/* $OpenBSD: gcm128.c,v 1.39 2025/05/18 07:26:09 jsing Exp $ */ /* ==================================================================== * Copyright (c) 2010 The OpenSSL Project. All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in * the documentation and/or other materials provided with the * distribution. * * 3. All advertising materials mentioning features or use of this * software must display the following acknowledgment: * "This product includes software developed by the OpenSSL Project * for use in the OpenSSL Toolkit. (http://www.openssl.org/)" * * 4. The names "OpenSSL Toolkit" and "OpenSSL Project" must not be used to * endorse or promote products derived from this software without * prior written permission. For written permission, please contact * openssl-core@openssl.org. * * 5. Products derived from this software may not be called "OpenSSL" * nor may "OpenSSL" appear in their names without prior written * permission of the OpenSSL Project. * * 6. Redistributions of any form whatsoever must retain the following * acknowledgment: * "This product includes software developed by the OpenSSL Project * for use in the OpenSSL Toolkit (http://www.openssl.org/)" * * THIS SOFTWARE IS PROVIDED BY THE OpenSSL PROJECT ``AS IS'' AND ANY * EXPRESSED OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE OpenSSL PROJECT OR * ITS CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, * STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED * OF THE POSSIBILITY OF SUCH DAMAGE. * ==================================================================== */ #include #include #include "crypto_internal.h" #include "modes_local.h" static void gcm_init_4bit(u128 Htable[16], u64 H[2]) { u128 V; u64 T; int i; Htable[0].hi = 0; Htable[0].lo = 0; V.hi = H[0]; V.lo = H[1]; for (Htable[8] = V, i = 4; i > 0; i >>= 1) { T = U64(0xe100000000000000) & (0 - (V.lo & 1)); V.lo = (V.hi << 63) | (V.lo >> 1); V.hi = (V.hi >> 1 ) ^ T; Htable[i] = V; } for (i = 2; i < 16; i <<= 1) { u128 *Hi = Htable + i; int j; for (V = *Hi, j = 1; j < i; ++j) { Hi[j].hi = V.hi ^ Htable[j].hi; Hi[j].lo = V.lo ^ Htable[j].lo; } } #if defined(GHASH_ASM) && (defined(__arm__) || defined(__arm)) /* * ARM assembler expects specific dword order in Htable. */ { int j; #if BYTE_ORDER == LITTLE_ENDIAN for (j = 0; j < 16; ++j) { V = Htable[j]; Htable[j].hi = V.lo; Htable[j].lo = V.hi; } #else /* BIG_ENDIAN */ for (j = 0; j < 16; ++j) { V = Htable[j]; Htable[j].hi = V.lo << 32|V.lo >> 32; Htable[j].lo = V.hi << 32|V.hi >> 32; } #endif } #endif } #ifndef GHASH_ASM static const uint16_t rem_4bit[16] = { 0x0000, 0x1c20, 0x3840, 0x2460, 0x7080, 0x6ca0, 0x48c0, 0x54e0, 0xe100, 0xfd20, 0xd940, 0xc560, 