *a1, *b1, *p2, *a2, *b2; const EC_POINT *generator1, *generator2; const BIGNUM *order1, *order2, *cofactor1, *cofactor2; int nid1, nid2; int cmp = 1; int ret = -1; if ((ctx = ctx_in) == NULL) ctx = BN_CTX_new(); if (ctx == NULL) goto err; BN_CTX_start(ctx); if ((nid1 = EC_GROUP_get_curve_name(group1)) != NID_undef && (nid2 = EC_GROUP_get_curve_name(group2)) != NID_undef) { if (nid1 != nid2) goto distinct; } if ((p1 = BN_CTX_get(ctx)) == NULL) goto err; if ((a1 = BN_CTX_get(ctx)) == NULL) goto err; if ((b1 = BN_CTX_get(ctx)) == NULL) goto err; if ((p2 = BN_CTX_get(ctx)) == NULL) goto err; if ((a2 = BN_CTX_get(ctx)) == NULL) goto err; if ((b2 = BN_CTX_get(ctx)) == NULL) goto err; /* * If we ever support curves in non-Weierstrass form, this check needs * to be adjusted. The comparison of the generators will fail anyway. */ if (!EC_GROUP_get_curve(group1, p1, a1, b1, ctx)) goto err; if (!EC_GROUP_get_curve(group2, p2, a2, b2, ctx)) goto err; if (BN_cmp(p1, p2) != 0 || BN_cmp(a1, a2) != 0 || BN_cmp(b1, b2) != 0) goto distinct; if ((generator1 = EC_GROUP_get0_generator(group1)) == NULL) goto err; if ((generator2 = EC_GROUP_get0_generator(group2)) == NULL) goto err; /* * It does not matter whether group1 or group2 is used: both points must * have a matching method for this to succeed. */ if ((cmp = EC_POINT_cmp(group1, generator1, generator2, ctx)) < 0) goto err; if (cmp == 1) goto distinct; cmp = 1; if ((order1 = EC_GROUP_get0_order(group1)) == NULL) goto err; if ((order2 = EC_GROUP_get0_order(group2)) == NULL) goto err; if ((cofactor1 = EC_GROUP_get0_cofactor(group1)) == NULL) goto err; if ((cofactor2 = EC_GROUP_get0_cofactor(group2)) == NULL) goto err; if (BN_cmp(order1, order2) != 0 || BN_cmp(cofactor1, cofactor2) != 0) goto distinct; /* All parameters match: the groups are equal. */ cmp = 0; distinct: ret = cmp; err: BN_CTX_end(ctx); if (ctx != ctx_in) BN_CTX_free(ctx); return ret; } LCRYPTO_ALIAS(EC_GROUP_cmp); EC_POINT * EC_POINT_new(const EC_GROUP *group) { EC_POINT *point = NULL; if (group == NULL) { ECerror(ERR_R_PASSED_NULL_PARAMETER); goto err; } if ((point = calloc(1, sizeof(*point))) == NULL) { ECerror(ERR_R_MALLOC_FAILURE); goto err; } if ((point->X = BN_new()) == NULL) goto err; if ((point->Y = BN_new()) == NULL) goto err; if ((point->Z = BN_new()) == NULL) goto err; point->meth = group->meth; return point; err: EC_POINT_free(point); return NULL; } LCRYPTO_ALIAS(EC_POINT_new); void EC_POINT_free(EC_POINT *point) { if (point == NULL) return; BN_free(point->X); BN_free(point->Y); BN_free(point->Z); freezero(point, sizeof *point); } LCRYPTO_ALIAS(EC_POINT_free); void EC_POINT_clear_free(EC_POINT *point) { EC_POINT_free(point); } LCRYPTO_ALIAS(EC_POINT_clear_free); int EC_POINT_copy(EC_POINT *dst, const EC_POINT *src) { if (dst->meth != src->meth) { ECerror(EC_R_INCOMPATIBLE_OBJECTS); return 0; } if (dst == src) return 1; if (!bn_copy(dst->X, src->X)) return 0; if (!bn_copy(dst->Y, src->Y)) return 0; if (!bn_copy(dst->Z, src->Z)) return 0; dst->Z_is_one = src->Z_is_one; return 1; } LCRYPTO_ALIAS(EC_POINT_copy); EC_POINT * EC_POINT_dup(const EC_POINT *in_point, const EC_GROUP *group) { EC_POINT *point = NULL; if (in_point == NULL) goto err; if ((point = EC_POINT_new(group)) == NULL) goto err; if (!EC_POINT_copy(point, in_point)) goto err; return point; err: EC_POINT_free(point); return NULL; } LCRYPTO_ALIAS(EC_POINT_dup); int EC_POINT_set_to_infinity(const EC_GROUP *group, EC_POINT *point) { if (group->meth != point->meth) { ECerror(EC_R_INCOMPATIBLE_OBJECTS); return 0; } BN_zero(point->Z); point->Z_is_one = 0; return 1; } LCRYPTO_ALIAS(EC_POINT_set_to_infinity); int EC_POINT_set_affine_coordinates(const EC_GROUP *group, EC_POINT *point, const BIGNUM *x, const BIGNUM *y, BN_CTX *ctx_in) { BN_CTX *ctx; int ret = 0; if ((ctx = ctx_in) == NULL) ctx = BN_CTX_new(); if (ctx == NULL) goto err; if (group->meth->point_set_affine_coordinates == NULL) { ECerror(ERR_R_SHOULD_NOT_HAVE_BEEN_CALLED); goto err; } if (group->meth != point->meth) { ECerror(EC_R_INCOMPATIBLE_OBJECTS); goto err; } if (!group->meth->point_set_affine_coordinates(group, point, x, y, ctx)) goto err; if (EC_POINT_is_on_curve(group, point, ctx) <= 0) { ECerror(EC_R_POINT_IS_NOT_ON_CURVE); goto err; } ret = 1; err: if (ctx != ctx_in) BN_CTX_free(ctx); return ret; } LCRYPTO_ALIAS(EC_POINT_set_affine_coordinates); int EC_POINT_set_affine_coordinates_GFp(const EC_GROUP *group, EC_POINT *point, const BIGNUM *x, const BIGNUM *y, BN_CTX *ctx) { return EC_POINT_set_affine_coordinates(group, point, x, y, ctx); } LCRYPTO_ALIAS(EC_POINT_set_affine_coordinates_GFp); int EC_POINT_get_affine_coordinates(const EC_GROUP *group, const EC_POINT *point, BIGNUM *x, BIGNUM *y, BN_CTX *ctx_in) { BN_CTX *ctx = NULL; int ret = 0; if (EC_POINT_is_at_infinity(group, point) > 0) { ECerror(EC_R_POINT_AT_INFINITY); goto err; } if ((ctx = ctx_in) == NULL) ctx = BN_CTX_new(); if (ctx == NULL) goto err; if (group->meth->point_get_affine_coordinates == NULL) { ECerror(ERR_R_SHOULD_NOT_HAVE_BEEN_CALLED); goto err; } if (group->meth != point->meth) { ECerror(EC_R_INCOMPATIBLE_OBJECTS); goto err; } ret = group->meth->point_get_affine_coordinates(group, point, x, y, ctx); err: if (ctx != ctx_in) BN_CTX_free(ctx); return ret; } LCRYPTO_ALIAS(EC_POINT_get_affine_coordinates); int EC_POINT_get_affine_coordinates_GFp(const EC_GROUP *group, const EC_POINT *point, BIGNUM *x, BIGNUM *y, BN_CTX *ctx) { return EC_POINT_get_affine_coordinates(group, point, x, y, ctx); } LCRYPTO_ALIAS(EC_POINT_get_affine_coordinates_GFp); int EC_POINT_set_compressed_coordinates(const EC_GROUP *group, EC_POINT *point, const BIGNUM *in_x, int y_bit, BN_CTX *ctx_in) { BIGNUM *p, *a, *b, *w, *x, *y; BN_CTX *ctx; int ret = 0; if ((ctx = ctx_in) == NULL) ctx = BN_CTX_new(); if (ctx == NULL) goto err; y_bit = (y_bit != 0); BN_CTX_start(ctx); if ((p = BN_CTX_get(ctx)) == NULL) goto err; if ((a = BN_CTX_get(ctx)) == NULL) goto err; if ((b = BN_CTX_get(ctx)) == NULL) goto err; if ((w = BN_CTX_get(ctx)) == NULL) goto err; if ((x = BN_CTX_get(ctx)) == NULL) goto err; if ((y = BN_CTX_get(ctx)) == NULL) goto err; /* * Weierstrass equation: y^2 = x^3 + ax + b, so y is one of the * square roots of x^3 + ax + b. The y-bit indicates which one. */ if (!EC_GROUP_get_curve(group, p, a, b, ctx)) goto err; /* XXX - should we not insist on 0 <= x < p instead? */ if (!BN_nnmod(x, in_x, p, ctx)) goto err; /* y = x^3 */ if (!BN_mod_sqr(y, x, p, ctx)) goto err; if (!BN_mod_mul(y, y, x, p, ctx)) goto err; /* y += ax */ if (group->a_is_minus3) { if (!BN_mod_lshift1_quick(w, x, p)) goto err; if (!BN_mod_add_quick(w, w, x, p)) goto err; if (!BN_mod_sub_quick(y, y, w, p)) goto err; } else { if (!BN_mod_mul(w, a, x, p, ctx)) goto err; if (!BN_mod_add_quick(y, y, w, p)) goto err; } /* y += b */ if (!BN_mod_add_quick(y, y, b, p)) goto err; if (!BN_mod_sqrt(y, y, p, ctx)) { ECerror(EC_R_INVALID_COMPRESSED_POINT); goto err; } if (y_bit == BN_is_odd(y)) goto done; if (BN_is_zero(y)) { ECerror(EC_R_INVALID_COMPRESSION_BIT); goto err; } if (!BN_usub(y, p, y)) goto err; if (y_bit != BN_is_odd(y)) { /* Can only happen if p is even and should not be reachable. */ ECerror(ERR_R_INTERNAL_ERROR); goto err; } done: if (!EC_POINT_set_affine_coordinates(group, point, x, y, ctx)) goto err; ret = 1; err: BN_CTX_end(ctx); if (ctx != ctx_in) BN_CTX_free(ctx); return ret; } LCRYPTO_ALIAS(EC_POINT_set_compressed_coordinates); int EC_POINT_set_compressed_coordinates_GFp(const EC_GROUP *group, EC_POINT *point, const BIGNUM *x, int y_bit, BN_CTX *ctx) { return EC_POINT_set_compressed_coordinates(group, point, x, y_bit, ctx); } LCRYPTO_ALIAS(EC_POINT_set_compressed_coordinates_GFp); int EC_POINT_add(const EC_GROUP *group, EC_POINT *r, const EC_POINT *a, const EC_POINT *b, BN_CTX *ctx_in) { BN_CTX *ctx; int ret = 0; if ((ctx = ctx_in) == NULL) ctx = BN_CTX_new(); if (ctx == NULL) goto err; if (group->meth->add == NULL) { ECerror(ERR_R_SHOULD_NOT_HAVE_BEEN_CALLED); goto err; } if (group->meth != r->meth || group->meth != a->meth || group->meth != b->meth) { ECerror(EC_R_INCOMPATIBLE_OBJECTS); goto err; } ret = group->meth->add(group, r, a, b, ctx); err: if (ctx != ctx_in) BN_CTX_free(ctx); return ret; } LCRYPTO_ALIAS(EC_POINT_add); int EC_POINT_dbl(const EC_GROUP *group, EC_POINT *r, const EC_POINT *a, BN_CTX *ctx_in) { BN_CTX *ctx; int ret = 0; if ((ctx = ctx_in) == NULL) ctx = BN_CTX_new(); if (ctx == NULL) goto err; if (group->meth->dbl == NULL) { ECerror(ERR_R_SHOULD_NOT_HAVE_BEEN_CALLED); goto err; } if (group->meth != r->meth || r->meth != a->meth) { ECerror(EC_R_INCOMPATIBLE_OBJECTS); goto err; } ret = group->meth->dbl(group, r, a, ctx); err: if (ctx != ctx_in) BN_CTX_free(ctx); return ret; } LCRYPTO_ALIAS(EC_POINT_dbl); int EC_POINT_invert(const EC_GROUP *group, EC_POINT *a, BN_CTX *ctx_in) { BN_CTX *ctx; int ret = 0; if ((ctx = ctx_in) == NULL) ctx = BN_CTX_new(); if (ctx == NULL) goto err; if (group->meth->invert == NULL) { ECerror(ERR_R_SHOULD_NOT_HAVE_BEEN_CALLED); goto err; } if (group->meth != a->meth) { ECerror(EC_R_INCOMPATIBLE_OBJECTS); goto err; } ret = group->meth->invert(group, a, ctx); err: if (ctx != ctx_in) BN_CTX_free(ctx); return ret; } LCRYPTO_ALIAS(EC_POINT_invert); int EC_POINT_is_at_infinity(const EC_GROUP *group, const EC_POINT *point) { if (group->meth != point->meth) { ECerror(EC_R_INCOMPATIBLE_OBJECTS); return 0; } return BN_is_zero(point->Z); } LCRYPTO_ALIAS(EC_POINT_is_at_infinity); int EC_POINT_is_on_curve(const EC_GROUP *group, const EC_POINT *point, BN_CTX *ctx_in) { BN_CTX *ctx; int ret = -1; if ((ctx = ctx_in) == NULL) ctx = BN_CTX_new(); if (ctx == NULL) goto err; if (group->meth->point_is_on_curve == NULL) { ECerror(ERR_R_SHOULD_NOT_HAVE_BEEN_CALLED); goto err; } if (group->meth != point->meth) { ECerror(EC_R_INCOMPATIBLE_OBJECTS); goto