0x9180, 0x8da0, 0xa9c0, 0xb5e0, }; static void gcm_gmult_4bit(u64 Xi[2], const u128 Htable[16]) { u128 Z; int cnt = 15; size_t rem, nlo, nhi; nlo = ((const u8 *)Xi)[15]; nhi = nlo >> 4; nlo &= 0xf; Z.hi = Htable[nlo].hi; Z.lo = Htable[nlo].lo; while (1) { rem = (size_t)Z.lo & 0xf; Z.lo = (Z.hi << 60)|(Z.lo >> 4); Z.hi = (Z.hi >> 4); Z.hi ^= (u64)rem_4bit[rem] << 48; Z.hi ^= Htable[nhi].hi; Z.lo ^= Htable[nhi].lo; if (--cnt < 0) break; nlo = ((const u8 *)Xi)[cnt]; nhi = nlo >> 4; nlo &= 0xf; rem = (size_t)Z.lo & 0xf; Z.lo = (Z.hi << 60)|(Z.lo >> 4); Z.hi = (Z.hi >> 4); Z.hi ^= (u64)rem_4bit[rem] << 48; Z.hi ^= Htable[nlo].hi; Z.lo ^= Htable[nlo].lo; } Xi[0] = htobe64(Z.hi); Xi[1] = htobe64(Z.lo); } /* * Streamed gcm_mult_4bit, see CRYPTO_gcm128_[en|de]crypt for * details... Compiler-generated code doesn't seem to give any * performance improvement, at least not on x86[_64]. It's here * mostly as reference and a placeholder for possible future * non-trivial optimization[s]... */ static void gcm_ghash_4bit(u64 Xi[2], const u128 Htable[16], const u8 *inp, size_t len) { u128 Z; int cnt; size_t rem, nlo, nhi; #if 1 do { cnt = 15; nlo = ((const u8 *)Xi)[15]; nlo ^= inp[15]; nhi = nlo >> 4; nlo &= 0xf; Z.hi = Htable[nlo].hi; Z.lo = Htable[nlo].lo; while (1) { rem = (size_t)Z.lo & 0xf; Z.lo = (Z.hi << 60)|(Z.lo >> 4); Z.hi = (Z.hi >> 4); Z.hi ^= (u64)rem_4bit[rem] << 48; Z.hi ^= Htable[nhi].hi; Z.lo ^= Htable[nhi].lo; if (--cnt < 0) break; nlo = ((const u8 *)Xi)[cnt]; nlo ^= inp[cnt]; nhi = nlo >> 4; nlo &= 0xf; rem = (size_t)Z.lo & 0xf; Z.lo = (Z.hi << 60)|(Z.lo >> 4); Z.hi = (Z.hi >> 4); Z.hi ^= (u64)rem_4bit[rem] << 48; Z.hi ^= Htable[nlo].hi; Z.lo ^= Htable[nlo].lo; } #else /* * Extra 256+16 bytes per-key plus 512 bytes shared tables * [should] give ~50% improvement... One could have PACK()-ed * the rem_8bit even here, but the priority is to minimize * cache footprint... */ u128 Hshr4[16]; /* Htable shifted right by 4 bits */ u8 Hshl4[16]; /* Htable shifted left by 4 bits */ static const unsigned short rem_8bit[256] = { 0x0000, 0x01C2, 0x0384, 0x0246, 0x0708, 0x06CA, 0x048C, 0x054E, 0x0E10, 0x0FD2, 0x0D94, 0x0C56, 0x0918, 0x08DA, 0x0A9C, 0x0B5E, 0x1C20, 0x1DE2, 0x1FA4, 0x1E66, 0x1B28, 0x1AEA, 0x18AC, 0x196E, 0x1230, 0x13F2, 0x11B4, 0x1076, 0x1538, 0x14FA, 0x16BC, 0x177E, 0x3840, 0x3982, 0x3BC4, 0x3A06, 0x3F48, 0x3E8A, 0x3CCC, 0x3D0E, 0x3650, 0x3792, 0x35D4, 0x3416, 0x3158, 0x309A, 0x32DC, 0x331E, 0x2460, 0x25A2, 0x27E4, 0x2626, 0x2368, 0x22AA, 0x20EC, 0x212E, 0x2A70, 0x2BB2, 0x29F4, 0x2836, 0x2D78, 0x2CBA, 0x2EFC, 0x2F3E, 0x7080, 0x7142, 0x7304, 0x72C6, 0x7788, 0x764A, 0x740C, 0x75CE, 0x7E90, 0x7F52, 0x7D14, 0x7CD6, 0x7998, 0x785A, 0x7A1C, 0x7BDE, 0x6CA0, 0x6D62, 0x6F24, 0x6EE6, 0x6BA8, 0x6A6A, 0x682C, 0x69EE, 0x62B0, 0x6372, 0x6134, 0x60F6, 0x65B8, 0x647A, 0x663C, 0x67FE, 0x48C0, 0x4902, 0x4B44, 0x4A86, 0x4FC8, 0x4E0A, 0x4C4C, 0x4D8E, 0x46D0, 0x4712, 0x4554, 0x4496, 0x41D8, 0x401A, 0x425C, 0x439E, 0x54E0, 0x5522, 0x5764, 0x56A6, 0x53E8, 0x522A, 0x506C, 0x51AE, 0x5AF0, 0x5B32, 0x5974, 0x58B6, 0x5DF8, 0x5C3A, 0x5E7C, 0x5FBE, 0xE100, 0xE0C2, 0xE284, 0xE346, 0xE608, 0xE7CA, 0xE58C, 0xE44E, 0xEF10, 0xEED2, 0xEC94, 0xED56, 0xE818, 0xE9DA, 0xEB9C, 0xEA5E, 0xFD20, 0xFCE2, 0xFEA4, 0xFF66, 0xFA28, 0xFBEA, 0xF9AC, 0xF86E, 0xF330, 0xF2F2, 0xF0B4, 0xF176, 0xF438, 0xF5FA, 0xF7BC, 0xF67E, 0xD940, 0xD882, 0xDAC4, 0xDB06, 0xDE48, 0xDF8A, 0xDDCC, 0xDC0E, 0xD750, 0xD692, 0xD4D4, 0xD516, 0xD058, 0xD19A, 0xD3DC, 0xD21E, 0xC560, 0xC4A2, 0xC6E4, 0xC726, 0xC268, 0xC3AA, 0xC1EC, 0xC02E, 0xCB70, 0xCAB2, 0xC8F4, 0xC936, 0xCC78, 0xCDBA, 0xCFFC, 0xCE3E, 0x9180, 0x9042, 0x9204, 0x93C6, 0x9688, 0x974A, 0x950C, 0x94CE, 0x9F90, 0x9E52, 0x9C14, 0x9DD6, 0x9898, 0x995A, 0x9B1C, 0x9ADE, 0x8DA0, 0x8C62, 0x8E24, 0x8FE6, 0x8AA8, 0x8B6A, 0x892C, 0x88EE, 0x83B0, 0x8272, 0x8034, 0x81F6, 0x84B8, 0x857A, 0x873C, 0x86FE, 0xA9C0, 0xA802, 0xAA44, 0xAB86, 0xAEC8, 0xAF0A, 0xAD4C, 0xAC8E, 0xA7D0, 0xA612, 0xA454, 0xA596, 0xA0D8, 0xA11A, 0xA35C, 0xA29E, 0xB5E0, 0xB422, 0xB664, 0xB7A6, 0xB2E8, 0xB32A, 0xB16C, 0xB0AE, 0xBBF0, 0xBA32, 0xB874, 0xB9B6, 0xBCF8, 0xBD3A, 0xBF7C, 0xBEBE }; /* * This pre-processing phase slows down procedure by approximately * same time as it makes each loop spin faster. In other words * single block performance is approximately same as straightforward * "4-bit" implementation, and then it goes only faster... */ for (cnt = 0; cnt < 16; ++cnt) { Z.hi = Htable[cnt].hi; Z.lo = Htable[cnt].lo; Hshr4[cnt].lo = (Z.hi << 60)|(Z.lo >> 4); Hshr4[cnt].hi = (Z.hi >> 4); Hshl4[cnt] = (u8)(Z.lo << 4); } do { for (Z.lo = 0, Z.hi = 0, cnt = 15; cnt; --cnt) { nlo = ((const u8 *)Xi)[cnt]; nlo ^= inp[cnt]; nhi = nlo >> 4; nlo &= 0xf; Z.hi ^= Htable[nlo].hi; Z.lo ^= Htable[nlo].lo; rem = (size_t)Z.lo & 0xff; Z.lo = (Z.hi << 56)|(Z.lo >> 8); Z.hi = (Z.hi >> 8); Z.hi ^= Hshr4[nhi].hi; Z.lo ^= Hshr4[nhi].lo; Z.hi ^= (u64)rem_8bit[rem ^ Hshl4[nhi]] << 48; } nlo = ((const u8 *)Xi)[0]; nlo ^= inp[0]; nhi = nlo >> 4; nlo &= 0xf; Z.hi ^= Htable[nlo].hi; Z.lo ^= Htable[nlo].lo; rem = (size_t)Z.lo & 0xf; Z.lo = (Z.hi << 60)|(Z.lo >> 4); Z.hi = (Z.hi >> 4); Z.hi ^= Htable[nhi].hi; Z.lo ^= Htable[nhi].lo; Z.hi ^= ((u64)rem_8bit[rem << 4]) << 48; #endif Xi[0] = htobe64(Z.hi); Xi[1] = htobe64(Z.lo); } while (inp += 16, len -= 16); } static inline void gcm_mul(GCM128_CONTEXT *ctx, u64 u[2]) { gcm_gmult_4bit(u, ctx->Htable); } static inline void gcm_ghash(GCM128_CONTEXT *ctx, const uint8_t *in, size_t len) { gcm_ghash_4bit(ctx->Xi.u, ctx->Htable, in, len); } #else void gcm_gmult_4bit(u64 Xi[2], const u128 Htable[16]); void gcm_ghash_4bit(u64 Xi[2], const u128 Htable[16], const u8 *inp, size_t len); static inline void gcm_mul(GCM128_CONTEXT *ctx, u64 u[2]) { ctx->gmult(u, ctx->Htable); } static inline void gcm_ghash(GCM128_CONTEXT *ctx, const uint8_t *in, size_t len) { ctx->ghash(ctx->Xi.u, ctx->Htable, in, len); } #endif /* * GHASH_CHUNK is "stride parameter" missioned to mitigate cache * trashing effect. In other words idea is to hash data while it's * still in L1 cache after encryption pass... */ #define GHASH_CHUNK (3*1024) #if defined(GHASH_ASM) && \ (defined(__i386) || defined(__i386__) || \ defined(__x86_64) || defined(__x86_64__) || \ defined(_M_IX86) || defined(_M_AMD64) || defined(_M_X64)) #include "x86_arch.h" #endif #if defined(GHASH_ASM) # if (defined(__i386) || defined(__i386__) || \ defined(__x86_64) || defined(__x86_64__) || \ defined(_M_IX86) || defined(_M_AMD64) || defined(_M_X64)) # define GHASH_ASM_X86_OR_64 void gcm_init_clmul(u128 Htable[16], const u64 Xi[2]); void gcm_gmult_clmul(u64 Xi[2], const u128 Htable[16]); void gcm_ghash_clmul(u64 Xi[2], const u128 Htable[16], const u8 *inp, size_t len); # if defined(__i386) || defined(__i386__) || defined(_M_IX86) # define GHASH_ASM_X86 void gcm_gmult_4bit_mmx(u64 Xi[2], const u128 Htable[16]); void gcm_ghash_4bit_mmx(u64 Xi[2], const u128 Htable[16], const u8 *inp, size_t len); void gcm_gmult_4bit_x86(u64 Xi[2], const u128 Htable[16]); void gcm_ghash_4bit_x86(u64 Xi[2], const u128 Htable[16], const u8 *inp, size_t len); # endif # elif defined(__arm__) || defined(__arm) # include "arm_arch.h" # if __ARM_ARCH__>=7 && !defined(__STRICT_ALIGNMENT) # define GHASH_ASM_ARM void gcm_gmult_neon(u64 Xi[2], const u128 Htable[16]); void gcm_ghash_neon(u64 Xi[2], const u128 Htable[16], const u8 *inp, size_t len); # endif # endif #endif void CRYPTO_gcm128_init(GCM128_CONTEXT *ctx, void *key, block128_f block) { memset(ctx, 0, sizeof(*ctx)); ctx->block = block; ctx->key = key; (*block)(ctx->H.c, ctx->H.c, key); /* H is stored in host byte order */ ctx->H.u[0] = be64toh(ctx->H.u[0]); ctx->H.u[1] = be64toh(ctx->H.u[1]); # if defined(GHASH_ASM_X86_OR_64) # if !defined(GHASH_ASM_X86) || defined(OPENSSL_IA32_SSE2) /* check FXSR and PCLMULQDQ bits */ if ((crypto_cpu_caps_ia32() & (CPUCAP_MASK_FXSR | CPUCAP_MASK_PCLMUL)) == (CPUCAP_MASK_FXSR | CPUCAP_MASK_PCLMUL)) { gcm_init_clmul(ctx->Htable, ctx->H.u); ctx->gmult = gcm_gmult_clmul; ctx->ghash = gcm_ghash_clmul; return; } # endif gcm_init_4bit(ctx->Htable, ctx->H.u); # if defined(GHASH_ASM_X86) /* x86 only */ # if defined(OPENSSL_IA32_SSE2) if (crypto_cpu_caps_ia32() & CPUCAP_MASK_SSE) { /* check SSE bit */ # else if (crypto_cpu_caps_ia32() & CPUCAP_MASK_MMX) { /* check MMX bit */ # endif ctx->gmult = gcm_gmult_4bit_mmx; ctx->ghash = gcm_ghash_4bit_mmx; } else { ctx->gmult = gcm_gmult_4bit_x86; ctx->ghash = gcm_ghash_4bit_x86; } # else ctx->gmult = gcm_gmult_4bit; ctx->ghash = gcm_ghash_4bit; # endif # elif defined(GHASH_ASM_ARM) if (OPENSSL_armcap_P & ARMV7_NEON) { ctx->gmult = gcm_gmult_neon; ctx->ghash = gcm_ghash_neon; } else { gcm_init_4bit(ctx->Htable, ctx->H.u); ctx->gmult = gcm_gmult_4bit; ctx->ghash = gcm_ghash_4bit; } # else gcm_init_4bit(ctx->Htable, ctx->H.u); # endif } LCRYPTO_ALIAS(CRYPTO_gcm128_init); void CRYPTO_gcm128_setiv(GCM128_CONTEXT *ctx, const unsigned char *iv, size_t len) { unsigned int ctr; ctx->Yi.u[0] = 0; ctx->Yi.u[1] = 0; ctx->Xi.u[0] = 0; ctx->Xi.u[1] = 0; ctx->len.u[0] = 0; /* AAD length */ ctx->len.u[1] = 0; /* message length */ ctx->ares = 0; ctx->mres = 0; if (len == 12) { memcpy(ctx->Yi.c, iv, 12); ctx->Yi.c[15] = 1; ctr = 1; } else { size_t i; u64 len0 = len; while (len >= 16) { for (i = 0; i < 16; ++i) ctx->Yi.c[i] ^= iv[i]; gcm_mul(ctx, ctx->Yi.u); iv += 16; len -= 16; } if (len) { for (i = 0; i < len; ++i) ctx->Yi.c[i] ^= iv[i]; gcm_mul(ctx, ctx->Yi.u); } len0 <<= 3; ctx->Yi.u[1] ^= htobe64(len0); gcm_mul(ctx, ctx->Yi.u); ctr = be32toh(ctx->Yi.d[3]); } (*ctx->block)(ctx->Yi.c, ctx->EK0.c, ctx->key); ++ctr; ctx->Yi.d[3] = htobe32(ctr); } LCRYPTO_ALIAS(CRYPTO_gcm128_setiv); int CRYPTO_gcm128_aad(GCM128_CONTEXT *ctx, const unsigned char *aad, size_t len) { size_t i; unsigned int n; u64 alen = ctx->len.u[0]; if (ctx->len.u[1]) return -2; alen += len; if (alen > (U64(1) << 61) || (sizeof(len) == 8 && alen < len)) return -1; ctx->len.u[0] = alen; n = ctx->ares; if (n) { while (n && len) { ctx->Xi.c[n] ^= *(aad++); --len; n = (n + 1) % 16; } if (n == 0) gcm_mul(ctx, ctx->Xi.u); else { ctx->ares = n; return 0; } } if ((i = (len & (size_t)-16))) { gcm_ghash(ctx, aad, i); aad += i; len -= i; } if (len) { n = (unsigned int)len; for (i = 0; i < len; ++i) ctx->Xi.c[i] ^= aad[i]; } ctx->ares = n; return 0; } LCRYPTO_ALIAS(CRYPTO_gcm128_aad); int CRYPTO_gcm128_encrypt(GCM128_CONTEXT *ctx, const unsigned char *in, unsigned char *out, size_t len) { unsigned int n, ctr; size_t i; u64 mlen = ctx->len.u[1]; block128_f block = ctx->block; void *key = ctx->key; mlen += len; if (mlen > ((U64(1) << 36) - 32) || (sizeof(len) == 8 && mlen < len)) return -1; ctx->len.u[1] = mlen; if (ctx->ares) { /* First call to encrypt finalizes GHASH(AAD) */ gcm_mul(ctx, ctx->Xi.u); ctx->ares = 0; } ctr = be32toh(ctx->Yi.d[3]); n = ctx->mres; if (16 % sizeof(size_t) == 0) do { /* always true actually */ if (n) { while (n && len) { ctx->Xi.c[n] ^= *(out++) = *(in++) ^ ctx->EKi.c[n]; --len; n = (n + 1) % 16; } if (n == 0) gcm_mul(ctx, ctx->Xi.u); else { ctx->mres = n; return 0; } } #ifdef __STRICT_ALIGNMENT if (((size_t)in|(size_t)out) % sizeof(size_t) != 0) break; #endif #if defined(GHASH_CHUNK) while (len >= GHASH_CHUNK) { size_t j = GHASH_CHUNK; while (j) { size_t *out_t = (size_t *)out; const size_t *in_t = (const size_t *)in; (*block)(ctx->Yi.c, ctx->EKi.c, key); ++ctr; ctx->Yi.d[3] = htobe32(ctr); for (i = 0; i < 16/sizeof(size_t); ++i) out_t[i] = in_t[i] ^ ctx->EKi.t[i]; out += 16; in += 16; j -= 16; } gcm_ghash(ctx, out - GHASH_CHUNK, GHASH_CHUNK); len -= GHASH_CHUNK; } if ((i = (len & (size_t)-16))) { size_t j = i; while (len >= 16) { size_t *out_t = (size_t *)out; const size_t *in_t = (const size_t *)in; (*block)(ctx->Yi.c, ctx->EKi.c, key); ++ctr; ctx->Yi.d[3] = htobe32(ctr); for (i = 0; i < 16/sizeof(size_t); ++i) out_t[i] = in_t[i] ^ ctx->EKi.t[i]; out += 16; in += 16; len -= 16; } gcm_ghash(ctx, out - j, j); } #else while (len >= 16) { size_t *out_t = (size_t *)out; const size_t *in_t = (const size_t *)in; (*block)(ctx->Yi.c, ctx->EKi.c, key); ++ctr; ctx->Yi.d[3] = htobe32(ctr); for (i = 0; i < 16/sizeof(size_t); ++i) ctx->Xi.t[i] ^= out_t[i] = in_t[i] ^ ctx->EKi.t[i]; gcm_mul(ctx, ctx->Xi.u); out += 16; in += 16; len -= 16; } #endif if (len) { (*block)(ctx->Yi.c, ctx->EKi.c, key); ++ctr; ctx->Yi.d[3] = htobe32(ctr); while (len--) { ctx->Xi.c[n] ^= out[n] = in[n] ^ ctx->EKi.c[n]; ++n; } } ctx->mres = n; return 0; } while (0); for (i = 0; i < len; ++i) { if (n == 0) { (*block)(ctx->Yi.c, ctx->EKi.c, key); ++ctr; ctx->Yi.d[3] = htobe32(ctr); } ctx->Xi.c[n] ^= out[i] = in[i] ^ ctx->EKi.c[n]; n = (n + 1) % 16; if (n == 0) gcm_mul(ctx, ctx->Xi.u); } ctx->mres = n; return 0; } LCRYPTO_ALIAS(CRYPTO_gcm128_encrypt); int CRYPTO_gcm128_decrypt(GCM128_CONTEXT *ctx, const unsigned char *in, unsigned char *out, size_t len) { unsigned int n, ctr; size_t i; u64 mlen = ctx->len.u[1]; block128_f block = ctx->block; void *key = ctx->key; mlen += len; if (mlen > ((U64(1) << 36) - 32) || (sizeof(len) == 8 && mlen < len)) return -1; ctx->len.u[1] = mlen; if (ctx->ares) { /* First call to decrypt finalizes GHASH(AAD) */ gcm_mul(ctx, ctx->Xi.u); ctx->ares = 0; } ctr = be32toh(ctx->Yi.d[3]); n = ctx->mres; if (16 % sizeof(size_t) == 0) do { /* always true actually */ if (n) { while (n && len) { u8 c = *(in++); *(out++) = c ^ ctx->EKi.c[n]; ctx->Xi.c[n] ^= c; --len; n = (n + 1) % 16; } if (n == 0) gcm_mul(ctx, ctx->Xi.u); else { ctx->mres = n; return 0; } } #ifdef __STRICT_ALIGNMENT if (((size_t)in|(size_t)out) % sizeof(size_t) != 0) break; #endif #if defined(GHASH_CHUNK) while (len >= GHASH_CHUNK) { size_t j = GHASH_CHUNK; gcm_ghash(ctx, in, GHASH_CHUNK); while (j) { size_t *out_t = (size_t *)out; const size_t *in_t = (const size_t *)in; (*block)(ctx->Yi.c, ctx->EKi.c, key); ++ctr; ctx->Yi.d[3] = htobe32(ctr); for (i = 0; i < 16/sizeof(size_t); ++i) out_t[i] = in_t[i] ^ ctx->EKi.t[i]; out += 16; in += 16; j -= 16; } len -= GHASH_CHUNK; } if ((i = (len & (size_t)-16))) { gcm_ghash(ctx, in, i); while (len >= 16) { size_t *out_t = (size_t *)out; const size_t *in_t = (const size_t *)in; (*block)(ctx->Yi.c, ctx->EKi.c, key); ++ctr; ctx->Yi.d[3] = htobe32(ctr); for (i = 0; i < 16/sizeof(size_t); ++i) out_t[i] = in_t[i] ^ ctx->EKi.t[i]; out += 16; in += 16; len -= 16; } } #else while (len >= 16) { size_t *out_t = (size_t *)out; const size_t *in_t = (const size_t *)in; (*block)(ctx->Yi.c, ctx->EKi.c, key); ++ctr; ctx->Yi.d[3] = htobe32(ctr); for (i = 0; i < 16/sizeof(size_t); ++i) { size_t c = in_t[i]; out_t[i] = c ^ ctx->EKi.t[i]; ctx->Xi.t[i] ^= c; } gcm_mul(ctx, ctx->Xi.u); out += 16; in += 16; len -= 16; } #endif if (len) { (*block)(ctx->Yi.c, ctx->EKi.c, key); ++ctr; ctx->Yi.d[3] = htobe32(ctr); while (len--) { u8 c = in[n]; ctx->Xi.c[n] ^= c; out[n] = c ^ ctx->EKi.c[n]; ++n; } } ctx->mres = n; return 0; } while (0); for (i = 0; i < len; ++i) { u8 c; if (n == 0) { (*block)(ctx->Yi.c, ctx->EKi.c, key); ++ctr; ctx->Yi.d[3] = htobe32(ctr); } c = in[i]; out[i] = c ^ ctx->EKi.c[n]; ctx->Xi.c[n] ^= c; n = (n + 1) % 16; if (n == 0) gcm_mul(ctx, ctx->Xi.u); } ctx->mres = n; return 0; } LCRYPTO_ALIAS(CRYPTO_gcm128_decrypt); int CRYPTO_gcm128_encrypt_ctr32(GCM128_CONTEXT *ctx, const unsigned char *in, unsigned char *out, size_t len, ctr128_f stream) { unsigned int n, ctr; size_t i; u64 mlen = ctx->len.u[1]; void *key = ctx->key; mlen += len; if (mlen > ((U64(1) << 36) - 32) || (sizeof(len) == 8 && mlen < len)) return -1; ctx->len.u[1] = mlen; if (ctx->ares) { /* First call to encrypt finalizes GHASH(AAD) */ gcm_mul(ctx, ctx->Xi.u); ctx->ares = 0; } ctr = be32toh(ctx->Yi.d[3]); n = ctx->mres; if (n) { while (n && len) { ctx->Xi.c[n] ^= *(out++) = *(in++) ^ ctx->EKi.c[n]; --len; n = (n + 1) % 16; } if (n == 0) gcm_mul(ctx, ctx->Xi.u); else { ctx->mres = n; return 0; } } #if defined(GHASH_CHUNK) while (len >= GHASH_CHUNK) { (*stream)(in, out, GHASH_CHUNK/16, key, ctx->Yi.c); ctr += GHASH_CHUNK/16; ctx->Yi.d[3] = htobe32(ctr); gcm_ghash(ctx, out, GHASH_CHUNK); out += GHASH_CHUNK; in += GHASH_CHUNK; len -= GHASH_CHUNK; } #endif if ((i = (len & (size_t)-16))) { size_t j = i/16; (*stream)(in, out, j, key, ctx->Yi.c); ctr += (unsigned int)j; ctx->Yi.d[3] = htobe32(ctr); in += i; len -= i; gcm_ghash(ctx, out, i); out += i; } if (len) { (*ctx->block)(ctx->Yi.c, ctx->EKi.c, key); ++ctr; ctx->Yi.d[3] = htobe32(ctr); while (len--) { ctx->Xi.c[n] ^= out[n] = in[n] ^ ctx->EKi.c[n]; ++n; } } ctx->mres = n; return 0; } LCRYPTO_ALIAS(CRYPTO_gcm128_encrypt_ctr32); int CRYPTO_gcm128_decrypt_ctr32(GCM128_CONTEXT *ctx, const unsigned char *in, unsigned char *out, size_t len, ctr128_f stream) { unsigned int n, ctr; size_t i; u64 mlen = ctx->len.u[1]; void *key = ctx->key; mlen += len; if (mlen > ((U64(1) << 36) - 32) || (sizeof(len) == 8 && mlen < len)) return -1; ctx->len.u[1] = mlen; if (ctx->ares) { /* First call to decrypt finalizes GHASH(AAD) */ gcm_mul(ctx, ctx->Xi.u); ctx->ares = 0; } ctr = be32toh(ctx->Yi.d[3]); n = ctx->mres; if (n) { while (n && len) { u8 c = *(in++); *(out++) = c ^ ctx->EKi.c[n]; ctx->Xi.c[n] ^= c; --len; n = (n + 1) % 16; } if (n == 0) gcm_mul(ctx, ctx->Xi.u); else { ctx->mres = n; return 0; } } #if defined(GHASH_CHUNK) while (len >= GHASH_CHUNK) { gcm_ghash(ctx, in, GHASH_CHUNK); (*stream)(in, out, GHASH_CHUNK/16, key, ctx->Yi.c); ctr += GHASH_CHUNK/16; ctx->Yi.d[3] = htobe32(ctr); out += GHASH_CHUNK; in += GHASH_CHUNK; len -= GHASH_CHUNK; } #endif if ((i = (len & (size_t)-16))) { size_t j = i/16; gcm_ghash(ctx, in, i); (*stream)(in, out, j, key, ctx->Yi.c); ctr += (unsigned int)j; ctx->Yi.d[3] = htobe32(ctr); out += i; in += i; len -= i; } if (len) { (*ctx->block)(ctx->Yi.c, ctx->EKi.c, key); ++ctr; ctx->Yi.d[3] = htobe32(ctr); while (len--) { u8 c = in[n]; ctx->Xi.c[n] ^= c; out[n] = c ^ ctx->EKi.c[n]; ++n; } } ctx->mres = n; return 0; } LCRYPTO_ALIAS(CRYPTO_gcm128_decrypt_ctr32); int CRYPTO_gcm128_finish(GCM128_CONTEXT *ctx, const unsigned char *tag, size_t len) { u64 alen = ctx->len.u[0] << 3; u64 clen = ctx->len.u[1] << 3; if (ctx->mres || ctx->ares) gcm_mul(ctx, ctx->Xi.u); ctx->Xi.u[0] ^= htobe64(alen); ctx->Xi.u[1] ^= htobe64(clen); gcm_mul(ctx, ctx->Xi.u); ctx->Xi.u[0] ^= ctx->EK0.u[0]; ctx->Xi.u[1] ^= ctx->EK0.u[1]; if (tag && len <= sizeof(ctx->Xi)) return memcmp(ctx->Xi.c, tag, len); else return -1; } LCRYPTO_ALIAS(CRYPTO_gcm128_finish); void CRYPTO_gcm128_tag(GCM128_CONTEXT *ctx, unsigned char *tag, size_t len) { CRYPTO_gcm128_finish(ctx, NULL, 0); memcpy(tag, ctx->Xi.c, len <= sizeof(ctx->Xi.c) ? len : sizeof(ctx->Xi.c)); } LCRYPTO_ALIAS(CRYPTO_gcm128_tag); GCM128_CONTEXT * CRYPTO_gcm128_new(void *key, block128_f block) { GCM128_CONTEXT *ret; if ((ret = malloc(sizeof(GCM128_CONTEXT)))) CRYPTO_gcm128_init(ret, key, block); return ret; } LCRYPTO_ALIAS(CRYPTO_gcm128_new); void CRYPTO_gcm128_release(GCM128_CONTEXT *ctx) { freezero(ctx, sizeof(*ctx)); } LCRYPTO_ALIAS(CRYPTO_gcm128_release);