err; } ret = group->meth->point_is_on_curve(group, point, ctx); err: if (ctx != ctx_in) BN_CTX_free(ctx); return ret; } LCRYPTO_ALIAS(EC_POINT_is_on_curve); int EC_POINT_cmp(const EC_GROUP *group, const EC_POINT *a, const EC_POINT *b, BN_CTX *ctx_in) { BN_CTX *ctx; int ret = -1; if ((ctx = ctx_in) == NULL) ctx = BN_CTX_new(); if (ctx == NULL) goto err; if (group->meth->point_cmp == NULL) { ECerror(ERR_R_SHOULD_NOT_HAVE_BEEN_CALLED); goto err; } if (group->meth != a->meth || a->meth != b->meth) { ECerror(EC_R_INCOMPATIBLE_OBJECTS); goto err; } ret = group->meth->point_cmp(group, a, b, ctx); err: if (ctx != ctx_in) BN_CTX_free(ctx); return ret; } LCRYPTO_ALIAS(EC_POINT_cmp); int EC_POINT_make_affine(const EC_GROUP *group, EC_POINT *point, BN_CTX *ctx_in) { BN_CTX *ctx; BIGNUM *x, *y; int ret = 0; if ((ctx = ctx_in) == NULL) ctx = BN_CTX_new(); if (ctx == NULL) goto err; BN_CTX_start(ctx); if ((x = BN_CTX_get(ctx)) == NULL) goto err; if ((y = BN_CTX_get(ctx)) == NULL) goto err; if (!EC_POINT_get_affine_coordinates(group, point, x, y, ctx)) goto err; if (!EC_POINT_set_affine_coordinates(group, point, x, y, ctx)) goto err; ret = 1; err: BN_CTX_end(ctx); if (ctx != ctx_in) BN_CTX_free(ctx); return ret; } LCRYPTO_ALIAS(EC_POINT_make_affine); int EC_POINT_mul(const EC_GROUP *group, EC_POINT *r, const BIGNUM *g_scalar, const EC_POINT *point, const BIGNUM *p_scalar, BN_CTX *ctx_in) { BN_CTX *ctx; int ret = 0; if ((ctx = ctx_in) == NULL) ctx = BN_CTX_new(); if (ctx == NULL) goto err; if (group->meth->mul_single_ct == NULL || group->meth->mul_double_nonct == NULL) { ECerror(ERR_R_SHOULD_NOT_HAVE_BEEN_CALLED); goto err; } if (g_scalar != NULL && group->generator == NULL) { ECerror(EC_R_UNDEFINED_GENERATOR); goto err; } if (g_scalar != NULL && point == NULL && p_scalar == NULL) { /* * In this case we want to compute g_scalar * GeneratorPoint: * this codepath is reached most prominently by (ephemeral) key * generation of EC cryptosystems (i.e. ECDSA keygen and sign * setup, ECDH keygen/first half), where the scalar is always * secret. This is why we ignore if BN_FLG_CONSTTIME is actually * set and we always call the constant time version. */ ret = group->meth->mul_single_ct(group, r, g_scalar, group->generator, ctx); } else if (g_scalar == NULL && point != NULL && p_scalar != NULL) { /* * In this case we want to compute p_scalar * GenericPoint: * this codepath is reached most prominently by the second half * of ECDH, where the secret scalar is multiplied by the peer's * public point. To protect the secret scalar, we ignore if * BN_FLG_CONSTTIME is actually set and we always call the * constant time version. */ ret = group->meth->mul_single_ct(group, r, p_scalar, point, ctx); } else if (g_scalar != NULL && point != NULL && p_scalar != NULL) { /* * In this case we want to compute * g_scalar * GeneratorPoint + p_scalar * GenericPoint: * this codepath is reached most prominently by ECDSA signature * verification. So we call the non-ct version. */ ret = group->meth->mul_double_nonct(group, r, g_scalar, group->generator, p_scalar, point, ctx); } else { /* Anything else is an error. */ ECerror(ERR_R_EC_LIB); goto err; } err: if (ctx != ctx_in) BN_CTX_free(ctx); return ret; } LCRYPTO_ALIAS(EC_POINT_mul);